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Abstract 

Analysis of VRE Transmission in a Major Hospital Setting Using Hierarchical Clustering 

and Bayesian Phylodynamic Methods 

 

Arvon Anthony Clemons II, MS 

 

University of Pittsburgh, 2022 

 

 

 

 

Healthcare-associated infections (HAIs) can prolong and add substantial costs to hospital 

stays. One study estimated that 1 out of 25 hospitalized patients were expected to be infected by a 

HAI on a daily basis. Minimizing HAIs would increase the quality of healthcare within hospitals; 

thus infection prevention methods must utilize various strategies to identify the cause of HAIs and 

develop interventions to reduce cases.  

Currently many healthcare institutions utilize whole-genome sequencing (WGS) in 

identifying outbreaks and combine them with epidemiological methods in developing protocols to 

minimize the size of an outbreak. A recent example would be researchers in the University of 

Pittsburgh – Medical Center Presbyterian Hospital (UPMC), who have developed a machine-

learning based method to incorporate WGS data with electronic health records (EHRs) to 

determine the most likely routes of transmission during an outbreak of vancomycin-resistant 

enterococci (VRE).  

Using a ground truth (GT) dataset based on the VRE outbreak, we performed an assessment 

to compare two methods for categorizing bacterial isolates into transmission routes. We compared 

hierarchical clustering methods with a Bayesian phylodynamic model to determine which 

classification had the most similarity to the GT dataset.  

Our analysis proved inconclusive in identifying a method with superior performance due 

to computational limitations for the Bayesian phylodynamic model, however the urgency and time 
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constraints of an active outbreak have shown to be better suited for the hierarchical clustering 

method and we recommend the Bayesian phylodynamic model as part of a retrospective analysis 

of an outbreak. This analysis which identifies routes of infectious disease transmission within a 

hospital setting could be utilized in optimizing infection prevention strategies within the hospital 

setting and lower the rate of HAIs – making a positive public health impact through reducing cost 

of care and increasing quality of care. 
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1.0 Introduction 

Healthcare-associated infections (HAIs) are a major concern in the US and are known to 

increase health care costs substantially while also contributing to morbidity and mortality. In 2011 

the CDC conducted a prevalence survey on HAIs through the National Healthcare Safety Network 

(NHSN) in 10 geographically diverse states and estimated that 1 out of 25 hospitalized patients 

were expected to be infected by a HAI on a daily basis (Magill, 2014). It was estimated that there 

were 648,000 patients with 721,800 HAIs within acute care US hospitals. Through data-driven 

coordination regional healthcare facilities could substantially reduce HAIs (Slayton, 2015). 

Medical cost savings from preventing HAIs could range from $25 - $31.5 billion (Douglass S., 

2009). As such, the U.S. Department of Health and Human Services (HHS) has recognized the 

reduction of HAIs as an Agency Priority Goal (HHS.gov, 2021). One of the goals is to use data to 

facilitate core methods of infection prevention (IP) such as: (1) implementation of electronic health 

records (EHRs) for antibiotic treatment, (2) clinical staff duty records for logging environmental 

cleaning and disinfection activities, and (3) automate identification of HAIs in contrast to manual 

chart reviews (Atreja, 2008). In particular, whole-genome sequencing (WGS) is prominently used 

in outbreak investigations within hospitals and is used in tandem with epidemiological 

methodology to identify transmission routes with some limitations (Sundermann, 2019). To 

overcome some of the limitations of using traditional IP with WGS, researchers at the University 

of Pittsburgh developed a tool called Enhanced Detection System for Healthcare Association 

Transmission (EDS-HAT) which incorporates WGS surveillance with machine learning EHR data 

(Sundermann, 2021). This tool has shown promise to enhancing prior IP methods, in one case 
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EDS-HAT was successfully used to identify a previously undiscovered transmission route through 

poor interventional radiology technician aseptic technique (Sundermann, 2020).  

WGS data in outbreak surveillance is often done through hierarchical clustering methods, 

in order to identify clusters of cases which may indicate a common transmission route. However, 

the use of hierarchical clustering comes with limitations for identifying transmission routes. 

Dissimilarity metrics are used for hierarchical clustering, in particular single-nucleotide 

polymorphisms (SNP), but lack geotemporal inference. As such, hierarchical clustering can only 

be used to infer genetically related cases. However, with Bayesian phylogenetics, geographical 

and temporal information can be incorporated to illustrate the genetic ancestry of cases. This 

additional information can indicate migration history and thus transmission routes. In this thesis, I 

will compare hierarchical clustering with Bayesian phylogenetics and contrast the performance of 

clusters generated from both methods as input into EDS-HAT in correctly identifying transmission 

routes.  
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2.0 Methods 

The aim of this project was to combine whole-genome sequences (WGS) of bacterial 

isolates from hospital-associated disease surveillance of antibiotic resistant bacterial pathogens 

with electronic health records to identify outbreaks and transmission routes. Specifically, we 

performed and compared two different machine learning methods (hierarchical clustering and 

Bayesian phylodynamic modeling) to identify clusters of isolates and likely transmission routes 

for vancomycin-resistant enterococci (VRE).  

2.1 Data 

2.1.1 Data Source 

The dataset for these analyses is composed of de novo genome assemblies and genetic 

dissimilarity matrices of 267 VRE isolates collected from unique patients as part of the EDS-HAT 

project conducted at University of Pittsburgh – Medical Center Presbyterian Hospital (UPMC). 

Whole-genome sequencing (WGS) isolates were collected from December 2016 to September 

2018. The VRE isolates were selected for WGS based upon positive identification with the 

following criteria: >3 days of hospital stay after admission and/or any procedure or prior inpatient 

stay within 30 days of isolate collection date. The 267 VRE isolates were cultured from 7 different 

on-patient sites (e.g., rectal swab), 47 geographic locations (e.g., PUH-10N), and were restricted 

to sequencing type (ST) ST-736 and ST-1471 – the two largest ST groups collected. 
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2.1.2 Data Cleaning and Pre-processing 

Single Nucleotide Polymorphisms (SNPs) are a common source of variation within 

bacterial populations and can be used to chart the evolutionary history of variants (Dong et al. Gut 

Pathog, 2017). As such, examining dissimilarity of SNPs is useful for tracking the history of a 

bacterial outbreak and identifying the spatial epidemiology of independent strains. The core 

genome of a bacterial species is a group of highly conserved shared genes (Segerman Front. Cell. 

Infect. Microbiol, 2012). The goal of this study was to perform comparative analysis of the SNPs 

within the core genome of the WGS isolates to generate a phylogenetic history which would then 

be used to infer the infection transmission route between patients among the isolates. To perform 

these analyses, we first identified the structural functions within the assemblies (Stein et al., 2001) 

using annotation software Prokka v. 1.14.5 (Seeman T. Bioinformatics, 2014) to annotate and 

identify the core genomes for each isolate. After annotation, we next performed an alignment of 

each of the core genome sequences to identify the SNPs. However, during alignment there can be 

gaps (indels) within the sequences which are not informative for comparative analysis and could 

lead to false positives during SNP identification (Olson et al., 2015). As such we ‘masked’ the 

indels in order to improve the quality of SNP calls (Yun and Yun., 2014). Using Roary v. 3.13 

(Page et al., 2015) we performed a fast core gene multiple sequence alignment across all annotated 

assemblies per ST with the MAFFT algorithm option (Katoh, 2002). Then using SNP-sites v. 2.5.1 

(Page et al., 2016) we extracted the monomorphic sites, excluding any indels, followed by an 

extraction of the core genome SNP sequences into a multi-FASTA format. Subsequent data 

wrangling was handled using base R v.4.0.5 ‘Shake and Throw’ within RStudio v.1.4.1717 ‘Juliet 

Rose’ and packages as described in Table 1. 
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Table 1 R Data Wrangling Software 

Package Version 

Readxl 1.3.1 

Stringr 1.4.0 

Readr 1.4.0 

Dplyr 1.0.6 

Data.table 1.14.0 

2.2 Hierarchical Clustering 

Broadly, the objective of hierarchical clustering is to find sub-groups among objects and 

categorize those which are most similar, yet different enough from the remaining objects, into the 

same cluster. Agglomerative (“bottom-up”) clustering is the most common form of hierarchical 

clustering (Lance and Williams, 1967). The algorithm requires a dissimilarity metric in which we 

measure and define the distance between the n elements within the data (Murtagh, 2011; ISLR 

2013). In turn the relationship between these elements can be best visualized in a tree-like figure 

called a dendrogram, which can illustrate the evolutionary relationship between organisms. As 

such, hierarchical clustering can be used to study the ancestry/origin of antibiotic resistant VRE 

cultures in a hospital environment, using maximum SNP count difference (i.e., the number of 

differences between two isolates) as the dissimilarity metric.  

We begin with n elements, each within its own cluster (“singleton”), and in a series of 

successive steps the two closest pairwise elements are clustered together so that at the end of each 
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step there are n – 1 elements until there remains only one cluster. The theory of agglomerative 

hierarchical clustering is as follows: 

𝑑(𝐶𝑖 ∪ 𝐶𝑗 , 𝐶𝑘) =  𝛼𝑖𝑑(𝐶𝑖 , 𝐶𝑘) + 𝛼𝑗𝑑(𝐶𝑗 , 𝐶𝑘) + 𝛽𝑑(𝐶𝑖 , 𝐶𝑗) + 𝛾|𝑑(𝐶𝑖 , 𝐶𝑘) − 𝑑(𝐶𝑗 , 𝐶𝑘)| +

𝜎𝑖ℎ(𝐶𝑖) + 𝜎𝑗ℎ(𝐶𝑗) + 𝜖ℎ(𝐶𝑘) (2.1) 

Where the dissimilarity, 𝑑(∙), between a newly-amalgamated class Ci ∪ Cj and another class Ck is 

defined by the above equation. For the above, h(Ci) is the height in the dendrogram of class Ci and 

Θ≡(αi, αj, β, γ, δi, δj, ε) is a set of parameters who values specify the linkage methods (described 

below). This dissimilarity function is calculated iteratively for pairs of classes, beginning with 

singleton clusters until only one cluster remains. 

The R packages Dendextend v.1.15.1 (Tal Galili, 2015), Cluster v. 2.1.2 (Maechler, M., 

2021) and Corrplot v.0.88 (Taiyun Wei, 2021) were used for conducting hierarchical clustering 

and visualization. 

2.2.1 Linkages 

As elements are grouped together into clusters it is necessary to define a function to 

determine the dissimilarity between two clusters. This function is known as a “linkage” and they 

can drastically affect the interpretation of the relationship between elements of the dendrogram 

(ISLR, 2013). 

