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INCLUSION OF 48 PACIFIC ISLANDERS WITHIN A COSMOPOLITAN
REFERENCE PANEL IS SUFFICIENT FOR HIGH ACCURACY GENOTYPE
IMPUTATION OF SAMOANS
Kevin Anderson, M.S.

University of Pittsburgh, 2022

Imputation is a computational method for inferring genotypes based on previous
knowledge of shared haplotype structure commonly used in genome-wide association studies.
Genotype frequencies not only play an important role in imputation but also are highly variable
around the world, meaning it is crucial to adjust for population bias in genetic studies. Common
methods for imputation involve the use of publicly available haplotype panels from 1000 Ge-
nomes, TOPMed, or other consortia. However, these panels contain data mostly pulled from indi-
viduals of European ancestry. Population isolates such as Polynesians greatly benefit in genotype
accuracy when using a population-specific haplotype reference panel. Here, | perform multiple
imputations using the 1000 Genomes phase 11 reference panel and genome-wide data from 1285,
384, 96, 48, 24, and 1 Samoan on chromosomes 5 and 21 to determine how many fully sequenced
individuals are needed to include in study-specific haplotype panels to achieve accurate imputa-
tion. | also investigated the accuracy of these multiple imputations on genotype frequencies of
population-specific variants found in the CREBRF and BTNL9 genes that are previously deter-
mined to be associated with higher BMI and lower HDL levels respectively. | demonstrate that the
incorporation of 96 Samoans within the 1000 Genomes cosmopolitan panel produces accurate im-
putation quality of rare variants (minor allele frequency of 1%), and 24 Samoans for common
variants (minor allele frequency greater than 5%). These results show that the creation of a study-

specific reference panel utilizing a small subset of individuals from a population-isolate within a



cosmopolitan panel is a cost-effective strategy for accurate imputation. The ability to perform fine-
mapping on rare population-specific variants will have broad public health implications such as
better understanding of genetic disease etiology and function and improved genetic literacy when

focusing on these population isolates.
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1.0 Introduction

A key aim in genetic epidemiology studies is to identify locations, or loci, across the ge-
nome where differences in genetic variation are associated with different physical effects, or phe-
notypes, between individuals. For over 15 years, genome-wide association studies (GWAS) have
been crucial in identifying common and rare genetic variants associated with diseases, such as
Alzheimer disease (Kamboh, 2004), or complex traits, such as height and eye color (Uffelmann et
al., 2021). An important step in conducting a GWAS experiment performing imputation on your
gathered genotype data. Imputation is the process of inferring missing genotypes based on previous
knowledge of haplotype structure from GWAS datasets (Marchini & Howie, 2010; Naj, 2019).
This step solves a problem in using genotyping arrays for large-scale genome-wide studies wherein
there are not enough DNA probes on the microarray to physically genotype all the areas of interest
across the entire genome. Therefore, there are substantial gaps in data between genotyped loci that
are potentially useful for association studies. Imputation is a computationally intensive process
that uses statistical inference to predict the unobserved genotypes using known haplotypes, or
groups of alleles inherited together, in a population together with the pattern of observed geno-
types.

Today, GWAS analyses are common-practice and are significantly easier to perform due
to decreased costs in sequencing and the development of easy-to-use computational pipelines for
association analysis. Haplotype reference panels are publicly available through institutions such
as the National Heart, Lung, and Blood Institution (NHLBI) Trans-Omics for Precision Medicine
(TOPMed) Program (Taliun et al., 2021) and the 1000 Genomes Project (Auton et al., 2015) .
However, most GWAS studies to date have been conducted on individuals of European ancestry

1



(Kowalski et al., 2019), and genetic studies of other ancestry groups around the world are limited.
In total, 95.82% of all GWAS participants before January 2022 are of European ancestry (Mills &
Rahal, 2020). This creates a problem where it is unhelpful to use large amounts of previously
published GWAS data on non—European individuals due to differences in genetic variation across
ethnic ancestry groups around the world. Without the support of known haplotypes, imputation
on underrepresented populations becomes unreliable (Quick et al., 2020). This is especially true
in the case of the Polynesian people of Samoa. Polynesians make up less than one percent of the
world’s population. Samoans are a subpopulation of the Polynesian ancestry group, where there
are no reported haplotypes from Polynesian individuals in the 1000 Genomes database (Auton et
al., 2015), and there are three individuals of calculated Polynesian ancestry reported in the TOP-
Med freeze X dataset, excluding the Samoans that are included in those data.

To accurately and completely genotype individuals, you must fully sequence them. How-
ever, even today, fully sequencing enough individuals to gather complete genotype data for a pow-
erful association study is still relatively expensive. Since 2017, cost of whole-genome sequencing
(WGS) has dropped below $1,000 per sample (Karow, 2017). A solution to this problem is to first
create a population-specific haplotype reference panel by sequencing a subset of the study group
and incorporating that data into a larger, cosmopolitan reference panel (Ahmad et al., 2017). Then,
use the combined panel in conjunction with genotypes from a genotyping array, which will have
many markers with unmeasured genotypes, to fill in the genotypes at those unmeasured markers.
Genotyping via DNA microarrays cost around $28-$90 per sample (Peng et al., 2017), therefore,
genotyping 2,000 individuals with a genotyping array would save over $500,000 as opposed to
sequencing them.. However, exactly how many individuals are necessary to incorporate into a

cosmopolitan reference panel to achieve good imputation accuracy has not been determined . This



number, and the number of haplotypes is predicted to differ between different population groups
(Mitt et al., 2017).

Previous work in obtaining microarray and WGS data has been conducted by members of
the Obesity, Lifestyle, and Genetic Adaptations (OLaGA,; “life”” in Samoan) Study Group. The aim
of OLaGA research is to assess the behavioral, environmental, and genetic determinants of adi-
posity and cardiometabolic risk in Samoans. . They have recently identified two variants, one mis-
sense variant in CREBRF associated with higher body mass index (BMI) and lower odds of type 2
diabetes (T2D) and one nonsense variant in BTNL9 associated with lower high-density lipoprotein
(HDL) levels. These variants are extremely rare in other populations but common in Samoans,and

are hypothesized to have a reduced risk of type 2 diabetes.
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Table 1. Number of Polynesians in haplotype reference panels used in this study

Haplotype Reference Panel  Number of Individuals Number of Polynesians
1000 Genomes 4,974 0
1000 Genomes + Study-Specific 6,259 1,285

In this study, | will compare the distribution of minor allele frequencies (MAFs) between
the cosmopolitan reference panel from 1000 Genomes, the study-specific reference panel from
Samoan sequencing data, and the previous imputation conducted by Minster et al. in 2016 (Figure
1B). I will then determine the minimum number of sequenced Samoans necessary to include with
a cosmopolitan reference panel to achieve accurate imputation quality of Samoan genotypes by
analyzing average r? values for variants on chromosomes 5 and 21. I will also examine the differ-
ence in allele frequencies between previously discovered variants in CREBRF (rs373863828) and
BTNLO (rs200884524) on chromosome 5 when imputing with different numbers of Samoans (Fig-
ure 1C). The reference panels will be based on sequencing data from 1,285 Samoans and individ-
uals from 1000 Genomes Phase 3 (Figure 1A).

The public health aim of this analysis is to provide better imputation results for future ge-
netic studies on Samoans by incorporating Samoan-specific variants in an otherwise cosmopolitan
haplotype reference panel Higher density of Samoan-specific alleles allows more straightforward
fine mapping of rare variants such as the previously described variants in CREBRF and BTNLO.
Increased genotyping accuracy will help understand disease etiology, risk, prevention, diagnosis
and treatment (Molster et al., 2018). Also, by incorporating genomics techniques in a public heath-
focused study on a population isolate, we can improve the genomic literacy of the public to further
inform, educate, and empower people about health issues (McWalter & Gaviglio, 2015) thereby

appropriately integrating genomic technologies into all aspects of healthcare (Bowen et al., 2012).



2.0 Methods

2.1 Participants, Phenotypes, and Genotypes

GWAS data statistics and WGS data are from a study conducted in 2010 by Hawley and
colleagues (Hawley et al., 2014). This study aimed to assess the prevalence of adiposity and car-
diometabolic genetic risk factors, specifically in Samoans. This study recruited 3,475 participants
ranging from 24.5 to 65 years old (1,437 male; 2,038 female). Recruitment criteria involved par-
ticipants from 33 villages located in the independent nation of Samoa who have four grandparents
of Samoan origin, are non-pregnant, have no physical or cognitive impairment, and can complete
an interview. Sample collection methods include fasted early morning blood samples, anthropo-
metric measurements, blood pressure, and body composition. All participant recruitment, charac-
terization, and genotyping described in this study were conducted by researchers who now com-
prise the Obesity, Lifestyle, and Genetic Adaptations (OLaGA; “life* in Samoan) Study Group.

Body mass index (BMI) was calculated using weight divided by the square height in me-
ters. Serum samples were obtained after a 10 h fast in 10 ml vacutainers spray-coated with silica-
containing polymer gel to separate the serum later stored in a —40 °C environment. LDL and HDL
levels were determined using enzymatic in vitro tests on a Roche automated analyzer executing
the glucose hexokinase method (H.U. Bergmeyer, K. Gawehn, 1974). Both verbal and signed con-
sent was given through signed consent form, spoken and written in Samoan and English, which
included uploading their genetic data to the Database of Genotypes and Phenotypes (dbGaP). The
Brown University Institutional Review Board and the Health Research Committee of the Samoan

Ministry of Health approved consent. Twenty-nine participants were later excluded based on the



inclusion criteria, and two based on incomplete data, totaling the study population to 3,475 partic-
ipants. Of these participants, 91.1% provided a blood sample, and 84.6% provided a fasted serum
sample. To better understand the genetic factors influencing BMI in Samoans, the OLaGA study
group genotyped a discovery sample of 3,298 samples (3,194 participants, 34 duplicates, and 70
controls) using the Genome-Wide Human SNP Array 6.0 (Affymetrix, California, USA). Standard
quality control measures were used, such as removal of probes with greater than 5% missingness,
sex validation, relatedness, population substructure, discordance, and controlling for batch effects
(Gogarten etal., 2012; Laurie et al., 2010). After quality control, complete phenotype and genotype
data are available for 3,072 participants. Genotype data were phased using Eagle followed by im-
putation with the 1000 Genomes Phase 3 reference panel.

Ninety-six individuals underwent targeted sequencing on a 1.5 Mb region around the mis-
sense variant rs12513643 on chromosome 5¢35.1. This site was highly associated with BMI
(p =5.3 x 1014 and was replicated (p = 1.2 x 107°) in 2,103 participants from previous studies
(Minster et al., 2016). Sequencing data was imputed using SHAPEIT and IMPUTE2 against the
December 2013 1000 Genomes Project Phase 1 Integrated variant set release haplotype reference
panel. Initial imputation yielded poor accuracy results when imputing on a cosmopolitan haplotype
panel, therefore a Samoan-based reference panel is necessary for accurate imputation. A subset of
the discovery cohort (n = 1,285) underwent WGS by the National Heart, Lung, and Blood Institute
(NHLBI) TOPMed Consortium (Minster et al., 2016). Sequencing data from these previous anal-
yses were used to create a study-specific imputation panel containing 1,285 sequenced Samoans
and 4,974 individuals from 1000 Genomes primarily of European ancestry, referred to as the mas-

ter reference panel.



2.2 Analysis

All analysis was conducted on the University of Pittsburgh School of Public Health De-
partment of Human Genetics’ high-performance computational cluster, dubbed the GATTACA
cluster. This cluster hosts the resources necessary to handle large amounts of imputation data.
Phenotypic data from the three cohorts were imported into R. Each cohort contained subject iden-
tification numbers, age, sex, and BMI fields. The distribution of sex for each cohort was compared
against age to visualize distribution. The BMI and HDL levels distribution was stratified by sex

and regressed against age.

2.2.1 Previous Genotyping: Scaffold and Imputation

The OLaGA Study had previously created an imputation scaffold containing the genotype
data from the Affymetrix 6.0 array used in their study and imputed participants of a targeted WGS
study against the 1000 Genomes Project Phase | integrated variant set release haplotype reference
panel. Pre-phasing of sequencing samples was performed using SHAPEIT and imputed using IM-
PUTEZ2. For each sequence variant contained in the scaffold, I extracted the MAFs and imputation
r2 values from the imputation variant call format (VCFs) files using bcftools query and visualized
them using R. I calculated MAFs using bcftools query to pull the AC and AN from each variant
and divide AC over AN to obtain the allele frequencies at each variant. Allele frequencies that
were greater than 0.5 were flipped by subtracting their frequency by 1. The total number of variants
with each MAF was calculated using Unix sort and uniq functions. | then plotted the MAFs in the
scaffold and compared them against a subset of the master reference panel containing only the

Samoan study participants.



Previous imputations on the targeted WGS participants of the OLaGA study were con-
ducted by Minster et al., referred to as the discovery set. Imputation was performed against the
December 2013 1000 Genomes Project Phase | Integrated variants set release haplotype panel. |
pulled the chromosome number, base pair position, MAF, and r? values from each VCF using
bcftools query. | calculated the number of variants at each MAF using the Unix tools sort and uniq
and imported them into R. I plotted the MAFs for the discovery set separately as counts. Then, |
compared MAFs in the discovery set to the MAFs found in the Samoan-only reference panel,

stratified by an r? threshold of 0.8.

