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Personalized Deep Learning for IoT-Enabled Health Monitoring

Zhenge Jia, PhD

University of Pittsburgh, 2022

Biomedical sensors have been widely utilized to perform long-term health monitoring

on biosignals by being embedded into Internet-of-Things (IoT) devices. IoT-enabled health

monitoring is increasingly considered to be a promising alternative to conventional analytical

instruments due to their durability, low cost, and simplicity. While IoT-enabled health

monitoring provides the capability of detecting diseases that occur sporadically and acutely,

current detection methods still count on a variety of heuristic criteria with carefully selected

features. Considerable domain expertise is demanded in the process of detection methods

design and the detection parameters adjustment for better detection performance. Recently,

deep learning is gaining more attention in the healthcare industry. The most significant

advantage of deep learning is that it could automatically execute feature engineering with

only labeled data, which results in a great reduction in the expertise involvement and manual

work in conventional detection methods.

However, directly applying deep learning is not always feasible for IoT-enabled health

monitoring. First, biosignals are highly variable among patients in terms of morphological

characteristics due to individual differences. The detection performances of the pre-trained

deep learning model would degrade significantly on some patients. Therefore, effective model

personalization methods are in urgent need in patient-specific detection. Second, the deep

model personalization process still requires an extensive amount of labeled data. In prac-

tice, for some applications, it is impractical to obtain adequate labeled samples due to the

overwhelmed workload in manual labeling. Third, the data access is limited due to privacy

concerns in certain health monitoring applications, where aggregating personal health data

in a centralized server is strictly restricted.

To address the aforementioned challenges, this dissertation proposes several techniques

to enable personalized deep learning for IoT-enabled health monitoring. First, a novel meta-

learning algorithm and a prior knowledge incorporated learning approach are proposed to

iv



obtain a well-generalized model initialization and to regularize the personalization process

with medical knowledge. Second, a system-level design is proposed to conduct self-supervised

and on-device model personalization. Finally, we propose a personalized meta-federated

learning method for distributed IoT health monitors to generate a patient-specific model

through collaborative training without accessing personal health data.
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1.0 Introduction

Biomedical sensors have been widely utilized to perform continuous and real-time health

monitoring by being embedded into the Internet-of-Thing (IoT) devices. These sensors incor-

porate a broad range of biomedical signals, including electrocardiogram (ECG), intracardiac

electrogram (IEGM), electroencephalography (EEG), electromyogram (EMG), electrooculo-

gram (EOG), Microelectromechanical systems (MEMS) motion signals, and etc. The IoT

devices embedded with biomedical sensors are increasingly considered to be a promising al-

ternative to conventional analytical instruments in the personal healthcare industry due to

their connectivity, durability, low cost, and simplicity [38, 109, 112].

In current IoT health monitors, computer-aided methods are deployed to conduct vari-

ous tasks such as arrhythmia detection [21, 48, 121], human activity recognition [14, 23, 92],

Parkinson’s disease detection [20], physiological change alert [119], etc. Those methods

extract crucial features from sensed biosignals and utilize a series of heuristic rules with

programmable parameters to detect the event (disease). To be more specific, constructing

a criteria-based detection method requires considerable domain expertise to determine the

extracted features that transform the raw biosignal into a suitable internal representation or

feature vector. Based on the carefully selected features, domain expertise is further required

to construct the classifier, which could detect or classify patterns in the biosignals input,

by choosing the proper detection criteria based on clinical trials and experience. Moreover,

to achieve the optimal performance for each individual, in some health monitoring applica-

tions, experts are supposed to periodically diagnose the specific patient’s health conditions,

compare the sensed biosignals to the previous recordings, and adjust the detection parame-

ters accordingly in a routine follow-up [17, 21]. However, expertise is not sufficient for the

optimal (i.e., patient-specific) detection on all users.

To address the challenges, researchers have employed deep learning (DL) in health mon-

itoring. Compared with conventional detection methods depending on pre-defined features,

the most significant advantage of DL is the reduction of the domain expertise required in the

detection method design. The DL model could automatically learn to extract the essential
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feature representations needed for detection or classification through training. The labeled

biosignals could be directly utilized as the training material and the deep model outputs the

prediction without cumbersome features extractor and detection criteria design, which could

only be properly settled down by experts in conventional methods design.

These distinctive advantages are driving the use of DL in health monitoring on biosignals.

DL-based methods have achieved outstanding performance in a variety of health monitoring

applications. For example, DL-based arrhythmia detection on 12-lead ECG has achieved

cardiologist-level performance in terms of accuracy on twelve-class arrhythmia classifica-

tion [42]. An automated detection system for Parkinson’s disease (PD) is proposed to detect

PD using a convolutional neural network (CNN) based on sensed EEG signal [79]. A DL

approach is proposed to conduct automatic sleep stage classification based on multivariate

signals (EEG, EOG, and EMG) [24].

1.1 Challenges in Deep Learning for Health Monitoring in IoT

Despite the great benefits over conventional computer-aided detection methods, deploy-

ing DL-based detection methods on IoT health monitors still faces various challenges.

1.1.1 Inter-Patient Variability

The first challenge comes from individual differences. Biosignals are highly variable

among people in terms of signal dynamics and morphological characteristics [40, 57, 59, 91].

The detection performance of the pre-trained DL model would degrade significantly on some

patients due to such individual differences. Fine-tuning the pre-trained model using the

data from the specific patient is a straightforward but effective personalization approach.

However, the approach has some intrinsic drawbacks: 1) The performance of the personalized
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DL model via fine-tuning is highly dependent on the generalization of the initialization of

the pre-trained model; 2) The DL models are prone to overfitting during fine-tuning on the

patient-specific data. Therefore, optimizations for improving the generalization of the initial

model and regulating the personalization over the initial model are in demand.

1.1.2 Limited Personal Health Data and Labels

Although the DL model could be personalized by being fine-tuned on patient-specific

biosignal samples, such the personalization approach still requires a considerable amount

of data samples and expertise. The labels on patient-specific biosignal samples should be

properly and correctly determined by experts. However, in certain applications, the amount

of collected patient-specific samples is usually limited due to the constrained data transmis-

sion capability in IoT devices. Even with an adequate amount of samples, for some health

monitoring applications [14, 21], it is an overwhelmed task for experts to accurately diagnose

and label all biosignal samples for each individual due to the high labor costs. Therefore, it

is desirable to develop an automated and self-supervised personalization mechanism for the

DL model in IoT-enabled health monitoring.

1.1.3 Limited Access to Health Data

In some health monitoring applications, aggregating users’ health data in a centralized

server is usually restricted due to potential cybersecurity vulnerabilities, which have been

frequently reported in personal health data breaches in IoT health monitors [1, 2]. To keep

the personal data confidential, it is necessary to avoid sensitive health data uploading to the

cloud server. Federated learning (FL), which has been gradually adopted in health mon-

itoring applications, allows users to collaboratively train a shared model without personal

data aggregation. However, existing FL approaches can hardly address the issue in health

monitoring scenarios where the data of each individual is highly personalized and natu-

rally non-IID in terms of quantity, features, labels, and concept simultaneously [64, 77]. A

privacy-preserving DL model personalization approach via FL is in urgent need to address

the complex non-IID patterns in health monitoring application scenarios.
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1.2 Research Overview
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Figure 1: An overview of the proposed schemes in the dissertation.

Fig. 1 shows an overview of personalized deep learning based detection model design

processes in IoT-enabled health monitoring application scenarios. As shown in the figure,

there are three main procedures in the method design: 1) Data collection from clinical trials

participants; 2) Model training with the collected data and model personalization with the

patient-specific data; 3) Personalized DL model deployment on the individual. To address the

aforementioned challenges, it is necessary to develop systematical solutions for IoT-enabled

health monitoring applications.

The inter-patient variability described in Section 1.1.1 is closely related to the model

training and personalization processes. It is shown as Challenge 1 in Fig. 1. To address the

challenge, we focus on improving the DL model generalization during model training phase by
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proposing a meta-learning algorithm to accommodate patient-specific detection scenarios [54,

51], and regulating the fine-tuning process in personalization phase by proposing a prior-

knowledge incorporated learning algorithm [52].

The challenge in limited labeled health data for the DL model personalization described

in Section 1.1.2 is shown as Challenge 2 in Fig. 1. This challenge mainly occurs in patient-

specific data uploading phase for model personalization. A system-level self-supervised per-

sonalization approach based on the on-device Generative Adversarial Network (GAN) syn-

thesizing patient-specific data is proposed [50] to address the challenge.

The challenge in limited access to personal health data presented in Section 1.1.3 is

denoted as Challenge 3 in Fig. 1. To address the challenge, we propose a personalized meta-

federated learning framework to effectively train and personalize the DL model without

accessing personal health data. As shown in Fig. 1, the proposed framework would be

conducted in the data collection phase by performing collaborative training and conducting

model personalization on the user end.

1.3 Contributions

Research contributions for the dissertation are concluded as follows:

1.3.1 Learning to Learn Personalized Network

A meta-learning based personalization method is proposed to enable the DL model to

learn across-patient knowledge and end up with a well-generalized model initialization for

personalization [54, 51]. To be more specific, the proposed meta-learning method makes the

following contributions:

• A novel patient-wise training tasks formatting strategy is proposed to enable meta-

learning to accommodate the patient-specific detection scenarios.

• An inner-loop update steps annealing strategy and a cyclical outer-loop learning rate

mechanism are proposed to optimize the meta-learning process.
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• The proposed meta-learning method is shown to be effective and generalized for various

detection tasks including arrhythmia detection and human activity recognition.

1.3.2 Prior-Knowledge Incorporated Personalization

A prior knowledge incorporated personalization method is proposed to incorporate prior

knowledge into model personalization to effectively adapt the deep model to a specific pa-

tient’s data domain [52]. The proposed method is shown to be effective for Atrial Fibrillation

(AF) detection with the contributions as follows:

• A prior-incorporated portion importance mechanism is devised to increase the model

performance and interpretability by setting the important detection portions of the ECG

following the AF diagnosing rules in cardiology.

• A prior-incorporated regularization mechanism is devised to regularize the model from

overfitting by leveraging the AF rhythm prior distribution derived from the general pop-

ulation.

• Experimental results show that the proposed prior-incorporated personalization method

outperforms the conventional fine-tuning method on three DL models.

1.3.3 Self-Supervised Personalization via GAN

System-level design is proposed to conduct self-supervised and on-device personalization

for the DL model. The proposed system design is shown to be effective for Ventricular

Arrhythmias (VA) detection with the contributions as follows [50]:

• A generative adversarial network (GAN) is devised to generate patient-specific intracar-

diac electrograms (IEGMs) segments with complex patterns by mimicking morphological

characteristics of the self-selected unlabeled IEGMs.

• An edge computing framework is presented to provide the capability of self-supervised,

automatic, and on-device model personalization.

• Experimental results show that the proposed system design improves VA detection per-

formance in the self-supervised personalization manner.
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1.3.4 Personalized Meta-Federated Learning

We propose a personalized meta-federated learning framework (PMFed) for patient-

specific health monitoring. PMFed aims to effectively generate a personalized model for

each targeting patient in the federated learning paradigm without accessing personal health

data. Specifically, the main contributions of the paper are summarized as follows:

• We propose a personalized meta-federated learning framework PMFed that enables patient-

specific health monitoring in IoT.

• We introduce a cross-patient learning mechanism together with a model weighting strat-

egy that improves the generalization of the global model by considering the majority and

minority of biosignals’ morphological characteristics caused by inter-patient variability.

• We devise a neighbor-aggregating mechanism that effectively personalizes the global

model for the targeting patient by invoking neighbor clients’ model to regulate the fine-

tuning process.

• PMFed is shown to be effective over three tasks in terms of its detection performances

and can be applied in IoT-enabled health monitoring based on its practical performances.

1.4 Dissertation Organization

This dissertation is organized as follows:

Chapter 2 introduces the IoT-enabled health monitoring systems, deep learning in health

monitoring, and the impact of individual differences to deep learning models.

Chapter 3 presents a meta-learning approach that accommodates patient-specific detec-

tion scenarios to improve the initial model generalization.

Chapter 4 presents a prior knowledge incorporated learning method to regulate the fine-

tuning process for the DL model personalization.

Chapter 5 introduces a system design that enables self-supervised and on-device person-

alization by leveraging GANs.
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Chapter 6 introduces the personalized meta-federated learning for patient-specific health

monitoring in IoT with limited personal data access.

Chapter 7 summarizes this dissertation.
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2.0 Background

2.1 IoT-Enabled Health Monitoring

With the rapid development of biomedical sensors, IoT devices are gaining more attention

in health monitoring. IoT monitoring device embedded with biomedical sensors presents a

way to monitor patients’ health conditions in a continuous, real-time, and connective manner.

The disease that occurs sporadically and acutely could be detected by the computer-aided

method, diagnosed by doctors through data uploading, and even treated by the IoT device in

time. IoT-based health monitoring is considered to be a promising alternative to in-hospital

instruments in the personal healthcare industry. There are various applications in health

monitoring using IoT devices.

2.1.1 Cardiac Monitoring

The biosignals reflected cardiac rhythm have been utilized for arrhythmias detection.

Implantable Cardioverter Defibrillator (ICD) is a small device implanted to reduce Sudden

Cardiac Death (SCD) risk and improve the survival rate by detecting Ventricular Tachy-

cardia (VT) and Ventricular Fibrillation (VF) on intracardiac electrograms (IEGMs) and

delivering defibrillation [121]. The arrhythmia detection methods deployed on ICD count

on a wide variety of criteria and there are hundreds of parameters affecting the defibrilla-

tion decision [17, 66]. With the capability of IoT, the sensed rhythm and treatment history

can be uploaded to help doctors to fine-tune the parameters for each ICD recipient [120].

Long-term rhythm monitors with connectivity are leveraged for Atrial Fibrillation (AF) de-

tection. The devices such as Insertable Cardiac Monitor (ICM) [21, 86], wearable patch

cardiac monitors [48, 13], and smart watches [96] are programmed with AF detection meth-

ods. Those devices could transmit the self-detected suspicious AF-rhythm ECG episodes to

the cardiologists for further diagnosis.
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2.1.2 Human Activity Recognition

The biosignals measured by inertial sensors such as accelerometers and gyroscopes on

the human body have been frequently utilized as the input for activity classification. A

real-time algorithm for automatic recognition of physical activities and intensities based on

wireless accelerometers and heart rate monitors is proposed in [106]. ActiServ system is

proposed to utilize fuzzy inference based classifiers to perform real-time activity recognition

on the mobile phone [14]. In [10], authors propose an Android-based application named

ActiWare that could perform real-time recognition with the Naive Bayes classifier on the

extracted features from the biosignals obtained with the built-in accelerometer. Authors

in [92] present a hierarchical classification approach for resource-constrained IoT platforms

such that the classification based on the extracted features could be executed either on

gateway or IoT devices.

2.1.3 Parkinson’s Disease Treatment

IoT devices have also been applied to patients with Parkinson’s Disease (PD). A research

project, CuPiD [39], is conducted to develop a system consisting of IMUs and smartphones

to provide the real-time and long-term measurement of gait and auditory feedback for the

patients with PD. The system is able to help patients with PD to improve gait and balance

based on the analysis of the sensed patient-specific data. There are also some works to

detect PD for the patients by asking the patients to perform standardized motor tasks (e.g.,

tapping, finger-to-nose, walking) [49, 82] or activities of daily living (e.g., eating, cooking,

washing hand) [88, 28]. Apart from the measurement of biosignals, a wide range of features

such as frequency features and gait parameters are also extracted for a more accurate PD

detection in those IoT monitoring applications.

2.1.4 Sleep Monitoring

IoT devices have been applied in sleep monitoring. The gold standard, Polysomnography

(PSG), is too expensive and time-consuming for sleep monitoring. Instead, the ActiWatch
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can monitor sleep quality for several days without charging. A more accurate but less-cost

way to conduct sleep stage classification is to construct a wireless wearable sensor system. In

the work [19], authors propose a multimodal sensor system that can measure various types

of biosignals including ECG, hand acceleration, and skin temperature. Based on the sensing

system, essential features are determined and extracted to perform an accurate sleep stage

classification.

2.1.5 Comprehensive Health Assessment

There are also research outcomes based on comprehensive health assessment based on

the analysis of the features extracted from multimodal biosignals. Authors in [111] propose

a remote patient health monitoring system in smart homes by integrating fog-computing

at the smart gateway. A Bayesian belief network classifier-based model is introduced to

determine the status of the user based on the features from biosignals including ECG, blood

pressure, respiration rate, body temperature, body acceleration and etc.

2.2 Deep Learning in Health

Deep learning is a subset of machine learning algorithms and has been shown to out-

perform conventional methods in various fields such as visual object detection and speech

recognition. The most significant advantage of deep learning is that the deep models could

automatically learn to extract essential features through training with labeled data. On

the other hand, conventional methods normally require an extensive amount of domain-level

expertise to first define features and perform classification based on the extracted features.

With the development of the technique, deep learning is being accepted in health mon-

itoring applications on biosignals. Deep learning based arrhythmia detection has achieved

cardiologist-level performance in terms of accuracy [42]. In their works, the authors utilize a

convolutional neural network (CNN) with ResNet architecture to perform twelve arrhythmias

classifications on 12-lead ECG. Authors in [110] develop a 37-layer deep neural network to
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classify 4 triage categories derived from clinical experiences on 12-lead ECGs. Authors in [3]

propose a CNN with a simple structure for ventricular arrhythmia detection using single-lead

ECG. Authors in [46] propose a simple but effective 1D CNN for atrial fibrillation detec-

tion on ECG. In [117], two 2D CNNs are presented to detect AF using the ECG signals

processed with Short-Term Fourier Transform (STFT) and Stationary Wavelet Transform

(SWT). In [76], a two-channel deep neural network is proposed to detect the presence of

AF on ECG. The first channel learns where to attend for detection and the second channel

learns to extract the features from ECG.

Deep learning has also been applied in HAR. Authors in [27] propose a CNN model to

detect human activity based on the tri-axial acceleration signals. Authors in [62] introduce

a 1D CNN-based method to recognize 3 human activities (i.e., walking, running, and stay-

ing still) based on the acceleration signals obtained from the built-in accelerometer of the

smartphone. Authors in [84] utilize CNNs with varying kernel dimensions along with Bi-

directional LSTM (BiLSTM) to automatically capture spatial and temporal features on the

biosignals obtained from accelerometers and gyroscopes. Authors in [47] propose a simple

CNN to accurately classify the action while being able to conduct inference in real-time.

Apart from arrhythmia detection and HAR, authors in [16] use Long Short-Term Memory

(LSTM)-based siamese networks to detect Parkinson’s disease on the speech signal. Authors

in [81] utilize the data obtained from accelerometer and touchscreen typing to construct

multi-modal deep learning to detect Parkinson’s disease. Moreover, DL has achieved out-

standing performance in sleep stage classification. A DL approach is proposed to conduct an

end-to-end sleep stage classification based on multivariate signals (EEG, EOG, and EMG)

without calculating spectrograms or extracting features [24]. Authors of the work [55] pro-

posed a multimodal salient wave detection network that accurately detects the sleep stage

and adaptively targets essential information from multimodal input.
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2.3 Impact of Individual Differences

Individual differences can cause inter-patient variability on biosignals in terms of mor-

phological characteristics. Here, we utilize the biosignal datasets of IEGMs [7], ECG [83]

and MEMS motion sensors [72] for demonstration.
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(a) IEGMs segment of Patient 253.
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(b) IEGMs segment of Patient 266.
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(c) IEGMs segment of Patient 327.

Figure 2: IEGMs over three subjects on VA.

Fig. 2, Fig 3, and Fig. 4 show the biosignals of IEGMs, ECG, and body acceleration

over three patients (subjects) on the same event (i.e., Ventricular Arrhythmia in Fig. 2(a-c),
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(a) ECG segment of Patient 01.
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(b) ECG segment of Patient 23.
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(c) ECG segment of Patient 53.

Figure 3: ECG over three subjects on AF.

Atrial Fibrillation in Fig. 3(a-c), and Action Walking in Fig. 4(a-c) respectively). As shown

in the three figures, the morphological characteristics of biosignals are highly variable even

on the event (arrhythmia) of the same type over different individuals.

Inter-patient variability caused by individual differences poses a significant challenge for

accurate event (disease) detection in health monitoring. In conventional detection methods

design such as criteria-based methods, considerable expertise and experience are required

to find the best-fit features set for all patients. Moreover, the default detection parameters

value is expected to be settled with the optimal parameter settings (i.e., the out-of-the-
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(a) Body acceleration signal segment of Subject 11.
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(b) Body acceleration signal segment of Subject 12.
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(c) Body acceleration signal segment of Subject 16.

Figure 4: Body acceleration signal segments over three subjects on Standing.

box factory default settings). For the devices such as Zio rhythm patch [48] and Insertable

Cardiac Monitor (ICM) [21], the detection criteria and parameters are carefully selected

through extensive clinical trials. The settings are seldom modified after they are worn. For

some application scenarios where a high detection precision is strictly required for the critical

medical decision such as Implantable Cardioverter Defibrillator (ICD) [66] and Deep Brain

Stimulation (DBS) [44], experts must frequently diagnose the sensed signals and historical
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treatment records to properly fine-tune the detection parameters for each individual. Both

cases demand extensive domain knowledge in selecting proper criteria and determining the

detection parameters to achieve the optimal detection performance for the individual.

Inter-patient variability caused by individual differences also poses a detection precision

degradation on DL-based detection method [59, 40, 57]. Such variability, which appears to

be with unique morphological characteristics, can bring the individual a data distribution

that could be significantly different from the distribution of training data collected from the

general population. Since the DL model could only learn general and predictive knowledge

from the training data, the performance of the pre-trained DL model often deteriorates due to

such domain distribution differences naturally caused by individual differences. On the other

hand, domain expertise cannot provide pivotal amelioration for DL-based detection methods

as it does in conventional methods since the DL model learns to extract essential features

and make predictions with the classification model consisting of only parameters. In other

words, domain expertise cannot be directly utilized to personalize the specific parameter

weights of the DL model. Therefore, in health monitoring, personalized deep learning is

demanded to achieve the optimal detection performance for each individual patient while

reducing the dependency on domain-level expertise.
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3.0 Learning to Learning Personalized Neural Networks for Health

Monitoring

This chapter presents a project that improves deep learning model generalization for

patient-specific detection on biosignals [54, 51]. It is organized as follows. First, the motiva-

tion of the project is presented. Next, the details of the proposed meta-learning method and

related optimizations are presented. Then, the experimental results are shown to demon-

strate the effectiveness and generalization of the proposed method for patient-specific detec-

tion over different types of biosignals. Finally, the conclusion is presented to summarize the

project.

3.1 Motivation

We have performed some investigations and preliminary experiments to evaluate the

feasibility of deep learning to health monitoring on biosignals in IoT. From our experimental

results, we find that there are several challenges in applying deep learning for personalized

and real-time health monitoring on the resource-constrained IoT monitor.

3.1.1 Individual Differences on Deep Model Performance

We first experimentally evaluate the impact of individual differences on the detection

performance of the pre-trained deep models. Individual differences can cause inter-patient

variability on biosignals in terms of morphological characteristics.

Here, we utilize the biosignal datasets of IEGMs [7], ECG [83] and MEMS motion sen-

sors [72] for Ventricular Arrhythmias (VA) detection, Atrial Fibrillation (AF) detection, and

Human Activities Recognition (HAR) respectively as our case study applications. As shown

in Fig. 2, Fig. 3, and Fig. 4, the morphological characteristics of biosignals are highly vari-

able even on the event (arrhythmia) of the same type over different patients (subjects). We
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Figure 5: Individual detection accuracy on pretrained deep model over three case study

applications.

then choose three CNNs (denoted as CNN-VA [54], CNN-AF [46], and CNN-HAR [47]) that

are proposed for health monitoring on biosignals for each application. For each study case

application, the deep model is evaluated in an inter-patient paradigm. That is, the deep

model is firstly trained with the data from the set of training patients, and the pre-trained

deep model is then evaluated on the data of every testing patient. The detailed dataset

descriptions, experimental setup, and results would be illustrated in Section 3.3.
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Fig. 5 shows the experimental results in terms of accuracy of each testing patient over

three case study applications. Each individual is from the testing fold and denoted with

the corresponding numbering on the X-axis. From the figure, we observe that a pre-trained

CNN cannot achieve the expected high detection precision on every patient in all study

case applications. For example, in terms of AF detection performances shown in Fig. 5(b),

there is a large degradation of accuracy for some patients (e.g., Patient 23 and 53) while

the pre-trained model could achieve a near-perfect detection accuracy for the others. It

is because that individual differences cause inter-patient variability, which appears to have

unique morphological characteristics and dynamics in biosignals as shown in Fig. 3 [59, 40,

57].

Therefore, due to this inherent inter-patient variability in biosignals, the personalization

of the pre-trained deep model is demanded to achieve the optimal detection performance for

each individual patient.

