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Abstract 

Safe Reinforcement Learning for Sepsis Treatment 

 

Liling Lu, MS 

 

University of Pittsburgh, 2022 

 

Sepsis, defined as an overactive immune system response to infection followed by acute 

life-threatening organ failure, kills eight million people annually. Mortality of acute sepsis is up to 

50%, and significantly higher in low-income countries. The correction of the absolute 

hypovolemia with intravenous fluids and vasopressors is the most difficult aspect of sepsis 

treatment. There were promising Reinforcement Learning (RL) approaches to learn the optimal 

administration of vasopressor and intravenous fluids to treat septic patients. However, the existing 

RL approaches did not take some safety constraints into consideration. Firstly, they only captured 

end-point outcome and ignored patients’ intermediate outcomes, which are also very important to 

patients.  Secondly, they did not consider the dose change of vasopressor within a short amount of 

time. This is not in accordance with clinical safety protocol, which states that the dose change of 

vasopressor should be gradual, while a dramatic major change of vasopressor dose is unsafe to 

patients. In this project, we extended an existing model-free Q-learning algorithm by addressing 

its two safety concerns. We learned a more robust and safer AI agent which takes intermediate 

outcomes into consideration by incorporating SOFA score and lactate level as intermediate health 

status. Additionally, we developed another safer and more competitive AI agent to address the 

sudden major change in vasopressor dose use by adding vasopressor penalty. The two learned AI 

agents are more adherent to current clinical practices and knowledge. 

Public Health Significance: This work has demonstrated that we can train a safer machine 

learning AI agent by incorporating knowledge-based constraints and thus giving safer treatment 
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strategy in sepsis treatment. It is an important progress towards integrating safety into machine 

learning applications in health sciences.  
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1.0 Introduction 

As a life-threatening medical emergency, sepsis is one of the leading causes of death in 

hospitalized patients in the ICU (intensive care unit). According to the CDC, at least 1.7 million 

adults in the USA develop sepsis each year; one in three patients who die in a hospital has sepsis. 

Sepsis accounts for about eight million deaths each year worldwide; the mortality of acute sepsis 

is up to 50% or higher in low-income countries (Dugani S, et al., 2017). The 2016 Sepsis-3 

conference defined sepsis as “life-threatening organ dysfunction caused by a deregulated host 

response to infection”, while septic shock is defined as “a subset of sepsis in which underlying 

circulatory and cellular/metabolic abnormalities are profound enough to significantly increase 

mortality” (Singer M, et al., 2016). It is very challenging to come up with a successful management 

system for sepsis for three reasons: early detection, severity prognostication and providing optimal 

targeted therapy (Gotts & Matthay, 2016). Of the three, providing optimal targeted therapy with 

the correction of absolute hypovolemia through intravenous fluids and vasopressors is given the 

top research priority (Byrne & Haren, 2017; Marik & Bellomo, 2016). Over the years, many 

protocols have been developed in terms of the use of intravenous fluids and vasopressors in sepsis 

treatment, such as the surviving sepsis campaign (SSC) guidelines, highly aggressive Early-Goal 

directed therapy (EGDT) protocols, etc. But consensus on how to prescribe the right amount and 

balance of intravenous fluids and vasopressors is yet to be achieved, which leads to large variation 

in clinicians’ practice. Randomized Controlled Trials (RCTs), as a gold standard in clinical 

discovery settings (Alsowas, & Alahdab, 2016), cannot efficiently and exhaustively explore the 

exponential combinations of patients, sepsis severeness and treatments. To date, there is still no 

access to individualized sepsis treatment. Large-scale Electronic Health Records (EHRs) data 
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embraced with Machine Learning (ML) and biostatistics set light to novel approaches to address 

the challenges in achieving the precision sepsis treatment (M.Ghassemi et al., 2015). 

In sepsis treatment, the goal of clinicians is to maximize patients’ probability of good 

outcomes by making reasonable therapeutic prescriptions at different stage of sepsis (Bennett & 

Hauser, 2013). The problem here boils down to searching for the optimal sequential decisions. 

Reinforcement Learning (RL) is a powerful ML algorithm that is broadly used to identify an 

optimal policy in complex sequential decision-making tasks. Similar to the clinician’s goal, in RL, 

a virtual agent learns an optimal policy that maximizes an expected cumulative reward through 

trial and error (Sutton & Barto, 2018). There are two reasons that make RL perfect for application 

in medical decision-making tasks. First, according to Sutton & Barto, RL is well suited to 

overcome problems of complexity and heterogeneity of patients’ responses to therapeutic 

decisions and latent to interventions, which is attributed to RL’s intrinsic design of sparse reward 

signals. Second, with the beneficiary of large-scale clinical databases where clinical practice 

variation exists, RL can learn optimal treatment from even suboptimal training practices, which is 

the professional clinicians’ policies provided in the clinical database (Celi et al., 2014). There were 

already some promising RL applications in medical decisions tasks. In sepsis treatment settings, 

Komorowski et al. (2018) has created a computational ML model to provide optimal treatment of 

vasopressor and intravenous fluid to patients with acute sepsis based on MIMIC-III data 

(Elixhauser et al., 1998). Following that, Kennedy (2021) reproduced Komorowski’s model on a 

retrospective EHR data with information of a large cohort of UPMC patients. He demonstrated 

that the policy recommended by ML model is significantly superior to clinician policy. 

In this project, we would like to address two safety concerns that have existed in an earlier 

developed AI agent. Firstly, the agent only captures end-point outcome (90-day mortality). 
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Ignoring intermediate outcomes when making treatment recommendations might reduce patients’ 

quality of life or may even worsen patients’ prognosis (Yende et al., 2016). A more robust AI 

policy should optimize both patients’ short-term and long-term outcomes, which is exactly what 

professional clinicians do in practice. Secondly, when recommending vasopressor dose to patients, 

the model only infers the optimal action based on the current state, thus it might cause a sudden 

dramatic vasopressor dose change within a short time interval. Dramatic dosage change (either 

increase or decrease) can be extremely dangerous. For some patients, it might cause acute 

hypotension following rapid dose decrease. Additionally, a rapid dose increase might lead to 

hypertension or cardiac arrhythmias (Fadale et al., 2014; Allen et al., 2014).   

We hypothesized that the first safety constraint could be addressed by adding intermediate 

rewards. These intermediate rewards would incorporate sepsis patient’s instant health status. We 

modified Raghu et al.’s (2017) intermediate reward framework to our usage. We penalized an 

increase of Sequential Organ Failure Assessment (SOFA) score and high SOFA scores, and vice 

versa. Same to arterial lactate level, we penalized increase arterial lactate level and rewarded a 

decrease arterial lactate level. SOFA score is a derived measurement that uses accessible 

parameters to identify result of sepsis in terms of key organs’ failure or dysfunction. An increasing 

SOFA score during the first 48 hours in the ICU, regardless of the initial score, predicts a mortality 

rate of at least 50% (Minne L et al., 2008; Doerr F et al., 2011). Lactate is also the biomarker of 

organ dysfunction. Increases in arterial lactate levels are always followed by a progression of organ 

dysfunction. It is highly associated with mortality (Rello et al., 2017).  

For the second safety constraint, we proposed adding penalty to sudden changes of the 

major vasopressor dose within a single interval step. This reward framework is modified from 

Raghu et al.’s reward framework as well. We also try to address the second safety constraint by 
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adding vasopressor changes to the feature space and redefining the state space using K-means 

clustering. We hypothesized that we could create a safer, more robust, and more applicable AI 

policy by modifying a model developed by Kennedy (2021). 
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2.0 Method 

2.1 Data extraction and patient cohort definition 

    For this project, we extracted data from the Cerner Electronic Health Record System 

(Cerner, Kansas City, MO). This database contains all medical records of patients from 14 

community and academic hospitals within the UPMC health care system from 2013 to 2017. 