2.2.2 Creation of Study-Specific Imputation Panels

The master reference panel contains phased haplotype data from 1000 Genomes, and the
1,285 sequenced Samoans from the OlaGA study. To better understand the distribution of the allele
frequencies, | partitioned the master reference panel using bcftools to obtain two datasets, one of
just Samoan participants and one of 1000 Genomes participants. | used sample 1D lists containing
Samoan and 1000 Genomes ID numbers as the --samples-file parameter in bcftools query to do the
partitioning. | calculated MAFs for each variant in both datasets using bcftools and Unix com-
mands. | used bcftools query to pull the AC (total alternate, or minor, allele count) and AN (total
alleles called in genotype) from each variant and divide AC over AN to obtain the allele frequency
at each variant locus. Allele frequencies that were greater than 0.5 were flipped by subtracting

their frequency by 1.



2.2.3 Imputing a Subset of Samoans Within a Cosmopolitan Reference Panel

| converted the phased haplotype data from the master reference panel, which includes the
1000 Genomes and the 1,285 sequenced Samoan participants, to vcf format and compressed using
bcftools to prepare the data for imputation. The first step of imputing the haplotype data against
the master reference panel | performed using Minimac3 (Das et al., 2016), creating a customized
Minimac3 vcf file (m3vcf). Parameters for Minimac3 included parallel processing on five com-
puter processing units (CPUs) with 20 GB of random-access memory (RAM). Lastly, | performed
imputation using Minimac4 on the m3vcf against the Affy 6.0 array scaffold and using the —
allTypedSites parameter with a chunk length of 10 Mb and an overlap of 3 Mb on 10 CPUs.

| conducted serial imputations, each based on the 1000 Genomes as a cosmopolitan core,
with successively higher numbers of Samoan individuals included in the haplotype reference
panel. Increasing the number of Samoan individuals included in the master reference panel will
change the variants and allele frequencies found in that panel and improve how well imputation
performs. | imputed using 0, 1, 24, 48, 96, 384, and 1,285 individuals on chromosome 5, and 0, 1,
4,6, 12, 24, 48, 96, 384, and 1,285 individuals on chromosome 21. The individuals included were
not random; instead, the Samoan participants were ranked by “informativeness” of their haplotype
information. To visualize the effects of imputation accuracy for each increase of Samoan individ-
uals to the reference panel, each log file was filtered to MAF and r? fields where each variant must
have a MAF more significant than 0. Then, | calculated the average r? values for each MAF, strat-
ified by the number of Samoans included in that imputation, and analyzed imputation accuracy at

low MAF.



2.2.4 Allele Frequency Analysis of CREBRF & BTNL9

| identify differences in allele frequencies in the previously discovered variants in the
CREBRF (5035.1) and BTNL9 (5¢935.3) gene in addition to analyzing imputation accuracy
(Minster et al., 2016). A set of 0, 24, 48, 96, 384, and 1,285 Samoans are included in a cosmopol-
itan haplotype panel and imputed independently on chromosome 5. Genotype frequencies were
calculated from the imputed genotypes from the vcf file generated by Minimac4 using Perl. Gen-
otype frequencies are compared from the study-specific panels and the imputed study-specific
panels to analyze how accurate imputation is performed at these variants with varying numbers of

Samoans.
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3.0 Results

3.1 Phenotype Data

All GWAS statistics and imputation analyses were conducted on the University of Pitts-
burgh Graduate School of Public Health Department of Human Genetics’ high-performance com-
putational cluster, GATTACA.

Sex and age distribution was calculated from the GWAS data obtained from the OLaGA
study. This study contained a sample size of 3,092 participants (1,247 male and 1,845 female) with
an average age of 45.34 years and 44.69 years and average BMI levels of 31.31 and 34.90, respec-
tively, with a correlation coefficient of 0.101 between male and female participants between age
and BMI. HDL data were extracted from 1,211 male and 1,039 female participants with average
levels of 44.14 mg/dL for male and 42.43 mg/dL for female participants, and a correlation coeffi-

cient of —0.248 between age and HDL.

3.2 Samoan and 1000 Genomes Haplotype Panel Comparisons

The master reference panel of the phased haplotype data from 4,974 1000 Genomes and
1,285 sequenced Samoan study participants contained 53,775,719 and 10,870,873 variants located
on chromosomes 5 and 21 respectively. To compare the MAFs between the two panels I split them
into two separate datasets. MAFs from each set were visualized as counts, with distribution highly

skewed to the right because high MAF variants are much less common. The correlation of MAFs
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between the 1000 Genomes and Samoan reference panels was visualized using R tidyverse and
ggplot packages (Figure 2). Pearson’s product-moment correlation of MAFs between these two
panels was 0.791 on chromosome 5 (95% confidence interval 0.785, 0.797) and 0.782 on chromo-
some 21 (95% confidence interval 0.775, 0.788). Because there were more participants in the
1000 Genomes panel vs. the Samoan panel (4,975 and 2,953 respectively), there was a lot higher
frequency of MAFs in the 1000 Genomes panel compared to the Samoan panel; however, the dis-
tribution of those frequencies was noted to be similar. With the majority of MAFs between 0.0002

and 0.00025 for both panels.

Chromosome 5 Chromosome 21

05

o
@

Samoan Panel MAF

4V |eued ueoweg

0.0 0.1 0.2 03 0.4 05 00 0.1 0.2 03 04
1000Genomes Panel MAF 1000Genomes Panel MAF

Figure 2. Comparison of panel MAFs
The 1000 Genomes panel (x axis) and the Samoan study-specific panel (y axis) on chromosome 5 (left) and

21 (right).

3.3 Scaffold and Previous Imputation Analysis

The Affymetrix (Affy) 6.0 imputation scaffold contained the genotype information for par-
ticipants of the OLaGA study. There are 55,764 and 12,387 variants on chromosomes 5 and 21 on

this scaffold. MAFs for the affy scaffold were plotted as counts, and the distribution of MAFs was
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similarly skewed like the reference panel. The correlation of MAFs between the Affy scaffold (n =
1,834) and Samoan reference panels (n = 1,285) was visualized (Figure 3). These two datasets,
were checked to observe how similar the allele frequencies were between the genotyped and se-
quenced Samoan participants. Pearson’s product-moment correlation of MAFs between these two
panels was 0.9978 on chromosome 5 (95% confidence interval 0.9976, 0.9979) and 0.9966 on
chromosome 21 (95% confidence interval 0.9964, 0.9968). This very high correlation can be ex-
plained by both panels containing just Samoan participants of known Samoan ancestry; therefore,

we expect the MAFs for each variant to be relatively the same.

Chromosome 5 Chromosome 21

Samoan Panel MAF
4V |eued ueowes

0.0

0.2 03 0.4 0.5 0.0 0.1 0.2 0.3
Affymetrix Scaffold MAF Affymetrix Scaffold MAF

04 05

Figure 3. Comparison of scaffold and panel MAFs

The Affymetrix scaffold (x axis) and the Samoan specific panel (y axis) on chromosome 5 (left) and 21 (right).

Previous imputations on the genotyped Samoan individuals who were separated from the
WGS subset of the OLaGA study were conducted by Minster et al., referred to as the discovery
set. In the discovery imputation set, there are 3,392,329 and 727,199 variants on chromosomes 5
and 21 respectively from 5,623 participants; 3,119 genotyped Samoans and 2,504 samples from
1000 Genomes. MAFs were then compared from the existing imputation discovery set against the
master reference panel containing only the 1,285 Samoan participant data, excluding

13



1000 Genomes data (Figure 4). The MAFs between the previous imputation set and the reference
panel containing only Samoans were expected to be highly correlated, which is why | excluded
1000 Genomes data. The variants from the discovery set were joined with the variants from the
Samoan panel by base pair position and plotted, stratifying by r? values above or below 0.8. | found
605,490 variants with an r? value below 0.8 and 955,688 variants above 0.8 r?. The discovery set
was highly correlated with the Samoan-only panel, with a coefficient of 0.9987 and 0.9988 on

chromosomes 5 and 21 respectively.
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3.4 Serial Imputations

Decreasing the number of Samoan individuals included in the master reference panel will
change the variants and allele frequencies found in that panel, changing how well imputation per-
forms. Imputation was repeated using a subset of 0, 1, 24, 96, 48, 384, and 1,285 Samoan individ-
uals on chromosome 5 (Figure 5) and 0, 1, 4, 6, 12, 24, 48, 96, 384, and 1,285 Samoans on chro-
mosome 21 (Figure 6). Chromosome 21 was imputed with a wider array of individuals to further
narrow down the number of individuals to include in a cosmopolitan haplotype panel to achieve
accurate imputation. This chromosome was chosen for extra imputations due to the time saved of
running imputation on a much smaller set of variants. The selection of samples used was not per-
formed randomly; instead, the Samoan participants were ranked by “informativeness” of their hap-
lotype information. Imputation analysis used data obtained from Minimac4 .log files, which con-
tain a summary of imputation statistics such as SNP coordinates, reference, and alternative alleles,
MAF, average call rate, and r? statistic. The r? statistic is crucial because it explains how well that
variant is imputed. Minimac3 defines this value as the estimated correlation between imputed gen-
otypes and true, unobserved genotypes, calculated by observed dosage variance over the expected
dosage variance, given observed allele frequency, and assuming Hardy—Weinberg equilibrium
(Das et al., 2016). As more Samoans are added to the reference panel with 1000 Genomes, impu-

tation accuracy increases at every MAF, especially at frequencies below 1%.
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illustrated with dotted line.
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Figure 6. Imputation accuracy of chromosome 21 across MAFs
Imputations using 0, 1, 4, 6, 12, 24, 48, 96, 384, and 1,285 Samoans within the 1000 Genomes haplotype panel. 1%

MAF illustrated with dotted line.

For imputation of rare variants (MAF =1%), the inclusion of 48 Samoans within the
1000 Genomes panel achieved accurate imputation with an r? value of 0.816 across all variants in
chromosome 5. For chromosome 21, the inclusion of 384 Samoans within the 1000 Genomes panel
achieved similar imputation accuracy at a MAF = 1% with r 2= 0.814. However, when increasing
the MAF threshold to 1.3%, you will get accurate imputation with 96 Samoans with an r?= 0.798
on chromosome 21. Complete information involving imputation accuracy across a variety of

MAFs is contained in appendix tables 1 and 2.
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Table 2. Imputation accuracy of chromosome 5 at MAF = 1%

Samoans Added Mean r?

0 0.432

1 0.423

24 0.677
48 0.816

96 0.831
384 0.938
1,285 0.912

Table 3. Imputation accuracy of chromosome 21 at MAF = 1%

Samoans Added Mean r?

0 0.358

1 0.293

4 0.395

6 0.287

12 0.675
24 0.760
48 0.747
96 0.704
384 0.813
1,285 0.886

3.5 Genotype Effects of CREBRF and BTNL9 Variants with Different Number of Imputed

Samples

Chromosome 5 is a chromosome of interest due to previously identified variants in
CREBRF and BTNLS9 that are largely specific to the people of Samoa (Minster et al., 2016). To
analyze the effects of imputation on a varying number of individuals added to a cosmopolitan

reference panel, | looked at the genotypes from these variants in both the imputed and unimputed
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panels. Table 4 demonstrates that imputation successfully predicted the genotype frequencies of
CREBRF from the panel with 24 Samoans added. These imputed genotypes equate to a MAF of
~0.28 (r?=0.99894), which is similar to what Minster et al. discovered in 2016 where the study
determined a 0.276 MAF at this variant. Unfortunately, this variant was not seen in the haplotype
of the one Samoan individual included in the 100Genomes reference panel. However, imputation
on the BTNL9 variant contained results for the reference panel containing one Samoan. For this
variant, there is high imputation accuracy across every subset of Samoans added to the haplotype
panel (Appendix B). Genotype frequencies also stay consistent across every panel (Table 4) lead-
ing to suggest that only one individual may be necessary to impute common variants that are pop-
ulation specific. Therefore, with these results and the results from Table 2, imputation performs
accurately with only 48 individuals added to the 1000 Genomes reference panel for rare variants
(MAF ~ 1%), and 24 individuals added for accurate imputation of common variants (MAF > 5%)

depending on chromosome.

Table 4. Genotype frequencies of the rs373863828 in CREBRF and rs200884524 in BTNL9

Samoans Added 1 24 48 96 384 1,285
CREBRF (genotyped) GG 100.0% 99.5% 99.0% 98.3% 94.0% 84.2%
GA 0.0% 0.39% 0.08% 1.4% 5.0% 13.1%

AA 0.0% 0.0008% 0.002% 0.3% 1.0% 2.7%

BTNL9 (genotyped) CC 99.9% 99.8% 99.0% 98.5% 94.8% 86.5%
CT 0.1% 0.2% 0.8% 1.2% 4.5% 11.7%

TT 0.0% 0.0% 0.2% 0.3% 0.7% 1.8%

CREBRF (imputed) GG 100.0% 52.1% 52.2% 52.1% 52.1% 52.2%
GA 0.0% 39.5% 39.4% 39.5% 39.5% 39.4%

AA 0.0% 8.4% 8.4% 8.4% 8.4% 8.4%

BTNL9 (imputed) CC 63.2% 61.4% 61.8% 62.5% 60.9% 60.9%
CT 31.6% 32.8% 32.5% 32.2% 33.3% 33.4%

TT 5.2% 5.8% 5.7% 5.3% 5.8% 5.7%
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4.0 Discussion

In this study, I combined increasing numbers of individuals of Samoan ancestry with the
1000 Genomes imputation panel to impute GWAS data and observe imputation accuracy. GWASs
have provided excellent coverage for European ancestry populations for over ten years. Using
population-specific reference panels will lead to better imputation. This experiment shows that the
inclusion of 48 individuals in a population-specific reference panel will lead to higher imputation
accuracy than using strictly cosmopolitan reference panels.

