Appendix A: R Markdown for Investigation into Chronic Disease and Medicine Adherence in the Soifua Manuia (Good Health) Study

Samantha Pettersen
April 28, 2022, 17:27

Contents

1 Loading Needed Libraries and Data 1
 1.1 Creation of Subset of Chronic Disease 2
 1.2 Merge diagnostic data with health interview data. 3
 1.3 Check flags. 4
 1.4 Loop to pull diagnoses of participants 6

2 Adherence 8
 2.1 Generate Diagnosis-Specific Non/Compliant Data Frames 8
 2.2 Fully compliant vs. partially compliant vs. non-compliant. 10

3 Demographics of chronic disease sample. 15
 3.1 Sex 15
 3.2 Reasons for Stopping Medication 17
 3.3 Age 18
 3.4 Education 20
 3.5 Occupation 21
 3.6 Years since Diagnosis 22
 3.7 Census Region 23
 3.8 Self reported health 24
 3.9 Use of Traditional Methods for Disease Treatment 25

4 Session Info 25

This markdown outlines the work for “Investigation of Medicine Adherence in the Samoan Population” (MPH Essay, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 2022). The focus of this work is describing trends in the data as they relate to demographics of Soifua Manuia research participants who have one or more of the following chronic diseases—heart disease, hypertension, and high cholesterol—and their use of medicine to treat their diagnosed disease(s). (Non)adherence/(non)compliance used interchangeably throughout to indicate current use of medication for doc dx of corresponding disease.

Wrap long lines of code.

```r
knitr::opts_chunk$set(tidy.opts = list(width.cutoff = 60), tidy = TRUE)
```

1 Loading Needed Libraries and Data

Demographic and Health Interview data was used in this project.
uploading libraries
library(readxl)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union

Path to main directories:
/home/shared_data/samoa/2018_Samoa_Phenotypes/2017-2019_Adiposity_Study_Data_Files

Demographic data: /Demographic_Data/Soifua Manuia
Demographic Data December 21 2019.xlsx Health interview
data: /Health_Interview/Soifua Manuia Health Interview Data February 14 2020.xlsx

demographicdata <- read_xlsx(path = "/home/shared_data/samoa/2018_Samoa_Phenotypes/2017-2019_Adiposity_Study_Data_Files/Demographic_Data/Soifua Manuia Demographic Data December 21 2019.xlsx",
col_names = TRUE)
Helint <- read_xlsx(path = "/home/shared_data/samoa/2018_Samoa_Phenotypes/2017-2019_Adiposity_Study_Data_Files/Health_Interview/Soifua Manuia Health Interview Data February 14 2020.xlsx",
col_names = TRUE)

1.1 Creation of Subset of Chronic Disease

Identify which diagnoses have NAs.

table(is.na(Helint$chol_diag_doc))

FALSE TRUE
517 2

table(is.na(Helint$htn_diag_doc))

FALSE
519

table(is.na(Helint$heartdisease_doc_diag))

FALSE TRUE
517 2

Cholesterol and heart disease each have 2 participants
who are NA for doctor dx.
Helint[which(is.na(Helint$chol_diag_doc)), 1]

A tibble: 2 x 1
IDNumber
<dbl>
1 310
2 3210

Participants 310 and 3210 are NA for cholesterol dz.
Helint[which(is.na(Helint$heartdisease_doc_diag)), 1]

A tibble: 2 x 1
IDNumber
<dbl>
1 310
2 1797

Participants 310 and 1797 are NA for heart disease dz.

Create values to prevent NA being introduced into
dataframes usin %in% instead of 'df$col=='.

yes <- 1
no <- 0

Diagnostics dataframe (create df that has participants
with chronic disease of interest.)

diag <- Helint[Helint$chol_diag_doc %in% yes | Helint$htn_diag_doc %in%
yes | Helint$heartdisease_doc_diag %in% yes,]

range(diag$IDNumber, na.rm = F)

[1] 194 3471

double check the dimensions
dim(diag)

[1] 103 79

There are 103 participants who have one or more of htn,
high cholesterol, or heart disease.

