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Prediction of Apgar Score Using Statistical Learning
Nina Oryshkewych, MS

University of Pittsburgh, 2022

Background: Apgar score is a measure of neonatal health. A low Apgar score has been
linked to several adverse health outcomes. Ambient air pollution has been shown to be a major
threat to public health, but there is limited research on the relationship between maternal
exposure to air pollution and Apgar score.

Methods: Maternal exposure to air pollution was calculated for each trimester and for
each of the seven criteria air pollutants based on the nearest monitor to each mother’s residence.
A combination of random over- and under-sampling was performed on the training data to
balance the class distribution of Apgar score. Extreme gradient boosting (XGBoost) and logistic
regression were used to build eight classification models — two using all predictors and six
trimester-specific models.

Results: All models had poor discriminative ability. The best performing model was the
XGBoost second trimester model, with an AUC of 0.627. In the XGBoost models, gestational
age appeared to be the most important predictor of Apgar score, followed by the air pollution
exposure variables. In the logistic regression models, gestational age was the most significant
predictor.

Conclusion: Gestational age is the primary driver of Apgar score, and exposure to air
pollution may be important as well. While none of the models had adequate predictive ability,

there are a few limitations to this study that may have hindered their performance. Future



research should consider more sophisticated resampling techniques as well as geospatial
modelling of pollution concentrations in order to improve the quality of the data.

Public Health Significance: While many studies have investigated the consequences of
a low Apgar score, existing research lacks in exploration of factors that influence Apgar score.
This study suggests the possibility that exposure to ambient air pollution could be linked to a low
five minute Apgar score. A classification model for Apgar score could guide practitioners and

public health officials in implementing preventative measures to protect neonatal health.
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1.0 Introduction

1.1 Apgar Score

Apgar score is a measure is a measure of newborn health. It is scored 0-10 and is
comprised of five components, each of which are scored 0-2 and summed to generate a total
score. The components include: breathing effort, heart rate, muscle tone, grimace response or
reflex irritability, and color. Scores of 7-10 are generally considered normal, while scores of 4-6
are considered moderately abnormal, and scores of 0-3 are considered low. Apgar scores are
measured one minute after birth and again five minutes after birth. Any infants who score less
than 7 or require resuscitation at five minutes are further measured at 5-minute intervals (Simon,
Hashmi, & Bragg, 2021).

The Apgar score was originally developed as a metric to determine whether an infant
required resuscitation. Current guidelines, however, state that resuscitation must be initiated for
infants who require it before the 1-minute Apgar score is measured. Nonetheless, the American
College of Obstetricians and Gynecologists and the American Academy of Pediatrics maintain
Apgar scoring as an accepted method of assessing infant health (Simon et al., 2021). It remains a

useful tool in detecting signs of cardiovascular or respiratory complications.

1.1.1 Implications

An Apgar score alone cannot be used to predict a newborn’s health trajectory; however, a

number of studies suggest that infants with low Apgar scores are at higher risk for certain



complications. At one minute, a low Apgar score is not necessarily indicative of any adverse
outcomes ("Committee Opinion No. 644: The Apgar Score,” 2015). Though at five minutes,
there is substantial evidence of an association with low Apgar scores and adverse health
outcomes. An Apgar score of 0-3 at five minutes has been shown to be associated with increased
risk for neonatal mortality (Li et al., 2013). Furthermore, there is evidence of an association
between a low 5-minute Apgar score and development of cerebral palsy. A study of over
200,000 newborns found that the risk for neonatal death in infants who scored 0-3 increased 386-
fold compared to infants who scored 7-10; the risk for developing cerebral palsy increased by
81-fold (Moster, Lie, Irgens, Bjerkedal, & Markestad, 2001). Additionally, infants with abnormal
Apgar scores are at an increased risk of developing neurologic disabilities even many years after
birth. While the relative risks of disability are considerable for newborns with low Apgar scores,
it is important to note, however, that most of low-scoring infants who survive do not end up

developing disabilities (Ehrenstein, 2009).

1.2 Air Pollution

1.2.1 Criteria Air Pollutants

The EPA classifies 6 common pollutants as “criteria air pollutants”: carbon monoxide,
lead, nitrogen dioxide, ground-level ozone, particulate matter, and sulfur dioxide. These
pollutants are subject to National Ambient Air Quality Standards, which were set by the Clean
Air Act. This ordinance defines two types of standards — primary and secondary. Primary

standards are meant to protect public health, especially for populations that are sensitive to air



pollution (i.e. asthma patients, children, and the elderly). Secondary standards provide a broader
range of protection; they are meant to prevent poor visibility and harm to animals, agriculture,
and buildings. The Clean Air Act has made a considerable impact on air pollution levels in the
United States. Since 1990, emissions of major air pollutants have consistently decreased; since
2000, the number of unhealthy air quality days across 35 major US cities has decreased by 62%
(US Environmental Protection Agency, 2019). Despite the major improvements that have been
made in air quality, in 2019 nearly 82 million people across the Unites States lived in counties

that exceeded NAAQS primary standards (US Environmental Protection Agency, 2020).

1.2.2 Health Effects

According to the World Health Organization, 4.2 million deaths across the globe each
year can be attributed to ambient air pollution; 99% of the global population experiences air
quality conditions that exceed WHO guidelines (World Health Organization, 2021).
Furthermore, the research team at the Global Burden of Disease project estimate that air
pollution accounts for a fifth of neonatal mortality worldwide and that that nearly 500,000
neonatal deaths in 2019 could be attributed to air pollution (Health Effects Institute, 2020).
While significant progress continues to be made, it is evident that air pollution remains a major

threat to public health.

1.2.3 Air Quality in Allegheny County

Southwest Pennsylvania has a long history of polluted air. While considerable progress

has been made in recent years, Allegheny County still suffers from poor air quality. According to



Allegheny County, PA

States based on annual levels of particulate matter (American Lung Association, 2021).
Daily AQI Values, 2009 to 2020

Furthermore, as seen in Figure 1, EPA data from 2009-2020 shows that the majority of days in
this time period in Allegheny county had a daily air quality index (AQI) that exceeded the

the American Lung Association, Allegheny county is the 16 most polluted county in the United

“good” threshold (US Environmental Protection Agency, 2021).
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Figure 1: Allegheny County AQI Values
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1.3 Objectives

While a number of studies have linked air pollution to detrimental health effects, limited
research has been done on the relationship between air pollution and Apgar score. The aims of
this thesis are to construct and compare several models that predict Apgar score and to determine
whether maternal exposure to criteria air pollutants is important in classifying a score as normal
or abnormal. Given the implications that an Apgar score has on an infant’s, the magnitude of the
effect that air pollution has on public health, such a model would contribute meaningfully to
existing research on neonatal health. Furthermore, Allegheny county’s air quality continues to be
a significant public health issue; this study has the potential to uncover further evidence of the

effects of Allegheny county’s air quality on health.



2.0 Methods

2.1 Variables of Interest

Five-minute Apgar score was designated as the outcome variable. The exposure variables
of interest included average ambient concentrations of each of the criteria pollutants by trimester.
Additional predictors included: child’s sex, season of birth, gestational age, mother’s age,
mother’s BMI, diagnosis of gestational diabetes, maternal race, maternal ethnicity, paternal race,
paternal ethnicity, maternal education, number of cigarettes smoked prior to pregnancy, and

number of cigarettes smoked during pregnancy.

2.2 Data Cleaning and Management

All birth-related data were acquired from the Pennsylvania Department of Health. The
data spanned the years 2010-2020 and included births from Allegheny County. Records that had
multiple births, infants weighing less than 500 g, mothers older than 45, a gestational age less
than 22 weeks, or any unknown or missing variables were dropped from the analysis. Due to lack
of variability, the categories of certain variables were collapsed. Maternal and paternal race were
collapsed into White, Black/African American, and Other. Mother’s education was collapsed
into less than high school, high school or GED, some college, Bachelor’s degree, and graduate
degree. In addition, the number of cigarettes smoked during each trimester was summed into a

single variable — total number of cigarettes smoked during pregnancy. Lastly, Apgar score was



categorized into two groups — abnormal or normal; scores of 0-6 were included in the abnormal
category and scores of 7-10 were included in the normal category, as suggested by Simon et al.
(Simon et al., 2021).

Air quality data for Allegheny County and surrounding counties were downloaded from
the EPA Air Data page (US Environmental Protection Agency, 2021); these data spanned the
years 2009-2020. Daily concentration summaries were acquired for the following pollutants:
carbon monoxide, nitrogen dioxide, ozone, lead, PM1o, PM2s, and sulfur dioxide. Assigning air
pollution exposure required several steps. First, we estimated the start of gestation using the
gestational age, as well as cutoffs dates for each trimester. The beginning of the second trimester
was estimated to start thirteen weeks after the start of gestation and the beginning of the third
trimester was estimated to start 26 weeks after the start of gestation. Next, we identified the
monitoring sites for each pollutant that were active during each gestational period, noting
whether certain monitors became active or inactive throughout different trimesters. Next, for
each trimester, we found the monitor nearest to the mother’s residence. We allowed for monitors
to differ by trimester depending on activity status throughout the pregnancy. In addition, we
considered the possibility that some mothers may have lived closer to monitoring sites in
neighboring counties, and thus included monitors from each of Allegheny’s border counties in
the assignment process. Lastly, the average pollution concentration from the closest monitor was
averaged for the duration of each trimester. Figure 1 illustrates the step-by-step process of

exposure assignment.



Estimate start
of gestation
and trimester
cutoff dates

Identify active
monitors

Identify closest
monitor

Calculate
average
pollution
concentration

Figure 2: Exposure Assignment for Each Birth and Each Pollutant by Trimester

2.3 Model Pre-Processing

After data preparation was complete, all categorical variables were converted to numeric
variables using dummy encoding. 70% of the data was randomly selected to be used as a
training set for model building and the remaining 30% was held out to test the performance of
the models. Because the class distribution of Apgar scores was highly imbalanced, the training
data was resampled to balance the outcome classes. A combination of random under-sampling of
the majority class and random over-sampling of the minority class was performed until the
classes became approximately equal, while maintaining the original sample size. The ‘ROSE’
package in R was used to implement this. This was a necessary step in data preparation, as most

machine learning techniques rely on a balanced outcome to build reliable models. If classes are



highly imbalanced, a model will lose discrimination capability — it will tend to incorrectly predict

instances as belonging to the majority class in order to maximize overall accuracy.

2.4 Model Building

Extreme gradient boosting and logistic regression were used to build several
classification models. The first models were built using air pollution exposure variables for all

three trimesters. Next, three sets of trimester-specific models were built.
2.4.1 Extreme Gradient Boosting

Gradient boosting is an ensemble learning technique, in which a large quantity of
decision trees are formed through an iterative process, where each iteration tweaks the previous
model in an attempt to correct prior misclassifications. The optimal model is constructed by
minimizing a loss function; in the case of classification, this function is the negative binomial
log-likelihood (Friedman, 2001):

L(y,F) = log(1 + exp(-2yF)), y € {-1,1}, (Eq. 1)

Pr(y=1 |x)

1
where F(x) = -log [Pr(y— 1]x)

| Ea.2)

Gradient boosting is implemented in R’s ‘caret’ package, which integrates functions from
the ‘xgboost’ package, which carries out a version of gradient boosting known as extreme
gradient boosting (XGBoost). The XGBoost algorithm carries out the principles of gradient
boosting, while applying additional regularization to prevent over-fitting. The function that

builds the model intakes several hyperparameters, which are tuned to maximize model

9



performance. The hyperparameters available for tuning are: number of iterations, maximum tree
depth, learning rate, gamma, column sample, minimum node size, and subsample. The number
of iterations refers to the number of decision trees that are constructed. The learning rate is a
shrinkage parameter — it scales down the contribution of each tree that is added to the model.
Gamma, minimum child weights, and maximum depth are all used to control tree complexity.
Gamma refers to the minimum reduction of the loss function that is required to create an
additional partition in the tree. The minimum child weight is the minimum number of births that
are allowed in a leaf node of the decision tree. The maximum depth restricts the number of
partitions that can be made from root to lead. The subsample indicates what proportion of the
training data should be sampled to grow each tree. The column sample indicates what proportion
of features should be sampled to build each tree. A sequence of possible values are inputted for
each hyperparameter; each possible combination of hyperparameters is entered as a row in a
tuning grid, which is then searched for the combination that produces the best performing model.
The default tuning grid in the ‘caret’ package was searched via five-fold cross-validation for the

optimal combination of parameters.