Using equation 2.1 without the terms {δi, δj, ε} we can use a general agglomerative 

algorithm with varying parameter values which define a unique linkage strategy. For each of the 

below linkages, wi is the weight associated with class Ci (usually the number of items contained 

within the class) and w+ ≡ wi + wj + wk is the sum of the weights across classes (Lance and 
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Williams, 1967; Gordon, 1987). Then with each iteration of the algorithm the dissimilarity 

measures will increase monotonically provided that:  

(𝜶𝒊 + 𝜶𝒋 + 𝜷 ≥ 𝟏); 𝛾 = 0                                                                                             (2.2)     

The choice of {αi, αj, β} defines the linkage method. There are several commonly used 

weighting schemes. The ones considered for this thesis – Single, Unweighted Paired Group 

Method Arithmetic mean (UPGMA), and Ward's Method – are given below. 

2.2.1.1 Single Linkage 

The single linkage (also known as nearest neighbor) method is relatively straightforward; 

the distance between groups is defined as the distance between the two closest elements in each 

respective group (Lance and Williams, 1966). 

From equation 2.1 let αi = aj = 0.5; β = 0 and γ = -0.5. 

In subsequent iterations, as groups grow, they will continue to move closer to some 

elements and further from others – as such single linkage is an effective “space-contracting” 

method. 

Conceptually, this method could be viewed as grouping elements as part of a chain, as the two 

most dissimilar members are categorized together because they are even more dissimilar to two 

other members. Hence only linking “nearest neighbors”. 

2.2.1.2 UPGMA Linkage 

The unweighted paired group method arithmetic mean (UPGMA) linkage, will be referred 

to as “average” linkage for the remainder of this thesis, is commonly used in phylogenetics 

between microbial isolates within a species as it was designed specifically for taxonomy of 

organisms (Sokal and Michener, 1958). 
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From equation 2.1 let αi = wi / (wi + wj); αj = wj / (wi + wj) and β = γ = 0.  

Hence, per equation 2.2, the resulting dissimilarity measures will always be monotonically 

increasing. Conceptually this method groups elements together into class or other collective labels 

in which groups of various shapes or border outlines can be drawn. 

2.2.1.3 Ward’s Method Linkage 

Ward’s method was developed for creating mutually exclusive subsets while minimizing 

variation from the mean of the subset. To achieve this, in successive steps, the error sum of squares 

is minimized when categorizing objects into clusters (Ward, 1963). In each iteration, the pair of 

objects having the smallest error sum of squares are clustered together; this process continues until 

only one cluster remains. We apply this linkage method to the SNP dissimilarity matrix with the 

intention to combine isolates with similar SNP dissimilarity into the same cluster. 

From equation 2.1 let αi = (wi + wk) / w+; αj = (wj + wk) / w+; β = -wk / w+ and γ = 0.  

When applying these weights for each class C(.) the parameters for equation 2.1 are 

calculated accordingly.  

Conceptually, this method can be viewed as grouping elements into a dense type which differs 

from the class of average linkage through having a sort of “cloud” group with a heavy center where 

other points can be scattered freely but are few outside of this center. 

2.2.2 Cophenetic Distance 

The cophenetic distance is the dissimilarity at which two objects may be combined into a 

single group. On a dendrogram, this could be considered the height on the tree in which to perform 

a ‘cut’ when lumping two branches together (Sokal and Rohlf., 1962). Prior literature which used 
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hierarchical clustering methods for bacterial disease surveillance used a range of SNP cut-offs to 

define isolates within the same culture as such we selected a cophenetic distance of 15 as our cut-

off (Sundermann, 2019). Any singleton isolate clusters were subsequently removed from further 

analysis. 

2.3 Bayesian Phylogenetics 

Phylogenetics originated as means to elucidate the evolutionary history and relationship of 

organisms (Hall, 2006). A natural implementation of evolutionary theory with the assumption of 

a common ancestor, molecular epidemiologists can utilize phylogenetic methods to form 

phylogenetic trees (phylogenies) of microorganisms and infer ancestry across isolates within 

closely-related or the same species. Bayesian phylogenetics is a model-based method for 

constructing a phylogeny through inference from Bayesian statistics. 

Bayesian inference features probability distributions to describe the uncertainty of 

unknowns. Central to Bayesian inference is Bayes’ theorem: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
  (2.3) 

where A and B are different events and P(B) ≠ 0. 

Additionally in Bayes’ theorem there are additional labels for the terms of the equation (Table 2).  
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Table 2 Labels From Bayes’s Theorem 

Term Definition 

P(A|B) – 

Conditonal 

Probability 

The probability of event A occurring given that B is true. Alternatively called the 

posterior probability of A given B. 

P(B|A) – 

Conditional 

Probability 

The probability of event B occurring given that A is true. Alternatively called the 

likelihood of A given a fixed B. 

P(A) & 

P(B) – 

Marginal 

Probability 

The probabilities of observing A and B respectively without any given conditions. 

Alternatively known as the prior probability. 

 

The use of Bayesian inference in phylogenetics can be explained as follows. Let D be the 

observed data and Θ the unknown parameter. After assigning a distribution to the prior f(Θ), using 

pre-existing knowledge about Θ, we can then use Eq 2.4 to calculate the distribution of the 

posterior of Θ: 

𝑓(𝛩|𝐷) =  
1

𝑧
𝑓(𝛩)𝑓(𝐷|𝛩)                                                                                              (2.4) 

Where the probability of the data given f(D|Θ) is the likelihood. The normalizing constant z = 

∫f(Θ)f(D|Θ) means that 𝑓(𝛩|𝐷) must integrate to 1 as a proper statistical distribution. Thus Eq 2.4 

indicates the posterior is proportional to the prior multiplied by the likelihood. Hence from the 

prior and likelihood one can calculate the probability of Θ. 
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Bayesian phylogenetic methods have grown in popularity since their original debut in the 

late 20th century. Currently there is a wide diversity of applications for phylogenetic analysis such 

as in comparative linguistics (Bouckaert, 2012), analyzing species diversification (Nascimento, 

2017), and tracing the geographic spread and evolutionary history of influenza A (H1N1) virus 

during the 2009 pandemic (Smith, 2009). This popularity can be credited to the development of 

high-performance computing resources in tandem with innovative models which enable 

researchers to conduct analysis on complex data (Nascimento, 2017).  Bayesian phylogenetics 

require the use of genetic data such as amino acid or DNA sequence alignments as input, a 

nucleotide substitution model, and selection of informative parameters (priors) within the model. 

After selection of the data, substitution model, and priors, the key next step is running a 

Markov chain Monte Carlo (MCMC) algorithm. The MCMC is of great importance as it allows 

faster computation of the posterior. To explain the value of MCMC we must first acknowledge the 

high dimensionality for calculating z in eq. 2.4. Monte Carlo methods must sample from a high 

dimensional probability distribution, which are very difficult to analyze and requires large amounts 

of computation. However, estimating the expected values (sampling) from these distributions can 

be done using a simulation technique where, if it is difficult to sample directly from the probability 

density function p(χ), or if p(χ) is unknown, we instead sample from the distribution q(γ) and obtain 

a sample of χ values as some function of the corresponding γ values. From here we begin to use 

Markov chain methods to simulate a sequence of samples underneath the conditional distribution 

χ = g(γ) given h(γ) = h0. Computations using ratios of the form p(χ’) / p(χ), where χ’ and χ are 

sample points, allow us to ignore the normalizing constant z in eq. 2.4 and thus simplifies 

computation. 
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Rather than solving such complex integrals directly, MCMC allows sampling from a 

distribution while ignoring the normalizing constant z. Instead, a sequence of posterior samples 

forms a Markov chain simulation in which either the posterior mean, standard deviation or entire 

distribution may be estimated from a correlating sample underneath a conditional distribution 

(Hastings, 1970). After a set number of iterations, the chain becomes long enough to cease 

sampling and the posterior estimate is accepted provided an acceptable effective sample size (ESS) 

coincides with the parameter of interest. For constructing the MCMC chain we use BEAUti v.2.6.5 

to construct the BEAST-subject XML file from each ST core genome alignment. The MCMC is 

run through the BEAST 2 v. 2.6.4 (Bouckaert, 2019) software. BEAST 2 is an open-source 

platform for Bayesian phylogenetic analysis with a package management system allowing 

independent researcher developed models to be used for inference (Bouckaert, 2014). After 

completion of each model run the log file is analyzed using the Tracer v.1.7.2 application (Rambaut 

A., 2018). This application allows us to diagnose and summarize each MCMC chain by providing 

estimated values of the posterior such as the sample mean, standard deviation, highest posterior 

density interval and the ESS.  

The ESS can be considered the number of independent draws from the posterior 

distribution and it is commonly recommended to have a minimum ESS of 200 for any posterior 

estimate to be accepted. 

2.3.1 bModel Test 

bModelTest is a BEAST 2 package for co-estimating the nucleotide site substitution model 

of a phylogeny (i.e. the mutation rate of each nucleotide and whether all nucleotide changes occur 

at the same rate or at differing rates in a set of sequences). bModelTest indicates the most likely 
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time-reversible nucleotide substitution model to use, taking into account sequence regions which 

are constant (invariable sites) and the remaining regions which have heterogenous rates of change 

best described underneath a discrete gamma probability distribution (Bouckaert, 2017) 

Specifically, it describes the transition and transversion rates which are denoted as rac, rag, rat, rcg, 

rct and rgt which are indicated by a six-digit model number M in which each digit refers to one of 

up to six rates in the same order as each rate. For example, model number 123456 indicates all 

nucleotide substitution rates are independent and unique, model number 111111 indicates all 

nucleotide substitution rates are equal, and model number 112345 indicates rac and rag are equal 

with all other rates being unique. The graphical output is a series of nested models, where arrows 

point towards a model that is a subset of another. The area of each circle is proportional to model 

with the highest posterior support while the color indicates whether the model is 95% credible 

(blue) or not (red). The 95% credibility in Bayesian Statistics is known as highest posterior density 

(HPD) is analogous to the 95% confidence interval (CI) of frequentist statistics. We used default 

prior selection with the exception of parameters depicted in Table 3. This protocol is an adaptation 

of the Substitution Model Averaging tutorial hosted on the Taming the BEAST community teaching 

resource (Joëlle Barido-Sottani, 2018)  
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Table 3 BModelTest BEAUti Settings 

BEAUti Tab Name Parameter Name Setting 

MCMC Chain Length 10,000,000; 10% burn-in 

Site Model Mutation Rate Estimate 

Site Model Nucleotide Substitution Model Set transistionTransversionSplit 

Partitions Split 1+2+3; link site models; link clock 

models; link trees 

Clock Model Strict Clock Clock.rate = 1.0 

Priors Tree.t Coalescent Constant Population 

 

The results from the bModelTest showed strongest support for the 121321 nucleotide 

substitution model for both ST groups, by both metrics of having the highest posterior support and 

passing the 95% credible interval (Figure 1 and Figure 2). Furthermore, for both ST groups, no 

invariable sites were identified, the estimated gamma rate heterogeneity was 0, and nucleotide base 

frequencies were estimated to be even. Nucleotide conversion rates did differ for each ST group 