1.2 Merge diagnostic data with health interview data.

diag_demo <- merge(x = diag, y = demographicdata, by.x = "IDNumber",
by.y = "IDNumber", all.x = TRUE, all.y = FALSE)

Check the dataset dimensions.
dim(diag_demo)

[1] 103 94
colnames(diag_demo)

[1] "IDNumber" "htn_diag_doc"
[2] "HTN_diagnosis_flag" "years_htn_diagnosed"
[3] "current_meds_htn" "meds_list_htn"
[4] "htn_med_flag" "years_htn_meds"
[5] "past_htn_med" "list_past_htn_meds"
1.3 Check flags.

```r
table(diag_demo$ID_Flag, useNA = "always")
```

```
## 0 <NA> 103 0
```

Hypertension (HTN_diagnosis_flag) DX Flag definitions
from code book: 0 = No flag 1 = Participant responded
"no" to having ever been diagnosed with hypertension in 2017-19 but reported a diagnosis in 2010. 2 = Participant did not report a hypertension diagnosis in 2010, but 2017-19 response to years since diagnosis is prior to 2010. For this variable, flag =0 or =2 not issue (diseases can progress), but =1 may be problematic.

```r
table(diag_demo$HTN_diagnosis_flag, useNA = "always")
```

```
##
##  0  1  2 <NA>
## 84  1 18  0
```

```
diag_demo[which(diag_demo$HTN_diagnosis_flag == 1), 1]  # Participant 2779 has flag for HTN dx.
```

```
## [1] 2779
```

Meds (htn_med_flag) Ignore this flag. Participants in this group report doctor dx of htn and this work not looking at DN.

Heart disease DX (heartdisease_diagnosis_flag) 0 = No flag 1 = Participant responded "no" to having ever been diagnosed with hypertension in 2017-19 but reported a diagnosis in 2010. 2 = Participant did not report a hypertension diagnosis in 2010, but 2017-19 response to years since diagnosis is prior to 2010. 3 = Participant reports diagnosis prior to 2010 & medication reported not used to treat heart disease. For this variable, flag =0, =2, or =3 is not issue (diseases can progress), but =1 may be problematic.

```r
table(diag_demo$heartdisease_diagnosis_flag, useNA = "always")
```

```
##
##  0  1  2  3 <NA>
## 98  1  2  1  1
```

```
diag_demo[which(diag_demo$heartdisease_diagnosis_flag == 1), 1]  # Participant 399 has flag for heart disease dx.
```

```
## [1] 399
```

Cholesterol has no flag variables.

Participants 2779 and 399 have other doctor dx (confirm below) than what they have flags for. Retain these participants in analyses and make note in discussion re: lack of consistency/recall bias for doctor dx of diseases.

doc_dx columns htn: 2, $htn_diag_doc heart disease: 23, $heartdisease_doc_diag cholesterol: 52, $chol_diag_doc

```
diag_demo[which(diag_demo$IDNumber == 2779), c(1, 2, 23, 52)]
```

```
## IDNumber htn_diag_doc heartdisease_doc_diag chol_diag_doc
## 5
```
1.4 Loop to pull diagnoses of participants

This will determine how many people have how many diseases and what diseases people have.

Jon Chernus helped in development of this code.

diag_demo <- as.data.frame(diag_demo)

dim(diag_demo)

[1] 103 94

103 rows in this df indicating 103 unique people with at least 1 diagnosis (of hypertension, heart disease, and high cholesterol). This is the 'chronic disease sample'.