Important informations like demographics, labs, clinical features, and medical treatments are 

included in the database. Based on our research objective, we extracted patients who meet all of 

the following criteria: 1. adult (over the age of 18); 2. met sepsis-3* criteria within 6 hours of 

hospital admission; 3. ICU encounters; 4. medication information; 5. stayed in the hospital for 

more than 8 hours; 

The diagram below shows the full data filteration flow: 
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Figure 1 Date extraction flow 

2.2 Data pre-processing 

Define intervals for each trajectory 

With the cohort we defined, we subset the data to include all information within a 54-hour 

window, which starts from 6 hours before the onset of sepsis to 48 hours after the onset of sepsis. 

We further divided the 54-hour broad window into 13 intervals, with each interval spanning 4 

hours, with the exception that we defined the first 6 hours before suspected sepsis onset as interval 

1. The reason why we chose 4 hours as an interval resolution is that it can balance the ability 

represent sepsis clinical changes and deal with limited changes within samples. For example, if we 

choose a shorter interval, say 10 minutes, then most of the consecutive data samples will have very 

similar values, which is undesired for machine learning modeling. On the other hand, if we choose 
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a wider interval, say 24 hours, then it would be hard to capture an accurate patient health status 

using the K-means model. Using 4 hours as an interval resolution is a reasonable choice in our 

content. 

 

Figure 2 Resolution of time interval 

 

Feature selection 

    We selected features to match the feature set used by Kennedy, adding an extra feature 

“vaso_change”, which is the absolute difference between the vasopressor of the current step and 

the previous step. We included patient demographics (“age”, “gender”, “weight”, “Elixhauser 

score” (Elixauser et al., 1998) ), vital signs (“SOFA Score”, “SIRS”, “shock index”, “heart rate”, 

“temperature”, “respiratory rate”, “diastolic blood pressure”), laboratory measurements (“white 

blood cells count”, “platelets”, “glucose”, “BUN”, “PaCO2”, “INR”, “FiO2”, “Hemoglobin”, 

“Bilirubin”, “pH”, “Lactate”, “albumin”, “bicarbonate”, “creatinine”, “base_excess”, 

“PaO2/FiO2”, “MAP”, “alanine aminotransferase”, “aspartate aminotransferase” , “potassium”, 

“sodium”, “Chloride”, “Glasgow Coma Scale score”) and ventilation parameters(“Mech Vent in 

Window”). These features were associated with sepsis onset, severeness, treatment according to 
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Angus et al. (2001) and Angus et al. (2013). We also chose features according to their availability 

in our dataset. The summary statistics of the 39 features are shown in appendix table 1. 

Data aggregation 

As mentioned previously, we divided our data into 13 intervals of non-overlapping 4 hours 

as a block. For each feature, we chose the worst (e.g., SOFA score, highest value is the worst) 

value within the 4-hour block to represent that interval. For vasopressors, we converted them to 

norepinephrine-equivalents and the maximum dosage per interval was recorded (Brown et al., 

2012). For intravenous fluid, we calculated the total dosage by taking the difference between 

administration start and end, and we computed the mean hourly dosages by averaging over the 

administration window. 

Handling missing data 

There are three types of missingness in our data set. First is missing not at random 

(MNAR): not missing at random, the probability of being missing is different for many unknown 

reasons. In our dataset, the reason might be human error. To address this kind of missingness, we 

used a time-limited, parameter-specific sample-and-hold approach (L.Breiman, 2001), which is 

often used in addressing missing values in longitudinal data. By using this method, the missing 

value is replaced with the patient’s previously observed value, meaning that the last observation is 

carried forward. We carried forward laboratory values for up to 24 hours and vital signs for up to 

4 hours (Kennedy, 2021). 

The other two are missing completely at random (MCAR) and missing at random (MAR). 

One of the most appropriate methods used to deal with such missingness is the Random Forest 

Algorithm (we used the R package missRanger ()). As it can adapt to the data structure and take 

the high variance and bias into consideration. Furthermore, Random Forest imputation also has 
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advantages in handling mixed types of missing data, addressing interactions and nonlinearity, 

scaling to high dimensions while avoiding overfitting, yielding measures of variable importance 

useful for variable selection, etc.  

After the first step of filling NA with carry forward, we used Random Forest imputation to 

deal with the rest of the missingness. Random Forest imputation mainly based on proximity from 

Random Forest, by performing classification (categorical feature) and regression (continuous 

feature) tasks. For categorical features, the missing value was filled with the category that has the 

largest mean proximity. For continuous features, we filled the missing value with the weighted 

average of the non-missing values. For both categorical and continuous features, we iterated 50 

times (total 50 separate trees for each feature); within each iteration, we randomly sampled 10% 

of the whole data to create large variance among trees so that our model can predict the target 

feature more accurately 

Summary of feature statistics before and after imputation 

We then summarized the statistics of each feature before and after imputation, as shown in 

appendix table 1. We showed the mean and standard deviation for features that were evenly 

distributed, and the median and inter-quantile range (IQR) for features that were skewed. Features 

after imputation are represented by the median and IQR. Score-based features such as “SOFA 

score”, Systemic Inflammatory Response Syndrome (“SIRS”), Mean Arterial Pressure (“MAP”), 

Base Excess, and Shock Index were recalculated after imputation.  

Data preparation for K-means algorithm 

K-means input requires data to have symmetric distribution of features and all the features 

are on the same scale. We checked the distribution for all the features. For skewed features, we 

first de-skewed them using a log or inverse-log transformation, and then standardized them to the 
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same scale with a mean 0 and a standard deviation 1. For normal distributed features, we simply 

standardized them to the same scale with mean 0 and a standard deviation deviation of 1. 

2.3 Basics of reinforcement learning 

Together with supervised and unsupervised learning, reinforcement learning (RL) as a self-

learning technology forms the machine learning system. In contrast to supervised and unsupervised 

learning, RL is a decision-making science that is based on goal-directed learning. 

In RL, the agent can learn the optimal sequential action by maximizing cumulative 

rewards: by repeatedly interacting with the dynamic environment and observing the reward, the 

agent learns how to make better actions to optimize the feedback over time. In the context of sepsis 

treatment, the doctor is the agent who engages to act (prescribe medications) to interact with the 

environment (the patient at current state). Following the doctor's intervention, the patient enters a 

new state. If the patient's health status improves (SOFA score decreases, for example), this action 

and state pair will be rewarded; conversely, if the patient's health status deteriorates, this action 

and state pair will be penalized. 

Terminology 

1. Agent: the entity that we train to make appropriate policy decisions (for example, 

in sepsis treatment, the reinforcement learning algorithm is the agent) 

2. Environment: the conditions or surroundings with which the agent may interact 

with (e.g., in sepsis treatment, the environment represents each patient) 

3. State: the agent’s current status (e.g., patient’s physiology and demographic 

characteristics fall into) 
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4. Action: the action taken by the agent at the current time step (e.g., taken by agent, 

defined as the amount of intravenous fluids and dosages of vasopressors over 

specific time window) 

5. Reward: each action yields a reward, which can either be positive or negative, 

depending on whether the current state deteriorates or improves (e.g., in our 

content, rewards are defined by the subsequent change in a patient’s health status 

or risk of mortality) 

The traditional interaction framework depicted in Figure 3 is used to define the RL process. 

The agent performs an action on the environment in the current state, and the environment responds 

by transitioning into a new state, resulting in an immediate reward (positive or negative). The same 

procedure will be repeated, and the decision that resulted in the transition will be reinforced over 

time, until the best decision-making technique is discovered. 

 

Figure 3 Reinforcement learning framework; Sutton & Barto, 2018 
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How are RL algorithms deployed? 