(Table 4). 
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Figure 1 ST1471 BModelTest Indicator 
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Figure 2 ST736 BModelTest Indicator 

 

Therefore, we linked the respective nucleotides in our prior parameters in the subsequent 

MASCOT models to the estimated nucleotide conversion rates (Table 4).  
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Table 4 BModelTest Estimated Nucleotide Conversion Rates 

Nucleotide Conversion ST1471 ST736 

A > C 0.502 0.472 

A > G 2.142 2.236 

A > T 0.505 0.452 

C > G 0.208 0.151 

C > T 2.142 2.234 

G > T 0.502 0.454 

2.3.2 MASCOT 

MASCOT is a BEAST2 package which uses structured coalescence approximation in order 

to infer the ancestral migration history of phylogenies with at least 3 or 4 different states (Muller, 

2017). The structured coalescence method itself is derived from coalescent theory as applied to 

population genetics. Coalescent theory is a model of common ancestry through successive 

inheritance of alleles, assuming each allele variant is equally likely to be passed down (Kingman, 

1982). By following ancestral history backwards in time, alleles across the population should 

merge into a single individual through a sequence of coalescence events. Using structured 

coalescence, the population structure can be inferred from multiple phylogenies under the 

assumption that a MCMC is treated as a continuous temporal element and migration of the 

population is dependent on the phylogenies. Since our MCMC chain uses sample collection dates 

as part of calculating height between phylogeny nodes, rooted at the earliest timepoint, then we 

have a temporal element within the model. Both ancestral lineage and state may be inferred from 

estimates of migration rates in the posterior. MASCOT incorporates information from the entire 
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phylogeny in order to calculate the probability of being in a particular state using a 

forwards/backwards approach to estimate time between the phylogeny tree root and the coalescent 

event. Our protocol closely follows the MASCOT v.2.1.2 tutorial hosted on Taming the BEAST 

community teaching resource (Joëlle Barido-Sottani, 2018). Using each geographic location as a 

state we can infer the ancestry and migration rates for each isolate. For each ST group we ran 

MCMC chains at lengths of 500,000, 10% burn-in, in replicates of 3 using default prior selection 

with the exception of parameters settings depicted in Table 5. Isolate collection dates were used 

for the tip dates underneath the “Tip Dates” tab and hospital unit were selected as the location (Fig 

3and 4). 
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Figure 3 BEAUti Tip Dates 
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Figure 4 BEAUti Location 
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Table 5 Selected MASCOT BEAUti  Settings 

BEAUti Tab Name Parameter Name Settings 

Site Model ---- Gamma Site Model;  

Site Model Substitution Model GTR; link rates and input 

values as indicated from 

BModelTest; Set Frequencies 

to “All Equal” 

Priors clockRate.c Log Normal; M = 4.9E-5; S = 

1.25; Mean In Real Space 

Priors migrationConstant.t Exponential; M = 1 

Priors NeConstant.t Log Normal; M = 0; S = 1 

2.3.3 Maximum Clade Credibility Tree 

Upon completion of all MASCOT runs, ST group log output files were aggregated together 

using LogCombiner v.2.6.5 and then imported into TreeAnnotator v.2.6.4 with 10% burn-in and 

mean node heights to generate two Maximum Clade Credibility (MCC) Trees. The MCC Tree is 

a summary of all of the phylogenies generated from every iteration (step) in a Bayesian 

phylogenetic inference. As posterior clade probabilities are additive, this tree serves as a point 

estimate of the total probability across all phylogenies. 

Each MCC Tree is then exported in the Newick format then imported into R. Using the 

Phylogram package (Wilkinson SP, Davy SK, 2018) the trees are converted into dendrograms 

which are then processed in the same manner as the hierarchical cluster generated dendrograms 

with a cophenetic height cutoff at 15. 
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2.4 Assessment of Methods 

To assess the comparative performance of hierarchical clustering and Bayesian 

phylogenetic methods in identifying epidemiologically plausible transmission routes, we 

performed each type of method and compared the results to a Ground Truth (GT) dataset, obtained 

by an inference model of direct and indirect transmission patterns which incorporates electronic 

health data and machine learning to score possible transmission routes for each isolate. 

2.4.1 Transmission Route Identification 

The transmission route for each isolate was identified using a machine-learning model 

based on SNP dissimilarity and electronic health data. This unique algorithm was developed by 

researchers in Carnegie Mellon University and created a scoring system to rank the log likelihood 

of a particular geographical location being the source of transmission (Miller JK, Chen J., 2019). 

This algorithm was used to form the GT dataset, which consists of the most likely transmission 

source for each isolate. The geographic location with the highest rank for each isolate was used to 

label the determined transmission source. If there were no geographic location ranked then the 

given label is “NA”. 

2.4.1.1 DITO Model 

The direct/indirect transmission outbreak model (DITO) is a statistical inference model 

designed to detect and characterize the root-cause of bacterial outbreaks in the hospital setting 

(Miller JK, Chen J., 2019). Its intended purpose is to be a highly flexible model which combines 

WGS-based SNP distance metrics with EHR to both explain outbreak root-causes and recommend 



 

23 

bacterial isolates for WGS to improve performance using machine-learning. For the purpose of 

evaluating the clusters we generated through hierarchical and Bayesian methods, we utilized 

DITOs’ capabilities for detecting and characterizing outbreaks. When conducting its inference, 

DITO utilizes the maximum likelihood approach in order to generate a set of samples and rank 

transmission routes. Using the analysis output we labeled clusters into hospital units based on rank 

and settled tied ranks with differing locations by selecting the greater log-likelihood score. 

2.4.2 Rand Index 

The Rand Index is a statistical assessment criterion developed specifically for measuring 

similarity between data clusters. It involves calculating the number of ways a total number of N 

objects can be paired. This is a useful metric for comparing clustering methods to assess how 

similar the classification of all data points are across two different methods. However, there is 

always a possibility that an object has been classified the same by random chance which would 

falsely inflate the Rand Index. A modified version of the original, the adjusted rand index (ARI) 

adjusts for the chance grouping of elements (Rand, 1971) using a method that is analogous to the 

Expected Count for contingency tables to normalize the calculations and reduce the effect of 

chance (Hubert, 1985). Using the R package Mclust v. 5.4.7 (Scrucca L., 2016), we assessed the 

accuracy of the identified clusters from each method per ST by comparing the resulting clusters to 

those from the GT dataset, with a score range from 0.0 to 1.0 in which a 1.0 indicates 100% 

similarity. 
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3.0 Results 

3.1 Hierarchical Clustering 

3.1.1  Comparison of Linkages 

In comparison of single vs. average linkages, we observed very similar clustering of 

isolates for both ST1471 and ST736 (Fig. 5 and 6) across both dendrograms and as measured 

through cophenetic correlation. However, when comparing either of the aforementioned linkage 

methods to Ward’s, we saw a much greater difference between results, with more nodes pairing 

isolates into unique clusters with Ward’s method. (Fig. 7 - 10). These relationships between isolate 

pairings and linkage are readily visualized using Tanglegrams (each side depicts a dendrogram 

created from the indicated clustering method - unique nodes are indicated by dash lines and shared 

sub-trees are connected through colored bars). In Figures 5 and 6 the clusters between single and 

average linkage are largely shared with extremely few differences. Figures 7 - 10 however shows 

that the clustering using Ward’s Method linkage has much more of a difference compared to either 

Single or Average methods, as there are many unique nodes. Figure  11 and 12 confirms what we 

observed in Figures 5 – 10 in that clusters formed from ward’s method are drastically different 

from either Single or Average through displaying the cophenetic correlation scores, with ST1471 

showing a larger margin of difference than ST736.  
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Figure 5 ST1471 Single vs Average Tanglegram 
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Figure 6 ST736 Single vs Average Tanglegram 

 



 

27 

 

Figure 7 ST1471 Single vs Ward Tanglegram 
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Figure 8 ST1471 Average vs Ward Tanglegram 
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Figure 9 ST736 Single vs Ward Tanglegram 
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Figure 10 ST736 Average vs Ward Tanglegram 

 

 

Figure 11 ST1471 Correlation Plot 
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Figure 12 ST736 Correlation Plot 

3.2 Bayesian Phylodynamic Models 

The posterior estimated values from the combined log files for each ST type had ESS 

values far below the acceptable threshold, with most being < 100. This brought a lot of uncertainty 

as to the reliability of the tree generated from each ST type (Fig 13 – 14). Diamonds indicate the 

isolate sample collection dates and branch age are indicated by as an integer. Several distinct clades 

(which each may indicate a hospital unit) are visible for each ST type. Using a height cut-off of 

15, in similarity to the dendrograms generated from hierarchical clustering, 13 and 16 unique 

clusters were identified for ST1471 and ST736 respectively. 
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Figure 13 ST1471 Cladogram 
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Figure 14 ST736 Cladogram 
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3.3 Transmission Route Classification 

The clusters between Single and Average linkage were similar and prior research 

recommends Average linkage, so we decided to identify the most likely route of transmission only 

using the Average and Ward’s clusters. In doing so, the Adjusted Rand Index identified the 

Average method as superior to both Ward’s and Bayesian-derived clusters in correctly identifying 

the same route as the Ground Truth dataset (Table 6). Upon further investigation, we identified 

that the clusters formed using Ward’s method were mostly subclusters of those obtained from the 

Average method.  

 

Table 6 Adjusted Rand Index for All Methods 

ST Average Ward’s Bayesian 

736 0.9638 0.4011 0.5694 

1471 1 0.4808 0.3018 
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4.0 Discussion 

Hierarchical Clustering and Bayesian Phylogenetics methods have great potential for 

identifying infectious disease transmission routes within a population. Each method has appealing 

traits for many researchers but come with their own unique limitations. In this thesis, our aim was 

to evaluate and compare these two methods for the purpose of inferring the transmission route for 

VRE isolates in the hospital setting. We found that hierarchical clustering with an Average linkage 

had better concordance with a GT dataset than a Bayesian phylogenetic model using geotemporal 

data to identify disease transmission history in a hospital setting. However computational 

limitations affected the performance of the Bayesian phylogenetic model and a repeat assessment 

without these limitations would be necessary for a fair comparison. 

Some of the aforementioned limitations became apparent such as a lack of computation 

time when running each MCMC, which lead to models with inadequate ESS values for each run. 

All estimated posterior values from a MCMC run should be at least 200 for them to be considered 

acceptable. When ESS values are too low the estimate of the posterior is considered poor. To 

increase the ESS for a parameter there are multiple methods such as increasing the sampling 

frequency or increasing the chain length in which both would increase computational time 

dramatically. For our analysis we ran MCMCs sampled at a frequency of every 5000 steps on a 

chain length of 500,000. We may have achieved the desired ESS values had we run chain lengths 

of at least 10 million at similar frequency. However, running such models for both ST 1471 and 

ST 736 in triplicate would have taken much more computational resources than available. 