First make a vector of the column names we want, sorted alphabetically. This is just to avoid having to keep typing the column names.

dx_cols <- sort(grep(pattern = "doc", x = names(diag_demo), value = TRUE))

This will pull dx names, the 3 we're interested in as well as DM.

dx_cols

[1] "chol_diag_doc" "dm_diag_doc" "heartdisease_doc_diag"
[4] "htn_diag_doc"

Drop DM from list.

dx_cols <- dx_cols[!dx_cols %in% c("dm_diag_doc")]

Confirm that worked.

dx_cols

[1] "chol_diag_doc" "heartdisease_doc_diag" "htn_diag_doc"

First let's break down 'diag_demo' according to number of diagnoses. Make a column that counts up the number of diagnoses (0, 1, 2, or 3) No one should have 0 diagnoses, but will be good to check. Make a table that shows how many people have 0, 1, 2, or 3 diagnoses. Note that since our initial filtering to create diag might've captured people with NAs in their diagnosis variables, it's possible we picked up some people with NA in one or more (or even all 4) categories The NAs get counted as '0' in the sum here (i.e, the sum of the number of diagnoses) (# This should be participants 310,1797, and 3210.)
Create column that indicates n dx for each participant.
diag_demo$n_diag <- apply(diag_demo[, dx_cols], 1, function(x) {
 sum(x, na.rm = TRUE)
})
table(diag_demo$n_diag, useNA = "always")

##
1 2 3 <NA>
91 11 1 0

Abbreviate the dx names.
dx_cols

[1] "chol_diag_doc" "heartdisease_doc_diag" "htn_diag_doc"

dxs_short <- c("CL", "HD", "HT")

It would be nice to create a single column that
summarizes exactly which diagnoses an individual has.
This will be easier to summarize than having the data
spread over 4 columns it currently is. Let's create a
function to do that... First, make some abbreviations
(HD=heart disease, HT=hypertension, CL=high cholesterol)
Define a function paste_dx, which will be applied to each
row (person) in diag_demo

This is how you set up any function. The argument, x,
will represent a row from diag_demo (i.e., a horizontal
'slice' of the data from one person)
paste_dx <- function(x) {

 # Pull put the diagnosis (0 or 1) for each of the 4
 # conditions Store the 0 or 1 for the person's status
 # for each disease in a variable
dx_cl <- x[dx_cols[1]]
dx_hd <- x[dx_cols[2]]
dx_ht <- x[dx_cols[3]]

 # Put the Os/Is together in a vector, treating 0 as
 # FALSE and 1 as TRUE Notice that the order matches the
 # order in the vector of abbreviations we made earlier,
 # dxs_short Replace NA with 0 here
diagnoses_indices <- as.logical(c(dx_cl, dx_hd, dx_ht))
diagnoses_indices[is.na(diagnoses_indices)] <- FALSE

 # For the diagnoses the person has, take their
 # abbreviations and stitch them together into one a
 # single 'word'
diagnosis_short <- paste0(dxs_short[diagnoses_indices], collapse = "_")

 # So for a person with chol_diag_doc==1,
 # htn_diag_doc==0, heartdisease_doc_diag==0, and
 # dm_diag_doc==1, The function will return the string
 # 'DM_CL', meaning they had 2 diagnoses, namely

```
# diabetes and high cholesterol
return(diagnosis_short)
} # This is the end of the function

# Use the 'apply' function to apply the paste_dx function
# to each row (MARGIN=1) of the data (diag_demo) Store the
# result (each person's diagnosis string) as a new column
diag_demo$diagnoses <- apply(X = diag_demo[, dx_cols], MARGIN = 1,
   FUN = paste_dx)

# Now you can look at what diagnoses actually 'go together'
# (i.e. which participants have which dxs).
table(diag_demo$n_diag, diag_demo$diagnoses, useNA = "always")

##
## CL   CL_HD   CL_HD_HT   CL_HT   HD   HD_HT   HT  <NA>
## 1   3   0   0   0   14   0   74   0
## 2   0   1   0   4   0   6   0   0
## 3   0   0   1   0   0   0   0   0
## <NA> 0   0   0   0   0   0   0   0

# For people with exactly 2 diagnoses, what are those
diagnoses?
table(diag_demo$diagnoses[diag_demo$n_diag == 2], useNA = "always")

##
## CL   HD   HT  <NA>
## 3   14   74   0

# For people with exactly 2 diagnoses, what are those
diagnoses?
table(diag_demo$diagnoses[diag_demo$n_diag == 3], useNA = "always")

##
## <NA>
## 1   0

# Hypertension
```

