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ABSTRACT

Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial
differential equations (PDE). In PINNs, the residual form of the PDE of interest and its boundary
conditions are lumped into a composite objective function as soft penalties. Here, we show that this
specific way of formulating the objective function is the source of severe limitations in the PINN
approach when applied to different kinds of PDEs. To address these limitations, we propose a versatile
framework based on a constrained optimization problem formulation, where we use the augmented
Lagrangian method (ALM) to constrain the solution of a PDE with its boundary conditions and any
high-fidelity data that may be available. Our approach is adept at forward and inverse problems
with multi-fidelity data fusion. We demonstrate the efficacy and versatility of our physics- and
equality-constrained deep-learning framework by applying it to several forward and inverse problems
involving multi-dimensional PDEs. Our framework achieves orders of magnitude improvements in
accuracy levels in comparison with state-of-the-art physics-informed neural networks.

Keywords Augmented Lagrangian method · Constrained optimization · Deep learning · Helmholtz equation · Inverse
problems ·Multi-fidelity data fusion · Poisson’s equation · Tumor growth modeling

1 Introduction

Deep learning has been highly impactful in a plethora of fields such as pattern recognition [37, 24], speech recognition
[28], natural language processing [64, 3, 72] and in the solution of partial differential equations (PDE) for forward
and inverse problems. The success of these models owes to the rapid development of available information, the
advancement of computing power, and the advent of efficient learning algorithms for training neural networks [61].
With the emergence of universal approximation theorem [30, 40], new studies have focused on using neural networks
to solve ODEs and PDEs. One of the motivations for using neural networks in solving differential equations is their
potential to break the curse of dimensionality [20, 11, 6] and its ability to fuse data in the learned solution. Neural
network-based methods with their meshless nature can reduce the tedious effort of mesh generation, which is common
with finite- difference, element, or volume methods. Moreover, in contrast to conventional numerical methods, once the
neural network is trained, it can produce results at any point in the domain.

Dissanayake and Phan-Thien pioneered using neural networks to solve PDEs. They combined the residual form of a
given PDE and its boundary conditions as soft constraints for training their neural network model. van Milligen et al.
presented a similar approach and demonstrated its potential on a magnetohydrodynamics plasma equilibrium problem.
This general neural network-based technique was applied with satisfactory results to non-linear Schrodinger equations
in [47], to a non-steady fixed bed non-catalytic solid-gas reactor problems in [52], and to the one-dimensional Burgers
equation in [23]. A neural network-based approach to solving PDEs and ODEs on orthogonal box domains was also
proposed by Lagaris et al. by constructing trial functions that satisfy boundary conditions by construction. Unlike the
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approach in [14, 68], the approach in [38] is limited to regular geometries as it is not trivial to create trial functions for
irregular domains. Also, creating trial functions imposes inductive bias toward a certain class of functions that might not
be optimal. These early works did not receive broader acceptance and appreciation by other researchers likely because
of a lack of computing resources and a limited understanding of neural networks at the time of their introduction.

Machine learning frameworks with automatic differentiation capabilities [1, 53] have revived the use of neural networks
to solve ODEs and PDEs. The overall technical approach for using neural networks to solve PDEs and ODEs that was
adopted in the aforementioned works, particularly the method described in [14, 68], has found a resurgent interest in
recent years [15, 21, 63, 75]. Raissi et al. dubbed the term physics-informed neural networks (PINNs), which has been
growing fast in popularity and applied to several unique forward and inverse problems [57, 58, 36, 73, 12, 42, 46, 59].
Even though neural networks offer a powerful framework to faithfully integrate data and physical laws in solving
forward and ill-posed inverse problems, training these models is not trivial for challenging problems [66, 45, 70].
Extensive reviews of the current state in physics-informed machine learning are available in literature [10, 34], but we
will also elaborate on the challenges faced by the PINN approach in later sections.

Our paper is structured as follows. In §2 we present a technical overview of the physics-based neural networks
following the original formulation of [14, 68]. Subsequently, we describe a recently proposed empirical algorithm
for improving the predictive capability of these models as well as its limitations. Next, we describe the augmented
Lagrange method, which forms the backbone of our approach. In §3 we propose the physics and equality constrained
artificial neural networks (PECANN) framework and provide a training algorithm for it. In §4 we conduct a comparative
analysis of our method on several benchmark problems. In §5 we demonstrate the performance of the PECANN
approach on three different inverse problems with multi-fidelity data fusion. Finally, in §6 we summarize our results
and provide several directions for future research. All the codes and data accompanying this paper are publicly available
at https://github.com/HiPerSimLab/PECANN

