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Abstract 

An Introductory Genomics Workflow for Exploring Publicly Available Infectious Disease 

Data 

 

Praveer S. Vyas, MPH 

 

University of Pittsburgh, 2022 

 

 

Abstract 

 

 

Advances in computational and gene sequencing technology provide an avenue for public 

health students and professionals who are interested in gaining exposure to biological research. 

Differential expression (DE) analysis can be performed using publicly available tools as well as 

data to learn more about the biological differences between samples from humans, animals or 

pathogens. There is a vast amount of publicly available gene expression data that can be searched 

to find a dataset related to a topic of interest. As an example, infectious disease epidemiology 

students could use their own computer to perform a DE analysis on an existing dataset related to a 

trend they studied or observed, without the need to enter a laboratory. DE analyses can be 

performed quickly on personal computers using pseudoalignment software, which is less 

computationally intensive and faster than alignment of RNA-seq reads to a reference genome. An 

algorithm for performing a DE analysis on an infectious disease topic utilizing pseudoalignment 

will be provided. Basic requirements for using this algorithm are a working knowledge of the 

statistical programming language R, familiarity with executing shell scripts and a general 

understanding of the central dogma of biology. This approach will provide the user with experience 

performing complex genomics analyses and further their professional development. An illustrative 

analysis related to the public health issue of progression of disease in individuals with latent 

tuberculosis infection will be provided. Direct applications of the results from this example will 
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be discussed in addition to how individuals in public health may benefit from utilizing this 

algorithm and expanding their genomics skillset.  
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1.0 Introduction 

Genomics, or the analysis of data related to the genome of an organism, is widely used in 

biomedical research that informs public health. Some genomics analyses include genome-wide 

association studies and the use of whole genome sequencing (WGS) to detect variants in genes, 

the sequencing and analysis of samples containing multiple genomes (metagenomics) and 

differential gene expression analysis. There are many examples of how research utilizing these 

techniques has the potential to benefit public health. WGS can be used to effectively predict drug 

resistance in Mycobacterium tuberculosis isolates from infected patients.1 This has been 

implemented in healthcare settings in Western countries, and in the future, may be used in low and 

middle income countries (LMIC) that have a larger burden of tuberculosis as the costs of 

sequencing and analysis decline.2 Phylogenetic analysis of whole genome sequences of pathogens 

has also been used to aid investigations of outbreaks, such as during the outbreak of E. coli 

O104:H4 in Germany in 2011.3 Data from exome sequencing of human samples have been used 

to screen populations historically underrepresented in genomics research for conditions such as 

hereditary breast and ovarian cancer risk.4  

Large datasets produced from genomics research are often available online to the public as 

a requirement of funding by the National Institutes of Health (NIH). As part of the All of Us 

research program, the NIH has itself released thousands of whole genome sequences that have 

been de-identified.5 There are both free and commercial tools that can be used to analyze various 

types of genomics data including whole genome sequences and RNA-sequencing (RNA-seq) 

reads. 
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1.1 Overview of Differential Expression Analyses 

Differential expression (DE) analyses are performed to understand how gene expression 

changes across biological conditions. Data obtained from RNA-seq experiments can be used in 

these analyses. In RNA-seq, RNA is isolated from samples, enriched for mRNA (as an example) 

and fragmented. The mRNAs are then converted to a cDNA library that is amplified and sequenced 

using a next generation sequencing technique.6 

Gene expression data from RNA-seq experiments are available online in three major 

repositories: Gene Expression Omnibus (GEO), Array-express and ENCODE. However, the raw 

reads themselves from RNA-seq experiments are available online in repositories such as the 

Sequence Read Archive (SRA) and European Nucleotide Archive (ENA). Decreases in the cost of 

sequencing and analysis along with the requirement of federal funding to make datasets publicly 

available online have resulted in a vast amount of data that is available for analysis.7 Data can be 

downloaded from these repositories and analyzed using either free or commercial tools. 