2.4.1.1 Feature Importance

Variable importance was assessed for each gradient boosted classifier using two different
metrics — gain and cover. As implemented by ‘xgboost’, variable importance measured by gain
describes the average information gain attributed to each feature out of all the trees that were
constructed, whereas cover describes the relative number of observations related to each feature

(Chen et al., 2022)
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2.4.1.2 Partial Dependence
Partial dependence plots were constructed for the top five important variables ranked by
gain for the full XGBoost model. The purpose of these plots is to visualize the marginal effect of

individual variables on the predicted probability of an abnormal Apgar score.
2.4.2 Logistic Regression

Logistic regression is a model used for binary outcomes, where each predictor receives a
coefficient that contributes to the prediction of the response variable. Logistic regression is a
type of generalized linear model, in which the outcome variable follows the distribution within
the exponential family; in the case of logistic regression, the logit function links the expected
value of the outcome to the covariates and their coefficients. The theory behind this model is as
follows.

Let P(Y; = 1|X;) =p;and P(Y; =0|X;)) =1 —p;

The model equation then becomes:
logit(p)) = log () = XiB (Eq. 3)
and

Xi
pi = E(Y|X) = {22 (Eq. 4)

Logistic regression is also implemented in the ‘caret’ package, which utilizes functions
from the ‘glm’ package. This model does not incorporate any hyperparameters. The final model

output was optimized via five-fold cross-validation.
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2.5 Model Evaluation

Model performance was evaluated using several metrics: accuracy, sensitivity,
specificity, positive predictive value, negative predictive value, the area under the receiver
operating characteristic (ROC) curve, no information rate. Overall model accuracy was measured
by calculating the proportion of Apgar scores that were correctly predicted out of the entire
testing set. To calculate sensitivity and specificity, a confusion matrix was constructed, in which
an abnormal Apgar score was considered the “positive class”. A confusion matrix, shown in
Table 1, classified predictions into one of 4 categories: true positive, true negative, false positive,

and false negative.

Table 1: Confusion Matrix

Reference
Abnormal Normal
Abnormal  True Positive (TP)  False Positive (FP)
Normal False Negative (FP) True Negative (TN)

Prediction

Sensitivity is the true positive rate — it refers to the probability of a case being predicted
as positive, given the case is truly positive; in the context of our problem, this means the
probability of the model predicted an abnormal Apgar score, given that the score is truly
abnormal. Specificity is the true negative rate and describes the probability of a case being
predicted as negative, given the case is truly negative; in terms of the research question, this
refers to the probability of the classifier predicting a normal Apgar score, given that the score is
truly normal. The no information rate refers to the proportion of that total sample that belongs to

the majority class; in other words, it describes the probability of correctly classifying an

12



observation by simply predicting it to be of the majority class. In order to determine the overall
significance of the models, a one-sided hypothesis test was conducted to assess whether model
accuracy was greater than the no information rate. Table 2 summarizes all model evaluation

metrics that were used.

Table 2: Performance Metrics

Metric Formula
TP+ TN
Accuracy
TP+TN + FP+ FN

. TP
Sensitivity —_—
TP+ FN

e . TN
Specificity _—
TN + FP

. .. TP
Positive Predictive Value _
TP + FP

. . TN
Negative Predictive Value S —
TN + FN

. nmajority class
No Information Rate —_—
Niotal

The receiver operating characteristic (ROC) curve takes both sensitivity and specificity
into account, creating a more balanced measure of model performance. The ROC curve is
computed by plotting the sensitivity against 1- the specificity; the area under the curve (AUC)
quantifies the strength of the discriminative ability of the model. The AUC was used to identify

the best model.

13



3.0 Results

3.1 Summary Statistics

The original birth record dataset contained 141,613 observations. After applying
exclusion criteria and dropping records with missing values, the resulting data set contained
61,118 observations. Table 3 shows summary statistics of all variables directly related to the

newborns and their parents.

Table 3: Summary Statistics

Births
Sex
F 30043 (49.2%)
M 31075 (50.8%)
Season of Birth
Fall 15922 (26.1%)
Spring 15771 (25.8%)
Summer 15380 (25.2%)
Winter 14045 (23.0%)
Gestational Age (weeks)
Mean (SD) 38.9 (1.59)
Median [Min, Max] 39.0 [26.0, 45.0]
Mother’s Age
Mean (SD) 30.2 (5.14)
Median [Min, Max] 30.0[13.0, 45.0]
BMI

14



Births

Normal
Obese
Overweight
Underweight
Gestational Diabetes
No
Yes
Maternal Race
All other races
Black or African American
White
Maternal Ethnicity
Hispanic
Not Hispanic
Paternal Race
White
Black
All other races
Paternal Ethnicity
Not Hispanic
Hispanic
Maternal Education
Bachelor's degree
Graduate degree
High school or GED
Less than high school

Some college

Number of Cigarettes Smoked Prior to Pregnancy

Mean (SD)

32182 (52.7%)

12533 (20.5%)

14571 (23.8%)
1832 (3.0%)

57926 (94.8%)
3192 (5.2%)

3774 (6.2%)
7587 (12.4%)
49757 (81.4%)

1119 (1.8%)
59999 (98.2%)

47883 (78.3%)
9311 (15.2%)
3924 (6.4%)

59882 (98.0%)
1236 (2.0%)

19721 (32.3%)
15006 (24.6%)
8612 (14.1%)
2200 (3.6%)
15579 (25.5%)

1.74 (5.68)



Births

Median [Min, Max] 0 [0, 98.0]
Number of Cigarettes Smoked During Pregnancy

Mean (SD) 2.33(9.36)

Median [Min, Max] 0 [0, 294]
5-Minute Apgar Score

Abnormal 631 (1.0%)

Normal 60487 (99.0%)

Table 4 summarizes maternal exposure to each of the criteria air pollutants by trimester.

Average exposure appeared to remain fairly consistent across trimesters.

Table 4: Air Pollution Exposure

Mean (SD)

First Trimester ~ Second Trimester ~ Third Trimester
Carbon Monoxide (ppm) 0.310 (0.113) 0.311 (0.114) 0.313 (0.115)
Nitrogen Dioxide (ppb) 10.3 (3.61) 10.3 (3.65) 10.2 (3.72)
Ozone (ppm) 0.0291 (0.00711) 0.0292 (0.00725)  0.0293 (0.00705)
Lead (ug/m®) 0.0126 (0.0274) 0.0118 (0.0266) 0.0116 (0.0267)
PMa.s (ug/m?) 10.3 (2.42) 10.3 (2.47) 10.1 (2.33)
PMio (ug/m®) 17.2 (4.77) 17.2 (4.80) 17.2 (4.83)
Sulfur Dioxide (ppb) 2.17 (1.99) 2.12 (1.98) 2.04 (1.95)

The class distribution of Apgar score was heavily imbalanced — with 42,352 newborns
having a normal Apgar score and only 431 newborns having an abnormal Apgar score in the
training data set. Applying a combination of random oversampling of the minority class and
random under-sampling of the majority class produced a much more balanced outcome

distribution — with 21,342 normal Apgar scores and 21,441 abnormal Apgar scores (Table 5).

16



Table 5: Outcome Class Distribution

Original Data Re-sampled Data
Abnormal 431 21,441
Normal 42,352 21,342

3.2 Air Quality Monitors

The number of monitors for each pollutant in each county can be seen in Table 6. The
study area contained considerably more monitors for particulate matter than for the other criteria

pollutants. Maps of the monitors locations can be found in Appendix A.

Table 6: Air Quality Monitors

Vorodde "0 Digige  O%m  PMn  PMas i
Allegheny 5 4 5 5 11 10 7
Armstrong 0 0 0 1 0 1 0
Beaver 0 5 1 3 1 1 2
Butler 0 1 0 0 0 0 0
Washington 2 0 2 4 1 4 2
Westmoreland 0 2 0 2 0 1 0

17



3.3 Model Output

3.3.1 XGBoost

3.3.1.1 Tuning

A total of 108 combinations of hyperparameters were tested for each XGBoost model.
The results of the tuning process for the full model can be seen in Figure 2; the overall predictive
accuracy in the training set was compared for each combination of hyperparameters that was
tested. A tree depth of 3 consistently yielded substantially higher accuracy than shorter tree

depths. Furthermore, accuracy also increased as the number of boosting iterations increased.
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Figure 3: Tuning Results
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The best tune of the full model is shown in Table 7. This combination of hyperparameters

resulted in an accuracy of 0.966 in the training set.

Table 7: Best Tune

Learnin Maximum Column Minimum Number
g Tree Gamma Node Subsample of Accuracy
Rate Sample . .
Depth Size Iterations
0.4 3 0 0.8 1 0.5 150 0.966
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3.3.1.2 Feature Importance

Feature importance was extracted from each of the XGBoost models. Figures 4 displays
the top 20 features ranked by gain for each XGBoost model that was built. In each of the models,
gestational age was by far the most important predictor of Apgar score. Furthermore, the air

pollution exposure variables consistently ranked higher in importance than demographic

variables.
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Figure 4: Feature Importance - Gain

Figures 5 displays the top 20 features of each XGBoost model ranked by cover. From this
perspective, gestational age was only the most important feature in the full model. However, the

air pollution exposure variables still tended to outrank the demographic variables.
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Figure 5: Feature Importance - Cover

3.3.1.3 Partial Dependence

Figure 6 displays the partial dependence of Apgar score on the top 5 most important
predictors measured by gain. The partial dependences are congruent with what was seen with
variable importance — the probability of an abnormal Apgar score appears to vary the most
depending on gestational age, whereas the probability changes much less depending on pollutant

concentrations.
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Figure 6: Partial Dependence Plots

3.3.2 Logistic Regression

The output of the logistic regression is shown in Table 8. A majority of the predictors had
statistically significant coefficients. Similar to the XGBoost models, gestational age was the most
significant predictor of Apgar score. Output for the trimester-specific logistic regression models

can be found in Appendix B.
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Table 8: Full Logistic Regression Model Output

Estimate  Standard Error zvalue  Pr(>[z|) Signif.
(Intercept) 9.483 0.267 35.457 0.0000 ***
sex.M 0.333 0.021 15.867 0.0000 ***
season_of _birth.Spring -0.249 0.054 -4.640 0.0000 ***
season_of _birth.Summer -0.133 0.046 -2.869 0.0041 **
season_of_birth.Winter -0.060 0.043 -1.387 0.1653
gestational_age_weeks -0.219 0.005  -48.399 0.0000 ***
mothage 0.002 0.002 1.085 0.2777
bmi_cat.Obese -0.011 0.028 -0.382 0.7022
bmi_cat.Overweight 0.017 0.026 0.672 0.5013
bmi_cat.Underweight -0.819 0.074  -11.132 0.0000 ***
gestational_diabetes.Yes 0.103 0.044 2.340 0.0193 *
maternal_race.Black.or.African.American 0.532 0.076 6.954 0.0000 ***
maternal_race.White 0.227 0.064 3.524 0.0004 ***
maternal_ethnicity.Not.Hispanic 0.159 0.086 1.848 0.0646 .
maternal_edu_cat.Graduate.degree -0.248 0.028 -8.719 0.0000 ***
maternal_edu_cat.High.school.or. GED -0.021 0.037 -0.567 0.5704
maternal_edu_cat.Less.than.high.school -0.147 0.063 -2.318 0.0204 *
maternal_edu_cat.Some.college -0.041 0.029 -1.381 0.1674
smkpr 0.016 0.002 7.446 0.0000 ***
smk_total -0.002 0.001 -1.581 0.1140
paternal _race.Black -0.037 0.049 -0.751 0.4524
paternal_race.All.other.races 0.093 0.061 1.514 0.1300
paternal_ethnicity.Hispanic -0.462 0.083 -5.572 0.0000 ***
co_first -0.424 0.151 -2.808 0.0050 **
co_second -0.757 0.183 -4.133 0.0000 ***
co_third 0.126 0.143 0.879 0.3794
no2_first -0.021 0.006 -3.458 0.0005 ***
no2_second -0.029 0.007 -3.982 0.0001 ***
no2_third -0.015 0.006 -2.351 0.0187 *
ozone_first -22.279 2.821 -7.896 0.0000 ***
ozone_second -15.492 3.077 -5.035 0.0000 ***
ozone_third 11.602 2.927 3.964 0.0001 ***
pb_first -3.740 0.549 -6.808 0.0000 ***
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Estimate  Standard Error zvalue  Pr(>|z|) Signif.

