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Abstract

This paper is concerned with variable selection in linear high-dimensional framework

when the set of covariates under consideration are highly correlated. Existing methods in

the literature require that the collinearity among covariates to be weak, yet, often in applied

research, covariates could be strongly cross correlated due to common factors. This paper

generalizes the One Covariate at a Time Multiple Testing procedure proposed by Chudik

et al. (2018) to allow the set of covariates under consideration to be highly correlated. We

exploit ideas from latent factor and multiple testing literature to control the probability of

selecting the approximating model. The proposed method is shown to be valid under general

assumptions and is computationally very fast. Monte Carlo experiments indicate that the

newly suggested method have appealing finite-sample performance relative to competing

methods, like LASSO, under many di↵erent settings. The benefits of the proposed method

are also illustrated by an empirical application to selection of risk factors in asset pricing

literature.
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1 Introduction

Researchers are often interested in selecting a small number of important variables from a

large set of covariates, known as the active set. Thanks to recent advances in data processing

and computing, there has been a significant increase in the data and information available for

research over the past decade. However, these large datasets make the model selection problem

considerably more di�cult. On one hand, the set of possible specifications rises exponentially

with the number of covariates in the active set and hence classical model selection criteria

such as Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) become

impossible to implement. On the other hand, existing variable selection methods in linear high-

dimensional settings require the degree of correlations across the covariates in the active set

to be su�ciently weak. Yet, often in practice, especially in macroeconomics and finance, the

covariates in the active set are strongly correlated. This paper contributes to this literature by

proposing a procedure for variable selection when collinearity among the set of covariates under

consideration is high and standard penalized regression techniques do not apply.

Before presenting our procedure, we provide a brief summary of a growing body of re-

search on linear high dimensional settings that mostly exploits the penalized regression frame-

work1. In this framework the vector of regression coe�cients, �, of a regression of yt on

xnt = (x1t, x2t, · · · , xnt)0, is estimated by �̂ = argmin�{
PT

t=1(yt � x0
nt�)

2 + P�(�)}, where

P�(�) is a penalty function that penalizes �, and � is a vector of tuning parameters to be set

by the researcher. Setting P�(�) proportional to the `1 norm of � yields the famous Least

Absolute Shrinkage and Selection Operator (LASSO) proposed by Tibshirani (1996). Other

forms of P�(�) include the `q norm of � for 0  q  2 [for example see Fan and Li (2001),

Zou and Hastie (2005), Zhang et al. (2010), and Belloni et al. (2012)]. Recently, Fan and Lv

(2013) show that the estimation errors and the prediction loss of the `1-regularization method of

LASSO and the concave ones are asymptotically equivalent. Despite considerable progress made

in the theory and practice of penalized regression, open questions remain, including the choice

of the penalty function and tuning parameters. To avoid some of these issues, Chudik et al.

(2018) propose an alternative method to penalized regression procedures called One Covariate

at a Time Multiple Testing (OCMT). The authors establish that under general assumptions the

suggested procedure asymptotically selects all the relevant covariates and none of the irrelevant

ones. Their results additionally show that the estimation errors of coe�cients and prediction loss

converge to zero. Finally, their Monte Carlo studies show that the suggested method performed

1A number of procedures introduced in machine learning literature such as boosting, regression trees, and step-
wise regression are also commonly used as an alternative to penalized regression. See, for example, Friedman
et al. (2000), Friedman (2001), Buhlmann (2006) and Fan and Lv (2008).
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better than penalized regression or boosting procedures under various designs.

As it mention earlier, all these suggested procedures require the collinearity among covariates

in the active set to be weak. In particular, Zhao and Yu (2006) show that the Irrepresentable

Condition is required for LASSO to asymptotically select only the covariates with non-zero

marginal e↵ects. Generally speaking, this condition requires the degree of linear dependence

among the covariates under consideration to be su�ciently weak. Moreover, the OCMT proce-

dure requires an upper bound on the degree of correlation among the covariates so that pair-wise

correlations across them are absolute summable. This paper exploits the ideas from research

on latent factor models and multiple testing to propose a variable selection method which ap-

plies even when the set of covariates under consideration are highly correlated. Suppose that

the degree of cross-sectional correlation among the covariates in the active set is strong. In

this case, following the factor literature, we decompose the covariates into unobserved com-

mon and idiosyncratic components, where the degree of cross sectional correlation across the

idiosyncratic component of the covariates is weak. Ideally, if the common and idiosyncratic

components were observable, we could have simply conditioned on the common component,

which is already low-dimensional, and confine the variable selection problem to the remaining

idiosyncratic components. However, because the common and idiosyncratic components are

unobservable, they must be estimated from the data. In this paper, we show that the deviation

of Principal Component (PC) estimators of common and idiosyncratic components from their

true values are bounded in probability su�ciently sharply as N,T ! 1. This finding allows

us to condition on the estimated common factors in place of the true ones, and still be able

to use the OCMT procedure for valid variable selection. We refer to our proposed method as

Generalized One Covariate at a Time Multiple Testing (GOCMT) as it generalize the OCMT

procedure to allow the set of covariates in the active set to be highly correlated. We generalize

the OCMT procedure, rather than the penalized regression methods, since the OCMT approach

is based on reasonably mild assumptions and it does not rely on an unknown tuning parameter.

However, one could apply a similar idea to generalize the penalized regression procedures. Our

theoretical result shows that the GOCMT procedure asymptotically selects the approximating

model, which contains all the signals and none of the semi-noise/noise variates. Monte Carlo

experiments also indicate that the newly suggested method have appealing finite-sample perfor-

mance relative to competing methods, such as OCMT, LASSO, Adaptive LASSO (A-LASSO)

proposed by Zou (2006), and Intertwined Probabilistic Factors Decoupling (IPAD) proposed

Fan et al. (2019) by under many di↵erent settings.

Fan et al. (2019) exploit the factor structure, as we do, but for a di↵erent purpose. They
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are interested in asymptotically controlling the false discovery rate (FDR) in high-dimensional

settings with a strong degree of cross-sectional correlation. However, they assume that the

idiosyncratic terms are independent across both covariates and observations. Moreover, they

assume that the idiosyncratic components are generated from an identical known probability

distribution function with unknown finite parameters. In the current paper, we provide the

theory behind for the GOCMT procedure under fairly general assumptions. In particular, we

allow for the idiosyncratic terms to be weakly dependent across both variables and observations

and permit the idiosyncratic terms to be generated from an unknown heterogeneous probability

distribution.

We illustrate GOCMT procedure with an empirical application to selection of risk factors

that can explain risk premia in stock market. Currently, one important concern in asset pricing

literature is to evaluate the relative importance of many of the risk factors suggested to explain

risk premia in stock market (Feng et al., 2019). As it is shown the risk factors in asset pricing

literature are highly correlated. Therefore, the GOCMT procedure can be consider as a proper

tool to evaluate the importance of suggested risk factors in explaining risk premia in stock

market. Our results suggest that among the 146 risk factors considered recently by Feng et al.

(2019), only the excess market return is strong and can be used to estimate the risk premia.

The other risk factors are mostly found to be weak and hence could reflect pricing errors and

their selection by standard penalized regression techniques could lead to misleading outcomes.

The rest of the paper is organized as follows: Section 2 sets out the model specification.

Section 3 explains the basic idea behind the GOCMT procedure, providing a brief overview of the

OCMT method. Section 4 discusses the technical assumptions and the asymptotic properties of

the GOCMT procedure. Section 5 gives the details of Monte Carlo experiments and a summary

of the main simulation results. Section 6 presents the empirical application, and Section 7

concludes.

Notations: Generic finite positive constants are denoted by Ci for i = 1, 2, · · · . kAk2 and

kAkF denote the spectral and Frobenius norms of matrix A, respectively. kxk denotes the `2

norm of vector x. If {fn}1n=1 and {gn}
1
n=1 are both positive sequences of real numbers, then

fn =  (gn) if there exist n0 � 1 and positive constants C0 and C1, such that infn�n0 (fn/gn) �

C0 and supn�n0
(fn/gn)  C1.
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2 Model Setting

We consider the following data generating process (DGP) for the target variable, yt,

yt = a0zt +
Pk

i=1 �ixit + ut, for t = 1, 2, · · · , T, (1)

where zt is a vector of preselected covariates; xit for i = 1, 2, · · · , k are the covariates with

0 < |�i|  C < 1 which we refer to as signals; and ut is an error term. It is assumed that

zt and xit, i = 1, 2, · · · , k, are uncorrelated with ut at time t. The vector zt can contains

deterministic components such as a constant, dummy variables, and a deterministic time trend;

as well as stochastic variables: observable factors and lag values of yt. The k signals are unknown

and an investigator wishes to select them from the active set SNt = {x1t, x2t, · · · , xNt} with N

possibly larger than T .

It is assumed that the covariates in the active set are generated as

xit = �00
i f

0
t + "it = c

0
it + "it, , for i = 1, 2, · · · , N ; t = 1, 2, · · · , T (2)

where c
0
it = �00

i f
0
t is the common component of xit, f0t = (f0,1t, f0,2t, · · · , f0,m0t)

0 is an m0 ⇥ 1

vector of unobserved common factors, �0
i = (�0,1i, �0,2i, · · · , �0,m0i)

0 is an m0⇥1 vector of factor

loadings, and "it is the idiosyncratic component of xit. Equations in (2) can be written in the

N -dimensional time series format:

xt = �0f0t + "t, (3)

where xt = (x1t, x2t, · · · , xNt)0 and "t = ("1t, "2t, · · · , "Nt)0 are N ⇥ 1 vectors, and �0 =

(�0
1,�

0
2, · · · ,�

0
N )0 is an N ⇥ m0 matrix. Alternatively, the equations in (2) can be written

as T -dimensional cross section format:

xi = F0�0
i + "i, (4)

where xi = (xi1, xi2, · · · , xiT )0 and "i = ("i1, "i2, · · · , "iT )0 are T⇥1 vectors, and F0 = (f01 , f
0
2 , · · · , f

0
T )

0

is a T ⇥m0 matrix. It is also convenient to write (2) in the matrix format:

X = F0�00 +E, (5)

where X = (x1,x2, · · · ,xN ) and E = ("1, "2, · · · , "N ) are T ⇥N matrices.

In this setting, all xit’s can possibly be correlated with each other through the unobserved

common factors, f0t , with the degree of cross-sectional dependence determined by the matrix of

factor loadings, �0. Also following the factor literature we allow the idiosyncratic components to

be weakly cross-correlated such that supi
PN

j=1|E("it"jt)| M <1. This condition is required

so that the common components, cit, can be identified (distinguished) from the idiosyncratic

components, "it.
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3 Generalized One Covariate at a Time Multiple Testing Method

3.1 GOCMT: The Basic Idea

To highlight the basic idea behind GOCMT initially suppose that the common factors and

idiosyncratic components of the covariates were observable. Then by substituting (2) into (1),

we would have

yt = a0zt + �0f0t +
Pk

i=1 �i"it + ut, (6)

where � =
Pk

i=1 �i�
00
i . In (6), the marginal e↵ect of "it on yt; �i; is equal to that of xit on yt in

(1). Additionally, the idiosyncratic terms are weakly cross correlated, namely supi
PN

j=1|E("it"jt)| 

M <1. Therefore, by conditioning on the common factors, and focusing on "it instead of xit,

we can use existing methods such as penalized regression or OCMT for the purpose of variable

selection. However, the common factors and idiosyncratic component of xit are unobservable

and hence need to be estimated from the data. In this paper, we establish condition under

which that the deviation of PC estimators of common and idiosyncratic components from its

true values are bounded in probability su�ciently sharply as N,T ! 1. This result allows

us to condition on the estimated common factors in place of the true ones, and still be able

to use the OCMT procedure for valid variable selection. We generalize the OCMT procedure,

rather than the penalized regression methods, since the OCMT approach is based on reasonably

mild assumptions and it does not require calibration of unknown tuning parameters. However,

one could use a similar idea to extend the penalized regression methods to the case of highly

correlated covariates.