MDP (Markov decision process) is the most popular mathematical framework with a 

stochastic control process. RL algorithms can be deployed using a variety of Markov model 

frameworks, the most basic of which is a discrete MDP (Sutton & Barto, 2018). It is described as 

a five elements tuple (𝑆, 𝐴, 𝑃, 𝑅, γ), where 𝑆 represents the finite state space, 𝐴 represents the finite 

action space, 𝑃 represents the probability that the state will change to 𝑠’ (next state) at time 𝑡 +

1 after taking action 𝑎  at time 𝑡 , which can be mathematically expressed as 𝑃𝑠𝑠′
𝑎 =

𝑃[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ; 𝑅 represents the expected immediate reward received due to action 

𝑎  given state 𝑠 , which can be represented mathematically as 𝑅𝑠
𝑎 = 𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]; γ 

denotes the discount factor which affects how much of the future rewards is allocated to current 

state or state action value.  Policy 𝜋  is the distribution of the probability of state transition:  

π(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠], 𝜋(a|s) means the probability to take action 𝑎 at state 𝑠. 

In MDP, policy only depends on current state; it has nothing to do with previous 

environment or future status. For an entire episode where pai includes all possible actions, the 

transition probability function can be described as 𝑃𝑠,𝑠′
π = ∑ (𝑎|𝑠)𝑃𝑠𝑠′

𝑎π
𝑎ϵ𝐴 , which means the 

probability of state 𝑠 transferring to 𝑠’ equals to the sum of the probability of taking action 𝑎 

multiplied by the probability of state 𝑠 transferring to 𝑠’ follow policy 𝜋.  The reward function 

denoted as  𝑅𝑠
π = ∑ (𝑎|𝑠)𝑅𝑠

𝑎π
𝑎ϵ𝐴 , which means the immediate rewards for current state 𝑠 if follow 

policy 𝜋 is equivalent to the sum of all possible reward of specific action multiplied by the 

probability of that action being taken. 

The value function includes state value function: 𝑣π(𝑆) = 𝐸π[𝐺𝑡|𝑆𝑡 = 𝑠] and action value 

function: 𝑞π(𝑠, 𝑎) = 𝐸π[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]. The former refers to the long term expected return 

value over a state. whereas the latter means the long term expected return value over a state action 
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pair, which is what we will optimize. In the state value function, 𝑣 is the state value function for 

policy 𝜋 at states, 𝐺𝑡 is the discounted cumulative value starting from state 𝑠. In the action value 

function, q is the expected cumulative return after following policy 𝜋 taking action 𝑎 and starting 

from state 𝑠 . They can be further described in a standard way: 𝑣π(𝑠) =

𝐸π[𝑅𝑡+1 + γ𝑣π(𝑆𝑡+1)|𝑆𝑡 = 𝑠]  and 𝑞π(𝑠, 𝑎) = 𝐸π[𝑅𝑡+1 + γ𝑞π(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , 

which is the famous Bellman equation. It essentially composes of two components: the immediate 

reward and the discounted value of the future state. 

The optimal solutions to the equations are as bellow (Bellman Optimality Equation) 

𝑣∗(𝑆) = 𝑚𝑎𝑥𝑎𝑞𝜋∗
(𝑠, 𝑎) 

                                                          = 𝑚𝑎𝑥𝑎𝐸𝜋∗
(𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) 

                                                               = 𝑚𝑎𝑥𝑎𝐸(𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) 

                                    = 𝑚𝑎𝑥𝑎𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎

𝑠′𝜖𝑠

𝑣∗(𝑠′) 

 

    𝑞∗(𝑠, 𝑎) = 𝐸(𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎′𝑞∗(𝑆𝑡+1, 𝑎′|𝑆𝑡, 𝐴𝑡 = 𝑎)) 

 = 𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎

𝑠′𝜖𝑠

𝑚𝑎𝑥𝑎′𝑞∗(𝑠′, 𝑎′) 

The Bellman equation specifies a recursive expected value for the cumulative reward 

following specified policy 𝜋. When we use the optimal policy (maximizes expected total reward), 

as the specified policy 𝜋, the equation is unsolvable due to the non-linearity of the maximum 

function over each state and action pair. Additionally, we may not have the reward function and 

probability function. While there are multiple iterative methods that can be used to obtain the 

optimal solutions for the MDP equation. For example, value iteration, policy iteration, state-action-

reward-state-action (SARSA) algorithm, Q-learning etc. 
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Q-learning 

The process of determining the optimal policy might be model-based or model-free. A 

model-based algorithm uses the transition function and the reward function to estimate the optimal 

policy. Whereas a model-free algorithm estimates the optimal policy without prior knowledge of 

the environment. In this project, we have no idea of the transition function and the reward function. 

We will use a model-free Q-learning algorithm to solve the problem. Q-learning (Watkins, 1989) 

is defined as 

 𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + α[𝑅𝑡+1 + γ𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 

Q-learning as an off-policy/model-free reinforcement learning algorithm, aims to find the 

optimal action in a given state while the agent has no idea about the preferred states or the 

rewarding principle. According to the definition, 𝑄 (the expected learned action value function) 

approximates optimal 𝑞 (𝑞∗) directly. The optimal action value function is independent of the 

policy being followed. This significantly simplifies the process to solve the bellman equation and 

converge to the optimal solution. The Q-learning iteration process is shown below. 
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Figure 4 Q-learning framework 

 

Parameters in the Q-learning algorithm 

Learning Rate, 𝛼: this term can be used to define how much we want to take from the new 

values and add to the old values. As shown in the algorithm, we are adding the difference between 

the old and new 𝑞 values to the old 𝑞 value, which essentially helps us update the q table. We used 

𝛼 = 0.1 in our algorithm to balance how much to learn from the newly learned and how much to 

keep from the value we already learned.  

Discount Factor, 𝛾: 𝛾 is used to balance immediate rewards and future rewards. Typically, 

people set 𝛾 in a range of 0.8 to 1.  The higher the value, the more weight is given to the future 

reward. In our contest, we set 𝛾=0.99 to encourage long-term survival. 

Exploration Parameter, 𝜀:  𝜀 is used to balance exploration and exploitation or set the 

chance of how often to explore or exploit.  𝜀 can be set at any value between 0 and 1. If 𝜀=0, the 

algorithm learns the optimal policy purely by random exploration. If 𝜀=1, the algorithm uses the 

q-table as a reference and selects the action based on the maximum value of available actions. We 
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applied an exploration rate of 0.1 for our project. This means that 90% of the time, the algorithm 

will follow the best treatment plan. It will also randomly try out all the 25 actions when iterating. 

2.4 Define action-space 

The action space is all the possible treatments that the clinician (agent) can apply to the 

environment (patient). As we noted in the introduction, the registration of intravenous fluids and 

vasopressors is one of the most challenging aspects in the treatment of sepsis. As reported 

(Waechter et al., 2014), intravenous fluids include boluses and background infusions of colloids, 

crystalloids, and blood products normalized by tonicity. The vasopressors include epinephrine, 

norepinephrine, dopamine, vasopressin, and phenylephrine, were converted when necessary to 

norepinephrine-equivalent using previously established dose correspondence (Brown et al., 2013). 

We defined the action space based on the intravenous fluids and vasopressors used in the EHR 

data. 

We wanted to optimize the administration of the maximum dose of vasopressors and the 

total volume of intravenous fluids over a 4-hour time block. Thus, we stratified IV fluids and 

vasopressor doses into 5 groups separately (zero dose plus the medians of the non-zero remaining 

four quantiles in the data), and the action space is a permutation of the two as a 5*5 matrix (table 

1). Table 1 shows the distribution of non-zero drug uses for vasopressors and intravenous fluids 

separately in the EHR data. 
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Table 1 Action space 

 

2.5 Define state-space 

In RL, state means the current health status of the environment. In the sepsis context, it 

represents a patient’s aggregation of clinical and demographic features at the specific time point. 

These features include laboratory values, vital signs, and the severity of both chronic and acute 

illnesses. Here, we defined the state space as discrete by clustering all patients into appropriate 

groups. There are many clustering algorithms to choose from, such as Mixture of Gaussians, 

Spectral Clustering, Mean Shift, Mini-Batch K-Means etc. To echo Kennedy’s work, we opt to 

use K-means to divide patients with similar health status into the same group. 