2 Adherence

2.1 Generate Diagnosis-Specific Non/Compliant Data Frames

For each diagnosis, generate a dataframe that includes
all individuals who have dx but are not currently taking
medication.
Non-compliant
htn.nc <- diag_demo[(diag_demo$htn_diag_doc %in% yes & diag_demo$current_meds_htn %in% no),]
dim(htn.nc)

[1] 19 96

Compliant
htn.C <- diag_demo[(diag_demo$htn_diag_doc %in% yes & diag_demo$current_meds_htn %in% yes),]
dim(htn.C)

[1] 66 96

Safety check
nrow(subset(diag_demo, diag_demo$htn_diag_doc %in% yes)) - (nrow(htn.C) + nrow(htn.nc))

[1] 0

Heart Disease

Non-compliant

hd.nc <- diag_demo[(diag_demo$heartdisease_doc_diag %in% yes & diag_demo$current_meds_heartdisease %in% no),]
dim(hd.nc)

[1] 5 96

Compliant

hd.C <- diag_demo[(diag_demo$heartdisease_doc_diag %in% yes & diag_demo$current_meds_heartdisease %in% yes),]
dim(hd.C)

[1] 17 96

Safety check
nrow(subset(diag_demo, diag_demo$heartdisease_doc_diag %in% yes)) - (nrow(hd.C) + nrow(hd.nc))

[1] 0

Cholesterol

Non-compliant

chol.nc <- diag_demo[(diag_demo$chol_diag_doc %in% yes & diag_demo$curr_chol_meds %in% no),]
dim(chol.nc)

[1] 3 96

Compliant

chol.C <- diag_demo[(diag_demo$chol_diag_doc %in% yes & diag_demo$curr_chol_meds %in% yes),]
dim(chol.C)

[1] 11 96

Safety check Safety check

```r
dim(chol.C)
```

```r
## [1] 6 96
```

```r
# Rate of non-compliance in each disease.

### Heart Disease

```r
nrow(hd.nc)
```

```r
[1] 5
```

```r
nrow(hd.C)
```

```r
[1] 17
```

```r
nrow(hd.nc)/sum(nrow(hd.nc) + nrow(hd.C))
```

```r
[1] 0.2272727
```

### Hypertension

```r
nrow(htn.nc)
```

```r
[1] 19
```

```r
nrow(htn.C)
```

```r
[1] 66
```

```r
nrow(htn.nc)/sum(nrow(htn.nc) + nrow(htn.C))
```

```r
[1] 0.2235294
```

### Cholesterol

```r
nrow(chol.nc)
```

```r
[1] 3
```

```r
nrow(chol.C)
```

```r
[1] 6
```

```r
nrow(chol.nc)/sum(nrow(chol.nc) + nrow(chol.C))
```

```r
[1] 0.3333333
```

### 2.2 Fully compliant vs. partially compliant vs. non-compliant.

```
Disease specific dfs above are helpful, but people with
multiple diagnoses may be taking medication for one, but
not another. Need to do distinguish beyond
compliant/non-compliant for thoses individuals who have 2
or more diagnoses.
```
```

```
```
chol.only$compliance <- ifelse(chol.only$curr_chol_meds %in% yes, "comp", "noncomp")
table(chol.only$compliance, useNA = "always")

##
comp noncomp <NA>
1 2 0

Heart disease only (10/14 individuals compliant)
hd.only <- subset(diag_demo, diag_demo$diagnoses == "HD")
dim(hd.only)

[1] 14 96

hd.only$compliance <- ifelse(hd.only$current_meds_heartdisease %in% yes, "comp", "noncomp")
table(hd.only$compliance, useNA = "always")

##
comp noncomp <NA>
10 4 0

Merge these dfs.
sing.dx.comp <- rbind(hd.only, chol.only)
sing.dx.comp <- rbind(sing.dx.comp, htn.only)
dim(sing.dx.comp)

[1] 91 97

prop.table(table(sing.dx.comp$compliance))

##
comp noncomp
0.7252747 0.2747253

Next do the single individual who has 3 dxs. (100% compliance...)
trip.dx.comp <- subset(diag_demo, diag_demo$n_diag == 3)
trip.dx.comp$curr_chol_meds # compliant for chol