pb_second 1.288 0.560 2.298 0.0215 *
pb_third 1.211 0.510 2.373 0.0176 *
pm10_first 0.034 0.004 7.922 0.0000 ***
pm10_second -0.049 0.005 -9.824 0.0000 ***
pm10_third 0.004 0.005 0.981 0.3268
pm2.5_first 0.024 0.008 2.982 0.0029 **
pm2.5_second 0.061 0.008 8.119 0.0000 ***
pm2.5_third -0.025 0.008 -2.972 0.0030 **
so2_first -0.098 0.012 -8.402 0.0000 ***
s02_second 0.037 0.013 2.826 0.0047 **
so2_third -0.098 0.012 -8.088 0.0000 ***

Signif. codes: 0 <= "***'<(0.001 < **'<0.01<"*'<0.05<.'<0.1<"<1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 5.931e+04 on 42782 degrees of freedom
Residual deviance: 5.366e+04 on 42739 degrees of freedom

3.4 Model Performance

3.4.1 Full Models

All possible predictors were used to fit an extreme gradient boosted (XGBoost)
classification model and a logistic regression. As seen in Table 9, the XGBoost classifier
correctly predicted 36 abnormal Apgar Scores and 16,748 normal Apgar scores. The GLM
classifier correctly predicted 100 abnormal Apgar scores and 12,200 normal Apgar scores, as

shown in Table 10.
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Table 9: Confusion Matrix: XGBoost Full Model

Reference

Abnormal Normal
Abnormal 36 1,387
ormal 164 16.748

Prediction

Table 10: Confusion Matrix: GLM Full Model

Reference

Abnormal Normal
Abnormal 100 5,935
Normal 100 12,200

Prediction

Additional performance metrics can be seen in Table 7. Neither model had an accuracy

that was significantly greater than the no information rate (Table 7).

Table 7: Performance Statistics

Sensitivity Specificity =~ PPV NPV Accuracy NIR P(Acc >

NIR)
XGBoost  0.180 0.923 0.025 0.990 0.915 0.989 1
GLM 0.500 0.673 0.017 0.992 0.671 0.989 1

The logistic regression slightly outperformed the XGBoost classifier, with AUCs of

0.618 and 0.592, respectively (Figure 7).
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Figure 7: ROC Full Models

3.4.2 First Trimester Exposure

Next, both the XGBoost and GLM classifiers were refit using pollution exposure from
only the first trimester. The XGBoost model correctly classified 41 abnormal Apgar scores and
16, 424 normal Apgar scores (Table 8). The logistic regression correctly classified 101 abnormal

Apgar scores and 12,269 normal Apgar scores (Table 9).

Table 8: Confusion Matrix: XGBoost First Trimester

Reference
Abnormal Normal
L Abnormal 41 1,711
Prediction
Normal 159 16,424
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Table 9: Confusion Matrix: GLM First Trimester

Reference
Abnormal Normal
Abnormal 101 5,866
ormal 99 12,269

Prediction

Additional measures of model performance can be seen in Table 10. Neither model’s

predictive accuracy was significantly greater than the no information rate (Table 10).

Table 10: Performance Statistics

Sensitivity Specificity PPV NPV Accuracy  NIR Pkﬁ%c;
XGBoost  0.205 0.906 0.023 0.990 0.898 0.989 1
GLM 0.505 0.676 0.017 0.992 0.675 0.989 1

In this model, the logistic regression’s performance was slightly worse than that of the
XGBoost classifier, as shown by the ROC curves in Figure 8; the AUC of logistic regression was

0.619 and the AUC of the XGBoost classifier was 0.622.
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Figure 8: ROC First Trimester

3.4.3 Second Trimester Exposure

Both the XGBoost and GLM classifiers were again refit, using the pollution exposures
from the second trimester only. Using this construction, the XGBoost classifier correctly
predicted 47 abnormal Apgar scores and 16,347 normal Apgar scores (Table 11); the logistic
regression correctly predicted 103 abnormal Apgar scores and 12,297 normal Apgar scores

(Table 12).
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Table 11: Confusion Matrix - XGBoost Second Trimester

Reference
Abnormal Normal
o Abnormal 47 1,788
Prediction
ormal 153 16,347

Table 12: Confusion Matrix - GLM Second Trimester

Reference
Abnormal Normal
Abnormal 103 5,838
ormal 97 12,297

Prediction

Further metrics of model performance can be seen in Table 13. Once again, neither model

had an accuracy that was significantly greater than the no information rate (Table 13).

Table 13: Performance Statistics

Sensitivity Specificity PPV NPV Accuracy NIR Pm%>
XGBoost 0.225 0.901 0.026 0.991 0.894 0.989 1
GLM 0.515 0.678 0.017 0.992 0.676 0.989 1

As seen in Figure 4, the AUC of the logistic regression was 0.618, whereas the AUC of

the XGBoost model was 0.627.
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Figure 9: ROC Second Trimester

3.4.4 Third Trimester Pollution Exposure

Once again, the models were rebuilt — this time, using air pollution exposures from the
third trimester only. Using these parameters, the XGBoost model correctly identified 33
abnormal Apgar scores and 16,620 normal Apgar scores (Table 14); the GLM correctly

identified 97 abnormal Apgar scores and 12,334 normal Apgar scores (Table 15).
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Table 14: Confusion Matrix - XGBoost Third Trimester

Reference
Abnormal Normal
o Abnormal 33 1,515
Prediction
ormal 167 16,620

Table 15: Confusion Matrix - GLM Third Trimester

Reference
Abnormal Normal
Abnormal 103 5,838
ormal 97 12,297

Prediction

Table 16 shows additional measures of model performance. Neither model had a

predictive accuracy that was significantly greater than the no information rate (Table 16).

Table 16: Performance Statistics

Sensitivity Specificity PPV NPV Accuracy  NIR Pkﬁ;c;
XGBoost ~ 0.165 0916 0021 0990 0908  0.989 1
GLM 0485 0680 0016 0992 0678  0.989 1

In this model, the logistic regression had a marginally better AUC than the XGBoost
classifier. The ROC curves are shown in Figure 5 — the AUC of the logistic regression was 0.609

and the AUC of the XGBoost model was 0.565.

32



sensitivity

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50 0.25
specificity

Figure 10: ROC Third Trimester

33

0.00

GLM: 0.609
— XGB:0.565



4.0 Discussion

The aims of this study were to develop a model that could accurately predict whether an
Apgar score would be normal or abnormal and to assess whether maternal exposure to air
pollution was important in making these predictions. Of the models fit in this study, all
performed quite underwhelmingly. The overall best performing model was the second trimester
XGBoost model with an AUC of 0.627. Nonetheless, this was only marginally better than the
results of the other models. Furthermore, it appears that model performance did not substantially
differ by trimester, indicating that air pollution exposure during one particular trimester is not
more important than another; however, we cannot conclude this with much certainty, given the
unreliability of our models.

The logistic regression models identified a number of statistically significant predictors.
According to the full model, gestational age was by far the most significant predictor of Apgar
score. Many of the air pollution variables were also found to be significant; however, some
coefficients were calculated as being negative, which is the opposite of what we would expect.
This can most likely be attributed to the unreliability of the model or to the possibility that some
pollutants do not have a clinically significant association with Apgar score.

When fitting the XGBoost classifiers, gestational age and air pollution exposure seemed
to be the most important variables in predicting Apgar score. In each of the models, gestational
age was overwhelmingly the most influential feature when measuring importance by gain.
Furthermore, the partial dependence plot of Apgar score and gestational age reveals that the
relationship is non-linear. The probability of an abnormal Apgar score is high with a low
gestational age and decreases until around 40 weeks of gestation, then begins to increase beyond
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40 weeks. This finding suggests that XGBoost may be a more appropriate modeling strategy than
logistic regression. While logistic regression assumes a linear relationship between predictors
and the outcome, tree-based methods, including XGBoost, have the capability of capturing non-
linear relationships.

The inconclusive results regarding the importance and significance of air pollution
exposure in predicting Apgar score is somewhat surprising, given that several studies have found
evidence supporting an association between exposure to certain air pollutants and a low Apgar
score. For example, a similar study conducted in Guangzhou, China found that exposure to soil
dust, a constituent of PM.s, significantly increased odds of an abnormal Apgar score at one
minute (Wei et al., 2021). Furthermore, a study focused on South African women found that
exposure to NOx pollution, which includes nitrogen dioxide, was negatively associated with both
one- and five-minute Apgar scores for infants born to mothers of a particular genotype (Naidoo,
Naidoo, Ramkaran, & Chuturgoon, 2020). Further exploration is required to determine with

certainty if such associations exist in Allegheny County.

4.1 Limitations

There were several limitations to this study. Most notably, the class distribution of the
outcome was heavily imbalanced. A mere 1% of births had an abnormal Apgar score, with
nearly the entirety of births the dataset having a normal Apgar score. In order to balance the
classes, a large quantity of data in the majority class was lost, while a large quantity in the
minority class was repeated. This likely introduced a considerable amount of bias into the data,

resulting in poorly performing models.
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Additionally, the accuracy of the air pollution exposures was undoubtedly hindered by
the nature of the air quality data. The air quality data represent pollutant concentrations at
specific points; our method of exposure assignment does not take into consideration any
variation in concentration levels that may occur due to distance or geological factors.
Furthermore, some pollutants were monitored at significantly fewer sites than others.
Consequently, the distances between mothers’ residences and monitors were larger, which likely

affected accuracy as well.

4.2 Future Directions

Future research on the topic of Apgar score in relation to air pollution exposure can
expand by addressing the limitations of this study. More sophisticated resampling techniques
should be considered in order to generate synthetic data more accurately. The Synthetic Minority
Oversampling Technique (SMOTE) and the Adaptive Synthetic Sampling Approach (ADASYN)
are two popular oversampling techniques that generate new minority class observations by
learning from existing observations. These can be used in conjunction with data-driven under-
sampling techniques, such as Edited Nearest Neighbors (ENN) or Tomek Links. While these
techniques are computationally intensive, they can provide superior results to random
resampling.