3.1.2 Fine-tuning for Personalized Deep Learning Model

As we stated in the previous subsection, personalization is a necessary procedure in

biosignal health monitoring to achieve a better patient-specific detection performance. In

conventional methods, domain-level expertise is highly demanded since the detection crite-

ria, extracted features and programmable parameters are carefully determined and modified

for each individual [121, 21, 107]. Comparing with conventional methods, personalization in

deep learning can be achieved through fine-tuning, which requires much less domain knowl-

edge. Fine-tuning the pre-trained deep model using a limited amount of specific patient’s

data to obtain the personalized model has been investigated in various health monitoring

applications such as arrhythmias detection [59], epileptic seizure detection [12, 36], human

activity recognition [15], etc.

We have conducted experiments to further evaluate the performance of the fine-tuning

based personalization on the same testing patients from the three case study applications. For

each dataset, the fine-tuning is conducted on the pre-trained CNN using each testing patient’s

limited data with a uniform hyperparameter setting. Fig. 6 shows the accuracy changes of
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(a) Individual accuracy improvement on VA.
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Figure 6: Individual detection accuracy improvement by fine-tuning the CNN for three case

study applications.

each testing patient (subject) after fine-tuning. As shown in the figure, some deep models

personalized with the patient-specific data even experience a significant accuracy degradation

(e.g., patient 205 in VA detection and patient 74 in AF detection). The performances indicate

that the pre-trained CNN could easily overfit the patient-specific data during fine-tuning. A

straightforward solution is to optimize the hyperparameters (e.g., update steps, learning rate,

etc) of the fine-tuning process for each patient. However, because of the inherent individual

differences of biosignals, each patient is expected to have varying convergence rates during
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model fine-tuning. In other words, it is hard to determine when the pre-trained model

starts overfitting and it is impractical to determine the proper hyperparameters with limited

patient-specific data. Improving the generalization of the pre-trained model’s initialization

is an alternative but necessary approach to the problem.

Meta-learning approaches (e.g. MAML [34] and Reptile [78]) provide a learning strategy

that generates a pre-trained model with well-generalized initialization by training on the

tasks (i.e., N-way-K-shot classification) containing support and query set. The pre-trained

model with well-generalized initialization is shown to be able to quickly adapt to the new task

by fine-tuning. Such meta-learning approaches are compatible with our application scenarios

where the model personalization is necessary and there is a limited amount of patient-specific

data. However, directly applying those methods would mix training samples with different

classes from various patients in a single training task during the meta-learning process.

The training tasks with such biased data distribution could cause gradient diminishing and

training instability, which degrade the generalization of the model and lead to low detection

accuracy after fine-tuning. Therefore, it is necessary to further optimize the meta-learning

process to adapt the patient-specific detection scenarios.

3.1.3 Feasibility of Deep Learning Model Deployment and Personalization

We further evaluate the feasibility of the deployment of deep model on resource-constrained

IoT monitors. The resource-constrained IoT monitors are considered to be wearable or im-

plantable devices using microcontrollers (MCUs) since only the MCU-based IoT monitors

could perform long-term, real-time and continuous detection with limited-capacity batteries

in the health monitoring scenarios.

Most MCU-based IoT monitors have less than 256 KB on-chip memory, 2 MB off-chip

memory, and 200 MHz CPU frequency [111]. As a result, some deep models with a great

number of weight parameters for accurate detection [42, 76] cannot be deployed or executed

on the MCU-based IoT monitors. Even if optimizations such as pruning and compression
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are applied to the models, the work-in memory required during inference could easily exceed

the capacity of the on-chip memory of the low-power MCUs and the execution latency of a

large model may not satisfy the time constraints.

An alternative solution to the constrained hardware resources problem is to perform

hierarchical detection, where the MCU-based IoT monitor carries lightweight classification

and offloads compute-intensive classification tasks to a local gateway or cloud server [92, 11].

However, the approach still requires a relatively frequent data exchange between the IoT

monitor and the offloaded device. Moreover, the cybersecurity vulnerabilities in data trans-

mission to the cloud could lead to sensitive data leakage and device manipulation [1, 2]. It is

highly demanded to perform inference and model updates on the user end without upload-

ing personal health data. Therefore, it is necessary to provide a system-level solution for

privacy-preserving model personalization and efficient inference on the recourse-constrained

IoT monitor.

3.2 Methodology

In this section, we present the details of the personalized deep learning based patient-

specific health monitoring for the resource-constrained IoT monitors. There are two key

steps: 1) Meta-learning: Based on the problem formulation, the proposed meta-learning is

conducted on the server with collected patients’ data to obtain a well-generalized deep model

initialization containing across-patient knowledge; 2) Personalization: A quick personaliza-

tion is performed on the meta-model to adapt to the specific patient’s data.

Compared with the original method introduced in [54], the presented meta-learning

method further optimizes the patient-wise tasks formatting strategy to accommodate dif-

ferent health monitoring applications other than ventricular arrhythmias detection. The

strategy enables the method to conduct the meta-learning process even when the patients

are not with a certain class of data. Furthermore, optimization techniques such as cyclical
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learning rate mechanism are applied in the proposed method to improve the initial model

generalization. We further improves the model personalization introduced in [54]. The model

personalization would be executed on the user end without data uploading by leveraging an

edge computing framework.

3.2.1 Meta-Learning

Existing meta-learning algorithms [34, 78] focus on solving N-way-K-shot classification

and are not compatible to the patient-specific detection scenarios. To address the challenges,

we propose a patient-wise training tasks formatting strategy and two other optimization tech-

niques to ensure that the meta-learning process is stabilized and the across-patient knowledge

is well-learned by the meta-model.

We first introduce the meta-learning process along with necessary definitions. The initial

model parameters of the deep learning model is denoted as ϕ. There is a TaskSet defined

as T , which contains tasks τ extracted from training dataset. The meta-learning process

would iteratively train the deep model ϕ over tasks extracted from the T to obtain the

well-generalized meta-model parameters ϕ∗.

In the meta-learning process, the patient-wise training tasks formatting strategy is pro-

posed to formulate the tasks such that the across-patient knowledge could be properly learned

by the model. For each task of T , following the strategy, we randomly select 2N patients

from the training patients dataset for each class. Each one of those 2N patients must con-

tain the data labeled with the targeted class. Next, we randomly collect p samples labeled

with the targeted class of each patient in the first N selected patients and q samples of each

patient in the rest N patients Such process would be repeated for c times to form a task τi,

where c is the total number of classes. The total number of tasks in T is then denoted as

TS.

Once the task τi is formed, the collected p samples of each class from the first N patients

would be extracted to form the support set, denoted as τ spti . The q samples of each class

from the other N patients in τi would be formed as query set, denoted as τ qryi . The formal

definition of both set are shown as follows:
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τ spti = {(x, y)i,Mspt
j
} for j = 1, ..., c · p ·N,

τ qryi = {(x, y)i,Mqry
j
} for j = 1, ..., c · q ·N,

(3–1)

where (x, y)i is the data-label pairs in τi, and M spt and M qry are the pair indices (in τi) set

for τ spti and τ qryi separately. There are total c · p · N indices for pairs in τ spti and c · q · N

indices for τ qryi . A TaskSet T is constructed by repeating the process to extract tasks τi for

a pre-defined number TS times.

In meta-learning, on each formulated task, there is an important procedure defined as

inner-loop update [34]. The inner-loop update is the process of fine-tuning the initial model

parameters ϕ on the given new task to acquire task-specific knowledge. Here, the deep model

inference is denoted as fθ(x), where x is the input data and θ is deep model parameters.

When adapting the model to the task τi in inner-loop update, k-step gradient update is

applied to update the model parameter from θ0i (= ϕ) to θki using the segment and label

pairs in the support set τ spti . The gradient update on step m (where 0 < m ≤ k) is defined

as follows:

θmi = θm−1
i − α

1

|τ spti |

∑
(x,y)∈τspti

∇θm−1
i
L(fθm−1

i
(x), y), (3–2)

where L is the loss function and α is the inner-loop learning rate. The gradient descent

(GD) in Eqn. (3–2) would be processed for k steps to end up with the task-specific model

with parameters θki for the task τi:

θki = GDk(θ
0
i ), (3–3)

which is inner-loop model update in meta-learning.

Once obtaining a series of task-specific models from the inner-loop update for each task

τi ∈ T , we then evaluate the generalization of the task-specific models and obtain a well-

generalized meta-model. This procedure is defined as outer-loop update, which acquires

across-task knowledge by meta-learning the parameters of each task-specific model obtained

from inner-loop update [34].
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The outer-loop update begins with calculating the loss of each task-specific model on the

corresponding task’s query set. The loss is calculated as follows:

Lτi(θ
k
i ) =

1

|τ qryi |
∑

(x,y)∈τqryi

L(fθki (x), y). (3–4)

Next, we form a task batch using the mini-batch methodology (i.e., the batch-size number

of tasks are grouped as a batch) from T . The objective is to minimize the loss based on one

batch of tasks. The loss is defined as follows:

Lmeta(ϕ) =
B∑
b=1

Lτb(θ
k
b ), (3–5)

where b is the index of the task in the batch and B is the batch size. The minimization of

the loss defined in Eqn. (3–5) is to improve the generalization of meta-model parameters ϕ

for all tasks in the batch. Such objective is known as outer-loop meta-model update [34].

The optimizer utilized here could be Adam or Stochastic Gradient Descent (SGD). The

meta-model parameters updating is shown as follows:

ϕ′ = ϕ− β∇ϕ
1

|B|

B∑
b=1

Lτb(θ
k
b ), (3–6)

where β is the outer-loop learning rate and ϕ′ is the updated meta-model parameters that

contain the across-patient knowledge. The parameters ϕ′ would be utilized as the initial

parameters for inner-loop and outer-loop update on the next-round batch of tasks. To

obtain the well-generalized meta-model parameters ϕ∗, the meta-model would be updated

iteratively with the aforementioned inner-loop and outer-loop update on batches of tasks.

Fig. 7 demonstrates the meta-learning process beginning with initial model parameters

ϕ and ending up with the well-generalized ϕ∗. The number of classes c for detection is set

2 in the example. Each batch is formed by extracting B number of tasks from T and the

batch size B is fixed. As shown in Fig. 7, for each task τ in a batch, the samples labeled as

the first class are denoted with a red border and the samples labeled as the second class are

denoted with a green border. The first N patients’ p samples of each class form the support
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Figure 7: Illustration of the meta-learning process. The red line indicates the inner-loop

model update and the blue line indicates the outer-loop meta-model update. The meta-

model learns the across-patient knowledge and iteratively updates its parameters towards

the well-generalized initialization ϕ∗.

set τ spt and the q segments from the other N patients of each class form the query set τ qry

of τ . As shown in Fig. 7, the inner-loop update is conducted within each task (indicated

by the red line) and the outer-loop update is conducted batch by batch (indicated by blue

line). Note that the batches would be re-formulated for the next epoch.

To increase the generalization of the final meta-model parameters and speed up the

learning process, we further propose two optimization techniques.

3.2.1.1 Inner-loop Update Optimization

The meta-learning process of conventional meta-learning methods is time-consuming and

may come with training instability problem [8]. To speed up the meta-learning process while

obtaining the well-generalized meta-model parameters, we propose an inner-loop update

steps annealing strategy.

This strategy is based on the observation that the meta-model would quickly converge

in the preceding epochs of the meta-learning process. As a consequence, for the task batches

utilized in the latter epochs, the losses calculated in the inner-loop update tend to be stable.

Therefore, we propose an annealing strategy based on the observation. That is, inner-loop
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update steps k in Eqn. (3–3) would be reduced along with epoch numbers. The inner-loop

update steps are calculated as follows:

θki = GDk(θ
0
i ), for k = max[k − (e mod W ), K], (3–7)

where e is the number of current epoch, W is the preset updating stride, and K is the

minimal inner-loop update steps.

To stabilize the gradients, we further invoke the multi-step loss optimization to take

the loss of the task-specific model calculated from each inner-loop update step [8]. The

Eqn. (3–4) can be re-written as:

Lτi(θ
k
i ) =

k∑
m=0

vk(m)

(
1

|τ qryi |
∑

(x,y)∈τqryi

L(fθmi (x), y)
)
, (3–8)

where k is the inner-loop steps calculated in Eqn. (3–7) and vk(m) is the weight of the

loss at the step m. A slight difference between our formulation and the method in [8] is

that there are k different weights vector v for each calculated inner-loop update step. The

loss calculated in step 0 (i.e., the initial parameters θ0 before the inner-loop update) is also

considered in our multi-step loss optimization.

3.2.1.2 Cyclical Outer-loop Learning Rate Mechanism

In MAML, authors utilize a static learning rate for outer-loop learning rate for the meta-

model update. Authors in MAML++ [8] further optimize the outer-loop update by setting

a cosine annealing of outer-loop learning rate. However, the outer-loop update with a cosine

annealing learning rate may suffer from the early overfitting, where the initial model quickly

overfits on a small cluster of strongly-featured training data with a high starting learning

rate. What makes the problem more severe is that the model is likely not to be back on

the ”right” track in the following training steps with an annealing learning rate. Another

possible problem is that the meta-model may be hard to jump out of the local minimum

with an annealing learning rate during meta-learning.

In this work, we develop a cyclical outer-loop learning rate mechanism by applying

cyclical learning rate [99] for meta-model update. To be more specific, the outer-loop learning
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Algorithm 1: Patient-Specific Meta-Learning

Given ϕ: deep model initial parameters.

Given D,M : samples set and sample-label indices pair set over all training

patients.

Given α, β: inner-loop and outer-loop learning rate.

Given p, q: number of samples for support and query set of each class over each

patient.

Given N : total number of chosen patients for a task.

Given c, B, TS: total number of classes, task batch size, TaskSet size.

Given W,k,K: preset updating stride, inner-loop update steps, and the minimal

inner-loop update steps.

Given v: weights vectors for inner-loop update.

1 Initialize TaskSet T : for i = 1, 2, ..., TS do

2 Randomly select 2N patients from D, format patient-wise task with:

3 τ spti = {(x, y)i,Mspt
j
} for j = 1, ..., c · p ·N

4 τ qryi = {(x, y)i,Mqry
j
} for j = 1, ..., c · q ·N

5 end

6 for each epoch e = 1, 2, ... do

7 Formulate batches of tasks from T
8 k ← max[k − (e mod W ), K]

9 β ← cyclic LR scheduler(e)

10 for each batch do

11 for b = 1, 2, ..., B do

12 θ0b ← ϕ

13 Lb(θ
0
b )← 1

|τqryb |
∑

(x,y)∈τqryb
L(fθ0b (x), y)

14 for n = 1, ..., k do

15 θnb ← GDn(θ
0
b )

16 Lb(θ
n
b )← 1

|τqryb |
∑

(x,y)∈τqryb
L(fθnb (x), y)

17 end

18 Lqry
b (θkb )←

∑k
m=0 vk(m)Lb(θ

m
b )

19 end

20 Lmeta(ϕ)←
∑B

b=1 L
qry
b (θkb )

21 ϕ← ϕ− β∇ϕ
1
|B|Lmeta(ϕ)

22 end

23 end

28



rate would change cyclically along with the epoch number increase during meta-learning. The

primary benefit is that the meta-model would be updated with a relatively lower learning

rate in the first few epochs as a ”warm-up” starting, which is a way to reduce the chance of

causing overfitting in the early epochs. The learning rate changing cyclically could also force

the meta-model to jump out of the local minimal for a better-generalized initialization.

Algorithm 1 is devised to comprehensively illustrate the process of our meta-learning

approach. The training TaskSet T is firstly constructed with the tasks extracted using the

proposed patient-wise training task strategy (Line 1-5). Within each epoch, the task batches

are formulated with the given batch size B. The inner-loop update step is determined with

the mechanism defined in Eqn. 3–7 of the inner-loop update optimization (Line 8). The

outer-loop learning rate is then determined by the cyclical learning rate scheduler (Line

9). Next, for each task in a task batch, the meta-model parameters ϕ is assigned as the

task-specific model parameters θ0 (Line 12). The multi-step loss is calculated based on the

task-specific model’s inference on the query set from step 0 to k during inner-loop update

(Line 13-17). The task-specific model is updated on the task’s support set using gradient

descent defined in Eqn. 3–3. The multi-step loss is accumulated with weight vector vk for

each step from 0 to k (Line 18). The accumulated multi-step loss from each batch is then

added as the meta-loss and the meta-model is updated with the outer-loop learning rate β

(Line 20-21). The aforementioned processes of meta-learning would be executed iteratively.

3.2.2 Personalization

Once the well-generalized meta-model ϕ∗ is obtained, the next essential step is to per-

sonalize the model to adapt to the specific patient’s data. The personalized deep model

is expected to be deployed on the resource-constrained IoT monitor and perform patient-

specific detection on the sensed biosignals. To overcome the resource constraints problem, in

this work, we focus on the deep model with a reasonable amount of weight parameters that

can perform inference solely on the resource-constrained IoT monitor. We further introduce

an edge device to perform the model personalization on the user end without data sharing.
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Figure 8: Illustration of the deep model personalization process after obtaining meta-model

on the cloud.

As shown in Fig. 8, the IoT health monitor would firstly transmit some recorded patient-

specific samples to the edge device. Once the limited patient-specific samples are received by

the edge device, all the doctor is supposed to do is to label those samples through a physical

follow-up. The labeling would be processed purely on the edge device without data sharing

to keep the sensitive health data confidential.

Next, the edge device would automatically personalize the meta-model ϕ∗ downloaded

from the cloud by fine-tuning with the labeled patient-specific samples. This process can

be conducted with gradient descent based model updating. The meta-model could quickly

adapt to the specific patient’s rhythm feature since the model with ϕ∗ contains across-patient

knowledge through meta-learning. Specifically, the parameters of the deep model with ϕ∗

would be updated by SGD and back-propagation with those limited but labeled samples of

the new patient. The model would be personalized to adapt to the specific patient with a

few training iterations. As shown in Fig. 8, the personalized deep model would be further

deployed back on the health monitoring to perform real-time, continuous, and patient-specific

detection.
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The reason why we devise the computing framework is that the fine-tuning process

requires relatively extensive computing resources and cannot be executed solely by the IoT

monitor itself. Moreover, it is privacy-preserving to conduct the personalization on the edge

device without sending personal data to the cloud. In this case, we set the architecture

shown in Fig. 8, which enables the model personalization to be conducted efficiently by the

edge device while keeping the personal data on the user end.

It is also worth noting that our proposed method enables the model personalization to be

conducted semi-automatically. Doctors in our method are only expected to provide labels

on a limited amount of data without receiving qualification training on how to fine-tune

programmable parameters of conventional computer-aided methods [66]. The process of

parameters fine-tuning in conventional methods requires the doctors to not only read and

label the recorded rhythm, but also modify the parameter value based on their expertise

and experience. Our method could significantly reduce the workload by eliminating the

manual personalized programmable parameters finding process. Once the labeled patient-

specific data is received, the deep model could be automatically and effectively adapted to

patient-specific data by the proposed meta-learning method.

3.3 Experiments

In this section, we first introduce data preparation. We then introduce the experimental

setup including the evaluation paradigm, evaluated methods, and implementation details.

We finally present experimental results in terms of detection metrics and practical perfor-

mances.

3.3.1 Data Preparation

There are three health monitoring applications chosen in the experiments to evaluate the

generalization and effectiveness of our proposed method. The applications include Ventricu-

lar Arrhythmia (VA) detection on intracardiac electrograms (IEGMs) signal, Atrial Fibrilla-
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tion (AF) detection on electrocardiogram (ECG) signal, and Human Activities Recognition

(HAR) on MEMS motion signal. We would introduce the dataset and data pre-processing

for each application.

3.3.1.1 VA Detection

The dataset of IEGMs is retrieved from volume I & II of Ann Arbor Electrogram Libraries

(AAEL), one of the largest dataset for IEGMs and used by all manufacturers developing

implantable defibrillators to evaluate their methods [7]. The sampling rate of all recordings

is 1, 000 Hz. Different episodes of recordings have been annotated and reviewed by cardiac

electrophysiologists to ensure an accurate interpretation of arrhythmia.

Table 1: Data profile of VA dataset.

Data
2-second Segments

Events
Non-Overlapping Overlapping

VA 2,318 10,613 155

Non-VA 6,513 13,047 266

Here, we select all recordings over 95 patients to form the dataset. Each selected record-

ing contains the one-channel IEGMs sensed by RVA-Bi lead. First, we apply a band-pass

FIR filter with a pass-band frequency of 0.5 Hz and a stop-band frequency of 50 Hz. All

recordings are then resampled to 250 Hz as the sampling rate is widely utilized in implantable

devices [98]. Then, the recording is divided into various VA or non-VA events based on the

rhythm diagnostic annotations on the IEGMs. Finally, each event is segmented into seg-

ments using a 2-second sliding window (250 Hz × 2 s = 500 samples) with and without a

overlap (0.2 s for VA events and 0.5 s for non-VA events). The overlap is set to perform data

augmentation for training only. The detailed segments and events statistics are illustrated

in Table 1.
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3.3.1.2 AF Detection

The dataset of ECG is retrieved from Long Term AF Database (LTAFDB) [83, 5], which

includes 84 long-term ECG recordings of human subjects with AF. The sampling rate of

each recording is 128 Hz.

Table 2: Data profile for AF dataset.

Data 10-second Segments Events

AF 358,474 7,358

Non-AF 299,840 46,347

Here, we select the recordings of all 84 patients to form the dataset. Each selected

recording contains the ECG of the lead I. The first step is to apply a band-pass FIR filter

with a pass-band frequency of 0.5 Hz and a stop-band frequency of 50 Hz. Then, the episodes

annotated with AF of each recording would be labeled as AF while the other episodes are

labeled as non-AF. Each episode is then segmented into non-overlapped 10-second segments

and the label (i.e., AF or non-AF) on the segments is the same as the corresponding episode.

The detailed data profile of the AF dataset are shown in Table 2.

3.3.1.3 Human Activity Recognition

The dataset of MEMS human motion signals is retrieved from UCI-HAR [72]. UCI-

HAR is a commonly used dataset in HAR. It includes the smartphone accelerometer and

gyroscope data at a sampling rate of 50Hz over 30 volunteers. There are six activities

(i.e., Walking, Upstairs, Downstairs, Sitting, Standing, Laying) wearing a smartphone (i.e.,

Samsung Galaxy S II) on the waist. The labels of the signal data are made manually based

on the recorded video [72].

Here, we select all segments that have been pre-processed by UCI-HAR (i.e., apply noise

filters and then sampled in fixed-width sliding windows of 2.56 seconds and 50% overlap [72]).

Each sample consists of 9-channel signals including triaxial acceleration from the accelerome-

ter, triaxial body acceleration, and triaxial angular velocity from the gyroscope. The detailed

data profile of the HAR dataset are shown in Table 3.
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Table 3: Data profile for HAR dataset.

Data Walking Upstairs Downstairs Sitting Standing Laying

Segments 1,722 1,544 1,406 1,777 1,906 1,944

Events 30 30 30 30 30 30

3.3.2 Experimental Setup

3.3.2.1 Inter-Patient Evaluation Paradigms

In the experiments, each dataset is firstly partitioned patient-wisely to ensure that the

same patients’ data can only be in either training or testing set. For example, once the patient

is selected for training, the data of the patient would only be utilized in the training set. The

split is conducted randomly on the patients and we perform 10-time random sampling on

patients for each dataset. The partition ratio is 80%-20% for training and testing patients

for each split. The performance is reported based on the average performance of each testing

patient.

For the validation, the training patients’ signal segments serve as the training set and are

used to perform learning to learn a well-generalized deep model initialization in our method

or training in the baseline methods. For each patient in the testing split, a small portion of

segments is extracted to serve as the personalizing set and used to personalize or fine-tune

the model for the specific patient. There are 12-second (6 segments), 50-second (5 segments),

and 10.42-second (4 segments) recordings of each class selected as personalization data in

VA detection, AF detection, and HAR respectively. The rest segments of the testing patient

serve as testing set and are used to report the detection performance. During testing, for each

patient, the patient-specific segments from the personalizing set are utilized to personalize the

deep model, and the segments from the testing set are utilized to evaluate the personalized

model.
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In the personalization process of conventional computer-aided methods and deep learning

based methods, the personalization set is highly expected to contain all targeted classes. Only

in this way, the characteristics of the data could be learned either by doctors or deep learning

models to further personalize the method. The detection performance could be degraded if

the method is modified without knowing the data with targeted classes. However, it is not

always capable to collect data with all targeted classes in a personalization setting. In our

experiments, for each testing patient, the pre-defined number of segments are only collected

when there are more than doubled amount of segments of each class.

3.3.2.2 Evaluated Methods

We implement the following detection methods for performance comparison:

Criteria-based detection. We implement conventional detection methods based on de-

tection criteria and handcrafted features for each case study application:

• For VA detection on IEGMs, we simulate the VA detection method used in single-chamber

ICDs [120], denoted as Classic-VA. This method continuously monitors each heartbeat

and reports VA if the criteria are satisfied. We set two detection zones for VT and VF

respectively. The heart rate boundary of the VT/VF zone and fast/slow interval thresh-

old are carefully selected for each testing patient to simulate the manual intervention

such that the best discrimination performance could be achieved.