3.2 An Overview of the OCMT Procedure

Chudik et al. (2018) categorize the covariates in the active set into three groups: signals, pseudo-

signals and noise variates. As mentioned in Section 2, signals are the covariates with non-zero

slope coe�cient; �i 6= 0; in DGP (1). Pseudo-signals are the covariates that do not enter the

DGP but have non-zero correlations with the signals once the e↵ect of zt is filtered out, and

hence can be falsely viewed as signals. Noise variates are those covariates that conditional on

zt have zero correlation with signals, and hence are uncorrelated with the target variable.

For each covariate xit, i = 1, 2, · · · , N , the OCMT procedure considers the following linear

regression of yt on xit conditional on zt:

yt = �0
izt + �i,Txit + ⌘it, t = 1, 2, · · · , T (7)

where �i,T = [E (x0
iMzxi)]�1[E (x0

iMzy)], y = (y1, y2, · · · , yT )0, Mz = IT � Z(Z0Z)�1Z0, and
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Z = (z1, z2, · · · , zT )0. Furthermore, by substituting y from (1), we have

�i,T =

Pk
j=1 �j�ij,T (z)

�ii,T (z)
=

✓i,T (z)

�ii,T (z)
(8)

where �ij,T (z) = E
�
T
�1x0

iMzxj
�
, and ✓i,T (z) =

Pk
j=1 �j�ij,T (z) is the net impact of xit on yt.

As it is clear from (8), the OCMT procedure focuses on the net impact of xit on yt, �i,T , rather

than the marginal e↵ect, �i, for variable selection. Due to correlation between the covariates,

knowing �i,T does not imply that we can determine �i. There are four possibilities.

�i,T 6= 0 �i,T = 0

�i 6= 0 (I) Unhidden Signals (II) Hidden Signals

�i = 0 (III) Pseudo-signals (IV) Noises

The goal of the OCMT procedure is to use the t-ratio of the estimated �i,T to select all the signals

and none of the noise variables, the selected model is referred to as an approximating model

since it can include pseudo-signals. The approximating model can be used for forecasting or

as a basis for separating signals from pseudo-signals by application of standard model selection

techniques. To deal with the multiple testing nature of the problem, Chudik et al. (2018) adjust

the critical value of the tests so that they are monotonically increasing function of N . They

show that the probability of selecting the approximating model by the OCMT procedure tends

to one as N and T go to infinity, so long as the number of pseudo-signals rise at an order

su�ciently lower than N and T . Clearly, if the signals have a common factor shared with the

other covariates in the active set, as it will be the case under the common factor representation,

(2), then, the number of pseudo-signals will rise at the same order as N , and hence the OCMT

procedure fails to apply. The main propose of this paper is to use the basic idea described in

Section 3.1 to generalize the OCMT procedure to the case where the number of pseudo-signals

can rise at the same order as N .

3.3 GOCMT Procedure

To simplify the exposition, from now on, we assume that the set of preselected covariates is

empty, in which case the DGP (1) simplifies to

y =
Pk

i=1 �ixi + u, (9)

where u = (u1, u2, · · · , uT )0 is a T ⇥ 1 vector of error terms. For each covariate xit, i =

1, 2, · · · , N , the GOCMT procedure considers the regression of yt on xit conditional on f0t , yt =

�0
f,if

0
t +�i,xxit+⌘it, where �i,x = [E (x0

iMf0xi)]�1[E (x0
iMf0y)], andMf0 = IT�F0(F00F0)�1F00.
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Furthermore, by substituting y from (9), we have

�i,x =

Pk
j=1 �j�ij,T (f

0)

�ii,T (f0)
=

✓i,T (f0)

�ii,T (f0)
(10)

where �ij,T (f0) = E
�
T
�1x0

iMf0xj
�
= E

�
T
�1"0iMf0"j

�
, and ✓i,T (f0) =

Pk
j=1 �j�ij,T (f

0). As it

is clear from (10), the GOCMT procedure focuses on �i,x, the net impact of "it on yt for variable

selection. As it is discussed in section 3.2, knowing �i,x does not imply that we can determine

�i. For a signal to be hidden, we need �i,x, the net impact of "it on yt, to be exactly equal to

zero which is very unlikely. In what follows, we first assume that there exist no hidden signals

and propose a single stage variable selection procedure. Then, to deal with the possibility of

existence of hidden signals, we extend the procedure to possibly have multiple stages.

3.3.1 No Hidden Signals and Single Stage GOCMT

Given the number of factors, m0, the single stage GOCMT procedure is as follows:

1. The T ⇥m0 matrix of PC estimator of factors, F̃ = (f̃1, f̃2, · · · , f̃T )0, is computed by

F̃ =
p

T P̃, (11)

where P̃ is a T ⇥m0 matrix of orthonormal eigenvectors corresponding to the m0 largest

eigenvalues of the T ⇥ T matrix, XX0.

2. For i = 1, 2, · · · , N , regress y on F̃ and xi; y = F̃�f,i + �x,ixi + ⌘i; and compute the

t-ratio of �x,i, given by

ti,T =
�̂x,i

s.e.

⇣
�̂x,i

⌘ =
x0
iMf̃y

�̂i,(1)

p
x0
iMf̃xi

,

where Mf̃ = I � F̃(F̃0F̃)�1F̃0, �̂x,i =
�
x0
iMf̃xi

��1 �
x0
iMf̃y

�
is the Least Square (LS)

estimator of �x,i, �̂2
i = ⌘̂0

i⌘̂i/T , and ⌘̂i is a T ⇥ 1 vector of regression residuals.

3. Consider the critical value function, cp(N, �), defined by

cp(N, �) = ��1
⇣
1�

p

2N �

⌘
, (12)

where ��1(.) is the inverse of a standard normal distribution function, � is a finite positive

constant, and p (0 < p < 1) is the nominal size of the individual tests to be set by the

investigator.

4. Given cp(N, �), the selection indicator is given by

Ĵi = I [|ti,T | > cp(N, �)] , for i = 1, 2, · · · , N.

The covariates xit is selected if Ĵi = 1.
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If all the signals were unhidden, �i,x 6= 0 for all i’s with �i 6= 0, It is reasonable to expect that

the single step procedure could potentially select them all. However, if a signal were hidden,

�i,x = 0 while �i 6= 0, it would not be detected by the single stage procedure. In the following

section, we first discuss a possible solution to this problem and then provide the multi-stage

GOCMT procedure to deal with selection of hidden signals.

3.3.2 Hidden Signals Possibility and Multi-Stage GOCMT

As it is formally discussed later on in proposition 1, it is impossible for all the signals to be

hidden in one stage. Therefore, there exists at least one signal with �i,x 6= 0 which can be

selected by the single stage GOCMT procedure. Now, after conditioning on the selected signals

with non-zero net e↵ect, �i,x 6= 0, and the common factors, there exists at least one more signal

whose net e↵ect, �i,x, becomes non-zero. Therefore, by repeating the similar exercise as in the

single stage procedure where the conditioning set is now augmented by the selected covariates

in the previous stages, we can detect all the hidden signals. Following this intuition, for a give

number of factors, m0, we extent the proposed procedure to potentially have multiple stages as

it is described below.

1. Run the single stage GOCMT procedure and select the covariates xit if Ĵi,(1) = 1.

2. If
PN

i=1 Ĵi,(1) = 0, stop the procedure without selecting any covariates. Otherwise, continue

to the next stage.

3. Let S
o
(j) denote the index set of all selected covariates up to and including stage j of

GOCMT. Then given S
o
(j�1) and F̃, at any stages j � 2:

(a) Let Sj = {1, 2, · · · , N}\S
o
(j�1) denote the stage j active index set. For i 2 Sj,

regress y on Q̃(j) and xi, where Q̃(j) =
h
F̃,XSo

(j�1)

i
and XSo

(j�1)
is a matrix including

covariates selected up to stage j, y = Q̃(j)�q̃,i,(j) + �x,i,(j)xi + ⌘i,(j). Compute the

t-ratio of �x,i,(j), which is

ti,T,(j) =
�̂x,i,(j)

s.e.

⇣
�̂x,i,(j)

⌘ =
x0
iMq̃(j)

y

�̂i,(j)

q
x0
iMq̃(j)

xi

,

where Mq̃(j)
= I�Q̃(j)(Q̃

0
(j)Q̃(j))

�1Q̃0
(j), �̂x,i,(j) =

⇣
x0
iMq̃(j)

xi

⌘�1 ⇣
x0
iMq̃(j)

y
⌘
is the

LS estimator of �x,i,(j), �̂
2
i,(j) = ⌘̂0

i,(j)⌘̂i,(j)/T , and ⌘̂i,(j) is a T⇥1 vector of regression

residuals..

(b) Consider critical value function cp(N, �
⇤) where �

⇤
> � > 0.
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(c) Given cp(N, �
⇤), the stage j selection indicator is given by

Ĵi,(j) = I
⇥��ti,T,(j)

�� > cp(N, �
⇤)
⇤
, for i 2 Sj .

Covariate xit with Ĵi, (j) = 1 is selected.

(d) If
PN

i=1 Ĵi,(j) = 0, stop the procedure and consider

Ĵi =
ŜX

j=1

Ĵi,(j), (13)

where Ŝ denotes the number of stages at completion of GOCMT, formally defined as

Ŝ = minj{j :
PN

i=1 Ĵi,(j) = 0}� 1. (14)

Otherwise, continue to the next stage.

In the rest of this paper we refer to the proposed multi-stage GOCMT procedure as the

GOCMT procedure. In the worst case scenario, we would have only one signal with non-zero

net e↵ect, ✓iT,(j) 6= 0, at each stage of the GOCMT procedure. In this case, if the procedure

selects the signal with non-zero net e↵ect at each stage, the number of stages will be equal to

the number of signals, k. In section 4.2, it is formally shown that the probability of the event

that the number of GOCMT stages be greater than k, approaches to zero as N,T ! 1. In

practice, it is very unlikely for a signal to be hidden and hence the GOCMT procedure does

not go beyond the first stage.