Prior to performing a DE analysis, quality of RNA-seq reads can be assessed by performing 

various quality checks, such as looking at the average per-base quality for all the base positions 

along reads generated from short-read sequencing. The general approach following this step is to 

compare the reads to a reference and quantify the genes that are present. Traditionally, this is done 

by aligning the reads to a reference genome (available online) and then counting genes. This can 

be computationally intensive. A newer technique for quantification is pseudoalignment. In this 

approach, reads are quantified using a reference transcriptome, which is converted into a special 

graph of k-mers (nucleotide strings of length k) derived from transcripts. k-mers in the read being 

mapped are then compared to this graph to determine related transcripts. Pseudoalignment with 

Kallisto, a tool that is freely available online, has been shown to be at least comparably accurate 
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to other methods of read mapping but is significantly faster than other approaches.8 Kallisto 

outputs information regarding transcript abundances that can be used to perform DE testing in 

order to determine which transcripts or genes are differentially expressed between two conditions. 

In addition to identifying genes that are differentially expressed, functional enrichment can be 

performed to identify clusters of genes or pathways that are differentially represented across 

samples. A basic DE analysis is appropriate for an introductory genomics analysis due to the 

abundance of publicly available RNA-seq data as well as the feasibility of performing the analysis 

on a personal computer. 

1.2 A Public Health Context for a DE Analysis: Tuberculosis Pathogenesis 

Tuberculosis (TB) provides an interesting public health context for walking through an 

introductory genomics analysis. TB is an infectious disease caused by the bacterium M. 

tuberculosis (Mtb) and is transmitted through the air by individuals with an active pulmonary 

infection when they cough.9 Symptoms associated with pulmonary infection include coughing, 

fever, weight loss and fatigue.10 Most individuals infected with Mtb have a latent TB infection 

(LTBI). While LTBI patients do not transmit disease, they can develop active disease 

spontaneously due to a variety of causes such as immunosuppression or coinfection with HIV.11 

There is a significantly large burden of disease for TB. Over a fifth of the world’s 

population is thought to be infected with Mtb (most of whom have LTBI) and approximately 1.6 

million people die annually from TB worldwide. The vast majority of cases occur in Africa, South-

east Asia and India with incidence rates highest in countries such as South Africa, the Central 

African Republic and the Philippines.12 
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Two important aspects of global TB control are identification of active cases of disease 

and prevention of the development of active disease in those already infected. This latter approach 

is especially important as reactivation of LTBI is the main cause of active disease and because 

treating cases of both LTBI and active infection is necessary to meet global targets for the reduction 

of TB incidence.13 While treatment regimens exist for both LTBI and active infections, there are 

diagnostic challenges. For example, a diagnosis of active TB is made through a clinical assessment 

of symptoms and a chest X-ray supplemented by tests such as sputum smear microscopy and 

sputum culture. However, sputum smear microscopy is only sufficiently sensitive when a large 

number of bacteria are present in the sputum sample and culture-based tests can be expensive and 

take weeks to provide results, during which time cases may actively transmit disease unless treated 

for active infection.14 A robust and inexpensive test for detecting progression of LTBI to active 

infection would thus be helpful for reducing incidence. A DE analysis of publicly available RNA-

seq data from patients with LTBI and active infection could be used to identify potential 

biomarkers for a blood test using certain peripheral blood mononuclear cells (PBMCs) that might 

be more sensitive than traditional microscopy and culture-based tests. This essay aims to first 

present an introductory workflow for analyzing publicly available RNA-seq data on a personal 

computer and then to provide an illustrative example in the context of progression of LTBI to 

active infection. 
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2.0 Methods 

The general steps of a differential expression analysis of publicly available data include 

obtaining RNA-seq data from an online repository, assessing the quality of the reads, mapping the 

reads to either a reference genome or transcriptome, quantifying abundance of genes or transcripts 

and performing differential expression testing to see which genes are differentially expressed. A 

workflow including these steps was developed.  

Because traditional alignment of reads to a genome is computationally intensive and not 

feasible on a personal computer, pseudoalignment was selected as the approach for read mapping 

and quantification. Kallisto, a widely utilized, simple-to-use, free and cross-platform 

pseudoalignment tool was preselected for the read mapping step of the workflow. The software to 

use for the remaining steps of the workflow was selected according to the following criteria: ease 

of access to the software, simplicity of software environment and ease of use. Overall, the 

workflow was developed to be as simple as possible to execute and to be usable with any data 

available on the SRA. An additional criterion for the workflow was that the analysis be performed 

at the level of genes and not transcripts.  