• For AF detection on ECG, we simulate an AF detection method deployed in ICM [86],

denoted as Classic-AF. This method detects AF rhythm based on AF evidence score and

P-wave evidence score [86]. The first one is derived from the Lorenz plot. The second

one is derived from the features extracted on the P-waves portions of the ECG. The

programmable parameters of detection criteria are carefully adjusted for each testing

patient.

• For HAR on MEMS motion signals, we implement the detection method using support

vector machine (SVM) [72], denoted as Classic-HAR. The features used in SVM are 561

hand-designed features extracted in [72].
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CNN-based detection. We implement existing deep learning based detection methods for

each case study application:

• For VA detection on IEGMs, we invoke two existing CNN models. One is proposed

in [54], defined as CNN1-VA. The second model is proposed in [3], defined as CNN2-VA.

• For AF detection on ECG, we implement the method in [46], defined as CNN-AF.

• For HAR on MEMS motion signals, we implement the method proposed in [47], defined

as CNN-HAR.

We invoke the same network structure with necessary modifications (e.g., change filter size

and reduce number of conv layers) to fit the input dimensions and recourse-constrained

embedded devices for each case. Moreover, the pre-trained CNN would be fine-tuned with

the personalizing set and then evaluated on the testing set. We denote them as CNN1-FT-

VA, CNN2-FT-VA, CNN-FT-AF and CNN-FT-HAR.

Conventional meta learning-based detection. We implement three conventional meta-

learning methods to evaluate the effectiveness of the proposed method.

• MAML: a conventional meta-learning method [34], denoted as MAML-VA, MAML-AF

and MAML-HAR.

• FOMAML: MAML with first-order approximation in [34, 32], denoted as FOMAML-VA,

FOMAML-AF and FOMAML-HAR for each application.

• Reptile: a conventional meta-learning method proposed in [78], denoted as Reptile-VA,

Reptile-AF and Reptile-HAR for each application.

Proposed meta learning-based detection. We implement the proposed meta-learning

method and denote it as Meta-VA, Meta-AF, Meta-HAR for each application. We also

implement the original meta-learning based model proposed in [54] for comparison purpose,

denoted as Meta-Origin-VA, Meta-Origin-AF, and Meta-Origin-HAR.

Note that all meta-learning based detection methods would first obtain the meta-model

from the training set, fine-tune the meta-model with the personalizing set, and finally eval-

uate the personalized model on the testing set of each testing patient. The architecture of

the meta-model is the one proposed in [54] for VA detection, [46] for AF detection, and [47]

for HAR.
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3.3.2.3 Implementation Details

We adopt PyTorch (1.6.0) for deep models training and personalization. We have set the

random seed using manual seed and manual seed all for CNN models. All random numbers

used in those methods are based on the random.seed of numpy. The SVM method (i.e.,

Classic-HAR) is implemented using sklearn library of Python. The other methods (i.e.,

Classic-VA and Classic-AF) are simulated using Python as well. All those experiments run

on the PC with 8 cores of Intel i9 9900K CPU, 32 GB RAM, 512 GB SSD, and an NVIDIA

GeForce GTX 2080Ti GPU on Ubuntu 16.04. The STM32F469NI discovery kit (with 2 MB

flash and 324 KB SRAM) [101] is utilized as the IoT health monitor. STM32Cube.AI [102]

developed by ST is utilized to deploy the model on the board. A Raspberry Pi 4B (with

Cortex-A72, 8 GB RAM, and 3.5 W in operation) [90] is utilized as the edge device for CNN

fine-tuning (personalization).

3.3.3 Results

3.3.3.1 Detection Performance

We evaluate our meta-learning method against other methods in terms of various metrics

including F1 score (F1), Sensitivity (Se), Specificity (Sp), balanced accuracy (BAC), accu-

racy (ACC), positive predictive value (PPV), and negative predictive value (NPV). Note

that all the metrics are calculated based on the average performance of each patient in the

testing set.

We first present VA detection performance on IEGMs from AAEL. The condition positive

is VA and the condition negative is non-VA. Table 4 demonstrates the detection performance

on VA segments. The performances indicate that fine-tuning is necessary for CNN models to

perform patient-specific VA detection since almost all metrics of CNN1-FT-VA and CNN2-

FT-VA improve after being fine-tuned on the personal data. As shown in Table 4, Meta-VA

achieves the best performance on all metrics compared with other evaluated methods. It

indicates that the generalization of the CNN initialization is critical in model personalization

and our proposed meta-learning method provides an effective solution to the problem.
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Table 4: Performance of methods on segments for VA detection.

Methods F1 Se/Sp BAC/ACC PPV/NPV

CNN1-VA [54] .893 .966/.885 .925/.885 .884/.971

CNN1-FT-VA .952 .978/.958 .968/.962 .943/.990

CNN2-VA [3] .803 .942/.879 .910/.893 .703/.980

CNN2-FT-VA .931 .977/.962 .970/.966 .891/.990

FOMAML-VA [34, 32] .943 .973/.947 .960/.955 .933/.986

MAML-VA [34] .940 .972/.951 .961/.956 .930/.987

Reptile-VA [78] .872 .913/.905 .909/.898 .868/.957

Meta-Origin-VA [54] .956 .974/.949 .961/.948 .949/.987

Meta-VA [51] .967 .982/.961 .974/.967 .956/.994

Table 5 illustrates the detection performance on VA events. The performance on events

is more practical in real-world scenarios since the defibrillation therapy should be determined

based on the rhythm episodes instead of segment in conventional VA detection in ICDs [17].

Therefore, we leverage a simple but effective mechanism to determine VA events for all

CNN models. That is, the VA rhythm would be determined if there are 4 consecutive

VA predictions on the 2-second segments. In other words, the monitor would consistently

monitor the latest four inferences, and the detection period is 8 seconds. The criteria is set

since the detection period of the classic method for VAs detection in ICDs is usually 5 to 10

seconds [66].

Compared with Classic-VA, CNN1-VA achieves a 0.3% deduction from a baseline of

97.2% on VA event detection rate represented Se and a 3.5% deduction on non-VA event de-

tection rate from a baseline of 91.7% represented by Sp. The two metrics, Se and Sp, become

96.7% and 96.0% respectively after fine-tuning in CNN1-FT-VA. The performances of CNN2-

FT-VA also indicate that the fine-tuning could further improve the detection performance
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Table 5: Performance of methods on events for VA detection.

Methods F1 Se/Sp BAC/ACC PPV/NPV

Classic-VA [120] .945 .972/.917 .936/.935 .912/.952

CNN1-VA [54] .936 .969/.882 .926/.890 .925/.946

CNN1-FT-VA .960 .967/.960 .963/.965 .959/.966

CNN2-VA [3] .876 .966/.864 .915/.900 .805/.978

CNN2-FT-VA .946 .968/.952 .962/.959 .923/.983

FOMAML-VA [34, 32] .962 .969/.944 .957/.956 .965/.957

MAML-VA [34] .969 .972/.953 .963/.965 .979/.965

Reptile-VA [78] .874 .876/.907 .892/.879 .907/.925

Meta-Origin-VA [54] .970 .977/.950 .963/.960 .974/.971

Meta-VA [51] .982 .983/.963 .970/.972 .989/.992

for the pre-trained deep model. The two SOTA meta-learning approaches, FOMAML-VA

and MAML-VA, achieve better performances on VA detection compared with CNN1-VA-FT

and CNN2-VA-FT in terms of F1 score. As for Meta-VA, it achieves the best performance

on all evaluated metrics. It has the near-optimal detection rate on VA events (98.3%) and

non-VA events (96.3%), and the highest F1 score (0.982). When compared with Meta-Origin-

VA [54], the performances of Meta-VA show that the proposed two optimization techniques

could further improve the generalization of the model initialization to fit patient-specific

detection.

Table 6 shows the AF detection performance on segments level. The condition positive

is AF and the condition negative is non-AF. As shown in the table, simply fine-tuning

on the pre-trained model CNN-AF is not an effective approach since some metrics (e.g.,

Se and NPV) degrades when comparing CNN-FT-AF with CNN-AF. It indicates that the

generalization of deep model initialization is essential for patient-specific detection. In meta-
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Table 6: Performances of methods on segments in AF detection.

Methods F1 Se/Sp BAC/ACC PPV/NPV

CNN-AF [46] .838 .952/.926 .939/.939 .823/.966

CNN-FT-AF .859 .932/.958 .945/.958 .854/.956

FOMAML-AF [34, 32] .839 .888/.972 .930/.941 .864/.935

MAML-AF [34] .841 .879/.972 .926/.936 .875/.928

Reptile-AF [78] .791 .708/.854 .811/.823 .870/.875

Meta-Origin-AF [54] .856 .933/.952 .943/.950 .846/.961

Meta-AF [51] .866 .918/.973 .946/.960 .872/.946

learning methods, both FOMAML-AF and MAML-AF achieve relatively similar performance

when compared with CNN-FT-AF. Reptile-AF achieves the worst detection performances

among all evaluated methods. On the other hand, Meta-AF achieves the best detection

performances on almost all metrics except Se, PPV and NPV. As shown in Table 6, Meta-AF

achieves the highest F1 score (0.866) among all methods. The total accuracy of Meta-AF is

96.0%, together with detection accuracy on AF segments being 91.8% and non-AF segments

being 97.3%. It indicates that the proposed meta-learning method could also adapt to the

ECG domain by generating a well-generalized model initialization.

Table 7 shows the AF detection performance on events level. Here, we leverage a mecha-

nism to determine AF events for all CNN models, where the AF event would be determined

if there are 3 consecutive AF predictions on the 10-second segments. As shown in the table,

Meta-AF achieves a 10.0% increase from a baseline of 86.5% on non-AF event detection rate

represented by Sp, and a 3.6% increase on accuracy from a baseline of 91.1% of Classic-AF.

As for SOTA meta-learning methods, FOMAML-AF and MAML-AF achieve relatively com-

parable performance when compared with CNN-FT-AF in terms of F1. It indicates that the

devised patient-wise tasks formatting strategy in Meta-AF could increase the meta-model

generalization and further improve the detection performance.
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Table 7: Performances of methods on events in AF detection.

Methods F1 Se/Sp BAC/ACC PPV/NPV

Classic-AF [86] .846 .921/.865 .917/.911 .797/.958

CNN-AF [46] .800 .945/.898 .921/.922 .776/.943

CNN-FT-AF .844 .920/.939 .930/.941 .837/.953

FOMAML-AF [34, 32] .839 .886/.956 .921/.939 .861/.943

MAML-AF [34] .844 .882/.965 .924/.941 .875/.940

Reptile-AF [78] .746 .753/.860 .796/.800 .749/.878

Meta-Origin-AF [54] .823 .926/.938 .932/.947 .813/.949

Meta-AF [51] .852 .910/.965 .936/.947 .861/.949

Table 8: Performance of methods on segments for HAR.

Methods Macro-F1 ACC F1-Walk F1-Up F1-Down F1-Sit F1-Stand F1-Lay

Classic-HAR [72] .968 .967 .979 .981 0.994 .920 0.932 1.00

CNN-HAR [47] .919 .916 .990 .973 .984 .778 .803 .987

CNN-FT-HAR .916 .914 .973 .966 .982 .763 .820 .989

FOMAML-HAR [34, 32] .941 .937 .981 .981 .982 .844 .870 .990

MAML-HAR [34] .936 .933 .982 .966 .979 .841 .866 .980

Reptile-HAR [78] .690 .714 .512 .614 .533 .698 .804 .981

Meta-Origin-HAR [54] .934 .931 .983 .968 .976 .834 .851 .992

Meta-HAR [51] .945 .941 .988 .974 .981 .860 .882 .990

Table 8 shows the activity recognition performance in terms of Macro-F1 (i.e., average F1

score over 6 activities), total accuracy, and F1 over each activity classification over segments.

As shown in the table, Classic-HAR achieves the best performance over almost all metrics
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except F1-Walking. As for CNN-FT-HAR, its performance degrades after fine-tuning using

a limited amount of personal data. It again indicates that the quality of the generalization

of model initialization is critical in patient-specific detection. SOTA meta-learning methods

such as FOMAML-HAR, MAML-HAR, and Retiple-HAR do not achieve significant perfor-

mance improvement due to the training tasks formatting issue as introduced in Section 3.1.2.

As for Meta-HAR, it achieves 0.945 Macro-F1 score and 94.1% total accuracy, which are the

second-best activity recognition performance among all evaluated methods.

Table 9: Performances of methods on events in HAR.

Methods Macro-F1 ACC F1-Walk F1-Up F1-Down F1-Sit F1-Stand F1-Lay

Classic-HAR [72] .995 .993 1.00 .983 1.00 .983 .983 1.00

CNN-HAR [47] .913 .925 .983 1.00 .994 .739 .761 1.00

CNN-FT-HAR .928 .944 1.00 .983 .994 .767 .822 1.00

FOMAML-HAR [34, 32] .959 .969 .983 1.00 .994 .900 .878 1.00

MAML-HAR [34] .959 .969 1.00 .967 .989 .906 .911 .983

Reptile-HAR [78] .812 .856 .689 .911 .858 .644 .783 .983

Meta-Origin-HAR [54] .965 .972 1.00 1.00 1.00 .906 .883 1.00

Meta-HAR [51] .985 .989 1.00 .983 .994 .950 .983 1.00

Table 9 shows the performance on events level of HAR. Here, we devise a mechanism to

classify events for all methods. The classification of the event would be considered correct

if there are more than half of the number of segments to be predicted correctly by the

method. As shown in the table, Meta-HAR achieves even better performances than other

deep learning based methods in the classification of the action Sitting (i.e., 0.950 in F1-

Sitting) and Standing (i.e., 0.983 in F1-Standing). Although Classic-HAR still achieves the

best performances over almost all metrics, the performance gap between Meta-HAR and

Classic-HAR has been significantly narrowed. When compared with Classic-HAR, Meta-

HAR achieves 0.985 F1 score with only 1.0% differences, and 98.9% total accuracy with only

0.4% differences. Furthermore, Meta-HAR achieves the best activity recognition performance

among all deep learning based HAR methods in terms of Macro-F1 and accuracy.
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Here, we just give out a discussion on the performance gap between Classic-HAR and

other deep learning based methods. The extensive amount of the hand-designed and carefully-

chosen features enables Classic-HAR to properly classify the action based on the knowledge

that has been fully explored by the experts first. For the other deep learning based methods,

the deep model could only learn to correctly classify the action from being trained on the

relatively limited amount of the labeled signal segments, which severely restricts the detec-

tion performance. However, on the other hand, as shown in Table 9, the performance gap

between our method and Classic-HAR has been greatly narrowed on event-level detection

through the proposed optimizations. Moreover, deep learning based methods could learn to

classify the action by itself with only labeled data. When compared with Classic-HAR, the

deep learning based methods require much less expertise in the development process. More-

over, the deep models can be deployed on the IoT monitors while Classic-HAR is hardly

runnable due to the hardware resources constraints.

3.3.3.2 Model Generalization

To demonstrate the generalization of model initialization obtained from different meth-

ods, we present the average accuracy and loss curve over all testing patients during person-

alization on each case study application. The 5-step gradient descent (GD) is applied to

personalize each pre-trained model. The evaluated methods include fine-tuning, FOMAML,

MAML, Reptile, and the proposed method Meta.

As shown in Fig. 9, at step 0, the initial model of our Meta method does not perform

better compared with other methods in terms of accuracy. The model initialization of Meta

could rapidly adapt to the specific patient’s rhythm and end up with higher accuracy. This

trend is shown in all three applications in Fig. 9. The other methods such as FOMAML, and

MAML do not appear in the same trend during personalization as demonstrated in Fig. 9(b)

and Fig. 9(c). The averaged individual accuracy of those methods does not increase along
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(a) Accuracy and loss curve in VA detection.
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(b) Accuracy and loss curve in AF detection.
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(c) Accuracy and loss curve in HAR.

Figure 9: Accuracy and loss trend during personalization of deep learning based methods

over three applications.
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with update steps and even degrades after fine-tuning. It indicates that the proposed meta-

learning method delivers a well-generalized model initialization for model personalization.

The loss curves shown in Fig. 9 illustrate that Meta could rapidly converge on the dataset

of different applications.

3.3.3.3 Performance on Hardware

We deploy all evaluated CNN models on the board STM32F469NI discovery kit (with

ARM Cortex M4) [101] to test its inference performance in terms of energy, latency, and

memory overhead on real hardware. Since all meta-learning methods utilize the same CNN

architecture as CNN-based detection methods, the performances of model inference would

be relatively similar over the same application. In other words, the practical performances

of 4 CNN models could represent the performances of all evaluated deep learning based ap-

proaches since meta-learning methods do not interfere with the processes of model inference

and fine-tuning. The models require only 36 KB, 28 KB, 319 KB, and 295 KB to store

model parameters for CNN1-VA, CNN2-VA, CNN-AF, and CNN-HAR respectively. The

average latency on the inference over a segment is 9.94 ms, 8.44 ms, 64.5 ms, and 37.04 ms

for CNN1-VA, CNN2-VA, CNN-AF, and CNN-HAR respectively. The power of the testing

board is 161 mW. It indicates that the model could meet the hardware constraints of the

implantable or wearable devices for detection tasks [103, 92]. The fine-tuning overhead on

the edge device (i.e., Raspberry Pi 4B in the experiments) is 1.74 s, 1.73 s, 5.32 s, and 5.12

s over CNN1-VA, CNN2-VA, CNN-AF, and CNN-HAR respectively. The performance of

fine-tuning overhead indicates that it is capable to conduct the deep model personalization

on the user end. With the design of the edge computing framework, local personalization

could significantly reduce the risks of personal data and model leakage.
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3.4 Summary

In this chapter, we propose a novel meta-learning method for patient-specific detection

on the resource-constrained IoT monitors. The meta-learning method aims to generate a

well-generalized model initialization for the model to be personalized on patient-specific data.

A novel patient-wise training tasks formatting strategy is presented to address the training

sample mixture problem in conventional meta-learning methods. The inner- and outer-

loop optimizations are proposed to further improve the generalization of the meta-model

initialization. A computing framework is further developed to provide the capability of local

model personalization on the edge devices to avoid data breaches and model manipulation.

The deep models personalized by our method achieve 8.2%, 2.5%, and 6.4% higher detection

accuracy compared with the existing deep learning methods in VA detection, AF detection,

and HAR respectively.
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4.0 Prior Knowledge Incorporated Learning for Patient-Specific Atrial

Fibrillation Detection

This chapter presents a project that regularizes the deep learning model personaliza-

tion for patient-specific Atrial Fibrillation (AF) detection by incorporating prior knowledge

during fine-tuning [52]. It is organized as follows: First, the background of the project is in-

troduced and the motivation is presented. Next, the details of the proposed prior knowledge

incorporated personalized deep learning method are presented. Then, the experimental re-

sults are shown to demonstrate the effectiveness of the proposed method for patient-specific

AF detection. Finally, the conclusion is presented to summarize the project.

4.1 Background

This section introduces the background information. We first introduce the Electrocar-

diogram (ECG). We then introduce Atrial Fibrillation (AF) and its rhythm features reflected

on ECG. Finally, we present the conventional and deep learning based AF detection methods

respectively.

4.1.1 Electrocardiogram

The information of the cardiac electrical function is obtained through the ECG signal,

which records small electrical changes (on voltage) of the cardiac muscle depolarization and

repolarization of each heartbeat against time [60]. As shown in Fig. 10, it demonstrates

the ECG signal consisting of two consecutive cardiac cycles (heartbeats) with normal sinus

rhythm. The normal ECG reflects the morphological characteristics of the P-wave, the

QRS-complex (includes the Q-wave, the R-peak, and the S-wave), and the T-wave, which

are generated by the different cardiac electrical activity of the single heartbeat. The inter-
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Figure 10: Two cardiac cycles of ECG signals.

heartbeat information such as the R-R interval and the T-P interval can also be derived

by the ECG. Cardiologists and Electrophysiologists (EPs) primarily rely on the information

obtained from the ECG to diagnose arrhythmias.

4.1.2 Atrial Fibrillation on ECG

Among various types of arrhythmias, Atrial Fibrillation (AF) is a prevalent heart rhythm

disorder. It is reported that there are around 2.7 to 6.1 million people in the United States

suffering from AF [6]. AF is caused by degeneration of the electrical impulses in the atria

resulting in a change from synchronized atrial contraction to a rapid and chaotic rhythm.

Diseases associated with AF include stroke, heart failure, hypertension, valvular heart dis-

ease, cardiomyopathy, etc. [6].

AF is usually diagnosed based on its rapid and irregular rhythm features reflected on the

ECG. As shown in the Fig. 11, there are four ECG signals representing normal sinus rhythm

and AF over two patients. Each ECG episode is with the length of 10 seconds (sampling at

250 Hz). When comparing with the ECG episodes of normal sinus rhythm in Fig. 11(a) and
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(a) Normal sinus rhythm on Patient 1
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(c) Normal sinus rhythm on Patient 2

-200

0

200

400

600

800

1000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

A
m

p
le

tu
d

e
 (

m
V

)

Samples

(d) AF rhythm on Patient 2

Figure 11: ECG episodes with AF and Normal Sinus Rhythm over different patients.

Fig. 11(c), the ECG episodes of AF shown in Fig. 11(b) and Fig. 11(d) have some unique

visual features. Cardiologists diagnose the AF rhythm via ECG by two critical features

caused by the pathogenesis of AF:

• The P-wave is absent in the heartbeat of AF rhythm [86]. Instead, as shown in Fig. 11(b)

and Fig. 11(d), the P-wave, which is clearly present in Fig. 11(a) and Fig. 11(c), is

replaced by the fibrillatory waves (f-waves) which are small in voltage value but with

varying morphology and high frequency. The amplitude of the f-waves varies within a

small range. This feature is led by the fact that there is no single impulse depolarizing

the atria.

• The ventricular rates are irregularly irregular, typically in the range between 100 and 180

beats per minute (BPM) [65, 93]. As shown in Fig. 11(b) and Fig. 11(d), when compared

with the R-R intervals in normal sinus rhythm, the values of the R-R intervals between

two consecutive R-peak are mutually different and have no regular pattern. This is caused

by the pathogenesis that only random impulses result in ventricular depolarization.

Those two features are the golden standards for cardiologists to discriminate between AF

and other rhythms, and hence determine the AF rhythm when reading the ECG.
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4.1.3 Conventional AF Detection Methods

AF should be detected in time but this is often hard to detect. There are three main

difficulties: 1) Most people do not have any symptoms when experiencing AF and they are

unaware of their condition until the doctors discover it by chance; 2) AF occurs sporadically,

which means that the AF detection via a single visit to the hospital is optimistic; 3) Each

individual has unique rhythm characteristics, which increase the variability of the visual

features of AF and make it hard to determine the arrhythmia.

As a result, the traditional AF detection methods are to prescribe the patients (at high

risk of AF) a Holter or Event monitor to constantly record the ECG for at least 24 hours

and up to 7 days [6, 123]. After the devices are returned, the cardiologists would read the

recorded ECG and diagnose the AF rhythm for each individual manually. This process is

extremely cumbersome and inefficient since it requires great expertise and manual work to

interpret the whole recorded ECG episodes.

To further reduce the cardiologists’ workload and improve efficiency, long-term rhythm

monitors with wireless capabilities are developed and applied for AF detection. The de-

vices such as the Insertable Cardiac Monitor (ICM) [21, 86] and the wearable patch cardiac

monitor [13, 48] are programmed with the AF detection methods which detect and transmit

the possible AF rhythm to the server for further cardiologists’ diagnosis from the doctors.

Those computer-aided AF detection methods extract the rhythm features obtained from the

extensive clinical trials and cardiological knowledge, and hence detect the AF rhythm based

on a complex determination logic with tens of programmable parameters [21, 86]. To achieve

the best detection performance for each patient with variant rhythm features, cardiologists

need to carefully select the detection parameters [21, 86]. However, it is hard to find the

optimal setting for all programmable parameters and this process also highly relies on the

expertise and clinical experience.

4.1.4 Deep Learning Based AF Detection

Deep learning based arrhythmias detection methods have been explored in recent years

due to their capability of end-to-end model training. When compared with conventional
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computer-aided AF detection, deep learning based AF detection does not rely on expert

feature extraction. The deep models can learn to extract useful features through training

with only the labeled ECG data. Deep neural networks have been applied in AF detection

using the ECG. Two two-dimensional convolutional neural networks (CNNs) are proposed to

detect AF based on the ECG segments in the form of Short-Term Fourier Transform (STFT)

and Stationary Wavelet Transform (SWT) respectively [117].

A 16-layer one-dimensional CNN is proposed to detect AF by directly inputting the ECG

signal and it achieves 82% detection accuracy on the AF rhythm episode [118]. Authors

in [75] introduce a two-channel CNN for accurate AF detection, where the first channel

utilizes an attention network to learn the attention region for the input ECG, and the second

channel simultaneously takes the same ECG to the neural network for AF detection.

