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Abstract

Decision makers who receive many signals are subject to
imperfect recall. This is especially important when learning
from feeds that aggregate messages from many senders on so-
cial media platforms. In this paper, we study a stylized model
of learning from feeds and highlight the inefficiencies that
arise due to imperfect recall. In our model, failure to recall a
specific message comes from the accumulation of messages
which creates interference. We characterize the influence of
each sender according to the rate at which she sends mes-
sages and to the strength of interference. Our analysis indi-
cates that imperfect recall not only leads to double-counting
and extreme opinions in finite populations, but also impedes
the ability of the receiver to learn the true state as the popula-
tion of the senders increases. We estimate the strength of in-
terference in an online experiment where participants are ex-
posed to (non-informative) repeated messages and they need
to estimate the opinion of others. Results show that interfer-
ence plays a significant role and is weaker among participants
who disagree with each other. Our work has implication for
the diffusion of information in networks, especially when it
is false because it is shared and repeated more than true in-
formation.

Introduction
People increasingly get information via feeds that aggre-
gate messages from many senders into a list. The role of
these feeds in opinion formation and decision making has
been the subject of widespread speculation and some empir-
ical research. For example, commentators argue that these
feeds create or facilitate “echo chambers” or “filter bub-
bles” (Pariser 2011). While empirical evidence gives a more
mixed picture — in which social media exposes individu-
als to both information sources that share or do not share
their ideological and partisan alignment (Bakshy, Messing,
and Adamic 2015; Flaxman, Goel, and Rao 2016; Eady et al.
2019), these concerns highlight the importance of the com-
bination of sender behavior, platform policies, and receiver
information processing in the evolution of public opinion.

In particular, senders are often trying to change the opin-
ions of others, which can motivate them to repeatedly share
related messages (e.g., by fake news sites, politicians, and
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advertisers). While repetition perhaps should not be a prob-
lem in theory, in practice individuals are subject to dou-
ble counting: they do not consider the correlation struc-
ture of the signals that they receive. This process can lead
to a reinforcing feedback loop where repeated information
leads to extreme opinion, which leads to further repeated
information and more extreme opinion. How should plat-
forms modulate exposure to repeated messages in order to
facilitate more accurate information processing? Answering
this question benefits from positing and validating a precise
mechanism behind double counting.

There are two popular explanations behind double-
counting. One explanation is that the task is conceptually
complex: individuals fail to realize that taking the correlated
signals at their face value is a problem or that they can back
out the independent signals. The second explanation is that
the task is mathematically complex, i.e., people know what
they need to solve, but they do not know how to solve it.
In an experiment where participant need to estimate an ex
ante unknown state of the world from correlated signals,
Enke and Zimmermann (2017) find that participants strug-
gle primarily with noticing the presence of correlation and
understanding how this can be dealt with, both of which can
be viewed as conceptual problems. However, noticing the
problem and understanding how to solve it are two distinct
mechanisms and, based on this experiment, the importance
of one relative to the other is unclear. In this paper, we in-
vestigate individuals’ failure to notice repetition through the
lens of limited memory: people double count because they
fail to keep track of the source of messages that they have
received. In other words, they have imperfect recall of the
sources of the signals that have shaped their beliefs.

To study the effect of limited recall on learning, we pro-
pose a simple model that is both analytically tractable and
accounts for two empirically validated facts of human mem-
ory (Kahana 2012). Repetition increases the likelihood of
recall. However, it is constrained by what we call interfer-
ence: messages from other senders decrease the probability
of remembering any single message. This model naturally
lends itself to the study of variations in the rate of activity
and number of different sources.

The purpose of this paper is to show the implications
of limited recall on learning, especially when variation in
user activity affects the recall process. We analyze a stylized
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model of feeds. The unknown state of the world takes one
of two values: zero or one. The environment consists of n
sources, each of whom is endowed with a private signal that
is a Bernoulli random variable. We assume that private sig-
nals are independent conditioned on the true state, and they
are informative about the true state (e.g., each signal is more
likely to agree with the true state of the world than not).
Each source transmits her private signal to the user (hence-
forth, the “receiver”), repeatedly, at random times according
to a fixed-rate, Poisson point process. The user feed consists
of the list of such messages, ordered in time. We study the
quality of information aggregation as the receiver is repeat-
edly exposed to the private signals of different sources. The
non-Bayesian belief (subject to interference and imperfect
recall) exhibits certain inefficiencies: (i) It concentrates on
one of the two states, despite limited information from finite
n sources as time advances to infinity; i.e., the non-Bayesian
receiver holds more extreme opinions, the more she inter-
acts with her feed. (ii) The limiting belief may concentrate
on a false state and is disproportionately affected by differ-
ent users according to their transmission rates. Our analyt-
ical formulation allows us to quantify the influence of each
sender, as a function of a parameter that can be interpreted
as the strength of interference.