Another consideration is that the MASCOT model was inadequate for our analysis and that 

an alternative model could have performed better. One such model could be the Multi-Type Birth-
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Death model (MTBD) (Kühnert, 2016). This model was designed with the intent to reconstruct the 

phylodynamic history of structured populations and is well-suited for charting the transmission 

history of a pathogen within structured populations. In this model discrete typed subpopulations 

(such as hospital wards) are quantified and within each subpopulation a ‘type-change’ process (i.e. 

exposed to infected) is quantified chronologically. Various parameters such as birth, death, and 

sampling are allowed to change overtime and these parameters are inferred as part of which differs 

between the subpopulations and their influence on one another. This model has been used 

successfully in other publications regarding other pathogens such as SARS-CoV-2 (Nabil, 2020) 

and multi-drug resistant tuberculosis (Pečerska, 2021). However, this model is far more 

computationally intensive than MASCOT due to the added complexity of type-changes. 

For hierarchical clustering methods there also were alternative methods worth considering 

which may have improved performance. Such methods could have been the core genome distance 

methods we have chosen to identify genetically distinct isolates. One popular alternative used in 

bacterial genomics would be cgMLST (Mellmann, 2011; Neumann, 2019). This has been used 

with great success for real-time analysis of various outbreaks such as with E. coli and E. faecalis, 

through combining whole genome sequencing with high-throughput next-generation sequencing 

for a highly discriminatory typing schema. However a comparative assessment of genomic typing 

methods found that there were very high concordance between SNP and cgMLST (Henri, 2017).  

Hence it is possible that cgMLST would produce very similar cluster classifications and have little 

impact on our results. 

Perhaps the largest limitation in this analysis would the metric we used for comparison 

across classification methods - the Adjusted Rand Index. The 100% ARI from the average method 

for ST1471 raised suspicion and upon investigation of the labels, we confirmed that roughly 81% 
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(raw proportion) of the labels truly matched. However, for the sample space of labels that were 

shared between the GT clusters and Average clusters there were indeed a 100% match. Suggesting 

the ARI calculation is blind to labels which are exclusive to a particular subset. For example, if 

calculating the ARI between two subsets {X = 1, 2, 4} and {Y = 1, 2, 3} the ARI will take into 

account only the classes 1 and 2 which then biases the ARI score. Recalculation using either an 

alternative R package or custom function that will not ignore labels exclusive to one method or 

another would be required. As such the results assessing the transmission route classification to 

the GT dataset remains inconclusive.  
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5.0 Conclusion 

HAIs make it necessary to understand the transmission routes of an outbreak as part of an 

effective infection control strategy. Through understanding the relationship of cases during an 

infectious disease outbreak hospital staff can create effective interventions that would minimize 

cases and provide effective care for their already vulnerable patients. WGS is a key tool in 

understanding the evolutionary history of a pathogen and, in tandem with EHR, allows 

reconstruction of the phylogeography of pathogen strains. This has been applied to the hospital 

setting with great success and has directly led to a change of policy to prevent further cases 

(Sunderman, 2021). 

In this thesis, we compared two methods for identifying the transmission route of an 

outbreak of VRE in the hospital setting, one method being a simple hierarchical clustering and the 

other an advanced Bayesian phylodynamic model. These methods utilized WGS of isolates from 

multiple patients to determine the relationship between cases. The hierarchical clustering method 

utilized WGS SNP data to determine how closely related cases were and categorize them. The 

Bayesian phylodynamic model utilized WGS alignment data in combination with spatial-temporal 

data to categorize cases. Both methods were assessed by comparing to the ground truth dataset 

using the Adjusted Rand Index for scoring similarity. The results from our comparative analyses 

where largely inconclusive due to a limitation on computational resources for the Bayesian 

phylodynamic model and a discovered error in the Adjusted Rand Index software. However, the 

displayed time constraint of using Bayesian phylodynamic methods when reconstructing the 

history of an infectious disease outbreak in the hospital setting supports our recommendation to 



 

39 

utilize the simpler and quicker hierarchical clustering during an active outbreak and reserving the 

Bayesian phylodynamic model for retrospective analysis. 
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Appendix A Descriptive Statistics 

 

Appendix Figure 1 Hospital Unit Isolate Count 
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Appendix Figure 2 ST Type Isolate Count 
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Appendix B Tracer Output 

 

Appendix Figure 3 ST1471 Combination 

 

 

Appendix Figure 4 ST736 Combination 
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Appendix C Linux CLI 

Appendix C.1 Prokka Annotation 

for file in *.fasta; do tag=${file%.fasta}; prokka --prefix "$tag" --locustag "$tag" --cpus 12 --

usegenus --mincontiglen 200 --genus Enterococcus --species faecium --strain "$tag" --force --

addgenes --kingdom Bacteria --gcode 11 --outdir ~/VRE_ST1471/annotations/"$tag"_prokka 

"$file"; done 

 

for file in *.fasta; do tag=${file%.fasta}; prokka --prefix "$tag" --locustag "$tag" --cpus 12 --

usegenus --mincontiglen 200 --genus Enterococcus --species faecium --strain "$tag" --force --

addgenes --kingdom Bacteria --gcode 11 --outdir ~/VRE_ST736/annotations/"$tag"_prokka 

"$file"; done 

 

## Example 

 

prokka --prefix VRE32493 --locustag VRE32493 --cpus 12 --usegenus --mincontiglen 200 --genus 

Enterococcus --species faecium --strain VRE32493 --force --addgenes --kingdom Bacteria --gcode 

11 --outdir ~/VRE_ST1471/annotations VRE32493.fasta 

Appendix C.2 Roary Alignment 

cp ~/VRE_ST1471/annotations/*/*.gff ~/VRE_ST1471/alignment; roary -e -n -v -p 32 *.gff 

 

cp ~/VRE_ST736/annotations/*/*.gff ~/VRE_ST736/alignment; roary -e -n -v -p 32 *.gff 

Appendix C.3 SNP-sites Masking and Core Genome SNP extraction 

# Mask alignments from gaps/indels 

snp-sites -mcb -o ~/VRE_ST1471/alignment/VRE_ST1471_core_gene_alignment_clean.fna 

~/VRE_ST1471/alignment/VRE_ST1471_core_gene_alignment.fna 

snp-sites -mcb -o ~/VRE_ST736/alignment/VRE_ST736_core_gene_alignment_clean.fna 

~/VRE_ST736/alignment/VRE_ST736_core_gene_alignment.fna 
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# Extract core SNPs 

snp-sites -mc -o ~/VRE_ST1471/alignment/VRE_ST1471_core_gene_SNP.fna 

~/VRE_ST1471/alignment/VRE_ST1471_core_gene_alignment_clean.fna 

snp-sites -mc -o ~/VRE_ST736/alignment/VRE_ST736_core_gene_SNP.fna 

~/VRE_ST736/alignment/VRE_ST736_core_gene_alignment_clean.fna 
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Appendix D R Code 

Appendix D.1 Core Genome Alignment Sequence ID Renaming 

# Import Sample Collection Info 

VRE_db <- readxl::read_xlsx("~/School/Pitt/VRE 

Thesis/data_for_arvon/VREs_Sample_Collection_Info.xlsx") 

VRE_db <- subset(VRE_db, select = c("SpecimenID", "ST", "Geographic Location", "Source", 

"CultDate")) 

 

# Remove white space in variable entries 

VRE_db$`Geographic Location` <- stringr::str_replace_all(VRE_db$`Geographic Location`, " ", 

"") 

VRE_db$Source <- stringr::str_replace_all(VRE_db$Source, " ", "") 

head(VRE_db) 

## A tibble: 6 x 5 

# SpecimenID ST    `Geographic Location` Source          CultDate            

# <chr>      <chr> <chr>                 <chr>           <dttm>              

#   1 VRE32491   736   PUH-10C               Blood           2016-12-07 00:00:00 

# 2 VRE32493   1471  PUH-10N               Tissue/Surgical 2016-12-08 00:00:00 

# 3 VRE32503   1471  PUH-11N               Wound           2017-01-05 00:00:00 

# 4 VRE32504   1471  PUH-EMEP              Blood           2017-01-10 00:00:00 

# 5 VRE32514   1471  PUH-6F                Wound           2017-01-20 00:00:00 

# 6 VRE32525   736   PUH-EMEP              Urine           2017-02-20 00:00:00 

 

# Export .txt file listing new Sequence IDs 

write.table(VRE_db, file = "~/School/Pitt/VRE Thesis/Annotation and 

Alignment/fasta_rename.txt", sep = "|", row.names = F, quote = F) 

 

# Import new Sequence IDs as character vector 

fasta_rename <- readr::read_file("~/School/Pitt/VRE Thesis/Annotation and 

Alignment/fasta_rename.txt") 

fasta_rename <- unlist(strsplit(fasta_rename, "\\r")) 

fasta_rename <- stringr::str_remove(fasta_rename[-1], "\\n") 

fasta_rename <- fasta_rename[-length(fasta_rename)] 

 

# Name vector of new Sequence IDs 

patterns <- stringr::str_remove(fasta_rename, "\\|(.+)$") 

names(fasta_rename) <- patterns 

head(fasta_rename) 

# VRE32491                                           VRE32493                                           VRE32503  
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# "VRE32491|736|PUH-10C|Blood|2016-12-07" "VRE32493|1471|PUH-

10N|Tissue/Surgical|2016-12-08"           "VRE32503|1471|PUH-11N|Wound|2017-01-05"  

# VRE32504                                           VRE32514                                           VRE32525  

# "VRE32504|1471|PUH-EMEP|Blood|2017-01-10"            "VRE32514|1471|PUH-

6F|Wound|2017-01-20"           "VRE32525|736|PUH-EMEP|Urine|2017-02-20" 

 

# Import core genome SNP alignment as character vector 

ST1471_fasta <- readr::read_file("~/School/Pitt/VRE Thesis/Annotation and 

Alignment/VRE_ST1471_core_gene_alignment.fna") 

ST1471_fasta <- unlist(strsplit(ST1471_fasta, "\\n")) 

# ST1471_fasta <- stringr::str_remove(ST1471_fasta, "\\n") 

# ST1471_fasta <- ST1471_fasta[-length(ST1471_fasta)] 

 

head(ST1471_fasta) #print to verify 

 

ST736_fasta <- readr::read_file("VRE_ST736_core_gene_alignment.fna") 

ST736_fasta <- unlist(strsplit(ST736_fasta, "\\n")) 

# ST736_fasta <- stringr::str_remove(ST736_fasta, "\\n") 

# ST736_fasta <- ST736_fasta[-length(ST736_fasta)] 

 

head(ST736_fasta) #print to verify 

 

# Rename Sequence IDs and export fasta file 

cat(stringr::str_replace_all(ST1471_fasta, fasta_rename),  

    file = "VRE_ST1471_core_gene_alignment.fna",  

    sep = "\n") 