2 Technical Background

Consider a scalar function u(x, t) : Rd+1 → R on the domain Ω ⊂ Rd with its boundary ∂Ω satisfying the following
partial differential equation

F(x, t;
∂u

∂t
,
∂2u

∂t2
, · · · , ∂u

∂x
,
∂2u

∂x2
, · · · ,ν) = 0, ∀(x, t) ∈ U , (1)

B(x, t, g;u,
∂u

∂x
, · · · ) = 0, ∀(x, t) ∈ ∂U , (2)

I(x, t, h;u,
∂u

∂t
, · · · ) = 0, ∀(x, t) ∈ Γ, (3)

where F is the residual form of the PDE containing differential operators, ν is a vector PDE parameters, B is the
residual form of the boundary condition containing a source function g(x, t) and I is the residual form of the initial
condition containing a source function h(x, t). U = {(x, t) | x ∈ Ω, t = [0, T ]}, ∂U = {(x, t) | x ∈ ∂Ω, t = [0, T ]}
and Γ = {(x, t) | x ∈ ∂Ω, t = 0}.

2.1 Physics-informed Neural Networks

Here, we present the common elements of the physics-informed learning framework that was presented in the works
of Dissanayake and Phan-Thien and van Milligen et al., and, in the work of Raissi et al. as part of contemporary
developments in physics based deep learning methods. Suppose we seek a solution uθ(x) represented by a neural
network parameterized by θ for Eq. (1) with its boundary condition Eq. (2) and its initial condition Eq. (3). We can
write the following loss functional L(θ) to train a physics-informed neural network.

L(θ) = λFLF (θ) + λBLB(θ) + λILI(θ), (4)

LF (θ) =
1

NF

NF∑
i=1

‖F(x(i), t(i))‖22, (5)

LB(θ) =
1

NB

NB∑
i=1

‖B(x(i), t(i), g(i))‖22, (6)

LI(θ) =
1

NI

NI∑
i=1

‖I(x(i), t(i), h(i))‖22, (7)

2

https://github.com/HiPerSimLab/PECANN


Physics and Equality Constrained Artificial Neural Networks A PREPRINT

where {x(i), t(i)}NF
i=1 is the set of residual points in U for approximating the physics loss LF (θ), ({x(i), t(i)), g(i)}NB

i=1

is the set boundary points on ∂U for approximating the boundary loss LB(θ) and {(x(i), t(i)), h(i)}NI
i=1 is the set of

initial data on Γ for approximating the loss on initial condition LI(θ). λF , λB and λI are hyperparameters to balance
the interplay between the loss terms and L(θ) is the sum of all the objective functions used for training a neural network
model. It is worth noting that in conventional PINNs λF = λB = λI = 1.

Since training PINNs minimizes a weighted sum of several objective functions as in Eq. (4), the prediction of the
network highly depends on the choice of these weights. Manual setting of these weights by trial and error tuning is
extremely tedious and time-demanding. Based on our own experience, we find that manual tuning of these weights
is not ideal, because it creates a ripple effect as we then need to tune other hyperparameters, such as the number of
collocations points, the learning rate, and the architecture. Also, the optimal choice of these weights for a problem
under a certain training setting might not transfer across different problems and may not even produce acceptable results
if the training setting is changed. Proper choice of these free parameters is still an active area of research [70, 45, 66].
Next, we discuss an empirical algorithm proposed by Wang et al. for choosing these hyperparameters.

2.2 Learning Rate Annealing for Physics-Informed Neural Networks

Consider a physics-informed neural network with parameters θ and a loss function as follows

L(θ) = λFLF (θ) +

M∑
i=1

λiLi(θ), (8)

where LF (θ) is the PDE residual loss as in Eq. (5), Li(θ) correspond to data-fit terms (e.g., measurements, initial or
boundary conditions), λF and λi, i = 1, · · · ,M are free parameters used to balance the interplay between different
loss terms. The necessary optimality condition for Eq. (8) is

∇θL(θ) = λF∇θLF (θ) +

M∑
i=1

λi∇θLi(θ) = 0, (9)

where λs are learned such that the optimality condition is satisfied. Wang et al. recently proposed an empirical algorithm
for setting these weights based on matching the magnitude of the back-propagated gradients as follows

λF = 1, (10a)

λ̂i =
maxθn{|∇θLF (θn)|}
|∇θnλiLi(θn)|

, i = 1, · · · ,M, (10b)