[1] 1

trip.dx.comp$current_meds_htn # compliant for htn

[1] 1

trip.dx.comp$current_meds_heartdisease # compliant for heart disease

[1] 1

trip.dx.comp$compliance <- "comp"

Make new df that will have ALL the compliance info thus far.
all.compliance <- rbind(trip.dx.comp, sing.dx.comp)

Now for the tricky ones (CL_HD, CL_HT, HD_HT)
cl_hd.only <- subset(diag_demo, diag_demo$diagnoses == "CL_HD")
dim(cl_hd.only)
[1] 1 96
cl_hd.only$curr_chol_meds # compliant for cholesterol
[1] 1
cl_hd.only$current_meds_heartdisease # compliant for heart disease
[1] 1
cl_hd.only$compliance <- "comp"

cl_ht.only <- subset(diag_demo, diag_demo$diagnoses == "CL_HT")
dim(cl_ht.only)
[1] 4 96
table(cl_ht.only$curr_chol_meds, cl_ht.only$current_meds_htn,
 useNA = "always")
##
1 <NA>
0 1 0
1 3 0
<NA> 0 0
1 person not adherent for cholesterol, but for htn.

cl_ht.only$compliance <- ifelse(cl_ht.only$curr_chol_med %in% yes, "comp", "part")

Create dataframe for compliance for individuals with 2 dxs.
dbl.dx.comp <- rbind(cl_hd.only, cl_ht.only)
dim(dbl.dx.comp)
[1] 5 97

hd_ht.only <- subset(diag_demo, diag_demo$diagnoses == "HD_HT")
dim(hd_ht.only)
[1] 6 96
table(hd_ht.only$current_meds_htn, hd_ht.only$current_meds_heartdisease,
 useNA = "always")
##
0 1 <NA>
1 1 5 0
<NA> 0 0 0
One person is non compliant for heart disease, but not htn.

hd_ht.only$compliance <- ifelse(hd_ht.only$current_meds_heartdisease %in% yes, "comp", "part")
dbl.dx.comp <- rbind(dbl.dx.comp, hd_ht.only)
dim(dbl.dx.comp)

[1] 11 97
Merge all compliance with and double dx compliance dfs to
have compliance for all individuals in one spot.

all.compliance <- rbind(all.compliance,dbl.dx.comp)
dim(all.compliance)

[1] 103 97

table(all.compliance$compliance, useNA = "always")

comp noncomp part <NA>
76 25 2 0

prop.table(table(all.compliance$compliance, useNA = "always"))

comp noncomp part <NA>
0.73786408 0.24271845 0.01941748 0.00000000

table(all.compliance$compliance, all.compliance$n_diag, useNA = "always")

comp noncomp part <NA>
66 9 1 0
25 0 0 0
0 2 0 0
0 0 0 0

All fully noncompliant individuals have only one dx
Make one more column that collapses partially compliant
and compliant individuals.

all.compliance$bin.comp <- ifelse(all.compliance$compliance ==
 "noncomp", 0, 1)
table(all.compliance$bin.comp)

0 1
25 78

prop.table(table(all.compliance$bin.comp))

0 1
0.2427184 0.7572816

Make df for individuals who are fully compliant and
non-compliant (based on binary definition).

comp <- subset(all.compliance, all.compliance$bin.comp %in% yes)
noncomp <- subset(all.compliance, all.compliance$bin.comp %in% no)

Overall non-adherence in chronic disease sample (24.2%)
nrow(noncomp)/nrow(all.compliance)

[1] 0.2427184

3 Demographics of chronic disease sample.

3.1 Sex

0 = Male
1 = Female

Sex breakdown across whole disease sample (n=103).
table(diag_demo$Sex)

##
0 1
41 62

Hypertension
table(diag_demo$Sex, diag_demo$htn_diag_doc, useNA = "always")