 

cat(stringr::str_replace_all(ST736_fasta, fasta_rename),  

    file = "VRE_ST736_core_gene_alignment.fna",  

    sep = "\n") 

 

##########Example########## 

cat( 

  ">VRE32493", "AGCT", 

  ">VRE32503", "CAGT", 

  ">VRE32504", "TCAA", 

  file = "example.fasta", sep = "\n" 

) 

 

cat( 

  "SpecimenID|ST|Geographic Location|Source|CultDate", 

  "VRE32491|736|PUH - 10C|Blood|2016-12-07", 

  "VRE32493|1471|PUH - 10N|Tissue/Surgical|2016-12-08", 

  "VRE32503|1471|PUH - 11N|Wound|2017-01-05", 

  "VRE32504|1471|PUH - EMEP|Blood|2017-01-10", 

  "VRE32514|1471|PUH - 6F|Wound|2017-01-20", 
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  file = "example.txt", sep = "\n" 

) 

 

# Read in from example.txt 

fasta_rename <- readr::read_file("example.txt") 

fasta_rename <- unlist(strsplit(fasta_rename, "\\r")) 

fasta_rename <- stringr::str_remove(fasta_rename[-1], "\\n") 

fasta_rename <- fasta_rename[-length(fasta_rename)] 

# Remove everything after first | to get the pattern to match off of 

patterns <- stringr::str_remove(fasta_rename, "\\|(.+)$") 

# Make replacement a named character vector in the form of pattern = replacement 

names(fasta_rename) <- patterns 

 

fasta_rename # print to verify 

 

example_fasta <- readr::read_file("example.fasta") 

example_fasta <- unlist(strsplit(example_fasta, "\\r")) 

example_fasta <- stringr::str_remove(example_fasta, "\\n") 

example_fasta <- example_fasta[-length(example_fasta)] 

 

example_fasta #print to verify 

 

cat(stringr::str_replace_all(example_fasta, fasta_rename),  

    file = "example.fasta",  

    sep = "\n") 

 

# Name vector of new Sequence IDs 

patterns <- stringr::str_remove(fasta_rename, "\\|(.+)$") 

names(fasta_rename) <- patterns 

head(fasta_rename) 

# VRE32491                                           VRE32493                                           VRE32503  

# "VRE32491|736|PUH-10C|Blood|2016-12-07" "VRE32493|1471|PUH-

10N|Tissue/Surgical|2016-12-08"           "VRE32503|1471|PUH-11N|Wound|2017-01-05"  

# VRE32504                                           VRE32514                                           VRE32525  

# "VRE32504|1471|PUH-EMEP|Blood|2017-01-10"            "VRE32514|1471|PUH-

6F|Wound|2017-01-20"           "VRE32525|736|PUH-EMEP|Urine|2017-02-20" 

 

# Import core genome SNP alignment as character vector 

ST1471_fasta <- readr::read_file("~/School/Pitt/VRE Thesis/Annotation and 

Alignment/VRE_ST1471_core_gene_alignment.fna") 

ST1471_fasta <- unlist(strsplit(ST1471_fasta, "\\n")) 

# ST1471_fasta <- stringr::str_remove(ST1471_fasta, "\\n") 

# ST1471_fasta <- ST1471_fasta[-length(ST1471_fasta)] 

 

head(ST1471_fasta) #print to verify 
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ST736_fasta <- readr::read_file("VRE_ST736_core_gene_alignment.fna") 

ST736_fasta <- unlist(strsplit(ST736_fasta, "\\n")) 

# ST736_fasta <- stringr::str_remove(ST736_fasta, "\\n") 

# ST736_fasta <- ST736_fasta[-length(ST736_fasta)] 

 

head(ST736_fasta) #print to verify 

 

# Rename Sequence IDs and export fasta file 

cat(stringr::str_replace_all(ST1471_fasta, fasta_rename),  

    file = "VRE_ST1471_core_gene_alignment.fna",  

    sep = "\n") 

 

cat(stringr::str_replace_all(ST736_fasta, fasta_rename),  

    file = "VRE_ST736_core_gene_alignment.fna",  

    sep = "\n") 

 

##########Example########## 

cat( 

  ">VRE32493", "AGCT", 

  ">VRE32503", "CAGT", 

  ">VRE32504", "TCAA", 

  file = "example.fasta", sep = "\n" 

) 

 

cat( 

  "SpecimenID|ST|Geographic Location|Source|CultDate", 

  "VRE32491|736|PUH - 10C|Blood|2016-12-07", 

  "VRE32493|1471|PUH - 10N|Tissue/Surgical|2016-12-08", 

  "VRE32503|1471|PUH - 11N|Wound|2017-01-05", 

  "VRE32504|1471|PUH - EMEP|Blood|2017-01-10", 

  "VRE32514|1471|PUH - 6F|Wound|2017-01-20", 

  file = "example.txt", sep = "\n" 

) 

# Read in from example.txt 

fasta_rename <- readr::read_file("example.txt") 

fasta_rename <- unlist(strsplit(fasta_rename, "\\r")) 

fasta_rename <- stringr::str_remove(fasta_rename[-1], "\\n") 

fasta_rename <- fasta_rename[-length(fasta_rename)] 

# Remove everything after first | to get the pattern to match off of 

patterns <- stringr::str_remove(fasta_rename, "\\|(.+)$") 

# Make replacement a named character vector in the form of pattern = replacement 

names(fasta_rename) <- patterns 

 

fasta_rename # print to verify 
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example_fasta <- readr::read_file("example.fasta") 

example_fasta <- unlist(strsplit(example_fasta, "\\r")) 

example_fasta <- stringr::str_remove(example_fasta, "\\n") 

example_fasta <- example_fasta[-length(example_fasta)] 

 

example_fasta #print to verify 

 

cat(stringr::str_replace_all(example_fasta, fasta_rename),  

    file = "example.fasta",  

    sep = "\n") 

Appendix D.2 Hierarchical Clustering 

library(cluster) 

library(dendextend) 

library(dplyr) 

 

## Import Data 

setwd("~/School/Pitt/VRE Thesis/data_for_arvon") 

ST1471 <- unlist(stringr::str_extract_all(list.files(), "VRE_ST1471.+matrix.+")) 

ST736 <- unlist(stringr::str_extract_all(list.files(), "VRE_ST736.+matrix.+")) 

 

ST1471_Matrices <- lapply(ST1471, data.table::fread, header = TRUE) 

ST736_Matrices <- lapply(ST736, data.table::fread, header = TRUE) 

 

names(ST1471_Matrices) <- ST1471 

names(ST736_Matrices) <- ST736 

DistMat <- function(x) { 

  # function to convert data.frame into dissimilarity matrix w/ first column as rownames 

  x <- as.dist(x[,-1]) 

  x <- as.matrix(x) 

  return(x) 

} 

 

rmFct_Gap <- function(x){ 

  # function to remove gaps in ordinal variables 

  x <- factor(x) # column as factors 

  x <- ordered(x, sort(as.numeric(levels(x)))) # reorder levels  

  levels(x) <- 1:length(levels(x)) # relevel 

  return(x) 

} 
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LinkClust <- function(dist, linkage, ...){ 

  # function to create a list of agnes clusters using multiple linkages 

  clustH <- lapply(linkage, function(x) agnes(dist,  

                                              method = x)) 

  names(clustH) <- linkage 

  return(clustH) 

} 

 

`%>%` <- magrittr::`%>%` 

 

Index <- function(x){ 

  # function to change rownames to 1:nrows 

  rownames(x) <- 1:nrow(x) 

  return(x) 

} 

 

# Create list of matrices 

ST1471_Matrices <- lapply(ST1471_Matrices, DistMat) 

ST736_Matrices <- lapply(ST736_Matrices, DistMat) 

# Convert matrices to dist class 

ST1471_Dist <- lapply(ST1471_Matrices, as.dist) 

ST736_Dist <- lapply(ST736_Matrices, as.dist) 

C1471 <- LinkClust(ST1471_Dist$VRE_ST1471_SNP_matrix_core.csv, 

                   linkage = c("single", "average", "ward")) 

C736 <- LinkClust(ST736_Dist$VRE_ST736_SNP_matrix_core.csv, 

                  linkage = c("single", "average", "ward")) 

 

 

 

# Height Threshold 

H <- 15 

 

# Get Isolate Clusters 

## We will cut at height 15 as was done in `find_clusters.py` 

S1471 <- 

as.data.frame(cbind(colnames(ST1471_Matrices$VRE_ST1471_SNP_matrix_core.csv),  

                             cutree(C1471$single %>%  

                                      cophenetic() %>%  

                                      agnes(method = "single"),  

                                    h = H))) 

S736 <- as.data.frame(cbind(colnames(ST736_Matrices$VRE_ST736_SNP_matrix_core.csv),  

                            cutree(C736$single %>%  

                                     cophenetic() %>%  
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                                     agnes(method = "single"), 

                                   h = H))) 

 

A1471 <- 

as.data.frame(cbind(colnames(ST1471_Matrices$VRE_ST1471_SNP_matrix_core.csv),  

                             cutree(C1471$average %>%  

                                      cophenetic() %>%  

                                      agnes(method = "average"),  

                                    h = H))) 

A736 <- as.data.frame(cbind(colnames(ST736_Matrices$VRE_ST736_SNP_matrix_core.csv),  

                            cutree(C736$average %>%  

                                     cophenetic() %>%  

                                     agnes(method = "average"), 

                                   h = H))) 

 

 

 

W1471 <- 

as.data.frame(cbind(colnames(ST1471_Matrices$VRE_ST1471_SNP_matrix_core.csv),  

                             cutree(C1471$ward %>%  

                                      cophenetic() %>%  

                                      agnes(method = "ward"),  

                                    h = H))) 

W736 <- as.data.frame(cbind(colnames(ST736_Matrices$VRE_ST736_SNP_matrix_core.csv),  

                            cutree(C736$ward %>%  

                                     cophenetic() %>%  

                                     agnes(method = "ward"), 

                                   h = H))) 

LETTERS702 <- c(LETTERS, sapply(LETTERS, function(x) paste0(x, LETTERS))) 

 

# Remove Clusters w/ single isolate 

## Generate vector of clusters w/ single isolate 

S1471 %>%  

  group_by(V2) %>%  

  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L1471 

 

S736 %>%  

  group_by(V2) %>%  

  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L736 
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## Removal 

S1471 %>%  

  Index() %>%  

  filter(V2 %in% L1471) -> S1471 

 

S736 %>%  

  Index() %>%  

  filter(V2 %in% L736) -> S736 

 

# Repeat for other linkage methods 

 

A1471 %>%  

  group_by(V2) %>%  

  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L1471 

 

A736 %>%  

  group_by(V2) %>%  

  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L736 

 

A1471 %>% 

  Index() %>% 

  filter(V2 %in% L1471) -> A1471 

 

 

 

A736 %>% 

  Index() %>% 

  filter(V2 %in% L736) -> A736 

 