4.2 Motivation

In this section, we introduce the motivations of our works. We also present the pre-

liminary experiments to explicitly demonstrate the limitations of the existing AF detection

methods. The experiments are conducted with three CNNs models (i.e., CNN1-3 ) trained

using two public ECG databases of a great population with more than 200,000 patients. The

detection performance is obtained by testing the CNNs on the other two public long-term

ECG databases. The detailed experimental setup is illustrated in Section 4.4.

4.2.1 Limitations in Conventional AF Detection

The patient-specific AF detection is necessary due to the high variability among patients’

rhythm [40]. The morphological and statistical characteristics of rhythm are mutually differ-

ent even on the same arrhythmia among people [59, 40]. In conventional AF detection meth-

ods utilized in rhythm monitors such as ICM, cardiologists would carefully determine the

parameters of the computer-aided AF detection method as default out-of-box settings [21].
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Figure 12: Accuracy improvement over three CNNs after fine-tuning on patient-specific data.

Such a process can be subjective and inefficient since it is hard to find the optimal

setting of programmable parameters for all patients. The finding of the optimal parameter

value highly relies on the cardiologists, who should receive clinical training to be qualified

in parameter tuning for the patient and the specific model of monitor. It is expected that

the cardiologists would only be required to read and label the recorded rhythm, and the rest

personalization procedures would be conducted automatically on the device.

4.2.2 Fine-tuning Based Personalization

Deep learning methods provide an alternative solution by fine-tuning the pre-trained

model on the patient-specific labeled ECG data to generate the personalized deep model for

AF detection. This process significantly reduces the domain knowledge required in person-

alization and can be conducted semi-automatically (i.e., only requiring labels of the specific

patient’s ECG). Fig. 12(a) shows an average accuracy improvement of CNN1-3 over the

performance gap between each testing patient’s fine-tuned and pre-trained deep model. As
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shown in the figure, the personalized deep models improve detection accuracy. Existing

works apply such fine-tuning based personalization by collecting [53, 59] or synthesising [40]

the patient-specific ECG.

However, fine-tuning based personalization is conducted in the same black-box manner as

the training process, which makes the model’s behaviors uninterpretable. The deep models

are hard to be accepted by doctors or patients since they lack interpretability and trans-

parency, which are two key factors in AI-assisted medical diagnosis. Simply fine-tuning deep

models on the patient-specific ECG data would personalize the deep models in a stochastic

and unpredictable manner, which degrades the quality of the personalized model. Therefore,

prior knowledge in diagnosing AF is necessary to guide the fine-tuning process of the pre-

trained deep models. The model behaviors can align with the prior knowledge by following

some general AF diagnosing principles. In this way, the deep learning based AF detection

could be fully understood and trusted by doctors and patients.

4.2.3 Overfitting

Unlike the training dataset collected from a great general population, the patient-specific

ECG data for deep models personalization is normally limited in size, especially for the AF

rhythm since it occurs sporadically and occasionally. Simply fine-tuning a deep model using

limited patient-specific ECG data is challenging. In these cases, the over-parameterization

problem of deep learning models is inevitable and it makes models prone to overfitting to

the noise. As shown in Fig. 12(b), the individual AF detection accuracy improvement of

each personalized deep model (obtained by fine-tuning with the patient-specific data) varies

widely around the zero baseline. The preliminary results show that different patients have

varying degrees of overfitting problems during the personalization (fine-tuning) process.

One simple solution to the aforementioned problem is to adjust the hyper-parameters

(e.g., fine-tuning steps, learning rate, batch size) of the personalization process for each

patient to achieve the optimal detection performance. Those hyper-parameters should be

selected based on the deep model performance on the validation dataset, which is obtained

by leaving out a portion of the patient-specific ECG data. However, this approach is hard to
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be conducted in practice. There is no guarantee of a similar data distribution between the

dataset for fine-tuning and validation since the AF rhythm in ECG is extremely limited in

amount and can be variant. Therefore, a new regularization approach is needed to remedy

the overfitting while enabling the deep model to be personalized in a regularized manner

by following the prior distribution of the prior knowledge based AF determination over the

general population.

4.3 Prior Knowledge Incorporated Personalization Design

In this section, we provide the detailed design of the prior knowledge incorporated per-

sonalization of the deep model on the long-term AF monitoring system. As introduced in

Section 4.2, simply fine-tuning the deep model on the patient-specific ECG may not enable

the personalized model to adapt well to every patient. To address the issue, we propose the

prior knowledge incorporated personalization which guides and regularizes the deep model

personalization procedure with domain knowledge in diagnosing AF.

There are two main mechanisms in the proposed personalization method: 1) Prior-

incorporated important portion mechanism embeds the domain knowledge into the person-

alization procedure, which enables the deep model to learn to make inferences based on the

clinically important portion of the input ECG episode; 2) Prior-incorporated regularization

mechanism regularizes the personalization procedure with a penalizing term to remedy over-

fitting. The penalizing term is derived from the probability distribution derived from the

general population to prevent the deep model from drifting too far away from the detection

of the general population.

4.3.1 Prior-Incorporated Important Portion

The mechanism aims to enable the deep model to learn to detect AF based on the

important portions of the input ECG episode. The important portions are the hallmarks

that determine the AF rhythm by the cardiological knowledge.
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To do this, we first need to formulate the problem. Let us denote X = {x1, x2, ..., xN}

as the personalization dataset containing N patient-specific ECG episodes. For each ECG

episode xi ∈ X, there are m sampling points denoted as {xi,1, xi,2, ..., xi,m}. We then denote

Y = {y1, y2, ..., yN} as the labels for the corresponding patient-specific ECG episode xi ∈ X.

Each label would be either one of the classes from C, where C = {AF, non-AF} is denoted

as the class set. Consider that there is a pre-trained deep model fθ on the training dataset

with model parameters θ. The simple personalization method is to fine-tune the pre-trained

model on the patient-specific personalization dataset X. This process would find the model

f with personalized model parameters θp that minimize the average prediction loss on X.

The objective function is defined as:

fθp = argmin
θ
Lprediction(fθ), (4–1)

where Lprediction is the prediction loss using binary cross-entropy loss to teach the model

to produce correct predictions by penalizing the wrong predictions. Lprediction is defined as

follows:

Lprediction = − 1

N

N∑
i=1

yi · log(fθ(xi)) + (1− yi) · log(1− fθ(xi)). (4–2)

This objective defined in Eq. (4–1) enables the deep model to make the correct prediction.

However, what we want is to enable the deep model to learn to make the correct prediction

based on clinically meaningful reasons through personalization. Recalled from Section 4.1,

in clinical AF diagnosis, there are two essential pieces of prior knowledge on the features of

ECG with AF rhythm: 1) The P-waves of the heartbeats in AF rhythm are replaced with

a series of small (voltage value) but fluctuated f-waves; 2) The R-R intervals are irregularly

irregular. The portions that contain the P-waves (or the f-waves in AF) and the QRS-

complex of the ECG episode are the important portions that would be carefully looked

into by the cardiologists for AF diagnosis. Therefore, the focus on those targeted portions

should be clinically meaningful reasons for the deep model inference. In other words, the

prediction of the deep model should be made based on those targeted portions of the input

ECG episode, which follows the prior knowledge of AF diagnosis in cardiology.
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Figure 13: Important portions of ECG episodes with Normal Sinus Rhythm and AF. The

portions covered by orange bar are the P-waves and the QRS-complex which are the critical

features to discriminate AF.

To achieve this, firstly, we need to assign the portions containing the P-waves (or f-waves

in AF rhythm) and the QRS-complex on all ECG episodes in the personalization dataset

with high importance scores. For each ECG episode, xi ∈ X, the sampling points of the

P-waves (f-waves) and the QRS-complex would first be identified by the computer-aided

algorithm and then be manually verified. The reason behind including manual verification

is to correct the important portions denoted by the computer-aided algorithms and further

improve the quality of the personalized deep model. There would be a set containing the

time ticks (m in total) of those identified important portions for each xi ∈ X. As shown

in Fig. 13, the time ticks on the signal covered by the orange bar are the targeted portions

including the P-waves (f-waves) and the QRS-complex. The high importance score value

ISh would be assigned to those time ticks and the low importance score value ISl would be

assigned to the rest time ticks. In the end, we denote prior-annotated importance vector

as IVxi
∈ Rm which contains the value of ISh and ISl on the targeted and non-targeted

portions’ time ticks of each xi ∈ X.

Furthermore, we need the importance score distribution which indicates how important

each sampling point of the input ECG episode is to the deep model’s inference. To be more

specific, given a deep model fθ and input xi, the importance score distribution is a series of

values {v1, v2, ..., vm} on the corresponding sampling points {xi,1, xi,2, ..., xi,m}. The value vj
represents how important the corresponding sampling point xi,j is to the prediction made
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by fθ. To do this, we invoke integrated gradient (IG) to generate the importance score

distribution by calculating the difference between the deep model’s output for the input

sample xi and its output for a reference sample xref [104]. Formally, the integrated gradient

is defined as follows:

ϕIG
j (fθ, xi, xref ) = (xi,j − xref,j)×

∫ 1

α=0

∂fθ(xref + α(xi − xref ))

∂xi,j

dα, (4–3)

where α is the interpolation constant. The integrated gradient ϕIG
j (fθ, xi, xref ) gives out the

importance score of the j-th sampling point of xi by accumulating the gradients of the deep

model fθ at the interpolated ECG episode on xi and xref over α = [0, 1]. By integrating

over α, the integrated gradient avoids problems with local gradients being saturated and

provides a relatively objective way to determine how much importance each sampling point

contributes to the deep model’s inference on the corresponding input [104].

The choice of the reference sample xref is crucial to the objectiveness of the importance

score. In conventional integrated gradient design, the reference sample with a constant value

(e.g., zero for all sampling points) is a common choice. However, it comes with the problem

in our scenarios. As shown in Fig. 13, the values of the sampling points on the f-waves

(originally P-waves in normal rhythm) in the AF rhythm usually fluctuate around the zero

baseline. On the other hand, the values of the sampling points on the QRS-complex are

normally far away above or below the zero baseline. If the episode with all zero is selected

as the reference sample for integrated gradient, the importance score would likely be zero for

the f-wave portion since the corresponding portions of the interpolated episode are with zero

value. There would be the same case for the importance score on the QRS-complex portions

if we choose the reference sample with the constant of the maximal or minimal value of the

input ECG episode. How to choose the best-fit reference sample which can objectively reflect

the importance score on each sampling point is still an open challenge.

To address the issue, we develop a new strategy to calculate the importance score to fit

our scenarios. Instead of choosing the one best-fit reference sample, we select three reference

samples, which are the samples with the constant of zero, maximal sampling amplitude, and

minimal sampling amplitude respectively. The average integrated gradients of the sampling

point would be calculated based on those three reference samples. In this way, each sampling
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point would have little chance to be very closed to all reference samples and the importance

score could be generated in a relatively objective manner. To do this, we first denote Xref =

{xref=0, xref=max, xref=min} as the set containing the three aforementioned reference samples.

The new importance score on xi,j is calculated as follows:

ϕj(fθ, xi, Xref ) =
1

3

3∑
e=1

(xi,j − xe,j)×
∫ 1

α=0

∂fθ(xe + α(xi − xe))

∂xi,j

dα, (4–4)

where xe,j denotes the j-th sampling point of the e-th reference sample in Xref . To make the

importance score more objective and stable, we further randomly sample the interpolation

constant α ∈ [0, 1] for L times and average the sum of integrated gradients over different

interpolated episodes between the target xi and each of three reference samples as follows:

ϕj(fθ, xi, Xref ) =
1

3L

3∑
e=1

L∑
l=1

(xi,j − xe,j)×
∫ αl

α=0

∂fθ(xe + α(xi − xe))

∂xi,j

dα, (4–5)

where αl represents the randomly sampled upper bound for the integral. In practice, we

cannot compute the exact value of the integral. Instead, the integral can be approximated

via a summation with sufficiently small intervals with the number of K. Therefore, the

approximated importance score on the j-th sampling point of xi is defined as follows:

ϕj(fθ, xi, Xref ) =
1

3LK

3∑
e=1

L∑
l=1

K∑
k=1

(xi,j − xe,j)×
∂fθ(xe +

αlk
K
(xi − xe))

∂xi,j

. (4–6)

Then, for each xi ∈ X, we define the vector that contains the importance score on each of

its m sampling points with deep model fθ as follows:

ϕ(fθ, xi) = [ϕj(fθ, xi, Xref )],where j = 1, 2, ...,m. (4–7)

With the prior-annotated important portions IVxi
and importance score distribution

ϕ(fθ, xi), the prior-incorporated important portions loss Lprior is defined as follows:

Lprior(fθ) =
1

N

N∑
i=1

∥ϕ(fθ, xi)− IVxi
∥, (4–8)

where ∥ · ∥ represents the loss functions such as L1 norm or mean square error (MSE)

which measure the difference between the deep-model-generated (i.e., ϕ(fθ, xi)) and the
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prior-annotated (i.e., IVxi
) importance score distribution. Eq. (4–8) enforces the deep model

to learn to focus on the targeted portions (the P-waves and the QRS-complex) of the input

ECG episode by penalizing the wrong focus during personalization. The new objective

function of the deep model personalization is then defined as follows:

fθp = argmin
θ
Lprediction(fθ) + λLprior(fθ), (4–9)

where λ is the weight parameter for Lprior(fθ). With this new objective function defined in

Eq. (4–9), the deep model could be guided to focus on the targeted portion by penalizing

the unmatched importance score distribution.

4.3.2 Prior-Incorporated Regularization

Recall the Fig. 12(b) in Section 4.2, we experimentally show that the personalized mod-

els on some patients tend to overfitting during the personalization and the accuracy im-

provements are widely distributed around the zero baseline over patients. Even with the

prior-incorporated objective function Eq. (4–9), we are still facing the challenge of model

overfitting, which significantly affects the performance of patient-specific AF detection.
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Figure 14: Lorenz plot of ECG episodes with different cardiac rhythms.
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This challenge arises from the fact that the collected patient-specific data could be bi-

ased in practice. One way to overcome overfitting is to leave out a part of the collected

patient-specific data as the validation dataset and select the proper hyper-parameters for

the personalization process of each patient. However, the data distribution and the quality

of the validation dataset can be very similar to those of the personalization dataset since

the patient-specific ECG episodes are collected in the same manner. This may lead the deep

model to overfitting the validation dataset easily as well. Moreover, the procedure of finding

the proper hyper-parameters for the personalization process of each patient is cumbersome

and time-consuming and requires extensive manual work even with the automatic search

techniques in deep learning.

To remedy overfitting and reduce the workload on hyper-parameters searching, we in-

troduce a regularization term to regularize the personalization objective function Eq. (4–9)

by the probability distribution obtained from the prior knowledge in AF diagnosis. As we

introduced in Section 4.1, the irregularly irregular R-R intervals and the fluctuated f-waves

are two critical prior knowledge to determine the AF rhythm based on those observations

over a great general population. In other words, there is a prior probability distribution of

AF determination on the input ECG episodes based on the criteria derived from the prior

knowledge of the general population. Therefore, we want the regularization term to regular-

ize the deep model not to drift too far away from the prior distribution obtained from the

prior knowledge.

To do this, we first need to formulate the metrics that mathematically describe the

patterns of irregularly irregular R-R intervals and the absence of the P-waves (which are

replaced with f-waves in AF rhythm). We then need to find the threshold of the metrics that

discriminate AF from other rhythms. Those metrics would give out the prior distribution of

prior knowledge in AF diagnosis.

For the metrics describing the regularity of R-R intervals, we are inspired by the method

using Lorenz plot [65], which is a form of scatter plot describing the heart rate characteristics

in cardiology. The reason why we choose the Lorenz plot as part of the regularization term

is that the method concisely and effectively describes the regularity of R-R intervals. And

the method does not require extensive computational resources to execute. Following the
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descriptions of the work [65], we denote RR as a series of R-R intervals, where RRi represents

the i-th R-R interval. We then denote dRR as a series of differences between two consecutive

R-R intervals, where dRRi represents the differences between RRi and RRi−1. The Lorenz

plot is constructed by plotting the RR series on the x axis and the dRR series on the y

axis in ascending order over i. As shown in Fig. 14, different cardiac rhythms would show

distinctive spatial distribution patterns in the Lorenz plot. The Lorenz plot of AF rhythm in

Fig. 14(b) demonstrates a unique distribution where random data points (blue dots) scatter

over a large area of the plot due to its irregularly irregular R-R intervals. It indicates that

the spareness of the data points in the Lorenz plot of AF rhythm is much higher than others.

Authors of the original work [65] utilize a uniform grid to divide the Lorenz plot into a

specified number of small square cells and count the nonempty cells (i.e., the cell containing

the data points) to measure the sparseness. With a higher number of nonempty cells, there

is a higher probability of the ECG episode being AF rhythm. However, this approach is not

suitable for our scenarios since the method requires at least 32 R-R intervals of the test ECG

episode. In our scenarios, the training data gathered from a great population provides the

ECG episodes mainly in the length of 10 seconds (see Section 4.4.1.1) and the number of R-R

intervals is usually within a range of 10 to 30. It is hard to find the proper threshold which

effectively discriminates the AF rhythm from others. A single metric such as the standard

deviation of R-R intervals also cannot provide an effective threshold to discriminate the AF

rhythm with the limited number of R-R intervals.

To address the issue, we propose a new metrics function to measure the spareness of the

data points in the Lorenz plot. As shown in Fig. 14(b), there are two unique characteristics

of data points in AF rhythm on the Lorenz plot: 1) The data points in AF rhythm cannot be

clustered; 2) The data points are distributed sparsely around the geometric center. Therefore,

we utilized correlation and mean distribution radius to measure the two characteristics. For

correlation, we define the metric as follows:

ρRR,aRR =

∣∣∣∣cov(RR, dRR)

σRRσdRR

∣∣∣∣ = ∣∣∣∣E[(RR− µRR)(dRR− µdRR)]

σRRσdRR

∣∣∣∣ , (4–10)

where the µ is the mean and the σ is the standard deviation of series RR or dRR respectively.

This metric is used to determine whether there is a relationship between series RR and
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dRR such that R-R intervals of the ECG episode have a regular pattern. The value of

the correlation is in the range of [0, 1]. The value converging to 0 represents that the data

distribution on the Lorenz plot is irregular and random, and it is more likely that the ECG

episode is with AF rhythm. The value converging to 1 represents that there is a regular

pattern of the R-R intervals. For mean distribution radius, we define the metric as follows:

r =
1

T

T∑
i=1

√
(RRi −Ox)2 + (dRRi −Oy)2, (4–11)

where (Ox, Oy) is the coordinate of the geometric center over the data points of the Lorenz

plot. The value of r represents the effective distribution range of the data points. The

higher value of r means that the data points are more likely to be discretely distributed,

which satisfies the characteristics of the data points of AF rhythm. The lower value of r

means that the data points are tightly distributed around the geometric center. As shown

in Fig. 14, the geometric center is denoted as the orange dot and the value of r is 36, 174,

and 26 for normal, AF, and LBBB rhythm respectively.

By combining the metrics shown in Eq. (4–10) and Eq. (4–11), we define the metric

function that mathematically describes the regularity of R-R intervals on the given ECG

Episode as follows:

MR-R = a · ρRR,aRR + b · rmax − rmin

r − rmin

, (4–12)

where a and b are both weight parameters. rmax and rmin are the maximal and minimal radius

obtained from all ECG episodes for min-max normalization on the target mean distribution

radius r. The inverse of the normalization in the second term of Eq. (4–12) is to enable the

term to be with the same meaning as the correlation in the ascending order. As a result, the

value of MR-R converging to 0 represents a higher irregularity degree of the R-R intervals of

the given ECG episode and a higher probability that the ECG episode is with AF rhythm.

For the metrics describing the absence of the P-waves, we utilize the prior knowledge

that the P-waves would be replaced by the f-waves (small and fluctuated waves) in the AF
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rhythm. As shown in Fig. 13, the portions of the P-waves would become steady in the ECG

episode with AF. As a result, we need the metrics to measure the stability of the portions

of the P-waves of the ECG episode. Here, we define the metrics as follows:

Mp-wave =
1

U

U∑
u=1

σ(pu), (4–13)

where pu is the portion of the u-th P-wave in the ECG episode and σ represents the standard

deviation. The term Mp-wave would converge to 0 if the P-waves are absent and replaced with

the f-waves in the episode with AF. Finally, we can obtain the prior knowledge incorporated

metrics to determine the AF rhythm by combining the R-R interval regularity term MR-R

and the P-waves absence term Mp-wave:

M = β1 ·MR-R + β2 ·Mp-wave, (4–14)

where β1 and β2 are both weight parameters. We could then utilize the criteria M fitting

on the general population to obtain the prior probability distribution PM for the input ECG

episodes.

To remedy overfitting, we introduce the prior-incorporated regularization term to regu-

larize the personalization process by matching the prior distribution PM and the ones from

our deep model via Kullback-Leibler (KL) divergence. Given the personalization dataset

X = {x1, x2, ..., xN}, we define the regularization term as follows:

DKLprior
(fθ) =

1

N

N∑
n=1

∑
c∈C

PM,c(xi) ln
PM,c(xi)

Pc(fθ, xi)
, (4–15)

where PM,c(xi) and Pc(fθ, xi) calculate the probability of predicting the xi as class c based

on prior knowledge criteria M and deep model fθ respectively.

4.3.3 Prior Knowledge Incorporated Learning

Finally, we add the prior-incorporated regularization term into Eq. (4–9) to form the

new objective for personalization as follows:

fθp = argmin
θ
Lprediction(fθ) + λ1Lprior(fθ) + λ2DKLprior

(fθ), (4–16)
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Algorithm 2: Prior Knowledge Incorporated Learning

1 Given deep model parameters θ, personalization dataset X, personalization label

set y, prior-annotated important portions set IV , prior-incorporated probability

distribution set PM,c, deep model probability distribution set Pc, weight parameters

λ1, λ2 ;

2 Initialize prediction loss Lpre, prior-incorporated important portion loss Lprior,

prior-incorporated regularization term Dprior ;

3 while not done do

4 for each ECG episode xi ∈ X with i← 1 to N do

5 Calculate and accumulate prediction loss:

Lpre = −[yi · log(fθ(xi)) + (1− yi) · log(1− fθ(xi))] + Lpre;

6 Calculate and accumulate important portion loss:

Lprior = ∥ϕ(fθ, xi)− IVxi
∥+ Lprior;

7 Calculate and accumulate regularization term:

Dprior =
∑

c∈C PM,c(xi) ln
PM,c(xi)

Pc(fθ,xi)
+Dprior;

8 end

9 Average prediction loss: Lprediction(fθ)← Lpre/N ;

10 Average important portion loss: Lprior(fθ)← Lprior/N ;

11 Average regularization term: DKLprior
(fθ)← Dprior/N ;

12 Obtain objective function: L(fθ)← Lprediction(fθ) + λ1Lprior(fθ) + λ2DKLprior
(fθ);

13 Update θ ← θ − α∇θL(fθ)
14 end

where λ1 and λ2 are both weight coefficients to control the effect of important portions and

regularization in the deep model personalization process. Algorithm 2 illustrates the process

of prior knowledge incorporated model personalization. We first calculate the necessary

parameters (Line 1) and initialize the required variables (Line 2). With the newly defined

prior-incorporated objective function, the deep model would be personalized based on the

three terms (Line 5-7): 1) The prediction loss function with binary cross-entropy loss; 2) The

prior-incorporated important portions term for interpretable and reasonable detection focus;

3) The prior-incorporated regularization term for alleviating overfitting. After accumulating

and averaging the three terms (Line 9-11), the objective function is obtained (Line 12).
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Finally, the deep model parameters θ would be personalized by gradient descent (Line 13).

In this way, the deep model could be personalized by learning to focus on the clinically

important portions and be regularized in order to not drift too far from the AF detection

baseline with prior knowledge.

4.4 Experiments

In this section, we first introduce the data preparation procedure. We then introduce

the experimental setup including the evaluated methods, the inter-patient paradigm, and

implementation details. We finally provide AF detection performance and the practical

performance of the personalization methods deployed on the embedded monitoring system.

4.4.1 Data Preparation

4.4.1.1 ECG Databases

There are four public ECG databases utilized for our experiments, including two databases

collecting short ECG recordings from more than 200,000 patients and another two collecting

long-term ECG recordings from around 100 patients. The detailed introduction of those

databases is shown below:

• Chapman [122]. Chapman dataset contains 10,646 ECG recordings of 10,646 hu-

man subjects of cardiac arrhythmias including Atrial Fibrillation (AF), Supraventricular

Tachycardia (SVT), etc. Each ECG recording is sampled at 250 Hz and with 10 seconds

in length.

• CPSC [5, 41]. China Physiological Signal Challenge in 2018 (CPSC) dataset includes

10,330 ECG recordings of 5,542 male and 4788 female human subjects. The ECG record-

ings are annotated with various classes including AF, Normal, SVT, etc. Each recording

is sampled at 500 Hz and varies from 6 seconds to 30 seconds.
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Table 10: Summary of four databases after data preparation.