Before providing our theoretical results in the next section, we would like to highlight some

points regarding the GOCMT procedure. Firstly, the suggested method assumes that at least

one common factor exists among all the covariates in the active set SNt. But in practice, to

check this assumption, we can first use the Pesaran (2015) test for the degree of cross-sectional

correlation (CD test) which is

CD =
q

2
N(N�1)

PN�1
i=1

PN
j=i+1

p
T ⇢̂ij ,

where ⇢̂ij is the sample correlation between variables i and j. To understand the intuition behind

the CD test, we can write (2) as xit =
Pm0

`=1 �0,`if0,`t+"it, and define the degree of cross-sectional

dependence due to the `
th factor by ↵` =

M`
N where M` =

PN
i=1 I(|�0,`i| > 0). Further, we can

define the overall degree of cross-sectional dependence by ↵ = max` ↵`. Bailey et al. (2016) refer

to ↵ as the exponent of cross-sectional dependence and Pesaran (2015) shows that the average

pair-wise correlation coe�cient given as ⇢̄ = 2
N(N�1)

Pn�1
i=1

Pn
j=i+1 ⇢ij is O(N2↵�2), where ⇢ij

is the correlation between variable i and j. Therefore, if ↵ < 1/2, ⇢̄ ! 0 as N ! 1 . So,

roughly speaking the CD test allows us to test whether covariates under consideration are highly
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correlated or not.

Secondly, signals and pseudo-signals/noise variables may not share all the factors. For

example, consider the following special case of (3).
0

@x1t

x2t

1

A =

0

@�11 0

�21 �22

1

A

0

@f1t

f2t

1

A+

0

@"1t

"2t

1

A ,

where x1t is a k ⇥ 1 vector of signals, x2t is a N � k vectors of pseudo-signals, f1t and f2t are

m1 ⇥ 1 and m2 ⇥ 1 vector of factors with m1 +m2 = m0, and �11, �21, and �22 are k ⇥m1,

N�k⇥m1 and N�k⇥m2 matrices of factor loadings. In this case, while f1t is common among

signals and pseudo-signals, f2t is only common among the pseudo-signals. By substituting x1t

into (9), we have

yt = �0
1�11f1t + �0

1"1t + ut = �01f1t + �0
1"1t + ut. (15)

As it can be seen clearly in (15), we only need the common factors that link the signals to pseudo-

signals, f1t, in the conditioning set and there is no need to control the remaining factors, f2t, that

are only common across pseudo-signals. In practice, after estimation of factors ft = (f1t, f2t)0,

f̃t, we can run a regression of yt on f̃t, and select the ones with significant coe�cients using

standard t tests.

Finally, note that the GOCMT procedure assumes that the true number of factors is known.

In practice we can use procedures suggested in the literature to estimate the number of factors

consistently, such as those of Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein

(2013). Alternatively, we can set the number of factors to mmax known to be greater than m0.

4 Asymptotic Properties of GOCMT Procedure

We now provide the theoretical justifications for the proposed GOCMT procedure. In the rest

of this paper, we will refer to the covariates whose idiosyncratic component have non-zero

correlation with the idiosyncratic component of signals once the e↵ect of zt is filtered

out as strong-pseudo-signals. Moreover, we will refer to the covariates whose idiosyncratic

component conditional on zt have zero correlation with idiosyncratic component of signals

as semi-noise variables. Further, we will denote the number of strong-pseudo-signals by k
⇤.

It is assumed that both k and k
⇤ are unknown finite fixed integers. Finally, we definite an

approximating model to be a model that contains all the signals; {xit : i = 1, 2, · · · , k}; and

none of the semi-noise variables; {xit : k+ k
⇤ + 1, k+ k

⇤ + 2, · · · , N}. Clearly, such models can

contain one or more of the strong-pseudo-signals; {xit : k + 1, k + 2, · · · , k + k
⇤
}. In (2), if no

factors exist among the covariates in the active set, then, strong-pseudo-signals and semi-noise
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variables are equivalent to pseudo-signals and noise variables, respectively. Hence, our modified

definition of approximating models will match the original definition of Chudik et al. (2018). We

start with some technical assumptions in Section 4.1 and then provide the asymptotic properties

of the GOCMT procedure in Section 4.2.

4.1 Technical Assumptions

In what follows we make use of the following filtrations: Fu
t = �(ut, ut�1, · · · ), F

f
`t = �(f0,`t, f0,`t�1, · · · )

for ` = 1, 2, · · · ,m0, and F
"
it = �("it, "i,t�1, · · · ) for i = 1, 2, · · · , N . Moreover, we set F

f
t =

[
m0
`=1F

f
`t, F

"
t = [N

i=1F
"
it, and Ft = F

f
t [ F

"
t [ F

u
t .

Assumption 1 (Factors) enter

T
�1PT

t=1 f
0
t f

00
t ! ⌃F as T !1 for some m0 ⇥m0 positive definite matrix ⌃F.

Assumption 2 (Factor loadings) enter

k�0
i kF  �̄ < 1 for all i = 1, 2, · · · , N , and k�00�0

/N � ⌃�kF ! 0, as N ! 1 for some

m0 ⇥m0 positive definite matrix ⌃�.

Assumption 3 (Idiosyncratic components) enter

(i) E("it) = 0.

(ii) E("it"jt) = �ij,t with supt |�ij,t|  |�ij | for some �ij; in addition, supi
PN

j=1 |�ij |  M

where M is a finite positive number.

(iii) "it is independent of "js for i = 1, 2, · · · , k+ k
⇤ and j = k+ k

⇤+1, k+ k
⇤+2, · · · , N , and

for all t and s.

(iv) Let Ek,k⇤ = (Ek,Ek⇤), where Ek = ("1, "2, · · · , "k) and Ek⇤ = ("k+1, · · · , "k+k⇤) are T ⇥k

and T ⇥ k
⇤ matrices of idiosyncratic terms for signals and strong-pseudo-signals. There

exists T0 such that for all T > T0, T
�1E0

k,k⇤Ek,k⇤ is nonsingular with its eigenvalues

uniformly bounded away from 0, and ⌃k,k⇤ = E(T�1E0
k,k⇤Ek,k⇤) is nonsingular for all T .

(v) The number of strong-pseudo-signals, k⇤, is a finite fixed integer.

Assumption 4 (Exponential decaying probability tails) enter

There exist su�ciently large positive constants C0 and C1, and s > 0 such that

(i) sup`,t Pr(|f0,`t| > ↵)  C0 exp(�C1↵
s), for all ↵ > 0.

(ii) supi,t Pr(|"it| > ↵)  C0 exp(�C1↵
s), for all ↵ > 0.
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(iii) supt Pr(|ut| > ↵)  C0 exp(�C1↵
s), for all ↵ > 0.

Assumption 5 (Martingale di↵erence processes) enter

(i) E
⇥
f0,`tf0,`0t � E(f0,`tf0,`0t)|Ft�1

⇤
= 0, for `, `

0 = 1, 2, · · · ,m0 and all t.

(ii) E ["it"jt � E("it"jt)|Ft�1] = 0, for i, j = 1, 2, · · · , N , and all t.

(iii) E
�
u
2
t � E

�
u
2
t

�
|Ft�1

�
= 0 for all t.

(iv) E (f0,`t"it|Ft�1) = 0 for i = 1, 2, · · · , N ; ` = 1, 2, · · · ,m0; and for all t.

(v) E (f0,`tut|Ft�1) = 0 for ` = 1, 2, · · · ,m0 and all t.

(vi) E ("itut|Ft�1) = 0 for i = 1, 2, · · · , N and all t.

Assumption 6 (Coe�cients of signals) enter

The number of signals, k, is a finite fixed integer, and their slope coe�cients could change with

T , such that for i = 1, 2, · · · , k, �i,T =  (T�#), for some 0  # < 1/2.

Before presenting our theoretical results, we should mention pros and cons of our assump-

tions and compare them with the assumptions typically made in the high-dimensional linear

regression and factor models literature.

Assumptions 1, 2, 3(i), and 3(ii) are common in the factor literature, for example, see Bai

and Ng (2002). Assumption 3(iv) corresponds to Assumption 1 of Chudik et al. (2018). This

assumption ensures that the regression coe�cients in the model, which contains all signals and

strong-pseudo-signals, and no semi-noise variables, are identified.

The exponentially decaying probability tails for f`t, "it, and ut, in Assumptions 4 ensures

that all moments of f`t, "it, and ut exist. The exponentially decaying probability tails for f`t, "it

are beyond those needed for estimation of unobserved factors, but are required for deriving the

exponential decaying rate of convergence of estimated factors in Lemma 1. It is common in the

high-dimensional linear literature to assume some form of exponentially decaying probability

bound for the variables. For example, see Zheng et al. (2014), Fan et al. (2019) and Chudik

et al. (2018).

Assumption 5 allows f`t, "it, and ut to follow martingale di↵erence processes, which is weaker

than the iid assumptions typically made in the literature. Following a similar line of argument

as in Section 4.2 of Chudik et al. (2018), we can relax these assumptions to allow for some

weak serial correlation in the errors, factors and idiosyncratic components. Assumption 5(iv)

also restricts f`t and "it to be uncorrelated with each other, which is common in the factor
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literature, for example, see Bai and Ng (2008). It is also common in regression analysis to

assume xit and ut are uncorrelated, which is implied by Assumptions 5(v), and 5(vi). We can

relax these assumptions to allow for xit to be possibly correlated with past values of ut by using

an argument similar to Section 4.2 of Chudik et al. (2018).

Assumption 6 allows signals to be weak, such that �i,T , for i = 1, 2, · · · , k can decline with

the sample size, T , at a su�ciently slow rate. To simplify the notation, subscript T is dropped

subsequently, and it is understood that the slope coe�cients can change with the sample size

according to this assumption.

4.2 Theoretical Findings

As it is discussed in section 3.1, the GOCMT procedure relies on deviation of PC estimators

of unobserved common factors from its underling true values to be bounded in probability

su�ciently sharply as N,T !1. Therefore, we start our theoretical findings by providing such

the probability bound for the PC estimators.

Lemma 1 Let F̃ = (f̃1, f̃2, · · · , f̃T )0 be a T ⇥ m0 matrix of estimated factors given by F̃ =
p
T P̃, where P̃ is a T ⇥m0 matrix of orthonormal eigenvectors corresponding to the m0 largest

eigenvalues of a T⇥T matrix XX0. Suppose that N =  (T ) for some  > 0, and dT =  
�
T
�
�

for some � > max{1/2, 1� }. Then under Assumptions 1, 2, 3(i)-(ii), 4(i)-(ii), and 5(i)-(ii)

there exists a finite positive constant C0 such that if �  (s+ 2)/(s+ 4),

Pr
⇣
kF̃� F⇤

k
2
F > dT

⌘
 N

2 exp
⇥
�C0T

�1
d
2
T

⇤
,

if (s+ 2)/(s+ 4) < � < 1,

Pr
⇣
kF̃� F⇤

k
2
F > dT

⌘
 N

2 exp
h
�C0d

s/(s+2)
T

i
,

and if � � 1,

Pr
⇣
kF̃� F⇤

k
2
F > dT

⌘
 N

2 exp
⇥
�C0(TdT )s/2(s+2)

⇤
,

where F⇤ = F0G is a T⇥m0 matrix of rotated unobserved common factors with G =
�
�00�0

/N
�
(F00F̃/T )V�1

NT

and VNT is an m0 ⇥m0 diagonal matrix of the m0 largest eigenvalues of X0X/(NT ).