W1471 %>%  

  group_by(V2) %>%  

  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L1471 

 

W736 %>%  

  group_by(V2) %>%  

  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L736 
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W1471 %>% 

  Index() %>% 

  filter(V2 %in% L1471) -> W1471 

 

W736 %>% 

  Index() %>% 

  filter(V2 %in% L736) -> W736 

 

# Label Clusters 

S1471$V2 <- rmFct_Gap(S1471$V2) 

S1471$V2 <- LETTERS702[as.numeric(S1471$V2)] 

 

 

S736$V2 <- rmFct_Gap(S736$V2) 

S736$V2 <- LETTERS702[as.numeric(S736$V2)] 

 

A1471$V2 <- rmFct_Gap(A1471$V2) 

A1471$V2 <- LETTERS702[as.numeric(A1471$V2)] 

 

A736$V2 <- rmFct_Gap(A736$V2) 

A736$V2 <- LETTERS702[as.numeric(A736$V2)] 

 

W1471$V2 <- rmFct_Gap(W1471$V2) 

W1471$V2 <- LETTERS702[as.numeric(W1471$V2)] 

 

W736$V2 <- rmFct_Gap(W736$V2) 

W736$V2 <- LETTERS702[as.numeric(W736$V2)] 

 

## Write Isolate Labels to .csv 

## Format VRE_[ST]_[Linkage]_[distance] 

 

# write.table(S1471, file = "./VRE_1471_Single_SNP.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 

# write.table(S736, file = "./VRE_736_Single_SNP.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 

#  

# write.table(A1471, file = "./VRE_1471_Average_SNP.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 

# write.table(A736, file = "./VRE_736_Average_SNP.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 

#  

#  

# write.table(W1471, file = "./VRE_1471_Ward_SNP.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 

# write.table(W736, file = "./VRE_736_Ward_SNP.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 
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C1471$single %>%  

  cophenetic() %>%  

  agnes(method = "single") %>%  

  as.dendrogram() -> DS1471 

C736$single %>%  

  cophenetic() %>%  

  agnes(method = "single") %>%  

  as.dendrogram() -> DS736 

C1471$average %>%  

  cophenetic() %>%  

  agnes(method = "average") %>%  

  as.dendrogram() -> DA1471 

C736$average %>%  

  cophenetic() %>%  

  agnes(method = "average") %>%  

  as.dendrogram() -> DA736 

C1471$ward %>%  

  cophenetic() %>%  

  agnes(method = "ward") %>%  

  as.dendrogram() -> DW1471 

C736$ward %>%  

  cophenetic() %>%  

  agnes(method = "ward") %>%  

  as.dendrogram() -> DW736 

 

tanglegram(dendlist(DS1471, DA1471), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Single", main_right = "Average", main = "ST1471 Linkage Comparison", 

cex_main = 1) 

 

tanglegram(dendlist(DS1471, DW1471), margin_inner = 0.5, common_subtrees_color_branches 

= TRUE,  

           main_left = "Single", main_right = "Ward", main = "ST1471 Linkage Comparison", 

cex_main = 1) 

 

tanglegram(dendlist(DA1471, DW1471), margin_inner = 0.5, common_subtrees_color_branches 

= TRUE,  

           main_left = "Average", main_right = "Ward", main = "ST1471 Linkage Comparison", 

cex_main = 1) 

tanglegram(dendlist(DS736, DA736), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Single", main_right = "Average", main = "ST736 Linkage Comparison", 

cex_main = 1) 
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tanglegram(dendlist(DS736, DW736), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Single", main_right = "Ward", main = "ST736 Linkage Comparison", 

cex_main = 1) 

 

tanglegram(dendlist(DA736, DW736), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Average", main_right = "Ward", main = "ST736 Linkage Comparison", 

cex_main = 1) 

 

library(corrplot) 

 

corrplot(cor.dendlist(dendlist("Single" = DS1471, "Average" = DA1471, "Ward" = DW1471)),  

         "pie", "lower", title = "ST1471 Correlation Matrix", mar = c(0, 0, 2,0), tl.pos = "d") 

 

corrplot(cor.dendlist(dendlist("Single" = DS736, "Average" = DA736, "Ward" = DW736)),  

         "pie", "lower", title = "ST736 Correlation Matrix", mar = c(0, 0, 2,0), tl.pos = "d") 

 

SA1471 <- cor_cophenetic(DS1471, DA1471) 

SW1471 <- cor_cophenetic(DS1471, DW1471) 

AW1471 <- cor_cophenetic(DA1471, DW1471) 

 

SA736 <- cor_cophenetic(DS736, DA736) 

SW736 <- cor_cophenetic(DS736, DW736) 

AW736 <- cor_cophenetic(DA736, DW736) 
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Appendix D.3 Dendrogram Visualization 

C1471$single %>%  

  cophenetic() %>%  

  agnes(method = "single") %>%  

  as.dendrogram() -> DS1471 

C736$single %>%  

  cophenetic() %>%  

  agnes(method = "single") %>%  

  as.dendrogram() -> DS736 

C1471$average %>%  

  cophenetic() %>%  

  agnes(method = "average") %>%  

  as.dendrogram() -> DA1471 

C736$average %>%  

  cophenetic() %>%  

  agnes(method = "average") %>%  

  as.dendrogram() -> DA736 

C1471$ward %>%  

  cophenetic() %>%  

  agnes(method = "ward") %>%  

  as.dendrogram() -> DW1471 

C736$ward %>%  

  cophenetic() %>%  

  agnes(method = "ward") %>%  

  as.dendrogram() -> DW736 

 

tanglegram(dendlist(DS1471, DA1471), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Single", main_right = "Average", main = "ST1471 Linkage Comparison", 

cex_main = 1) 

 

tanglegram(dendlist(DS1471, DW1471), margin_inner = 0.5, common_subtrees_color_branches 

= TRUE,  

           main_left = "Single", main_right = "Ward", main = "ST1471 Linkage Comparison", 

cex_main = 1) 

 

tanglegram(dendlist(DA1471, DW1471), margin_inner = 0.5, common_subtrees_color_branches 

= TRUE,  

           main_left = "Average", main_right = "Ward", main = "ST1471 Linkage Comparison", 

cex_main = 1) 

tanglegram(dendlist(DS736, DA736), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Single", main_right = "Average", main = "ST736 Linkage Comparison", 

cex_main = 1) 
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tanglegram(dendlist(DS736, DW736), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Single", main_right = "Ward", main = "ST736 Linkage Comparison", 

cex_main = 1) 

 

tanglegram(dendlist(DA736, DW736), margin_inner = 0.5, common_subtrees_color_branches = 

TRUE,  

           main_left = "Average", main_right = "Ward", main = "ST736 Linkage Comparison", 

cex_main = 1) 

library(corrplot) 

 

corrplot(cor.dendlist(dendlist("Single" = DS1471, "Average" = DA1471, "Ward" = DW1471)),  

         "pie", "lower", title = "ST1471 Correlation Matrix") 

 

corrplot(cor.dendlist(dendlist("Single" = DS736, "Average" = DA736, "Ward" = DW736)),  

         "pie", "lower", title = "ST736 Correlation Matrix") 

 

SA1471 <- cor_cophenetic(DS1471, DA1471) 

SW1471 <- cor_cophenetic(DS1471, DW1471) 

AW1471 <- cor_cophenetic(DA1471, DW1471) 

 

SA736 <- cor_cophenetic(DS736, DA736) 

SW736 <- cor_cophenetic(DS736, DW736) 

AW736 <- cor_cophenetic(DA736, DW736) 

 

Appendix D.4 Bayesian Clustering 

setwd("~/School/Pitt/VRE Thesis/data_for_arvon") 

 

# Custom Functions 

Index <- function(x){ 

  # function to change rownames to 1:nrows 

  rownames(x) <- 1:nrow(x) 

  return(x) 

} 

 

rmFct_Gap <- function(x){ 

  # function to remove gaps in ordinal variables 

  x <- factor(x) # column as factors 
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  x <- ordered(x, sort(as.numeric(levels(x)))) # reorder levels  

  levels(x) <- 1:length(levels(x)) # relevel 

  return(x) 

} 

 

# Import Newick tree files as dendrogram class object 

ST1471_Tree <- phylogram::read.dendrogram("~/School/Pitt/VRE 

Thesis/XML/ST1471_Export.tree") 

ST736_Tree <- phylogram::read.dendrogram("~/School/Pitt/VRE 

Thesis/XML/ST736_Export.tree") 

 

# cut dendrograms at height 15 

H <- 15 

 

# Get isolate clusters 

C1471 <- as.data.frame(dendextend::cutree(ST1471_Tree, H)) 

C736 <- as.data.frame(dendextend::cutree(ST736_Tree, H)) 

 

# Remove row and column names 

C1471 <- cbind(row.names(C1471), C1471) 

C736 <- cbind(row.names(C736), C736) 

 

rownames(C1471) <- c() 

rownames(C736) <- c() 

 

colnames(C1471) <- c("V1", "V2") 

colnames(C736) <- c("V1", "V2") 

 

# Truncate Sample ID names 

C1471[, 1] <- stringr::str_remove(C1471[, 1], "\\|.*") 

C736[, 1] <- stringr::str_remove(C736[, 1], "\\|.*") 

 

# Create alphabetic cluster labels 

LETTERS702 <- c(LETTERS, sapply(LETTERS, function(x) paste0(x, LETTERS))) 

 

# Remove Clusters w/ single isolate 

## Generate vector of clusters w/ single isolate 

library(dplyr) 

C1471 %>%  

group_by(V2) %>%  

  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L1471 

 

C736 %>%  

  group_by(V2) %>%  
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  tally() %>%  

  filter(n > 1) %>% select(V2) %>%  

  unlist() -> L736 

 

## Removal 

C1471 %>%  

  Index() %>%  

  filter(V2 %in% L1471) -> C1471 

 

C736 %>%  

  Index() %>%  

  filter(V2 %in% L736) -> C736 

 

# Label clusters 

C1471$V2 <- rmFct_Gap(C1471$V2) 

C1471$V2 <- LETTERS702[as.numeric(C1471$V2)] 

 

C736$V2 <- rmFct_Gap(C736$V2) 

C736$V2 <- LETTERS702[as.numeric(C736$V2)] 

 

## Write Isolate Labels to .csv 

## Format VRE_[ST]_MASCOT 

 

# write.table(C1471, file = "./VRE_1471_MASCOT.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 

# write.table(C736, file = "./VRE_736_MASCOT.csv", 

#             quote = FALSE, row.names = FALSE, col.names = FALSE, sep = ",") 

 

Appendix D.5 Adjusted Rand Index Calculation 

library(dplyr) 

library(gt) 

 

# Import metadata 

setwd("~/School/Pitt/VRE Thesis/data_for_arvon/736 and 1471") 

metadf <- read.csv("~/School/Pitt/VRE Thesis/data_for_arvon/VRE_Metadata_Filtered.csv") 