A simple set of scripts for performing analysis using the workflow was prepared for 

Debian-based Linux distributions and macOS. This was created as an archive containing three 

scripts (two shell scripts and one R script) for performing the analysis as well as directories for 

storing data that are downloaded and results that are outputted. Instructions and scripts for 

performing this analysis were additionally prepared for Windows but require manual execution of 

programs from the command-line by the user. 
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Publicly available RNA-seq data from patients with LTBI and active infection were then 

analyzed using the workflow to provide an illustrative example. The results from this analysis are 

discussed with regard to how they can be applied in a public health and medical context. 

Additionally, the opportunity for professional development from performing analyses like these 

for a public health student or professional is discussed. 
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3.0 Results 

A simple workflow for differential expression analyses was developed according to the 

criteria discussed earlier (Figure 1). Archives containing scripts needed to run an analysis are 

provided for Debian-based Linux distributions, macOS and Windows as supplementary materials. 

Links for these materials are provided in Appendix B. The methods detailed in this section are 

presented for Linux and macOS. Specific instructions for carrying out this analysis are provided 

in the README included in the archive provided for each of the three major operating systems 

that are supported. 

 

 

Figure 1 Diagram of Workflow on Linux/macOS 
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Extracting the archive provides a project directory in which the analysis is performed. The 

README in this directory contains instructions for installing the required software (SRA toolkit, 

FastQC, Kallisto, R and RStudio) and for performing the analysis.8,15–17 One important note is that 

Kallisto is downloaded as an executable and placed in the directory named “programs”. While a 

system-wide installation would be more appropriate for a pipeline, this is a simple way to run 

Kallisto on any platform. In the workflow, an infectious disease topic of interest is first chosen. 

The SRA is then searched for a study with RNA-seq runs of samples from Homo sapiens that 

relates to this topic. Four samples for both a control group (e.g. non-infected samples) and 

experimental group (e.g. infected samples) are then selected in the SRA Run Selector. An 

Accession List, or text file containing a list of the run IDs, can then be downloaded on this page. 

The Accession List is placed in the root of the project directory. Script 1, a shell script, is then run 

to first download gzip-compressed FastQ files from the SRA and then perform quality checks of 

reads using FastQC. Quality can be manually assessed by opening the HTML file outputted by 

FastQC for each set of reads in a browser and looking at per-base sequence quality as well as the 

summary of quality checks on the left-hand side. Samples that exhibit poor quality (for example 

having low per-base quality or a poor distribution of GC content) can be discarded before 

proceeding. Discarded samples should be removed from the data folder and deleted from Script 2. 

Script 2 (another shell script) uses Kallisto to first create an index from a reference 

transcriptome for Homo sapiens (available online from Ensembl) and then perform read mapping 

using the reads and this index. For read mapping, Kallisto is run for each sample with arguments 

for performing bootstrapping. When bootstrapping is performed, a random subset of reads is 

repeatedly sampled from each set of reads and then mapped to estimate uncertainty on transcript 

abundances, even when there is only one replicate for the sample. Running Kallisto without 
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bootstrapping is fast; mapping is complete within minutes on a typical personal computer. 

Bootstrapping increases the processing time per sample but is required for the downstream analysis 

that was selected for this workflow. The output of Kallisto is information regarding transcript 

abundances as well as statistical information about abundance uncertainty. Samples that do not 

have at least 75% of reads mapping back to a reference should be discarded at this stage. This 

information is available in logs generated by running Kallisto using the provided scripts. 

The next step in the workflow is to perform differential expression testing. This is done by 

running Script 3, an R script, from within the RStudio IDE. This script utilizes sleuth, an R package 

for differential expression testing, to perform two separate tests using abundance data. Sleuth was 

selected for this step because it automatically filters out low abundance transcripts and normalizes 

abundances, which reduces the number of steps necessary for the overall analysis. First, a 

likelihood ratio test is performed to determine which genes are differentially expressed at a 

significant level. This test compares a full model containing the experimental condition as a 

variable and a reduced model that does not containing the experimental condition as a variable. 