Moreover, exploring geospatial modelling of air pollutant concentrations could prove
beneficial in improving the precision of exposure calculations. A similar study also conducted in
Allegheny county utilized space-time ordinary kriging (STOK) interpolation to estimate

pollutant concentrations at the centroids of a grid (Lee, Roberts, Catov, Talbott, & Ritz, 2013)
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This technique can also be computationally intensive depending on the size of the data being

used, but could significantly improve the quality of exposure assignment.
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Appendix B Trimester-Specific Logistic Regression

Table 9: First Trimester Logistic Regression Output

Estimate  Standard Error zvalue  Pr(>|z|) Signif.
(Intercept) 9.216 0.238 38.713 0.0000 ***
sex.M 0.328 0.021 15.751 0.0000 ***
season_of_birth.Spring -0.048 0.034 -1.442 0.1492
season_of birth.Summer -0.003 0.037 -0.072 0.9427
season_of birth.Winter -0.096 0.036 -2.673 0.0075 **
gestational_age_weeks -0.220 0.004  -49.391 0.0000 ***
mothage 0.004 0.002 1.746 0.0809 .
bmi_cat.Obese -0.014 0.028 -0.495 0.6203
bmi_cat.Overweight -0.004 0.026 -0.140 0.8890
bmi_cat.Underweight -0.811 0.072  -11.196 0.0000 ***
gestational_diabetes.Yes 0.107 0.044 2.436 0.0148 *
maternal_race.Black.or.African.American 0.526 0.076 6.947 0.0000 ***
maternal_race.White 0.216 0.064 3.383 0.0007 ***
maternal_ethnicity.Not.Hispanic 0.167 0.085 1.963 0.0497 *
maternal_edu_cat.Graduate.degree -0.242 0.028 -8.578 0.0000Q ***
maternal_edu_cat.High.school.or.GED -0.024 0.036 -0.662 0.5083
maternal_edu_cat.Less.than.high.school -0.150 0.063 -2.402 0.0163 *
maternal_edu_cat.Some.college -0.052 0.029 -1.783 0.0746 .
smkpr 0.017 0.002 8.193 0.0000 ***
smk_total -0.002 0.001 -1.697 0.0897 .
paternal_race.Black -0.091 0.049 -1.885 0.0595 .
paternal_race.All.other.races 0.088 0.061 1.449 0.1474
paternal_ethnicity.Hispanic -0.442 0.082 -5.393 0.0000 ***
co_first -0.649 0.104 -6.224 0.0000 ***
no2_first -0.053 0.004  -15.165 0.0000 ***
ozone_first -25.909 2291  -11.310 0.0000 ***
pb_first -2.475 0.482 -5.131 0.0000 ***
pm10_first 0.002 0.003 0.687 0.4918
pm2.5_first 0.033 0.006 5.073 0.0000 ***
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Estimate ~ Standard Error zvalue  Pr(>[z|) Signif.
so2_first -0.129 0.007  -17.869 0.0000 ***
Signif. codes: 0 <="***' < 0.001 <"**' <0.01<™*<0.05<''<01<"<1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 5.931e+04 on 42782 degrees of freedom
Residual deviance: 5.41e+04 on 42753 degrees of freedom
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Table 10: Second Trimester Logistic Regression Output

Estimate  Standard Error zvalue  Pr(>|z|) Signif.

(Intercept) 9.545 0.247 38.700 0.0000 ***
sex.M 0.320 0.021 15.375 0.0000 ***
season_of_birth.Spring 0.084 0.043 1.955 0.0506 .
season_of birth.Summer 0.217 0.033 6.483 0.0000 ***
season_of birth.Winter -0.085 0.036 -2.352 0.0187 *
gestational_age weeks -0.219 0.004  -48.682 0.0000Q ***
mothage 0.004 0.002 1.588 0.1124
bmi_cat.Obese -0.026 0.028 -0.937 0.3486
bmi_cat.Overweight 0.010 0.025 0.376 0.7069
bmi_cat.Underweight -0.752 0.073  -10.365 0.0000 ***
gestational_diabetes.Yes 0.114 0.044 2.601 0.0093 **
maternal_race.Black.or.African.American 0.548 0.076 7.200 0.0000 ***
maternal_race.White 0.216 0.064 3.372 0.0007 ***
maternal_ethnicity.Not.Hispanic 0.093 0.086 1.085 0.2781
maternal_edu_cat.Graduate.degree -0.262 0.028 -9.299 0.0000 ***
maternal_edu_cat.High.school.or.GED -0.026 0.036 -0.712 0.4766
maternal_edu_cat.Less.than.high.school -0.209 0.063 -3.343 0.0008 ***
maternal_edu_cat.Some.college -0.051 0.029 -1.741 0.0818 .
smkpr 0.018 0.002 8.395 0.0000 ***
smk_total -0.003 0.001 -2.453 0.0142 *
paternal_race.Black -0.038 0.049 -0.786 0.4318
paternal_race.All.other.races 0.084 0.061 1.378 0.1683
paternal_ethnicity.Hispanic -0.455 0.083 -5.506 0.0000 ***
co_second -0.954 0.103 -9.302 0.0000 ***
no2_second -0.046 0.004  -12.702 0.0000 ***
ozone_second -26.535 2.330  -11.389 0.0000 ***
pb_second -0.384 0.442 -0.868 0.3851
pm10_second -0.025 0.003 -8.416 0.0000 ***
pm2.5_second 0.035 0.006 5.474 0.0000 ***
s02_second -0.098 0.007  -13.383 0.0000 ***

Signif. codes: 0 <="***" < (0.00l <"** <001<™*<005<'"'<01l<"<1

(Dispersion parameter for binomial family taken to be 1)
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Estimate ~ Standard Error zvalue  Pr(>[z|) Signif.

Null deviance: 5.931e+04 on 42782 degrees of freedom
Residual deviance: 5.414e+04 on 42753 degrees of freedom
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Table 11: Third Trimester Logistic Regression Output

Estimate  Standard Error zvalue  Pr(>|z|) Signif.

(Intercept) -8.596 0.237  -36.282 0.0000 ***
sex.M -0.325 0.021  -15.623 0.0000 ***
season_of _birth.Spring -0.287 0.033 -8.821 0.0000 ***
season_of _birth.Summer -0.179 0.035 -5.104 0.0000 ***
season_of_birth.Winter -0.154 0.034 -4.503 0.0000 ***
gestational_age_weeks 0.219 0.004 48.983 0.0000 ***
mothage -0.003 0.002 -1.296 0.1951
bmi_cat.Obese 0.036 0.028 1.316 0.1881
bmi_cat.Overweight -0.035 0.025 -1.364 0.1724
bmi_cat.Underweight 0.855 0.072 11.806 0.0000 ***
gestational diabetes.Yes -0.100 0.044 -2.274 0.0230 *
maternal_race.Black.or.African.American -0.594 0.075 -7.895 0.0000 ***
maternal_race.White -0.242 0.064 -3.809 0.0001 ***
maternal_ethnicity.Not.Hispanic -0.179 0.085 -2.107 0.0351 *
maternal_edu_cat.Graduate.degree 0.266 0.028 9.479 0.0000 ***
maternal_edu_cat.High.school.or. GED 0.030 0.036 0.814 0.4155
maternal_edu_cat.Less.than.high.school 0.188 0.063 2.995 0.0027 **
maternal_edu_cat.Some.college 0.045 0.029 1.538 0.1240
smkpr -0.018 0.002 -8.324 0.0000 ***
smk_total 0.003 0.001 2.349 0.0188 *
paternal _race.Black 0.059 0.048 1.221 0.2220
paternal_race.All.other.races -0.107 0.061 -1.767 0.0772 .
paternal_ethnicity.Hispanic 0.426 0.082 5.227 0.0000 ***
co_third 0.522 0.101 5.170 0.0000 ***
no2_third 0.034 0.004 9.748 0.0000 ***
ozone_third 5.502 2.423 2.271 0.0232 *
pb_third -1.060 0.422 -2.511 0.0120 *
pm10_third 0.009 0.003 2.905 0.0037 **
pm2.5_third 0.001 0.007 0.094 0.9251
so2_third 0.113 0.008 14.656 0.0000 ***

Signif. codes: 0 <="***" < (0.00l <"**' <001 <™ <005<'"'<01<"<1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5.931e+04 on 42782 degrees of freedom
Residual deviance: 5.428e+04 on 42753 degrees of freedom
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Appendix C R Code

library(tidyverse)
library(sf)
library (RMariaDB)
library (lubridate)

birth data allegheny all vars <- read.csv("~/Nina cleaned birth data.csv")
$>%
filter (final momrescounty with pgh == 'Allegheny (City of Pittsburgh)' |
final momrescounty with pgh == 'Allegheny (excl. City of
Pittsburgh) ')

# apply exclusion criteria
birth data filtered <- birth data allegheny all vars %>%

filter(sex != 'U' &
multiple birth == 0 &
bweight less than 500 g == 0 &
missing gestational age == 0 &
missing apgar5 == 0 &
mothage <= 45 &
bmi cat != 'Unknown' &
maternal race != 'Unknown or refused' &
maternal ethnicity != 'Unknown' &
maternal edu cat != 'Unknown' &

smkpr < 99 &
smkftm < 99 &
smkstm < 99 &
smkltm < 99 &
gestational age weeks > 22) $>%
mutate (smk_total = smkftm + smkstm + smkltm) $%$>%
select (birth id, mother id, sex, child dob, season of birth,
gestational age weeks, mothage, bmi cat, gestational diabetes, maternal race,
maternal ethnicity,maternal edu cat, final lat, final long, smkpr, smk total)

# extract additional variables
con <- dbConnect (RMariaDB::MariaDB (),
default.file = "C:/Users/testuser/.my.ini",
group = "fracking-group")
sql statement <- "select
birth id,
fathrace,
fathhisp,
apgarsb,
apgarsl0
from
birth data Combined"
sql vars <- dbGetQuery(conn = con, statement = sgl statement)
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# collapse race and ethnicity
sql vars clean <- sql vars %>%
mutate (birth id = as.double(birth id),

paternal race = fct_collapse(factor(sql_vars$fathrace), White =
'1', Black = '2','All other races' = c('3', '4', '5', 'e¢', '7', '8', '9"',
‘10", '11', '12', '13','14', '15'), ‘'unknown/refused' = c('le', '17")),
paternal ethnicity = fct collapse(factor(sql vars$fathhisp), 'Not
Hispanic' = '1l', 'Hispanic' = c('2', '3', '4', '5"),'"Unknown' = '9")) $>%
select (birth id,paternal race, paternal ethnicity, apgars5, apgarslO)

# join larger df with additional vars

# drop unknown race, ethnicity, apgar

# categorize apgar

birth data final <- left join(birth data filtered, sql vars clean, by =

'birth id') %>%

filter (paternal race != 'unknown/refused' & paternal ethnicity !=
'Unknown') %>%

mutate (apgar5 cat = cut(apgars5, breaks = c(0, 7, 11, 100),
include.lowest = T, right = F, labels = c('abnormal', 'normal', 'missing')),
apgarlO _cat = cut(apgarsl0O, breaks = c(0, 7, 11, 99, 100), include.lowest =
T, right = F, labels = c('abnormal', 'normal', 'not applicable', 'missing')),

child dob = as.Date(child dob, '$Y-%m-%d')) %>%

mutate (first tri date = child dob - gestational age weeks*7, # estimate
date of conception

second tri date = first tri date + 7*13, # estimate beginning of

second trimester
third tri date = first tri date + 7*26, # estimate beginning of
third trimester
first tri = interval(first tri date, second tri date),
second tri = interval (second tri date, third tri date),
third tri = interval(third tri date, child dob)) %>%
select (-c(apgarsb, apgarslO0))

save (birth data final, file = 'capstone/birth data final.RData')

library (tidyverse)
library(sf)
library (lubridate)

load('~/capstone/birth data final.RData')
load("~/capstone/air quality/load ag data.RData")

# function to find active monitors
get monitors <- function(births, tri, pollutant) ({
active period <- pollutant %>%
group by (site.num) %>%
summarize (start = min(date.local), end = max(date.local), .groups =
'drop')

if(tri == '"first') {
x <- apply(births, 1, function(x){x['first tri date'] >=
active periodS$start & x['second tri date'] <= active period$end})
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}
if(tri == 'second') {
x <- apply(births, 1, function(x){x['second tri date'] >=
active period$start & x['third tri date'] <= active period$end})
}
if (tri == 'third') {
x <- apply(births, 1, function(x){x['third tri date'] >=
active period$start & x['child dob'] <= active period$end})
}

monitors <- apply(x, 2, function(x){filter (active period, x)$site.num})
return (monitors)

# identify nearest monitor
nearest monitor <- function(births, pollutant, monitors) {

# create monitor sf object
monitor locations <- pollutant %>%
group_by(site.num) %>%
summarize (lat = unique (latitude), long = unique (longitude), .groups =
'drop') %>%
st as sf(coords = c("long", "lat"), crs = 'WGS84', agr = "constant")