λi = (1− α)λi + αλ̂i, (10c)

where θn denotes the values of the network parameters at nth iteration, | · | denotes the elementwise absolute value,
and the overbar signifies the algebraic mean of the gradient vector. Although this method improves on the original
PINN approach (λF = λi = 1, i = 1, · · · ,M), there are fundamental issues with this approach. First, approximating
λ̂i in Eq. (10b) does not necessarily meet the optimality condition as in Eq. (9). Therefore, the optimizer may settle
to a point in the space of parameters that may not be an actual local minimum for the objective function as in Eq. (8).
Second, the values of the network parameters can oscillate back and forth around a minima, which requires slowing
down the parameter update by decreasing the learning rate [74]. However, λ̂i grows unbounded when the denominator
in Eq. (10b) approaches zero which makes the effective learning rate extremely high and causes the optimizer to diverge.
Also, in the case of noisy measurement data, this algorithm tries to fit the noise in the objective function as it is agnostic
to the quality of data, and because of the noise in the objective function, its approximated free parameter will oscillate
which could hinder convergence. Finally, the method is computationally expensive as it requires M + 1 number of
backward passes through the computational graph to evaluate the gradients of the network parameter with respect to
each term in the objective function.

2.3 Augmented Lagrangian Method for Constrained Optimization

Consider the following nonlinear, equality-constrained optimization problem with n decision variables, and m equality
constraints

min
θ∈Rn

J (θ),

subject to Ci(θ) = 0. ∀i = 1, · · · ,m
(11)
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where J is a nonlinear function of Rn in R, Ci is a nonlinear function of Rn in R and θ is a given subset of Rn,
n-dimensional Euclidean space. Augmented Lagrangian method (ALM) [55, 26] which is also the method of choice
in the present work can be used to convert the constrained optimization problem of Eq. (11) into an unconstrained
optimization problem as follows

min
θ∈Θ

L(θ;λ, µ) = J (θ) +

m∑
i=1

λiCi(θ) +
µ

2

m∑
i=1

|Ci(θ)|2, (12)

where λ ∈ Rm is a vector of Lagrange multipliers and µ is a positive penalty parameter, and the semicolon denotes
that λ and µ are fixed. We update the vector of Lagrange multipliers based on the current estimate of the Lagrange
multipliers and constraint values using the following rule

λi ← λi + µCi(θ). (13)

In ALM, the objective function is minimized possibly by violating the constraints. Subsequently, the feasibility is
restored progressively as the iterations proceed [8]. If λ vanish, the penalty method is recovered, whereas when µ
vanishes we get the method of Lagrange multipliers. As discussed in Martins and Ning, ALM avoids the ill-conditioning
issue of the penalty method while having a better convergence rate than the Lagrange multiplier method [9]. Therefore,
we could say that ALM combines the merit of both methods. Convergence in ALM may occur with finite µ, and
optimization problem does not even have to possess a locally convex structure [7, 49, 9, 8, 44]. These aspects of the
ALM make it a suitable choice for neural networks as their objective functions are typically non-convex with respect to
the parameters of the network. ALM has been used in scientific machine learning in the context of PDE-constrained
optimization [13, 43]. In Dener et al., authors train a physics-constrained encoder-decoder neural network using ALM
in a supervised learning fashion. In Lu et al., the authors use ALM to train a PDE-constrained neural network model
that satisfies the boundary conditions by construction, following an approach similar to the one proposed in [38].

3 Proposed Method: Physics & Equality Constrained Artificial Neural Networks

Here, we propose a novel approach in using neural networks for the solution of forward problems and inverse problems
with multi-fidelity data. This framework is noise-aware, physics-informed and equality constrained. We start by
presenting a constrained optimization problem aimed at minimizing the sum of physics loss and noisy data (low-fidelity)
loss such that any high fidelity data (boundary conditions, known equality constraints) are strictly satisfied. Considering
Eq.(1) with its boundary condition (2) and initial condition (3), we write the following constrained optimization
problem:

min
θ
JF (θ) + JM(θ), (14)

subject to

φ(B(x(i), t(i), g(i))) = 0, ∀(x(i), t(i), g(i)) ∈ ∂U , i = 1, · · · , NB (15)

φ(I(x(i), t(i), h(i))) = 0, ∀(x(i), t(i), h(i)) ∈ Γ, i = 1, · · · , NI , (16)

where JF (θ) is the loss function for the given PDE, φ is a distance function and JM(θ) is the objective function for
noisy (low-fidelity) measurement data given