Phenotypes from the Obesity, Lifestyle and Genetic Adaptations (OLaGA,; “life” in Sa-
moan) study in 2010 were visualized and used to create summary statistics to understand the
GWAS data distribution better. | found that the study contained a higher number of women than
men, who had a higher average BMI. Sex would not affect imputation accuracy, as the chromo-
somes analyzed are autosomal, however phenotypic effects of rare variants potentially have a dif-
ferent effect size based on sex due to gene by environment interactions.

WGS on 1,285 participants provided sequencing data to create a study-specific haplotype
reference panel specific to the Samoan haplotypes. This information was combined with the
1000 Genomes Phase Il haplotype reference panel to create a custom imputation panel, containing
both Samoan-specific haplotypes with common haplotypes found in most European samples,
which was beneficial for the accurate imputation of genotyped Samoans. Chromosome-wide MAF
distribution did not appear to differ between these two panels when analyzed as separate datasets.
However, more individuals were included in the 1000 Genomes panel compared to the Samoan-
specific panel. The Affymetrix (Affy) 6.0 Array was used for genotyping Samoans from the
OLaGA study and the creation of the imputation scaffold. Scaffolds are phased genotype data that
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do not include many variants and have substantial gaps of genetic information along the genome.
These serve as the ‘target’ genotypes compared against the reference panel that will fill in these
gaps during imputation.

When conducting the imputation accuracy comparisons between certain thresholds of Sa-
moans added to a cosmopolitan panel, there are a few reasons I included certain thresholds. Impu-
tation panels containing one and all Samoan participants were chosen as the extremes. Next, 384
of the top participants were selected as a rough quartile of the total number of individuals. Next,
96 individuals were chosen because that is the number of samples that comprise one well plate for
genotyping. Then, a panel of 48 and 24 Samoans was chosen to narrow down imputation accuracy
because | hypothesized the minimum number of Samoans would be around this number. And
lastly, an imputation panel containing only one Samoan individual is compared. Chromosome 21
saw extra imputations with 12, 6, and 4 Samoan individuals added. This is because there are con-
siderably fewer variants on chromosome 21 compared to chromosome 5, and it is possible to ob-
serve the behavior of imputation accuracy at more precise measurements while taking advantage
of faster processing due to considerably fewer variants on this chromosome. Based on the results,
there is a large increase in imputation accuracy between the single Samoan dataset and 96 datasets,
which is expected. The 96 and 384 panels achieved similar results, with the 384 Samoan panel
showing a minor increase in imputation accuracy. When looking at a rare MAF threshold (= 1%),
imputation with 48 Samoans on chromosome 5 produced a fairly accurate outcome at r?> ~ 0.816.
However, imputation with 48 Samoans on chromosome 21 produced a less accurate imputation at
r2 =~ 0.747. This is possibly the result of chromosome 21 having 874,736 variants with a MAF
greater than 0, while chromosome 5 has 3,865,258 variants with a MAF greater than 0. Imputation

accuracy also correlates with MAF (Appendix A) where common variants are much more likely
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to be accurately imputed even against a small haplotype panel. Therefore, imputation performs
accurately with only 48 individuals added to the 1000 Genomes reference panel for rare variants
(MAF = 1%), and 24 individuals added for accurate imputation of common variants (MAF > 5%)
depending on chromosome.

With the inclusion of ancestry group-specific haplotypes from these individuals, research-
ers can appreciate sequencing fewer individuals for genotyping studies on other ancestral popula-
tions. Haplotypes found in the 1000 Genomes panel will carry the bulk of the imputation burden
and have the rarer alleles genotyped more accurately by referencing the haplotypes from the Sa-
moan data within the combined panel. This results in a lowered study cost by maintaining high
statistical power through large sample sizes while also performing WGS on a small number of
individuals. Applications for this method include standard GWAS experiments, gene-set enrich-
ment analysis, and expression quantitative trait loci (eQTL) mapping via transcriptome imputation.

There are some limitations to this study. This analysis was originally set to contain infor-
mation from the TOPMed consortium. However, | was unable to perform imputation with the
TOPMed panel included with 1000 Genomes and the Samoan data due to too many samples within
that dataset. Therefore, the imputation analysis was conducted on the panel of the Samoan partic-
ipants with the 1000 Genomes panel. This most likely will impact the imputation accuracy; how-
ever, there are still many different haplotypes within this reference panel to obtain meaningful
results. The TOPMed panel contains a few individuals of Polynesian ancestry, which would have
influenced imputation as this panel is not strictly cosmopolitan. A solution to this would have been
removing these identified individuals in the TOPMed reference panel, but this was not necessary
as it was not used for imputation. Only chromosomes 5 and 21 were imputed due to time restraints.

However, | expect similar results to imputation genome-wide, and that data is available for
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genome-wide analysis in the future. Lastly, it would be helpful to have the sequencing data for all
imputed data to confirm allele frequencies for rs200884524 and rs373863828. Instead, | have the
imputation statistics data from the imputation software to base accuracy on.

This study has broad public health implications despite being a computationally focused
analysis. This panel will provide better imputation results for future GWAS studies on Samoan
ancestry because it includes a higher density of Samoan-specific alleles allowing more straightfor-
ward fine mapping of rare variants. Specifically, a recently discovered variant in CREBRF is pos-
sibly associated with higher BMI and lower risk of type 2 diabetes. Obesity is a result of both
highly polygenic and environmental factors such as food availability and exercise and is highly
prevalent in Samoa. However, cases of type 2 diabetes remain lower than expected. rs373863828
within CREBRF and rs200884524 within BTNL9 are hypothesized to be protective of type 2 dia-
betes despite increased risk from higher average BMI. These variants are found in high frequency
within individuals of Samoan ancestry but not within the wider Polynesian group, suggesting ge-
netic drift due to founder and bottleneck effects. Increased genotyping accuracy will help under-
stand disease etiology, risk, prevention, diagnosis and treatment (Molster et al., 2018). Also, by
incorporating genomics techniques in a public heath-focused study on a population isolate, we can
improve the genomic literacy of the public to further inform, educate, and empower people about
health issues (McWalter & Gaviglio, 2015) thereby appropriately integrating genomic technolo-
gies into all aspects of healthcare (Bowen et al., 2012).

In future studies, the creation of a study-specific haplotype reference panel for imputing
genotypes is a cost-effective strategy for large-scale genome-wide analyses. In this study, | demon-
strated that the inclusion of 48 Pacific Islanders within a cosmopolitan imputation panel provides

enough haplotype information for adequate imputation accuracy in a Samoan study group.
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However, this discovery may not contain a definitive number for all underrepresented populations,
as the size of linkage disequilibrium (LD) blocks varies all around the world. This study could

serve as an estimate for the number of individuals to sequence when conducting studies on popu-

lation isolates.
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Appendix A Summary of MAFs and r? values

Table 5. Summary of imputation accuracy across chromosome 5

SNPs
Samoans .- -
Added MAF r?2>0.3 r2>0.8

0 0%-1% 94% 53%
1%-5% 71.7% 37.5%
5%-50% 99.4% 88.9%

1 0%-1% 106% 5.4%
1%-5% 74.7% 40.5%
5%-50% 99.6% 90.1%

24 0%-1% 13.0% 6.7%
1%-5% 95.9% 74.1%
5%-50% 99.9% 97.8%

48 0%-1% 14.8% 8.3%
1%-5% 98.5% 84.2%
5%-50% 99.9% 99.1%

96 0%-1% 17.9% 10.6%
1%-5% 99.4% 90.7%
5%-50% 99.9% 99.6%

384 0%-1% 28.3% 19.7%
1%-5% 99.9% 97.5%
5%-50% 99.9% 99.9%

1,285 0%-1% 33.5% 24.6%
1%-5% 99.9% 97.1%
5%-50% 99.9% 99.9%
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Table 6. Summary of imputation accuracy across chromosome 21

Samoans SNPs
Added MAF

r’>03 r?>0.8

0 0%-1%  9.0% 4.0%
1%-5% 66.4% 31.9%
5%-50% 98.5% 83.5%

1 0%-1% 91% 4.1%
1%-5% 69.4% 35.7%
5%-50% 98.8% 84.5%

4 0%-1%  9.6% 4.5%
1%-5% 76.9% 45.3%
5%-50% 99.3% 88.4%

6 0%-1% 9.8% 19.7%
1%-5% 80.9% 50.2%
5%-50% 99.4% 90.0%

12 0%-1% 10.3% 4.9%
1%-5% 87.6% 58.9%
5%-50% 99.7% 92.9%

24 0%-1% 11.1% 5.4%
1%-5% 92.9% 69.3%
5%-50% 99.8% 95.8%

48 0%-1% 12.8% 6.6%
1%-5% 96.8% 80.3%
5%-50% 99.9% 97.6%

96 0%-1% 154% 8.4%
1%-5% 98.5% 86.8%
5%-50% 99.9% 98.5%

384 0%-1% 24.2% 15.9%
1%-5% 99.5% 94.4%
5%-50% 99.9% 99.2%

1,285 0%-1% 28.9% 21.2%
1%-5% 98.8% 94.7%
5%-50% 99.9% 98.9%
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Appendix B Minor Allele Frequencies of CREBRF and BTNL9
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Figure 7. MAF of rs373863828 in CREBRF in the 1000 Genomes panel + Samoans.
R? imputation accuracies for 1 Samoan (0), 24 Samoans (0.99894), 48 Samoans (0.99905), 96 Samoans (0.99911),

384 Samoans (0.99951), and 1285 Samoans (0.99870).
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Figure 8. MAF of rs200884524 in BTNL9 on the 1000 Genomes panel + Samoans.
R? imputation accuracies for 1 Samoan (0.92108), 24 Samoans (0.91276), 48 Samoans (0.86967), 96 Samoans

(0.91062), 384 Samoans (0.94567), and 1285 Samoans (0.93106).
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Appendix C Distribution of Variant Counts
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Figure 9. Counts of variants per chromosome in the 1000 Genome + Samoa master reference panel
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Figure 10. Counts of variants per chromosome on the Affymetrix 6.0 scaffold
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chromosome 5
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Appendix D Code

4.1 R Code

4.1.1 App.R

Below is the code used for the Ul and server functions of the dashboard.

#

# Kevin Anderson

# kja34@pitt.edu

#

# HUGEN M.S GB Capstone - Descriptive Statistics and Visualization
#

# Main server file for the descriptive statistics dashboard. Contains Ul and server functions.
H

H

#

H

# THIS IS THE LIBRARY SECTION - SHHHHHH!

#

library(shiny)
library(ggplot2)
library(tidyverse)
library(DT)
library(shinythemes)
library(psych)
library(shinyalert)
library(scales)

#

H

# Load helper functions
H

source("getStats.R")
source("getMAF.R")

#

H

# Ul

H.
H

ui <- fluidPage(theme = shinytheme("flatly"),
sidebarLayout(
sidebarPanel(width = 2,
conditionalPanel(condition = "input.myTabs == 1",
radioButtons("cohortSel", "Choose cohort group",
c("1990" = "cohort1990",
"2002" = "cohort2002",
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"2010" = "cohort2010",
"All" ="all")),
sliderIinput("binSlider", "Set bins for histograms",
min = 10, max = 100, value = 50)
), # end of conditionalPanel

conditionalPanel(condition = "input.myTabs == 2",
selectinput("chrSel", "Select chromosome",
choices = ¢(1:22, 'X"))
), # end of conditionalPanel

conditionalPanel(condition = "input.myTabs == 3",
selectinput("chrSel_Scaffold", "Select chromosome",
choices = ¢(1:22))
), # end of conditionalPanel

conditionalPanel(condition = "input.myTabs == 4",
selectinput("chrSel_Imputation", "Select chromosome",
choices = ¢(1:22, 'X'))
), # end of conditionalPanel

), # end of sidebarPanel
mainPanel(
taglist(tagsShead(tagsSscript(type="text/javascript", src = "code.js")),
navbarPage("Samoan Genotype Data", id = "myTabs", position = "static-top",
tabPanel("Phenotypes", value = 1,
fluidRow(h3("Sex and Age Distribution"),
column(3, dataTableOutput("sexTable")),
column(9, plotOutput("ageHist"),
actionButton("ageStats", "Get age statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4"))
), # end of fluidRow

fluidRow(h3("BMI Distribution"),
column(6, plotOutput("bmiHist"),
actionButton("bmiStats", "Get BMI statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4")),
column(6, plotOutput("bmiScatter"))
), # end of fluidRow

fluidRow(h3("HDL Distribution"),
column(6, plotOutput("hdIHist"),
actionButton("hdIStats", "Get HDL statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4")),
column(6, plotOutput("hdIScat"))
), # end of fluidRow
), # end of tabPanel