Remark 1 Note that in Lemma 1, we need both N and T to go to infinity to control the

deviation of PC estimators, F̃, from its rotated true values. Moreover, if N grow at the rate

greater than or equal to
p
T ,  � 1/2, we can control the sum of square of all estimation errors,

kF̃�F⇤
k
2
F at the order of  (T )(1/2)+✏ were ✏ is an arbitrary small positive number. Finally, in

Lemma 1, we provide exponential decaying probability bound for the deviation of PC estimators,

F̃, from its rotated true values with respect to number of observations, T .
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Remark 2 It is also interesting to note that we can always write

X = F0�00 +E = F0GG�1�00 +E = F⇤�⇤0 +E,

where F⇤ = F0G, �⇤ = �0G0�1 and G is a m0 ⇥ m0 invertible matrix. Since the GOCMT

procedure focuses on variation in the idiosyncratic component; E; of X, for the purpose of

variable selection, we are not required to identify F0 and only need to have an accurate estimator

of F⇤.

In section 3.3, it is discussed that the GOCMT procedure focuses on net e↵ect of "it on

yt, �i, rather than the marginal e↵ect, �i, for variable selection. However, in this case, it is

possible for a signal to be hidden, �x,i = 0 while �i 6= 0. Assuming that there exists at least

one signal with non-zero net e↵ect, �x,i 6= 0 at each stage of GOCMT, we extend the pro-

cedure to include multiple stages to deal with selection of hidden signals. In proposition 1,

we check the validity of this assumption. We also show that in the population level, where

Pr
⇥��ti,T,(j)

�� > cp(N, �)|�x,i,(j) 6= 0
⇤
= 1 and Pr

⇥��ti,T,(j)
�� > cp(N, �)|�x,i,(j) = 0

⇤
= 0 for all co-

variates indexed by i and stages indexed by j, the number of GOCMT stages cannot exceed

the number of signals, k.

Proposition 1 Let xit for i = 1, 2, · · · , N and t = 1, 2, · · · , T be generated by (2) and yt for

t = 1, 2, · · · , T be generated by (9). Under Assumption 3(iv), there exists j in range 1  j < k,

for which ✓iT,(j) 6= 0, and the population value of the number of stages required to select all the

signals, denoted as S0, satisfies 1  S0  k.

Of course, these probabilities do not take a value of 1 and 0 in a finite sample. In Theorem

1, we show the probability of the event that the number of GOCMT stages exceeds the number

of signals, Ŝ > k, tends to zero as both N and T go to infinity.

As mentioned in Section 3.2, an approximating model is a model that contains all the signals;

{xit : i = 1, 2, · · · , k}; and none of the semi-noise variables; {xit : k+ k
⇤+1, k+ k

⇤+2, · · · , N}.

Clearly, such models can contain one or more of the strong-pseudo-signals; {xit : k + 1, k +

2, · · · , k + k
⇤
}. Therefore, the event of choosing the approximating model is define by

A0 =
nPk

i=1 Ĵi = k

o
\

nPN
i=k+k⇤+1 Ĵi = 0

o
. (16)

In Theorem 1, we also provide the conditions under which Pr(A0)! 1 as N,T !1.

Theorem 1 Let xit for i = 1, 2, · · · , N and t = 1, 2, · · · , T be generated by (2) and yt for

t = 1, 2, · · · , T be generated by (9). Moreover let T =  (N1) with 0 < 1  2, and SNt =

{x1t, x2t, · · · , xNt} which contains k signals, k⇤ strong-pseudo-signals and N�k�k
⇤ semi-noise
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variables. Then under Assumptions 1-6, there exist finite positive constants C0, and C1 such

that,

(i) the probability that the number of stages in the GOCMT procedure, Ŝ, given by (14),

exceeds k is

Pr
⇣
Ŝ > k

⌘
= O(N4�2C0�) +O(N4�2C0�⇤) +O[exp(�NC11)], and (17)

(ii) the probability of selecting the approximating model, A0, defined by (16), is

Pr (A0) = 1�O(N4�2C0�)�O(N5�2C0�⇤)�O[exp(�NC11)]. (18)

Remark 3 Based on the results from Theorem 1, for any � and �
⇤ greater than 4

2C0
, the proba-

bility of the event that the number of GOCMT stages exceeds the number of signals, Ŝ > k, goes

to zero as T,N ! 1. However, to ensure that the probability of selecting the approximating

model tends to one as T,N ! 1, we need � >
4

2C0
and �

⇤
> � >

5
2C0

. Our extensive Monte

Carlo Studies suggest that choosing � = 1 and �
⇤ = 2 preform well in practice. It is also worth

noticing that in Theorem 1, we require T to grow at the order less than N
2. This condition is

needed for accurate estimation of latent factors and it is discussed in Remark 1.

In the rest of this section we focus on coe�cients’ estimation error and mean square error

of the post GOCMT selected model. The model can be written as

yt =
PN

i=1 Ĵixit'i + ⇠t (19)

where Ĵi is the selection indicator defined by (13). Also
PN

i=1 Ĵi = k̂T , where k̂T is the number of

covariates selected by GOCMT. By Theorem 1 the probability that the selected model contains

the signals tends to unity as N,T !1. We can further write

yt =
PN

i=1 Ĵixit'i + ⇠t =
Pk̂T

`=1w`tb` + ⇠t, (20)

where wt =
⇣
w1t, w2t, · · · , wk̂T t

⌘0
. The least squares (LS) estimator of the selected coe�cients,

bT =
⇣
b1, b2, · · · , bk̂T

⌘0
, is given by

b̂T =
⇣
T
�1PT

t=1wtw0
t

⌘�1 ⇣
T
�1PT

t=1wtyt

⌘
. (21)

Moreover, the mean square error (MSE) of the selected model is given by

MSE = T
�1PT

t=1 ⇠̂
2
t , (22)

where ⇠̂t = yt �w0
tb̂T . Theorem 2 shows that the estimation error of the coe�cients tends to

zero as N,T !1. It also establishes the limiting property of MSE of the selected model.

Theorem 2 Let xit for i = 1, 2, · · · , N and t = 1, 2, · · · , T be generated by (2), and yt for

t = 1, 2, · · · , T be generated by (9). Consider the LS estimator of the selected coe�cients and
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the MSE of the selected model given by (21) and (22), respectively. Suppose Assumptions 1-6

holds and T =  (N1) with 0 < 1  2. Then,
���b̂T � b⇤

T

���
2
= Op(N

�1/2), (23)

where b⇤
T = (b⇤1, b

⇤
2, · · · , b

⇤
k̂T
)0, and

8
<

:
b
⇤
` 2 (�1,�2, · · · ,�k)0, if w`t 2 (x1t, x2t, · · · , xkt)0

b
⇤
` = 0, otherwise.

(24)

Moreover,

MSE ⌘ T
�1PT

t=1 ⇠̂
2 = �̄

2
u +Op(N�1/2), (25)

where �̄
2
u = T

�1PT
t=1 E(u2t ).

As can be seen in Theorem 2, if 1 = 1 and therefore both T and N grow at the same order, we

have the LS estimator of the selected coe�cients and the MSE of the selected model approaches

to their limiting values at the oracle rate of
p
T . It should also be highlighted that the results of

Theorem 2 are built upon the results from Theorem 1 which shows that the GOCMT procedure

selects the approximating model with probability tends to one and by assumption the number

of the strong-pseudo-signals, k⇤, which can be included in the approximating model, is fixed.

5 Monte Carlo Studies

We now investigate the finite-sample performance of GOCMT numerically, using synthetic

data sets. We compare GOCMT with OCMT, LASSO, A-LASSO, and IPAD. Monte Carlo

(MC) simulation designs and settings are explained in Section 5.1. The implementation of the

aforementioned procedures are described in Section 5.2. We discuss the performance evaluation

criteria in Section 5.3 and finally summarize the comparative results in Section 5.4.

5.1 Simulation Designs and Settings

The target variable yt is generated as:

yt =
Pk

i=1 �ixit + ⌧ut, ut ⇠ IIDN (0, 1) , for t = 1, 2, ..., T, (26)

where �i = 1, i = 1, 2, ..., k, and we set k = 4. The signals, (x1t, x2t, · · · , xkt), the pseudo-signals,

and the noise variables in the active set are generated as

xit = i(µi"it + (1� µ
2
i )

1/2� 0
ift), (27)

where ft = (f1t, f2t, ..., fm0t)
0 is an m0 ⇥ 1 vector of unobserved common factors, and �i =

(�1i, �2i, ..., �m0i)
0 is an m0⇥1 vector of factor loadings. To ensure the factors’ share of variation
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in xit remains constant, as the number of factors increases, we set �i =
�̃i

(�̃0
i�̃i)

1/2 and generated

�̃i as describe below. µi is defined as a positive constant between zero and one to control the

average pair-wise correlation between the k signals and pseudo-signals in the active set. i is the

random positive number creating heterogeneity in the variance of xit’s. For i = 1, 2, · · · , k, we

set i = 1, and for the remaining ones, i is independently drawn from a chi-square distribution

with 3 degrees of freedom. The variables "it’s are also generated according to the spatial

autoregressive (SAR) model.

"it = �
PN

j=1 !ij"jt + ⇡i⌫it, (28)

where !ij are the spatial weights and � is the SAR autocorrelation coe�cient that measure

the degree of spatial dependence across the idiosyncratic components. ⇡i is a positive constant,

chosen to ensure that "it has a unit variance. We can write (28) in the following matrix format:

"t = (I� �W)�1⇧vt,

where "t = ("1t, · · · , "Nt)0, W is an N ⇥ N matrix of weights, ⇧ = diag(⇡1, · · · ,⇡N ), and

vt = (⌫1t, · · · , ⌫Nt)0. So ⌃" = Q⇧2Q0 where Q = (I � �W)�1, and ⇡i can be chosen so that

the diagonal elements of ⌃" are equal to one. We set � = 0.5 and consider a particular rook

type weight matrix in which for all i and j, !ij = 1/2, if |i� j| = 1, and zero otherwise.

In addition, ⌫it, and f`t, for ` = 1, 2, · · · ,m0, are either independent draws from N (0, 1), or

are generated as stationary AR(1) processes:

⌫it = ⇢⌫⌫i,t�1 +
�
1� ⇢

2
⌫

�1/2
⇠it,", ⇠it," ⇠ IIDN (0, 1) ,

f`t = ⇢ff`t�1 +
�
1� ⇢

2
f

�1/2
⇠`t,f , ⇠`t,f ⇠ IIDN (0, 1) ,

for all i, `, and for t = 1, 2, · · · , T with starting values ⌫i0, and f`0 drawn independently from

N (0, 1). We set ⇢⌫ = ⇢f = 0.5.

We consider the following two types of DGPs.

DGP I (Design with a single unobserved factor): We set m0 = 1 and �̃i = 1 for

i = 1, 2, · · · , [N↵
1 ], and zero otherwise, where N1 is a positive constant between k and N deter-

mining the total number of potential pseudo-signals.