ũ(x(i), t(i)) = uθ(x
(i), t(i)) + ε(i),∀i = 1, · · · , NM (17)

where NM is the number of observations, ũ(x(i), t(i)) is the ith measurement at (x(i), t(i)), uθ(x(i), t(i)) is ith
prediction from our neural network model at (x(i), t(i)) and ε(i) captures the error associated with the ith data point.
Assuming that the errors are normally distributed with mean zero and a standard deviation of σ, we can minimizing the
log likelihood of the predictions uθ(x, t) conditioned on the observed data ũθ(x, t) to obtain JM(θ) as follows [44]

JM(θ) =
1

2σ2

NM∑
i=1

‖uθ(x(i), t(i))− ũ(x(i), t(i))‖22. (18)

In this work, we set σ = 1/
√

2 ≈ 0.7 which results in a sum-of-squared errors for the noisy data, however, the user
can assign any value to σ depending on the quality of the measurement data. It is worth noting, that a smaller value of
σ which corresponds to less noisy data will put more weight on JM and vice versa. Using the augmented Lagrange

4



Physics and Equality Constrained Artificial Neural Networks A PREPRINT

method, we can write the resulting objective function as follows

L(θ;λ, µ) = JF (θ) + JM(θ) +

NB∑
i=1

λ
(i)
B φ(B(x(i), t(i), g(i))) +

NI∑
i=1

λ
(i)
I φ(I(x(i), t(i), h(i))) +

µ

2
π(θ), (19)

π(θ) =

NB∑
i=1

|φ(B(x(i), t(i), g(i)))|2 +

NI∑
i=1

|φ(I(x(i), t(i), h(i)))|2, (20)

JF (θ) =

NF∑
i=1

‖F(x(i), t(i))‖22, (21)

where NF , NB, NI are the number of data points in U , ∂U and Γ respectively. We note that any equality constraints can
be incorporated as Eq. (15) and (16) should they arise. λB ∈ RNB is an NB-dimensional vector of Lagrange multipliers
for the constraints on ∂U , λI ∈ RNI is an NI-dimensional vector of Lagrange multipliers for the constraints on Γ, and
µ is a positive penalty parameter. We update the vector of Lagrange multipliers using the following rule

λ
(i)
B ← λ

(i)
B + µφ(B(x(i), t(i), g(i))), ∀(x(i), t(i), g(i)) ∈ ∂U , i = 1, · · ·NB, (22)

λ
(i)
I ← λ

(i)
I + µφ(I(x(i), t(i), h(i))), ∀(x(i), t(i), h(i)) ∈ Γ, i = 1, · · ·NI (23)

Algorithm 1: Training algorithm for the PECANN framework

1 Input: θ0, µmax, E, S
2 λB, λI ← 0 /* Initializing the multipliers */
3 ε← 10−8 /* Assigning the tolerance for constraints violation */
4 µ0 ← 1.0 /* Initializing the penalty term */
5 η ← 0/* Placeholder for violation of constraint */
6 Output: θ∗

7 for epoch← 1 to E do
/* Iterate over all training batches */

8 for batch← 1 to S do
9 θ∗ ← argmin

θ
L(θ;λ, µ)/* Optimizing the network’s parameters */

10 if (
√
π(θ) ≥ 0.25η) & (

√
π(θ) > ε) then

11 µ← min(2µ, µmax) /* Updating the penalty parameter */
12 λB ← λB + φ(B(x, t, g))/* Updating the Lagrange multiplier for the boundary condition

*/
13 λI ← λI + φ(I(x, t, h)) /* Updating the Lagrange multipliers for the initial condition

*/
14 η =

√
π(θ)/* Recording the current penalty loss */

15 end
16 end

In Algorithm 1, we present a training algorithm using the objective function presented in (19). The input to the algorithm
is an initialized set of parameters for the network, a maximum value µmax for safeguarding the penalty term, the
number of epochs E, and the training set S. We should note that over-focusing on the constraints might result in a
trivial prediction, where the constraints are satisfied, but the solution has not been found. Therefore, we tackle this issue
by updating the multipliers when two conditions are met simultaneously: First, the ratio of the penalty loss term from
successive iterations has not decreased. Second, the maximum allowable violation on the constraints has not been met.
The first condition helps prevent aggressive updating of multipliers that might cause the aforementioned issue. In the
second condition, we relax updating the multipliers if a satisfactory precision set by the user ε has been achieved. This,
in return, enables the network to freely choose to optimize any loss terms in the objective function to not sacrifice any
loss term.