# Tried doing per sample tests using "bcftools query’ however there are too many samples to generate an
# output that is able to be read
# for X in *.bcf; do bcftools query -f '%CHROM %POS %AN %AC{O}\n' $SX | awk '{printf "%s %s %f\n",$1,52,54/$3} >
/home/kja34/capstoneStats/SX.txt; done
tabPanel("Reference Panels", value = 2,
fluidRow(h3("Samoa + TOPMed + 1000 Genomes Panels"),
column(6, plotOutput("mafHist"),
selectinput("limSet", "Select right limit",
choices = ¢(.00001, .0001, .001, .01, .1, .5),
selected =.001),
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actionButton("mafStats", "Get variant statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4")),
column(6, plotOutput("mafScat")),
), # end of fluidRow

fluidRow(
column(6, h3("Samoan Panel"),
plotOutput("mafHist_samoa"),
selectinput("limSetSamoan", "Select right limit",
choices = ¢(.00001, .0001, .001, .01, .05, .1, .5),
selected =.05),
actionButton("mafStatsSamoan", "Get variant statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4")),
column(6, h3("1000 Genomes Panel"),
plotOutput("mafHist_1000g"),
selectinput("limSet1000g", "Select right limit",
choices = ¢(.00001, .0001, .001, .01, .05, .1, .5),
selected =.05),
actionButton("mafStats1000g", "Get variant statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4d"))
), # end of fluidRow

fluidRow(
column(6, h3("COMING SOON - Individual Samoan statistics")),
), # end of fluidRow
), # end of tabPanel

tabPanel("Scaffold", value = 3,
fluidRow(h3("Affymetrix Scaffold"),
column(6, plotOutput("affyHist"),
actionButton("mafStatsAffy", "Get variant statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4"),
selectinput("limSetAffy", "Select right limit",
choices = ¢(.00001, .0001, .001, .01, .05, .1, .5),
selected =.05)),
column(6, plotOutput("affyScat")),
),
), # end of tabPanel

tabPanel("Existing Imputation", value = 4,
fluidRow(h3("Existing Imputation - Replication"),
column(6, plotOutput("replicationHist"),
actionButton("mafStatsReplication", "Get variant statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4"),
selectinput("limSelReplication", "Select right limit",
choices = ¢(.00001, .0001, .001, .01, .05, .1, .5),
selected =.05)),
column(6, plotOutput("imputationScatReplication")),
), # end of fluidRow

fluidRow(h3("Existing Imputation - Discovery"),
column(6, plotOutput("discoveryHist"),
actionButton("mafStatsDiscovery", "Get variant statistics",
style="color: #fff; background-color: #104e8b; border-color: #2e6da4"),
selectinput("limSelDiscovery", "Select right limit",
choices = ¢(.00001, .0001, .001, .01, .05, .1, .5),
selected =.05)),
column(6, plotOutput("imputationScatDiscovery")),
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), # end of fluidRow
) # end of tabPanel
) # end of navbarPage
) # end of taglList
) # end of mainPanel
) # end of sidebarLayout
) # end of fluidPage

#

H

# Server
H

H

server <- function(input, output, session) {

# Load GWAS data

load("/home/rminster/MSGB_Imputation_Projects/1990 BMI-phenotype.RData")
load("/home/rminster/MSGB_Imputation_Projects/2002_BMI-phenotype.RData")
load("/home/rminster/MSGB_Imputation_Projects/2010_BMlI-phenotype.RData")
load("/home/rminster/MSGB_Imputation_Projects/Samoan_Discovery_Phenotype_v3_2020-01-13.RData")
replication_phenotypes <- read.table("/home/rminster/MSGB_Imputation_Projects/replication-phenotypes.txt", header = T)

#

H

# Phenotype Statistics
H

H

# Sex

# This observeEvent listens for the selection of the radio button cohortSel

# Sends the appropriate table to the output variable in the Ul which displays on app
observeEvent(inputScohortSel,{

# reads in sex column from each dataset

sex1990 <- annotDat_1990@datal["sex"]]
sex2002 <- annotDat_2002 @datal[["sex"]]
sex2020 <- annotDat_2020@data[["sex"]]

#if and if else statements determining which graphs to display based on cohortSel
if(inputScohortSel == "cohort1990"){
sex1990df <- as.data.frame(table(sex1990)) %>%
add_column(Prop = ¢(0.568, 0.468)) %>%
rename(Sex = sex1990) %>%
mutate(Sex = as.numeric(Sex))

sex1990dfS$Sex[sex1990dfS$Sex == 1] <- "Female"
sex1990df$Sex[sex1990dfSSex == 2] <- "Male"

outputSsexTable <- renderDataTable({
datatable(sex1990df,
options = list(dom ='t'),
rownames = FALSE)
)
} else if(inputScohortSel == "cohort2002"){
sex2002df <- as.data.frame(table(sex2002)) %>%
add_column(Prop = ¢(0.545, 0.455)) %>%
rename(Sex = sex2002) %>%
mutate(Sex = as.numeric(Sex))

sex2002df$Sex[sex2002dfS$Sex == 1] <- "Female"
sex2002df$Sex[sex2002dfS$Sex == 2] <- "Male"
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outputS$sexTable <- renderDataTable({
datatable(sex2002df,
options = list(dom ="t'),
rownames = FALSE)
)
} else if(inputScohortSel == "cohort2010"){
sex2020df <- as.data.frame(table(sex2020)) %>%
add_column(Prop = ¢(0.596, 0.403)) %>%
rename(Sex = sex2020) %>%
mutate(Sex = as.numeric(Sex))

sex2020dfS$Sex[sex2020dfS$Sex == 1] <- "Female"
sex2020df$Sex[sex2020dfS$Sex == 2] <- "Male"

outputSsexTable <- renderDataTable({
datatable(sex2020df,
options = list(dom ="'t'),
rownames = FALSE)
)
} else if(inputScohortSel == "all"){
Sex <- c("Female", "Male")
Freq <- c(2841, 2099) #total = 4940
Prop <- ¢(0.575, 0.425)
sexAllDf <- data.frame(Sex, Freq, Prop)

outputSsexTable <- renderDataTable({
datatable(sexAllDf,
options = list(dom ="t'),
rownames = FALSE)
1
}
)

# Age
# Listens for when the user clicks the button to get statistics for age
# Displays a pop-up box that shows the embedded HTML code
observeEvent(inputSageStats, {

getAgeStats()

b

# Listens for the radio button cohortSel selection

# These if and if else statements read in the appropriate columsn from each cohort's dataframe
# Manipulates the dataframe for more readable parameters for creating the plots

# Plots are interactable by allowing the user to adjust the number of bins via binSlider input
observeEvent(inputScohortSel,{

if(inputScohortSel == "cohort1990"){
age1990 <- data.frame(annotDat_1990@data[["age"]], annotDat_1990@data[["sex"]]) %>%
rename("Age" =1, "Sex" = 2)
age1990SSex[age1990SSex == 0] <- "Female"
age1990$Sex[age1990SSex == 1] <- "Male"

outputSageHist <- renderPlot({
ggplot(age1990, aes(Age, fill = Sex)) +
geom_histogram(bins = inputShinSlider, color = 'black') + # this is where the slider adjusts bins
scale_fill_manual(values=c("dodgerblue4", "#ff782a")) +
theme_minimal()

h

36



} else if(inputScohortSel == "cohort2002"){
age2002 <- data.frame(annotDat_2002@data[["age"]], annotDat_2002@data[["sex"]]) %>%
rename("Age" =1, "Sex" = 2)
age2002S$Sex[age20025Sex == 0] <- "Female"
age2002S$Sex[age2002$Sex == 1] <- "Male"

outputSageHist <- renderPlot({
ggplot(age2002, aes(Age, fill = Sex)) +
geom_histogram(bins = inputSbinSlider, color = 'black') +
theme_minimal() +
scale_fill_manual(values=c("dodgerblue4", "#{f782a"))
1
} else if(inputScohortSel == "cohort2010"){
age2020 <- data.frame(annotDat_2020@data[["age"]], annotDat_2020@data[["sex"]]) %>%
rename("Age" =1, "Sex" = 2)
age2020S5Sex[age20205Sex == 0] <- "Female"
age2020SSex[age2020$Sex == 1] <- "Male"

outputSageHist <- renderPlot({
ggplot(age2020, aes(Age, fill = Sex)) +
geom_histogram(bins = inputSbinSlider, color = 'black') +
theme_minimal() +
scale_fill_manual(values=c("dodgerblue4", "#{f782a"))
1
} else if(inputScohortSel == "all"){
age1990 <- data.frame(annotDat_1990@data[["age"]], annotDat_1990@datal["sex"]]) %>%
rename("Age" =1, "Sex" = 2)
age2002 <- data.frame(annotDat_2002@data[["age"]], annotDat_2002@data[["sex"]]) %>%
rename("Age" =1, "Sex" = 2)
age2020 <- data.frame(annotDat_2020@data[["age"]], annotDat_2020@data[["sex"]]) %>%
rename("Age" = 1, "Sex" = 2)
allAge <- rbind(age1990, age2002, age2020) # combines all of the cohorts together

allAgeSSex[allAgeSSex == 0] <- "Female"
allAgeSSex[allAgeSSex == 1] <- "Male"

outputSageHist <- renderPlot({
ggplot(allAge, aes(Age, fill = Sex)) +
geom_histogram(bins = inputShinSlider, color = 'black') +
theme_minimal() +
scale_fill_manual(values=c("dodgerblue4", "#{f782a"))
1
h

# BMI

# Displays window with statistics on BMI when the user clicks the button
observeEvent(inputSbmiStats, {
getBmiStats()

# Listens for the selection of cohorts via radio buttons

# Pulls appropriate columns from each annotated dataframe and manipulates data for plots
# Also creates scatterplot that is dependent on the cohort selection
observeEvent(inputScohortSel,{

if(inputScohortSel == "cohort1990"){
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bmil990 <- data.frame(annotDat_1990@data[["age"]], annotDat_1990@datal["sex"]], annotDat_1990@data[['BMIT1']])
%>%
rename(llAgell = 1[ ”SeX” = 2[ IIBN”II = 3)

bmi19905Sex[bmi19905Sex == 0] <- "Female"
bmi1990SSex[bmi19905Sex == 1] <- "Male"

outputSbmiHist <- renderPlot({
ggplot(bmil990, aes(BMI, fill = Sex)) +
geom_histogram(bins = inputSbinSlider, color = 'black') +
theme_minimal() +
scale_fill_manual(values=c("dodgerblue4", "#ff782a"))

b

outputSbmiScatter <- renderPlot({
ggplot(bmil990, aes(Age, BMI, color = Sex)) +
geom_point() +
geom_smooth(method=Im) + # adds regression lines
theme_minimal() +
scale_color_manual(values=c("dodgerblue4", "#{f782a")) +
ggtitle("r"2 =0.173") # calculated from cor.test()
)
} else if(inputScohortSel == "cohort2002"){
bmi2002 <- data.frame(annotDat_2002@data[["age"]], annotDat_2002@datal[["sex"]], annotDat_2002@data[['BMIT1']])
%>%
rename("Age" =1, "Sex" =2, "BMI" = 3)

bmi20025Sex[bmi20025Sex == 0] <- "Female"
bmi20025Sex[bmi20025Sex == 1] <- "Male"

outputSbmiHist <- renderPlot({
ggplot(bmi2002, aes(BM, fill = Sex)) +
geom_histogram(bins = inputSbinSlider, color = 'black') +
theme_minimal() +
scale_fill_manual(values=c("dodgerblue4", "#ff782a"))

h

outputSbmiScatter <- renderPlot({
ggplot(bmi2002, aes(Age, BMI, color = Sex)) +
geom_point() +
geom_smooth(method=Im) +
theme_minimal() +
scale_color_manual(values=c("dodgerblued", "#ff782a")) +
ggtitle("r*2 =0.111")

)
} else if(inputScohortSel == "cohort2010"){
bmi2020 <- data.frame(annotDat_2020@data[["age"]], annotDat_2020@data[["sex"]], annotDat_2020@data[['BMI']])
%>%
rename("Age" =1, "Sex" = 2, "BMI" = 3)

bmi2020SSex[bmi20205Sex == 0] <- "Female"
bmi20208Sex[bmi2020S5Sex == 1] <- "Male"

outputSbmiHist <- renderPlot({
ggplot(bmi2020, aes(BMI, fill = Sex)) +
geom_histogram(bins = inputSbinSlider, color = 'black') +
theme_minimal() +
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scale_fill_manual(values=c("dodgerblue4", "#{f782a"))

N

outputSbmiScatter <- renderPlot({
ggplot(bmi2020, aes(Age, BMI, color = Sex)) +
geom_point() +
geom_smooth(method=Im) +
theme_minimal() +
scale_color_manual(values=c("dodgerblued", "#ff782a")) +
ggtitle("rr2 = 0.101")
1
} else if(inputScohortSel == "all"){
bmil990 <- data.frame(annotDat_1990@data[["age"]], annotDat_1990@datal["sex"]], annotDat_1990@data[['BMIT1']])
%>%
rename("Age" =1, "Sex" = 2, "BMI" = 3)
bmi2002 <- data.frame(annotDat_2002@data[["age"]], annotDat_2002@data[["sex"]], annotDat_2002@data[['BMIT1']])
%>%
rename("Age" =1, "Sex" = 2, "BMI" = 3)
bmi2020 <- data.frame(annotDat_2020@data[["age"]], annotDat_2020@data[["sex"]], annotDat_2020@data[['BMI']])
%>%
rename("Age" =1, "Sex" = 2, "BMI" = 3)
alIBMI <- rbind(bmi1990, bmi2002, bmi2020)

allBMISSex[allBMISSex == 0] <- "Female"
allBMISSex[allBMISSex == 1] <- "Male"

outputSbmiHist <- renderPlot({
ggplot(allBMI, aes(BM, fill = Sex)) +
geom_histogram(bins = inputSbinSlider, color = 'black') +
theme_minimal() +
scale_fill_manual(values=c("dodgerblue4", "#{f782a"))

h

outputSbmiScatter <- renderPlot({
ggplot(allBMI, aes(Age, BMI, color = Sex)) +

geom_point() +
geom_smooth(method=Im) +
theme_minimal() +
scale_color_manual(values=c("dodgerblued", "#ff782a")) +
ggtitle("r*2 =0.124")

b

}
)