To estimate this parameter, we run an online experiments
where we show respondents real comments that were taken
from the web about a picture “The Dress” that generated
significant disagreement when it first came out in February
2015 (Lafer-Sousa, Hermann, and Conway 2015). In fact,
different people see different colors: some people see the
dress as black and blue; others see it as white and gold. Af-
ter showing a set of messages, we ask participants to answer
‘how many people believe the color is ...’ for both ‘black and
blue’ and ‘white and gold’? and pay them according to their
performance. In our setup, participants see three different
feeds. In the first feed, they do not know what the question
is. After they answer the question at the end of the first feed,
participants are shown an additional two feeds. The random-
ization occurs for each feed, leading to within (in addition to
between) subject randomization. This design choice serves
both as training and allows us to compare how people learn
when they are passive (as opposed to active in the second
and third feed). The second experimental variation is repe-
tition: some messages are repeated from one to six times,
allowing to see the effect of increasing repetition on errors
in both questions.

This experimental setup has several advantages. First, the
‘objective’ nature of the perceptual differences implies that
repeated messages contain no additional informational con-
tent. In fact, one of the biggest issues with over-counting
is that repetition may be interpreted by the respondent as
evidence that the sender has learned something new about
the world or his opinion has changed. For example, one’s
opinion of a painting may change over repeated exposures.
Here, the picture is such that the color people see remains
fixed throughout. As a result, seeing the message ‘I see the
color white and gold’ twice cannot be rationally interpreted
as more than a single piece of evidence. Second, the goal of
the agent is to count the distinct number of senders, not up-

date her beliefs as is standard in most studies of probabilistic
reasoning and judgment biases; for a review see Benjamin
(2019). This allows us to abstract away from the inability
of individuals to perform the Bayesian update, making the
strength of interference more identifiable.

Results show that overcounting as a function of repeti-
tion increases at a decreasing rate, reaching a maximum
average of 1 message overcounted for six repetitions. This
overcounting is lower when participants disagree with the
high sender or when they know specifically the question they
will be asked (feeds two and three). Our work has implica-
tions for settings in which people form opinions or make
decisions based on the opinion of others (e.g., Moehring
et al. 2021; Stewart et al. 2019). Our results show that even
though people are exposed to ideologically diverse opinions
(Bakshy, Messing, and Adamic 2015) this does not prevent
one side from exerting more influence through repetition.
This issue is particularly notable in light of new evidence
that fake news are shared more than their true counterparts
(Vosoughi, Roy, and Aral 2018), and such sharing is concen-
trated among a small portion of the population (e.g., Grin-
berg et al. 2019). This suggests policies aimed at not just
exposing users to diverse information but also specifically
limiting messages from users who disproportionately repeat
themselves.

Model
We consider a sequential learning model, where the agent
(referred to as the receiver) receives a message at random
times according to a Poisson point process. A message at a
random time t is a random vector comprised of source and
content: mt = (ot, ct). Both m

(1)
t := ot and m

(2)
t := ct

are random variables. Upon reception of a message, the re-
ceiver updates her belief unless she has received the same
message (i.e., the same content from the same source) in the
past and she remembers it. Note that whereas Enke and Zim-
mermann (2017) consider correlated but different signals, in
this paper we are only concerned with the repetition of the
same signal. This more stylized setup can be interpreted as
extreme correlation.

The sequence of messages constitute the receiver’s feed.
Here we study how imperfect recall affects the receiver’s
ability to learn from her feed.

Modeling Memory

Our model draws on the literature of cued recall which sug-
gests that, upon the reception of a cue, previously received
messages are recalled proportionally to similarity with the
cue (Kahana 2012; Bordalo, Gennaioli, and Shleifer 2017;
Bordalo et al. 2021). This implies that (1) repetition leads
to a higher probability of recall, since there are more mes-
sages and therefore more chances to recall the sender of the
message, and (2) other messages (e.g., closer in time) create
interference: because of their similarity with the cue (close-
ness in time), they are more likely to be recalled and there-
fore reduce the probability of recalling any given sender
(Bordalo et al. 2021). Based on these two ideas, we model



the probability that a source i is recalled at time t as:

P(i recalled at t) =

|τ < t,m
(1)
τ = i|

|τ < t,m
(1)
τ = i|+ r|τ < t,m

(1)
τ 6= i|

, (1)

where |τ < t,m
(1)
τ = i| corresponds to the number of mes-

sages sent by i before t, |τ < t,m
(1)
τ 6= i| to the total num-

ber of messages sent by other senders before t and r ≥ 0
is a parameter corresponding to the strength of interference.
Note that r can also be interpreted as the degree to which
other messages are dissimilar to the message sent by i. If
there is no interference, then r = 0.

This formulation has desirable properties. If m corre-
sponds to the total number of messages sent by i and T to
the total number of messages sent by other senders, then
the probability that source i is recalled increases at rate
rT/(m + rT )2, which decreases with m. As T → ∞ so
that there are many messages from other senders and the
probability of recall is very low, this rate is approximately
constant in m and the sender expects the benefits of their
repetition to diminish as the probability of recall increases
linearly with m. On the other hand, if T → 0 or r → 0,
then the probability of remembering i is high but not sensi-
tive to m, so the sender can expect a small, fixed benefit in
this regime.

Analytical Results in the Binary Environment

Consider a continuous time t > 0 and a binary state of the
world, denoted by θ ∈ {0, 1} that is unknown to the re-
ceiver. We have n sources of information, labeled by i ∈
{1, . . . , n}. Each source is endowed with a private signal
that is an independent Bernoulli random variable, denoted
by si whose distribution is given by: P(si = θ) = pi >
P(si = 1− θ) = p

i
.