Next, we discuss a “lean” residual neural network that we employ for some of our numerical experiments. Conventional
feed-forward neural networks are prone to the notorious problem of vanishing-gradients, which makes learning
significantly stiff. He et al. proposed residual learning to alleviate this issue by introducing skip connections. Fig. 1(a)
shows a schematic representation of a residual block that has two weight layers and a nonlinear activation function σ

5
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[24]. However, to preclude the problem of vanishing gradient, the non-linearity after the summation junction +© and
the shortcut connection should be identity as proposed by He et al. [25] as well as in [71]. We further observe that
the weight layer before the junction becomes redundant because the output of the current residual layer will be fed
to another residual layer that processes its input through a weight layer. In other words, linearly stacking two weight
layers can be collapsed into a single weight layer. Therefore, we eliminate this extra weight layer and obtain a leaner
residual layer. A schematic representation of our proposed modified residual layer is shown in Fig. 1(b) with S(x)
shortcut mappings, which are identity mappings except for the input layer to project the input dimension to the correct
dimension of the hidden layers.

(a) (b)

Figure 1: (a) a schematic representation of the original residual block with a set of parameters θ and nonlinear activation
functions σ, (b) a schematic representation of our proposed residual neural network architecture with a set of parameters
θ and nonlinear activation functions σ with S(·) skip connections.

3.1 Performance Metrics

We assess the accuracy of our models by providing the L∞ and the relative L2 errors. Given an n-dimensional vector
of predictions û ∈ Rn and an n-dimensional vector of exact values u ∈ Rn, we define the relative L2 norm and L∞
norm as follows:

Relative L2 =
‖û− u‖2
‖u‖2

, L∞ = ‖û− u‖∞ (24)

where ‖ · ‖2 indicates the Euclidean norm.

4 Application to Forward Problems

We apply our framework to learn the solution of several prototypical partial differential equations (PDE) that appear in
computational physics. We also compare our results with existing methods to highlight the marked improvements in
accuracy levels.

4.1 Two-dimensional Poisson’s Equation

Elliptic PDEs lack any characteristic path, which makes the solution at every point in the domain influenced by all
other points. Therefore, learning the solution to elliptic PDEs with neural network based approaches that do not
properly constrain the boundary conditions becomes challenging as we will show in this section. Here, we solve a
two-dimensional Poisson’s equation on a complex domain to not only highlight the applicability of our approach to
irregular domains, but also show that our framework properly imposes the boundary conditions and produces physically
feasible solutions. We also conduct a study to show the impact of distance functions φ and the maximum penalty
parameter µmax that appear in Eq. (19) on the prediction of our neural network model. Let us consider the following
PDE:

∇2u(x, y) = f(x, y), (x, y) ∈ Ω, (25a)
u(x, y) = h(x, y) (x, y) ∈ ∂Ω, (25b)

where f(x, y) and h(x, y) are source functions, Ω = {(x, y) | x = 0.55ρ(θ) cos(θ), y = 0.75ρ(θ) sin(θ)} and
ρ(θ) = 1 + cos(θ) sin(4θ) for 0 ≤ θ ≤ 2π. We manufacture a complex oscillatory solution for Eq. (25a) and its
boundary conditions Eq. (25b) as follows:

u(x, y) = cos(πx) cos(3πy), (x, y) ∈ Ω. (26)

6
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The corresponding source functions f(x, y) and g(x, y) can be calculated exactly using Eq. (26). We use our “lean”
residual neural network architecture with 3-layer hidden layers and 50 neurons per layer. We generate NΩ = 512
residual points uniformly from the interior part of the domain at each optimization step and N∂Ω = 512 from the
boundaries only once before training. Our optimizer is Adam with its default parameters and an initial learning rate of
10−2. We train our network for 25000 epochs. We reduce our learning rate by a factor of 0.95 after 100 epochs with no
improvement using ReduceLROnPlateau learning scheduler that is built in PyTorch framework [53]. For the present
case, the predictions of both models for the entire domain are juxtaposed in Fig. 2. From Fig. 2 we observe that our

Figure 2: Poisson’s equation: (a) exact solution, (b) predicted solution by PECANN with quadratic distance function,
(c) absolute point-wise error

neural network model trained with our proposed approach has successfully learned the underlying solution. Since our
physics-informed neural network model diverged, we do not portray its prediction for the entire domain. However, we
present a summary of our error norms averaged over five independent trials with random Xavier initialization scheme
[18] for both approaches in Table 1. The results indicate that our method achieves a relative L2 = 5.90× 10−4, which
is three orders of magnitude lower than the one obtained from conventional physics-informed neural networks.

Table 1: 2D Poisson’s equation. Summary of the average and the standard deviation of the relative L2 and L∞ errors
over 5 independent trials along with the number of generated collocation points for training a fixed neural network
architecture with different methods.