Performing this test provides adjusted p-values (or q-values) for each transcript that can be 

automatically aggregated to gene-level q-values.18 A Wald test using sleuth in gene-mode is then 

performed to determine the extent to which genes are differentially expressed. Here, gene 

abundances are aggregated to determine gene-level expression changes. The beta coefficients from 

this model are estimates of log2 fold-change (log2fc) for each gene. The log2fc value represents 

the log-transformed ratio of abundance of a gene in the experimental condition to abundance in 

the control condition. While it is cumbersome to perform two separate tests, this allows for the 

determination of both gene-level p-values and gene-level estimates of fold-change using sleuth. 
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The results from these tests can be used to explore which genes are differentially expressed. 

Script 3 provides a formatted table of the topmost differentially expressed genes (DEGs). A 

principal component analysis (PCA) plot (showing sample clustering), MA plot (of log2fc estimate 

versus mean abundance) and volcano plot (of significance versus log2fc estimate) are provided. 

The final step of the workflow is to interpret these results. An example of this workflow, including 

interpretation of results, is provided in the following section. 

3.1 Illustrative Example: TB Disease Progression 

The algorithm presented in the previous section was used to analyze data related to the 

chosen public health issue of tuberculosis disease progression. This analysis was performed on 

Debian using a Lenovo ThinkPad X1 Carbon Gen 9 (Intel Core i5 with 8 threads, 16GB RAM). 

Instructions for performing this analysis on Linux, macOS and Windows are provided as 

supplementary materials. 

An RNA-seq dataset was identified in the SRA for an experiment performed at University 

College London that sequenced the transcriptome of CD14+ monocytes isolated from PBMCs of 

patients with LTBI and active TB infection. These data were obtained from paired-end sequencing 

of samples using an Illumina NextSeq 500. Although obtained from the SRA, this dataset was 

originally submitted to the EBI database. The Accession Code for this project is ERP116604. The 

data from this study do not appear to have been used in any published study. Four samples for each 

condition were selected for differential expression analysis. For all eight samples, monocytes had 

been incubated with purified protein derivative (PPD) in order to stimulate an immune response. 
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The Accession List for these samples was downloaded and Script 1 was run to download the data 

and assess quality of the reads. All of the samples exhibited good quality, and none were discarded. 

Read mapping was then performed using Script 2. The average percentage of reads mapped 

to the reference transcriptome across all samples was 86.3% and the range was 83.1%-88.5%. No 

samples were discarded at this stage. Differential expression analysis was performed using Script 

3. A PCA plot showing how LTBI (control) and active infection (experimental) samples cluster 

with regard to gene expression is shown in Figure 2. LTBI samples clustered much more closely 

together as compared to active infection samples, which were more variable. There are many 

potential reasons for this difference in variation. It is unclear whether all the samples from active 

patients were taken at a similar time point in disease progression or treatment. Additionally, there 

might be variation in host gene expression due to variation in the strain of Mtb.  

 

 

Figure 2 PCA Plot of Samples by Condition 
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Using a standard significance threshold of 0.05 for q-values, 526 genes were found to be 

significant. A list of DEGs was determined by filtering these genes for beta values (or log2fc 

estimates) with an absolute value greater than one. Table 1 shows the top DEGs (sorted by 

increasing q-value). Some of the DEGs include HLA-C (upregulated in active infection), caspase-

1 (CASP1, upregulated in active infection), ATF3 (downregulated), clusterin (CLU, upregulated), 

interleukin-6 (IL6, upregulated), SLAMF7 (upregulated) and HLA-DQB1 (downregulated). A 

complete list of the 112 DEGs that were identified is shown in Table 2 (Appendix A). 