Database # of Recordings # of AF Episodes # of non-AF Episodes

Chapman 10,646 2,225 8,421
CPSC 10,330 1,731 12,322

LTAFDB 84 210,348 299,840
MITBIHAF 23 33,977 49,828

• LTAFDB [83, 5]. The Long Term AF Database (LTAFDB) includes 84 long-term

ECG recordings of human subjects with paroxysmal or sustained AF. Each recording

is sampled at 128 Hz. The length of each recording varies between 24 to 25 hours.

• MITBIHAF [73, 5]. The MIT-BIH Atrial Fibrillation Database (MITBIHAF) includes

25 long-term ECG recordings of human subjects with AF. The individual recordings are

with the length of 10 hours and sampled at 250 Hz.

4.4.1.2 Data Preprocessing

We prepare a few preprocessing steps on the ECG recordings for our experiments as

follows:

1. As the raw physiological signals contain noise, the first step is to perform very common

filtering techniques on all ECG recordings by applying a band-pass FIR filter with a

pass-band frequency of 0.5 Hz and stop-band frequency of 50 Hz with an order of 10.

2. The LOESS smoother is utilized to clear the effects of baseline wandering, and recordings

are resampled to 250 Hz. The amplitude of each recording is normalized to obtain the

uniform standard ECG for experiments.

3. The periods of each recording that are annotated as AF rhythm would be labeled as

AF while other periods are labeled as non-AF. The periods of each recording with the

rhythm annotations are segmented into non-overlapping 10-second episodes and the label

(i.e., AF, non-AF) on the episodes is the same as the corresponding period. We just

abandon those periods with a length that is less than 10 seconds. The reason to apply
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non-overlapping episodes is to simulate the practical cardiac monitoring device working

mode where the monitor would read the ECG episode and output the prediction in real-

time for every 10 seconds. The detailed statistics of the ECG episodes are shown in

Table 10.

4. For each 10-second ECG episode, we utilize the tool NeurKit to detect R-peaks [69].

We then record the portions of the P-waves and the QRS-complex of each ECG episode

by finding local maximums and minimums around the R-peaks. The R-R intervals and

differences between two consecutive R-R intervals of each ECG episode are recorded as

well.

After doing the above preprocessing steps, we obtain a large set of 10-second ECG

episodes (i.e., 250 Hz × 10 s = 2,500 sampling points) along with their information from

four ECG databases.

4.4.2 Experiments Setup

4.4.2.1 Evaluated Methods

We design three CNN models (denoted as CNN1, CNN2, and CNN3 ) as the deep models

for AF detection. We choose to design those CNNs on our own since the existing deep models

for AF detection cannot be directly deployed on the resource-constrained platform with only

1-2 MB flash and 128-512 KB SRAM. The detailed architecture of CNN1-3 are shown in

Fig. 15. We apply ReLU as the activation function.

To explicitly examine if the generalization issue arises due to model expressivity rather

than overfitting, we also develop a deep model with ResNet-18 structure [43], defined as CNN-

ResNet. The model is much larger in terms of the model size and deeper in terms of the

number of layers. We want to justify whether the generalization issue arises from the model

expressivity limited by the size and depth. We then implement four detection methods to

demonstrate the effectiveness of the proposed prior knowledge incorporated personalization.

The methods are illustrated as follows:

67



Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

FC3

8 x 1 x 3 / 2

7 x 1 x 5 / 2

7 x 1 x 10 / 2

8 x 1 x 20 / 2

7 x 1 x 20 / 2

200

10

2

Conv2
(BN)

Conv3
(BN)

Conv4
(BN)

Conv5
(BN)

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

16 x 1 x 3 / 2

15 x 1 x 5 / 2

15 x 1 x 10 / 2

15 x 1 x 10 / 2

10

2

Conv2
(BN)

Conv3
(BN)

Conv4
(BN)

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

FC3

5 x 1 x 3 / 1

100

10

2

MaxPool 2 x 1 / 2
Conv2
(BN) 5 x 1 x 5 / 1

MaxPool 2 x 1 / 2
Conv3
(BN) 5 x 1 x 10 / 1

MaxPool 2 x 1 / 2
Conv4
(BN) 4 x 1 x 20 / 1

MaxPool 2 x 1 / 2
Conv5
(BN) 5 x 1 x 20 / 1

MaxPool 2 x 1 / 2

(a) CNN1 (b) CNN2 (c) CNN3(a) CNN1

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

FC3

8 x 1 x 3 / 2

7 x 1 x 5 / 2

7 x 1 x 10 / 2

8 x 1 x 20 / 2

7 x 1 x 20 / 2

200

10

2

Conv2
(BN)

Conv3
(BN)

Conv4
(BN)

Conv5
(BN)

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

16 x 1 x 3 / 2

15 x 1 x 5 / 2

15 x 1 x 10 / 2

15 x 1 x 10 / 2

10

2

Conv2
(BN)

Conv3
(BN)

Conv4
(BN)

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

FC3

5 x 1 x 3 / 1

100

10

2

MaxPool 2 x 1 / 2
Conv2
(BN) 5 x 1 x 5 / 1

MaxPool 2 x 1 / 2
Conv3
(BN) 5 x 1 x 10 / 1

MaxPool 2 x 1 / 2
Conv4
(BN) 4 x 1 x 20 / 1

MaxPool 2 x 1 / 2
Conv5
(BN) 5 x 1 x 20 / 1

MaxPool 2 x 1 / 2

(a) CNN1 (b) CNN2 (c) CNN3
(b) CNN2

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

FC3

8 x 1 x 3 / 2

7 x 1 x 5 / 2

7 x 1 x 10 / 2

8 x 1 x 20 / 2

7 x 1 x 20 / 2

200

10

2

Conv2
(BN)

Conv3
(BN)

Conv4
(BN)

Conv5
(BN)

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

16 x 1 x 3 / 2

15 x 1 x 5 / 2

15 x 1 x 10 / 2

15 x 1 x 10 / 2

10

2

Conv2
(BN)

Conv3
(BN)

Conv4
(BN)

Name Filter Size/Stride
Conv1
(BN)

Dropout
(50%)

FC1

FC2

FC3

5 x 1 x 3 / 1

100

10

2

MaxPool 2 x 1 / 2
Conv2
(BN) 5 x 1 x 5 / 1

MaxPool 2 x 1 / 2
Conv3
(BN) 5 x 1 x 10 / 1

MaxPool 2 x 1 / 2
Conv4
(BN) 4 x 1 x 20 / 1

MaxPool 2 x 1 / 2
Conv5
(BN) 5 x 1 x 20 / 1

MaxPool 2 x 1 / 2

(a) CNN1 (b) CNN2 (c) CNN3
(c) CNN3

Figure 15: The architecture of three CNNs.

• Conventional AF detection. We simulate the AF detection method used in the

ICM [86], denoted as Conventional. This method detects AF rhythm based on two im-

portant criteria. The first one is the AF evidence score, which is obtained from judging

the patterns in a Lorenz plot of the R-R intervals. The second one is the P-waves evi-

dence score, which is obtained from extracting the P-waves features. The determination

thresholds are fine-tuned for each test patient to simulate the manual intervention such

that the best detection performance is achieved.

• Pre-trained CNN-based AF detection. We utilize the pre-trained deep models of

CNN1, CNN2, CNN3 and CNN-ResNet to detect AF rhythm on the patients without

personalization. We denote the deep models with no personalization as CNN1-Pretrain,

CNN2-Pretrain, CNN3-Pretrain and CNN-ResNet-Pretrain.
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• CNN-based AF detection with fine-tuning. We further personalize the pre-trained

deep models of CNN1-3 and CNN-ResNet by simply fine-tuning those models on the

ECG data of each test patient. The fine-tuning process is in the same manner as the

training process, in which the loss function is used to compute the difference between

the deep model prediction and the label of each input ECG episode. We denote the

deep models personalized with the method as CNN1-FT, CNN2-FT, CNN3-FT and

CNN-ResNet-FT.

• CNN-based AF detection with prior-incorporated personalization. We per-

sonalize the pre-trained deep models of CNN1-3 and CNN-ResNet with the proposed

prior knowledge incorporated personalization for each test patient. We denote the deep

models personalized with the method as CNN1-Prior, CNN2-Prior, CNN3-Prior and

CNN-ResNet-Prior.

4.4.2.2 Inter-Patient Training and Evaluation

In the experiments, we strictly follow the inter-patient data partition paradigm [59] to

evaluate the performance of our methods. The inter-patient paradigm is that the patients

would first be partitioned into training, validation, and test datasets such that the data from

the same patient would not be mixed in the different datasets. For example, if the patient is

selected for the training dataset, the ECG episodes of that patient could only be utilized for

training. The primary benefit of the paradigm is to eliminate the potential data leakage in

the intra-patient data partition paradigm, where all ECG episodes are mixed and randomly

selected for different datasets. In the intra-patient paradigm, the ECG episodes of the same

patient would likely be in the test and training dataset at the same time.

For pre-trained deep models CNN1-3 and CNN-ResNet, we utilize the ECG episodes

from the databases Chapman and CPSC since the episodes are collected from over 200,000

patients and contain extensive information for deep models to learn. The patients from

Chapman and CPSC are first partitioned into 80%-20% training-validation dataset split.

The corresponding ECG episodes of the patients are then assigned to the target dataset.
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For the training dataset, there are 3,190 AF episodes and 16,601 non-AF episodes over

16,781 patients selected for training. For the validation dataset, there are 816 AF episodes

and 4,140 non-AF episodes over 4,195 patients selected for validation.

For deep model personalization and evaluation, we utilize the ECG episodes from the

databases LTAFDB and MITBIHAF since each patient has a long-term ECG recording (i.e.,

10 to 25 hours) which provides sufficient data for deep model personalization and evaluation.

For each patient, the ECG episodes of his/her first 1-hour ECG recording are selected by

the confidence score filter to form the personalization dataset for model personalization,

and the ECG episodes of the remaining ECG recording are utilized as the test dataset for

performance evaluation.

4.4.2.3 Implementation Details

The Conventional method is simulated using Python. We adopt PyTorch (1.6.0) for

CNN models (i.e., CNN1-3 and CNN-ResNet) pre-training and personalization.

For the pre-training on CNN1-3, we set the epoch number to be 50 and the batch size

to be 32. The Adam optimization and cross-entropy loss are utilized with the learning rate

being 1e − 3. The weighted parameter is set to be (1.0, 7.0) to overcome the unbalanced

classes (i.e., non-AF and AF) in the training dataset of the pre-training process. For the fine-

tuning method on the pre-trained CNN1-3 , we set the epoch number to be 10 and the batch

size to be 16. The Adam optimization and cross-entropy loss are chosen with the learning

rate being 1e − 4. For the prior-incorporated personalization on the pre-trained CNN1-3,

we set the epoch number to be 20 and the batch size to be 16. The Adam optimization and

cross-entropy loss are utilized with the learning rate being 1e− 4. The weighted parameters

λ1 and λ2 are set to be 0.3 and 0.5 respectively for the prior knowledge incorporated loss.

For the pre-training on CNN-ResNet, we set the epoch number to be 60 and the batch

size to be 64. The Adam optimization and cross-entropy loss are utilized with the learning

rate being 1e−3. The weighted parameter is set to be (1.0, 7.0) to overcome the unbalanced

classes (i.e., non-AF and AF) in the training dataset of the pre-training process. For the

fine-tuning method on the pre-trained CNN-ResNet, we set the epoch number to be 60 and
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the batch size to be 32. The Adam optimization and cross-entropy loss are chosen with the

learning rate being 1e − 4. For the prior-incorporated personalization on the pre-trained

CNN-ResNet, we set the epoch number to be 10 and the batch size to be 32. The Adam

optimization and cross-entropy loss are utilized with the learning rate being 1e − 4. The

weighted parameters λ1 and λ2 are set to be 0.3 and 0.5 respectively for the prior knowledge

incorporated loss.

The model pre-training runs on the PC with 8 cores of Intel i9 9900K CPU, 32 GB RAM,

512 GB SSD, and an NVIDIA GeForce GTX 2080Ti GPU on Ubuntu 16.04. We utilize the

STM32F469NI discovery kit (with ARM Cortex M4) [101] as the cardiac monitor to evaluate

the practical performance of CNN-based AF detection. The board provides 2MB flash and

324 KB SRAM, and runs with 161 mW in active mode. We utilize the tool STM32Cube.AI

to convert the model implemented in Pytorch and deploy it on the board [102]. A Raspberry

Pi 4B (with Cortex-A72, 8 GB RAM, and 3.5 W in operation) [90] serves as the edge device

to run model personalization.

4.4.3 Experimental Results

In this section, we report the AF detection performances and the practical performances

of different methods.

4.4.3.1 AF Detection Performance

We first evaluate the effectiveness of the AF detection methods in terms of different

metrics including F1 score (F1, a measure of the detection accuracy for multiple classes),

Sensitivity (rate of correctly identifying AF episodes over all predicted AF episodes), FNR

(rate of false negative, which is the rate of incorrectly identifying non-AF episodes over all

predicted AF episodes), Specificity (rate of correctly identifying non-AF episodes over all

predicted non-AF episodes), FPR (rate of false positive, which is the rate of incorrectly

identifying AF episodes over all predicted non-AF episodes), and Accuracy (total correct

predictions to total episodes). The chosen metrics could comprehensively reflect the perfor-

mance of each method in the binary classification.

71



Table 11: Performance of evaluated methods on AF detection.

Methods F1 Sensitivity FNR Specificity FPR Accuracy

Conventional .842 .939 .061 .827 .173 .939

CNN1-Pretrain .647 .648 .352 .877 .123 .832

CNN2-Pretrain .721 .691 .309 .900 .100 .859

CNN3-Pretrain .691 .645 .355 .869 .131 .824

CNN-ResNet-Pretrain .698 .665 .335 .782 .218 .766

CNN1-FT .753 .780 .220 .862 .138 .848

CNN2-FT .767 .786 .214 .829 .171 .821

CNN3-FT .793 .789 .211 .966 .034 .932

CNN-ResNet-FT .811 .857 .143 .852 .148 .849

CNN1-Prior .845 .846 .154 .980 .020 .954

CNN2-Prior .833 .828 .172 .964 .036 .938

CNN3-Prior .861 .888 .112 .986 .014 .967

CNN-ResNet-Prior .898 .901 .099 .984 .016 .976

Table 11 shows the average performance of each testing metric of every test patient

over all evaluated methods. As shown in Table 11, the deep models pre-trained on the

Chapman and CPSC databases do not adapt well to the data of the test patients from

LTAFDB and MITBIHAF. CNN1-Pretrain, CNN2-Pretrain and CNN3-Pretrain achieve the

lowest F1 score and sensitivity when compared with other methods. It indicates that the

pre-trained deep models cannot adapt to each individual’s rhythm due to the high rhythm

variability and model personalization is needed.

As shown in Table 11, the models CNN1-FT, CNN2-FT and CNN3-FT achieve an even

better performance over the corresponding pre-trained deep models. The sensitivity of those

models improves by 13.2%, 9.5%, and 14.4% respectively. When compared with the pre-

trained deep models, the simple fine-tuning method effectively personalizes the deep models

and improves the overall AF detection performance.

The proposed prior knowledge incorporated personalization achieves the best AF de-

tection performance over other deep learning based methods. As shown in Table 11, the

sensitivity of CNN1-Prior, CNN2-Prior and CNN3-Prior is 84.6%, 82.8% and 88.8%, which
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Figure 16: Accuracy improvement of each individual over CNN1-3 personalized with prior-

incorporated method.

increases by 19.8%, 13.7%, and 24.3% over pre-trained models and increases by 6.6%, 4.2%

and 9.9% over the deep models personalized with the simple fine-tuning method. The speci-

ficity of CNN1-Prior, CNN2-Prior and CNN3-Prior also improves by 11.8%, 13.5% and

2.0% over the models personalized with the fine-tuning method. Moreover, the F1 score

of each deep model with the prior-incorporated personalization is the highest among other

deep learning based methods. The prior-incorporated personalization method enables the

deep models to achieve comparable performance to that of the Conventional method, which

is based on complex determination logic and manual detection parameters fine-tuning.

As shown in Table 11, the performances of CNN-ResNet under different strategies (i.e.,

pre-training, fine-tuning and prior-incorporated personalization) have the same trend as

those of CNN1-3. That is, the performance of pre-trained CNN-ResNet-Pretrain is not

satisfying in terms of AF detection accuracy. With the simple fine-tuning strategy, the per-
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Figure 17: Accuracy and loss changes of prior knowledge incorporated and simple fine-tuning

personalization over different deep models.

formances of CNN-ResNet-FT fine-tuned on the patient-specific data improve significantly

on various metrics. It achieves the highest Sensitivity among all fine-tuned models. It may be

due to the fact that the large-scale model provides more capacity and capability to learn to

correctly detect AF. However, the performances of CNN-ResNet-FT are still affected by the

overfitting problem. As shown in Table 11, the CNN-ResNet-Prior under prior-incorporated

personalization strategy achieves an even better performance in terms of various metrics.

The performances show that the generalization issue arises mainly due to the overfitting

problem during model fine-tuning.

We further present the accuracy improvement of the prior-incorporated personalization

method and the method without the regularization term in Fig. 16. The improvement is

the accuracy difference between the deep models personalized with our methods and the

pre-trained method of each individual. As shown in Fig. 16(a)-(c), the individual accuracy
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improvements of the prior-incorporated personalization method are more concentrated above

the zero baseline when compared with those with the simple fine-tuning method shown in

Fig. 12(b). Moreover, the accuracy improvements shown in Fig. 16(d)-(f) indicate that the

prior-incorporated regularization term effectively prevents the deep model from overfitting

during the personalization of some patients.

We also present the average accuracy and the loss curve of the deep models personal-

ized with the fine-tuning and the prior-incorporated personalization methods. As shown in

Fig. 17(a), with the same starting point (i.e., pre-trained deep models), the prior-incorporated

personalization method enables the deep model to effectively learn the rhythm features and

improve the detection performance. As shown in Fig. 17(b), the losses of the deep mod-

els personalized with the prior-incorporated personalization method drop sharply compared

with those with the fine-tuning method.

The performances of the deep model personalized with the prior knowledge incorpo-

rated method indicate that our method enables the deep model to effectively adapt to every

individual’s rhythm with the help of prior knowledge in cardiology.

4.4.3.2 Practical Performances

We further conduct the experiments to evaluate the practical performances of the CNN-

based AF detection and the personalization methods. We deploy the deep models CNN1,

CNN2 and CNN3 on the board STM32F469NI discovery kit as the cardiac monitor. The

deep models require 1,187 KB, 81 KB, and 615 KB for model parameters storage respectively.

The FLOPs(M) of three evaluated deep models are 1.97, 1.38, and 2.18 respectively. As

shown in Fig. 18(a), the average inference latency for each model is only 1.47, 1.38, and

1.51 seconds over the 10-second ECG episode input (i.e., 2500 sampling points). During the

inference, the power of the board is approximately 161 mW. As for safety concerns, according

to the experiments and public standards [30, 100], the safety voltage is not higher than

36V and the continuous contact safety voltage is 24V. The development kit STM32F469NI

acting as the monitor’s processor in our prototype satisfies the human contact safety voltage

constraints.
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Figure 18: Latency on inference and personalization over the monitoring system.

We also evaluate the feasibility of the personalization process on the edge device (i.e.,

the Raspberry Pi 4B in the system). We utilize Pytorch to conduct the simple fine-tuning

and prior-incorporated personalization methods over the selected 1-hour ECG episodes of

each individual. As shown in Fig. 18(b), the average time spent by the simple fine-tuning is

78.9, 64.8 and 69.2 minutes while the average time spent by the prior-incorporated person-

alization is 125.7, 110.3 and 124.6 minutes on CNN1, CNN2 and CNN3. The extra latency

caused by the prior-incorporated personalization method is acceptable due to the significant

improvement in detection accuracy.

4.5 Summary

In this chapter, we fully investigate the AF detection methods in the cardiac monitor-

ing systems. Based on our observations, we propose a novel prior knowledge incorporated

personalization method to effectively personalize the deep model to perform patient-specific

AF detection. The method consists of two components: 1) The prior-incorporated impor-

tant portion mechanism that guides the deep model to focus on the targeted portions of

ECG following the AF diagnosis rules; 2) The prior-incorporated regularization mechanism

that regularizes the deep model personalization process from overfitting using the prior dis-
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tribution of knowledge. We further implement a computing framework and conduct the

proposed personalization method on the local end devices. Experimental results show that

the deep models personalized with our personalization method significantly outperform the

pre-trained deep models and the deep models personalized with simple fine-tuning.
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5.0 Enabling Self-Supervised and On-Device Model Personalization for

Ventricular Arrhythmias Detection by Generative Adversarial Networks

This chapter presents a project that devises a self-supervised and on-device deep learn-

ing model personalization approach for ventricular arrhythmias (VA) detection proposed

in [50]. It is organized as follows: First, the background of the project is introduced and

the motivation is presented. Next, the details of generative adversarial networks (GAN)

synthesizing patient-specific intracardiac electrogram and an edge computing framework en-

abling on-device VA detection deep learning model personalization are presented. Then, the

experimental results are demonstrated. Finally, the conclusion is presented to summarize

the project.

5.1 Background

5.1.1 Ventricular Arrhythmias and ICDs

There are several types of arrhythmias, including Atrial Fibrillation (AF), Supraventric-

ular Tachycardia (SVT), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), etc.

Different treatments should be applied to different types of arrhythmias. Among those ar-

rhythmias, VF and VT are called life-threatening ventricular arrhythmias (VA), which are

the main cause of Sudden Cardiac Death (SCD). It is caused by a malfunction in the heart’s

electrical system that can occur when the lower chambers of the heart suddenly start beating

in an uncoordinated fashion, preventing the heart from pumping blood out to the lungs and

body [4]. More than 60% of deaths from cardiovascular disease are from the out-of-hospital

SCD [4]. Unless the heart is shocked back into normal rhythm in time, the patient rarely

survives.
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Patients at high risk of SCD rely on the implantable cardioverter-defibrillator (ICD) to

deliver accurate and in-time defibrillation treatment. The ICD is a small device implanted to

reduce SCD risk and improve the survival rate for recipients by detecting VA on intracardiac

electrograms (IEGMs), which reflect electric changes measured by electrodes placed within

the heart. In this project, we focus on improving VA detection precision of single-chamber

ICDs [120]. The single-chamber ICD has a lead attached to the right ventricle to sense

the ventricular heart rhythm and the rhythm data that the ICD normally utilizes to detect

VA is the one-channel EGMs sensed by right ventricular apex-bipolar (RVA-Bi) lead. It is

important to note that any method developed for the single-chamber ICD is immediately

applicable to all other ICDs (e.g., the dual-chamber ICD with 2 or 3 leads). Due to the

constraints in physical size and battery lifetime, current SoC on ICDs can only provide 128-

2024 KB for ROM and 8-64 KB for RAM to store data and execute the program with 1-5

mA during VA detection [22, 103].

5.1.2 VA Detection Methods in ICDs

Current VA detection methods on ICDs utilize various criteria such as the number of in-

tervals to detect (NID), fast/slow interval determination, rhythm stability, and onset analysis

on IEGMs to determine VA [121, 107]. The detected heart rate is the triggering condition for

VT/VF detection. Once the pre-set threshold of heart rate is exceeded, the criteria-based

VA detection on the ICD would begin. Although there are differences in criteria across

manufacturers, the fundamental implementation details such as accurate heart rate sensing,

therapy zones settings, and the triggering mechanism using various criteria for VA detection

are similar in ICDs from different manufacturers [66].

Patients with ICDs, however, might receive inappropriate shocks, which severely affect

the patients’ quality of life. As shown in Fig. 19, According to the surveys, 2.8-27% of

ICD recipients receive inappropriate shocks in a follow-up ranging from 11.9 months to 11

years after implantation [37, 9, 116, 74, 45]. The study [45] shows that the main cause of

inappropriate shock comes from supraventricular arrhythmia misdiagnosed as VT (74.8% of

inappropriate shocks). The optimization goal of ICDs is to reduce the inappropriate shocks
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Figure 19: Inappropriate shock rate in the ICD recipients.

on non-VA rhythm while maintaining a high sensitivity to detect VA rhythm. To achieve

the best detection performance for each patient, cardiologists have to periodically fine-tune

the criteria parameters by learning the sensed rhythm of the patient. However, there are

hundreds of programmable parameters affecting the detection performance [95]. It requires

massive manual intervention to achieve the optimal VA detection and multidisciplinary co-

operation to optimize the criteria-based methods, which places tremendous burdens on both

the doctors and patients.