DGP II (Design with multiple unobserved factors): We set m0 = 2. �̃`i for i =

1, 2, · · · , [N↵`
1 ], and ` = 1, 2, are generated from IIDU [0.5, 1.5] and zero otherwise.

Parameter ⌧ in the DGP (26) is chosen so that the R
2 of the regression of yt on the set

of signals is 70%, 50%, 30% and 20%. We consider ↵` = ↵ for all j, where ↵ is equal to

0, 0.25, 0.45, 0.5, 0.55, 0.75, 0.9, and 1. We also set N 2 {100, 300, 1000}, T 2 {100, 300, 500}

and N1 = 0.75N . If �̃`i = 0, for all `, then µi is set equal to one. Otherwise, µi = µ is chosen to

control the average pair-wise correlation between the k signals and pseudo-signals in the active
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set. Using (27), the average pair-wise correlation is

⇢̄ =

Pk
i=1

PN1
j=k+1 ⇢ij

k(N1 � k)


c+
Pk

i=1

PN1
j=k+1(1� µ

2)� 0
i�j

k(N1 � k)


c+ (1� µ

2)kN↵max
1

k(N1 � k)
= (1� µ

2)O(N (↵max�1)
1 ) + o(1),

where as before ⇢ij is the correlation between xit and xjt, c is a finite positive constant, and

↵max = max`={1,··· ,m0}(↵`). So when ↵max is equal to one, the average pair-wise correlation

is approximately equal to (1 � µ
2). We consider the values µ

2 = {1/2, 2/3, 3/4}. Overall, we

perform 384 experiments for all pairs of (N,T ) 2 {(100, 100), (100, 300), · · · , (500, 1000)}.

5.2 Variable Selection Procedures

We implement OCMT, LASSO, and A-LASSO as described in the online MC supplement of

Chudik et al. (2018), and IPAD as outlined in Section 2.2 of Fan et al. (2019). In addition, we

implement a couple of procedures based on GOCMT. The di↵erence between the two procedures

is in how the number of factors, m, is chosen. In the first procedure, GOCMT-m-max, we first

use the CD test to determine whether the covariates are highly correlated or not. If the test

indicates that the covariates are weakly correlated we set m = 0, otherwise, we set m = mmax,

where mmax > m0. In the second procedure, GOCMT-m-IC, we use Bai and Ng (2002) method

to determine the number of factors between m = 0 and m = mmax. We set mmax = 4. The full

description of the GOCMT procedures are provided in the online MC supplement.

The coe�cients of the following post GOCMT selected model is estimated by LS:

yt = a+
X

i2Ŝ

bixit + et,

where Ŝ is the set of selected covariates. The coe�cients of the covariates which are not selected

by GOCMT are set to zero. We also compute the out of sample prediction of the target variable

by

ŷT+t = â1 +
P

i2Ŝ b̂i1xit, for t = 1, 2, · · · , Tf ,

or alternatively by

ŷT+t = â2 + f̂T+t�̂ +
P

i2Ŝ b̂i2xit, for t = 1, 2, · · · , Tf ,

where f̂T+t = 1
N

PN
i=1V

�1/2
NT �̂ixi,T+t, �̂ ⌘ (�̂1, �̂2, · · · , �̂N )0 =

p
NQ, with Q be the N ⇥ m

matrix of orthonormal eigenvectors corresponding to the m largest eigenvalues of the N ⇥ N

matrix, X0X, and VNT is the m⇥m diagonal matrix of m largest eigenvalues of (NT )�1X0X.
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5.3 Performance Evaluation Criteria

We consider the following criteria to compare finite-sample performance of the aforementioned

procedures:

1. Root Mean Square Forecast Error (RMSFE) =
q

1
RTf

PR
r=1

PTf

t=1(y
(r)
T+t � ŷ

(r)
T+t)

2,

where R is the total number of replications, and y
(r)
T+t and ŷ

(r)
T+t for t = 1, 2, · · · , Tf are

the out of sample realized and predicted values of the target variable at replication r,

respectively. We set R = 1000 and Tf = 100.

2. Root Mean Square Error of Coe�cients (RMSE�) =

r
1
R

PR
r=1

PN
i=1

⇣
�0
i � b̂

(r)
i

⌘2
,

where �
0
i = �i = 1 for i = 1, 2, · · · , k and zero otherwise, and b̂

(r)
i is its’ corresponding

estimated value at replication r.

3. False Discovery Rate (FDR) =
PR

r=1

⇣
|Ŝ(r)\Sc|
|Ŝ(r)|+1

⌘
/R,

where Ŝ(r) is a set of selected covariates at replication r, and S
c is a set of covariates with

true zero coe�cients.2

4. False Positive Rate (FPR)=
PR

r=1

⇣
|Ŝ(r)\Sc|

N�k

⌘
/R.

5. True Positive Rate (TPR) =
PR

r=1

⇣
|Ŝ(r)\S|

k

⌘
/R,

where S is a set of covariates with true non-zero coe�cients.

5.4 Simulation Results

For a given value of the degree of cross correlations of the covariates, ↵, we summarize the

MC results in Tables 1 and 2. Table 1 shows the summary statistics averaged across all the

experiments. The reported RMSFE and RMSE� in Table 1 are relative to the Oracle procedure

in which the signals are known and the model is estimated by LS. Table 2 reports the fraction of

times that the variable selection procedures are beaten by LASSO, as the benchmark procedure,

across all the experiments. The full set of MC results and the averaged summary statistics for

di↵erent choices of DGPs, R2s, µ2s, Ns and T s are provided in the online MC supplement.

In Table 1, when the covariates are weakly correlated, ↵ < 0.5, the performance of OCMT

and GOCMT procedures is fairly similar. But, as the degree of correlation among the covariates

becomes stronger, the OCMT procedure starts to select many pseudo-signals and hence its

performance deteriorates relative to the GOCMT procedures. As the covariates becomes highly

2To ensure the denominator of FDR always has non-zero value even if |Ŝ(r)| = 0, we add plus one to the
denominator.
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correlated, ↵ � 0.75, the OCMT procedure fails to perform due to existence of too many pseudo-

signals, whilst the suggested GOCMT procedures perform well. When the degree of correlation

among the covariates is either very weak or relatively strong, ↵ 2 {0, 0.25} or ↵ 2 {0.75, 0.9, 1},

GOCMT is the only procedure that on average beats LASSO in terms of RMSE� , and RMSFE

across all the experiments while controls the FDR at the rate lower than 10%. In the cases

where ↵ 2 {0.45, 0.50, 0.55}, and hence the unobserved common factors are weak, the GOCMT

have FDR as high as 36% simply because the estimation of the unobserved factors is inaccurate.

Note that even in these cases, the GOCMT methods still have FDR lower than OCMT, LASSO

and A-LASSO, and also have the lowest RMSFE among the procedures.

The results from Table 2 are in line with the that of Table 1. Focusing on RMSFE, GOCMT

is outperformed by LASSO in less than 15% of the experiments while A-LASSO and IPAD are

beaten by LASSO most of the times. Moreover, when the degree of correlation among the

covariates is either very weak or relatively strong, ↵ 2 {0, 0.25} or ↵ 2 {0.75, 0.9, 1}, GOCMT

is never outperformed by LASSO across all the experiments in terms of FDR and FPR, and it

is barely beaten by LASSO in terms of RMSE� , less than 8% of all the experiments.

Overall, the finite sample results show that GOCMT outperforms mainstream variable se-

lection procedures in many cases, and is a valuable extension of OCMT to deal with a high

degree of cross-sectional dependence among the variables in the active set.

6 Empirical Analysis

A current topic of research in the empirical asset pricing literature is how to evaluate the

importance of hundreds of risk factors that are suggested for explaining risk premia in stock

market. To address this issue, Feng et al. (2019) use the double-selection LASSO procedure

of Belloni et al. (2014) to measure the contribution of 146 risk factors to asset pricing. In

this procedure, to examine the importance of risk factor j in explaining the excess return of

stock i, in the first step, a regression model with the excess return of stock i as a dependent

variable and the remaining 145 risk factors as explanatory variables is estimated by LASSO.

The covariates with corresponding non-zero estimated coe�cients are selected. In the next

step, the same exercise as in the previous step is repeated, but this time risk factor j is used

as the dependent variable instead of the excess return of stock i. The union of selected risk

factors from the both steps are considered as control variables when examining the importance

of risk factor j in explaining excess return of stock i. As noted earlier, Zhao and Yu (2006)

show that for LASSO to only select the signals - the covariates with non-zero marginal e↵ects

- the Irrepresentable Condition is required. Generally speaking, this condition requires the
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degree of correlation between the signals and the rest of the covariates under consideration to

be weak. However, as it is discussed below, the suggested risk factors in asset pricing literature

are highly correlated and hence, the Irrepresentable Condition most likely is violated. In this

case, the LASSO procedure is prone to the selection of too many noise variables in the second

step of the double-selection procedure as control variables. Therefore, the power of the t-test for

evaluating the importance of the risk factor decreases and the t-test becomes less e�cient. In

the rest of this section, we first introduce the return regression equations, and describe the data

used. Next, we examine the degree of correlations among the 146 suggested risk factors in the

literature. Finally, we apply the GOCMT and LASSO procedures to evaluate the importance

of these factors in explaining risk premia in stock market, and compare the results.

Following the literature, we assume that returns on security i, at time t, rit, is generated

according to the linear multi-factor model

rit � r
f
t�1 = ai +

kX

j=1

�ijgjt + uit, (29)

where r
f
t�1 is the risk free rate; ai is the intercept in the factor model; gjt, j = 1, 2, ..., k are the

relevant risk factors with non-zero associated factor loadings, �ij ; and uit is the idiosyncratic

component of asset return. Our sample period is from Jan. 1980 to Dec. 2017. We compile 146

monthly risk factors with no missing observations available at Feng et al. (2019). Monthly risk

free rate, rft�1, is obtained from Fama and French database3. We also compile daily close price

and monthly dividend, Dit, for all the stocks that have been part of Standard and Poor’s 500

(S&P500) index between Jan. 1990 and Dec. 2017 from Data Stream. For stock i, the price at

the last trading day of each month is used to construct the corresponding monthly stock prices,

Pit. Finally, monthly stock return is computed by rit =
Pit�Pi,t�1

Pi,t�1
+ Dit

Pi,t�1
.