 

Table 1 Top DGEs 

 

 

A volcano plot with top DEGs labeled is shown in Figure 3. This is a plot of significance 

(calculated as the negative base-ten log of the q-value) versus log2fc estimate. Genes are colored 

according to significance and differential expression; genes that are black are not significant and/or 

differentially expressed whereas genes that are blue or red are significantly downregulated or 

upregulated in active infection, respectively. Genes present in the top-right or top-left of the plot 

are the most differentially expressed and significant genes. Based on this plot, additional genes of 
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interest include MITF (downregulated), STK38L (downregulated), HLA-B (upregulated), FPR2 

(upregulated) and NTSR1 (upregulated). 

 

 

Figure 3 Volcano Plot 

 

An MA plot of log2fc estimate versus mean gene abundance (across all samples) is 

presented in Figure 4. For this analysis, this plot is simply used to show that many of the important 

DEGs identified above were present in relatively high abundances (toward the right of the chart) 

and are thus less likely to be the result of noise. It also appears that more genes are upregulated in 

active infection than are downregulated. 
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Figure 4 MA Plot 
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4.0 Discussion 

4.1 Application of Results from the DE Analysis on TB Progression 

Performing the workflow resulted in the identification of several genes that are 

differentially expressed by PPD-stimulated monocytes obtained from patients with active infection 

as compared to patients with LTBI. Some of these DEGs can be categorized. MHC class I genes 

such as HLA-B and HLA-C were found to be considerably upregulated. While some MHC class 

II genes such as HLA-DQA1 were downregulated, HLA-DRB4 was found to be highly 

upregulated. This may warrant further analysis as macrophages use class II presentation for TB 

antigens and Mtb has been shown to inhibit transcription of MHC class II molecules.19 Clusterin, 

found here to be upregulated in active infection, has been previously shown to be upregulated in 

patients with active TB as compared to non-infected patients following a Mtb antigen stimulus.20  

Results from analyses like this one could be used to inform the monitoring and diagnosis 

of active TB. Some of the DEGs identified here could be evaluated as markers of disease 

progression. A combination of robust markers could be utilized in a blood test that incubates 

monocytes from patients with PPD to identify cases of active disease. A test like this could be used 

to monitor patients suspected to have LTBI but who begin to develop symptoms. This test would 

have to be both highly predictive of active infection as compared to LTBI and similar in cost to 

sputum smear tests (which are used to inexpensively identify infectious cases in LMIC) to justify 

its use. This likely presents a challenge due to the cost of isolating certain leukocytes from human 

blood and measuring a signature of markers. However, preventing progression of disease with 

timely treatment for active TB may be valuable in locations where TB is not endemic and where 
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there is the potential for an outbreak. Additionally, timely treatment of active TB can prevent the 

spread of drug-resistant TB.21 

There is an abundance of publicly available RNA-seq data for a variety of topics (and 

organisms). Searching the SRA with keywords such as “tuberculosis” and “rna-seq” yields many 

RNA-seq datasets for Homo sapiens. The analysis presented here could be performed on datasets 

related to either the same topic (to validate DEGs that are discovered) or a different TB topic, such 

as drug-resistance or coinfection with HIV. In addition to manually reviewing DEGs, more 

advanced analyses such as functional enrichment can be performed to see which pathways are 

differentially represented across biological conditions to further explore these topics. 

Results from transcriptomics analyses like the one presented here are not generally 

conclusive on their own. Results for genes that are differentially expressed can be confirmed using 

techniques like RT-PCR (to quantify mRNA) or antibody-based assays (to quantify the protein 

product of the gene). DEGs can be knocked down, for example, to assess functional importance. 

4.2 Opportunities for Professional Development 

Gaining experience with this workflow can be beneficial from an educational standpoint. 

Performing this analysis provides opportunities to gain experience with R (for use in statistical 

analysis, plotting and genomics), command-line interface tools and interpretation of results. These 

skills are directly applicable in many fields other than genomics. More broadly, this analysis serves 

as an introduction to powerful genomics analyses that can be performed on personal computers 

using publicly available data. Without needing access to a lab, one can analyze existing data and 

obtain potentially important results that could be further explored in a lab. This is a low-barrier 
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approach to gaining biological research-related experience for someone who may not work in the 

field of genomics but who is interested in expanding their skillset. Additionally, this experience is 

increasingly useful and relevant with the growing abundance of genomics data and use of 

genomics in medicine and public health. 