5.1.3 Deep Learning Based Arrhythmias Detection

Deep Learning (DL) based detection methods for arrhythmias classification have become

more popular in recent years. The benefits of applying DL are the high detection accuracy

and the degradation of expertise required in the detection criteria design. The DL-based

classifier could learn to extract essential features and conduct classification by being trained

with labeled samples.
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The convolutional neural network (CNN) proposed in [42] achieves an even better per-

formance in twelve arrhythmias classification when comparing with the classification results

generated by the cardiologists. The work indicates that deep learning based classification

could reduce the rate of misdiagnosed arrhythmias and improve the efficiency of ECG inter-

pretation. Authors in [110] propose a 37-layer CNN to classify 12-lead ECG into 4 triage

categories: Normal, Abnormal not acute, Subacute, and Acute. The network shows excel-

lent detection accuracy with overall concordance statics of 0.93. A 1-Dimensional (1D) CNN

is proposed to classify five typical types of arrhythmias on ECG signals with a detection

accuracy of 97.5% [63]. In the VA detection scenarios, in [85], authors propose a mixed

convolutional and Long Short-Term Memory Network (LSTM) for ventricular arrhythmias

detection over ECG, whereas the network is designed for Automated External Defibrillator

(AED) of Out-of-Hospital Cardiac Arrest (OHCA) patients. The detection accuracy of 98%

is achieved by the network on the OHCA data. Authors in [3] propose a CNN with a simple

structure for VA detection using single-lead surface ECG in intra-patient paradigms (i.e., the

training and testing set may include data from the same patient). The detection sensitivity

is 95.32% and the specificity on non-VA rhythm is 91.04%.

5.2 Motivations

Deep learning methods have been applied in the arrhythmias classification and achieve

outstanding performance. The primary benefit of deep learning methods is to eliminate

the complex signal processing and feature extractions in current VA detection methods of

ICDs. However, in ICDs scenarios, deep learning methods cannot scale well across different

patients’ IEGMs. It is due to the fact that each patient has unique rhythm features and

thus the reflected morphological characteristics are significantly different, even on the same

type of arrhythmias [40, 59].

Fig. 20 shows the performance of 3 existing pre-trained CNNs for arrhythmias classifi-

cation (denoted as CNN1 [53], CNN2 [3], and CNN3 [63]) over different testing patients’

IEGMs in terms of the False Negative Rate (FNR) for detecting VA and the False Positive
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Figure 20: False Negative Rate (FNR) and False Positive Rate (FPR) of 3 CNNs for VA

and non-VA discrimination.

Rate (FPR) for detecting non-VA (detailed experiments setup is in Section 5.4). The per-

formance indicates that the CNN solely trained on the training set cannot adapt well to all

patients. Therefore, the personalization of deep learning model is necessary to achieve an

even better patient-specific detection precision.

A straightforward but effective approach to conducting deep learning model personal-

ization is by pretraining-finetuning strategy [59, 40, 80]. To scale deep learning to perform

personalized VA detection on ICDs, patient-specific labeled data is needed to fine-tune the

networks [59, 40]. However, there are several challenges.

5.2.1 Dependency on Domain-level Expertise

In the pretraining-finetuning strategy, the labeled samples of the specific patient are the

most essential part of the deep learning model personalization. it is a prohibitive task to

label an adequate amount of patient-specific samples for each individual due to the high

labor costs and the required level of expertise. Even if the experts are willing to devote time

to labeling all data samples, the deficiency of expert knowledge of these patients will result

in large label noise and may degrade the model performance.
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Authors in the work [40] provide an alternative solution to the problem by introducing

Personalized Generative Adversarial Networks (PGANs), which synthesize patient-specific

ECG samples of different arrhythmias and utilize the synthesized samples to fine-tune the

deep learning model for each patient to obtain the personalized model. This approach signif-

icantly reduces the dependency on domain-level expertise in data labeling while conducting

effective deep learning model personalization.

However, there are some intrinsic problems with PGANs if applied in the scenarios of

VA detection in ICDs. First, the patient-specific patterns of ECG learned by PGANs are

highly dependent on the waves (e.g., P-wave, QRS complex, and T-wave) extracted by some

computer-aided tools. The accurate extraction on P-wave and T-wave works in normal

rhythm, however, in VA rhythm, the cardiac cycle is irregular and faster than the normal

heartbeat. The P-wave and T-wave are hard to distinguish and can only be accurately labeled

by cardiologists. In other words, PGANs cannot learn to synthesize VA segments if the waves

cannot be accurately extracted. Second, PGANs could only synthesize the patient-specific

ECG segments containing a fixed number of cardiac cycles as the input samples for model

personalization. However, it is impractical to extract a fixed number of cardiac cycles as

the input for a deep learning model to conduct inference in the real-time cardiac monitoring

scenarios. The deep learning model, especially for CNNs, is expected fixed-length samples

as the input in time series.

5.2.2 Hardware Resources Constraints

The hardware constraints of ICDs are also the obstacle to the model personalization

conducted on the user side. Many health monitoring devices, e.g., wearables and implanta-

bles, are microcontroller (MCU)-based platforms with limited resources in terms of memory

capacity (i.e., less than 256KB on-chip and 1MB off-chip memory) and computational power

(i.e., less than 200MHz CPU frequency). The ICD is under strict constraints in physical size

and battery lifetime. The SoC on ICDs can only provide hundreds of KB to store data and

execute the program with 1-5 mA during operation [22]. It is not practical to conduct the

CNN fine-tuning on the ICD due to its limited computational resources. Uploading data
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Figure 21: Framework Overview.

and model parameters to the cloud server for model personalization can be a possible solu-

tion [53]. However, there are cybersecurity vulnerabilities and concerns in personal health

data uploading and the server which may cause sensitive data leakage [108].

5.3 Methodology

We aim to develop an efficient, automatic, and on-device deep learning model person-

alization for VA detection in ICDs. In this section, we first introduce the 1D-CNN based

VA detection. We then present an overview of the proposed computing framework for VA

detection and model personalization. Then we give the design details of the self-supervised

and on-device model personalization mechanism based on the IEGMs Generative Adversarial

Networks (IEGM-GAN).
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5.3.1 Computing Framework for Personalization

Fig. 21 shows the system overview of the proposed on-device personalization for VA

detection in ICDs. The system consists of an ICD and an edge device. which are responsible

for VA detection and deep model personalization respectively.

5.3.1.1 ICD

The ICD is set to be always on with low power consumption, and it continuously monitors

the cardiac rhythm and records the suspicious VA in the form of IEGMs. As shown in the

Fig. 21, a deep model (i.e., convolutional neural network (CNN)) is deployed on the cardiac

monitor to perform inferences on the given IEGMs. The rhythm is sensed by the RVA-Bi

lead of the ICD, which is the one-channel signal from the right ventricle. The output of

the deep model is the inference on the given IEGMs segment being either VA or non-VA

as a binary classification. The VA rhythm is determined with empirical criteria (i.e., four

consecutive segments with predictions of VA).

As shown in Fig. 21, the length of the input VA segment is fixed (e.g., 1 or 2 seconds) since

the size of the input to CNN is supposed to be uniform. Existing works utilize the ECG of

every single heartbeat as the input to the deep model for arrhythmia detection [75, 40]. The

pre-processing of those works is required to accurately locate every QRS-complex and obtain

the corresponding heartbeat with the uniform ECG in size by resampling and segmenting.

There are also works utilizing short-term Fourier transform (STFT) or wavelet transform

(WT) on the ECG segment to obtain the two-dimensional (2-D) data in spectrum form as the

input to the deep model [117]. However, in our scenarios, those pre-processing procedures

cannot be efficiently conducted in real-time on the resource-constrained ICD since those

procedures require extensive computational resources.

After the inference, there are two main tasks for the ICD. The first task is to deliver

treatments to users if VA rhythm is detected. Such task is the same function performed

by the off-the-shelf ICD designs [17]. The second task is to collect the IEGMs segments

with low confidence during inference as the patient-specific data for model personalization.

The low confidence means that the deep model is not confident in its inference of the given
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segment. Model personalization is required to enable the deep model to learn the features

from those low-confident segments to further reduce the uncertainty on the patient-specific

IEGMs and improve the detection performance. Here, we utilize entropy as the metric of

confidence, which is defined as the confidence score (CS) as follows:

CS(xi) = −
∑
c∈C

Pc(fθ, xi) log(Pc(fθ, xi)), (5–1)

where xi is the input IEGMs segment and C is the classes set including VA and non-VA.

Pc(fθ, xi) is the probability computed by the deep model fθ using Softmax of the inference

being either c = VA or c = non-VA on the given IEGMs segment xi. The smaller value of

CS(xi) represents a higher level of confidence in the deep model’s inference on the IEGMs

segment xi.

5.3.1.2 Edge Device

The edge device is responsible for performing the on-device deep model personalization.

The reason for including an edge device in the cardiac monitoring system is that the model

personalization cannot be conducted only on the monitor. The constrained computational

resources and memory capacity of the cardiac monitor severely restrict the efficiency of the

model personalization. Moreover, the edge device enables the model to be personalized

on the local end without being transmitted to the cloud server. This design could further

improve the model security since the model parameters would not be maliciously divulged

and manipulated during transmission or on the server. The architecture (i.e., monitor +

edge device) design enables the model fine-tuning to be conducted on the edge to avoid

model leakage and offload the workload from the cloud.

As shown in Fig. 21, once the selected patient-specific IEGMs segments and model pa-

rameters are transmitted from the cardiac monitor to the edge device, the segments would

further be labeled with VA or non-VA. The detection model personalization for the specific

patient is conducted on the edge device since the CNN update cannot be efficiently per-

formed on the resources-constrained ICD. The proposed on-device personalization is based

on the CNN fine-tuning, which requires a massive amount of labeled and patient-specific
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IEGMs as training data to fine-tune the model. On the current ICD, it can only be done

by transmitting recorded IEGMs to the clinic center where the cardiologists could label the

IEGMs and the CNN is fine-tuned using those labeled data. However, it is prohibitive for

cardiologists to label each ICD recipient under time constraints, and there is a high risk of

sensitive data leakage in data uploading and the server. As shown in Fig. 21, we deploy

a generative model on the edge device to synthesize patient-specific IEGMs segments as

the training data for the personalization (i.e., CNN fine-tuning). The generative model is

based on the IEGM-GAN mimicking the morphological characteristics of a specific patient’s

IEGMs segments, which are selected and transmitted by the ICD through a self-supervised

inference confidence mechanism, Device-to-device communication is established between the

ICD and the edge device. The personalized CNN parameters would finally be transmitted

back to the ICD. Such model personalization does not rely on external cardiological expertise

and can be conducted automatically and solely on the local framework.

5.3.2 Self-supervised and On-device Model Personalization

The core component of the self-supervised on-device model personalization is the gen-

erative model based on a generative adversarial network, IEGM-GAN. The IEGM-GAN is

first trained offline on the data of patients from the training set to generate generalized

IEGMs segments. It is then deployed on the edge device and generates personalized IEGMs

segments through self-supervised learning. Finally, the on-device model personalization is

conducted by utilizing the synthesized segments to perform CNN fine-tuning.

5.3.2.1 Generalized IEGM-GAN

We first formulate the IEGM-GAN for generalized IEGMs segments generation. We

denote the set of training patients as P . The collected IEGMs segments are defined as

SEG = {s1, s2, ..., sn} over patients in P . For any segment si ∈ SEG, the number of

its sampling points is N . A conditional probability p(s|R,C) is defined to represent the
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underlying distribution of segments with R-peak positions R and class C (i.e., either VA

or non-VA). The IEGM-GAN learns to generate IEGMs segments under the distribution

p(s|R,C) is defined as generalized IEGM-GAN.

The IEGM-GAN we propose consists of a generator Gθ and a discriminator Dϕ. The

generator Gθ is trained to synthesize IEGMs segments s with the R-peak distribution similar

to the real segments to deceive the discriminator based on the given input noise vector z.

The discriminator Dϕ, on the contrary, tries to distinguish the generated IEGMs segments

from a given mixed set of real and generated segments. The prediction of Dϕ on s (either

from generator or real data) is defined as y. Note that θ and ϕ are model parameters of G

and D respectively. G and D are two players who are playing the minimax game with the

objective function V (Gθ, Dϕ) as follows:

min
θ

max
ϕ

V (Dϕ, Gθ) = Es∼pdata(s)[logDϕ(s)]+

Ez∼pz(z)[1− logDϕ(Gθ(z))],

(5–2)

where pdata is the distribution of real IEGMs segments and pz is the distribution of random

noise vectors input to Gθ. Based on the objective function, the parameters of the generator

and the discriminator would be updated alternatively by maximizing and minimizing the

value function V (Dϕ, Gθ). The training iterations do not suspend untilDϕ cannot distinguish

the segments generated by Gθ. We will illustrate the architecture and training details of the

generator and the discriminator respectively.

Discriminator The architecture of the discriminator Dϕ is shown in Fig. 22. The

input to Dϕ is the segment with size of [N × 1]. The discriminator Dϕ consists of five

1D-convolutions followed by ReLU function and Batch Normalization (BN). The last layer

is a Sigmoid layer which outputs the final probability on the input IEGMs segment. The

probability is utilized to discriminate whether the segment is from generator (Prob = 0) or

real data (Prob = 1).

During each training iteration, the discriminator Dϕ is maximizing Eqn. (5–2) with

respect to its parameters ϕ. Given a fixed generator Gθ, Dϕ performs binary classification:
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Figure 22: The architecture of the IEGM-GAN and the training process.

it assigns 1 to real segments from the training set {s1, s2, ..., sm} ∼ preal(s), and assigns 0 to

generated samples {s̃1, s̃2, ..., s̃m} ∼ pG(s̃). This is the same to minimize the cross-entropy

loss. Therefore, the loss function of Dϕ is as follows:

L(Dϕ) = −
1

m

m∑
i=1

(log(Dϕ(si)) + log(1−Dϕ(s̃i))), (5–3)

where s̃i is generated by the generator from the random noise vector z. The parameters ϕ

of the discriminator is updated through ϕ = ϕ− α∇ϕL(Dϕ) with a learning rate α.

Generator The architecture of the generator Gθ is shown in Fig. 22. The input

is a latent vector, z with size of [100 × 1], drawn from a standard normal distribution

z ∼ N (µ = 0, σ = 1). The generator Gθ consists of five transposed convolutions (inspired

by [87]) followed by ReLU function and BN. The last layer is a fully connected (FC) layer

that outputs the IEGMs segment with the size of [N × 1].

During a training iteration, after the discriminator Dϕ is updated, the generator Gθ

would be updated towards minimizing the objective function in Eqn. (5–2). To update the

generator, we first sample m random noise vectors {z1, z2, ..., zm} from the standard normal
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distribution N (0, 1). Given a fixed Dϕ, the generator Gθ would synthesize the IEGMs

segments with the similar R-peak distribution of the real segments to fool the discriminator.

The cross-entropy loss is utilized for the generator and it should be minimized in the training

process. The loss function of Gθ is defined as follows:

L(Gθ) = −
1

m

m∑
i=1

log(Dϕ(Gθ(zi))). (5–4)

The parameters θ of the generator is then updated through θ = θ−β∇θL(Gθ) with a learning

rate β.

5.3.2.2 Personalized IEGM-GAN

After we offline train the IEGM-GAN which could synthesize the IEGM segments with

similar R-peak distribution of the real data, such generalized IEGM-GAN would be de-

ployed on the edge device to learn the rhythm morphological characteristics of the specific

patient. The IEGM-GAN that learns to generate patient-specific IEGMs segments is defined

as personalized IEGM-GAN.

To obtain the personalized IEGM-GAN, the first step is to select the IEGMs segments

of the patient as learning samples. The selection is conducted in a self-supervised way on

the ICD. As shown Fig. 21, the VA detection CNN would choose the segments with high

confidence belonging to VA or non-VA. Entropy is used as a measure of how confident the

CNN is about its prediction on the given IEGMs segment. Recall from Eqn. (5–1), the

confidence score is defined as follows:

CS(si) = −
∑
c∈C

Psi,c log(Psi,c), (5–5)

where Psi,c is the probability calculated by softmax of the inference being VA rhythm (c =

VA) or non-VA rhythm (c = non-VA) on the sensed segment si. The smaller the CS, the

more confident the selector is about the prediction. We set a confidence score selector SCS,

which selects the segments with CS larger than a pre-set confidence score threshold CST .

The selected IEGMs segments with low confidence would be transmitted along with the deep

model parameters to the edge device for further model personalization.
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To enable the generator to synthesize the segments which are more morphologically sim-

ilar to the real IEGMs segments of the specific patient, we need to confine the synthesized

segments’ signal values to be as close as possible to those of the real segments. Therefore,

the distance between the synthesized and the real segments is critical to measure the mor-

phological similarity and guide the generator to synthesize more realistic segments. The

Euclidean distance is not suitable since it calculates the distance between the exact corre-

sponding sampling points of two segments which may contain one or more heartbeats that

are not matching on the same point but with a similar appearance. Unlike the Euclidean

distance, Dynamic Time Warping (DTW) is a useful distance-like similarity measure that

allows comparisons of two time-series segments with varying patterns and is robust to shifts

across the time dimension [58]. In other words, if two segments contain similar R-peak dis-

tribution and cardiac cycles in terms of morphology, their DTW distance is low no matter

where the cardiac cycles are placed in the segments.

Here, the DTW distance of two segments is defined as DTW (si, sj). It can be calculated

by D(m,n), which is the minimal DTW distance between the first m points of si and the

first n points of sj. The DTW distance of two segments is calculated as follows:

D(N,N) = |si(N)− sj(N)|+min


D(N − 1, N)

D(N − 1, N − 1)

D(N,N − 1)

. (5–6)

In this way, the two segments of the same patient’s arrhythmia but with different R-peak

distributions have a low difference. Based on the generalized IEGM-GAN generating the

segments with realistic R-peak distribution, the DTW distance enables the generator to

synthesize more realistic segments in terms of morphological similarity. We invoke a loss

function to measure the DTW distance of each synthesized and self-selected segments pair

as follows:

LDTW (Gθ) =
1

m

m∑
i=1

DTW (s,Gθ(zi)), (5–7)

where DTW is the DTW distance between the selected segment s and each synthesized

segments from m inputs zi ∼ N (0, 1). In our implementations, we utilize Soft-DTW [29] as
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a differentiable loss function to calculate DTW distance. We add this penalty to the loss

function of the generator. The novel loss function is as follows:

L(Gθ) = a · LCE(Gθ) + b · LDTW (Gθ), (5–8)

where LCE(Gθ) is the cross-entropy loss defined in Eqn. (5–4), and a, b are both weight

parameters.

The personalizing of the IEGM-GAN is following the training process as shown in Fig. 22.

For the discriminator Dϕ, we just keep the same settings. In this way, the IEGM-GAN

could learn to synthesize the IEGMs segments with realistic R-peak distribution and high

morphological similarity of the specific patient’s IEGMs.

5.3.2.3 Personalized VA Detection CNN

With the personalized IEGM-GAN generating patient-specific IEGMs, the VA detection

CNN could be fine-tuned by utilizing the synthesized segments as training data. Note that

the fine-tuning is applied to the whole neural network and conducted solely on the edge

device without any external supervision. As shown in Fig. 21, once the CNN model is

personalized, its parameters would be transmitted back to the ICD to update the model.

5.4 Evaluation

In this section, we first present the experimental setup and then show the evaluation

results of the proposed self-supervised on-device model personalization mechanism in terms

of VA detection and system performance.
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Figure 23: Data preprocessing on a recording of a patient.

5.4.1 Experimental Setup

5.4.1.1 Dataset and Data Preprocessing

We evaluate the proposed methods on the Ann Arbor Electrogram Libraries (AAEL),

which is one of the largest datasets for IEGMs and used by all ICD manufacturers to test

their methods [7]. According to AAEL, all ICDs manufacturers utilize AAEL to evaluate

their arrhythmias detection methods and the intracardiac EGMs recordings are the reference

on which new detection methods must be tested. Each intracardiac EGMs recording varies in

duration from 3 minutes to 25 minutes with a sampling rate of 1000 Hz. In our experiments,

we select 215 recordings from 78 patients to establish our dataset by excluding the patients

with no VA recordings or VA recordings less than 10 seconds.

As shown in Fig. 23, the data preprocessing consists of three stages (i.e., Recording −→

Events −→ Segments) for each recording of the patient. As the raw physiological signals

93



contain noise, the very first step is to perform filtering techniques on all IEGMs recordings

by applying a band-pass FIR filter with a pass-band frequency of 0.5 Hz and stop-band

frequency of 50 Hz. The filtered recordings are then resampled to 250 Hz.

Next, the periods of each recording in AAE that are annotated as VA rhythm would be

labeled as VA events while other periods are labeled as non-VA events since ICDs would make

the treatment decision based on a period of sensed rhythm. From Recording to Events, the

recording is partitioned into various events based on the rhythm annotations. After labeling

and partitioning 215 recordings, we drop the events of which the length is less than 15s.

There are 145 VA and 214 non-VA events over all selected 215 recordings of 78 patients in

total.

The length of VA and non-VA events varies, while the input of CNN is supposed to

be of equal length. Therefore, we further conduct data processing on events by segmen-

tation. From Events to Segments, each event with the rhythm annotations is segmented

into non-overlapping 2s segments and the label (e.g., VA or non-VA) on the segment is the

same as the corresponding event. The non-overlapping segments are the set of 2s EGMs

segments with no overlapped rhythm information. They are utilized to simulate the practi-

cal monitoring device working mode and evaluate the performance of VA detection methods

if the corresponding patient is for testing. We apply overlapping segmentation on AAEL.

The overlapping segments are obtained by a 2s window with a sliding stride (0.2s for VA

events and 0.5s for non-VA events) as data augmentation. They are utilized as training

data if the corresponding patient is for training. The set of overlapping EGMs segments

contains more rhythm patterns and the two classes could be more balanced under the over-

lapping segmentation. Table 12 shows the detailed statistics of the dataset AAEL after data

preprocessing.

5.4.1.2 Evaluated Methods

We utilize existing deep learning models to show the effectiveness of our personalization

method. There are three elaborately designed CNNs dedicated for arrhythmias detection,

denoted as CNN1 [53], CNN2 [3], and CNN3 [63]. These CNNs are chosen since they fit the

94



Table 12: Data profile of AAEL after data preprocessing.

Data
2-second Segments

Events
Non-Overlapping Overlapping

VA 2,197 10,542 145

Non-VA 5,097 10,206 214

memory capacity constraints of the ultra-low-power processor on the ICD. We implement a

VAs detection method used in single-chamber ICDs [120], denoted as Classic. This method

continuously monitors each heartbeat and reports VAs if the criteria are satisfied. We set

two detection zones for VT and VF respectively. The heart rate boundary of the VT/VF

zone and fast/slow interval threshold are fine-tuned for each testing patient to simulate the

manual intervention such that the best discrimination performance could be achieved.

5.4.2 Inter-Patient Paradigms

Our dataset is partitioned patient-wisely into 5 folds to ensure that the patients’ data is

not mixed between the training and testing sets. The folds split is done randomly on the

patients. Once the patient is selected for training, all corresponding rhythm segments would

be utilized only for training, and vice versa. The CNN1-3 and the generalized IEGM-GAN

would be trained on the rhythm of the patients from the four training folds. For each patient

from the testing fold, ten 2s-segments labeled with VA or non-VA respectively are utilized

for the ICD’s self-supervised selection and model personalization. The remaining rhythm is

utilized to evaluate the VA detection performance of the personalized model. We perform

such 5-fold cross-validation 10 times to obtain the average performance.

5.4.3 Implementation Details

In our experiments, the ultra-low-power MCU Apollo3 Blue serves as the computing

processor of the ICD. It runs with 5.26 mW in active mode and 6.8 µW in sleep mode. The

power consumption satisfies the constraints for most implantable devices since their average
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Figure 24: Real and synthesized patient-specific IEGMs segments.

power consumption is on the order of 0.01 to 1 mW [18]. In terms of memory, the board is

equipped with 384 KB of low leakage RAM and 1 MB of flash memory. A Raspberry Pi 4B

(with Cortex-A72, 8 GB RAM, and 3.5 W in operation) [90] serves as the edge device. The

device-to-device communication is based on Bluetooth low energy.

For the CNN1-3, we set the learning rate (LR) to be 1e − 4 and a batch size of 16.

The stochastic gradient descent (SGD) and cross-entropy loss are chosen. The total number

of epochs is 100. For the generalized IEGM-GAN training, the LR is 1e − 3, the batch

size is 16, the cross-entropy loss is chosen with SGD optimizer and the maximal epochs is

500. On the edge device, we fine-tune the CNN1-3 under the same training setting but

with a batch size of 8 and the epoch being 30. We apply the same training setting for

the IEGM-GAN personalizing but with the LR being 1e − 4, the batch size of 8, and the

maximal epochs number of 200. The weight parameters a = 1 and b = 0.01 for the loss of

the generator is applied. The Soft-DTW loss in IEGM-GAN is based on the open-source

implementation [67, 68].
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Table 13: Performance of evaluated methods for VA detection.