K-means Algorithm 

The K-means clustering algorithm generates a result through iterative refinement. The 

algorithm takes two inputs: cluster K and data set. The data set contains all the patients’ selected 

characteristics at various time points. The objective of K-means is to minimize the sum of the 

squared distances between each point and its corresponding cluster centroid. For each of the 

observed data points (x1, x2,x3, … , xn), a multi-dimensional feature vector is created. K-means 

clustering attempts to group n data points into K sets S = {S1, S2, … , Sk} to minimize the within-
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cluster sum of squares:  arg min
𝑆

∑ ∑ ||𝑥 − 𝜇𝑖||
2

{𝑥∈𝑆𝑖}
𝑘
𝑖=1 , where 𝜇𝑖 is the mean of points in 𝑆𝑖. As 

shown in figure 5, the algorithm starts by randomly place initial K centroids into the data set space. 

The second step is to assign each object to the group that is closest to it: arg min
𝑐𝑖∈𝐶

𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑥)2, 

where dist (.) is the standard L2 Euclidean distance, 𝑐𝑖 denotes the set of data points assigned to 

ith cluster centroid. Third, once all data points have been assigned, recalculate K centroids (𝑐𝑖 =

1

|𝑆𝑖|
∑ 𝑥𝑖𝑥𝑖∈𝑆𝑖

, taking the mean of all data points in each set 𝑆𝑖. Iterate between step two and step 

three until the centroids remain stationary. This algorithm will be sure to converge to some 

centroids. 

 

Figure 5 K-means framework 

 

How to choose the optimal K? 

To determine the optimal number of clusters for the entire data set, we run the K-means 

model with a range of different K values and compare the results. In general, numerous metrics 

can be used to evaluate the results. We chose to use Akaike (AIC), Bayesian information criteria 
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(BIC) and within-cluster-sum of squares (WSS) as the evaluation metrics. Additionally, we 

calculated these metrics for different values of K. Then the plots of AIC/BIC/WSS versus K were 

plotted. We chose the K at the point where AIC/BIC/WSS stop declining rapidly, which is the 

well-known Elbow method. 

2.5.1 Old state-space 

State definition 

As described in the section on data processing (section 2.2), we used 38 features to 

ascertain patient states. Since K-means employs the Euclidean distance as its measure, feature 

scaling is critical. Thus, for features with a normal distribution, we standardized them; for features 

with a log-normal distribution, we log-transformed them first and then standardized them. We 

centered binary features so that their mean was zero. 

We run the K-means algorithm with K from a range of 50 to 2,000 with intervals of 50 and 

then plotting a clustering score (AIC, BIC, WSS) as a function of the number of clusters (figure 

6). Elbow point is illustrated as the vertical dash line. We selected 750 as the optimal clustering 

number.  
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Figure 6 K-means assessment for old state space 

 

State fit evaluation 

Figure 7 shows there is heterogeneity among the features by state, indicating that the 

clustering was not driven by a single one or very few of the features. 
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Figure 7 K-means fit evaluation for old state space 
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2.5.2 Modified state-space 

State definition 

To address the safety concern of sudden vasopressor dose change, we modified the state-

space to incorporate the safety constraint. We created an extra feature called “vaso-change” by 

computing the change in vasopressor dose between two neighboring intervals. We verified that the 

variable “vaso-change” is normally distributed. Then we standardized it before feeding it into the 

K-means algorithm. Together with all the 38 features used to define the old state space, now we 

had 39 features to represent the patient state. We hypothesized that by doing so, we can enable 

new state space to capture the difference in vasopressor dose between the current and previous 

time points, resulting in smoother vasopressor dosage recommendations. 

Similar to the old state-space, we run the K-means algorithm with K ranging from 50 to 

2,000 with intervals of 50 and then plot the clustering score (AIC, BIC, WSS) as a function of the 

number of clusters (Figure 8). Elbow point is illustrated as the vertical dash line. We selected a 

total 750 states as well so that the results of different models under different state pace can be 

comparable and we can attribute the difference between the two models to extra feature “vaso-

change” instead of a different number of states. 
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Figure 8 K-means assessment for new state space 

 

State fit evaluation 

Figure 9 shows that there is heterogeneity among the features by state, indicating that the 

clustering was not driven by a single one or very few of the features. 
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Figure 9 K-means fit evaluation for new state space 
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2.6 Define reward framework 

2.6.1 Unconstrained reward framework 

We only focused on the long-term outcome (either survival or death) of patients, which 

means that only the final time block was rewarded or penalized, while all other intermediate steps 

were assigned 0s. In the terminal time block, if a patient survived through 90-days, a reward of 

(+15) was assigned.  Otherwise, a minus reward (-15) was applied.  

Now that we have defined state, action and reward, an example of the trajectory of a 

random patient is showing below.  

 

Table 2 Patent’s trajectory under unconstrained AI policy 

Interval State Action Reward 

9 437 21 0 

10 170 1 0 

11 576 1 0 

12 498 11 0 

13 315 1 0 

14 113 1 0 

15 727 1 0 

16 315 1 0 

17 498 11 15 
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2.6.2 Intermediate reward framework  

However, in clinical settings, doctors consider not only long-term survival but also hospital 

stability when they prescribe drugs. To mimic doctors’ actions, we incorporated intermediate 

rewards. This incentive should be reflected in the best indicators of patient’s immediate health 

status. In this instance, we referred to Raghu et al.’s (2018) intermediate reward framework. We 

used the patient’s total sofa score to represent the patient’s health condition. The other indicator 

we used was lactate level, which are a measure of cell-hypoxia and are typically higher in patients 

with sepsis, as sepsis causes low blood pressure and further depletes tissue oxygen. Below is the 

reward function we used to compute rewards for intermediate timesteps: 

 

In this function, high SOFA scores and increases in SOFA score would be penalized, and 

vice versa, as 𝐶0 and 𝐶1  are negative. Similar for lactate, we rewarded a decrease in lactate and 

penalized an increase in lactate. For terminal rewards, the procedure was the same to unconstrained 

reward system: we assigned +15 reward if the patient survived through 90-days and -15 if not. We 

experimented with three distinct sets of parameters:  

𝐶01  = -1/40, 𝐶11  = -5/40, 𝐶21  = -2 (Reward framework for AI_intm1).  

𝐶02  = -1/30, 𝐶12  = -5/30, 𝐶22  = -2 (Reward framework for AI_intm2).  

𝐶03  = -1/20, 𝐶13  = -5/20, 𝐶23  = -2 (Reward framework for AI_intm3).  

We explored the optimal weight of penalty for SOFA score. AI_intm1 had the smallest 

penalty, AI_intm3 had the highest, while AI_intm2 has a penalty that is in the middle. 

Below is an example of the same patient’s trajectory as in previous section under this 

reward system. 
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Table 3 Patent’s trajectory under AI  policy with intermediate reward  

Interval State Action Reward 

9 437 21 -1.97 

10 170 2 -1.08 

11 576 1 0.25 

12 498 11 0.13 

13 315 21 -0.03 

14 113 1 -0.25 

15 727 1 -0.03 

16 315 19 0.38 

17 498 11 15 

2.6.3 Vasopressor penalty reward framework 

Previous attempts to use RL to learn optimal policies in sepsis treatment are very 

promising. However, the learned AI policy only took the patients’ current states into consideration 

when recommending a dosage of vasopressor. While in clinical practice, the administration of 

vasopressor dose should be gradually decreased or increased.  According to Bassi et al. (2013), 

Norepinephrine doses over 0.5, 1.0 mcg/kg/min are usually considered to be excessive and rarely 

excessive respectively.  In our work, we defined high threshold as the median dose of the fourth 

quantile of vasopressor, which is 1.05 mcg/kg/min.  Figure 10 shows original unconstrained AI 

policy had much more sudden dramatic change of vasopressor dose use then clinician policy.  
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Figure 10 Sudden vasopressor change 

 

To address this constraint, we proposed to penalize big vasopressor dose change use within 

a time step interval and reward those with vasopressor dose change very slightly.  The reward 

function is as below: 

 

We experimented with three sets of parameters:  

𝐶01  = 0.25, 𝐶11  = 2 (Reward framework for AI_vaso1). 