The cost of sequencing genetic material continues to decline. Sequencing with the Oxford 

Nanopore Technologies MinION (a third-generation sequencing platform) is relatively 

inexpensive compared to next generation sequencing platforms, which are still the most used 

platforms for generating RNA-seq reads. A starter pack for sequencing with the MinION costs 

approximately $5000.22 RNA-seq reads generated from the MinION can be analyzed for 

differential expression using the workflow presented here. Investigators could use this workflow 

to gain familiarity with this type of RNA-seq analysis pipeline before they begin collecting and 

sequencing more data. 

This workflow requires some manual effort (such as executing shell scripts) and provides 

only a basic differential expression analysis. Despite this, it is a good starting point for those 

interested in exploring genomics. This experience can be expanded upon by setting up a proper 

pipeline for differential expression analyses. There are several courses and tutorials available 

online that walk through this process.23,24 

4.3 Evaluation of Approach and Future Directions 

This workflow was used to identify a handful of potentially important genes that are 

differentially expressed in monocytes from patients with active infection as compared to LTBI. 

Some potential applications of these DEGs as well as future analyses were discussed. While this 
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workflow allowed for a walkthrough of differential gene expression analysis, there were a few 

limitations. Sleuth was selected for differential gene testing because it automatically handles 

filtering of low abundance transcripts and normalization of abundances. It has also been 

recommended for analysis of data outputted by Kallisto for statistical and performance reasons.25 

While sleuth simplified part of the analysis, the downstream analysis was more complicated than 

it is with alternative software. It was necessary to perform two separate tests: one to determine 

gene-level p-values and another to determine gene-level log2fc estimates. Additionally, only 

estimates for log2fc and not the actual values for log2fc are provided. For educational or illustrative 

purposes, it may be preferable to use an alternative to sleuth, such as edgeR and limma.26,27 

Additionally, using an alternative to sleuth to analyze abundance data from Kallisto removes the 

need to perform bootstrapping, allowing for a much faster analysis that can be performed more 

feasibly on a larger number of samples. Despite these drawbacks, the algorithm presented here 

introduces genomics analyses and can provide the familiarity needed to set up a proper pipeline 

for analysis.  

This workflow is best carried out on Linux or macOS, but general instructions for Windows 

are provided. The two shell scripts that are executed for Linux and macOS could be executed from 

an R script to further simply the workflow. For Windows, downloading data from the SRA, 

checking the quality and performing read mapping are currently executed through manual 

commands which could be placed in batch scripts. In addition to simplifying this workflow for the 

target audience, a better illustrative analysis could be performed using a dataset that clusters better 

on a PCA plot and that yields results that are more easily interpreted (or validated with existing 

literature). 
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5.0 Conclusion 

A workflow for analyzing publicly available RNA-seq data related to an infectious disease 

topic was presented. This workflow was illustrated using a dataset related to tuberculosis 

pathogenesis. While basic applications of genes found to be differentially expressed in monocytes 

from active patients as compared to those from patients with LTBI were discussed with regard to 

monitoring disease progression, further analysis is needed to draw useful conclusions about 

changes in gene expression across conditions. While there are certain drawbacks to this workflow, 

it introduces complex genomics analyses that can be performed on a personal computer with 

publicly available data related to a public health topic of interest or to expand one’s genomics 

skillset. 
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Appendix A List of All Differentially Expressed Genes 

Table 2 Complete List of DEGs 
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Appendix B Scripts to Run Illustrative DE Analysis 

1. Archive of scripts for Linux:  

http://d-scholarship.pitt.edu/42898/1/de_example_linux_v0.1.tar.gz  

 

2. Archive of scripts for macOS: 

http://d-scholarship.pitt.edu/42898/2/de_example_macOS_v0.1.tar  

 

3. Archive of scripts for Windows: 

http://d-scholarship.pitt.edu/42898/3/de_example_win_v0.1.zip  

 

http://d-scholarship.pitt.edu/42898/1/de_example_linux_v0.1.tar.gz
http://d-scholarship.pitt.edu/42898/2/de_example_macOS_v0.1.tar
http://d-scholarship.pitt.edu/42898/3/de_example_win_v0.1.zip
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