Methods F1 Se/Sp BAC/ACC PPV/NPV

Classic .923 .972/.910 .941/.935 .880/.979

CNN1 .926 .923/.937 .931/.938 .931/.947

CNN2 .911 .901/.932 .925/.929 .922/.935

CNN3 .908 .884/.901 .893/.897 .934/.933

CNN1-P .981 .987/.989 .988/.981 .975/.982

CNN2-P .975 .981/.980 .980/.966 .970/.963

CNN3-P .967 .965/.957 .961/.960 .969/.976

5.4.4 Experimental Results

5.4.4.1 VA Detection Performance

Fig. 24 visually shows the quality of the patient-specific IEGMs segments generated by

the personalized IEGM-GAN. As shown in Fig. 24(a), the synthesized VA segments con-

tain different R-peak distributions, and the morphological characteristics of the synthesized

cardiac cycle are well-learned based on the self-selected real segments and the novel loss

settings. The non-VA segments in Fig. 24(b) also show the same visual outcomes.

We evaluate the effectiveness of our self-supervised personalization on different VA de-

tection models in terms of the metrics including F1 score (F1), Sensitivity (Se), Specificity

(Sp), balanced accuracy (BAC), accuracy (ACC), positive predictive value (PPV), and neg-

ative predictive value (NPV). The condition positive is VA and the condition negative is

non-VA. Table 13 illustrates the average detection performance on VA and non-VA events.

This setting is more practical since the defibrillation therapy should be delivered based on

the rhythm period but not a single 2s segment. The VA and non-VA events classification is
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Figure 25: VA and Non-VA detection performance with personalization.

based on a simple but effective criterion. That is, if there are four consecutive 2s segments

with the inference of VA by CNNs, the corresponding event would be predicted with VA.

Otherwise, the event would be predicted with non-VA.

As shown in Table 13, compared with the Classic, CNN-based VA detection achieves

a comparable performance with a pre-trained CNN model. Here, we denote the CNNs

under the self-supervised personalization as CNN-P. By utilizing the synthesized patient-

specific IEGMs from the personalized IEGM-GAN, the VA detection CNN is fine-tuned to

obtain a personalized model. The number of the synthesized patient-specific IEGMs for each

self-supervised selected segment is 128. As shown in Table 13, the performance of CNN1-

3 significantly improves after being personalized. The Sensitivity (VA detection accuracy)

improves by 6.4%, 8.0%, and 8.1%, and the Specificity (non-VA detection accuracy) improves

by 5.2%, 4.8%, and 5.6%.

We further evaluate the effectiveness of our personalization method by comparing the

performances of personalized models with the training data from either personalized (de-

noted as CNN-P) or generalized IEGM-GAN (denoted as CNN-G), as shown in Fig. 25.

The number of the synthesized patient-specific IEGMs for each self-supervised selected seg-
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Figure 26: The execution time of the model personalization.

ments is set in a range of [32, 512]. As shown in Fig. 25(a), the VA detection accuracy (i.e.,

Sensitivity) of the CNNs fine-tuned with the personalized IEGM-GAN is higher than that

with the generalized IEGM-GAN. The non-VA detection accuracy (i.e., Specificity) has the

trends shown in Fig. 25(b). The results illustrate that the personalized IEGM-GAN could

generate high-quality patient-specific IEGMs that can be utilized to improve VA detection

performance.

5.4.4.2 Implementation Overhead and System Performance

We deploy the VA detection CNNs on the Apollo3 Blue as the ICD’s processor. The

CNN1, CNN2, and CNN3 require 37.2 KB, 27.8 KB, and 25.2 KB for parameters storage,

and 9.3 KB, 7.7 KB, and 9.8 KB for work-in memory respectively. The average inference

latency is 371 ms, 403 ms, and 376 ms. It shows that the model could satisfy the performance

requirements of the implantable devices on VA detection [103]. The self-supervised model

personalization is deployed on the Raspberry Pi 4B as an edge device. The personalization

consists of the IEGMs synthesizing and the CNN fine-tuning. We conduct experiments to
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evaluate the execution time of both functions and the performances along with different

numbers of synthesized segments of the self-selected segment are shown in Fig. 26. It shows

that the on-device model personalization can be completed in around one hour, which is an

acceptable latency for the model update.

5.5 Summary

In this chapter, we investigate the feasibility of personalized deep learning on VA detec-

tion in ICDs scenarios. We propose a self-supervised and on-device model personalization

approach. Specifically, we devise an edge computing framework that provides the capabil-

ity of on-device deep learning model personalization. We further propose IEGM-GAN that

learns to synthesize patient-specific IEGMs samples with fixed length by a novel loss setting.

The synthesized samples are utilized to fine-tune the deep learning model on the devised

computing framework to perform a self-supervised and on-device personalization. The per-

sonalized CNNs achieve an average 7.5% higher VA detection rate and 5.2% higher non-VA

detection rate when compared with the pre-trained CNNs.
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6.0 Personalized Federated Learning for IoT-Enabled Health Monitoring

In this chapter, we present a project that develops a personalized meta-federated learning

framework (PMFed) for patient-specific health monitoring in IoT. It is organized as follows:

First, the background of federated learning (FL) in IoT-enabled health monitoring is intro-

duced. Then, the motivation on the effect of non-IID data caused by inter- and intra-patient

variability to FL is presented. Next, the details of the proposed PMFed are presented fol-

lowed by the experimental results. Finally, the conclusion is presented to summarize the

project.

6.1 Background

Federated Learning (FL) enables user-end devices to collaborate with a server to train a

global model without data sharing. Specifically, the training paradigm in FL is conducted by

aggregating local model updates without accessing the personal data on the user end. The

classic FL algorithm, FedAvg [71], distributes the global model to all clients at the beginning

of each training round. Once the server aggregates the updated neural networks updated

with the local data of each client, it averages the parameters of all models to obtain a new

global model for the next training round. The global model would be finally distributed to

the user for accurate detection.

To address the limited data access (i.e., data is restricted from being aggregated in a

server) in conventional DL training paradigm, FL has been actively explored in health mon-

itoring. In [115], authors propose a federated learning paradigm that units edge computing

and blockchain techniques to conduct accurate disease classifications while maintaining high

confidentiality. Authors in [97] propose a federated learning approach specially designed for

multi-institutional collaborations to train the model over all local data without data shar-

ing. Authors in [26] devise an FL scheme for wearable health monitoring where a group of

smartphones collaborates to train a shared convolutional neural network (CNN) model with
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a cloud server for human activity recognition. Additionally, authors in [105] propose a tree-

based FL approach for personalized treatment with electronic health records from different

hospitals.

6.2 Motivations

In this section, we demonstrate the intrinsic characteristics of inter- and intra-patient

variability, and present preliminary experiments to illustrate their effects on conventional

federated learning (FL) algorithms respectively. The biosignal data used in the experiments

is with the types of intracardiac electrograms (IEGMs), electrocardiogram (ECG), and body

acceleration signal. The detailed experimental setup is introduced in Section 6.4.

6.2.1 Inter-Patient Variability and the Effects on FL

It is challenging to accurately detect events or diseases on biosignal due to its complex

temporal dynamics. The complex patterns of biosignal are generally caused by inter-patient

variability. Such variability, reflected on biosignal, is the varied temporal patterns of the

signal with the same label (type) over different individuals.

As shown in Fig. 27(a), there are 6 IEGMs segments with the same arrhythmia label

(i.e., ventricular tachycardia (VT)) retrieved from 6 different patients. In the same manner,

Fig. 27(b) presents 6 ECG segments with the same arrhythmia label (i.e., atrial fibrillation

(AF)) and Fig. 27(c) presents 6 body acceleration signal segments with the same action label

(i.e., walking) retrieved from 6 different individuals.

As demonstrated by the figures, the biosignal segments with the same type of arrhythmia

or action can show slightly or even significantly different temporal patterns (i.e., morpholog-

ical characteristics) of various patients. For example, in Fig. 27(b), patient 122 experiences

a much lower QRS amplitude and longer QRS interval when compared with the ECG seg-

ment of other patients. On the other hand, the other patients’ ECG segments demonstrate

a slight variation in morphological characteristics in terms of QRS-peak and QRS intervals.
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(a) IEGM segments.
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(b) ECG segments.
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(c) Body acceleration signal seg-
ments.

Figure 27: Biosignal segments with the same label over 6 patients (subjects).

The same phenomenon appears on IEGMs segments with VA and body acceleration signal

segments with Walking as well. As a result, there is a group of patients with major mor-

phological characteristics while there is also a portion of patients with unique morphological

characteristics. It indicates that the biosignal data distribution of patients is not always

uniformly distributed but naturally non-IID with feature distribution skew [64].

In the federated learning paradigm, the feature distribution skew problem [64] is even

more serious since the data cannot be aggregated and each client is treated equally in

the learning process. A global model in a conventional FL algorithm may not effectively

learn cross-patient representations and could only adapt well to the patient with major fea-

tures. Fig. 28 demonstrates the detection performance of three convolutional neural networks

(CNNs)on the tasks of VA detection, AF detection, and human activity recognition (HAR)

on the same patients (subjects) shown in Fig. 27. The CNNs are trained with FedAvg [71]

by averaging the parameters of the model from each training patient. The performances are

reported in terms of accuracy on each selected patient (subject). As shown in Fig. 28(a), the
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Figure 28: Detection sensitivity performances over corresponding 6 patients (subjects).

global model performs poorly on some individuals (e.g., the patient 329 in VA detection, the

patient 122 in AF detection, and the subject 10 in HAR) due to the unique morphological

characteristics caused by inter-patient variability.

Therefore, to perform patient-specific detection in health monitoring on biosignals, it

is demanding to devise a federated learning algorithm that effectively learns cross-patient

data representations by considering the patients with either major or unique biosignals’

morphological characteristics.

6.2.2 Intra-Patient Variability and the Effects on FL

Intra-patient variability, reflected on biosignals, is the varied temporal patterns of the

time-series data over the same patient. As shown in Fig. 29, there are three segments with

three different arrhythmias or actions of IEGMs, ECG, and body acceleration signals re-

spectively. Fig. 29 indicates that different types of arrhythmia or action lead to significantly

different biosignals’ morphological characteristics on the same patient (subject). Addition-

ally, it is hard for the patient to experience each specific type of arrhythmias or action, and
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(a) IEGMs segments with different labels of patient 326.
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(c) Acceleration segments with different labels of subject 20.

Figure 29: Biosignal segments with different labels of the same patient/subject.

gather the corresponding signal segments. In health monitoring tasks, multiple types of ar-

rhythmia or action may be concluded as one label for the classification purpose. Therefore,

intra-patient variability would lead to the non-IID with label distribution skew problem in

model personalization.

To alleviate the performance degradation caused by inter-patient variability, in federated

learning, a practical way is to perform local fine-tuning on the global model with the tar-

geting patient’s data for model personalization [70, 113]. However, intra-patient variability

hinders the performance improvement by the simple fine-tuning strategy. Fig. 30 presents

the detection performances of the fine-tuned models in terms of accuracy over 6 patients

in VA detection, AF detection, and HAR respectively. The data utilized in fine-tuning is a

small group of the targeting patient’s biosignal segments that are extracted randomly (The

data extraction process is introduced in Section 6.4.1.2). As shown in Fig. 30, most of the
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Figure 30: Individual detection accuracy over FedAvg and FedAvg with the simple fine-

tuning strategy.

models fine-tuned with the targeting patients’ biosignal data gain a performance improve-

ment in terms of accuracy. However, the models of patient 326 in Fig. 30(a), patient 074

in Fig. 30(b) and subject 20 in Fig. 30(c) experience a performance degradation after being

fine-tuned with the patient-specific biosignal data.

The performances shown in Fig. 30 indicate that intra-patient variability poses a chal-

lenge to the model personalization in IoT-enabled health monitoring. It is expected to

propose a model personalization method that properly personalizes the model with limited

and label-skewed data.

6.3 Personalized Meta-Federated Learning Framework

In this section, we first present the system overview of the proposed personalized meta-

federated learning (PMFed) framework. We then introduce two essential processes of PMFed:

meta-federated learning and patient-specific model personalizing.
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Figure 31: System overview of PMFed framework.

6.3.1 System Overview

Fig. 31 shows the system overview of the proposed personalized meta-federated learning

(PMFed) framework. To enable personalized federated learning, we develop a computing

framework consisting of a server and clients (i.e., edge computing devices on the user end).

There are two essential processes conducted on the framework: 1) meta-federated learning

on the server and the clients of training patients to obtain the well-generalized global model;

2) model personalizing on the client of each testing patient to generate a patient-specific

detection model.

In the first process (i.e., meta-federated learning), as shown in Fig. 31, the server is

responsible for models aggregation and distribution. The clients of the training patients

are responsible for training the model received from the server and uploading the trained

model for the next-round aggregation. The process would be executed iteratively until the

model parameters have converged or it reaches the pre-defined number of iteration rounds.
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The proposed cross-patient learning mechanism is executed on the clients within the meta-

federated learning process. As shown in Fig. 31, the model weighting strategy is conducted

on the server end, where the models of the training patients with unique or major biosignal

morphological characteristics are accordingly aggregated. Once the meta-federated learning

process is completed, we would obtain a well-generalized global model that learns cross-

patient representations.

The second process (i.e., patient-specific model personalizing), as shown in Fig. 31, is

conducted on the client of the testing patient. The process is conducted to personalize the

global model downloaded from the server by fine-tuning the model with a limited amount of

local biosignal data. As shown in Fig. 31, the proposed neighbor-aggregated personalizing

mechanism is conducted along with the process to regulate the fine-tuning process.

6.3.2 Meta-Federated Learning

Model-Agnostic Meta-Learning (MAML) algorithm has been proposed to improve the

model generalization for few-shot learning problems [35]. Different from conventional training

purposes, MAML aims to find the model initialization that performs well after the model

is updated with a limited amount of data for the new task. In other words, MAML is

trying to obtain a well-generalized model initialization that could effectively learn cross-task

representations and perform a quick adaption to the new task’s data with a few steps of

update.

Due to the advantage of MAML, the algorithm has been embedded into federated learning

to conduct meta-federated learning [56, 33, 25]. However, most of the existing meta-federated

learning algorithms are proposed only for image data, and cannot adapt to the patient-

specific health monitoring for the biosignal data with inter- and intra-patient variability.

To address the challenges, we optimize the meta-federated learning process to accommodate

biosignal data. We propose the cross-patient learning mechanism and model weighting strat-

egy to enable the global model to effectively learn cross-patient representations by addressing

the features distribution skew caused by inter-patient variability.
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6.3.2.1 Cross-Patient Learning Mechanism

We first introduce the corresponding definitions and notations. The meta-federated learn-

ing starts with the initial meta-model ϕ generated on the server. The purpose of the model

is to classify the biosignal segments into different targeting classes with a total number of

cls. In each round, the server would select a set of M clients (denoted as CM) to start the

federated learning process.

As shown in Fig. 31, the meta-model ϕ would be distributed to each client in C. Once

the meta-model ϕ is received by the client ci ∈ C, the client starts to formulate a taskset

Tci for meta-learning. The taskset Tci contains a support set τ sci and a query set τ qci . The

support set τ sci contains p number of data points of each targeting class while the query set

τ qci contains q number of data points of each targeting class. Therefore, the support set τ sci

is defined as follows:

τ sci = {(xj, yj)}j∈Mspt
ci

for j = 1, ..., cls · p, (6–1)

where (xj, yj) is the data-label pairs and M spt
ci

is the set containing the indices of data-label

pairs of ci for the support set. The query set τ qci is defined as follows:

τ qci = {(x
′
j, y

′
j)}j′∈Mqry

ci
for j = 1, ..., cls · q, (6–2)

where (x′
j, y

′
j) is the data-label pairs and M qry

ci
is the set containing the indices of data-label

pairs of ci for the query set. Note that the indices in M spt
ci

and M qry
ci

are mutually exclusive.

With the preparation of τ sci and τ qci , the meta-learning process is conducted on the client

ci. The first step is inner update [35], where the received meta-model ϕ is updated over the

support set τ sci . The loss of model θ0ci (i.e., θ
0
ci
← ϕ at the initial step as shown in Fig. 31)

on τ sci is calculated as follows:

Lτsci
(θ0ci) =

1

|τ sci |
∑

(x,y)∈τsci

L(fθ0ci (x), y), (6–3)

where fθ0ci (x) represents the model inference conducted on the input x with the model pa-

rameters θ0ci . The loss function L can be cross-entropy loss. Next, the meta-model is updated
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by calculating the gradient as follows:

θ1ci = θ0ci − α∇θ0ci
Lτsci

(θ0ci), (6–4)

where α is the inner-update learning rate. Then Eqn. 6–3 as well as Eqn. 6–4 would be exe-

cuted iteratively for the pre-defined m times to obtain the θmci , which is the model parameters

specific for the support set τ sci .

The second step is outer update [35], where the support set-specific model θmci is evaluated

on the query set τ qci . The purpose of this step is to evaluate the generalization and training

ability of θmci and provide the updating direction for the meta-model. The loss of θmci over

the query set τ qci is calculated as follows:

Lτqci
(θmci ) =

1

|τ qci |
∑

(x,y)∈τqci

L(fθmci (x), y). (6–5)

Next, the gradient of the loss in Eqn. 6–5 over the meta-model ϕ is defined as follows:

∇ϕLτqci
(θmci ) = (I − α∇2

ϕLτqci
(ϕ))∇θmci

Lτqci
(θmci ), (6–6)

where the second-derivative is based on the acquisition of θmci since it is derived from the

meta-model ϕ using the support set τ sci [35]. Since the second-derivative part I−α∇2
ϕLτqci

(ϕ)

is relatively small but with high computational complexity, the gradient in Eqn. 6–6 can be

further approximated as follows [35]:

∇ϕLτqci
(θmci ) ≈ ∇θmci

Lτqci
(θmci ). (6–7)

Based on the approximated gradient, the meta-model on the client ci is updated as follows:

ϕci = ϕ− β∇θmci
Lτqci

(θmci ), (6–8)

where β is the outer-update learning rate. The model parameters ϕci would be further

transmitted by the client in the same training manner as FedAvg [71], shown in Fig. 31.
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6.3.2.2 Model Weighting Strategy

Once ϕci of all ci ∈ CM are received by the server, the model aggregation is conducted

to obtain the new meta-model ϕ for the next training iteration. Different from the existing

meta-learning and meta-federated learning algorithms, where the models [33] or gradients [25]

are simply averaged, we propose a model weighting strategy to aggregate the models by

considering features distribution skew caused by inter-patient variability.

Intuitively, the patients with major biosignal morphological characteristics would also

have similar high-level features (i.e., embedding) of their biosignal data. In the federated

learning paradigm, since the raw data and the corresponding high-level features are prohib-

ited to be transmitted or exchanged, the gradients can be utilized to evaluate the similar-

ity between patients. To be more specific, the gradient similarity could reflect the major

or unique biosignal morphological characteristics since the gradient of the uploaded meta-

models represents the next-step update direction on the corresponding client’s data.

Cosine similarity between the gradient updates of any two clients’ models is often uti-

lized in the existing works on image data [94]. To further reduce the communication and

computation overhead, the weight-updates are normally computed and transmitted for sim-

ilarity calculation [94]. In our method, the cosine similarity of weight-updates of two clients’

models is defined as follows:

Scos(ci, cj) =
∆ϕci ·∆ϕcj

∥ ∆ϕci ∥∥ ∆ϕcj ∥
, (6–9)

where ∆ϕci is the weight-update vector calculated by ϕci − ϕ.

However, there are several constraints with the similarity calculation defined in Eqn. 6–9.

The first one is that ∆ϕci is the concatenation of all trainable parameters’ weight update,

which is a high-dimensional vector. The cosine similarity between two vectors would gradu-

ally converge to zero with the increase of dimension of the input vectors due to the Curse of

Dimensionality [61]. As a result, Eqn. 6–9 cannot explicitly measure the similarity between
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two clients’ biosignal data with the vectors that are the concatenation of the weight updates

of the model parameters. The second constraint is that the similarity defined in Eqn. 6–9

only considers the trainable parameters, which cannot comprehensively reflect the similarity

between two clients’ biosignal data distribution.

To overcome the aforementioned constraints, we propose a novel similarity measurement

in the model weighting strategy by choosing various parts of the network’s parameters to

calculate the mutual cosine similarity. Based on the empirical observations, we extract the

different components of the convolutional neural network (CNN) to calculate the cosine sim-

ilarity. The first component is the filters of all convolutional layers and the cosine similarity

is defined as follows:

Sconv
cos (ci, cj) =

∑
l∈Lconv

∑
w∈l

∆wci ·∆wcj

∥ ∆wci ∥∥ ∆wcj ∥
, (6–10)

where Lconv is the set of all convolutional layers, w is the filter in one convolutional layer

l, and ∆wci represents the weight updates on the target filter w of the client ci’s uploaded

model ϕci to the current meta-model ϕ. We further choose the parameters of each fully

connected layers to calculate the cosine similarity as follows:

Sfc
cos(ci, cj) =

∑
l∈Lfc

∆lci ·∆lcj
∥ ∆lci ∥∥ ∆lcj ∥

, (6–11)

where Lfc is the set of all fully connected layers and ∆lci represents the weight updates on the

target fully connect layer’s parameters of ϕci and ϕ. Apart from the trainable parameters,

the running mean and variance of each batch normalization are considered in the similarity

calculation. The cosine similarity of running mean and variance is defined as follows:

Sbn
cos(ci, cj) =

∑
l∈Lbn

µ̄l
ci
· µ̄l

cj

∥ µ̄l
ci
∥∥ µ̄l

cj
∥
+

σ̄l
ci
· σ̄l

cj

∥ σ̄l
ci
∥∥ σ̄l

cj
∥
, (6–12)

where Lbn is the set of batch normalization used in all layers. µ̄l
ci

and σ̄l
cj

represent the

vectors of running mean and running variance of all channels on the certain layer’s batch

normalization of ϕci respectively. Once we obtain the cosine similarity of the chosen compo-
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nents of CNN, the similarity between two clients’ models is defined as follows:

Scos(ci, cj) = λconv · Sconv
cos (ci, cj) + λfc · Sfc

cos(ci, cj) + λbn · Sbn
cos(ci, cj), (6–13)

where λconv, λfc, λbn are the weights to each chosen component. Then, we can construct

the distance matrix D with the size of |C| × |C| where Dij represents the cosine similarity

between the client ci and cj. With the help of the distance matrix, the clustering algorithm

DBSCAN [31] is invoked to cluster the patients and find the outliers (i.e., the patients with

unique biosignal morphological characteristics).

The model weighting strategy is based on the clustering results over the distance matrix

D. In contrast to the conventional model aggregation strategy in federated learning by

averaging all models’ parameters, we give out the weight to each uploaded model based on

the clustering results. The meta-model aggregation with the model weighting strategy is

conducted as follows:

ϕ = λ ·
∑
n∈N

∑
i∈Xn

1

|N ||Xn|
ϕci + (1− λ) ·

∑
j∈O

1

|O|
ϕcj , (6–14)

where N is the total clusters, Xn is the set of the clients within the cluster n, and O is the set

of the clients clustered as outliers. λ is set to balance the contribution of the main clusters’

models and outliers’ models. The meta-model ϕ would be distributed and aggregated with

the above processes for the pre-defined number of iterations. In the end, the meta-model ϕ∗,

which learns cross-patient representations by considering inter-patient variability in biosignal

data, would be obtained on the server.

Algorithm 3 illustrates the process of meta-federated learning that is conducted on both

server and client. The proposed meta-federated learning starts at the server, where the set

of clients is selected at the beginning of each round (Line 3). Once the meta-model ϕ is

distributed and received by the client, the client would perform cross-patient learning in

parallel (Line 4-6). For each client, it firstly formulates the support set and the query set

with local data (Line 15), and then conducts the cross-patient learning process. The inner

update is conducted for the E number of iterations (Line 17-20) and the outer update is

conducted on the query set (Line 21-22). The generated ϕci would be finally uploaded to
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Algorithm 3: Meta-Federated Learning Algorithm

# Run on the server

Given ϕ: deep model initial parameters.

Given R: the number of total rounds.

Given M : the number of chosen clients.

Given C: the set of clients.

1 RunServer(ϕ,R,M, C):
2 for r = 1, 2, ..., R do

3 Sample a set CM by selecting random M clients from C.
4 for each client c ∈ CM in parallel do

5 ϕci ← RunClient(ϕ)

6 end

7 for ∀(ci, cj) ∈ (CM , CM) do

8 Dij ← Scos(ci, cj) by Eqn. 6−−13
9 end

10 # obtain the set of clusters and outliers

11 X,O ← DBSCAN(Dij)

12 ϕ← λ ·
∑

n∈N
∑

i∈Xn

1
|N ||Xn|ϕci + (1− λ) ·

∑
j∈O

1
|O|ϕcj

13 end

# Run on the client

Given E: the total number of epochs.