##
0 1 <NA>
0 10 31 0
1 8 54 0
<NA> 0 0 0
table(diag_demo$current_meds_htn, diag_demo$Sex, useNA = "always")

##
0 1 <NA>
0 9 10 0
1 22 44 0
<NA> 10 8 0

Percent female hypertension individuals.
length(diag_demo[which(diag_demo$htn_diag_doc %in% yes & diag_demo$Sex == 1), 1])/length(diag_demo[which(diag_demo$htn_diag_doc %in% yes), 1])

[1] 0.6352941

Heart Disease
table(diag_demo$Sex, diag_demo$heartdisease_doc_diag, useNA = "always")

##
0 1 <NA>
0 32 9 0
1 48 13 1
<NA> 0 0 0
```r
table(diag_demo$current_meds_heartdisease, diag_demo$Sex, useNA = "always")

##
## 0 1 <NA>
## 0 2 3 0
## 1 7 10 0
## <NA> 32 49 0

# Percent female heart disease individuals.
length(diag_demo[which(diag_demo$heartdisease_doc_diag %in% yes &
    diag_demo$Sex == 1), 1])/length(diag_demo[which(diag_demo$heartdisease_doc_diag %in%
    yes), 1])

## [1] 0.5909091

# Hypercholesterolemia

table(diag_demo$Sex, diag_demo$chol_diag_doc, useNA = "always")

##
## 0 1 <NA>
## 0 36 5 0
## 1 58 4 0
## <NA> 0 0 0

table(diag_demo$curr_chol_meds, diag_demo$Sex, useNA = "always")

##
## 0 1 <NA>
## 0 2 1 0
## 1 3 3 0
## <NA> 36 58 0

# Percent female hypercholesterolemia individuals.
length(diag_demo[which(diag_demo$chol_diag_doc %in% yes & diag_demo$Sex ==
    1), 1])/length(diag_demo[which(diag_demo$chol_diag_doc %in%
    yes), 1])

## [1] 0.4444444

# Compliance by sex overall

table(noncomp$Sex, useNA = "always")

##
## 0 1 <NA>
## 0 11 14 0

prop.table(table(noncomp$Sex, useNA = "always"))

##
## 0 1 <NA>
## 0.44 0.56 0.00

# Disease-specific non-compliance by sex

# Heart Disease

table(hd.nc$Sex, useNA = "always")
```

16
0 1 <NA>
2 3 0

prop.table(table(hd.nc$Sex, useNA = "always"))

0 1 <NA>
0.4 0.6 0.0

Hypertension

table(htn.nc$Sex, useNA = "always")

0 1 <NA>
9 10 0

prop.table(table(htn.nc$Sex, useNA = "always"))

0 1 <NA>
0.4736842 0.5263158 0.0000000

Cholesterol

table(chol.nc$Sex, useNA = "always")

0 1 <NA>
2 1 0

prop.table(table(chol.nc$Sex, useNA = "always"))

0 1 <NA>
0.6666667 0.3333333 0.0000000

3.2 Reasons for Stopping Medication

Cholesterolemia does not have any data (survey question not included) regarding why stopping medication. Note in limitations and when discussing reasons for stopping meds.

table(diag_demo$Sex, diag_demo$stop_htn_meds_reason)

0 1 2 3 4 5 10 11 12 13
0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 1

table(diag_demo$Sex, diag_demo$stop_meds_hd_otherreason)

0 1 2 3
0 0
1 1

The disease cure from the medication
The doctor ordered her to stop and continue her check up every month.

Allergic and feel tired after taking medication of the bp

The doctor told her not to take it as usual

The doctor told her to stop

The doctor told me to stop

Tired of waiting for the doctor, and stay for a long time. Had a Zumba program with my cousin and eat healthy food and no more medication.

The disease cure from the medication

The doctor ordered her to stop and continue her check up every month.