Each source (i) transmits with a fixed rate αi at random
times according to a Poisson point process. Each transmis-
sion by the source i at a time t ∈ R>0 constitutes a message
of the form mt = (i, si) that appears in the user’s feed. We
also use the notation ᾱn =

∑n
i=1 αi for the sum of the rates.

We study the learning outcome by analyzing the asymp-
totic belief of the receiver as time t → ∞ and number of
sources n → ∞. Let µt(θ) ∈ R>0, θ ∈ {0, 1},µt(1) +
µt(0) = 1 denote the belief of receiver at time t > 0.
To study the evolution of belief, it is convenient to con-
sider the log of belief ratio between the two states: φt =
log (µt(1)/µt(0)). In this notation, if the true state of the
world is 1, then learning (µt(1) → 1) is equivalent to
φt →∞. In such a regime, where learning happens asymp-
totically, we can write µt(0) � e−φt . In particular, if φt
grows linearly at rate r, then µt(0) goes to zero asymptoti-
cally exponentially fast with the same (exponential) rate r.

In the next section, we derive the log-belief ratio in the
case where the receiver has perfect recall. Then, we explore
deviation from this baseline with imperfect recall.

The Bayesian Baseline
Consider fixed t > 0. The log-belief ratio of the Bayesian
receiver at t is given by:

φt =

n∑
i=1

1(i transmits at least once before t)λi, (2)

where λi = si(λi − λi) + λi, and

λi = log

(
pi
p
i

)
, λi = log

(
1− pi
1− p

i

)
.

Conditioned on the realizations of the private signals s̄ =
(s1, . . . , sn), the expected value of (2) is given by:

E(φt|s) =

n∑
i=1

λiP(i transmits at least once before t)

=

n∑
i=1

λi(1− e−αit). (3)

As t→∞, the Bayesian belief aggregates the log-likelihood
of the initial private signals perfectly:

E(φ?|s) := lim
t→∞

E(φt|s) =

n∑
i=1

λi. (4)

Imperfect Recall
Consider now a non-Bayesian agent, r > 0, that has an
imperfect recall of the sources. After receiving a message
mτ = (i, si), she has to recall if the source i has transmitted
before according to (1).

For fixed t > 0, let 0 < τ1 < . . . < τT < t
be the sequence of random time points at which messages
are received from the sources. Let us also denote τ̄ =
(τ1, . . . , τT ). The log-belief ratio of the non-Bayesian re-
ceiver at time t can be written in terms of indicator functions,
1(·), as follows:

φt =

T∑
j=1

1(source m(1)
τ j

not recalled at τj)λm
(1)
τj

=

T∑
j=1

n∑
i=1

1(i transmits at τj)1(i not recalled at τj)λi.

Conditioned on s̄ and τ̄ , the expected log-belief ratio of
the non-Bayesian receiver at time t is then given by:

E(φt|s̄, τ̄ ) =

n∑
i=1

αi
ᾱn

λi

T∑
j=1

E
(

1−

|τ ≤ τ j : m
(1)
τ = i|

|τ ≤ τ j : m
(1)
τ = i|+ r|τ ≤ τ j : m

(1)
τ 6= i|

)
.

Taking the limit t → ∞, together with the ergodic limits
of the Poisson point processes (T/(ᾱnt)→ 1 and |τ ≤ τ j :



m
(1)
τ = i|/(|τ ≤ τ j : m

(1)
τ = i|+r|τ ≤ τ j : m

(1)
τ 6= i|)→

αi/(αi + r(ᾱn − αi), almost surely as t→∞) yields:

lim
t→∞

E(φt|s̄, τ̄ ) =

n∑
i=1

αiλi

(
1− αi

αi + r(ᾱn − αi)

)
t.

We can now drop the conditioning on the transmission times
to get:

lim
t→∞

E(φt|s̄) =

n∑
i=1

αiλi

(
1− αi

αi + r(ᾱn − αi)

)
t.

Hence, the belief of the non-Bayesian agent concentrates ex-
ponentially fast as t → ∞ and the rate of convergence is
given by:

φ̄n := lim
t→∞

1

t
E(φt|s̄)

=

n∑
i=1

αiλi

(
1− αi

αi + r(ᾱn − αi)

)
. (5)

As t → ∞, the non-Bayesian belief concentrates on one
if φ̄n > 0 and it concentrates on zero if φ̄n < 0. We
list three consequences of the preceding limit behavior as
follows. First, Non-Bayesian receiver adopts more extreme
beliefs as t → ∞. This is in spite of her limited infor-
mation (there are only n signals available to her), and in
contrast to the Bayesian belief in (4), which aggregates
the n signals perfectly. Second, The non-Bayesian belief
may concentrate on the wrong state. In fact, if the two
states are equally likely, then the ex ante probability of non-
Bayesian belief concentrating on a wrong state is given by
1/2P

(
φ̄n < 0

∣∣ θ = 1
)

+1/2P
(
φ̄n > 0

∣∣ θ = 0
)
. Third, the

non-Bayesian belief is disproportionately influenced by dif-
ferent sources according to their transmission rates. This is
in contrast to the Bayesian belief in (4) that weighs all sig-
nal log-likelihood ratios equally. In the absence of coordi-
nation or knowledge of signals from other sources, source
i shapes the opinion of the receiver both directly (through
αi/(1−αi/(αi + r(ᾱn−αi))) and indirectly (through rᾱn
which affects all other terms). In the appendix, we analyze
the implication for pricing to regulate bandwidth and learn-
ing in limited environments when r = 1 (all signals interfere
as much as signals from source i when recalling source i)
and total bandwidth (the denominator) is fixed at B so that
the influence of i can be written as αi(1− αi/B).