To evaluation the level of correlation among the risk factors over the full sample period,

we first compute the proportion of statistically non-zero correlations among them. Note that

for i, j = 1, 2, · · · , N , where N = 146 is the number of risk factors, under the null hypoth-

esis that ⇢ij ⌘ corr(git, gjt) = 0,
p
T ⇢̂ij,T ⇠ N (0, 1), where ⇢̂ij,T is the estimated correlation

coe�cient. Therefore, we can compute the proportion of statistically non-zero correlations by

⇡̂ =
PN

i=1

P
j>i I[

p
T |⇢̂ij,T |>cp(n)]

n , where n = N(N � 1)/2 and cp(n) is the critical value of the

test. To deal with multiple testing problem, we use the Bonferroni correction idea and set

cp(n) = ��1
�
1� p

2n

�
with ��1(.) being the inverse of a standard normal distribution function

and p (0 < p < 1) is the nominal size of the individual tests. The computed proportion is

⇡̂ = 0.533, which means more than half of the elements in the estimated correlation matrix are

3Fama and French database is available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html
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significantly di↵erent from zero. Next, we use Bailey et al. (2018) procedure to measure the

degree of linear dependence among the risk factors by ↵̂ = 1 + log(⇡̂)
log(n) , where ↵̂ lies in the range

0 < ↵̂  1. ↵̂ is estimated as 0.933, which suggests a high degree of correlation among the

factors. Finally as discussed in Section 3.3, the CD test suggested by Pesaran (2015) can be

used to test for the degree of cross correlation among the risk factors. Roughly speaking the

CD test which has standard normal distribution under the null hypothesis, allows us to test

whether covariates under consideration are highly correlated or not. The computed CD test for

weak dependence is 65.70, which di↵ers substantially from the critical value of 1.96. Thus, we

can conclude that the risk factors are strongly correlated.

The importance of risk factors in explaining risk premia in stock market can change through

time. In particular, some factors might be able to explain risk premia at some points in time but

not at others. To deal with this issue, we use 10-year rolling windows of 120 monthly observations

to select the relevant risk factors at each point in time. Therefore, the observations for the first

10 years only use for the selection and estimation purposes, and our evaluation period starts

from Dec. 1989 (337 rolling windows). For each rolling window, ⌧ , we consider securities

i = 1, 2, · · · ,M⌧ that are part of S&P500 index at the end of the rolling window and have the

required 120 monthly observations for return. The average, maximum and minimum number

of securities across the rolling windows are 443.53, 461 and 412, respectively. Additionally

note that to apply the GOMCT procedure, described in Section 3.3, we first need to select

the number of common factors among the risk factors. Figure 1 shows the number of selected

common factors for each rolling window using the procedure proposed by Onatski (2010) with

the maximum possible number of common factors being set equal to five. As can be seen in

Figure 1, the number of common factors chosen by the Onatski procedure is mostly equal to

one during our sample period while at the end of the sample (between 2013 and 2017) there

exists erratic switches between zero and two. To deal with these unusual switches, we set the

number of common factors for the GOCMT procedure always equal to one.

Figure 2 shows the average number of risk factors selected by GOCMT and LASSO for each

rolling window between Dec. 1989 and Dec. 2017. The figure indicates that on average LASSO

selects considerably many more risk factors as compared to GOCMT. Additionally, Figure 3

shows that, most of the time, the number of selected risk factors by LASSO is greater than

that of GOCMT in the case of 80 percent of securities considered. Since the 146 risk factors

being considered are highly correlated, it is reasonable to expect that many of the risk factors

selected by LASSO to be false discoveries.

In Figure 2, we see that among the 146 risk factors under consideration, GOCMT and
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LASSO on average select between 3 and 18 risk factors. However, it is not clear that, at each

rolling window, whether we have some particular risk factors which are selected for all the

securities or whether the selected risk factors varies from one security to another. Note that if

a risk factor is strong, we should expect it to explain excess returns for almost all securities. In

other words, a risk factor git is considered as strong risk factor at the rolling window, ⌧ , if its’

corresponding factor loadings, �ij ’s, take non-zero values for all of the securities i = 1, 2, · · · ,M⌧ .

We can now go one step further and evaluate the strength of the selected risk factors. Bailey

et al. (2019) shows that we can estimate the strength of risk factor j at rolling window ⌧ by

�̂j⌧ =
log(

PM⌧
i=1 Ĵj,i⌧ )

log(M⌧ )
, where Ĵj,i⌧ takes the value of one if risk factor j is chosen by a selection

procedure for stock i at rolling window ⌧ and zero otherwise. We can further define the average

strength of factor j by �̂j = T
�1PT

⌧=1 �̂j⌧ , where T = 337 is the total number of rolling

windows, and divide the factors in four groups of weak (�j  0.5), semi-weak (0.5 < �j  0.75),

semi-strong (0.75 < �j < 1), and strong (�j = 1). Pesaran and Smith (2021) argue that as the

strength of risk factor j; �j ; decreases, the convergence rate for the corresponding estimated risk

premia drops, i.e. the convergence rate for factor j is M �j/2, where M is the number of securities

used in estimation of risk premia. Note that if a factor is strong (� = 1), then the estimated

risk premia has the conventional convergence rate;
p
M ; while if a factor is weak (�  1/2),

the estimated risk premia converge very slowly; less than equal to M
1/4. To see the intuition,

consider the case where we have 500 securities, and a risk factor with strength equal to � = 0.5.

In this case, the risk factor only explains excess returns for less than 25 securities and therefore

a large number of securities are needed to have accurate estimation of its’ corresponding risk

premia. As discussed in Pesaran and Smith (2021), weak factors can be related to pricing error

rather than risk premia.

Figure 4 compares the frequency of average estimated strength of the 146 risk factors between

GOCMT and LASSO over the sample period. The GOCMT procedure suggests that only less

than 10% of the 146 suggested risk factors have the average estimated strength above 0.5. On

the other hand, the LASSO procedure, which prone to have high false discoveries, indicates

that as many as 65% of the risk factors have the average strength above 0.5. Table 3 shows the

top ten risk factors based on GOCMT’s estimated factor strength over di↵erent sub-periods of

1980s, 1990s, 2000s, 2010s. It also shows the top ten risk factors based on the average estimated

factor strength over the full sample period. Notice that Excess Market Return always has the

highest estimated strength and its’ strength is fairly stable across time, while the estimated

strength of other risk factors can change dramatically across time.

In the next step, we assume non-zero coe�cient for Excess Market Return in equation (29),
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as it always has the highest strength, and implement GOCMT and LASSO conditional on Excess

Market Return to select among the remaining risk factors. Figure 5 compares the estimated

risk factors’ strength between Conditional GOCMT and Conditional LASSO. As can be seen

in panel (a) of Figure 5, after controlling for Excess Market Return, the remaining risk factors

which previously had estimated strength above 0.5, lose their strength such that there is only

one risk factor (Market Beta) which still has the average strength above 0.5 (0.53). In section

4.2, it is shown that the GOCMT procedure will select all signals and strong-pseudo-signals with

probability approaching to one. Therefore, the decrease in average strength of these factors after

conditioning on Excess Market Return can be interpreted as if these risk factors were playing

the role of strong-pseudo-signals. One the other hand, the result from Conditional LASSO still

suggests that there exists many risk factors with estimated strength above 0.5. Again, this

can be related to the fact that LASSO cannot handle the strong linear dependence among the

remaining risk factors and prone to select too many irrelevant risk factors.

Finally, Table 4 reports the name and strength of the ten risk factors with the highest

estimated strength by Conditional GOCMT across di↵erent sub-periods. As can be seen, relative

to the results in Table 3, the estimated strength of the risk factors drops significantly. For

instant, when we do not condition on Excess Market Return, during 2000s all the top ten risk

factors have estimated strength above 0.8, but once we condition on the Market factor, there

exists no risk factors with estimated strength above 0.75, see Tables 3 and 4. These results

suggest that Excess Market Return is the only risk factors that can explain risk premia in the

stock market and the rest of the factors which happens to be weak or semi-weak, are more

related to pricing error rather than risk premia.

7 Conclusion

Current tools for variable selection in high-dimensional settings, like the OCMT and penalized

regression methods, require a degree of cross-sectional correlation among the covariates in the

active set to be weak. In practice, however, there often exists a strong degree of cross-sectional

correlation among the covariates in the selection set. In this paper, we generalize the OCMT

procedure proposed by Chudik et al. (2018) to allow for a strong degree of cross-sectional

correlation among the covariates in the active set. We refer to the proposed method as GOCMT.

The GOCMT procedure exploits ideas from the latent factors and multiple testing literature

to control the probability of selecting the approximating model when the collinearity among

the set of covariates under consideration are high. Our theoretical results are valid under

general assumptions. Monte Carlo experiments indicate that the newly suggested method have
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appealing finite-sample performance relative to competing methods, like LASSO, under many

di↵erent settings. The benefits of the procedure are also illustrated by an empirical application

to selection of risk factors in asset pricing literature. Our analysis indicate that among 146 risk

factors available at Feng et al. (2019), only Excess Market Return is strong and can be used to

estimate the risk premia. The other risk factors are mostly found to be weak and hence can be

related to pricing error rather than risk premia.

In this paper, it is assumed that there exist no dominant units (observable common factor)

in the active set. For future research, it would be interesting to relax this assumption and allow

for the existence of dominant units in the active set. Moreover, in this work, we assume that the

unobserved common factors are strong. For empirical economic application it is also important

to allow for weak unobserved common factors a↵ecting both signals and pseudo-signals.
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Tables and Figures

Table 1: Average Value of the Selected Statistics across all Experiments for a given Value of ↵

OCMT GOCMT-m-max GOCMT-m-IC Lasso Adaptive Lasso IPAD IPAD+

↵
=

0

TPR 0.856 0.854 0.855 0.926 0.918 0.858 0.362
FPR 0.002 0.002 0.002 0.046 0.04 0.008 0.004
FDR 0.054 0.051 0.052 0.582 0.555 0.206 0.105
RMSE� 1.902 1.914 1.91 3.756 11.638 5.194 5.369
RMSFE 1.017 1.018 1.017 1.039 1.09 1.04 1.246
alt. RMSFE - 1.018 1.018 - - - -

↵
=

0.
25

TPR 0.893 0.891 0.891 0.911 0.896 0.843 0.342
FPR 0.002 0.002 0.002 0.043 0.038 0.008 0.004
FDR 0.076 0.074 0.074 0.55 0.524 0.202 0.1
RMSE� 1.655 1.654 1.654 2.984 9.295 4.438 4.396
RMSFE 1.011 1.011 1.011 1.033 1.082 1.035 1.249
alt. RMSFE - 1.012 1.011 - - - -

↵
=

0.
45

TPR 0.927 0.92 0.922 0.9 0.877 0.836 0.375
FPR 0.013 0.011 0.012 0.038 0.033 0.008 0.004
FDR 0.362 0.331 0.337 0.532 0.505 0.222 0.116
RMSE� 5.337 5.129 5.292 2.795 8.785 4.022 3.589
RMSFE 1.014 1.014 1.014 1.03 1.076 1.034 1.232
alt. RMSFE - 1.014 1.014 - - - -

↵
=

0.
5

TPR 0.927 0.912 0.916 0.898 0.874 0.834 0.388
FPR 0.02 0.016 0.017 0.039 0.034 0.008 0.004
FDR 0.439 0.362 0.374 0.539 0.511 0.232 0.123
RMSE� 6.608 5.486 5.723 2.851 8.696 4.148 3.606
RMSFE 1.019 1.016 1.017 1.03 1.076 1.034 1.226
alt. RMSFE - 1.017 1.018 - - - -

↵
=

0.
55

TPR 0.927 0.898 0.905 0.896 0.871 0.832 0.401
FPR 0.029 0.019 0.019 0.039 0.034 0.009 0.005
FDR 0.494 0.335 0.355 0.546 0.515 0.242 0.131
RMSE� 17.307 5.103 5.642 2.86 9.016 4.269 3.625
RMSFE 1.025 1.018 1.019 1.03 1.076 1.035 1.22
alt. RMSFE - 1.019 1.02 - - - -