Models Relative L2 L∞ NΩ N∂Ω

PINN 1.29× 10−1 ± 2.28× 10−2 4.67× 10−1 ± 8.68× 10−2 512× 25000 512
PECANN 5.90 × 10−4 ± 7.69 × 10−5 4.12 × 10−3 ± 1.47 × 10−3 512× 25000 512

Next, we conduct an ablation study to investigate the impact of the distance function φ on the prediction of our model.
A schematic representation of two different distance functions are presented in Fig. 3(a). Our analysis reveals that
quadratic distance functions are not only insensitive to the choice of the maximum penalty parameter µmax but also
significantly outperform the absolute distance function as shown in Fig. 3(b)-(c). Therefore, we adopt the quadratic
distance function in our proposed method.

1 0 1
r

0.0

0.5

1.0

(r)

| r |
r2
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Figure 3: (a) quadratic and absolute distance functions, (b) relative L2 error bars versus µmax for quadratic distance
function averaged over 5 independent trials,(c) relative L2 error bars versus µmax for absolute distance function averaged
over 5 independent trials
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Figure 4: Helmholtz equation: (a) exact solution ,(b) predicted solution from PECANN model, (c) absolute point-wise
error

To complement our analysis of elliptic PDEs, we present the applications of the PECANNs for a one-dimensional and a
three-dimensional Poisson equation in the appendix.

4.2 Two-dimensional Helmholtz Equation

Helmholtz equation arises in the study of electromagnetic radiation [41, 19], seismology [54], acoustics [4] and many
areas of engineering science. In this section, we study the following benchmark problem that was presented in [70]

∇2u(x, y) + k2u(x, y) = q(x, y), ∀(x, y) ∈ Ω, (27a)
u(x, y) = 0, ∀(x, y) ∈ ∂Ω, (27b)

where k = 1, Ω = {(x, y) | − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1} and ∂Ω is its boundary. Following the equation presented
above, we manufacture an oscillatory solution that satisfy Eq. (27b) with its boundary conditions as follows:

u(x, y) = sin(πx) sin(4πy),∀(x, y) ∈ Ω. (28)

We use the same fully connected neural network architecture as in [70], which consists of three hidden layers with 30
neurons per layer and the tangent hyperbolic activation function. We use a Sobol sequence to sampleNΩ = 512 residual
points from the interior part of the domain and N∂Ω = 256 from the boundaries only once before training. We note that
[70] is generating their data at every epoch, which amounts toNΩ = 5.12×106 andN∂Ω = 20.48×106. Our optimizer
is L-BFGS [48] with its default parameters and strong wolfe line search function that is built in PyTorch framework
[53]. We train our network for 5000 epochs with our safeguarding penalty parameter µmax = 104. As illustrated
in Fig. 4(b), our PECANN model produces an accurate prediction to the underlying solution with uniform error
distribution across the domain as shown in Fig. 4(c). We also present a summary of the error norms from our approach
and state-of-the-art results presented in [70] averaged over ten independent trials with random Xavier initialization
scheme[18] in Table 2. We observe that results obtained from our method achieves a relative L2 = 4.23× 10−4, which
is two orders of magnitude lower than 4.31× 10−2 obtained from the method presented in Wang et al. [70] with only a
fraction of their generated data.

Table 2: Helmholtz equation: summary of the average and the standard deviations of the relative L2 and L∞ errors
over 10 independent trials along with the number of generated collocation points for training a fixed neural network
architecture with different methods along

Models Relative L2 L∞ NΩ N∂Ω

Ref. [70] 4.31× 10−2 ± 1.68× 10−2 - 128× 40000 4× 128× 40000
PECANN 4.23 × 10−4 ± 3.09 × 10−4 1.53 × 10−3 ± 7.66 × 10−4 512 4× 64

4.3 Klein-Gordon Equation

We consider a nonlinear time-dependent benchmark problem known as the Klein-Gordon equation, which plays a
significant role in many scientific applications such as particle physics, astrophysics, cosmology, and classical mechanics.
This problem was considered in the work of Wang et al. [70] as well. Consider the following partial differential equation
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Figure 5: Klein Gordon equation: (a) exact solution , (b) predicted solution by PECANN, (c) point-wise absolute error

∂2u

∂t2
+ α

∂2u

∂x2
+ βu+ γuk = f(x, t), ∀(x, t) ∈ Ω× [0, T ], (29a)

u(x, 0) = g1(x), ∀x ∈ Ω, (29b)
∂u(x, 0)