𝐶02  = 0.5, 𝐶12  = 5 (Reward framework for AI_vaso2). 

𝐶03  = 0.5, 𝐶13  = 10 (Reward framework for AI_vaso3).  

We explored the optimal weight for vasopressor change. AI_vaso1 had the lowest penalty, 

AI_vaso3 had the highest penalty. Rewards at terminal time points were same as unconstrained 

reward system. Rewarded +15 if patient survived to 90-days and penalized 15 if patient did not 

survive through 90-days. 
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Because the maximum change in vasopressor dose use was significantly greater than the 

average change among all time blocks. To ensure that the absolute reward was limited under the 

maximum absolute reward (15), we used function tanh to cap the maximum absolute reward to |𝐶0 

-𝐶1 |. 

Below is an example of the same patient’s trajectory as in the previous section under this 

reward system. 

 

Table 4 Patent’s trajectory under AI  policy with vasopressor penalty  

 

Interval State Action Reward 

9 437 21 0.25 

10 170 20 0.01 

11 576 1 0.25 

12 498 11 0.23 

13 315 1 0.23 

14 113 1 0.25 

15 727 1 0.13 

16 315 1 0.18 

17 498 11 15 
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2.7 Model evaluation and comparison 

It’s not realistic to evaluate the AI policy on real patients because of risk, legal and ethical 

issues. In this section, we compared trajectory-wise weighted importance sampling policy values 

(TWIS) and importance sampling (IS) estimated mortalities under all policies. We evaluated 

whether adding a penalty to sudden vasopressor dose change and redefining state space can help 

to reduce the proportion of patients who have sudden major changes in use of vasopressor. We 

finally ranked the feature importance of each model using a random forest algorithm to evaluate 

whether the model is interpretable in terms of clinical knowledge. All evaluations are applied on 

the 20% testing data set. 

2.7.1 Importance sampling-based policy value evaluation 

As we want to evaluate the learned AI policy (target policy) given the data generated from 

clinical policy (behavior policy), This is referred to as an off-policy evaluation. Importance 

sampling (IS) is a technique for estimating expected values under one distribution using samples 

from a different distribution. It is the basic evaluation method for almost all off-policy learning 

methods. The key principle of IS is to correct the discrepancy between the behavior (πb) and the 

evaluation (πe) policies when learning from off-policy returns (Jiang & Li, 2015). Weighted 

importance sampling is a variant of importance sampling.  

In IS, we first computed the probability for all the state-action trajectories 

{At, St+1, At+1, … . , St} under each policy π, shown as a probability function below. For any AI 

policy, we set the exploratory rate to epsilon (€). So, the probability of exploiting state-optimal 
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action was 1-€+€/25, while the probability of exploring all the other non-optimal actions was set 

to be €/25.  

𝑃𝑟(𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1, … , 𝑆𝑇|𝑆𝑡, 𝐴𝑡:𝑇−1 ∼ π)                                                 

= π(𝐴𝑡|𝑆𝑡)𝑝(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡)π(𝐴𝑡+1|𝑆𝑡+1) … 𝑝(𝑆𝑇|𝑆𝑇−1, 𝐴𝑇−1)

= ∏ π(𝐴𝑘|𝑆𝑘)𝑝(𝑆𝑘+1|𝑆𝑘, 𝐴𝑘)

𝑇−1

𝑘=𝑡

 

The second step is to calculate the importance sampling ratio, which is simply dividing the 

probability of the trajectory under the target policy (π) by the behavior policy (𝑏). Here we used 

𝑇 − 1 because we dropped the last record of each patient as there was no next state for the last 

record. 

𝜌𝑡:𝑇−1 ≐
∏ 𝜋(𝐴𝑘|𝑆𝑘)𝑝(𝑆𝑘+1|𝑆𝑘, 𝐴𝑘)𝑇−1

𝑘=𝑡

∏ 𝑏𝑇−1
𝑘=𝑡 (𝐴𝑘|𝑆𝑘)𝑝(𝑆𝑘+1|𝑆𝑘, 𝐴𝑘)

= ∏
𝜋(𝐴𝑘|𝑆𝑘)

𝑏(𝐴𝑘|𝑆𝑘)

𝑇−1

𝑘=𝑡

 

           The third step is to average returns from all the observed episodes following policy 𝑏: 

𝑉𝐼𝑆 =
1

𝑛
∑ 𝜌𝑖 (∑ 𝛾𝑘

𝑇−1

𝑘=𝑡

𝑅𝑘
𝑖 )

𝑛

𝑖=1

 

The standard IS estimator is unbiased but has a high variance, and there are numerous 

variants of IS that can tradeoff between bias and variance. For more information, check (Jiang & 

Li, 2015). The variance of ordinary importance sampling is unbounded because the variance of the 

ratios may be unbounded, whereas the weighted estimator's maximum weight on any single return 

is one. 

In practice, the weighted estimator is strongly favored because it has a significantly lower 

variance. The equation of weighted importance sampling is described  below, instead of just simply 

average through all trajectories like IS, TWIS uses weighted average through all encounters. 
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𝑉𝑇𝑊𝐼𝑆 =
1

∑ ρ𝑖
𝑛
𝑖=1

∑ ρ𝑖 (∑ γ𝑘

𝑇−1

𝑘=𝑡

𝑅𝑘
𝑖 )

𝑛

𝑖=1

 

We evaluated TWIS policy values for each policy in this project. For AI policies, where 𝜌𝑖 

is the ratio of π(AI) and 𝑏(clinician), we substituted 0.0001 to 0 if 𝑏(clinician) equals zero. For the 

clinician policy, 𝜌𝑖 was set to one. We estimated the patient’s average mortality on test data using 

the IS estimator, as the mortality rate was not trajectory-wise, and we observed that the variance 

of mortality was very small. We used 1 for 90-day survival and 0 for 90-day death to substitute 

the original reward values. 

2.7.2 Maximum vasopressor dose change evaluation 

We evaluated the proportion of maximum vasopressor dose change for all the policies in 

the test data set, which has 6,221 patients. We first calculated the maximum absolute vasopressor 

dose change for each patient. We then evaluated the proportion of patients who have a max value 

greater than 1.05 mcg/kg/min (the median of the fourth quartile of vasopressors). 

2.7.3 Clinical interpretability evaluation 

To further assess the feature importance and interpretability of each policy, we fitted a 

random forest classification model for each policy to get the rank of relative feature importance 

when recommending vasopressor regardless of dosage. For the random forest model, the 

independent variables are all the 38 features we used to define the state space, and the dependent 

feature is whether vasopressor is used (0 for no, represents action 1,6,11,16,21; 1 for yes, 
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represents all the rest of the actions in the action space). The feature importance was computed 

based on feature permutation, which overcomes one of the impurity-based method’s limitations: a 

bias toward high-cardinality features. 

 

 

 



 

 34 

3.0 Results 

3.1 Optimal action identification for test data 

We applied the same parameters (as described in section 2.3) to each Q-Learning algorithm 

when training (24,882 encounters) and learned the optimal policies under different reward 

frameworks. We then identified the recommended action for each record in the test data (6,221 

encounters) and reported the distributions of recommended actions on the test data by intravenous 

fluids and vasopressors separately. 

Distribution of intravenous fluids use of different policies 

Table 5 below shows the proportions of different intravenous fluids dosages recommended 

by different policies under old state space and new state space. If we compare the AI policies with 

clinician policy, we can find that the AI polices with intermediate rewards recommended more 

intravenous fluids than clinicians, and the proportions of 0 intravenous fluids block were lower 

than clinician policy; Whereas the AI policies with vasopressor penalty recommended fewer 

intravenous fluids than clinicians, and the proportions of 0 intravenous fluids block were higher 

than clinician policy. Figure 11 illustrates the results more clearly. This trend is similar among the 

old state space and the new state space. 