↵
=

0.
75

TPR - 0.793 0.794 0.884 0.853 0.819 0.453
FPR - 0.007 0.007 0.042 0.034 0.011 0.006
FDR - 0.095 0.096 0.584 0.541 0.294 0.171
RMSE� - 2.271 2.289 2.853 7.677 4.309 3.462
RMSFE - 1.023 1.023 1.031 1.075 1.038 1.196
alt. RMSFE - 1.019 1.018 - - - -

↵
=

0.
9

TPR - 0.75 0.751 0.872 0.834 0.803 0.474
FPR - 0.002 0.002 0.045 0.034 0.012 0.007
FDR - 0.05 0.05 0.619 0.554 0.329 0.201
RMSE� - 1.761 1.76 3.079 7.756 4.4 3.593
RMSFE - 1.028 1.028 1.032 1.072 1.039 1.185
alt. RMSFE - 1.02 1.02 - - - -

↵
=

1

TPR - 0.736 0.736 0.865 0.818 0.787 0.463
FPR - 0.002 0.002 0.047 0.032 0.013 0.008
FDR - 0.041 0.041 0.645 0.55 0.335 0.208
RMSE� - 1.608 1.607 3.24 7.992 4.093 3.589
RMSFE - 1.03 1.03 1.032 1.067 1.038 1.187
alt. RMSFE - 1.02 1.02 - - - -

Note that the reported RMSFE and RMSE� are relative to the Oracle procedure in which Signals are
known and the model is estimated by Least Square (LS).
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Table 2: Percentage of All Experiments that the Selection Procedures are beaten by LASSO for a given
Value of ↵

OCMT GOCMT-m-max GOCMT-m-IC Adaptive LASSO IPAD IPAD+

↵
=

0

TPR 59.7 61.3 61.3 65.3 75.7 100
FPR 0 0 0 0 0 0
FDR 0 0 0 0 0 0
RMSE� 6.9 6.9 6.9 100 81.5 70.8
RMSFE 6.9 6.9 6.9 100 54.6 100
alt. RMSFE - 7.2 6.9 - - -

↵
=

0.
25

TPR 30.3 31.7 31.5 76.6 80.1 100
FPR 0 0 0 0 0 0
FDR 0 0 0 0 0 0
RMSE� 2.5 2.3 2.3 100 88.4 75.2
RMSFE 2.8 2.8 2.8 100 74.1 100
alt. RMSFE - 3 2.8 - - -

↵
=

0.
45

TPR 10.4 12.5 12.3 82.9 85 100
FPR 9.7 5.8 7.4 0 0 0
FDR 28.7 22.5 22.9 0 0 0
RMSE� 58.6 59 59 100 83.6 69.2
RMSFE 7.9 3.7 4.6 100 91 100
alt. RMSFE - 5.8 6 - - -

↵
=

0.
5

TPR 9.7 13.2 12 82.4 84.7 100
FPR 26.2 11.6 14.1 0 0 0
FDR 33.1 22 23.6 0 0 0
RMSE� 66.2 63.2 64.1 100 84.7 68.5
RMSFE 19.9 11.1 11.6 100 92.6 100
alt. RMSFE - 14.1 15 - - -

↵
=

0.
55

TPR 9 15.5 14.1 81.9 84.3 100
FPR 33.8 11.6 14.8 0 0 0
FDR 54.2 16.4 19.2 0 0 0
RMSE� 70.4 62 63.7 100 88.9 69
RMSFE 30.6 13.2 15 100 94.2 100
alt. RMSFE - 16.9 19.4 - - -

↵
=

0.
75

TPR - 51.9 51.9 83.3 84.7 100
FPR - 0 0 0 0 0
FDR - 0 0 0 0 0
RMSE� - 22.5 22.7 100 88.7 68.5
RMSFE - 21.3 21.3 100 96.3 100
alt. RMSFE - 11.8 11.3 - - -

↵
=

0.
9

TPR - 61.3 61.3 82.6 86.6 100
FPR - 0 0 0 0 0
FDR - 0 0 0 0 0
RMSE� - 5.8 5.8 100 87.7 68.5
RMSFE - 26.4 26.4 100 95.6 100
alt. RMSFE - 14.6 14.6 - - -

↵
=

1

TPR - 64.6 64.4 84 88.2 100
FPR - 0 0 0 0 0
FDR - 0 0 0 0 0
RMSE� - 2.1 2.1 100 80.3 62.3
RMSFE - 28.7 28.5 100 79.2 100
alt. RMSFE - 17.4 16.9 - - -

28



Figure 1: Number of Common Factors Selected by the Onatski(2010) criterion between Dec. 1989 and Dec.
2017

Figure 2: Number of Selected Risk Factors by GOCMT and LASSO between Dec. 1989 and Dec. 2017,
Averaged across securities

Figure 3: Percentage of securities for which LASSO selects more risk factors compared to GOCMT between
Dec. 1989 and Dec. 2017
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(a) GOCMT (b) LASSO

Figure 4: Frequency of average estimated strength of risk factors

Table 3: Top 10 risk factors based on estimated factor strength by GOCMT over di↵erent sub-periods

1980s 1990s

Excess Market Return 0.96 Excess Market Return 0.87
Betting Against Beta 0.88 Sales to price 0.71
Profit margin 0.76 Market Beta 0.68
Kaplan-Zingales Index 0.74 Sales to inventory 0.67
Leverage 0.74 Change in Net Financial Assets 0.67
Enterprise book-to-price 0.71 Zero trading days 0.61
Sales to price 0.69 Share turnover 0.60
Altman’s Z-score 0.69 HML Devil 0.60
Quality Minus Junk 0.69 Quality Minus Junk 0.58
Cash flow to debt 0.67 Industry Concentration 0.58

2000s 2010s

Excess Market Return 0.94 Excess Market Return 0.90
Altman’s Z-score 0.89 Sales to price 0.73
Net debt-to-price 0.89 Industry Concentration 0.66
Leverage 0.89 Market Beta 0.63
Market Beta 0.88 years since first Compustat coverage 0.63
Enterprise book-to-price 0.88 HML Devil 0.60
Kaplan-Zingales Index 0.87 High Minus Low 0.58
HML Devil 0.83 Leverage 0.57
Zero trading days 0.82 Altman’s Z-score 0.56
Bid-ask spread 0.81 Change in shares outstanding 0.56

Average Estimated Strength Between Jan. 1980 and Dec. 2017

Excess Market Return 0.90 Kaplan-Zingales Index 0.62
Sales to price 0.67 Market Beta 0.60
Leverage 0.66 HML Devil 0.59
Altman’s Z-score 0.66 Quality Minus Junk 0.57
Enterprise book-to-price 0.62 Net debt-to-price 0.55
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(a) Conditional GOCMT (b) Conditional LASSO

Figure 5: Frequency of average estimated strength of risk factors conditional on Excess Market
Return

Table 4: Top 10 risk factors based on estimated factor strength by Conditional GOCMT over di↵erent sub-

periods

1980s 1990s

Organizational Capital 0.64 Sales to price 0.66
Current ratio 0.62 Market Beta 0.59
Small Minus Big 0.60 Return volatility 0.59
Gross profitability 0.59 Volatility of liquidity (share turnover) 0.57
Profit margin 0.59 HML Devil 0.57
Capital turnover 0.58 Industry Concentration 0.56
Percent Operating Accruals 0.58 Operating Leverage 0.56
Industry-adjusted book to market 0.58 Sales to inventory 0.55
Sales to inventory 0.57 Share turnover 0.54
Operating Leverage 0.57 Small Minus Big 0.53

2000s 2010s

Organizational Capital 0.62 High Minus Low 0.65
Order backlog 0.58 HML Devil 0.62
Book Asset Liquidity 0.57 Market Beta 0.60
Cash flow-to-price 0.56 Bid-ask spread 0.50
Market Beta 0.56 Volatility of liquidity (share turnover) 0.50
Depreciation / PP&E 0.56 Return volatility 0.47
Capital turnover 0.56 Organizational Capital 0.44
Cash flow to price ratio 0.53 Share turnover 0.43
Earnings to price 0.51 1-month momentum 0.42
Operating Leverage 0.51 Zero trading days 0.42

Average Estimated Strength Between Jan. 1980 and Dec. 2017

Market Beta 0.53 Share turnover 0.46
HML Devil 0.48 Organizational Capital 0.45
Enterprise book-to-price 0.47 Book Asset Liquidity 0.45
Cash flow-to-price 0.47 Operating Leverage 0.45
Sales to price 0.47 Kaplan-Zingales Index 0.43
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Appendix

A Mathematical Derivations

The proof of Lemma 1, Proposition 1, and Theorems 1 and 2 are provided here. The proofs are

based on lemmas presented in the online theory supplement. Among these, Lemmas S1.1 and

S1.14 are key. Lemma S1.1 establishes the exponential probability inequality for the deviation

of the rescaled estimated factors from their underlying rotated unobserved factors. The proof of

Lemma 1 is built up on this result. For covariates i = 1, 2, · · · , N , Lemma S1.14 establishes the

exponential probability inequalities for the t-ratio multiple tests conditional on the underling

net e↵ect, ✓i, being either zero or non-zero.

Additional Notations and Definitions

Throughout this section we consider the following events:

A0 = H \ G, where H =
nPk

i=1 Ĵi = k

o
and G =

nPN
i=k+k⇤+1 Ĵi = 0

o
. (A.1)

A0 is the event of selecting the approximating model, H is the event that all signals are selected,

and G is the event that no noise variable is selected. We also denote the event that exactly j

noise variables are selected by Gj =
nPN

i=k+k⇤+1 Ĵi = j

o
, for j = 0, 1, · · · , N � k � k

⇤, with

G ⌘ G0. For the analysis of di↵erent stages of GOCMT, we also introduce the events Bi,s which

is the event that variable i is selected up to and including stage s, namely in any of the stages

j = 1, 2, · · · , s of GOCMT procedure, and Ls = \
k
i=1Li,s is the event that all the signals are

selected up to and including stage s of the GOCMT procedure. Ts is the event that GOCMT

stops after s stages or less. Ds,h is the event that the number of variables selected in the first

s stages of GOCMT is smaller than or equal to h, where h is a finite positive constant greater

than k(k + k
⇤).

Proof of Lemma 1 enter

As it shown in Bai and Ng (2002), F̃ = F̂V�1
NT , where F̂ = (f̂1, f̂2, · · · , f̂T )0 is the T ⇥m0 matrix

of rescale estimator of the factors given by F̂ = F̄
�
F̄0F̄/T

�1/2
. F̄ is the T ⇥ m0 matrix of

estimated factors given by

F̄ = X�̄/N,
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where �̄ =
p
NQ̄ with Q̄ is an N ⇥ m0 matrix of orthonormal eigenvectors corresponding to

the m0 largest eigenvalues of the N ⇥N matrix, X0X. Hence,

F̃� F0G = (F̂� F0H)V�1
NT ,

where H =
�
�00�0

/N
�
(F00F̃/T ). Therefore, by Lemma S2.10

kF̃� F0Gk2F  kF̂� F0Hk2F kV
�1
NT k

2
2 =

 
TX

t=1

kf̃t �H0f0t k
2
F

!
kV�1

NT k
2
2.