%>%  

  select(SpecimenID, ST) 

metadf$Truth <- rep(NA_character_, nrow(metadf)) 

# metadf$Average <- rep(NA_character_, nrow(metadf)) 
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# metadf$Ward <- rep(NA_character_, nrow(metadf)) 

 

# Import Ground Truth clusters 

Clusters <- lapply(list.files()[-1], xlsx::read.xlsx, sheetIndex = 1) 

names(Clusters) <- list.files()[-1] 

 

# Label Ground Truth isolates 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471D.xlsx$SpecimenID] <- "D" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471G.xlsx$SpecimenID] <- "G" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471I.xlsx$SpecimenID] <- "I" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471K.xlsx$SpecimenID] <- "K" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471L.xlsx$SpecimenID] <- "L" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471M.xlsx$SpecimenID] <- "M" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471N.xlsx$SpecimenID] <- "N" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471O.xlsx$SpecimenID] <- "O" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471P.xlsx$SpecimenID] <- "P" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST1471Q.xlsx$SpecimenID] <- "Q" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736A.xlsx$SpecimenID] <- "A" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736B.xlsx$SpecimenID] <- "B" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736C.xlsx$SpecimenID] <- "C" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736D.xlsx$SpecimenID] <- "D" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736E.xlsx$SpecimenID] <- "E" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736F.xlsx$SpecimenID] <- "F" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736I.xlsx$SpecimenID] <- "I" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736J.xlsx$SpecimenID] <- "J" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736K.xlsx$SpecimenID] <- "K" 

metadf$Truth[metadf$SpecimenID %in% Clusters$VRE_ST736L.xlsx$SpecimenID] <- "L" 

 

setwd("E:/School/Pitt/VRE Thesis/data_for_arvon") 

# list of all SNP linkage clusters 

Linkages <- lapply(unlist(stringr::str_extract_all(list.files(), ".*SNP.csv$")), 

                   read.csv, header = F) 

 

names(Linkages) <- unlist(stringr::str_extract_all(list.files(), ".*SNP.csv$")) 

 

# list of all MASCOT 

Bayesians <- lapply(unlist(stringr::str_extract_all(list.files(), ".*MASCOT.csv$")), 

                    read.csv, header = F) 

names(Bayesians) <- unlist(stringr::str_extract_all(list.files(), ".*MASCOT.csv$")) 

 

# join cluster labels for each linkage to metadata 

metadf <- left_join(metadf, Linkages$VRE_1471_Average_SNP.csv, by = c("SpecimenID" = 

"V1")) 

metadf <- left_join(metadf, Linkages$VRE_736_Average_SNP.csv, by = c("SpecimenID" = 

"V1")) 

metadf <- left_join(metadf, Linkages$VRE_1471_Ward_SNP.csv, by = c("SpecimenID" = "V1")) 
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metadf <- left_join(metadf, Linkages$VRE_736_Ward_SNP.csv, by = c("SpecimenID" = "V1")) 

metadf <- left_join(metadf, Bayesians$VRE_1471_MASCOT.csv, by = c("SpecimenID" = "V1")) 

metadf <- left_join(metadf, Bayesians$VRE_736_MASCOT.csv, by = c("SpecimenID" = "V1")) 

 

# merge linkage columns 

metadf <- metadf %>%  

  mutate(Average = coalesce(V2.x, V2.y),  

         Ward = coalesce(V2.x.x, V2.y.y),  

         Bayes = coalesce(V2.x.x.x, V2.y.y.y)) %>%  

  select(SpecimenID, ST, Truth, Average, Ward, Bayes) 

 

# Create list of AllPossibleRoutes for each cluster 

GT <- lapply(list.files("~/School/Pitt/VRE Thesis/data_for_arvon/736 and 1471/736 and 1471"),  

             function(x) readxl::read_xlsx(path = paste0("~/School/Pitt/VRE 

Thesis/data_for_arvon/736 and 1471/736 and 1471/", 

                                                       x),  

                                         sheet = "AllPossibleRoutes")) 

names(GT) <- list.files("~/School/Pitt/VRE Thesis/data_for_arvon/736 and 1471/736 and 1471") 

 

AVG <- lapply(unlist(stringr::str_extract_all(list.files("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_Results_06182021"), 

                                              "VRE_[[:digit:]]*_Average_SNP.*")),  

              function(x) readxl::read_xlsx(path = paste0("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_Results_06182021/",x),  

                                            sheet = "AllPossibleRoutes")) 

names(AVG) <- unlist(stringr::str_extract_all(list.files("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_Results_06182021"), 

                                              "VRE_[[:digit:]]*_Average_SNP.*")) 

 

WARD <- lapply(unlist(stringr::str_extract_all(list.files("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_Results_06182021"), 

                                               "VRE_[[:digit:]]*_Ward_SNP.*")),  

               function(x) readxl::read_xlsx(path = paste0("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_Results_06182021/",x),  

                                             sheet = "AllPossibleRoutes")) 

names(WARD) <- unlist(stringr::str_extract_all(list.files("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_Results_06182021"), 

                                               "VRE_[[:digit:]]*_Ward_SNP.*")) 

 

BAYES <- lapply(unlist(stringr::str_extract_all(list.files("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_12042021"), 

                                                   "VRE_[[:digit:]]*_MASCOT.*")),  

                   function(x) readxl::read_xlsx(path = paste0("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_12042021/",x),  

                                                 sheet = "AllPossibleRoutes")) 
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names(BAYES) <- unlist(stringr::str_extract_all(list.files("~/School/Pitt/VRE Thesis/EDS-

HAT_VRE_Clusters_12042021"), 

                                                   "VRE_[[:digit:]]*_MASCOT.*")) 

 

# Filter list to include only 'UNIT' Type and then arrange by Rank 

GT <- lapply(GT, function(x) dplyr::filter(x, Type == 'UNIT') %>%  

               dplyr::arrange(Rank) %>%  

               dplyr::select(Route, Rank)) 

AVG <- lapply(AVG, function(x) dplyr::filter(x, Type == 'UNIT') %>%  

                dplyr::arrange(Rank) %>%  

                dplyr::select(Route, Rank)) 

WARD <- lapply(WARD, function(x) dplyr::filter(x, Type == 'UNIT') %>%  

                 dplyr::arrange(Rank) %>%  

                 dplyr::select(Route, Rank)) 

BAYES <- lapply(BAYES, function(x) dplyr::filter(x, Type == 'UNIT') %>%  

                  dplyr::arrange(Rank) %>%  

                  dplyr::select(Route, Rank)) 

 

# Identify Geographic Locations for Ground Truth Clusters 

 

metadf$Truth[which(metadf$Truth == "A" & metadf$ST == 1471)] <- NA_character_ # 

VRE33105 and VRE33096 are from same patient 

metadf$Truth[which(metadf$Truth == "D" & metadf$ST == 1471)] <- "12D" 

metadf$Truth[which(metadf$Truth == "G" & metadf$ST == 1471)] <- "5S" 

metadf$Truth[which(metadf$Truth == "I" & metadf$ST == 1471)] <- "5D" 

metadf$Truth[which(metadf$Truth == "K" & metadf$ST == 1471)] <- NA_character_ 

metadf$Truth[which(metadf$Truth == "L" & metadf$ST == 1471)] <- "CT11" 

metadf$Truth[which(metadf$Truth == "M" & metadf$ST == 1471)] <- "RLTA" 

metadf$Truth[which(metadf$Truth == "N" & metadf$ST == 1471)] <- NA_character_ 

metadf$Truth[which(metadf$Truth == "O" & metadf$ST == 1471)] <- "5S" 

metadf$Truth[which(metadf$Truth == "P" & metadf$ST == 1471)] <- "10G" 

metadf$Truth[which(metadf$Truth == "Q" & metadf$ST == 1471)] <- NA_character_ 

metadf$Truth[which(metadf$Truth == "A" & metadf$ST == 736)] <- "12S" 

metadf$Truth[which(metadf$Truth == "B" & metadf$ST == 736)] <- "7G" 

metadf$Truth[which(metadf$Truth == "C" & metadf$ST == 736)] <- "3E" 

metadf$Truth[which(metadf$Truth == "D" & metadf$ST == 736)] <- "12N" 

metadf$Truth[which(metadf$Truth == "E" & metadf$ST == 736)] <- NA_character_ 

metadf$Truth[which(metadf$Truth == "F" & metadf$ST == 736)] <- "CT10" 

metadf$Truth[which(metadf$Truth == "I" & metadf$ST == 736)] <- "10G" 

metadf$Truth[which(metadf$Truth == "J" & metadf$ST == 736)] <- "11N" 

metadf$Truth[which(metadf$Truth == "K" & metadf$ST == 736)] <- NA_character_ 

metadf$Truth[which(metadf$Truth == "L" & metadf$ST == 736)] <- "CT11" 

 

# Identify Geographic Locations for Average Clusters 

metadf$Average[which(metadf$Average == "A" & metadf$ST == 1471)] <- "RHAB" 

metadf$Average[which(metadf$Average == "B" & metadf$ST == 1471)] <- "5S" 
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metadf$Average[which(metadf$Average == "C" & metadf$ST == 1471)] <- "SICU" 

metadf$Average[which(metadf$Average == "D" & metadf$ST == 1471)] <- "5D" 

metadf$Average[which(metadf$Average == "E" & metadf$ST == 1471)] <- NA_character_ 

metadf$Average[which(metadf$Average == "F" & metadf$ST == 1471)] <- "CT10" 

metadf$Average[which(metadf$Average == "G" & metadf$ST == 1471)] <- NA_character_ 

metadf$Average[which(metadf$Average == "H" & metadf$ST == 1471)] <- NA_character_ 

metadf$Average[which(metadf$Average == "I" & metadf$ST == 1471)] <- NA_character_ 

metadf$Average[which(metadf$Average == "J" & metadf$ST == 1471)] <- "5D" 

metadf$Average[which(metadf$Average == "K" & metadf$ST == 1471)] <- NA_character_ 

metadf$Average[which(metadf$Average == "L" & metadf$ST == 1471)] <- "5S" 

metadf$Average[which(metadf$Average == "M" & metadf$ST == 1471)] <- "RLTA" 

metadf$Average[which(metadf$Average == "N" & metadf$ST == 1471)] <- "CT11" 

metadf$Average[which(metadf$Average == "O" & metadf$ST == 1471)] <- NA_character_ 

metadf$Average[which(metadf$Average == "P" & metadf$ST == 1471)] <- "CT11" 

metadf$Average[which(metadf$Average == "A" & metadf$ST == 736)] <- "5D" 

metadf$Average[which(metadf$Average == "B" & metadf$ST == 736)] <- "RLTA" 

metadf$Average[which(metadf$Average == "C" & metadf$ST == 736)] <- NA_character_ 

metadf$Average[which(metadf$Average == "D" & metadf$ST == 736)] <- "CT10" 

metadf$Average[which(metadf$Average == "E" & metadf$ST == 736)] <- NA_character_ 

metadf$Average[which(metadf$Average == "F" & metadf$ST == 736)] <- "REDH" 

metadf$Average[which(metadf$Average == "G" & metadf$ST == 736)] <- "12S" 

metadf$Average[which(metadf$Average == "H" & metadf$ST == 736)] <- "10G" 

metadf$Average[which(metadf$Average == "I" & metadf$ST == 736)] <- "5S" 

metadf$Average[which(metadf$Average == "J" & metadf$ST == 736)] <- NA_character_ 

metadf$Average[which(metadf$Average == "K" & metadf$ST == 736)] <- NA_character_ 

metadf$Average[which(metadf$Average == "L" & metadf$ST == 736)] <- "12N" 

metadf$Average[which(metadf$Average == "M" & metadf$ST == 736)] <- "CT11" 

metadf$Average[which(metadf$Average == "N" & metadf$ST == 736)] <- "SICU" 

metadf$Average[which(metadf$Average == "O" & metadf$ST == 736)] <- "6GF" 

metadf$Average[which(metadf$Average == "P" & metadf$ST == 736)] <- NA_character_ 

 