 

 35 

Table 5 Marginal distribution of intravenous fluids 

 

 

 

 

Figure 11 Marginal distribution of intravenous fluids for different policies 

 

 

 

Range Clinician AI AI_intm1 AI_intm2 AI_intm3 AI_vaso1 AI_vaso2 AI_vaso3

0.00 0.47 0.47 0.46 0.45 0.45 0.50 0.49 0.48

1-250 0.11 0.08 0.08 0.08 0.08 0.06 0.07 0.07

251-400 0.16 0.20 0.21 0.21 0.21 0.19 0.19 0.19

401-700 0.10 0.10 0.10 0.11 0.10 0.09 0.09 0.09

>701 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16

0.00 0.47 0.48 0.47 0.46 0.47 0.52 0.51 0.48

1-250 0.11 0.10 0.10 0.10 0.10 0.08 0.08 0.09

251-400 0.16 0.16 0.16 0.17 0.16 0.15 0.15 0.16

401-700 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.10

>701 0.17 0.16 0.17 0.17 0.17 0.16 0.16 0.16

Intravenous Fluids (mL/4h)

Proportions of Actions

Old state 

space

New state 

space
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Distribution of vasopressor of different policies 

Table 6 and Figure 12 below illustrate the distribution of proportions of different 

vasopressor dose recommendations across all the policies. We can conclude that all of the AI 

policies recommended less vasopressor than clinicians, no matter if they were under the old state 

space or the new state space. AI policies with intermediate rewards had similar proportions of 

vasopressor recommendation to unconstrained AI policy, while AI policies with vasopressor 

penalties recommended fewer vasopressors than the other policies.  

 

Table 6 Marginal distribution of vasopressors 

 

 

Range Clinician AI AI_intm1 AI_intm2 AI_intm3 AI_vaso1 AI_vaso2 AI_vaso3

0 0.855 0.891 0.892 0.888 0.89 0.904 0.902 0.895

.001-.09 0.038 0.023 0.024 0.025 0.026 0.025 0.026 0.025

0.1-0.2 0.029 0.024 0.026 0.024 0.027 0.023 0.025 0.023

0.21-0.5 0.043 0.028 0.028 0.029 0.028 0.024 0.023 0.09

>0.5 0.034 0.034 0.03 0.022 0.03 0.022 0.022 0.15

0 0.855 0.867 0.866 0.86 0.867 0.882 0.889 0.871

.001-.09 0.038 0.102 0.022 0.026 0.022 0.026 0.028 0.028

0.1-0.2 0.029 0.16 0.029 0.03 0.029 0.026 0.026 0.028

0.21-0.5 0.043 0.101 0.034 0.038 0.034 0.03 0.026 0.034

>0.5 0.034 0.156 0.049 0.046 0.047 0.036 0.031 0.039

Vasopressor (mcg/kg/min)

Proportions of Actions

Old state 

space

New state 

space
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 Figure 12 Marginal distribution of vasopressors for different policies 

 

Discussion about distribution of intravenous fluids and vasopressor 

               As we concluded in the previous section, AI policies with intermediate rewards 

recommended more intravenous fluids and fewer vasopressors than clinician policy. This is in 

accordance with EGDT protocols that septic patients generally require large doses of intravenous 

fluids at initial resuscitation to reverse refractory tissue hypoperfusion and organ failure (Rivers et 

al., 2001). While this is different from Komorowski et al.’s that AI policy recommended more 

vasopressors. This might be because the patients in our cohort are different from the patients 

Komorowski et al. used (MIMIC-III), and we considered intermediate outcomes which makes all 

model more comprehensive. 

            The modified AI policies with vasopressor penalties recommend fewer vasopressors and 

fewer intravenous fluids than clinician policy. If we penalize dramatic vasopressor dose change, 
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the AI policy tends to prescribe no vasopressor to avoid such dramatic changes. So, AI policies 

prescribed no vasopressor more of the time.  After being constrained by the vasopressor penalty, 

the modified AI agent became more conservative.  

Vasopressor recommendation VS mortality  

We further compared the vasopressor recommendation among 750 states under the old 

state space and the new state space, as shown in Figure 13. The x-axis of the heatmaps below 

shows the 90-day death mortality at the very left column, and the other 8 columns on the right are 

proportions of vasopressor recommendations under different policies (the color indicates the 

proportion of vasopressor recommendation; vasopressor is encoded with 0 and 1, regardless of the 

scale of vasopressor). The y axis represents the state ranked by mortality, from low to high. We 

can find that under both state spaces, AI policies recommended vasopressors to patients with high 

death risk more often and to patients with low death risk less of the time compared to the clinician 

policy. We also noticed that AI policies in the new state space recommended less vasopressor than 

in old state space when the patient had a high risk of death. 
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Figure 13 Vasopressors use ranked by mortality rate 

 

The state depicted in Figure 13 has a low mortality rate but is treated aggressively with 

vasopressors. We conducted additional examinations on these patients. They were assigned to state 

403 in the old state space. The mean SOFA score for this group is 8.7, which is significantly higher 

than the mean SOFA score for the entire data set, which is 5.4. The mean SOFA score of patients 

who survived and those who did not survive at 90 days was then compared separately in this group. 

We received a score of 9 for survivors and 8.5 for non-survivors. Thus, patients in this group 

should be treated as if they have severe sepsis (a high SOFA score is associated with an increased 

risk of death) and given additional vasopressors. Many of these patients eventually survived for a 

variety of reasons. Thus, even though mortality is low in this group, the use of vasopressors is 

high. 
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3.2 Major vasopressors change evaluation 

We evaluated the proportions of major vasopressor dose changes following the 

unconstrained AI policy, the modified AI policies, and the clinician policy on the test data set, 

which has 6,221 patients. Major vasopressor dose change is defined as 1.05 micrograms/kg/min, 

which is the median vasopressor dose of the highest quantile. According to Bassi et al. (2013), this 

sudden change is not recommended in clinician treatment. The dose change of 1.05 

micrograms/kg/min is considered very rare as it might result in acute hypotension or cardiac 

arrhythmias. Under the old state space, the clinician policy had 136 (2.19%) patients who had 

major vasopressor changes. The AI policy had 277 (4.45%) patients who had major vasopressor 

changes, which doubled the number of the clinician policy. The modified AI policies with 

intermediate rewards slightly decreased the number compared to the unconstrained AI policy but 

were still higher than the clinician policy. The modified AI policies with vasopressor penalties 

performed the best in terms of reducing the number of patients with major vasopressor changes; 

the more penalties applied to vasopressor changes, the more effective they were in reducing the 

number of patients with major vasopressor changes. Under the new state space, the conclusion was 

the same as under the old state space. When comparing the new state space to the old state space, 

the proportions of major vasopressor change have increased a lot for all the AI policies. We 

conclude that adding vasopressor change to state definition space is not helpful in decreasing 

dramatic vasopressor change. In further estimation, we will only include policies in the old state 

space. 
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Figure 14 Proportion of major vasopressors change comparison 

 

 

Table 7 Proportion of sudden vasopressors change 

 

 

Policies Clinician AI AI_intm1 AI_intm2 AI_intm3 AI_vaso1 AI_vaso2 AI_vaso3

Old state 2.19% 4.45% 3.17% 4.24% 3.17% 2.80% 0.80% 0.50%

New state 2.19% 8.68% 8.87% 8.50% 8.82% 6.88% 5.64% 3.47%
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3.3 Importance sampling-based model evaluation 

3.3.1 Trajectory-wise importance sampling (TWIS) policy value comparison 

We evaluated the performance of all of the learned AI policies under a variety of reward 

frameworks using model-free off-policy evaluation. Figure 15 depicts the final trajectory-wise 

WIS policy values for various policies, with 95 percent confidence intervals calculated using 100 

independent bootstrapping. The policy value associated with the clinician policy was calculated in 

the test data set and served as the benchmark for all the other learned AI policies. As we observed, 

adding an intermediate reward to penalize high a SOFA score and Lactate can slightly increase the 