3.3 Age

Age data for all of Soifua Manuia (n=519), not just
chronic disease set.

mean(demographicdata$DecAge)

[1] 52.16139

range(demographicdata$DecAge)

[1] 30.68036 72.69541

median(demographicdata$DecAge)

[1] 51.85216

This is age data for the chronic disease group (n=103)

mean(diag_demo$DecAge, trim = 0, na.rm = TRUE)

[1] 56.79699

range(diag_demo$DecAge, na.rm = FALSE, finite = TRUE)

[1] 35.53457 71.13484

median(diag_demo$DecAge, na.rm = TRUE)

[1] 57.45927
Plot age distribution for chronic disease sample.

```r
diag_demo <- as.data.frame(diag_demo)

dim(diag_demo)
```

```r
## [1] 103 96
```

First, make simple distribution plot of ages.

```r
age <- diag_demo$DecAge
hist(age)
```

![Histogram of age](image)

```r
range(age)
```

```r
## [1] 35.53457 71.13484
```

Make it look nice.

```r
hist(age, freq = TRUE, col = "lightblue", breaks = c(30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80), main = "", xlab = "Age (years)", ylab = "N Participants", ylim = c(0, 28))
```
3.4 Education

Entire Sample (n=519)
mean(demographicdata$Ed_Years, trim = 0, na.rm = TRUE)

[1] 11.24324
median(demographicdata$Ed_Years)
[1] NA
range(demographicdata$Ed_Years)
[1] NA NA

Chronic disease sample (n=103, including 2 NA)
mean(diag_demo$Ed_Years, trim = 0, na.rm = TRUE)
[1] 10.9902
range(diag_demo$Ed_Years, na.rm = FALSE, finite = TRUE)
[1] 4 19
median(diag_demo$Ed_Years, na.rm = TRUE)
[1] 12

Noncompliant group (n=25)
mean(noncomp$Ed_Years, trim = 0, na.rm = FALSE)
[1] 11.52
range(noncomp$Ed_Years, na.rm = FALSE, finite = TRUE)
[1] 7 19
median(noncomp$Ed_Years, na.rm = TRUE)
[1] 12

3.5 Occupation

Occupation codes:
0 = Unemployed
1 = Skilled labor
2 = Semi-skilled labor
3 = Plantation work
4 = Menial/Custodial
5 = Clerical
6 = Management
7 = Salesperson
8 = Educator
9 = Health worker
10 = Public Service
11 = Student
12 = Clergy/Mayor
13 = Retired
14 = Small Business Owner

Jobs of individuals with chronic disease.
table(diag_demo$occupation_code, useNA = "always")

##
0 1 2 3 4 5 6 8 9 12 14 <NA>
61 4 1 19 3 3 4 1 1 3 2 1

For individuals who are medicine non-adherent.
table(noncomp$occupation_code, useNA = "always")

##
0 1 3 8 12 14 <NA>
14 1 3 8 12 14 <NA>

3.6 Years since Diagnosis

Noncompliant Heart Disease
mean(hd.nc$years_diag_heartdisease)

[1] 11.4
median(hd.nc$years_diag_heartdisease)

[1] 10

Recall hypertension has a few Nas
mean(htn.nc$years_htn_diagnosed, trim = 0, na.rm = TRUE)

[1] 4.444444
median(htn.nc$years_htn_diagnosed, trim = 0, na.rm = TRUE)

[1] 3

Cholesterol
mean(chol.nc$years_diag_chol)

[1] 1.333333
median(chol.nc$years_diag_chol)

[1] 2
Compliant Heart Disease

\[
\text{mean(hd.C$years_diag_heartdisease)}
\]

[1] 3.529412

\[
\text{median(hd.C$years_diag_heartdisease)}
\]

[1] 4

Hypertension

\[
\text{mean(htn.C$years_htn_diagnosed, trim = 0, na.rm = TRUE)}
\]

[1] 5.382969

\[
\text{median(htn.C$years_htn_diagnosed, trim = 0, na.rm = TRUE)}
\]

[1] 3

Cholesterol

\[
\text{mean(chol.C$years_diag_chol)}
\]

[1] 1.333333

\[
\text{median(chol.C$years_diag_chol)}
\]

[1] 1

Specifically for heart disease the non-compliant people have a higher average of years since diagnosis- according to my research this is absolutely not surprising.