# create birth sf object
mom res <- births %>%
select (birth id, final lat, final long) %>%

st as sf(coords = c("fznal_long", "final lat"), crs = 'NAD83', agr =
"constant") %>%
st transform(crs = 'WGS84"')

# for each birth, create a list of monitors that are active during
gestation period

monitor options <- lapply(monitors, function(x){filter (monitor locations,
monitor locations$site.num %$in% x)})

# match birth to closest monitor
f <- function (i) {
st join(mom res[i,],
as.data.frame () %>%
select (birth id, site.num)

monitor options[[i]], join = st nearest feature) %>%

}

oe

results <- sapply(l:nrow(mom res), f) %>
t() %>%
as.data.frame () %>%
mutate (birth id = sapply(birth id, unlist),
site.num = sapply(site.num, unlist))

return (results)

# get co active monitors
co_active monitors first <- get monitors(birth data final, 'first', co)
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co_active monitors_ second <- get monitors(birth data final, 'second', co)
co_active monitors third <- get monitors(birth data final, 'third', co)

#get no2 active monitors

no2 active monitors first <- get monitors(birth data final, 'first', no2)
no2 active monitors second <- get monitors(birth data final, 'second', no2)
no2 active monitors_ third <- get monitors(birth data final, 'third', no2)

#get ozone active monitors

ozone active monitors first <- get monitors(birth data final, 'first', ozone)
ozone active monitors second <- get monitors(birth data final, 'second',
ozone)

ozone active monitors third <- get monitors(birth data final, 'third', ozone)

#get pb active monitors

pb_active monitors first <- get monitors(birth data final, 'first', pb)
pb_active monitors second <- get monitors(birth data final, 'second',6 pb)
pb_active monitors third <- get monitors(birth data final, 'third', pb)

#get pml0 active monitors

pml0_active monitors first <- get monitors(birth data final, 'first', pmlO0)
pml0_active monitors second <- get monitors(birth data final, 'second', pmlO0)
pml0_active monitors third <- get monitors(birth data final, 'third', pmlO0)

# get pm 2.5 active monitors

pm2.5 active monitors first <- get monitors(birth data final, 'first', pm2.5)
pm2.5 active monitors second <- get monitors(birth data final, 'second',
pm2.5)

pm2.5 active monitors third <- get monitors(birth data final, 'third', pm2.5)

fget so2 active monitors

so2 active monitors first <- get monitors(birth data final, 'first', so2)
so2 active monitors second <- get monitors(birth data final, 'second', so2)
so2 active monitors third <- get monitors(birth data final, 'third', so2)

save.image ('~/capstone/active monitors.RData')

# find co nearest monitors

co nearest monitor first <- nearest monitor(birth data final, co,

co_active monitors first)

co_nearest monitor second <- nearest monitor (birth data final, co,
co_active monitors_ second)

co _nearest monitor third <- nearest monitor (birth data final, co,

co_active monitors third)

# find no2 nearest monitors
no2 nearest monitor first <- nearest monitor (birth data final, noZ2,
no2 active monitors first)
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no2 nearest monitor second <- nearest monitor (birth data final, noZ2,
no2 active monitors_second)
no2 nearest monitor third <- nearest monitor (birth data final, no2,
no2 active monitors third)

# find o3 nearest monitors

ozone nearest monitor first <- nearest monitor(birth data final, ozone,
ozone active monitors first)

ozone nearest monitor second <- nearest monitor (birth data final, ozone,
ozone active monitors second)

ozone nearest monitor third <- nearest monitor(birth data final, ozone,
ozone active monitors third)

# find pb nearest monitors

pb_nearest monitor first <- nearest monitor (birth data final, pb,
pb_active monitors first)

pb _nearest monitor second <- nearest monitor(birth data final, pb,
pb_active monitors second)

pb_nearest monitor third <- nearest monitor(birth data final, pb,
pb_active monitors third)

# find pml0 nearest monitors

pml0 nearest monitor first <- nearest monitor(birth data final, pmlO,
pml0_active monitors first)

pml0 nearest monitor second <- nearest monitor (birth data final, pmlO,
pml0_active monitors second)

pml0 nearest monitor third <- nearest monitor(birth data final, pmlO,
pml0_active monitors third)

# find pm2.5 nearest monitors

pm2.5 nearest monitor first <- nearest monitor(birth data final, pm2.5,

pm2.5 active monitors first)

pm2.5 nearest monitor second <- nearest monitor(birth data final, pm2.5,
pm2.5 active monitors_ second)

pm2.5 nearest monitor third <- nearest monitor(birth data final, pm2.5,

pm2.5 active monitors third)

# find so2 nearest monitors

so2 nearest monitor first <- nearest monitor (birth data final, so2,

so2_ active monitors first)

so2 nearest monitor second <- nearest monitor (birth data final, soZ,
so2_active monitors second)

so2 nearest monitor third <- nearest monitor (birth data final, so2,

so2 active monitors_ third)

#join birth id, gestation estimates, closest monitor
co_nearest monitor firstSbirth id <-

as.double (co nearest monitor firstSbirth id)

co _nearest monitor second$birth id <-

as.double (co nearest monitor second$birth id)
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co_nearest monitor thirdS$birth id <-
as.double (co _nearest monitor thirdSbirth id)

no2 nearest monitor first$birth id <-
as.double (no2 nearest monitor first$birth id)
no2 nearest monitor second$birth id <-
as.double (no2 nearest monitor second$birth id)
no2 nearest monitor third$birth id <-
as.double (no2 nearest monitor thirdS$birth id)

ozone nearest monitor first$birth id <-
as.double (ozone nearest monitor first$birth id)
ozone nearest monitor secondSbirth id <-
as.double (ozone nearest monitor second$birth id)
ozone nearest monitor third$birth id <-
as.double (ozone nearest monitor third$birth id)

pb nearest monitor firstSbirth id <-
as.double (pb_nearest monitor firstSbirth id)
pb nearest monitor second$birth id <-
as.double (pb_nearest monitor second$birth id)
pb nearest monitor third$birth id <-
as.double (pb_nearest monitor thirdSbirth id)

pml0 nearest monitor first$birth id <-
as.double (pml0 nearest monitor firstS$birth id)
pml0 nearest monitor secondS$birth id <-
as.double (pml0 nearest monitor second$birth id)
pml0 nearest monitor third$birth id <-
as.double (pml0 nearest monitor thirdS$birth id)

pm2.5 nearest monitor firstSbirth id <-
as.double (pm2.5 nearest monitor first$birth id)
pm2.5 nearest monitor second$birth id <-
as.double (pm2.5 nearest monitor second$birth id)
pm2.5 nearest monitor thirdSbirth id <-
as.double (pm2.5 nearest monitor third$birth id)

s02 nearest monitor first$birth id <-
as.double (so2 nearest monitor first$birth id)
so2 nearest monitor secondS$birth id <-
as.double (s02 nearest monitor second$birth id)
s02 nearest monitor third$birth id <-
as.double (s02 nearest monitor third$birth id)

first trimester co <- birth data final %>%
select (birth id, first tri date, second tri date) 3%>%
left join(co nearest monitor first)
second_trimester co <- birth data final %>%
select (birth id, second tri date, third tri date) %>%
left join(co nearest monitor second)
third trimester co <- birth data final %>%
select (birth id, third tri date, child dob) %>%
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left join(co_nearest monitor third)

first trimester no2 <- birth data final $%$>%
select (birth id, first tri date, second tri date)

o

>

o\

left join(no2 nearest monitor first)
second trimester no2 <- birth data final %>%

select (birth id, second tri date, third tri date)

o\

>

o\

left join(no2 nearest monitor second)
third trimester no2 <- birth data final %>%
select (birth id, third tri date, child dob) %>%
left join(no2 nearest monitor third)

first trimester ozone <- birth data final %>%
select (birth id, first tri date, second tri date)

o©°

>

o

left join(ozone nearest monitor first)
second trimester ozone <- birth data final %>%
select (birth id, second tri date, third tri date)

o

>

o

left join(ozone nearest monitor second)
third trimester ozone <- birth data final %>%
select (birth id, third tri date, child dob) %>%
left join(ozone nearest monitor third)

first trimester pb <- birth data final %>%
select (birth id, first tri date, second tri date) %>%
left join(pb nearest monitor first)
second trimester pb <- birth data final %>%
select (birth id, second tri date, third tri date)

o©

>

oe

left join(pb nearest monitor second)

third trimester pb <- birth data final %>%
select (birth id, third tri date, child dob) %>%
left join(pb nearest monitor third)

first trimester pml0 <- birth data final %>%
select (birth id, first tri date, second tri date) %>%
left join(pml0 nearest monitor first)
second_trimester pml0 <- birth data final %>%
select (birth id, second tri date, third tri date) %>%
left join(pml0 nearest monitor second)
third trimester pml0 <- birth data final %>%
select (birth id, third tri date, child dob) %>%
left join(pml0 nearest monitor third)

first trimester pm2.5 <- birth data final %>%
select (birth id, first tri date, second tri date)

o
Vv
oe
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left join(pm2.5 nearest monitor first)
second _trimester pm2.5 <- birth data final %>%
select (birth id, second tri date, third tri date)
left join(pm2.5 nearest monitor second)
third trimester pm2.5 <- birth data final %>
select (birth id, third tri date, child dob
left join(pm2.5 nearest monitor third)

o
Vv
o

o)
%

o) o)
) %>%

first trimester so2 <- birth data final $%$>%
select (birth id, first tri date, second tri date)
left join(so2 nearest monitor first)

second trimester so2 <- birth data final %>%
select (birth id, second tri date, third tri date)
left join(so2 nearest monitor second)

third trimester so2 <- birth data final %>%
select (birth id, third tri date, child dob) %>%
left join(so2 nearest monitor third)

o\
\
o

oo
\
oo

# set all negative concentrations to 0
col[co$arithmetic.mean < 0,]$arithmetic.mean <- 0
no2[no2S%arithmetic.mean < 0,]Sarithmetic.mean <- 0
ozone[ozoneSarithmetic.mean < 0, ]S$arithmetic.mean <- 0
pb[pbSarithmetic.mean < 0,]Sarithmetic.mean <- 0
pml0[pmlO0Sarithmetic.mean < 0, ]$arithmetic.mean <- 0
pm2.5[pm2.5%arithmetic.mean < 0,]Sarithmetic.mean <- 0
so2[so2Sarithmetic.mean < 0,]Sarithmetic.mean <- 0

# find average concentrations and add to data frame
co_concentration first <- function (i) {
data <- filter(co, site.num == first trimester co[i, 'site.num'] &
date.local >= first trimester co[i,'first tri date'] &
date.local <= first trimester co[i, 'second tri date'])
return (mean (data$Sarithmetic.mean))
}
co_concentration second <- function (i) {
data <- filter(co, site.num == second trimester co[i,'site.num'] &
date.local >= second trimester co[i, 'second tri date'] &
date.local <= second trimester co[i, 'third tri date'])
return (mean (data$Sarithmetic.mean))
}
co_concentration third <- function (i) {
data <- filter(co, site.num == third trimester co[i,'site.num'] &
date.local >= third trimester co[i, 'third tri date'] &
date.local <= third trimester co[i, 'child dob'])
return (mean (dataSarithmetic.mean))

}

birth data final$co first <- sapply(l:nrow(birth data final),
co_concentration first)
birth data final$co second <- sapply(l:nrow(birth data final),
co_concentration second)
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birth data final$co third <- sapply(l:nrow(birth data final),
co_concentration third)

no2 concentration first <- function(i) {
data <- filter(no2, site.num == first trimester no2[i, 'site.num'] &
date.local >= first trimester no2[i,'first tri date'] &
date.local <= first trimester no2[i, 'second tri date'])
return (mean (data$Sarithmetic.mean))
}
no2 concentration second <- function(i) {
data <- filter(no2, site.num == second trimester no2[i,'site.num'] &
date.local >= second trimester no2[i, 'second tri date'] &
date.local <= second trimester no2[i, 'third tri date'])
return (mean (data$Sarithmetic.mean))
}
no2 concentration third <- function(i) {
data <- filter(no2, site.num == third trimester no2[i, 'site.num'] &
date.local >= third trimester no2[i,'third tri date'] &
date.local <= third trimester no2[i, 'child dob'])
return (mean (dataSarithmetic.mean))