TWIS policy value compared to the unconstrained AI policy. However, an excessive penalty 

would result in unstable results, such as policy AI_intm3, which had a TWIS policy value of 8.54 

and a very large standard deviation of 7.98. Additionally, we discovered that the AI policies with 

vasopressor penalties, such as AI_vaso1, AI_vaso2, and AI_vaso3, achieved comparable TWIS 

policy values to the unconstrained AI policy. 
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Figure 15 Trajectory Weighted Importance Sampling policy value comparison 

 

Figure 15 shows the TWIS policy values for all policies when evaluated using the 

unconstrained reward framework with only terminal rewards. We also evaluated them using 

intermediate reward frameworks and vasopressor penalty frameworks (as in supplementary Figure 

1). The TWIS policy values were very similar to the results evaluated using terminal reward 

frameworks, with the exception that the AI_intm policies obtained slightly higher TWIS policy 

values using the intermediate reward frameworks and the AI_vaso policies got slightly higher 

TWIS policy values using the vasopressor penalty frameworks than the other policies. This 

indicates that optimizing the terminal outcome does not conflict with optimizing both the terminal 

and intermediate outcomes simultaneously. 
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3.3.2 Importance sampling-based estimated mortality comparison 

We would like to further compare the estimated mortalities under different policies in 

the test data set. We calculated the estimated mortality using the importance sampling method, and 

the 95% confidence interval of each mortality was achieved using 100 independent bootstrapping. 

The estimated mortality for each reward framework is shown in Figure 16. The estimated mortality 

of the clinician policy in the test data is set to be the benchmark for all the other AI policies. It 

shows that the AI_intm3 got the lowest mortality rate of 0.277 with a standard deviation of 0.0009, 

while the AI_intm2 got competitive mortality as the unconstrained AI policy. All the other 

modified policies had a higher death rate than the unconstrained AI policy, but they were still 

significantly lower than the clinician policy. 
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Figure 16 Estimated mortality rate comparison 

3.4 Model selection 

Among the three intermediate rewards framework experiments, AI_intm3 had the lowest 

mortality, but we did not choose it due to its instability of TWIS policy value. Rather than that, we 

chose the AI_intm2 policy because it achieved a higher TWIS policy value and competitive 

mortality than the unconstrained AI policy by simultaneously considering intermediate and long-

term outcomes. In terms of reducing major vasopressor change, we chose AI_vaso1 after 

considering all evaluation criteria (TWIS policy value, estimated mortality, and proportion of 

vasopressor change), because AI_vaso1 had a lower proportion of dramatic vasopressor dose 
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change, a competitive TWIS policy value, and a competitive estimated mortality compared to an 

unconstrained AI policy. 

3.5 Feature importance interpretability evaluation 

We’ve already tested that our modified AI policies have better quantitative performance in 

the previous sections. We think it is important as well to demonstrate that they are clinically 

interpretable or reasonable, especially in such a high-risk setting. By fitting classification random 

forest models, we identified the relative feature importance. The independent variables in the 

random forest models were the 38 features used for state definition, and the dependent variable 

was the recommendation of vasopressor (yes or no, scale of dose is discarded). To avoid bias, we 

used permutation feature importance. We estimated the out-of-bag score of each feature in the test 

data set by permuting the value of each feature (L. Breiman et al., 2018). 

The results of the modified AI policies were then compared to those of the clinician policy. 

As illustrated in Figure 17, SOFA plays a significant role in three policies, which is to be expected 

given that SOFA reflects sepsis-related organ failure. Lactate is also on the top of the list because 

it is associated with the requirement for vasopressor administration. Gender is given the least 

weight in all policies because it is expected to have no effect on the recommendation of 

vasopressor. As illustrated in the figure, clinicians focused primarily on the SOFA score and a 

small amount on platelets and creatinine, while giving little weight to the majority of other features. 

This is acceptable because physicians typically make decisions based on their experience after 

recognizing specific biomarkers. Whereas, when the AI algorithm recommends vasopressors, it 
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takes into account all available features. As we observed, the modified AI policy's importance 

weight is more evenly distributed across all features. This demonstrated that the recommendations 

generated by the modified AI policies are clinically interpretable and are primarily based on 

clinically relevant features. 

 

 

Figure 17 Permutation-based feature importance comparison 
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4.0 Discussion and future work 

In this project, we demonstrated that by modifying the reward system, we can enhance the 

reinforcement learning process. Kennedy has previously demonstrated that AI policy learned via 

a Q-learning algorithm outperforms clinician policy. We extended this work by addressing two 

previously identified constraints: 1, failure to incorporate intermediate outcomes for patients; 2, 

abrupt changes in vasopressor dose use. Rather than focusing exclusively on end-point rewards, 

we propose two modified AI policies capable of independently addressing the two constraints. The 

modified AI_intm2 policy achieved competitive TWIS policy value when optimizing end-point 

outcomes and higher TWIS policy value when optimizing both intermediate and end-point 

outcomes than the unconstrained AI policy. Additionally, the AI_intm2 policy achieved a 

comparable estimated mortality to the unconstrained AI policy. Thus, we think AI_intm2 is more 

robust and applicable in real-world clinical settings. In comparison to the unconstrained AI policy, 

our second proposed policy, AI_vaso1, achieved a competitive TWIS policy value and 1.66 

percent fewer patients who have such significant vasopressor dose changes. We observed that 

AI_intm2 policy and AI_vaso1 policy tended to avoid administering vasopressors to patients 

without acute sepsis (Figure 13), which was consistent with Pruinelli et al (2016).’s finds and 

clinically interpretable according to prior research that low-dose vasopressors are effective and 

safe in the treatment of sepsis (Mutlu & Factor, 2004). Whereas in patients with severe sepsis (high 

mortality), AI_intm2 and AI_vaso1 tended to recommend more vasopressor than the clinician 

policy (Figure 13). This is also in accordance with clinical professionals’ understanding that acute 

septic patients are more likely to be administrator with vasopressor (Alaniz, C et al., 2013). We 

further confirmed that the decisions suggested by AI_intm2 policy and AI_vaso1 were clinically 



 

 49 

interpretable and primarily relied on critical biomarkers associated with sepsis diagnosis, such as 

SOFA score, White Blood Cells, and Shock Index, as shown in Figure 17. 

The strength of the proposed modified AI policies is that we addressed the two safety 

constraints that existed in prior work. In the AI_intm2 policy, we added intermediate rewards for 

outcomes such as patients’ SOFA scores and arterial lactate levels that are related to intravenous 

fluid and vasopressor administration. We penalized high SOFA scores and increased SOFA scores, 

vice versa. In the same way, we penalized increased arterial lactate levels and rewarded decreased 

arterial lactate levels. The SOFA score and arterial lactate levels are both significant indicators 

that are associated with poor outcomes in sepsis treatment (Christopher W., et al, 2016; Sauer  

C.M., et al, 2021). With the regulation of the intermediate reward system, the modified policy 

AI_intm2 would more closely mimic clinicians' treatment policy by considering both instant health 

status and long-term outcome, which helps the AI_intm2 policy converge to a robust and safe AI 

policy. In AI_vaso1, we monitored the vasopressor changes over the trajectories of each patient. 