Experiment
The previous section quantified the influence of the ith
source in shaping the opinion of the receiver as a function
a parameter r which can be interpreted as the strength of in-
terference from other senders. How large is r, and therefore
the influence of the ith source in practice? To estimate our
model, we run an experiment where participants observe a
feed aggregating comments about an issue following which
they need to estimate the number of people who hold one
opinion or the other.

Experimental Setup

Our setup is based on the famous picture of “The Dress” that
generated significant disagreements when it first came out in
February 2015 (Lafer-Sousa, Hermann, and Conway 2015).
Different people see different colors: some people see the
dress as black and blue; others see it as white and gold. In
fact, a poll was run on the website Buzzfeed asking users
what color is this dress1. We scraped all comments from this
website and showed respondents a random sample.

Figure 1 shows how this was translated in our experiment.
A picture of the dress is shown with comments appearing at
the bottom. To make sure respondents pay attention to the
username, we make it appear first for two seconds, following
which we add the comments (as shown in the picture) for
5 seconds. We only show one message at a time because
some of them will be repeated, and we want to avoid the
possibility of showing the same message multiple times on
the same page.

Experimental Conditions

Participants see a total of three different feeds. In the first
feed, participants do not know what they will be asked. They
are simply told that they will be asked a series of questions
about what they have just seen. After they answer the ques-
tion at the end of the first feed, the same setup is repeated
in a second and third feed. This design choice has two main
advantages. First, it serves as training: the main analysis will
be performed on the second and third feed, so the first one
allows respondents to know what to expect. Second, it al-
lows us to compare how people respond when they know
the question relative to when they don’t. In fact one premise
of this work is that people are not constantly updating their
counts in real time [in a similar vein to Enke, Schwerter,
and Zimmermann (2020)]. Depending on the environment
in which they are located — e.g., if they are reading product
reviews — they may in fact be doing so. However, in other
environments such as social media feeds, people do not up-
date their counts unless they are expected to make a deci-
sions (upon which they need to recollect all the information
that has been received up until that point).

The next set of experimental variation occurs at the feed
level, leading to within (in addition to between) subject ran-
domization. Let us denote by n1 and n0 the number of
senders who send a message corresponding to ‘blue and
black’ and ‘white and gold’ respectively. n1 is drawn uni-
formly from [0, n] where n is the total number of senders
randomly chosen to be 8 or 10. n0 is simply n−n1. The high
sender is randomly chosen across all senders and the num-
ber of repeated messages, denoted by α, is drawn from [1, 6].
Finally, next to each feed is a picture of the dress which we
decide to show (or not) with equal probability. This random-
ization occurs at the user level.

1The original poll can be found at https://www.buzzfeed.com/
catesish/help-am-i-going-insane-its-definitely-blue#subbuzz-
quiz-poll-results-5103755

https://www.buzzfeed.com/catesish/help-am-i-going-insane-its-definitely-blue#subbuzz-quiz-poll-results-5103755
https://www.buzzfeed.com/catesish/help-am-i-going-insane-its-definitely-blue#subbuzz-quiz-poll-results-5103755
https://www.buzzfeed.com/catesish/help-am-i-going-insane-its-definitely-blue#subbuzz-quiz-poll-results-5103755


Figure 1: A) Picture of the “The Dress” as was shown in the experiment. Under the picture is a username along with the
message. During the experiment, the username appears first for two seconds, after which the message is shown for an additional
five seconds. B) Questions asked after each feed (note that the order of questions one and two is randomized). C) Experimental
Conditions

Questions and Incentive Compatibility
The first question we ask is: “what color do you see?”. We
ask this question at the beginning of the experiment (after
the instructions, before they observe the first feed) to see
how subsequent answers vary according to whether the par-
ticipant agrees (or disagrees) with the high sender.

Then, we ask the same three questions following each
feed. First, we ask participants to estimate the number of
people who believe the dress is ‘black and blue’. Second, we
ask them to estimate the number of people who believe the
dress is ‘white and gold’. (Note that whether we ask ‘black
and blue’ or ‘white and gold’ first is randomized.) Third, we
ask participants if some messages were repeated. Finally, at
the end of the last feed only, we ask participants if they re-
member seeing each of five names (the high sender, one ran-
dom low sender who sent ‘black and blue’, one random user
who sent ‘white and gold’ and two senders that were not
shown). Each name appears on a separate page and the or-
der of the names is randomized. We ask this at the end of the
last feed only (not the first or second) to ensure that respon-
dents focus on counting (as they would if they were trying
to aggregate opinions) not remembering names.

Participants are paid according to performance. They start
from a base amount that depends on the total number of
messages they are assigned to observe. An additional (con-
stant) amount is added/deduced for each answer depending
on whether it is correct/incorrect.