# HDL
hdIDf <- data.frame(replication_phenotypesSAGET3, replication_phenotypesSBMIT3, replication_phenotypesSHDLCT3,
replication_phenotypes$SEX) %>%
rename("Age" =1, "BMI" =2, "HDL" = 3, "Sex" = 4)

hdIDf$Sex[hdIDf$Sex == 1] <- "Female"
hdIDf$Sex[hdIDf$Sex == 2] <- "Male"

observeEvent(inputScohortSel,{
outputShdlHist <- renderPlot({
ggplot(hdIDf, aes(HDL, fill = Sex)) +

geom_histogram(bins = inputSbinSlider, color = 'black') +
theme_minimal() +
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scale_fill_manual(values=c("dodgerblue4", "#{f782a")) +
scale_x_continuous(name = "HDL (mg/dL)")

N

cor.test(hdIDfSHDL, hdIDfSAge)
outputShdlIScat <- renderPlot({

ggplot(hdIDf, aes(Age, HDL, color = Sex)) +
geom_point() +
geom_smooth(method = Im) +
theme_minimal() +
scale_color_manual(values=c("dodgerblue4", "#ff782a")) +
scale_y_continuous(name = "HDL (mg/dL)") +
ggtitle("r"2 =-0.248")
b
1

observeEvent(inputShdiStats, {
#describeBy(hdIDfSHDL, hdIDf$Sex)
getHdIStats()

)

#

H

# Reference panel statistics
H

H

# MAF (minor allele frequency)
# These functions output graphs and statistics from the reference panel bcfs
# Outputted graphs are located on the second mainPanel - users have to click on the correct nav page

# This observe listens for when the user clicks the button to get statistics for MAF and displays a pop-up
observeEvent(inputSmafStats, {

getMafStats()
b

# Samoans and 1000g doesn't exclude variants with 0 MAF !11!
observeEvent(inputSmafStatsSamoan, {
getMafStatsSamoan()
)
observeEvent(inputSmafStats1000g, {
getMafStats1000g()
1

# This listens for when the user changes which chromosome they are looking at from the selectizelnput chrSel
# Outputs bar graphs for the distribution of MAFs depending on the chromosome selected

# Also handles user input for adjusting the x-axis limit for each graph

#

#i## For Samoa + TOPMed + 1000Genomes Panels ###

observeEvent(inputSchrSel,{
outputSmafHist <- renderPlot({
getMAFAIl(inputSchrSel, as.numeric(input$limSet))
)
)

#i#t# For Samoan panel only ###
observeEvent(inputSchrSel,{
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outputSmafHist_samoa <- renderPlot({
getMAFSamoan(inputSchrSel, as.numeric(inputSlimSetSamoan))
b
1

### For 1000Genomes panel only #it#
observeEvent(inputSchrSel,{
outputSmafHist_1000g <- renderPlot({
getMAF1000g(inputSchrSel, as.numeric(input$limSet1000g))
)
1

### Samoan vs. 1000g ###
observeEvent(inputSchrSel,{
outputSmafScat <- renderPlot({
getMAFScat(inputSchrSel)
)
)

#

# Scaffolds
H

H

Hitt Affymetrix H#itt

observeEvent(inputSmafStatsAffy, {
getAffyStats()

1

observeEvent(inputSchrSel_Scaffold,{
outputSaffyHist <- renderPlot({
getAffyHist(inputSchrSel_Scaffold, as.numeric(inputSlimSelAffy))
)
)

observeEvent(inputSchrSel_Scaffold,{
outputSaffyScat <- renderPlot({
getAffyScat(inputSchrSel_Scaffold)
)
)

#

H

# Existing Imputation Sets
H

H

observeEvent(inputSmafStatsReplication, {
getExistingReplicationStats()
)

observeEvent(inputSmafStatsDiscovery, {
getExistingDiscoveryStats()
)

observeEvent(inputSchrSel_Imputation,{
outputSdiscoveryHist <- renderPlot({
getMAFDiscovery(inputSchrSel_Imputation, as.numeric(inputSlimSelDiscovery))
1
1
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observeEvent(inputSchrSel_Imputation,{
outputSreplicationHist <- renderPlot({
getMAFReplication(inputSchrSel_Imputation, as.numeric(input$limSelReplication))
1
b

observeEvent(inputSchrSel_Imputation,{
outputSimputationScatDiscovery <- renderPlot({
getlmputationScat_Discovery(inputSchrSel_Imputation)
b
b

observeEvent(inputSchrSel_Imputation,{
outputSimputationScatReplication <- renderPlot({
getimputationScat_Replication(inputSchrSel_Imputation)
)
)

} # end of Server

# Run the application
shinyApp(ui = ui, server = server)

4.1.2 RShiny Functions

Below is the code used mostly for reading in data requested by the user and generating

visualizations for output.

#

# Kevin Anderson

# kja34@pitt.edu

#

# HUGEN M.S GB Capstone - Descriptive Statistics and Visualization
#

#

H

getMAFAII <- function(chr, lim) {
df <- assign(paste0("chr", chr, "_hist"), read.table(paste0("~/capstoneStats/data/reference_panels/chr", chr, "_hist.txt")) %>%
mutate(MAF = if_else(V2 > 0.5, 1-V2, V2)) %>%
filter(V2 > 0) %>%
filter(V2 < 1))

ggplot(df, aes(MAF, V1)) +
geom_col(color = 'dodgerblue4’, fill = 'dodgerblue4') +
scale_x_continuous(name = 'MAF', limits = c(0, lim)) + # user can adjust right limit
scale_y_continuous(name = "Count", labels = scales::comma) + # changes axis labels from scientific notation to comma
theme_minimal() +
ggtitle(label = paste0("Chromosome ", chr))
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getMAFSamoan <- function(chr, lim) {
df <- assign(paste0("freeze.9b.chr", chr, ".phased_samoan"),
read.table(paste0("~/capstoneStats/data/reference_panels/freeze9b_chr", chr, " _samoans.txt_count.txt")) %>%
mutate(MAF = if_else(V2 > 0.5, 1-V2, V2)) %>%
filter(V2 > 0) %>%
filter(V2 < 1))

ggplot(df, aes(MAF, V1)) +
geom_col(color = 'dodgerblue4’, fill = 'dodgerblued') +
scale_x_continuous(name = 'MAF', limits = ¢(0, lim)) + # user can adjust right limit
scale_y_continuous(name = "Count", labels = scales::comma) + # changes axis labels from scientific notation to comma
theme_minimal() +
ggtitle(label = paste0("Chromosome ", chr))
1

getMAF1000g <- function(chr, lim) {
df <- assign(paste0("freeze.9b.chr", chr, ".phased_1000g"),
read.table(paste0("~/capstoneStats/data/reference_panels/freeze9b_chr", chr, "_1000g.txt_count.txt")) %>%
mutate(MAF = if_else(V2 > 0.5, 1-V2, V2)) %>%
filter(V2 > 0) %>%
filter(V2 < 1))

ggplot(df, aes(MAF, V1)) +
geom_col(color = 'dodgerblued’, fill = 'dodgerblued’) +
scale_x_continuous(name = 'MAF', limits = c(0, lim)) + # user can adjust right limit
scale_y_continuous(name = "Count", labels = scales::comma) + # changes axis labels from scientific notation to comma
theme_minimal() +
ggtitle(label = paste0("Chromosome ", chr))
}

getMAFScat <- function(chr) {
df_samoa <- assign(paste0("freeze.9b.chr", chr, ".phased_samoan"),
read.table(paste0("~/capstoneStats/data/reference_panels/freeze9b_chr", chr, "_samoans.txt_filtered.txt")) %>%
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))
df_1000g <- assign(paste0("freeze.9b.chr", chr, ".phased_1000g"),
read.table(paste0("~/capstoneStats/data/reference_panels/freeze9b_chr", chr, "_1000g.txt_filtered.txt")) %>%
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))

# doing a full join on the base pair position to match the MAFs between the two panels
# there's going to be a lot of NAs
df <- df_1000g %>%
full_join(df_samoa, by ="Vv2")
df2 <- df[sample(nrow(df), 100000), ] # taking only a small random sample of the data so it loads faster

ggplot(df2, aes(MAF.x, MAF.y)) +
geom_point(alpha = 0.3, col = 'dodgerblue4') +
geom_smooth(se = FALSE, color = "red") +
theme_minimal() +
scale_x_continuous(name = "1000Genomes Panel MAF") +
scale_y_continuous(name = "Samoan Panel MAF") +
theme(axis.text=element_text(size=12)) +
ggtitle(label = paste0("Chromosome ", chr))
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getAffyHist <- function(chr, lim) {
df <- assign(paste0("affy_chr", chr), read.table(pasteO("~/capstoneStats/data/scaffold/affy_chr", chr, ".txt")) %>%
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 < 1))

ggplot(df, aes(MAF, V1)) +
geom_col(color = 'dodgerblued’, fill = 'dodgerblued’) +
scale_x_continuous(name = 'MAF', limits = ¢(0, lim)) + # user can adjust right limit
scale_y_continuous(name = "Count", labels = scales::comma) + # changes axis labels from scientific notation to comma
theme_minimal() +
ggtitle(label = paste0("Chromosome ", chr))
1

getAffyScat <- function(chr) {
df_samoa <- assign(pasteO("freeze.9b.chr", chr, ".phased_samoan"),
read.table(paste0("~/capstoneStats/data/reference_panels/freeze9b_chr", chr, " _samoans.txt_filtered.txt")) %>%
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))
df_affy <- assign(paste0("affy_chr", chr), read.table(paste0("~/capstoneStats/data/scaffold/affy_chr", chr, ".txt")) %>%
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))

df <- df_samoa %>%
full_join(df_affy, by = "v2")
df2 <- df[sample(nrow(df), 100000), ] # taking only a small random sample of the data so it loads faster

ggplot(df2, aes(MAF.x, MAF.y)) +
geom_point(alpha = 0.3, color = 'dodgerblue4') +
theme_minimal() +
geom_smooth(se = FALSE, color = "red") +
scale_x_continuous(name = "Affymetrix Scaffold MAF") +
scale_y_continuous(name = "Samoan Panel MAF") +
theme(text = element_text(size = 12)) +
ggtitle(label = paste0("Chromosome ", chr))

}

getMAFDiscovery <- function(chr, lim) {
df <- assign(paste0("freeze9b", chr, "_existing_discovery"),
read.table(paste0("~/capstoneStats/data/existing_imputation/freeze9b_chr", chr,
"_existing_imputation_discovery.txt_counts.txt")) %>%
mutate(MAF = if_else(V2 > 0.5, 1-V2, V2)) %>%
filter(V2 > 0) %>%
filter(V2 < 1))

ggplot(df, aes(MAF, V1)) +
geom_col(color = 'dodgerblued’, fill = 'dodgerblue4') +
scale_x_continuous(name = 'MAF', limits = c(0, lim)) + # user can adjust right limit
scale_y_continuous(name = "Count", labels = scales::comma) + # changes axis labels from scientific notation to comma
theme_minimal() +
ggtitle(label = paste0("Chromosome ", chr))

}

getMAFReplication <- function(chr, lim) {
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df <- assign(paste0("freeze9b", chr, "_existing_replication"),
read.table(paste0("~/capstoneStats/data/existing_imputation/freeze9b_chr", chr,
"_existing_imputation_replication.txt_counts.txt")) %>%
mutate(MAF = if_else(V2 > 0.5, 1-V2, V2)) %>%
filter(V2 > 0) %>%
filter(V2 < 1))

ggplot(df, aes(MAF, V1)) +
geom_col(color = 'dodgerblued’, fill = 'dodgerblue4') +
scale_x_continuous(name = 'MAF', limits = c(0, lim)) + # user can adjust right limit
scale_y_continuous(name = "Count", labels = scales::comma) + # changes axis labels from scientific notation to comma
theme_minimal() +
ggtitle(label = paste0("Chromosome ", chr))

}

getimputationScat_Replication <- function(chr) {
df <- assign(paste0("freeze9b", chr, "_existing_replication_r2"),
read.table(paste0("~/capstoneStats/data/existing_imputation/freeze9b_chr", chr, '
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))

"

_existing_imputation_replication.txt")) %>%

df_samoa <- assign(pasteQ("freeze.9b.chr", chr, ".phased_samoan_r2"),
read.table(paste0("~/capstoneStats/data/reference_panels/freeze9b_chr", chr, '
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))

_samoans.txt_filtered.txt")) %>%

df2 <- df %>%
full_join(df_samoa, by = "V2") %>%
filter(V4 > 0) %>% # samoan panel doesn't have r*2 so they just appear as NA - removing them here
mutate(R2 = as.factor(if_else(V4 < .8, "r2 <0.8","r2 > 0.8")))

df2 <- df2[sample(nrow(df2), 100000), ] # taking only a small random sample of the data so it loads faster

# data: df2SMAF.x and df2SMAF.y

#t =4040.3, df = 59158, p-value < 2.2e-16

# alternative hypothesis: true correlation is not equal to 0
# 95 percent confidence interval:

# 0.9981636 0.9982218

# sample estimates:

# cor

#0.9981929

ggplot(df2, aes(MAF.x, MAF.y)) +
geom_point(pch =21, alpha = 0.3, color = "dodgerblue4") +
theme_minimal() +
theme(text = element_text(size = 12)) +
scale_x_continuous(name = "Existing Imputation - Replication MAF") +
scale_y_continuous(name = "Samoan Panel MAF") +
facet_grid(cols = vars(R2)) +
ggtitle(label = paste0("Chromosome ", chr))

}

getimputationScat_Discovery <- function(chr) {
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df <- assign(paste0("freeze9b", chr, "_existing_discovery_r2"),
read.table(paste0("~/capstoneStats/data/existing_imputation/freeze9b_chr", chr, '
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))

"

_existing_imputation_discovery.txt")) %>%

df_samoa <- assign(pasteQ("freeze.9b.chr", chr, ".phased_samoan_r2"),
read.table(paste0("~/capstoneStats/data/reference_panels/freeze9b_chr", chr, "_samoans.txt_filtered.txt")) %>%
mutate(MAF = if_else(V3 > 0.5, 1-V3, V3)) %>%
filter(V3 > 0) %>%
filter(V3 < 1))

df2 <- df %>%
full_join(df_samoa, by = "V2") %>%
filter(V4 > 0) %>% # samoan panel doesn't have r*2 so they just appear as NA - removing them here
mutate(R2 = as.factor(if_else(V4 < .8, "r2 <0.8", "r2 > 0.8")))

df2 <- df2[sample(nrow(df2), 100000), ] # taking only a small random sample of the data so it loads faster

ggplot(df2, aes(MAF.x, MAF.y)) +
geom_point(pch = 21, alpha = 0.3, color = "dodgerblue4") +
theme_minimal() +
theme(text = element_text(size = 14)) +
scale_x_continuous(name = "Existing Imputation - Discovery Set MAF") +
scale_y_continuous(name = "Samoan Panel MAF") +
facet_grid(cols = vars(R2)) +
ggtitle(label = paste0("Chromosome ", chr))

}

#

# Kevin Anderson

# kja34@pitt.edu

#

# HUGEN M.S GB Capstone - Descriptive Statistics and Visualization

#

# This script contains the functions that load all of the pop-up boxes whenever the user
# clicks one of the buttons to get the statistics for the respective graphs. | made this

# script because the main app.R file was getting too cluttered with all of the long HTML
# code contained below

H.