# Identify Geographic Locations for Ward Clusters 

metadf$Ward[which(metadf$Ward == "A" & metadf$ST == 1471)] <- "12N" 

metadf$Ward[which(metadf$Ward == "B" & metadf$ST == 1471)] <- "11N" 

metadf$Ward[which(metadf$Ward == "C" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "D" & metadf$ST == 1471)] <- "RLTA" 

metadf$Ward[which(metadf$Ward == "E" & metadf$ST == 1471)] <- "5S" 

metadf$Ward[which(metadf$Ward == "F" & metadf$ST == 1471)] <- "SICU" 

metadf$Ward[which(metadf$Ward == "G" & metadf$ST == 1471)] <- "10G" 

metadf$Ward[which(metadf$Ward == "H" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "I" & metadf$ST == 1471)] <- "7G" 

metadf$Ward[which(metadf$Ward == "J" & metadf$ST == 1471)] <- "RHAB" 

metadf$Ward[which(metadf$Ward == "K" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "L" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "M" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "N" & metadf$ST == 1471)] <- NA_character_ 
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metadf$Ward[which(metadf$Ward == "O" & metadf$ST == 1471)] <- "5D" 

metadf$Ward[which(metadf$Ward == "P" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "Q" & metadf$ST == 1471)] <- "5S" 

metadf$Ward[which(metadf$Ward == "R" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "S" & metadf$ST == 1471)] <- "RLTA" 

metadf$Ward[which(metadf$Ward == "T" & metadf$ST == 1471)] <- "CT11" 

metadf$Ward[which(metadf$Ward == "U" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "V" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "W" & metadf$ST == 1471)] <- "CT11" 

metadf$Ward[which(metadf$Ward == "X" & metadf$ST == 1471)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "A" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "B" & metadf$ST == 736)] <- "RHAB" 

metadf$Ward[which(metadf$Ward == "C" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "D" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "E" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "F" & metadf$ST == 736)] <- "RHAB" 

metadf$Ward[which(metadf$Ward == "G" & metadf$ST == 736)] <- "9F" 

metadf$Ward[which(metadf$Ward == "H" & metadf$ST == 736)] <- "10G" 

metadf$Ward[which(metadf$Ward == "I" & metadf$ST == 736)] <- "5S" 

metadf$Ward[which(metadf$Ward == "J" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "K" & metadf$ST == 736)] <- "12S" 

metadf$Ward[which(metadf$Ward == "L" & metadf$ST == 736)] <- "RLTA" 

metadf$Ward[which(metadf$Ward == "M" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "N" & metadf$ST == 736)] <- "CT11" 

metadf$Ward[which(metadf$Ward == "O" & metadf$ST == 736)] <- "3E" 

metadf$Ward[which(metadf$Ward == "P" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "Q" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "R" & metadf$ST == 736)] <- "12N" 

metadf$Ward[which(metadf$Ward == "S" & metadf$ST == 736)] <- "REDH" 

metadf$Ward[which(metadf$Ward == "T" & metadf$ST == 736)] <- "CT11" 

metadf$Ward[which(metadf$Ward == "U" & metadf$ST == 736)] <- NA_character_ 

metadf$Ward[which(metadf$Ward == "V" & metadf$ST == 736)] <- "6GF" 

metadf$Ward[which(metadf$Ward == "W" & metadf$ST == 736)] <- "6GF" 

metadf$Ward[which(metadf$Ward == "X" & metadf$ST == 736)] <- NA_character_ 

 

# Identify Geographic Locations for Bayesian Clusters 

metadf$Bayes[which(metadf$Bayes == "A" & metadf$ST == 1471)] <- "RHAB" 

metadf$Bayes[which(metadf$Bayes == "B" & metadf$ST == 1471)] <- "RHAB" 

metadf$Bayes[which(metadf$Bayes == "C" & metadf$ST == 1471)] <- "REDH" 

metadf$Bayes[which(metadf$Bayes == "D" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "E" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "F" & metadf$ST == 1471)] <- "CT11" 

metadf$Bayes[which(metadf$Bayes == "G" & metadf$ST == 1471)] <- "RLTA" 

metadf$Bayes[which(metadf$Bayes == "H" & metadf$ST == 1471)] <- "REDH" 

metadf$Bayes[which(metadf$Bayes == "I" & metadf$ST == 1471)] <- "10G" 

metadf$Bayes[which(metadf$Bayes == "J" & metadf$ST == 1471)] <- "RLTA" 
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metadf$Bayes[which(metadf$Bayes == "K" & metadf$ST == 1471)] <- "11S" 

metadf$Bayes[which(metadf$Bayes == "L" & metadf$ST == 1471)] <- "RLTA" 

metadf$Bayes[which(metadf$Bayes == "M" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "N" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "O" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "P" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "Q" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "R" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "S" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "T" & metadf$ST == 1471)] <- "9D" 

metadf$Bayes[which(metadf$Bayes == "U" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "V" & metadf$ST == 1471)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "A" & metadf$ST == 736)] <- "12N" 

metadf$Bayes[which(metadf$Bayes == "B" & metadf$ST == 736)] <- "3E" 

metadf$Bayes[which(metadf$Bayes == "C" & metadf$ST == 736)] <- "12S" 

metadf$Bayes[which(metadf$Bayes == "D" & metadf$ST == 736)] <- "12S" 

metadf$Bayes[which(metadf$Bayes == "E" & metadf$ST == 736)] <- "10C" 

metadf$Bayes[which(metadf$Bayes == "F" & metadf$ST == 736)] <- NA_character_ 

metadf$Bayes[which(metadf$Bayes == "G" & metadf$ST == 736)] <- "RLTA" 

metadf$Bayes[which(metadf$Bayes == "H" & metadf$ST == 736)] <- "5S" 

metadf$Bayes[which(metadf$Bayes == "I" & metadf$ST == 736)] <- "CT11" 

metadf$Bayes[which(metadf$Bayes == "J" & metadf$ST == 736)] <- "6GF" 

metadf$Bayes[which(metadf$Bayes == "K" & metadf$ST == 736)] <- "REDH" 

metadf$Bayes[which(metadf$Bayes == "L" & metadf$ST == 736)] <- "REDH" 

metadf$Bayes[which(metadf$Bayes == "M" & metadf$ST == 736)] <- "11S" 

metadf$Bayes[which(metadf$Bayes == "N" & metadf$ST == 736)] <- "9D" 

metadf$Bayes[which(metadf$Bayes == "O" & metadf$ST == 736)] <- "10G" 

 

# 0.4010779 

mclust::adjustedRandIndex(metadf_ST736$Truth, metadf_ST736$Bayes) 

# 0.5694458 

mclust::adjustedRandIndex(metadf_ST1471$Truth, metadf_ST1471$Average) 

# 1 

mclust::adjustedRandIndex(metadf_ST1471$Truth, metadf_ST1471$Ward) 

# 0.4808493 

mclust::adjustedRandIndex(metadf_ST1471$Truth, metadf_ST1471$Bayes) 

# 0.3017723 

 

# Calculation proportion of of matching classes 

length(which(metadf_ST736$Truth == metadf_ST736$Average)) / nrow(metadf_ST736) 

# 0.5132743 

length(which(metadf_ST736$Truth == metadf_ST736$Ward)) / nrow(metadf_ST736) 

# 0.380531 

length(which(metadf_ST736$Truth == metadf_ST736$Bayes)) / nrow(metadf_ST736) 

# 0.2566372 

length(which(metadf_ST1471$Truth == metadf_ST1471$Average)) / nrow(metadf_ST1471) 
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# 0.8108108 

length(which(metadf_ST1471$Truth == metadf_ST1471$Ward)) / nrow(metadf_ST1471) 

# 0.3243243 

length(which(metadf_ST1471$Truth == metadf_ST1471$Bayes)) / nrow(metadf_ST1471) 

# 0.1351351 

metadf$Bayes[which(metadf$Bayes == "P" & metadf$ST == 736)] <- NA_character_ 

 

# Write new sheet to .xlsx file 

# xlsx::write.xlsx(metadf,  

#                  file = "~/School/Pitt/VRE Thesis/data_for_arvon/VRE_Metadata_Filtered.xlsx",  

#                  sheetName = "SNP_Cluster_Results",  

#                  append = T, 

#                  row.names = F) 

 

# Tidy-up 'metadf' labels 

metadf <- metadf %>% mutate(across(Truth:Bayes, stringr::str_replace_na, "UNKNOWN")) 

metadf <- metadf %>% mutate(across(ST:Bayes, as.factor)) 

Labels <- c(levels(metadf$Truth), levels(metadf$Average), levels(metadf$Ward), 

levels(metadf$Bayes)) %>% unique() 

metadf <- metadf %>% mutate(across(Truth:Bayes, forcats::fct_expand, Labels)) 

metadf <- metadf %>% mutate(across(Truth:Bayes, factor, Labels)) 

 

# Split 'metadf' by ST type 

metadf_ST736 <- metadf %>% filter(ST == 736) 

metadf_ST1471 <- metadf %>% filter(ST == 1471) 

 

# Remove isolates w/ "UNKNOWN" geographic location in GT 

metadf_ST736 <- metadf_ST736 %>% filter(Truth != "UNKNOWN") 

metadf_ST1471 <- metadf_ST1471 %>% filter(Truth != "UNKNOWN") 

 

# Calculate Adjusted Rand Index 

mclust::adjustedRandIndex(metadf_ST736$Truth, metadf_ST736$Average) 

# 0.963843 

mclust::adjustedRandIndex(metadf_ST736$Truth, metadf_ST736$Ward) 
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Appendix E Cluster Classification 

 

Appendix Figure 5 https://d-scholarship.pitt.edu/42864/1/Cluster_Classification.png 
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