}

birth data final$no2 first <- sapply(l:nrow(birth data final),
no2 concentration first)
birth data final$no2 second <- sapply(l:nrow(birth data final),
no2 concentration second)
birth data final$no2 third <- sapply(l:nrow(birth data final),
no2 concentration third)

ozone concentration first <- function (i) {
data <- filter(ozone, site.num == first trimester ozone[i, 'site.num'] &
date.local >= first trimester ozone[i,'first tri date'] &
date.local <= first trimester ozone[i, 'second tri date'])
return (mean (dataSarithmetic.mean))
}
ozone concentration second <- function (i) {
data <- filter(ozone, site.num == second trimester ozonel[i,'site.num'] &
date.local >= second trimester ozonel[i, 'second tri date']

date.local <= second trimester ozonel[i, 'third tri date'])
return (mean (data$Sarithmetic.mean))
}
ozone concentration third <- function(i) {
data <- filter(ozone, site.num == third trimester ozone[i, 'site.num'] &
date.local >= third trimester ozone[i, 'third tri date'] &
date.local <= third trimester ozone[i, 'child dob'])
return (mean (dataSarithmetic.mean))

}

birth data final$ozone first <- sapply(l:nrow(birth data final),
ozone_concentration_first)

birth data final$ozone second <- sapply(l:nrow(birth data final),
ozone concentration second)
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birth data final$ozone third <- sapply(l:nrow(birth data final),
ozone concentration third)

pb_concentration first <- function(i) {
data <- filter(pb, site.num == first trimester pb[i, 'site.num'] &
date.local >= first trimester pb[i, 'first tri date'] &
date.local <= first trimester pb[i, 'second tri date'])
return (mean (data$Sarithmetic.mean))

}
pb_concentration second <- function (i) {
data <- filter(pb, site.num == second trimester pb[i,'site.num'] &
date.local >= second trimester pb[i, 'second tri date'] &
date.local <= second trimester pb[i,'third tri date'])
return (mean (data$Sarithmetic.mean))
}
pb_concentration third <- function(i) {
data <- filter(pb, site.num == third trimester pb[i, 'site.num'] &
date.local >= third trimester pb[i, 'third tri date'] &
date.local <= third trimester pb[i, 'child dob'])
return (mean (dataSarithmetic.mean))

}

birth data final$pb first <- sapply(l:nrow(birth data final),
pb_concentration first)
birth data final$pb second <- sapply(l:nrow(birth data final),
pb_concentration second)
birth data final$pb third <- sapply(l:nrow(birth data final),
pb_concentration third)

pml0 concentration first <- function (i) {
data <- filter(pmlO, site.num == first trimester pmlO[i, 'site.num'] &
date.local >= first trimester pmlO[i, 'first tri date'] &
date.local <= first trimester pmlO[i, 'second tri date'])
return (mean (data$Sarithmetic.mean))
}
pml0 concentration second <- function(i) {
data <- filter(pmlO, site.num == second trimester pmlO[i, 'site.num'] &
date.local >= second trimester pmlO[i, 'second tri date'] &
date.local <= second trimester pmlO[i,'third tri date'])
return (mean (data$Sarithmetic.mean))
}
pml0 concentration third <- function(i) {
data <- filter(pmlO, site.num == third trimester pmlO[i,'site.num'] &
date.local >= third trimester pmlO[i, 'third tri date'] &
date.local <= third trimester pmlO[i, 'child dob'])
return (mean (dataSarithmetic.mean))

}

birth data final$pmlO first <- sapply(l:nrow(birth data final),
pml0_ concentration first)

birth data final$pmlO second <- sapply(l:nrow(birth data final),
pml0 concentration second)
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birth data final$pmlO third <- sapply(l:nrow(birth data final),
pml0_concentration third)

pm2.5 concentration first <- function (i) {
data <- filter(pm2.5, site.num == first trimester pm2.5[1i, 'site.num'] &
date.local >= first trimester pm2.5[1i,'first tri date'] &
date.local <= first trimester pm2.5[i, 'second tri date'])
return (mean (data$Sarithmetic.mean))
}
pm2.5 concentration second <- function(i) {
data <- filter(pm2.5, site.num == second trimester pm2.5[i, 'site.num'] &
date.local >= second trimester pm2.5[1i, 'second tri date']

date.local <= second trimester pm2.5[i, 'third tri date'])
return (mean (dataSarithmetic.mean))
}
pm2.5 concentration third <- function (i) {
data <- filter(pm2.5, site.num == third trimester pm2.5[1i, 'site.num'] &
date.local >= third trimester pm2.5[i,'third tri date'] &
date.local <= third trimester pm2.5[i, 'child dob'])
return (mean (data$arithmetic.mean))

}

birth data final$pm2.5 first <- sapply(l:nrow(birth data final),
pm2.5 concentration first)

birth data final$pm2.5 second <- sapply(l:nrow(birth data final),
pm2.5 concentration second)

birth data final$pm2.5 third <- sapply(l:nrow(birth data final),
pm2.5 concentration third)

so2 concentration first <- function (i) {
data <- filter(so2, site.num == first trimester so2[i,'site.num'] &
date.local >= first trimester so2[i,'first tri date'] &
date.local <= first trimester so2[i, 'second tri date'])
return (mean (data$Sarithmetic.mean))
}
so2_ concentration second <- function(i) {
data <- filter(so2, site.num == second trimester so2[i,'site.num'] &
date.local >= second trimester so2[i, 'second tri date'] &
date.local <= second trimester so2[i, 'third tri date'])
return (mean (dataSarithmetic.mean))
}
so2 concentration third <- function(i) {
data <- filter(so2, site.num == third trimester so2[i, 'site.num'] &
date.local >= third trimester so2[i,'third tri date'] &
date.local <= third trimester so2[i,'child dob'])
return (mean (dataSarithmetic.mean))

}

birth data final$so2 first <- sapply(l:nrow(birth data final),
so2 concentration first)
birth data final$so2 second <- sapply(l:nrow(birth data final),
so2 concentration second)
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birth data final$so2 third <- sapply(l:nrow(birth data final),
so2 concentration third)

save.image ('~/capstone/exposure.RData')
save (birth data final, file = '~/capstone/birth data final.RData')

library(tidyverse)
library (caret)
library (pROC)
library (smotefamily)
library (xgboost)
library (ROSE)
library (svMisc)

load('~/capstone/birth data final.RData')

# select variables of interest and convert categorical vars to factors
data <- birth data final %>%
select (-birth id, -mother id, -child dob, -final lat, -final long, -
first tri date,
-second tri date, -third tri date, -first tri, -second tri, -
third tri) %>%
na.omit () %>%
mutate (sex = as.factor (sex),
season_of birth = as.factor(season of birth),
bmi cat = as.factor(bmi cat),
gestational diabetes = as.factor(gestational diabetes),
maternal race = as.factor (maternal race),
maternal ethnicity = as.factor(maternal ethnicity),
maternal edu cat = as.factor (maternal edu cat),
paternal race = factor(paternal race, levels = c('White', 'Black',
'All other races')),
paternal ethnicity = factor (paternal ethnicity, levels = c("Not
Hispanic", "Hispanic")),
apgar5 cat = factor (apgar5 cat, levels = c('abnormal', 'normal')),
apgarl0 cat = as.factor(apgarl0O_cat))

apgar5 data <- data %>% select(-apgarl0 _cat)
fgenerate dummy variables

dummy <- dummyVars(" ~ .", data = apgar5 data, fullRank = T)
data d <- data.frame (predict (dummy, newdata = apgar5 data))

set.seed (1234)

fcreate training and testing sets

n <- nrow(data_ d)

index train <- sample(l:n,size = round(0.7*n))
index test <- (l:n)[-index train]

train <- data d[index train,]
test <- data d[index test,]
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# resample to balance classes

rose train <- ovun.sample (apgar5 cat.normal ~.,
data = train,

# check class distribution

method = 'both',

seed = 1234) $data

table(rose_trainSapgarS_cat.normal)

train x <- select(rose train,

# build models

-apgar5 cat.normal)
train y <- rose trainSapgar5 cat.normal

ctrl acc <- trainControl (method = "repeatedcv", number = 5, classProbs =

TRUE, savePredictions = T)

glm <- train(factor (apgar5 cat.normal,

c('abnormal',

levels = ¢(0,1),
labels =
method = "glm",
trControl = ctrl acc)

xgb <- train(factor(apgar5 cat.normal,

levels
labels

c(0,1),

c('abnormal',

method = "xgbTree",
trControl = ctrl acc)

test x <- select(test, -apgar5 cat

test y <= test$apgar5_cat.normal

pred glm <- predict(glm, newdata =
pred xgb <- predict(xgb, newdata = test x)

test y <- factor(test y, levels = c(0,1),

train first <- select(rose train,

pm2.5 first,

pm2.5 first, so2 first))

.normal)

test x)

c(l:22,

'normal')) ~ ., data
'normal')) ~ ., data
labels = c('abnormal',

co_ first,

no2 first,
ozone first, pb first, pml0 first,

so2 first, apgar5 cat.normal))
test x first <- select(test x, c(l1:22, co first,

noz first,

ozone first, pb first, pml0 first,

glm first <- train(factor (apgar5 cat.normal,

levels

c(1,0),
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labels = c¢c('normal', 'abnormal')) ~ ., data =
train first,
method = "glm",
trControl = ctrl acc)
xgb first <- train(factor(apgar5 cat.normal,
levels = c¢(0,1),
labels c('abnormal', 'normal')) ~ ., data =

train first,
method = "xgbTree",
trControl = ctrl acc)

glm pred first <- predict(glm first, newdata = test x first)
xgb pred first <- predict(xgb first, newdata test x first)

train_ second <- select(rose train, c(l1:22, co_ second,
no2_ second,
ozone_ second, pb_second, pml0 second,
pm2.5 second,
so2 second, apgar5 cat.normal))
test x second <- select(test x, c(1:22, co_second,
no2_ second,
ozone_ second, pb_second, pml0 second,
pm2.5 second, so2 second))

glm second <- train(factor (apgar5 cat.normal,

levels = c¢(1,0),
labels = c¢('normal', 'abnormal')) ~ ., data =
train second,
method = "glm",
trControl = ctrl acc)
xgb second <- train(factor (apgar5 cat.normal,
levels = c¢(0,1),
labels = c('abnormal', 'normal')) ~ ., data =
train_ second,
method = "xgbTree",
trControl = ctrl acc)

glm pred second <- predict(glm second, newdata = test x second)
xgb pred second <- predict (xgb second, newdata = test x second)

train third <- select(rose train, c(l:22, co_third,
no2 third,
ozone third, pb third, pmlO third,
pm2.5 third,
so2_ third, apgar5 cat.normal))
test x third <- select(test x, c(1:22, co_third,
no2 third,
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ozone_ third, pb third, pml0_ third,
pm2.5 third, so2 third))

glm third <- train(factor(apgar5 cat.normal,
levels = c¢(1,0),

labels = c¢c('normal', 'abnormal')) ~ ., data
train third,
method = "glm",
trControl = ctrl acc)
xgb _third <- train(factor (apgar5 cat.normal,
levels = c¢(0,1),
labels = c('abnormal', 'normal')) ~ ., data
train third,
method = "xgbTree",
trControl = ctrl acc)

glm pred third <- predict(glm third, newdata test x third)
xgb _pred third <- predict(xgb third, newdata = test x third)

glm full <- train(factor (apgar5 cat.normal,
levels = ¢(1,0),
labels c('normal', 'abnormal')) ~ .,
data = rose train,
method = "glm",
family = 'binomial',
trControl = ctrl acc)

glm pred full <- predict(glm full, newdata = test x)

xgb full <- train(factor (apgar5 cat.normal,
levels = c¢(0,1),
labels = c¢('abnormal', 'normal')) ~ .,
data = rose train,
method = "xgbTree",
trControl = ctrl acc)

xgb pred full <- predict(xgb full, newdata = test x)

save.image ('~/capstone/models.RData')

title: "final model"
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output: html document