H

getAgeStats <- function() {

showModal(modalDialog(
title = "Point Statistics for Age",
HTML("<h4>1990 Cohort</h4>
<p><strong>Female</strong></p>
<ul>
<li>n = 454</li>
<li>Mean = 38.75 years</li>
<li>Standard deviation = 9.34 years</li>
<li>Range = 51 years</li>

</ul>
<p><strong>Male</strong></p>
<ul>

<li>n = 400</li>

<li>Mean = 39.18 years</li>
<li>Standard deviation = 9.35 years</li>
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<li>Range = 59 years</li>
</ul>
<br>
<h4>2002 Cohort</h4>
<p><strong>Female</strong></p>
<ul>
<li>n = 542</li>
<li>Mean = 43.28 years</li>
<li>Standard deviation = 16.50 years</li>
<li>Range = 65.42 years</li>

</ul>
<p><strong>Male</strong></p>
<ul>

<li>n = 452</li>

<li>Mean = 41.68 years</li>
<li>Standard deviation = 16.44 years</li>
<li>Range = 71.07 years</Ili>
</ul>
<br>
<h4>2010 Cohort</h4>
<p><strong>Female</strong></p>
<ul>
<li>n = 1845</li>
<li>Mean = 44.69 years</li>
<li>Standard deviation = 11.10 years</li>
<li>Range = 42.33 years</Ili>
</ul>
<p><strong>Male</strong></p>
<ul>
<li>n = 1247</li>
<li>Mean = 45.34 years</li>
<li>Standard deviation = 11.41 years</li>
<li>Range = 41.69 years</li>
</ul>
<br>
<h4>All Cohorts</h4>
<p><strong>Female</strong></p>
<ul>
<li>n = 2841</li>
<li>Mean = 43.48 years</li>
<li>Standard deviation = 12.26 years</li>
<li>Range = 65.42 years</li>
</ul>
<p><strong>Male</strong></p>
<ul>
<li>n = 2099</li>
<li>Mean = 43.38 years</li>
<li>Standard deviation = 12.58 years</li>
<li>Range = 71.07 years</li>
</ul>"),
easyClose = TRUE,
footer = NULL
)
}

getBmiStats <- function() {

showModal(modalDialog(
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title = "Point Statistics for BMI",
HTML("<h4>1990 Cohort</h4>
<p><strong>Female</strong></p>
<ul>
<li>n = 454</li>
<li>Mean = 32.99</li>
<li>Standard deviation = 6.45</li>
<li>Range = 51.11</li>

</ul>
<p><strong>Male</strong></p>
<ul>

<li>n = 400</li>

<li>Mean = 30.84</li>
<li>Standard deviation = 5.67</li>
<li>Range = 32.46</li>

</ul>
<br>
<h4>2002 Cohort</h4>
<p><strong>Female</strong></p>
<ul>

<li>n = 542</li>

<li>Mean = 35.13</li>
<li>Standard deviation = 8.14</li>
<li>Range = 50.79</li>

</ul>
<p><strong>Male</strong></p>
<ul>

<li>n = 452</li>

<li>Mean = 31.06</li>
<li>Standard deviation = 6.80</li>
<li>Range = 57.07</li>
</ul>
<br>
<h4>2010 Cohort</h4>
<p><strong>Female</strong></p>
<ul>
<li>n = 1845</li>
<li>Mean = 34.90</li>
<li>Standard deviation = 6.82</li>
<li>Range = 50.30</li>
</ul>
<p><strong>Male</strong></p>
<ul>
<li>n = 1247</li>
<li>Mean = 31.31</li>
<li>Standard deviation = 5.94</li>
<li>Range = 43.60</li>
</ul>
<br>
<h4>All Cohorts</h4>
<p><strong>Female</strong></p>
<ul>
<li>n = 2841</li>
<li>Mean = 34.64</li>
<li>Standard deviation = 7.07</li>
<li>Range = 52.28</li>
</ul>
<p><strong>Male</strong></p>



<ul>
<li>n = 2099</li>
<li>Mean = 31.16</li>
<li>Standard deviation = 6.09</li>
<li>Range = 57.80</li>
</ul>"),
easyClose = TRUE,
footer = NULL
)
}

getHdIStats <- function() {

showModal(modalDialog(
title = "Point Statistics for HDL",
HTML("<h4>All Samples</h4>
<p><strong>Female</strong></p>
<p>n = 1,039</p>
<p>Mean = 42.43 mg/dL</p>
<p>Standard deviation = 11.59</p>
<p>Range = 80.14</p>
<p><strong>Male</strong></p>
<p>n =1211</p>
<p>Mean = 44.14 mg/dL</p>
<p>Standard deviation = 10.88</p>
<p>Range = 70.63</p>"),
easyClose = TRUE,
footer = NULL)
)
}

getMafStats <- function() {

showModal(modalDialog(
title = "Point Statistics for MAF",
HTML("

<h4> Chromosome 1</h4>

<p> Variant count: 66,411,703 </p>
<br>

<h4>Chromosome 2</h4>

<p> Variant count: 72,336,188</p>
<br>

<h4>Chromosome 3</h4>

<p> Variant count: 59,435,128 </p>
<br>

<h4>Chromosome 4</h4>

<p> Variant count: 57,576,181 </p>
<br>

<h4>Chromosome 5</h4>

<p> Variant count: 53,775,719 </p>
<br>

<h4>Chromosome 6</h4>

<p> Variant count: 50,096,509 </p>
<br>

<h4>Chromosome 7</h4>

<p> Variant count: 47,714,169 </p>
<br>

<h4>Chromosome 8</h4>
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<p> Variant count: 45,946,976 </p>
<br>
<h4>Chromosome 9</h4>
<p> Variant count: 37,127,710 </p>
<br>
<h4>Chromosome 10</h4>
<p> Variant count: 39,760,241 </p>
<br>
<h4>Chromosome 11</h4>
<p> Variant count: 40,700,337</p>
<br>
<h4>Chromosome 12</h4>
<p> Variant count: 39,243,751 </p>
<br>
<h4>Chromosome 13</h4>
<p> Variant count: 29,242,598 </p>
<br>
<h4> Chromosome 14</h4>
<p> Variant count: 26,341,588 </p>
<br>
<h4>Chromosome 15</h4>
<p> Variant count: 24,305,349 </p>
<br>
<h4>Chromosome 16</h4>
<p> Variant count: 27,058,669 </p>
<br>
<h4>Chromosome 17</h4>
<p> Variant count: 23,324,911 </p>
<br>
<h4>Chromosome 18</h4>
<p> Variant count: 22,889,891 </p>
<br>
<h4>Chromosome 19</h4>
<p> Variant count: 17,608,125 </p>
<br>
<h4>Chromosome 20</h4>
<p> Variant count: 18,290,624 </p>
<br>
<h4>Chromosome 21</h4>
<p> Variant count: 10,870,873 </p>
<br>
<h4>Chromosome 22</h4>
<p> Variant count: 11,337,104 </p>
<br>
<h4>X Chromosome</h4>
<p> Variant count: 30,531,994 </p>
<br>"),

easyClose = TRUE,

footer = NULL))

}

getMafStatsSamoan <- function() {

showModal(modalDialog(
title = "Point Statistics for MAF",
HTML("
<h4> Chromosome 1</h4>
<p> Variant count: 66,411,703 </p>
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<br>

<h4>Chromosome 2</h4>

<p> Variant count: 72,336,188</p>
<br>

<h4>Chromosome 3</h4>

<p> Variant count: 59,435,128 </p>
<br>

<h4>Chromosome 4</h4>

<p> Variant count: 57,576,181 </p>
<br>

<h4>Chromosome 5</h4>

<p> Variant count: 53,775,719 </p>
<br>

<h4>Chromosome 6</h4>

<p> Variant count: 50,096,509 </p>
<br>

<h4>Chromosome 7</h4>

<p> Variant count: 47,714,169 </p>
<br>

<h4>Chromosome 8</h4>

<p> Variant count: 45,946,976 </p>
<br>

<h4>Chromosome 9</h4>

<p> Variant count: 37,127,710 </p>
<br>

<h4>Chromosome 10</h4>

<p> Variant count: 39,760,241 </p>
<br>

<h4>Chromosome 11</h4>

<p> Variant count: 40,700,337</p>
<br>

<h4>Chromosome 12</h4>

<p> Variant count: 39,243,751 </p>
<br>

<h4>Chromosome 13</h4>

<p> Variant count: 29,242,598 </p>
<br>

<h4> Chromosome 14</h4>

<p> Variant count: 26,341,588 </p>
<br>

<h4>Chromosome 15</h4>

<p> Variant count: 24,305,349 </p>
<br>

<h4>Chromosome 16</h4>

<p> Variant count: 27,058,669 </p>
<br>

<h4>Chromosome 17</h4>

<p> Variant count: 23,324,911 </p>
<br>

<h4>Chromosome 18</h4>

<p> Variant count: 22,889,891 </p>
<br>

<h4>Chromosome 19</h4>

<p> Variant count: 17,608,125 </p>
<br>

<h4>Chromosome 20</h4>

<p> Variant count: 18,290,624 </p>
<br>

51



<h4>Chromosome 21</h4>
<p> Variant count: 10,870,873 </p>
<br>
<h4>Chromosome 22</h4>
<p> Variant count: 11,337,104 </p>
<br>
<h4>X Chromosome</h4>
<p> Variant count: 30,531,994 </p>
<br>
"),
easyClose = TRUE,
footer = NULL))
}

getMafStats1000g <- function() {

showModal(modalDialog(
title = "Point Statistics for MAF",
HTML("
<h4> Chromosome 1</h4>

<p> Variant count: 66,411,703 </p>
<br>
<h4>Chromosome 2</h4>
<p> Variant count: 72,336,188</p>
<br>
<h4>Chromosome 3</h4>
<p> Variant count: 59,435,128 </p>
<br>
<h4>Chromosome 4</h4>
<p> Variant count: 57,576,181 </p>
<br>
<h4>Chromosome 5</h4>
<p> Variant count: 53,775,719 </p>
<br>
<h4>Chromosome 6</h4>
<p> Variant count: 50,096,509 </p>
<br>
<h4>Chromosome 7</h4>
<p> Variant count: 47,714,169 </p>
<br>
<h4>Chromosome 8</h4>
<p> Variant count: 45,946,976 </p>
<br>
<h4>Chromosome 9</h4>
<p> Variant count: 37,127,710 </p>
<br>
<h4>Chromosome 10</h4>
<p> Variant count: 39,760,241 </p>
<br>
<h4>Chromosome 11</h4>
<p> Variant count: 40,700,337</p>
<br>
<h4>Chromosome 12</h4>
<p> Variant count: 39,243,751 </p>
<br>
<h4>Chromosome 13</h4>
<p> Variant count: 29,242,598 </p>



<br>
<h4> Chromosome 14</h4>
<p> Variant count: 26,341,588 </p>
<br>
<h4>Chromosome 15</h4>
<p> Variant count: 24,305,349 </p>
<br>
<h4>Chromosome 16</h4>
<p> Variant count: 27,058,669 </p>
<br>
<h4>Chromosome 17</h4>
<p> Variant count: 23,324,911 </p>
<br>
<h4>Chromosome 18</h4>
<p> Variant count: 22,889,891 </p>
<br>
<h4>Chromosome 19</h4>
<p> Variant count: 17,608,125 </p>
<br>
<h4>Chromosome 20</h4>
<p> Variant count: 18,290,624 </p>
<br>
<h4>Chromosome 21</h4>
<p> Variant count: 10,870,873 </p>
<br>
<h4>Chromosome 22</h4>
<p> Variant count: 11,337,104 </p>
<br>
<h4>X Chromosome</h4>
<p> Variant count: 30,531,994 </p>
<br>
"),
easyClose = TRUE,
footer = NULL))
}

getAffyStats <- function() {

showModal(modalDialog(

title = "Point Statistics for Affymetrix Scaffold",

HTML("
<h4> Chromosome 1</h4>
<p> Variant count: 70,380 </p>
<br>
<h4>Chromosome 2</h4>
<p> Variant count: 73,062</p>
<br>
<h4>Chromosome 3</h4>
<p> Variant count: 59,983 </p>
<br>
<h4>Chromosome 4</h4>
<p> Variant count: 55,334 </p>
<br>
<h4>Chromosome 5</h4>
<p> Variant count: 55,764 </p>
<br>
<h4>Chromosome 6</h4>
<p> Variant count: 55,420 </p>
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<br>