Ethics and Protection of Human Subjects
This protocol was determined to be exempt by the MIT
Committee on the Use of Humans as Experimental Subjects.
The decision to participate in this experiment was entirely
voluntary. There were no known or anticipated risks to par-
ticipating in this experiment. There was no way for us to
identify participants. The only information we collected, in
addition to participants’ responses, is the timestamps of their

interactions with our site. These points were listed at the be-
ginning of the experiment, along with the statement that the
results of this research may be presented at scientific meet-
ings or published in scientific journals. Before starting, par-
ticipants had to click on the “AGREE” button, indicating that
they are at least 18 years of age, and agree to participate vol-
untarily.

Setup Strength
This experimental setup has two main advantages. By show-
ing respondents comments that were scraped from the inter-
net, this setup aims to provide respondents with a realistic
experience. In addition, the nature of the perceptual differ-
ences implies that repeated messages contain no additional
informational content. In fact, one of the biggest issues with
over-counting is that repetition may be interpreted by the re-
spondent as evidence that the sender has learned something
new about the world or that his opinion has changed. For ex-
ample, one’s opinion of a painting may change over repeated
exposures. Here, the picture is such that the color people see
remains fixed throughout. As a result, seeing twice the mes-
sage “I see the color white and gold” cannot be rationally
interpreted as more than a single piece of evidence.

Estimation
Let xj,k correspond to the number of messages sent by the
high sender in feed j that participant k is exposed to. Let
us denote by nj,k1 the set of users who agree with the high
sender (and by nj,k0 those who disagree with him). Finally,
let Y j,ki be the estimated size of nj,ki . Therefore,

Y j,k0 = |nj,k0 |+ uj,k0 ,

where uj,k0 captures all the unobserved factors affecting k’s
performance estimating the number of senders who disagree
with the high sender in feed j.



Y j,k1 depends on the fraction of repeated messages αj,k
that will be over-counted. This fraction is equal to 1 − pr
where pr is the probability of remembering the high sender
as defined in (1):

pr =
αj,k

αj,k + r(ᾱj,k − αj,k)
,

where ᾱj,k corresponds to the total number of messages sent
and r is the strength of interference. Therefore,

Y j,k1 = |nj,k1 |+ αj,k(1− pr) + uj,k1 .

Notice that this is exactly equal to the influence of the high
sender on the belief of the receiver, cf. (5).2 Therefore, our
setup allows us to estimate the parameter of interest while
abstracting away from the Bayesian update.

We further assume that uj,ki can be separated in two terms,
namely uj,ki = ηj,k + εj,ki where εj,ki captures all the un-
observed factors affecting k’s performance estimating the
number of i senders in feed j (such as the inability to read
a specific message) and ηj,k captures the unobserved factors
common to i = 0 and i = 1 (such as lack of attention or
tiredness). The distinction between these two types of un-
observed factors justifies taking the difference between Y j,k1

and Y j,k0 to remove the ηj,k term. We therefore assume

Y j,k = αj,k(1− pr) + εj,k

where Y j,k = (Y j,k1 − Y j,k0 )− (|nj,k1 | − |n
j,k
0 |), and εj,k =

εj,k1 − ε
j,k
0 . The parameter r will be estimated with MCMC

using the Stan framework (Stan Development Team 2021)
assuming that εj,k ∼ N(0, σε).

Results
We estimate equation using data collected from 1444 on-
line workers, 416 of which were removed according to the
following pre-registered criteria. First we performed a sim-
ple attention check, removing all respondents who failed to
answer “what is 2+2?” and “what is the color or Napoleon’s
white horse?”. Second, we removed from the analysis all
the answers that differed by more than 5 from the true an-
swer in the second and third feeds (i.e. when they know the
question). This suggests that respondents may be answering
randomly. We selected US participants from Amazon Me-
chanical Turk with a HIT approval rate higher than 95% and
a number of HITs approved higher than 500.

Memory Checks
Before running the analysis, we verify that participants do
indeed recognize the presence of repeated messages. Fig-
ure 2 shows how the probability of ‘yes’ answers to the ques-
tion “Were some messages in this feed repeated?” increases
with α in the second and third feeds. Consistent with our ex-
pectation, this probability increases rapidly until it reaches a
maximum of 0.9 when α = 5. This question was also asked
in the first feed so participants were incentivized to perform
well.

Figure 2: Probability of noticing repetition coming from an-
swers to the question “Were some messages in this feed re-
peated?” in the second and third feeds as a function of α, the
number of repeated messages. The 95% confidence intervals
were computed using a bootstrap clustered at the user level.
Each dot corresponds to the median

Figure 3: Probability of remember a “no sender” (i.e., incor-
rectly remembering a name that was not shown on the feed,
in black) and the high sender (who repeats himself α times,
in red) as a function of α, the number of repeated messages.
The 95% confidence intervals were computed using a boot-
strap clustered at the user level.