∂x
= g2(x), ∀x ∈ Ω, (29c)

u(x, t) = h(x, t) ∀(x, t) ∈ ∂Ω× [0, T ], (29d)

where α = −1, β = 0, γ = 1 and k = 3 are known constants. Ω = [0, 1] × [0, 1] with T = 1. The manufactured
solution presented in [70] is as follows

u(x, t) = x cos(5πt) + (xt)3. (30)

The corresponding forcing function f(x, t), boundary condition h(x, t) and initial conditions g1(x) and g2(x) can
be calculated exactly using Eq. (30). We use the same neural network architecture as in [70] which is a deep fully
connected neural network with 5 hidden layers each with 50 neurons that we train for 1500 epochs total. We use
Sobol sequence to generate NΩ = 512 residual points from the interior part of the domain, N∂Ω = 512 points from
the boundaries and NI = 256 points for each of the initial conditions as in Eq. (29b) and Eq. (29c) only once before
training. Our optimizer is LBFGS with its default parameters and strong wolfe line search function that is built in
PyTorch framework [53]. Our safeguarding penalty parameter µmax = 104 as in the previous problem.

As illustrated in Fig. 5(b), our PECANN model produces an accurate prediction to the underlying solution with uniform
error distribution across the domain as shown in Fig. 5(c). In addition, we present a summary of the error norms
averaged over ten independent trials with random Xavier initialization scheme[18] in Table 3. We observe that the best
relative L2 error obtained from our PECANN model is two orders of magnitude lower than the best relative L2 norm
error reported in [70] with only a fraction of their generated data. This highlights the predictive power of our method
over state-of-the-art physics-informed neural networks for the solution of a non-linear time-dependent Klein-Gordon
equation.

Table 3: Klein–Gordon equation:summary of the average and the standard deviations of the relative L2 and L∞ errors
over 10 independent trials along with the number of generated collocation points for training a fixed neural network
architecture with different methods alongs

Models Best Relative L2 Relative L2 L∞ NΩ N∂Ω NI

Ref. [70] 1.062× 10−2 - - 128× 40000 2× 128× 40000 2× 128× 40000
PECANN 2.158 × 10−4 6.139 × 10−4 ± 3.337 × 10−4 1.043 × 10−3 ± 5.908 × 10−4 512 2× 256 2× 256

5 Application to Inverse Problems

In this section, we apply our PECANN framework for the solution of inverse problems with multi-fidelity data. By
multi-fidelity, we mean that we have both clean (high-fidelity) data and noisy (low-fidelity) data. We tackle three inverse
problems involving PDEs. It is worth reiterating that we only impose equality constraints and use noisy data (e.g., noisy
boundary conditions, noisy measurement data) as a soft-regularizer JM(θ) in Eq. (19).
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5.1 Learning Hydraulic Conductivity of Nonlinear Unsaturated Flows from Multi-fidelity Data

Our PECANN framework is also suitable to solve inverse-PDE problems using multi-fidelity data. With multi-fidelity,
we mean that the observed data may include both data with low accuracy and data with very high accuracy. As part of
our objective function formulation, we can constrain the high-fidelity data in a principled fashion and take advantage of
the low-fidelity data to regularize our hypothesis space. To demonstrate our framework, we study one of the difficult
multi-fidelity example problems that were tackled in Meng and Karniadakis with composite neural networks. This
particular inverse-PDE problem arises in unsaturated flows as they are central in characterizing contaminant transport
[32], soil-atmosphere interaction [2], soil-plant-water interaction [16], ground-subsurface water interaction zone [22]
to name a few. Describing processes involving soil-water interactions at a microscopic level is very complex due to
the existence of tortuous, irregular, and interconnected pores [27]. Therefore, these flows are generally characterized
in terms of their macroscopic characteristics. An important quantity that is essential in describing flows through
unsaturated soil is hydraulic conductivity, which is a nonlinear parameter that is highly dependent on the geometry
of the porous media [27]. Let us consider the following nonlinear differential equation representing an unsaturated
one-dimensional (1D) soil column with variable water content:

d

dx
(K(h)

dh(x)

dx
) = 0, x ∈ Ω, (31)

subject to the following boundary conditions,

h(0) = −3, (32a)
h(200) = −10, (32b)

where Ω = {x | 0 ≤ x ≤ 200 cm} , h(x) is the pressure head (cm) and K(h) is the hydraulic conductivity (cm h−1)
which is described as follows:

K(h) = KsS
1/2
e

[
1− (1− S1/m

e )m
]2
, (33)

where Ks is the saturated hydraulic conductivity (cm h−1), and Se is the effective saturation expressed as follows [67]:

Se =
1

(1 + |αh|n)m
,m = 1− 1/n, (34)

where α is an empirical parameter that is inversely related to the air-entry pressure value (cm−1 ) and m is an empirical
parameter related to the pore-size distribution that is hard to measure due to the complex geometry of the porous
media. We aim to infer the unknown empirical parameters α, and m from sparse measurements of pressure head h.
To generate multi-fidelity synthetic measurements or experimental data, we select the soil type loam for which the
empirical parameters are as follows: α = 0.036 and m = 0.36.