<h4>Chromosome 7</h4>

<p> Variant count: 46,330 </p>
<br>

<h4>Chromosome 8</h4>

<p> Variant count: 48,032 </p>
<br>

<h4>Chromosome 9</h4>

<p> Variant count: 40,961 </p>
<br>

<h4>Chromosome 10</h4>
<p> Variant count: 47,565 </p>
<br>

<h4>Chromosome 11</h4>
<p> Variant count: 43,926</p>
<br>

<h4>Chromosome 12</h4>
<p> Variant count: 42,010 </p>
<br>

<h4>Chromosome 13</h4>
<p> Variant count: 33,739 </p>
<br>

<h4> Chromosome 14</h4>
<p> Variant count: 27,656 </p>
<br>

<h4>Chromosome 15</h4>
<p> Variant count: 25,774 </p>
<br>

<h4>Chromosome 16</h4>
<p> Variant count: 27,218 </p>
<br>

<h4>Chromosome 17</h4>
<p> Variant count: 20,308 </p>
<br>

<h4>Chromosome 18</h4>
<p> Variant count: 26,211 </p>
<br>

<h4>Chromosome 19</h4>
<p> Variant count: 11,693 </p>
<br>

<h4>Chromosome 20</h4>
<p> Variant count: 22,554</p>
<br>

<h4>Chromosome 21</h4>
<p> Variant count: 12,387 </p>
<br>

<h4>Chromosome 22</h4>
<p> Variant count: 11,236 </p>
<br>

<h4>X Chromosome</h4>

<p> Variant count: 36,465 </p>
<br>

")I
easyClose = TRUE,
footer = NULL))

}
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getExistingReplicationStats <- function() {
showModal(modalDialog(
title = "Point Statistics for Existing Imputation - Replication Set",
HTML("

<h4> Chromosome 1</h4>
<p> Variant count: 4,148,826 </p>
<br>
<h4>Chromosome 2</h4>
<p> Variant count: 4,473,212</p>
<br>
<h4>Chromosome 3</h4>
<p> Variant count: 3,723,954 </p>
<br>
<h4>Chromosome 4</h4>
<p> Variant count: 3,682,018 </p>
<br>
<h4>Chromosome 5</h4>
<p> Variant count: 3,394,288 </p>
<br>
<h4>Chromosome 6</h4>
<p> Variant count: 3,245,542 </p>
<br>
<h4>Chromosome 7</h4>
<p> Variant count: 3,037,910 </p>
<br>
<h4>Chromosome 8</h4>
<p> Variant count: 2,911,943 </p>
<br>
<h4>Chromosome 9</h4>
<p> Variant count: 2,293,025 </p>
<br>
<h4>Chromosome 10</h4>
<p> Variant count: 2,557,466 </p>
<br>
<h4>Chromosome 11</h4>
<p> Variant count: 2,591,727</p>
<br>
<h4>Chromosome 12</h4>
<p> Variant count: 2,484,806 </p>
<br>
<h4>Chromosome 13</h4>
<p> Variant count: 1,866,294 </p>
<br>
<h4> Chromosome 14</h4>
<p> Variant count: 1,675,545 </p>
<br>
<h4>Chromosome 15</h4>
<p> Variant count: 1,523,290 </p>
<br>
<h4>Chromosome 16</h4>
<p> Variant count: 1,681,823 </p>
<br>
<h4>Chromosome 17</h4>
<p> Variant count: 1,480,477 </p>
<br>
<h4>Chromosome 18</h4>
<p> Variant count: 1,480,195</p>
<br>
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<h4>Chromosome 19</h4>
<p> Variant count: 1,147,567 </p>
<br>
<h4>Chromosome 20</h4>
<p> Variant count: 1,176,819</p>
<br>
<h4>Chromosome 21</h4>
<p> Variant count: 727,554 </p>
<br>
<h4>Chromosome 22</h4>
<p> Variant count: 730,154 </p>
<br>
<h4>X Chromosome</h4>
<p> Variant count: 1,969,365 </p>
<br>

"),

easyClose = TRUE,

footer = NULL))

}

getExistingDiscoveryStats <- function() {
showModal(modalDialog(
title = "Point Statistics for Existing Imputation - Discovery Set",
HTML("
<h4> Chromosome 1</h4>
<p> Variant count: 4,145,679 </p>
<br>
<h4>Chromosome 2</h4>
<p> Variant count: 4,468,841</p>
<br>
<h4>Chromosome 3</h4>
<p> Variant count: 3,721,495 </p>
<br>
<h4>Chromosome 4</h4>
<p> Variant count: 3,680,847 </p>
<br>
<h4>Chromosome 5</h4>
<p> Variant count: 3,392,329 </p>
<br>
<h4>Chromosome 6</h4>
<p> Variant count: 3,243,845 </p>
<br>
<h4>Chromosome 7</h4>
<p> Variant count: 3,035,924 </p>
<br>
<h4>Chromosome 8</h4>
<p> Variant count: 2,910,933 </p>
<br>
<h4>Chromosome 9</h4>
<p> Variant count: 2,291,616 </p>
<br>
<h4>Chromosome 10</h4>
<p> Variant count: 2,556,099</p>
<br>
<h4>Chromosome 11</h4>
<p> Variant count: 2,589,050</p>
<br>
<h4>Chromosome 12</h4>
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<p> Variant count: 2,483,126 </p>
<br>
<h4>Chromosome 13</h4>
<p> Variant count: 1,863,628</p>
<br>
<h4> Chromosome 14</h4>
<p> Variant count: 1,674,384 </p>
<br>
<h4>Chromosome 15</h4>
<p> Variant count: 1,521,610 </p>
<br>
<h4>Chromosome 16</h4>
<p> Variant count: 1,680,287 </p>
<br>
<h4>Chromosome 17</h4>
<p> Variant count: 1,477,226 </p>
<br>
<h4>Chromosome 18</h4>
<p> Variant count: 1,479,501</p>
<br>
<h4>Chromosome 19</h4>
<p> Variant count: 1,145,593 </p>
<br>
<h4>Chromosome 20</h4>
<p> Variant count: 1,176,266</p>
<br>
<h4>Chromosome 21</h4>
<p> Variant count: 727,199 </p>
<br>
<h4>Chromosome 22</h4>
<p> Variant count: 729,593 </p>
<br>
<h4>X Chromosome</h4>
<p> Variant count: 1,966,486 </p>
<br>

"),

easyClose = TRUE,

footer = NULL))

}

4.1.3 R Visualizations

This code was used to generate some of the visualizations used for the figures. Specifically
imputation results for chromosomes 5 and 21 in addition to the visualizations for the CREBRF and

BTNLS9 variants.

library(ggplot2)
library(reshape2)
library(tidyverse)
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## Rsq viz ##
setwd("~/capstoneStats/data/imputation/chr21")

## Read in .info files from minimac4 ##
chr21_imputation_stats_no_samoan <- read.table("freeze9b.chr21.notopmed_no_samoan.info", header = T) %>%
select("MAF’, "Rsq’, 'EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_1_samoan <- read.table("freeze9b.chr21.notopmed_1_samoan.info", header = T) %>%
select("MAF’, "Rsq’, 'EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_4_samoan <- read.table("freeze9b.chr21.notopmed_4_samoan.info", header = T) %>%
select("MAF’, "Rsq’, 'EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_6_samoan <- read.table("freeze9b.chr21.notopmed_6_samoan.info", header = T) %>%
select("MAF’, "Rsq’, 'EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_12 samoan <- read.table("freeze9b.chr21.notopmed_12_samoan.info", header = T) %>%
select("MAF’, "Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_24_samoan <- read.table("freeze9b.chr21.notopmed_24_samoan.info", header = T) %>%
select("MAF’, "Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_48_samoan <- read.table("freeze9b.chr21.notopmed_48_samoan.info", header = T) %>%
select("MAF’, 'Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_96_samoan <- read.table("freeze9b.chr21.notopmed_96_samoan.info", header = T) %>%
select("MAF’, 'Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_384_samoan <- read.table("freeze9b.chr21.notopmed_384_samoan.info", header = T) %>%
select("MAF’, 'Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr21_imputation_stats_all_samoan <- read.table("freeze9b.chr21.notopmed_all_samoan.info", header = T) %>%
select("MAF’, "Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))

cutoff <- chr21_imputation_stats_no_samoan %>%

filter(MAF > 0.0) %>%
filter(MAF < 0.01) %>%
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mutate(strat = as.factor(if_else(Rsq < .3, "< 0.8", ">0.8")))

## group data by mean rsq at each MAF ##

tomerge_no <- chr21_imputation_stats_no_samoan %>%
group_by(MAF) %>%
summarize('1KG+NoSamoans'=mean(Rsq))

tomerge_1 <- chr21_imputation_stats_1_samoan %>%
group_by(MAF) %>%
summarize('1KG+1Samoan'=mean(Rsq))

tomerge_4 <- chr21_imputation_stats_4_samoan %>%
group_by(MAF) %>%
summarize('1KG+4Samoans'=mean(Rsq))

tomerge_6 <- chr21_imputation_stats_6_samoan %>%
group_by(MAF) %>%
summarize('1KG+6Samoans’=mean(Rsq))

tomerge_12 <- chr21_imputation_stats_12_samoan %>%
group_by(MAF) %>%
summarize('1KG+12Samoans'=mean(Rsq))

tomerge_24 <- chr21_imputation_stats_24 samoan %>%
group_by(MAF) %>%
summarize('1KG+24Samoans'=mean(Rsq))

tomerge_48 <- chr21_imputation_stats_48 samoan %>%
group_by(MAF) %>%
summarize('1KG+48Samoans'=mean(Rsq))

tomerge_96 <- chr21_imputation_stats_96_samoan %>%
group_by(MAF) %>%
summarize('1KG+96Samoans '=mean(Rsq))

tomerge_384 <- chr21_imputation_stats_384_samoan %>%
group_by(MAF) %>%
summarize('1KG+384Samoans'=mean(Rsq))

tomerge_all <- chr21_imputation_stats_all_samoan %>%
group_by(MAF) %>%
summarize('1KG+AllSamoans =mean(Rsq))

## merge everything together and reshape df for plotting ##
mergedl <- merge(tomerge_no, tomerge_1, by="MAF")
merged2 <- merge(mergedl, tomerge_4, by="MAF")
merged3 <- merge(merged2, tomerge_6, by="MAF")
merged4 <- merge(merged3, tomerge_12, by="MAF")
merged5 <- merge(merged4, tomerge_24, by="MAF")
merged6 <- merge(merged5, tomerge_48, by="MAF")
merged7 <- merge(merged6, tomerge_96, by="MAF")
merged8 <- merge(merged7, tomerge_384, by="MAF")
merged9 <- merge(merged8, tomerge_all, by="MAF")

p <- melt(merged9, id.vars = "MAF")

## visualize distribution of MAF and r-squared ##
ggplot(p, aes(MAF, value, fill=variable)) +
geom_smooth(se=F, aes(color=variable)) +
geom_vline(xintercept = 0.01, linetype="dotted") +
#geom_vline(xintercept = 0.013, linetype="dotted") +
scale_color_manual(values = c("1KG+NoSamoans" = "grey", "1KG+1Samoan" = "grey", "1KG+4Samoans" = "grey",
"1KG+6Samoans" = "grey", "1KG+12Samoans" = "grey", "1KG+24Samoans" = "grey",
"1KG+48Samoans" = "grey", "1KG+96Samoans" = "grey",
"1KG+384Samoans" = "#53B400", "1KG+AllSamoans" = "#619CFF")) +
theme_minimal() +
scale_x_continuous(name = "Minor Allele Frequency") +
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scale_y_continuous(name = "Mean R-square", limits = c(.5, 1)) +
ggtitle("Chromosome 21")

## Variant stats viz - this is for all chromosomes ##
samoan_variants <- data.frame(Chromosome = c(1:22, "X"),
Variants = c(4148826, 4473212, 3723954, 3682018, 3394288,
3245542, 3037910, 2911943, 2293025, 2557466,
2591727, 2484806, 1866294, 1675545, 1523290,
1681823, 1480477, 1480195, 1147567, 1176819,
727554, 730154, 1969365))
ggplot(samoan_variants, aes(Chromosome, Variants)) +
geom_col(fill = "dodgerblue") +
scale_x_discrete(limits = ¢(1:22, "X")) +
scale_y_continuous(labels = scales::comma) +
theme_minimal()

affy_scaffold_variants <- data.frame(Chromosome = ¢(1:22, "X"),+
Variants = ¢(70380, 73062, 59983, 55334, 55764,
55420, 46330, 48032, 40961, 47565,
43926, 42010, 33739, 27656, 25774,
27218, 20308, 26211, 11693, 22554,
12387, 11236, 36465))
ggplot(affy_scaffold_variants, aes(Chromosome, Variants)) +
geom_col(fill = "dodgerblue") +
scale_x_discrete(limits = ¢(1:22, "X")) +
scale_y_continuous(labels = scales::comma) +
theme_minimal()

library(ggplot2)
library(reshape2)
library(tidyverse)