"{r setup, include=FALSE}
knitr::opts chunk$set (echo = TRUE)

“{r}

library (tidyverse)
library (caret)
library (pROC)
library (smotefamily)
library (xgboost)
library (ROSE)
library (svMisc)
library(tablel)
library(officer)
library (flextable)
library(sf)
library(gridExtra)

{r}
library (RColorBrewer)
pal <- brewer.pal(n = 11, name = 'Spectral')

{r}
load '~/capstone/models.RData')

## Resampling results
“{r}

table (train$apgar5 cat.normal)

“{r}

table (rose train$apgar5 cat.normal)

## Summary Stats
T {r}
labels <- list(sex = 'Sex',
season_of birth = 'Season of Birth',
mothage = "Mother's Age",
bmi cat = "BMI",
gestational diabetes = "Gestational Diabetes",
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maternal race = 'Maternal Race',

maternal ethnicity = 'Maternal Ethnicity’',

paternal race = 'Paternal Race',

paternal ethnicity = 'Paternal Ethnicity',
maternal edu cat = 'Maternal Education’,

smkpr = 'Number of Cigarettes Smoked Prior to Pregnancy',
smk_total = 'Number of Cigarettes Smoked During Pregnancy'
apgar5 cat = '5-Minute Apgar Score')

tablel (~ sex +

season_of birth +
gestational age weeks +
mothage +
bmi cat +
gestational diabetes +
maternal race +
maternal ethnicity +
paternal race +
paternal ethnicity +
maternal edu cat +
smkpr +
smk_total +
apgar5_cat,

labels,

data = apgar5 data,

topclass="Rtablel-times")

S 1)
pollutant vars <- c('co first', 'co second', 'co third', 'no2 first',
'no2 second', 'no2 third','ozone first', 'ozone second', 'ozone third',
'pb_first', 'pb second', 'pb third', 'pml0 first', 'pmlO second’,
'pml0_third', 'pm2.5 first', 'pm2.5 second', 'pm2.5 third', 'so2 first',
'so2 second',
'so2 third')

tablel (~co first +

co_second +

co_third +

no2 first +

no2 second +

no2 third +

ozone first +

ozone_ second +

ozone third +

pb_first +

pb_second +

pb _third +

pml0 first +

pml0 second +

pml0 third +

pm2.5 first +

pm2.5 second +

pm2.5 third +

so2 first +
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so2_ second +

so2_ third,
data = apgarb5 data,
topclass="Rtablel-times")

## Monitor Maps

S (r}

load('~/capstone/aqg boundaries.RData')
load('air quality/load ag data.RData')

### Carbon Monoxide

S (r)
co_lat <- unique (co$latitude)
co_long <- unique(co$longitude)

S ir)
co monitors <- ggplot() +
geom_sf (aes(geometry = all counties$geometry),
color = palll0],
fill = pal[l0],
alpha = .2,
size = 1) +
geom_sf text (aes(geometry = all counties$geometry,
label = toupper(all counties$NAME)),
size = 2.5,
color = 'grey40') +
geom point(aes(x = co_long, y = co_lat),
color = pall2],

size = 2) +
theme minimal () +
xlab ('Longitude') +

ylab ('Latitude') +
ggtitle('Carbon Monoxide')

#ggsave ('~/capstone/co monitors.png')

### Nitrogen Dioxide

(1)

no2 lat <- unique(no2$latitude)
no2 long <- unique (no2$longitude)

1)
no2 monitors <- ggplot () +
geom_sf (aes (geometry = all counties$geometry),
color = palll0],
fill = pal[l0],
alpha = .2,
size = 1) +
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geom_sf text (aes(geometry = all counties$geometry,
label = toupper(all counties$NAME)),

size = 2.5,
color = 'grey40') +
geom point(aes(x = no2 long, y = no2 lat),
color = pall2],
size = 2) +
theme minimal () +
xlab ('Longitude') +
ylab ('Latitude') +
ggtitle('Nitrogen Dioxide')
#ggsave ('~/capstone/co monitors.png')

### Ozone

S ry

03 lat <- unique (ozone$latitude)
03 long <- unique (ozone$longitude)

S (1}
ozone monitors <- ggplot() +
geom_sf (aes (geometry = all counties$geometry),
color = palll0],
fill = pal[l0],
alpha = .2,
size = 1) +
geom_sf text (aes(geometry = all counties$geometry,
label = toupper(all counties$NAME)),
size = 2.5,
color = 'grey40') +
geom point(aes(x = o3 long, y = o3 lat),
color = pall2],

size = 2) +
theme minimal () +
xlab ('Longitude') +

ylab ('Latitude') +
ggtitle ('Ozone')

#ggsave ('~/capstone/co monitors.png')

### Lead

S (r)

pb lat <- unique(pb$latitude)
pb _long <- unique (pb$longitude)

1)
pb_monitors <- ggplot() +
geom_sf (aes (geometry = all counties$geometry),
color = palllO],
fill = pal[l0],
alpha = .2,
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size = 1) +
geom_sf text (aes(geometry = all counties$geometry,
label = toupper(all counties$SNAME)),
size = 2.5,
color = 'grey40') +
geom point(aes(x = pb_long, y = pb_lat),
color = pall2],

size = 2) +
theme minimal () +
xlab ('Longitude') +

ylab ('Latitude') +
ggtitle('Lead')

#ggsave ('~/capstone/co monitors.png')

### PM10O

S r

pml0 lat <- unique (pmlO$latitude)
pml0 long <- unique (pmlO$longitude)

S (1}
pml0 monitors <- ggplot() +
geom_sf (aes (geometry = all counties$geometry),
color = palll0],
fill = pal[l0],
alpha = .2,
size = 1) +
geom_sf text (aes(geometry = all counties$geometry,
label = toupper(all counties$NAME)),
size = 2.5,
color = 'grey40') +
geom point(aes(x = pml0 long, y = pmlO lat),
color = pall2],

size = 2) +
theme minimal () +
xlab ('Longitude') +

ylab ('Latitude') +
ggtitle (expression (PM[101]))

#ggsave ('~/capstone/co monitors.png')

### PM2.5

S (r)

pm2.5 lat <- unique (pm2.5Slatitude)
pm2.5 long <- unique (pm2.5$longitude)

(1}
pm2.5 monitors <- ggplot() +
geom_sf (aes (geometry = all counties$geometry),
color = palll0],
fill = pal[l0],
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alpha = .2,
size = 1) +
geom sf text (aes(geometry = all countiesSgeometry,
label = toupper(all counties$SNAME)),
size = 2.5,
color = 'grey40') +
geom point(aes(x = pm2.5 long, y = pm2.5 lat),
color = pall2],
size = 2) +
theme minimal () +
xlab ('Longitude') +
ylab ('Latitude') +
ggtitle (expression (PM[2.5]))

#ggsave ('~/capstone/co monitors.png')

### Sulfur Dioxide

S r

so2 lat <- unique (so2$latitude)
so2 long <- unique (so2$longitude)

S (1}
so2 _monitors <- ggplot() +
geom_sf (aes (geometry = all counties$geometry),
color = palll0],
fill = pal[l0],
alpha = .2,
size = 1) +
geom_sf text (aes(geometry = all counties$geometry,
label = toupper(all counties$NAME)),

size = 2.5,
color = 'grey40') +
geom point(aes(x = so2 long, y = so2 lat),
color = pall2],
size = 2) +
theme minimal () +

xlab ('Longitude') +
ylab ('Latitude') +
ggtitle ('Sulfur Dioxide')

#ggsave ('~/capstone/co monitors.png')

### All maps together
" {r fig.height = 6}
monitor locations <- grid.arrange(co monitors, no2 monitors, ozone monitors,
pb monitors, pml0 monitors,
pm2.5 monitors, so2 monitors, ncol = 2)
ggsave ('~/capstone/monitor maps.png', monitor locations)

### Monitor Table
S r)

ags_sites <- read.csv('~/capstone/air quality/ags monitors.csv') $%$>%
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mutate (Last.Sample.Date =
as.Date(Last.Sample.Date))

S r)
param codes <- c (42101, 42602, 44201, 12128, 14129, 81102, 88101, 42401)
counties <- c('Allegheny', 'Armstrong', 'Beaver', 'Butler', 'Washington',
'Westmoreland')
ags_filtered <- filter(ags_sites, State.Code == '42' &
County.Name %in$% counties &
Parameter.Code %in% param codes &
Last.Sample.Date >= '2009-01-01")

S (r)

xtabs (~ County.Name + Parameter.Name, data = ags_filtered)

S (r)

pb %>%
group_ by (county.name) $%>%
summarize (n = length (unique (site.num)))

## Full Models

S ir)
borderl <- fp border (color="black", width = 1.5)
border2 <- fp border (color="black", width = 1.25)
hyper grid %>%

arrange (min_logloss) %>%

head (10) %>%

rename ("Learning Rate" = eta, "Minimum Node Size" = min child weight,
"Maximum Depth" = max depth,
"Optimal Trees" = optimal trees, "Minimum Log Loss" = min logloss)

o©

>

oe

flextable () %>%

font (fontname 'Times New Roman', part = 'all') %>%
hline top(border = borderl, part = 'header') %>%
hline bottom(border = border2, part = 'header') 3%>%
hline bottom(border = borderl, part = 'body') %>%
fontsize(size = 12, part = 'all') $>%

color (color = 'black', part = 'all') %$>%

autofit () %>%

padding (padding = 1.5, part = 'all') %>%
save as_docx (path = "~/capstone/tuning table.docx")

S r)
test x <- select(test, -apgar5 cat.normal)
test y <- test$apgar5 cat.normal
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### XGB Full

S r)
xgb pred prob full <- predict(xgb full, newdata = test x, type = 'prob')

S r)
cm_xgb full <- confusionMatrix(data = xgb pred full, reference
factor (test y, levels = c¢(0,1), labels = c('abnormal', 'normal')))

(1}
cm_xgb full
###+# Tuning

T {r fig.height = 4}
# png('~/capstone/tuning results.png')

par (mfrow = c(8,1))
plot (xgb_full)

# dev.off ()

(1}
xgb fullSresults %$>%
arrange (desc (Accuracy)) %>%
select (-Kappa, -AccuracySD, -KappaSD) %>%
head (1)

##4## Variable Importance

(1)

# create importance matrix

var imp full <- xgb.importance (model = xgb full$finalModel)

1)
# variable importance plot

# labs <- c('Gestational Age', 'PM10 First', 'PM10 Third', 'S02 Third',
'Ozone Second', 'NO2 Third',

# 'Lead Second', 'PM2.5 Third', 'PM2.5 First', 'Lead First',
"Mother's Age", 'Lead Third',
# 'NO2 Second', 'PM10 Second', 'CO First', 'Ozone First', 'S02

Third', 'NO2 First', 'CO Third',
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# 'CO Second')
gain full <- xgb.ggplot.importance(var_imp full, top n = 20, measure =
"Gain") +

theme minimal () +
ggtitle('Full Model') +
scale fill manual (values = c(pal[4], pal[1l0]))

S r)
cover full <- xgb.ggplot.importance(var imp full, top n = 20, measure =
"Cover") +

theme minimal () +

ggtitle ('Full Model') +

scale fill manual (values = pal[10])

#### Partial Dependence
SN
library (pdp)

S r)
partial gest <- partial(xgb full$finalModel, pred.var =
"gestational age weeks",

plot = F,

train = train x,

type = 'classification',
prob = T)