We next turn to the memory question asked at the end of
the third feed. Figure 3 shows the probability of remember-
ing the high sender (who repeats himself α times, in red)
and the probability of remembering someone whose name
was not shown in the feed (in black) as a function of α. As
the graph suggests, the probability of remembering the high
sender as a function of repetition is consistent with the prob-
ability model introduced. In fact, estimation of equation (1)
leads to r̂ = 0.05 (95% CI: [0.05, 0.06]) and prediction of
the model is plotted as the red dotted line. However, note
that these questions were not incentivized, so we expect this
estimate of r to be different from the true value. Seeing that
the probability of remembering a name absent from the feed
is positive and statistically different from zero, we expect
the bias to be positive, i.e. we expect probabilities would be
lower if this task was incentivized and therefore r would be

2Note that, in this case, it is also equal to the direct influence
(because the indirect influence is zero, as there is no repetition from
other senders).



Figure 4: Estimated deviation from the truth (y1 − y0) −
(n1 − n0) as a function of α, the number of repeated mes-
sages from the high sender. The total number of senders is
8. 95% confidence intervals are computed using a bootstrap
clustered at the user level. The line passing through the in-
tervals corresponds to the prediction of the model.

higher.

Empirical Analysis
We start our empirical analysis by estimating equations us-
ing data from the second and third feed. Figure 4 shows
how the main outcome of interest varies with α when the
total number of senders is 8. The main outcome of interest
(y1 − y0)− (n1 − n0) which represents deviation from the
truth (the estimated difference minus the true difference) is
centered at 0 when α = 1, as expected. However, as repe-
tition increases above one, respondents increasingly deviate
from the y = 0 line (what the answer would be if they had
perfect memory).

Estimation of equation leads to r̂ = 0.16 (95% CI:
[0.12, 0.19]). As expected, this is higher than the estimated
r when the task is not incentivized. We then investigated
whether the effect depends on whether the participant sees
the same color as the high sender or not, i.e., we separated
r = r0+1(same color)r1. Resulting estimates are r̂0 = 0.12
(95% CI: [0.08, 0.16]) and r̂1 = 0.09 (95% CI: [0.02, 0.17]).
So perceiving the same color increases the strength of inter-
ference from other senders (t = 81.8, p < 10−5). One in-
terpretation for this result is that disagreement with the high
sender leads to surprise, which makes participants more at-
tentive. We replicated this analysis by including data from
the first feed, i.e. when respondents know that they need to
be attentive but they do not know what they will be asked.
Results show that not knowing the question increases inter-
ference by 0.17 (95% CI: [0.05, 0.3]).

We also looked at whether this effect varies by education,
but in this case r1 was not statistically different from zero,
which suggests that, conditional on being selected to per-
form the task, education has no effect.

Related Work
Memory constraints have been looked at in the context of so-
cial learning (Chamley 2004, ch. 5). In recent results, Wil-
son (2014) considers the model of a decision maker who
chooses between two actions with pay-offs that depend on

the true state of the world. Furthermore, the decision maker
must always summarize her information into one of finitely
many states, leading to optimal decision rules that specify
the transfers between states. Kocer (2010) extends this set
up to more complex, dynamic learning environments includ-
ing partially observed Markov decision processes and multi-
armed bandits.

The problem of learning with finite memory in the context
of hypothesis testing was originally formulated by Cover
(1968, 1969) under memory constraints for storing the test
statistics. Accordingly, while sufficient statistics are very
useful computational tools their utility for memory reduc-
tion is not clear. Subsequent results provide sophisticated al-
gorithms using automata to perform the task of hypothesis
testing using test statistics that take only finitely many val-
ues and guarantee an asymptotically vanishing error proba-
bility (Kontorovich 2012; Hellman and Cover 1970; Cover,
Freedman, and Hellman 1976; Cover and Hellman 1970).

More recently, Drakopoulos, Ozdaglar, and Tsitsiklis
(2013) have considered this problem in a setting where
agents each receive an independent private signal and make
decisions sequentially. Memory in this context refers to the
number of immediate predecessors whose decisions are ob-
servable by any given agent at the time of making her de-
cision. Accordingly, while the almost sure convergence of
the sequence of individual decisions to the correct state is
not possible in this finite memory setting, the authors con-
struct decision rules that achieve convergence and learning
in probability. They next go on to consider the behavior
of rational (pay-off maximizing) agents in this context and
show that in no equilibrium of the associated Bayesian game
learning can occur. Our work is complementary to these
studies. We are interested in bounded memory effects in so
far as the ability of the receiver to recall information sources
(or identity of the senders) is concerned. We model the recall
process based on empirically validated assumptions of cued
recall, using the concept of interference.

Related to recall of sources, Acemoglu, Bimpikis, and
Ozdaglar (2014) analyze social learning among agents who
directly communicate their entire information sets (repre-
sented as pairs of private signals and their sources). Since
each piece of information is tagged there is no confounding
and Bayesian updating is simple. They show that the pres-
ence of information hubs and social connectors facilitates ef-
ficient learning outcomes in the communicative model. This
is in contrast to some of the insights from the observational
models (Bala and Goyal 1998; Golub and Jackson 2010),
where learning from actions of neighbors is impeded by the
presence of highly connected, influential agents. In this pa-
per, we are interested in the agents that have imperfect recall
of the sources. On the other hand, our learning environment
is much simpler. The sources repeat their messages; there-
fore, two messages are confounded only if they are repeated
messages from the same sources.