We penalized dramatic changes in vasopressor dose use within one time step and rewarded smooth 

vasopressor dose changes. In this way, we successfully decreased the proportion of patients who 

have such major changes in our test data set. 174 (2.8%) out of 6221 patients have this dramatic 

change under the AI_vaso1 policy, compared to 277 (4.5%) out of 6221 patients under 

the unconstrained AI policy. This approach ensures the AI_vaso1 prescribes vasopressor doses in 

a gradually increasing and decreasing manner. According to Ellender TJ et al, a sudden large 

change in vasopressor dose might be very harmful to sepsis patients. Thus, the AI_vaso1 policy is 

safer than the unconstrained AI policy in terms of clinical safety practice. Overall, we have 

modified the reward framework to address previous work’s constraints and have learned two safer 

and more robust policies by incorporating clinical practice and knowledge. 
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Our endeavor is constrained by several constraints. To begin, we did not thoroughly 

investigate the reward function parameters (for both intermediate rewards and vasopressor penalty 

rewards systems). We only tested three different parameter groups for each reward function and 

chose the optimal final policies. We could improve our results if we conducted a more explicit 

examination of the parameters. The same holds true for the parameters used in the Q-learning 

algorithm and for the k value used in K-means clustering. Second, the dataset was filtered to 

include only patients admitted to the intensive care unit (ICU) to introduce more heterogeneity 

into an all-sepsis population. As a result, our learned AI policy is not generalizable to a different 

patient cohort. Third, we used only 38 numerical features to represent patients' health status and 

considered only two drug administrations, which is oversimplified in comparison to reality's 

complexity. Additionally, in a clinical setting, clinicians would have access to much more 

qualitative data, such as nurse reports. And, because many additional medications are prescribed 

concurrently, it is critical to understand how these medications interact. Fourth, we reduced the 

temporal resolution of our data to four hours. This enabled the AI agent to access certain laboratory 

values, which are not immediately available to doctors in a real clinical setting. As a result, our 

findings may be biased. Fifth, we have addressed the two safety constraints separately thus far; it 

would be more reasonable if we could find a reward function that addressed both constraints 

concurrently. Sixth, the discrete state space defined by K-means clustering may have 

underestimated the health status of patients. Furthermore, because Q-learning is a tabular method, 

it trains data in a highly correlated sequential order, which makes the Q-learning algorithm 

unstable. The two disadvantages of Q-learning can be overcome using the Deep Q-Network 

algorithm (Van et al., 2016), which employs an experience replay buffer and freezes the target 
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network to reduce instability. Additionally, DQN's input is a continuous matrix of patient 

characteristics. 

In the future, we'd like to experiment with two approaches. To begin, we will attempt to 

develop a reward function that takes both intermediate outcomes and vasopressor dose changes 

into account simultaneously. Then, we will attempt to thoroughly explore all parameters, such as 

k in K-means clustering; the C parameters in the reward function; 𝛼, 𝛾 and 𝜀 in Q-learning. Once 

we have this final optimal policy, we will attempt to test its generalizability on an external data 

set, such as the MIMIC III data set, without further learning or tuning. Attempting to implement 

DQN on our dataset is our second future direction. Raghu et al. (2017) have already developed a 

DQN model and demonstrated excellent work in sepsis treatment drug recommendation. DQN 

outperforms Q-learning by incorporating two critical improvements to the Q-learning algorithm. 

DQN employs an experience replay buffer to mitigate the instability caused by training on highly 

correlated sequential data. Additionally, DQN freezes the target network to mitigate the instability 

caused by locating a moving target. Rather than inputting discrete predefined patient states, patient 

data (a multidimensional matrix) will be fed into a convolutional neural network, with the output 

neurons representing the number of actions that an AI agent can perform. Continuous states may 

alleviate the problem of heterogeneity within discrete states. 
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                                                           Appendix: Python code 

This work is implemented in Python 3.7, the code can be found in my GitHub repository 

at https://github.com/lilinglu/Reinforcement-Learning-For-Sepsis-Treatment. 

https://github.com/lilinglu/Reinforcement-Learning-For-Sepsis-Treatment
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Appendix Table 1 Description of included features 

Table 8 Appendix Table 

 

 

Feature Original Missingness Post-imputation Tansformation

Age (mean(sd)) 64(16) 0.0% 64(16) Standardization

Elixhauser (mean(sd)) 5.3(2.3) 0.2% 5.3(2.3) Standardization

Weight (mean(sd)) 85(29) 2.6% 85(29) Ln + Standardization

Gender/male (n(%)) 156,664(51%) 0.0% 156,664(51%) Standardization

Distolic BP (median(IQR)) 69(60-80) 0.5% 69(60-80) Ln + Standardization

Heart Rate (mean(sd)) 95(21) 0.4% 95(21) Ln + Standardization

GCS (mean(sd)) 12.1(3.5) 16.0% 12.4(3.3) Standardization

MAP (median(IQR)) 89(79-101) 0.5% 89(79-101) Ln + Standardization

Respiratory Rate (mean(sd)) 21(6) 0.4% 21(6) Standardization

Temperature (mean(sd)) 36.8(0.9) 0.6% 36.8(0.9) Standardization

SOFA (mean(sd)) 3.5(2.9) 0.0% 5.4(3.3) Standardization

SIRS (mean(sd)) 1.6(1.0) 0.4% 1.8(1.1) Standardization

Systolic BP (median(IQR)) 128(113-146) 0.4% 128(113-146) Ln + Standardization

Shock Index (mean(sd)) 0.8(0.2) 0.4% 0.8(0.2) Ln + Standardization

Albumin mean(sd)) 2.6(0.6) 37.0% 2.7(0.6) Standardization

ALT (median(IQR)) 31(17-77) 38.0% 24(17-41) Ln + Standardization

AST (median(IQR) 42(22-115) 38.0% 30(21-54) Ln + Standardization

Base Excess (median(IQR)) -2.1(7.5) 50.0% -1.0(6.0) Standardization

Bilirubin (median(IQR)) 0.8(0.5-1.6) 38.0% 0.6(0.5-1.0) Ln + Standardization

Bicarbonate (mean(sd)) 23(6) 4.3% 24(6) Standardization

BUN (median(IQR)) 28(17-47) 4.3% 26(16-42) Ln + Standardization

Chloride (mean(sd)) 106(8) 3.8% 105(7) Standardization

Creatinine (median(IQR)) 1.4(0.9-2.5) 4.3% 1.3(0.8-2.1) Ln + Standardization

FiO2 (median(IQR)) 50(40-70) 40.0% 40(40-50) Standardization

Glucose (median(IQR)) 148(114-201) 3.7% 135(109-176) Ln + Standardization

Hemoglobin (mean(sd)) 10(2) 3.6% 11(2) Ln + Standardization

INR (median(IQR)) 1.5(1.2-2.1) 39.0% 1.3(1.2-1.6) Ln + Standardization

Potassium (mean(sd)) 4(1) 3.5% 4(1) Standardization

Lactate (median(IQR)) 2.1(1.3-3.7) 34.0% 1.4(1.1-2.1) Ln + Standardization

Sodium (mean(sd)) 139(7) 3.9% 139(5) Standardization

SaO2 (median(IQR)) 95(93-98) 0.4% 95(93-98) Inverse Ln + Standardization

PaCO2 (mean(sd)) 44(16) 50.0% 42(11) Ln + Standardization

PaO2 (mean(sd)) 130(79) 51.0% 103(46) Ln + Standardization

PF Ration (meidan(IQR)) 223(143-332) 40.0% 250(163-375) Ln + Standardization

Arterial pH (mean(sd)) 7.3(0.1) 50.0% 7.4(0.1) Standardization

Platelets (median(IQR)) 173(114-241) 5.0% 7.4(0.1) Ln + Standardization

WBC Count (median(IQR)) 12(8-17) 5.3% 12(8-16) Ln + Standardization

Mesh Vent in Window (n(%)) 122,464(40%) 0.0% 122,464(40%) Standardization

Vaso_change (mean(sd)) 0.004(0.16) 0.0% 0.004(0.16) Standardization

Demographics

Vital Signs

Laboratory Measurements

Ventilation Parameter

Generated feature
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Abbreviations: GCS, Glasgow Coma Scale score; MAP, mean arterial pressure; SOFA, sequential organ failure 

assessment; SIRS, systemic inflammatory response syndrome; BP, blood pressure; ALT, alanine aminotransferase; 

AST, aspartate aminotransferase; BUN, blood urea nitrogen; FiO2, fraction of inspired oxygen; PaCO2, partial 

pressure of arterial carbon dioxide; PaO2, partial pressure of arterial oxygen; PF Ration, ratio of PaCO2 and FiO2; 

WBC, white blood cell. 
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Appendix Figure 1 TWIS policy value evaluation 

 
Figure 18 Appendix Figure 
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