Census Region

\[
\text{# Census region codes:}
\]

\[
\text{# 1 = Apia Urban Area (AUA)}
\]

\[
\text{# 2 = Northwest Upolu (NWU)}
\]

\[
\text{# 3 = Rest of Upolu (ROU)}
\]

\[
\text{# Chronic disease sample}
\]

\[
\text{table(diag_demo$Census_Region)}
\]

##

1 2 3
31 39 33

\[
\text{prop.table(table(diag_demo$Census_Region))}
\]

##

1 2 3
0.3009709 0.3786408 0.3203883

Noncompliant participants

\[
\text{table(noncomp$Census_Region)}
\]

##
prop.table(table(noncomp$Census_Region))

##
1 2 3
0.28 0.36 0.36

Hypercholesterolemia

table(diag_demo$curr_chol_meds, diag_demo$Census_Region)

##
1 2 3
0 1 1 1
1 2 3 1

Heart disease

table(diag_demo$current_meds_heartdisease, diag_demo$Census_Region)

##
1 2 3
0 2 2 1
1 7 7 3

Hypertension

table(diag_demo$current_meds_htn, diag_demo$Census_Region)

##
1 2 3
0 5 7 7
1 19 25 22

3.8 Self reported health

Scale for self-reported health: 0 = Excellent 1 = Very good 2 = Good 3 = Poor 4 = Very poor

Table self-reported health by binary compliance

table(all.compliance$bin.comp, all.compliance$self_reported_health, useNA = "always")

##
0 1 2 3 4 <NA>
0 2 8 15 0 0 0
1 6 17 48 6 1 0
<NA> 0 0 0 0 0 0

Wildly, people compliant with medication are the only ones that report poor health.
3.9 Use of Traditional Methods for Disease Treatment

```r
# Make vector of IDs who have ever visited traditional healer for htn, hd, or chol.
trad.healer <- all.compliance[which(all.compliance$trad_healer_htn == 1 | all.compliance$trad_healer_heartdisease == 1 | all.compliance$trad_healer_htn == 1), 1]
length(trad.healer)
## [1] 6

# Make vector of IDs who have ever used traditional meds
trad.meds <- all.compliance[which(all.compliance$current_trad_meds_htn == 1 | all.compliance$current_tradmeds_heartdisease == 1 | all.compliance$current_trad_meds_htn == 1), 1]
length(trad.meds)
## [1] 12

all.compliance$trad.meds <- ifelse(all.compliance$IDNumber %in% trad.meds, 1, 0)
all.compliance$trad.heal <- ifelse(all.compliance$IDNumber %in% trad.healer, 1, 0)
table(all.compliance$trad.heal)
##
## 0 1
## 97 6
table(all.compliance$trad.meds)
##
## 0 1
## 91 12

all.compliance$trad.both <- all.compliance$trad.meds + all.compliance$trad.heal
table(all.compliance$bin.comp, all.compliance$trad.both, useNA = "always")
##
##        0 1 2 <NA>
## 0 24 1 0 0
## 1 64 11 3 0
## <NA> 0 0 0 0
```

4 Session Info

```r
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
```
BLAS: /usr/local/lib64/R/lib/libRblas.so
LAPACK: /usr/local/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] dplyr_1.0.7 readxl_1.3.1
##
loaded via a namespace (and not attached):
[1] Rcpp_1.0.7 rstudioapi_0.13 knitr_1.36 magrittr_2.0.1
[5] tidyselect_1.1.1 R_6.2.5.1 rlang_0.4.12 fastmap_1.1.0
[9] fansi_0.5.0 highr_0.9 stringr_1.4.0 tools_4.1.2
[13] xfun_0.28 utf8_1.2.2 cli_3.1.0 DBI_1.1.1
[17] htmltools_0.5.2 ellipsis_0.3.2 assertthat_0.2.1 yaml_2.2.1
[21] digest_0.6.28 tibble_3.1.6 lifecycle_1.0.1 crayon_1.4.2
[25] purrr_0.3.4 formatR_1.11 vctrs_0.3.8 glue_1.5.0
[29] evaluate_0.14 rmarkdown_2.11 stringi_1.7.5 compiler_4.1.2
[33] pillar_1.6.4 cellranger_1.1.0 generics_0.1.1 pkgconfig_2.0.3