Discussion
This paper investigated the effect of repetition on learning
through the lens of limited memory. To study limited re-
call, we proposed a simple model that is both analytically



tractable and accounts for two empirically validated facts
of human memory (Kahana 2012). Repetition increases the
likelihood of recall. However, it is constrained by what we
call interference: messages from other senders decrease the
probability of remembering any single message. We used
this model to derive an analytic formulation allowing us to
quantify the influence of each sender, as a function of a pa-
rameter r that can be interpreted as the strength of inter-
ference. We estimated this parameter in an online experi-
ment where participants need to count signals from different
senders. Our results provide evidence that r is positive and
is decreased if participants disagree with the source of repe-
tition, which we attribute to increased attention. Further, r is
decreased if participants know beforehand the question they
are incentivized to answer correctly.

This experiment leveraged a unique feature of a picture,
“The Dress”, that naturally separates people into those who
see the color as blue and black and those who see it as
white and gold. Importantly, since the perceived color does
not change over repeated exposures, the effect of repetition
can be estimated by abstracting away from all other factors.
In other settings, e.g., political questions where people may
have an existing belief, the effect of repetition is reinforced
by two facts. First, people are not incentivized to be atten-
tive to repetition (as they are in our experiment). Second, it
may induce opinion changes [e.g., though the “illusory truth
effect” (Hasher, Goldstein, and Toppino 1977; Fazio, Rand,
and Pennycook 2019; Hassan and Barber 2021)]. Our results
can therefore be interpreted as a lower bound for the total ef-
fect of repetition in typical news feed designs.

Our results have implications for opinions and decisions
that depend on the opinion of others (DeGroot 1974; De-
Marzo, Vayanos, and Zwiebel 2003). Through repetition, in-
fluential agents may induce their network neighbors to make
the wrong choice — by leading them to overestimate the
number of people who share their opinion. This suggests a
natural policy where platforms keep track of repetition and
notify users when they are exposed to repeated information.

This policy may not be as effective when people are not
constantly updating their beliefs in real-time [in a similar
vein to Enke, Schwerter, and Zimmermann (2020)]. In many
environments, people may not update aggregate counts un-
less they are expected to make a decision (upon which they
need to recollect all the information that has been received
up until that point). In such cases, people may learn to ra-
tionally avoid notifications. Consequently, a more effective
strategy may be to hide repeated information to reduce ex-
treme opinion formation in online platforms. An additional
difficulty stems from the fact that, contrary to our experi-
ment, repeated signals are rarely exactly identical (although
they may have the same meaning), which makes the problem
of detecting repetition, and therefore overcounting, harder
for humans and machines. This provides a unique oppor-
tunity for platforms to construct similarity metrics between
signals to help humans discard repeated information.

While this paper estimated the role of repetition from
a single high sender, we see many promising opportuni-
ties for further study of competition effects from other high
senders. An implication of model 1 is that repetition from

a sender increases interference (through the denominator),
which means that repetition from other senders is less likely
to be noticed. Another extension would be to analyze how
the effect of repetition varies by sender. Different senders
may vary according their popularity or how close they are to
the low sender. One could incentivize some high senders to
increase the fraction of repeated messages and explore how
influence varies based on characteristics of the sender, re-
ceiver or their relationship. Finally, we could implement a
policy that hides a random fraction of repeated messages in
a real social network to quantify how influence varies with
repetition.
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Appendix
Pricing to Regulate Bandwidth Usage
We consider a scenario where each source is interested in
maximizing their influence while they pay a cost for in-
creased transmission rates. To simplify the analysis, let us
assume that r = 1 such that the influence of the i-th source
in shaping the opinion of the receiver (in the absence of co-
ordination or knowledge of signals from other sources) is
αi/(1− αi/ᾱn)

Accordingly, sender i chooses the rate αi to maximize:

f(αi|p(·), α−i) = αi

(
ᾱn − αi
ᾱn

)
− p(αi)

= αi

(
ᾱ−i

ᾱ−i + αi

)
− p(αi),

where p(αi) is the price that the platform changes
to sender i for transmission at rate αi, and α−i =
(α1, . . . , αi−1, αi+1, . . . , αn) is the rate profile chosen by
all the senders other than i, and ᾱ−i =

∑
j 6=i αj is the sum

of the transmission rates of all senders other than i.
To proceed, we further assume that ᾱn = B is fixed with

n. This is motivated by practical concerns in platforms: To
enhance the user experience, the platform would like to fix
the total rate at which a user receives messages — one way
to keep the total receiving rates fixed is by dropping mes-
sages sufficiently fast (homogeneously across sources), cf.
Subsection . Here, we consider a situation where senders
choose their rates optimally in response to the price function
charged by the platform. With fixed ᾱn = B, the sender’s
utility is given by:

f(αi|p(·), B) = αi

(
B − αi
B

)
− p(αi),



The price function that induces αi = α? = B/n for all
i satisfies: 1 − 2/n − p′(B/n) = 0. For example, with a
linear cost structure p(α) = c1α we get: c1 = 1 − 2/n,
and with a quadratic cost structure p(α) = c2α

2 we obtain:
c2 = (n − 2)/(2B). Using such pricing strategies the plat-
form can regulate the bandwidth usage to ensure equatable
distribution of rates. In fact, the price structure can depend
on different observable source features (in addition to rate)
and may be applied to guarantee other platform-desirable
outcomes.