Let vmin denote the smallest eigenvalue of VNT . Since m0 largest eigenvalues of X0X/(NT ) are

bounded away from zero, there exists a positive constant v such that 0 < v < vmin. Therefore,

kV�1
NT k

2
2 = 1/vmin > 1/v and we have

kF̃� F0Gk2F 

 
TX

t=1

kf̃t �H0f0t k
2
F

!
kV̄�1

NT k
2
2 

1

v

 
TX

t=1

kf̃t �H0f0t k
2
F

!
.

Hence,

Pr
⇣
kF̃� F0Gk2F > dT

⌘
 Pr

 
1

v

TX

t=1

kf̃t �H0f0t k
2
F > dT

!

= Pr

 
TX

t=1

kf̃t �H0f0t k
2
F > vdT

!
,

and by Lemma S1.1, there exists a finite positive constant C0, such that if �  (s+ 2)/(s+ 4),

Pr
⇣
kF̃� F0Gk2F > dT

⌘
 N

2 exp
⇥
�C0T

�1
d
2
T

⇤
,

if (s+ 2)/(s+ 4) < � < 1,

Pr
⇣
kF̃� F0Gk2F > dT

⌘
 N

2 exp
h
�C0d

s/(s+2)
T

i
,

and if � � 1,

Pr
⇣
kF̃� F0Gk2F > dT

⌘
 N

2 exp
⇥
�C0(TdT )s/2(s+2)

⇤
.

Proof of Proposition 1 enter

Note that S0 is the population value of number of stages required for selecting all the signals in

which it is assumed that Pr[ti,T,(j) > cp(N, �)|✓i,(j) 6= 0] = 1 and Pr[ti,T,(j) > cp(N, �)|✓i,(j) =

0] = 0 for all i and j. So, if ✓i,(1) 6= 0 for all i with �i 6= 0, it obviously follows that S0 = 1.

Next, assume that ✓i,(1) = 0 for a non-empty subset of signals. Then these signals will not be

selected in the first stage. By Lemma S1.19, it follows that at least for one signal ✓i,(1) 6= 0 and

therefore this signal will be picked up in the first stage. Similarly, By Lemma S1.19, in the next

stage at least one hidden signal, for which ✓i,(1) = 0, will have ✓i,(2) 6= 0 and hence will picked up

in this stage. Proceeding recursively using Lemma S1.19, it then follows that all hidden signals,

for which ✓i,(1) = 0, will satisfy ✓i,(j) 6= 0 for some j  k, proving the proposition.
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Proof of Theorem 1 enter

To establish result (17), note that Tk is the event that the GOCMT procedure stops after k stages

or less. Therefore Pr(Ŝ > k) = Pr(T c
k ) = 1 � Pr(T c

k ), where Ŝ is defined by (14). By Lemma

S1.17, there exist positive constants C0, C1 and C2 such that

Pr(Tk) = 1�O(N4�2C0�)�O(N4�2C0�⇤)�O[N exp(�C1N
C21)],

and hence

Pr
⇣
Ŝ > k

⌘
= O(N4�2C0�) +O(N4�2C0�⇤) +O[N exp(�C1N

C21)],

To establish result (18), first note that

Pr(Ac
0) = Pr(Ac

0|Dk,h) Pr(Dk,h) + Pr(Ac
0|D

c
k,h) Pr(D

c
k,h)  Pr(Ac

0|Dk,h) + Pr(Dc
k,h).

By Lemma S1.16, for some finite positive constants C0, C1 and C2

Pr(Dc
k,h) = O(N4�2C0�) +O(N4�2C0�⇤) +O[N exp(�C1N

C21)].

Moreover,

Pr(Ac
0|Dk,h)  Pr(Hc

|Dk,h) + Pr(Gc
|Dk,h),

where H and G is given by (A.1). Therefore, Hc = {
Pk

i=1 Ĵi < k} and G
c = {

PN
i=k+k⇤+1 Ĵi >

0}. Let’s consider Pr(Hc
|Dk,h) and Pr(Gc

|Dk,h) in turn:

Pr(Hc
|Dk,h) 

Pk
i=1 Pr(Ĵi = 0|Dk,h).

but the event {Ĵi = 0|Dk,h} can only occur only if {\k
j=1B

c
i,j |Dk,h} occurs, while {\

k
j=1B

c
i,j |Dk,h}

can occur without {Ĵi = 0|Dk,h} occurring. Therefore, Pr(Ĵi = 0|Dk,h)  Pr(\k
j=1B

c
i,j |Dk,h).

Note that

Pr(\k
j=1B

c
i,j |Dk,h) = Pr(Bc

i,1|Dk,h)⇥ Pr(Bc
i,2|B

c
i,1,Dk,h)⇥ Pr(Bc

i,3|B
c
i,2 \ B

c
i,1,Dk,h)⇥ · · ·⇥

Pr(Bc
i,k|B

c
i,k�1 \ · · · \ B

c
i,1,Dk,h).

By Proposition 1, we know that for each i = 1, · · · , k there exist some steps 1  j  k such that

✓i,(j) 6= 0. Therefore, for such the j,

Pr(Bc
i,j |B

c
i,j�1 \ · · · \ B

c
i,1,Dk,h) = Pr(Bc

i,j |B
c
i,j�1 \ · · · \ B

c
i,1, ✓i,(j) 6= 0,Dk,h),

and by Lemma S1.14,

Pr(Bc
i,j |B

c
i,j�1 \ · · · \ B

c
i,1, ✓i,(j) 6= 0,Dk,h) = O[exp(�C0N

C21)].

Hence,

Pr(\k
j=1B

c
i,j |Dk,h)  Pr(Bc

i,j |B
c
i,j�1 \ · · · \ B

c
i,1, ✓i,(j) 6= 0,Dk,h) = O[exp(�C0N

C21)].

Therefore,

Pr(Ĵi = 0|Dk,h) = O[exp(�C0N
C21)],
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and since k is finite, we have,

Pr(Hc
|Dk,h) = O[exp(�C0N

C21 ].

For Pr(Gc
|Dk,h) we first note that,

Pr(Gc
|Dk,h) = Pr

⇣PN
i=k+k⇤+1 Ĵi > 0|Dk,h

⌘

PN

i=k+k⇤+1 Pr
⇣
Ĵi = 1|Dk,h

⌘
.

Also,

Pr
⇣
Ĵi = 1|Dk,h

⌘
= Pr

⇣
Ĵi = 1|Dk,h, Tk

⌘
Pr(Tk|Dk,h) + Pr

⇣
Ĵi = 1|Dk,T , T

c
k

⌘
Pr(T c

k |Dk,h)

 Pr
⇣
Ĵi = 1|Dk,h, Tk

⌘
+ Pr(T c

k |Dk,h).

Therefore,

Pr(Gc
|Dk,h) 

PN
i=k+k⇤+1 Pr

⇣
Ĵi = 1|Dk,h, Tk

⌘
+ (N � k � k

⇤)Pr(T c
k |Dk,h).

Consider now the first term of the above and note that, since the net e↵ect coe�cient, ✓i,(j), of

noise variables are zero for i = k + k
⇤ + 1, k + k

⇤ + 2, · · · , N and all j, we have
PN

i=k+k⇤+1 Pr
⇣
Ĵi = 1|Dk,h, Tk

⌘


PN

i=k+k⇤+1 Pr(ti,T,(1) > cp(N, �)|✓i,(1) = 0,Dk,h, Tk)+

PN
i=k+k⇤+1

Pk
s=2 Pr(ti,T,(s) > cp(N, �

⇤)|✓i,(s) = 0,Dk,h, Tk).

Therefore, by Lemma S1.14, and result (II) of Lemma S2.2, we have

PN
i=k+k⇤+1 Pr

⇣
Ĵi = 1|Dk,h, Tk

⌘

 (N � k � k
⇤)N3 exp(�C0c

2
p(N, �))+

(k � 1)(N � k � k
⇤)N3 exp(�C0c

2
p(N, �

⇤)) +O[N exp(�C0N
C21)]

= O(N4�2C0�) +O(N4�2C0�⇤) +O[N exp(�C0N
C21)].

Furthermore, by (S.1),

(N � k � k
⇤)Pr(T c

k |Dk,h) = O(N5�2C0�⇤) +O[N2 exp(�C1N
C21)].

So, overall,

Pr(Gc
|Dk,h) = O(N4�2C0�) +O(N5�2C0�⇤) +O[N2 exp(�C1N

C21)].

where we used that O[N exp(�C1T
C2)] is dominated by O[N2 exp(�C1T

C2)], and O(N4�2C0�⇤)

is dominated by O(N5�2C0�⇤). Substituting Pr(Hc
|Dk,h) and Pr(Gc

|Dk,h) in Pr(Ac
0|Dk,h), and

using Pr(Dc
k,h) we obtain

Pr(Ac
0) = O(N4�2C0�) +O(N5�2C0�⇤) +O[N2 exp(�C1N

C21)],

and therefore,

Pr(A0) = 1�O(N4�2C0�)�O(N5�2C0�⇤)�O[exp(�NC11)].
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Proof of Theorem 2 enter

For any B > 0,

Pr
⇣
T

1
2

���b̂T � b⇤
T

��� > B

⌘
=Pr

⇣
T

1
2

���b̂T � b⇤
T

��� > B|A0

⌘
Pr (A0)+

Pr
⇣
T

1
2

���b̂T � b⇤
T

��� > B|A
c
0

⌘
Pr (Ac

0) .

Since Pr
⇣
T

1
2

���b̂T � b⇤
T

��� > B|A
c
0

⌘
and Pr (A0) are less than or equal to one, we can further

write,

Pr
⇣
T

1
2

���b̂T � b⇤
T

��� > B

⌘
 Pr

⇣
T

1
2

���b̂T � b⇤
T

��� > B|A0

⌘
+ Pr (Ac

0) .

By conditioning on A0 the dimension of vector b̂T is at most equal to k + k
⇤ and hence it is

finite. Therefore, by Lemma S1.18 in online theory supplement, conditional on A0,
���b̂T � b⇤

T

���

is Op

⇣
T
� 1

2

⌘
. By Theorem 1, we also have limT!1 Pr (Ac

0) = 0. Hence, for any " > 0, there

exist B" > 0 and T" > 0 such that

Pr
⇣
T

1
2

���b̂T � b⇤
T

��� > B"|A0

⌘
+ Pr (Ac

0) < " for all T > T",

Therefore, Pr
⇣
T

1
2

���b̂T � b⇤
T

��� > B"

⌘
< " for all T > T", and we conclude that

���b̂T � b⇤
T

��� = OP

⇣
T
� 1

2

⌘
.

Since T =  (N1) for 0 < 1  2, we can further write
���b̂T � b⇤

T

��� = OP

⇣
N

�1
2

⌘
.

as required. Following a similar line of argument, we can also show that

T
�1

TX

t=1

⇠̂
2
t � �̄

2
u,T = Op

⇣
N

�1
2

⌘
,

which completes the proof.
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