(1}
pdpl <- ggplot (partial gest, aes(x = gestational age weeks, y = yhat)) +

geom line(color = pal[l0], size = .75) +

theme minimal () +

xlab ('Weeks') +

ylab ('Predicted Probability') +

ylim(0,1) +

ggtitle('Gestational Age')

S (r)

partial pml0 first <- partial(xgb fullS$finalModel, pred.var = "pml0 first",
plot = F,
train = train_x,
type = 'classification',
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prob = T)

(1}
pdp2 <- ggplot (partial pmlO first, aes(x pml0 first, y = yhat)) +
)

+

geom line(color = pal[l0], size = .75
theme minimal () +
xlab (expression ("Concentration ("*mu*"g/m""3*")")) +

ylab ('Predicted Probability') +
ylim(0,1) +
ggtitle (expression (PM[10]*' First Trimester'))

(1}
partial pml0 third <- partial (xgb full$finalModel, pred.var = "pml0O_ third",

plot = F,

train = train x,

type = 'classification',
prob = T)

S (r)
pdp3 <- ggplot (partial pmlO_third, aes(x
geom line(color = pal[l0], size = .75)
theme minimal () +
xlab (expression ("Concentration ("*mu*"g/m""3*")")) +
ylab ('Predicted Probability') +
ylim(0,1) +
ggtitle (expression (PM[10]*' Third Trimester'))

= pml0 third, y = yhat)) +
+

S (r)

partial so2 second <- partial(xgb fullS$finalModel, pred.var = "so2 second",
plot = F,
train = train x,
type = 'classification',
prob = T,
rug = T)

S 1)
pdp4 <- ggplot (partial so2 second, aes(x so2 second, y = yhat)) +
)

+

geom line(color = pal[l0], size = .75
theme minimal () +
xlab ('Concentration (ppb)') +

ylab ('Predicted Probability') +
ylim(0,1) +
ggtitle (expression(SO[2]*' Second Trimester'))

“{r}
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partial ozone second <- partial(xgb full$finalModel, pred.var =
"ozone_ second",

plot = F,
train = train x,
type = 'classification',
prob = T)
S r)
pdp5 <- ggplot (partial ozone second, aes(x = ozone second, y = yhat)) +
geom line(color = pal[l0], size = .75) +
theme minimal () +
xlab ("Concentration (ppm)") +

ylab ('Predicted Probability') +
ylim(0,1) +
ggtitle ('Ozone Third Trimester')

" {r fig.height = 4}
pdp <- grid.arrange (pdpl, pdp2, pdp3, pdp4, pdpbd)
ggsave ('~/capstone/pdp.png', pdp)

### GLM Full

S 1)

borderl <- fp border (color="black", width = 1.5)
border2 <- fp border (color="black", width = 1.25)
as_flextable(glm fullSfinalModel) $%$>%

font (fontname = 'Times New Roman', part = 'all') %>%
hline top(border = borderl, part = 'header') %>%
hline bottom(border = border2, part = 'header') %>%
hline bottom(border = borderl, part = 'body') %>%
fontsize(size = 12, part = 'all') %>%

color (color = 'black', part = 'all') %>%

autofit () %$>%

padding (padding = 1.5, part = 'all') %>%
save as_docx(path = "~/capstone/glm full output.docx")

SRR
cm_glm full <- confusionMatrix(data = glm pred full, reference =
factor (test y, levels = c(0,1), labels = c('abnormal', 'normal')))
cm _glm full

### ROC

(1}
glm pred prob full <- predict(glm full, newdata = test x, type = 'prob')

69



xgb _pred prob full <- predict(xgb full, newdata = test x,

S r)
roc_glm full <- roc(test y, glm pred prob full[,2])
roc_xgb full <- roc(test y, xgb pred prob full[,1])

(1}

ggroc (list(roc_glm full, roc_xgb full) size = .8) +

4
scale color manual (labels = c(pasteO('GLM: ', round(roc_glm_fullsauc,3))
pastel ('XGB: ', round(roc_xgb_fullSauc,3))
values = c(pall4], palll0])) +

labs (color = '"") +
theme minimal ()

ggsave ('~/capstone/auc full.png')

## First Trimester Models
#4## GLM

(1}
as_flextable(glm first$finalModel) %>%

font (fontname = 'Times New Roman', part = 'all') %>%
hline top(border = borderl, part = 'header') %>%
hline bottom(border = border2, part = 'header') %>%
hline bottom(border = borderl, part = 'body') %>%
fontsize(size = 12, part = 'all') %>%

color (color = 'black', part = 'all') %$>%

autofit () %$>%

padding (padding = 1.5, part = 'all') %>%
save as_docx(path = "~/capstone/glm first output.docx")

S (r)

type = 'prob')

cm glm first <- confusionMatrix(data = glm pred first, reference =
factor (test y, levels = c¢(0,1), labels = c('abnormal', 'normal')))

cm _glm first

### XGB
S 1)

cm xgb first <- confusionMatrix(data = xgb pred first, reference =
factor (test y, levels = c(0,1), labels = c('abnormal', 'normal')))

cm_xgb first
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#### Variable Importance
NN

var _imp first <- xgb.importance (model = xgb first$finalModel)

S r)
gain first <- xgb.ggplot.importance(var imp first, top n = 20, measure =
"Gain") +

theme minimal () +

ggtitle('First Trimester Model') +

scale fill manual (values = c(pall[3],palld4], pal[9], pall[l0]))

S ry

cover first <- xgb.ggplot.importance(var imp first, top n = 20, measure =
"Cover") +
theme minimal () +
ggtitle('First Trimester Model') +
scale fill manual (values = c(pal[4], pall[l0]))
### ROC
1)
glm pred prob first <- predict(glm first, newdata = test x, type = 'prob')
xgb pred prob first <- predict(xgb first, newdata = test x, type = 'prob')
S 1)
roc_glm first <- roc(test y, glm pred prob first([,1])
roc_xgb first <- roc(test y, xgb pred prob first([,1])
S 1)
ggroc (list(roc glm first, roc xgb first), size = .8) +
scale color manual (labels = c(paste0('GLM: ', round(roc glm firstSauc,3)),
paste0 ('XGB: ', round(roc_xgb firstSauc,3))),
values = c(pall4], palll0])) +
labs (color = "") +

theme minimal ()

ggsave ('~/capstone/auc first.png')
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## Second Trimester Models
### GLM

S ry
as_flextable (glm second$finalModel) $>%

font (fontname = 'Times New Roman', part = 'all') %>%
hline top(border = borderl, part = 'header') %>%
hline bottom(border = border2, part = 'header') %>%
hline bottom(border = borderl, part = 'body') %>%
fontsize(size = 12, part = 'all') $>%

color (color = 'black', part = 'all') %>%

autofit () %>%

padding (padding = 1.5, part = 'all') %>%
save as_docx(path = "~/capstone/glm second output.docx")

S ir)
cm_glm second <- confusionMatrix(data = glm pred second, reference
factor (test y, levels = c(0,1), labels = c('abnormal', 'normal')))
cm_glm second

### XGB

(1}

cm_xgb second <- confusionMatrix(data = xgb pred second, reference
factor (test y, levels = c(0,1), labels = c('abnormal', 'normal')))
cm_xgb second

#### Variable Importance

S (r)

var_imp second <- xgb.importance (model = xgb second$finalModel)
S 1)
gain second <- xgb.ggplot.importance (var imp second, top n = 20, measure =
"Gain"™) +
theme minimal () +

ggtitle('Second Trimester Model') +
scale fill manual (values = c(pal[4], pal[10]))

S (r)

cover second <- xgb.ggplot.importance(var imp second, top n = 20, measure =
"Cover") +
theme minimal () +

ggtitle('Second Trimester Model') +
scale fill manual (values = c(pal[4], pal[%9], palll0]))
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### ROC
S 1)

glm pred prob second <- predict(glm second, newdata = test x, type = 'prob')
xgb pred prob second <- predict(xgb second, newdata = test x, type = 'prob')
S r)
roc_glm second <- roc(test y, glm pred prob second[,1])
roc_xgb second <- roc(test y, xgb pred prob second[,1])
S (1}
ggroc (list (roc_glm second, roc xgb second), size = .8) +
scale color manual (labels = c(pasteO('GLM: ', round(roc_glm_secondsauc,3)),

pastel ('XGB: ',
round (roc_xgb second$auc, 3))),
values = c(pall4], palll0])) +
labs(color = '"") +
theme minimal ()

ggsave ('~/capstone/auc second.png')

S (r)

varImp xgb second <- varImp (xgb second) [[1]] %>% slice head(n=20)

varImp xgb second <- varImp xgb second %>%
mutate (Var = factor (rownames (varImp xgb second))) %>%
mutate (Var = fct reorder (Var, Overall))

ggplot (varImp xgb second, aes(x = Overall, y = Var)) +
geom col (fill = pal[10]) +

theme minimal () +

ggtitle ('Feature Importance') +
xlab ('Importance') +

ylab('")

ggsave ('~/capstone/var imp second.png')

## Third Trimester Models

#4## GLM
S (1}
as_flextable(glm third$finalModel) %>%
font (fontname = 'Times New Roman', part = 'all') $>%
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hline top(border = borderl, part = 'header') %>%
hline bottom(border = border2, part = 'header') %>%
hline bottom(border = borderl, part = 'body') %>%
fontsize(size = 12, part = 'all') $>%

color (color = 'black', part = 'all') %>%

autofit () %>%

padding (padding = 1.5, part = 'all') %>%
save as_docx(path =

S r)
cm_glm third <- confusionMatrix(data = glm pred third,
factor (test y, levels = c(0,1), labels = c('abnormal',
cm _glm third

### XGB

S (1}
cm_xgb third <- confusionMatrix(data = xgb pred third,
factor (test y, levels = c(0,1), labels = c('abnormal',
cm_xgb third

#### Variable Importance
NN

"~/capstone/glm third output.docx")

reference

'normal')))

reference

'normal')))

var_imp third <- xgb.importance (model = xgb third$finalModel)

S (r)

gain third <- xgb.ggplot.importance(var imp third, top n = 20, measure =
"Gain") +

theme minimal () +

ggtitle ('Third Trimester Model') +

scale fill manual (values = c(pal[3],palld4], pal[9], pal[l0]))

S (r)

cover third <- xgb.ggplot.importance(var_ imp third, top n = 20,

"Cover") +

theme minimal () +

ggtitle('Third Trimester Model') +

scale fill manual (values = c(pal[4], pal[l1l0]))
### ROC

S (r)

glm pred prob third <- predict(glm third, newdata = test x, type =

xgb pred prob third <- predict(xgb third, newdata

“{r}
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test x, type

measure =

'prob')
'prob')



roc_glm third <- roc(test y, glm pred prob third[,1])
roc_xgb third <- roc(test y, xgb pred prob third[,1])

S (r)

ggroc (list(roc _glm third, roc_xgb third), size = .8) +
scale color manual (labels = c(paste0('GLM: ', round(roc glm thirdSauc,3)),
pastel ('XGB: ', round(roc_xgb thirdSauc,3))),
values = c(pal[4], pal[l0])) +
labs (color = '") +

theme minimal ()

ggsave ('~/capstone/auc third.png')

## A1l ROC together

S (r)
# ggroc(list(roc_xgb full,

# roc_glm full,

# roc_xgb first,

# roc _glm first,

# roc_xgb_second,

# roc_glm second,

# roc_xgb third,

# roc_glm third), size = .8) +

# scale color manual (values = c(palll], pal[3:5], pall7], pal[9:11]1)) +
# labs (color = "') +

# theme minimal ()

## All VarImp Together
(1}
library (gridExtra)

### Gain

" {r fig.width=5}
varimp gain <- grid.arrange(gain full, gain first, gain second, gain third)
ggsave ('~/capstone/varimp gain.png', varimp gain)

### Cover

" {r fig.width=5}

varimp cover <- grid.arrange(cover full, cover first, cover second,
cover_ third)

ggsave ('~/capstone/varimp cover.png', varimp cover)
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