14 RunClient(ϕ,E):

15 Formulate support set τ sci and query set τ qci by Eqn. 6–1 and Eqn. 6–2

16 θ0ci ← ϕ

17 for e = 1, 2, ..., E do

18 Lτsci
(θe−1

ci
) ← 1

|τsci |
∑

(x,y)∈τsci
L(fθe−1

ci
(x), y)

19 θeci ← θe−1
ci
− α∇θe−1

ci
Lτsci

(θe−1
ci

)

20 end

21 Lτqci
(θeci) ←

1
|τqci |

∑
(x,y)∈τqci

L(fθeci (x), y)

22 ϕci ← ϕ− β∇θeci
Lτqci

(θeci)

23 Upload ϕci
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the server for model aggregation (Line 23). Once the models of all selected clients in CM

are collected, the server starts to construct the affinity matrix with the proposed similarity

measurement defined in Eqn. 6–13 over all models of selected clients in CM (Line 7-9). Next,

the set X of clients in each cluster and the set O of outlier clients are obtained by applying

the DBSCAN algorithm on the affinity matrix (Line 10-11). In the end, the new meta-model

ϕ could be generated by the model weighting aggregating strategy defined in Eqn. 6–14 (Line

12). The aforementioned process would be executed iteratively for R numbers of rounds,

and the meta-model ϕ∗, which contains cross-patient representations by considering major

and unique biosignal morphological characteristics, would be obtained.

6.3.3 Neighbor-Aggregating Model Personalizing

The next essential step is to personalize the meta-model ϕ∗ to adapt to the testing patient

c’s biosignal data domain and obtain the patient-specific detection model ϕp
c . Fine-tuning the

model with local data is a simple but effective way to perform model personalization [114]. In

our scenarios, to perform model personalization, the testing patient c is required to formulate

the personalization set τ pc , which contains a limited number of biosignal data segments with

all available targeting classes. The simple fine-tuning process starts with calculating the loss

on the data-label pairs in τ pc as follows:

Lτpc (ϕ
p(m−1)
c ) =

1

|τ pc |
∑

(x,y)∈τpc

L(f
ϕ
p(m−1)
c

(x), y), (6–15)

where m indicates the current fine-tuning step, and ϕ
p(0)
c is the received ϕ∗. The loss function

can be cross-entropy loss on the data-label pairs in τ pc . One or multiple steps of update with

gradient can be conducted as follows:

ϕp(m)
c = ϕp(m−1)

c − α∇
ϕ
p(m−1)
c

Lτpc (ϕ
p(m−1)
c ), (6–16)

where α is the learning rate in the fine-tuning process.

However, in the scenarios of the patient-specific health monitoring on biosignal, the intra-

patient variability greatly hinders the performance improvement of the model personalized

by the simple fine-tuning strategy. To address the issues, we propose a neighbor-aggregating
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mechanism. The core tenet of the proposed mechanism is to select helpful models of training

clients to alleviate the overfitting problem caused by intra-patient variability. The set of

neighbor models is defined as Sn = {ϕci : ∀ci ∈ CM}, which contains the local models

uploaded by the training patients in the last round of meta-federated learning. As shown

in Fig. 31, the set of neighbor models can be downloaded by the testing patient along with

the meta-model ϕ∗. Next, on the testing patient end, the helpful neighbor models would

be selected. The definition of helpful is that the neighbor model either performs a better

detection on the testing patient’s biosignal data than the meta-model ϕ∗, or provides the

knowledge that is more related to the incoming data but different from the personalizing

data of the testing patient. Therefore, we first calculate the loss gap between the meta-model

and each of downloaded neighbor models in Sn over τ pc as follows:

gci = Lτpc (ϕ
∗)− Lτpc (ϕci). (6–17)

Then, the model ϕci with lupper > gci > llower would be selected as the helpful model and save

into a set Sh. Next, the models in Sh would further be aggregated as the reference model ϕr

as follows:

ϕr =
∑
ci∈Sh

1

|Sh|
ϕci . (6–18)

The learning objective of the meta-model for the testing patient c is then formulated as

follows:

Lτpc (ϕ
p
c) =

1

|τ pc |
∑

(x,y)∈τpc

L(fϕp
c
(x), y) + λ ∥ ϕp

c − ϕr ∥, (6–19)

where λ is a weight parameter to control the learning ratio of the regulation term in fine-

tuning.

6.4 Experiments

In this section, we first introduce the experimental setup including datasets, data prepara-

tion, evaluated methods, and implementation details. We then present experimental results

in terms of detection and practical performances.
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6.4.1 Experimental Setup

6.4.1.1 Dataset

We evaluate the proposed method based on three health monitoring applications of three

dataset:

AAEL. The first application is ventricular arrhythmias (VA) detection over the Ann

Arbor Electrogram Libraries (AAEL) dataset [7], which is one of the largest intracardiac

electrograms (IEGMs) datasets and has been widely utilized by implantable device man-

ufacturers to evaluate their algorithms. The data preprocessing scheme is: 1) We utilize

IEGMs recordings from the RVA-Bi lead of all 95 patients with the sampling rate at 1,000

Hz. The recordings are firstly resampled to 250 Hz since the sampling rate is commonly

applied in implantable devices [98]. 2) We divide the resampled recordings into episodes fol-

lowing the annotation on the time ticks. The episodes labeled with ventricular tachycardia

(VT) or ventricular fibrillation (VF) are defined as VA events while the episodes with other

labels are defined as non-VA events. There are 155 VA and 266 non-VA events in total over

95 patients. 3) We segment each event into 2-second segments (250 Hz × 2 s = 500 samples).

The segments from VA events are labeled with VA and the other segments are labeled with

non-VA. There are 2,318 VA and 6,513 non-VA segments.

LTAFDB. The second application is atrial fibrillation (AF) detection over the Long-

Term Atrial Fibrillation Dataset (LTAFDB) [83, 41], which records the cardiac rhythm by

ECG. The data preprocessing scheme is: 1) We utilize ECG recordings of the lead I of all 84

patients with the sampling rate at 128 Hz. We apply a band-pass FIR filter with a pass-band

frequency of 0.5 Hz and a stop-band frequency of 50 Hz with an order of 5 to remove the

noise. 2) We divide the recordings into episodes in the same manner as AAEL. There are

7,358 AF and 46,347 non-AF events in total over 84 patients. 3) We segment each event into

10-second segments (128 Hz × 10 s = 1280 samples). There are 358,474 AF and 299,840

non-AF segments.

HAR-UCI. The third application is human activities recognition (HAR) over the HAR-

UCI dataset [72]. There are 6 activities (i.e., Walking, Upstairs, Downstairs, Sitting, Stand-

ing, Laying) recorded by a smartphone over 30 subjects with a sampling rate of 50 Hz.
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Each sample contains 9-channel signals including triaxial acceleration, body acceleration,

and angular velocity. There are 30 events (signal episodes) of each type of action over 30

subjects (i.e., 6 events corresponding to 6 actions of each subject). The signal has already

been pre-processed by applying noise filters and then segmented into 2.56-second segments

with 50% overlap (50 Hz × 2.56 s = 128 samples). There are 1,722, 1,544, 1,406, 1,777, and

1,906 segments labeled with Walking, Upstairs, Downstairs, Sitting, Standing, and Laying

respectively.

6.4.1.2 Data Preparation

For each evaluated health monitoring application (dataset), we randomly split patients

by 8 : 2 for training and testing. We perform 10-time random splitting on patients for each

dataset. The detection performances are reported based on the averaged performance of

each testing patient from each of 10 splits.

In the training stage, the training patients’ biosignal data would be utilized as the training

material. We construct the support set and the query set for each training patient in each

round. We randomly pick 5, 20 and 5 segments for the support set and 5, 40 and 5 segments

for the query set of each targeting class in VA detection, AF detection, and HAR respectively.

In the testing stage, we extract a small portion of segments of each testing patient to

construct the personalizing set, which is used to fine-tune the model for personalization.

There are 5, 20, and 5 segments of each targeting class extracted for the personalizing set in

VA detection, AF detection, and HAR respectively. The rest segments as testing set of the

testing patient would be utilized to evaluate the detection method.

6.4.1.3 Evaluated Methods

We compare PMFed against the methods falling under two categories: 1) classic federated

learning algorithms that train a global model robust to non-iid local data; 2) existing meta-

federated learning algorithms that train a global model generalized to non-iid local data. For

(1), we implement FedAvg [71] and FedAvg-FT [113]. For (2), we implement FedReptile [56],

FedMeta [25], and Per-FedAvg [33], which are SOTA meta-federated learning algorithms on
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image data. For our method, we evaluate the performances of PMFed and PMFed-FT.

PMFed-FT trains the global model with the proposed meta-federated learning algorithm

but personalizes the global model with the simple fine-tuning strategy.

The federated learning is conducted under two settings: 400 rounds for 10 clients and 300

rounds for all training clients. All methods except FedAvg would fine-tune the global model

using the personalizing set of each testing patient with the same local training epoch of 5.

The detection performances of each evaluated method over three health monitoring tasks.

The detection performances over segments and events are reported since the performances

on events are more practical in real-world application scenarios. Normally the prediction

over a single short-period segment cannot sufficiently determine the health condition of the

patient. Therefore, we further utilize a simple mechanism to determine the type of events.

That is, in VA and AF detection, a VA or AF event would be determined if there are 4

consecutive VA or AF predictions on the input segments. Otherwise, the event would be

determined as non-VA or non-AF. On the other hand, in HAR, the action of the given event

would be determined based on the label of the segments with the greatest numbers in terms

of quantity.

The convolutional neural network (CNN) is utilized as the detection model for all eval-

uated methods. The CNNs designed in [54] [46] [47] are for VA detection, AF detection,

HAR respectively. We invoke those networks with necessary modifications (e.g., change

filter size and reduce the number of convolutional layers) to fit the input dimensions and

recourse-constrained IoT devices.

6.4.1.4 Implementation Details

We adopt PyTorch (1.6.0) for all methods to report the detection performances. All those

experiments run on the PC with 8 cores of Intel i9 9900K CPU, 32 GB RAM, 512 GB SSD,

and an NVIDIA GeForce GTX 2080Ti GPU on Ubuntu 16.04. We further implement an IoT

platform to evaluate the practical performances of the methods. The server is a MacBook

Pro with 8 cores of Intel i9 9880H CPU, 16 GB RAM, and 1 TB SSD on MacOS 12.3.

The client devices are 10 Raspberry Pi 3B (with Quad Core 1.2GHz Broadcom BCM2837
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CPU, 1 GB RAM, and 2 W in operation) [89]. 2.4 GHz wireless LAN is utilized to conduct

device-to-device communication between server and client. We further deploy the evaluated

CNNs on the STM32F469NI discovery kit (with ARM Cortex M4) [101] to evaluate practical

performances of inference using STM32Cube.AI [102]. The board is equipped with 2 MB

flash and 324 KB SRAM.

6.4.2 Experimental Results

6.4.2.1 Detection Performances

We invoke various testing metrics including F1 score (F1), Sensitivity (SE), Specificity

(SP), and accuracy (ACC) to evaluate the effectiveness of our methods against the imple-

mented baseline methods.

Table 14: Performances of methods on segments in VA detection.

All Clients 10 Clients

F1 ACC SE SP F1 ACC SE SP

FedAvg [71] .864 .873 .914 .886 .853 .865 .909 .875

FedAvg-FT [113] .892 .889 .956 .887 .888 .880 .954 .879

FedMeta [25] .607 .669 .859 .625 .504 .718 .648 .785

FedReptile [56] .893 .888 .955 .885 .881 .884 .934 .890

Per-FedAvg [33] .894 .890 .954 .888 .878 .881 .941 .884

PMFed-FT .888 .898 .929 .912 .864 .871 .934 .892

PMFed .922 .931 .966 .920 .914 .905 .961 .901

We first present the detection performances on VA detection with the participants of all

clients and 10 clients. The condition positive is VA and the condition negative is non-VA.

Table 14 demonstrates VA detection performances over segments. As shown in the table, the

performances of FedAvg-FT indicate that fine-tuning the global with local data could further

improve the detection performance. When compared with the performances of FedAvg,

FedAvg-FT improves its F1 score by 2.8%, accuracy by 1.6%, and sensitivity by 4.2% if

all clients participate. The same trend has been shown in the detection performances if 10
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clients participate. As for SOTA meta-federated algorithms FedReptile and Per-FedAvg as

well as our PMFed-FT, they achieve relatively similar performances compared with FedAvg-

FT. It indicates that the methods with the simple fine-tuning strategy cannot effectively

adapt to each testing patient due to the intra-patient variability on biosignal data. As for

our method PMFed, it achieves the best performances over all metrics under the settings

with all client and 10 client participation, with the highest F1 score of 0.894 and accuracy of

93.1%. The sensitivity and specificity are 96.6% and 92.0% respectively. The performances

show that our method could alleviate the intra- and inter-patient variability problems by

generating a well-generalized model initialization and fine-tuning the model regulated with

helpful neighbors.

Table 15: Performances of methods on events in VA detection.

All Clients 10 Clients

F1 ACC SE SP F1 ACC SE SP

FedAvg[71] .872 .867 .904 .883 .873 .866 .904 .881

FedAvg-FT[113] .920 .877 .952 .875 .914 .881 .949 .880

FedMeta[25] .765 .718 .864 .650 .549 .722 .537 .886

FedReptile[56] .919 .882 .950 .881 895 .878 .924 .887

Per-FedAvg[33] .915 .881 .950 .879 .898 .875 .928 .883

PMFed-FT .900 .882 .924 .895 .891 .888 .929 .872

PMFed .935 .933 .964 .921 .922 .900 .950 .898

Table 15 illustrates detection performances on VA events. Compared with FedAvg,

FedAvg-FT achieves a 4.8% increase in F1 score from a baseline of 0.872 and a 1.0% increase

in accuracy from a baseline of 86.7%. Sensitivity and Specificity increase to 95.2% and 87.5%

respectively after being fine-tuned on local data in FedAvg-FT. The same increasing trend

has also been shown in the evaluation settings with the participation of 10 clients. The

meta-learning approaches, FedReptile, Per-FedAvg and PMfed-FT, achieve relatively similar

performances in terms of all metrics when compared with FedAvg-FT. As for PMFed, it
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achieves the best performance on all evaluated metrics in the settings with the participation

of 10 clients. It has the highest detection rate on VA events (96.4%) and non-VA events

(92.1%), and the highest F1 score (0.935). As for the evaluation under the settings with 10

clients’ participation, PMFed still achieves the best performances in all metrics.

Table 16: Performances of methods on segments in AF detection.

All Clients 10 Clients

F1 ACC SE SP F1 ACC SE SP

FedAvg [71] .719 .846 .918 .843 .696 .837 .898 .851

FedAvg-FT [113] .706 .861 .950 .861 .709 .858 .931 .872

FedMeta [25] .294 .538 .351 .825 .395 .753 .442 .907

FedReptile [56] .705 .860 .950 .859 .686 .838 .926 .849

Per-FedAvg [33] .711 .867 .940 .875 .707 .854 .921 .877

PMFed-FT .726 .879 .935 .897 .717 .856 .921 .853

PMFed .749 .887 .877 .950 .736 .879 .865 .915

Table 16 shows AF detection performances over ECG segments. The condition positive

is AF and the condition negative is non-AF. The performances of FedAvg-FT indicate that

simply fine-tuning on the global model cannot adapt well to each testing patient since there

is degradation in the F1 score when compared with that of FedAvg. In meta-federated

learning algorithms, FedReptile and Per-FedAvg do not give out better detection perfor-

mances. FedMeta achieves the worst detection performances among all evaluated methods

since the method is sensitive to non-iid biosignal data and therefore cannot generate a well-

generalized model. On the other hand, PMFed-FT achieves a better F1 score (0.726) and

accuracy (87.9%) when compared with the other baseline algorithms. The performances

show that our proposed cross-patient learning mechanism and model weighting strategy

could improve the model generalization to some extent. As for PMFed, it achieves the high-

est accuracy of 88.7%, along with the highest F1 score of 0.749 and detection accuracy on

non-AF segments being 95.0%. Our proposed fine-tuning method could further improve

detection performances by aggregating the helpful neighbor models.
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Table 17: Performances of methods on events in AF detection.

All Clients 10 Clients

F1 ACC SE SP F1 ACC SE SP

FedAvg [71] .706 .822 .933 .794 .694 .828 .922 .814

FedAvg-FT [113] .684 .824 .944 .793 .691 .836 .942 .809

FedMeta [25] .403 .709 .528 .828 .416 .798 .484 .908

FedReptile [56] .684 .822 .945 .791 .680 .826 .945 .792

Per-FedAvg [33] .697 .838 .943 .811 .687 .836 .940 .816

PMFed-FT .712 .841 .943 .856 .701 .846 .938 .822

PMFed .784 .911 .917 .920 .776 .891 .887 .905

Table 17 shows AF detection performances on events level. The performances of all

evaluated algorithms demonstrate the same trend as the ones on segments. PMFed achieves

the best detection performances over almost all testing metrics except sensitivity. As shown

in the table, in the settings with the participation of all clients, PMFed achieves a 7.8%

increase in F1 score from a baseline of 0.706 and an 8.9% increase in accuracy from a

baseline of 82.2% of FedAvg. Additionally, it achieves the highest non-AF event detection

accuracy (92.0%) represented by specificity. As for the settings with 10 clients’ participation,

PMFed still outperforms the other evaluated methods in terms of F1 score, accuracy, and

specificity.

We further evaluate all federated learning algorithms on HAR. Note that the data dis-

tribution of the utilized HAR-UCI dataset is only with features distribution skew caused by

inter-patient variability. The quantity of each action class is evenly spanned in all subjects.

Therefore, the main purpose of the experiment is to evaluate the effectiveness of the pro-

posed meta-federated learning method with the cross-patient learning mechanism and model

weighting strategy based on similarity.

Table 18 shows the detection performances in terms of macro-F1 (i.e., the averaged F1

scores over F1 score on each action) and accuracy over segments. As shown in the table,

existing meta-federated learning algorithms except FedMeta outperform classic federated
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Table 18: Performances of methods on segments in HAR.

All Clients 10 Clients

Macro-F1 ACC Macro-F1 ACC

FedAvg [71] .903 .902 .900 .900

FedAvg-FT [113] .920 .916 .930 .926

FedMeta [25] .567 .610 .566 .612

FedReptile [56] .929 .926 .919 .916

Per-FedAvg [33] .930 .927 .919 .917

PMFed-FT .933 .930 .932 .930

PMFed .936 .933 .935 .932

learning with only features distribution skew problem. It again indicates that the gener-

alization of model initialization is critical in patient-specific detection. As for PMFed, it

achieves a 0.936 macro-F1 score and 93.3% accuracy in all clients’ participation and 0.935

macro-F1 score and 93.2% accuracy in 10 clients’ participation. The performances show that

PMFed could generate the model initialization with better generalization when compared

with other SOTA meta-federated learning algorithms.

Table 19: Performances of methods on events in HAR.

All Clients 10 Clients

Macro-F1 ACC Macro-F1 ACC

FedAvg [71] .887 .908 .884 .903

FedAvg-FT [113] .929 .942 .923 .936

FedMeta [25] .509 .589 .521 .611

FedReptile [56] .926 .942 .886 .903

Per-FedAvg [33] .926 .939 .897 .917

PMFed-FT .929 .942 .920 .933

PMFed .939 .950 .933 .944
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Table 19 shows the performance of HAR on events. As shown in the table, PMFed again

achieves the best performances in terms of macro-F1 (i.e., 0.939 and 0.933 in all clients’ and

10 clients’ participation) and accuracy (i.e., 95.0% and 94.4% in all clients’ and 10 clients’

participation). Moreover, the performances of PMFed-FT indicate that the proposed meta-

federated learning algorithm improves the generalization of the model initialization. Under

the same fine-tuning strategy, PMFed-FT still outperforms the other baseline methods for

the settings with the participation of all clients and 10 clients.

6.4.2.2 Practical Performances

Figure 32: The IoT platform for practical performances evaluation.

We further evaluate practical performances of PMFed and the other baseline algorithms.

The federated learning process of each evaluated algorithm is conducted on the platform

with MacBook Pro as server and 10 Raspberry Pi 3B as clients shown in Fig. 32.
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(b) Time overhead on server.

Figure 33: Time overhead of federated learning algorithms on the platform over three health

monitoring applications.

We first report the performances in the FL process. Fig. 33 presents the time overhead

of all evaluated algorithms. The time overhead is reported based on the averaged execution

time of each round over three health monitoring tasks. FedMeta achieves the lowest time

overhead as shown in Fig. 33(a) since it only requires a one-step update on the client.

As shown in the Fig. 33(a) and fig. 33(b), PMFed achieves relatively similar performances

in terms of time overhead on both server and client ends when compared with the other

algorithms. Additionally, PMFed mainly transmits the model during the federated learning

process as other algorithms do and there is not much difference in terms of communication

overhead among those algorithms.
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(b) Communication overhead of model personalization.

Figure 34: Time and communication overhead of simple fine-tuning and the proposed model

personalization method on client.

We then report practical performances in the model personalization process over three

health monitoring tasks. Note that the model personalization is conducted on the client

by downloading the global model from the server and personalization the model with local

data. We compare the proposed model personalization method against the simple fine-tuning

strategy. As shown in Fig. 34(a), the time overhead of the proposed model personalization

method (denoted as Proposed FT) is higher than that of the simple fine-tuning method

(denoted as simple FT). It is because our personalization method requires selecting helpful

neighbor models under the neighbor-aggregating mechanism. The time overhead is accept-
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Table 20: Practical performances of CNNs on three applications.

Inference Latency Flash Occupation Work-in Memory

CNN-AF 64.53 ms 299.59 KB 24.87 KB

CNN-HAR 37.57 ms 284.70 KB 13.82 KB

CNN-VA 9.50 ms 40.75 KB 5.24 KB

able in the health monitoring tasks. Fig. 34(b) demonstrates the communication overhead

of sending and receiving processes of both methods. Our personalization method leads to

a higher communication overhead in receiving since it requires downloading not only the

meta-model but neighbor models from the server.

We further evaluate the practical performances of CNN inference by deploying models

on a resource-contained microcontroller (MCU) as an IoT monitor. Table 20 shows inference

latency, flash occupation, and work-in memory overhead when executing inference on the

STM32F469NI board.

6.5 Summary

In this chapter, we propose a personalized meta-federated learning (PMFed) framework

for patient-specific health monitoring in IoT. PMFed aims to address inter- and intra-patient

variability in the federated learning paradigm and generate a personalized deep neural net-

work for the individual. Cross-patient learning mechanism and model weighting strategy

based on similarity are proposed to obtain a well-generalized global model by aggregating up-

loaded models according to major and unique biosignals’ morphological characteristics. The

proposed neighbor-aggregating mechanism aims to personalize the well-generalized model

on the given patient’s limited and non-iid biosignal data by invoking neighbors’ models

to regulate the fine-tuning process. Experimental results show that deep neural networks

personalized under PMFed outperform the existing meta-federated learning algorithms.

128



7.0 Conclusions

In this dissertation, we have considered applying deep learning in IoT-enabled health

monitoring for patient-specific detection. With the rapidly growing powers of IoT, IoT de-

vices have been ambitiously developing in the medical field and become a promising solution

to long-term health monitoring on biosignals due to the characteristics such as connectivity,

durability, simplicity, and low cost. In the conventional detection method design, essential

features and detection criteria are firstly derived from clinical trials and then transformed

into a program that is runnable on the IoT monitors. Considerable expertise is required to

optimize the choice of extracted features, detection criteria, and programmable parameters.

However, expertise is not sufficient for the optimal (i.e., patient-specific) detection for each

individual.

Deep learning provides an alternative solution to the problem since the deep learning

model could automatically learn to extract important features and perform classification via

training. Such an approach significantly reduces the demand for domain expertise in detec-

tion method design and fine-tuning. However, directly applying deep learning is not always

feasible in health monitoring tasks. The biosignal inter-variability caused by individual dif-

ferences is an open challenge for the accurate detection of each individual. A pre-trained deep

learning model would degrade significantly on some patients. Besides, model personalization

in deep learning still requires considerable manual work and domain knowledge to label a

sufficient amount of patient-specific data samples. It is unrealistic in some applications due

to the high labor costs and expertise required. Furthermore, the access to personal health

data is highly restricted in health monitoring applications. Personal health data cannot be

easily accessed and it becomes a burden in the deep learning model personalization.

In order to address those challenges, this dissertation has proposed four techniques. For

the first challenge, a novel meta-learning method is proposed to obtain a well-generalized

model initialization. Optimizations are devised to accommodate the conventional meta-

learning to the patient-specific detection scenarios. The obtained well-generalized model

can perform a quick adaptation to the patient-specific data domain with few updates. A
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prior knowledge incorporated personalization method is further proposed to incorporate prior

knowledge into model personalization to effectively adapt the deep model to a specific pa-

tient’s data domain. The proposed method is shown to be effective for Atrial Fibrillation

(AF) detection. For the second challenge, a computing framework is proposed to conduct self-

supervised and on-device model personalization. A generative adversarial network (GAN)

is deployed on the framework to synthesize patient-specific data without manual supervi-

sion. The synthesized patient-specific data are further utilized as personalizing samples for

on-device model personalization. Finally, to obtain a personalized DL model with limited

data access, we propose a personalized meta-federated learning framework (PMFed) to ad-

dress non-IID problem caused by inter- and intra-patient variability without personal data

aggregation in a federated learning paradigm.
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