## Rsq viz ##
setwd("~/capstoneStats/data/imputation/chr5")

## Read in .info files from minimac4 ##
chr5_imputation_stats_no_samoan <- read.table("freeze9b.chr5.notopmed_no_samoan.info", header = T) %>%
select("MAF’, 'Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr5_imputation_stats_1_samoan <- read.table("freeze9b.chr5.notopmed_1_samoan.info", header = T) %>%
select("MAF’, 'Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr5_imputation_stats_24 _samoan <- read.table("freeze9b.chr5.notopmed_24_samoan.info", header = T) %>%
select("MAF’, 'Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", ">0.8")))
chr5_imputation_stats_48_samoan <- read.table("freeze9b.chr5.notopmed_48_samoan.info", header = T) %>%
select("MAF’, "Rsq’, "EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
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chr5_imputation_stats_96_samoan <- read.table("freeze9b.chr5.notopmed_96_samoan.info", header = T) %>%
select("MAF’, "Rsq’, 'EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr5_imputation_stats_384_samoan <- read.table("freeze9b.chr5.notopmed_384_samoan.info", header = T) %>%
select("MAF’, "Rsq’, 'EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))
chr5_imputation_stats_all_samoan <- read.table("freeze9b.chr5.notopmed_all_samoan.info", header = T) %>%
select("MAF’, "Rsq’, 'EmpRsq’) %>%
na_if("-") %>%
filter("MAF" > 0) %>%
mutate(rsquared = as.factor(if_else(Rsq < .8, "< 0.8", "> 0.8")))

### for creating data tables with num of variants at rsq threshold at specific MAFs ###
cutoff <- chr5_imputation_stats_24_samoan %>%

filter(MAF > 0.0) %>%

filter(MAF < 0.01) %>%

mutate(strat = as.factor(if_else(Rsq<.3,"<0.8",">0.8")))

#i#t# finding mean rsq at each MAF ####

tomerge_no <- chr5_imputation_stats_no_samoan %>%
group_by(MAF) %>%
summarize("1KG+NoSamoans'=mean(Rsq))

tomerge_1 <- chr5_imputation_stats_1_samoan %>%
group_by(MAF) %>%
summarize('1KG+1Samoan'=mean(Rsq))

tomerge_24 <- chr5_imputation_stats_24_samoan %>%
group_by(MAF) %>%
summarize('1KG+24Samoans'=mean(Rsq))

tomerge_48 <- chr5_imputation_stats_48_samoan %>%
group_by(MAF) %>%
summarize('1KG+48Samoans'=mean(Rsq))

tomerge_96 <- chr5_imputation_stats_96_samoan %>%
group_by(MAF) %>%
summarize("1KG+96Samoans'=mean(Rsq))

tomerge_384 <- chr5_imputation_stats_384_samoan %>%
group_by(MAF) %>%
summarize('1KG+384Samoans'=mean(Rsq))

tomerge_all <- chr5_imputation_stats_all_samoan %>%
group_by(MAF) %>%
summarize('1KG+AllSamoans =mean(Rsq))

# tomerge_no <- chr5_imputation_stats_no_samoan %>%
# group_by(MAF) %>%

# summarize('1KG+NoSamoans'=median(Rsq))

# tomerge_1 <- chr5_imputation_stats_1_samoan %>%

# group_by(MAF) %>%

# summarize("1KG+1Samoan'=median(Rsq))

# tomerge_24 <- chr5_imputation_stats_24_samoan %>%
# group_by(MAF) %>%

# summarize('1KG+24Samoans =median(Rsq))

# tomerge_48 <- chr5_imputation_stats_48_samoan %>%
# group_by(MAF) %>%

# summarize("1KG+48Samoans =median(Rsq))

# tomerge_96 <- chr5_imputation_stats_96_samoan %>%
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# group_by(MAF) %>%

# summarize('1KG+96Samoans '=median(Rsq))

# tomerge_384 <- chr5_imputation_stats_384 samoan %>%
# group_by(MAF) %>%

# summarize("1KG+384Samoans'=median(Rsq))

# tomerge_all <- chr5_imputation_stats_all_samoan %>%

# group_by(MAF) %>%

# summarize("1KG+AllSamoans'=median(Rsq))

### merge all of the mean rsqgs for each num samoan threshold and melt for plotting ###
mergedl <- merge(tomerge_no, tomerge_1, by="MAF")

merged2 <- merge(mergedl, tomerge_24, by="MAF")

merged3 <- merge(merged2, tomerge_48, by="MAF")

merged4 <- merge(merged3, tomerge_96, by="MAF")

merged5 <- merge(merged4, tomerge_384, by="MAF")

merged6 <- merge(merged5, tomerge_all, by="MAF")

p <- melt(mergeds, id.vars = "MAF")
#P <- P %>% filter(MAF > 0.7)

## visualize distribution of MAF and r-squared ##

ggplot(p, aes(MAF, value, fill=variable)) +
geom_smooth(se=F, aes(color=variable)) +

# geom_point() +
geom_vline(xintercept = 0.01, linetype="dotted") +
theme_minimal() +

# coord_cartesian(ylim =¢(.2, 1)) +
scale_x_continuous(name = "Minor Allele Frequency") +
scale_y_continuous(name = "Mean R-square", limits = c(.2, 1)) +
ggtitle("Chromosome 5")

## CREBRF ##
crebrf_af <- data.frame(Samoans_Added = c(1, 24, 48, 96, 384, 1285, 1, 24, 48, 96, 384, 1285),
AF =¢(0, .0002, .0005,.0102,.0348,.0921, 0, 0.28108, 0.28115,.28120,.28106,.28114),
Imputed = c("no", "no", "no", "no", "no", "no", "yes", "yes", "yes", "yes", "yes", "yes"),
rsq = c(NA, NA, NA, NA, NA, NA, 0, 0.99894, 0.99905 ,0.99911, 0.99951, 0.99870))
ggplot(crebrf_af, aes(Samoans_Added, AF, fill=Imputed)) +
geom_point(aes(color=lmputed)) +
geom_line(aes(color=Imputed)) +
theme_classic() +
scale_x_continuous(name = "Samoans Added", breaks = c(1,24,48,96,384,1285)) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
scale_y_continuous(name = "rs373863828 MAF", breaks = c(0,.1,.2,0.28))

## BTNLO ##

btnl9_af <- data.frame(Samoans_Added = c(1, 24, 48, 96, 384, 1285, 1, 24, 48, 96, 384, 1285),
AF = ¢(0.0001, 0.0001, 0.0005, 0.008, 0.03, 0.08, 0.20655, 0.22198, 0.20785, 0.20710, 0.22130, 0.21881),
Imputed = c("no", "no", "no", "no", "no", "no", "yes", "yes", "yes", "yes", "yes", "yes"),
rsq = c(NA, NA, NA, NA, NA, NA, 0, 0.92108, 0.91276, 0.86967, 0.91062, 94567))

non
’

ggplot(btnl9_af, aes(Samoans_Added, AF, fill=Imputed)) +
geom_point(aes(color=lmputed)) +
geom_line(aes(color=Imputed)) +
theme_classic() +
scale_x_continuous(name = "Samoans Added", breaks = c(1,24,48,96,384,1285)) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
scale_y_continuous(name = "rs200884524 MAF", breaks = c(0,.1,.2,0.28))
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4.2 Unix Code

4.2.1 Get_scaffold.sh

This code calculates the MAF of each variant from the Affymetrix 6.0 bcf files (repeated

for all chromosomes)

for xin {1..22}

do
bcftools view /home/mok36/imputation_code/freeze9b/discovery/7a_flip_nonseq_phased_data/noseq-flip-discovery-9b-
chr${x}-phased.vcf.gz -G | bcftools query -f '%CHROM %POS %AN %AC{ON\n' | awk '{printf "%s %s %f\n",$1,52,54/$3}' >
affy_chr${x}.txt

done

4.2.2 Get_samoans.sh

This code calculates the MAF of each variant from just the 1,285 Samons within the master

reference panel then creates another file containing the count of each variant for every MAF.

for xin {1..22}

do
bcftools view --force-samples --samples-file ~/capstoneStats/data/id_lists/ordered_samoans.txt
/home/shared_data/samoa/wgs/freeze.9b/phased/freeze.9b.chr22.pass_only.phased.bcf | beftools query -f '%CHROM
%P0OS %AN %AC{ON\n' | awk '{printf "%s %s %f\n",$1,52,54/$3}' >
/home/kja34/capstoneStats/data/reference_panels/freeze9b_chr${x}_samoans.txt

done

for xin *_samoans.txt
do

awk {print $3}' ${x} | sort | uniq -c > ${x}_count.txt
done

4.2.3 Get_1000g.sh

Does the same as get_samoans.sh but for the 1000genomes people

for xin {1..22}
do
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bcftools view --force-samples --samples-file ~/capstoneStats/data/id_lists/1000g_ids.txt /home/shared_data/sa-
moa/wgs/freeze.9b/phased/freeze.9b.chr22.pass_only.phased.bcf | bcftools query -f '%CHROM %POS %AN %AC{O}\n' | awk
Yprintf "%s %s %f\n",$1,52,54/S3} > /home/kja34/capstoneStats/data/reference_panels/freeze9b_chrS{x} 1000g.txt

done

for x in *_1000g.txt
do

awk '{print $3}' ${x} | sort | uniq -c > ${x}_count.txt
done

4.2.4 Existing Imputation

Creating the data to import into R for the existing imputations visualizations

for xin {1..22}
do
bcftools query -f '%CHROM %POS %MAF %R2\n'
/home/mok36/imputation_code/freeze9b/replication/${x}_replication_final_merge/replication-9b-hg38-final-merge-
chr22.dose.vcf.gz | awk '{printf "%s %s %f %f\n",$1,$2,$3,54}' >
/home/kja34/capstoneStats/freeze9b_chrx{x} existing_imputation_replication.txt
bcftools query -f '%CHROM %POS %MAF %R2\n'
/home/mok36/imputation_code/freeze9b/discovery/${x}_final_merge/discovery-9b-hg38-final-merge-chr${x}.dose.vcf.gz |
awk '{printf "%s %s %f %f\n",$1,52,53,54}' > /home/kja34/capstoneStats/freeze9b_chr{x}_existing_imputation_discovery.txt
done

4.2.5 Imputation

The code for running the actual imputations including splitting the panels up into certain

amounts of Samoans. This is specifically for chromosome 21.

forxin14612 244896 384 1285

do
bcftools view -0z --force-samples --samples-file /home/kja34/capstoneStats/data/id_lists/${x}_samoan_without_topmed.txt
/home/shared_data/samoa/wgs/freeze.9b/phased/freeze.9b.chr21.pass_only.phased.bcf \
-0 /home/kja34/capstoneStats/data/imputation/chr21/freeze.9b.chr21.notopmed_S${x}_samoan.vcf.gz

Minimac3-omp --refHaps
/home/kja34/capstoneStats/data/imputation/chr21/freeze.9b.chr21.notopmed_S${x}_samoan.vcf.gz \
--processReference \

--myChromosome chr21 '\

--cpus 5\

--prefix /home/kja34/capstoneStats/data/imputation/chr21/freeze.9b.chr21.notopmed_${x}_samoan

gunzip freeze9b.chr21.notopmed_S${x}_samoan.m3vcf.gz
sed -i 's/chr21/21/g' freeze9b.chr21.notopmed_${x} samoan.m3vcf

minimac4 --refHaps /home/kja34/capstoneStats/data/imputation/chr21/freeze9b.chr21.notopmed_S${x}_samoan.m3vcf \
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--haps /home/mok36/imputation_code/freeze9b/discovery/7a_flip_nonseq_phased_data/noseq-flip-discovery-9b-chr21-
phased.vcf.gz \
--prefix /home/kja34/capstoneStats/data/imputation/chr21/freeze9b.chr21.notopmed_${x} samoan \
--format GT,DS \
--allTypedsSites \
--ChunkLengthMb 20.00 \
--ChunkOverlapMb 3.00 \
--cpus 10
done

4.2.6 Genotype counts for CREBRF and BTNL9

This code gathers the vcf information from each variant from both before and after impu-

tation, then calculates the genotype frequency.

for xin 124 48 96 384 1285
do
echo >> crebrf
echo ${x} samoan >> crebrf
zgrep 173108771 freeze.9b.chr5.notopmed_${x}_samoan.vcf.gz >> crebrf
done

forxin 124 48 96 384 1285

echo >> crebrf

echo ${x} imputed samoans >> crebrf

zgrep 173108771 freeze9b.chr5.notopmed_${x} samoan.dose.vcf.gz >> crebrf
done

for xin 124 48 96 384 1285
do
echo > btnl9
echo ${x} samoan >> btnl9
zgrep 181050285 freeze.9b.chr5.notopmed_${x}_samoan.vcf.gz >> btnl9

echo >> btnl9

echo ${x} imputed samoans >> btnl9

zgrep 181050285 freeze9b.chr5.notopmed_S${x}_samoan.dose.vcf.gz >> btnl9
done

cat /home/kja34/capstoneStats/data/imputation/chr5/crebrf \ |
perl -ane'

/Mt/ and next;

%c=();

foreach (@F[9..S#F]) { /A([*:]1+)/ and Sc{S1}++}

print "SF[OI\tSF[1]";

foreach Sgt (sort keys %c) { print "\tSgt:Sc{Sgt}" }

print "\n"

'> /home/kja34/capstoneStats/data/imputation/chr5/crebrf_af.txt

cat /home/kja34/capstoneStats/data/imputation/chr5/btnl9 \ |
perl -ane'
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/M/ and next;

%c=();

foreach (@F[9..5#F]) { /A([*:]+)/ and Sc{S1}++}

print "SF[OI\tSF[1]";

foreach Sgt (sort keys %c) { print "\tSgt:Sc{Sgt}" }

print "\n"

"> /home/kja34/capstoneStats/data/imputation/chr5/btnl9_af.txt
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