Learning in Limited Bandwidth Environments
We begin by considering the Bayesian case. Averaging out
the private signals in (3) gives:

E(φt) =

n∑
i=1

DKL(pi||pi)(1− e
−αit), (6)

where

DKL(pi||pi) = E(λi) =

pi log

(
pi
p
i

)
+ (1− pi) log

(
1− pi
1− p

i

)
,

is the binary relative entropy between the signal distributions
in each of the two states.

The limiting log-belief ratio as n→∞ is given by:

E(φt) =

∞∑
i=1

DKL(pi||pi)(1− e
−αit).

By the law of large numbers, φt �
∑n
i=1DKL(pi||pi)(1−

e−αit), almost surely, as n→∞. In particular, for any fixed
t > 0, Bayesian learning in this environment is asymptot-
ically exponentially fast in n and the exponential rate of
learning (with increasing n) is given by:

φ?t := lim
n→∞

1

n

n∑
i=1

DKL(pi||pi)(1− e
−αit) > 0. (7)

We can interpret the positivity condition in the right hand
side of (7) as the learning criterion: For any fixed t > 0 if
φ?t > 0, then the Bayesian agent aggregates the information
from infinitely many senders and learns the true state of the
world. Taking further the limit t → ∞, gives the following
Bayesian Benchmark for the learning rate with the increas-
ing population of the senders (n):

φ? := lim
t→∞

φ?t = lim
n→∞

1

n

n∑
i=1

DKL(pi||pi). (8)

If we are in a regime with limited bandwidth (it is often
the case that platforms are limited in the number of mes-
sages that they can show to the users), then the transmission
rates should decrease with the increasing number of users.
This decrease can be imposed exogenously by the platform.
Here, we consider a setup where the platform drops the mes-
sages with probability 1− pn independently at random. The

parameter pn is set such that the total rates at which the
receiver (the platform user) receives messages is fixed and
equal toBn; hence, pn = Bn/ᾱn. For the limited bandwidth
environment to be interesting (non-trivial), we assume that
Bn < ᾱn.

To proceed, let ᾱ = limn→∞ ᾱn/n be a population pa-
rameter that is the average transmission rate of the senders
and is assumed fixed. Then pn = Bn/nᾱ and the rate at
which the receiver receives messages from each source i is
scaled down by pn: α(n)

i = pnαi; hence (6) becomes:

E(φt) =

n∑
i=1

DKL(pi||pi)(1− e
−α(n)

i t),

We can still ensure that the learning criteria in (7) is satisfied
by requiring that tn = t → ∞, fast enough with increasing
n. In fact, it suffices to have: limtn→∞(1 − e−α

(n)
i tn) =

Ω(1) or limtn→∞ e−pnαitn = o(1). Hence, a sufficient
condition for learning in bounded bandwidth settings is:
(Bnαi/nᾱ)tn = ω(1) or tn = ω(n/Bn). Rather than at
any t > 0, the learning criterion is now satisfied only for
large enough tn. Hence, the effect of bounding bandwidth in
large populations is to slow down the Bayesian learning pro-
cess until the agent receives enough signals from the large
population.

We can now consider the effect of bounding the band-
width on learning with imperfect source recall. Again we
begin by averaging out the initial signals. The expectation of
the asymptotic belief in (5) is as follows:

φ̄n := E(φ̄n) =

n∑
i=1

αiDKL(pi||pi)
(
ᾱn − αi
ᾱn

)
.

The learning criterion for the non-Bayesian re-
ceiver as n goes to ∞ can be expressed as
follows:limn→∞

∑n
i=1 αiDKL(pi||pi) = +∞. Here

we have assumed that sender transmission rates are fixed
with n so that limn→∞ (1− αi/ᾱn) = 1 for all i. Similar
to (8) we can introduce the following exponential rate for
non-Bayesian learning with the increasing population of
senders (n):

φ̂ := lim
n→∞

1

n

n∑
i=1

αiDKL(pi||pi).

Next consider the case where the platform drops mes-
sages independently at random with probability 1 − pn =
1 − (Bn/nᾱ) to maintain a Bandwidth Bn. The learning
criterion for the non-Bayesian receiver becomes:

lim
n→∞

Bn
nᾱ

n∑
i=1

αiDKL(pi||pi) = lim
n→∞

φ̂

ᾱ
Bn = +∞.

While the Bayesian receiver learns after a long enough
time in any limited bandwidth environment (as long as
tn = ω(n/Bn)), the non-Bayesian receiver learns only if
the bandwidth increases with the increasing population size:
limn→∞Bn = ∞. Moreover, for the non-Bayesian learn-
ing to occur asymptotically (at least) exponentially fast with



the sender population size, we need: limn→∞Bn/n > 0 or
Bn = Ω(n). In particular, if 0 < B̄ = limn→∞Bn/n < ᾱ,
is fixed, then the platform keeps a constant fraction of mes-
sages at random with probability p = B̄/ᾱ and the asymp-
totic exponential rate of non-Bayesian learning with the in-
creasing population size is equal to: B̄φ̂/ᾱ.

Interference puts a major limitation on the ability of the
non-Bayesian learner in limited bandwidth environments:
Unlike the Bayesian receiver, a non-Bayesian receiver can-
not learn from increasing population sizes, unless the band-
width increases with the population size.
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