We generate high-fidelity pressure data using the exact empirical parameters and low-fidelity data with α = 0.015 and
m = 0.31. Using the built-in bvp5c MATLAB function, we solve the governing PDE as given in Eqs. 31 through Eq. 34
using the selected empirical parameters to generate multi fidelity training data as shown in Fig 6(a). In Fig 6(b) we also
depict the corresponding hydraulic conductivity k(h) values for the pressure head data, which shows that low-fidelity
hydraulic conductivity has a significant deviation from the exact hydraulic conductivity distribution. To highlight the
robustness, efficiency, and accuracy of our framework on an inverse-PDE with multi-fidelity data fusion, we compare our
results with the results reported in Meng and Karniadakis [46]. For comparison purposes, we also choose a feed-forward
neural network with two hidden layers with 20 neurons per layer as in [46] for their physics-informed neural network
trained on high fidelity alone which failed to discover the parameters of interest. However, Meng and Karniadakis
[46] constructed customized networks for high fidelity data and low fidelity data separately and then aggregated them
together by manually crafted correlations. Therefore, they refer to their approach as composite neural networks. Unlike
Meng and Karniadakis [46], we do not need to make any inductive bias about the data and, therefore, use a single
network initialized with Xavier initialization technique [18] that we separately train on high-fidelity and multi-fidelity
data. This shows the robustness and efficiency of our approach that we can train the same network on multi-fidelity
data without the need to design customized networks to process data differently. We let a single network discover and
extract features from multi-fidelity data with the help of known physics. We use Adam with its default parameters and
10−2 initial learning rate. We set the maximum penalty parameter µmax = 104 and train our network for 2000 epochs
total. As for the collocation points, we use the Sobol sequence and generate 400 residual points from across our domain
in each epoch. As considered in [46], we assume the flux at the inlet q0 is known, which allows us to use the integral
form of Eq. (31) given as follows,

q(x) = −K(h)
dh(x)

dx
= q0,

dq(x)

dx
= 0. (35)
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Figure 6: Parameter inference on multi-fidelity data for unsaturated flow through porous media: (a) low fidelity (LF)
and high fidelity (HF) pressure head data used for training, (b) hydraulic conductivity corresponding to low-fidelity and
high-fidelity training data, (c) pressure head reconstruction by PECANN model trained on high-fidelity and multi-fidelity
data separately, (d) reconstructed hydraulic conductivity by PECANN model trained by high-fidelity and multi-fidelity
data separately.

Fig. 6(a) and Fig. 6(b) depict the reconstructed pressure head and the corresponding hydraulic conductivity distributions
obtained from our PECAN trained on high-fidelity and multi-fidelity data separately. Compared with the exact solution,
it is seen that the inferred results are highly accurate, which shows the robustness and efficiency of our method.
Furthermore, in Table 4, we report the average and standard deviation of inferred α and m from our model along with
the results from Meng and Karniadakis [46]. The results are over 10 independent trials with random initialization using
Xavier [18] scheme.

From Table 4, we observe that our results are significantly outperforming the reported results in [46]. It is worth noting
that we are using just a single neural network architecture that is the low-fidelity model in the composite neural network
model proposed in [46] and our average CPU training time is only 4 seconds.

Table 4: Summary of the inferred parameters from using high-fidelity (HF) only or multi-fidelity (MF) data in the
learning process averaged over ten different runs. Note that the training time, averaged over 10 independent trials, for
our PECANN model is only 4 seconds on a CPU.

Models Avg. α σ(α) Relative Error(α) Avg. m σ(m) Relative Error(m)

Ref. [46] with HF data only 0.0440 - 22.22 % 0.377 - 4.72 %
PECANN with HF data only 0.0351 7.18 × 10−4 2.58% 0.354 2.78 × 10−3 1.78%
Ref. [46] with MF data 0.0337 7.91× 10−4 6.39% 0.349 3.70× 10−3 3.06%
PECANN with MF data 0.0359 7.51 × 10−4 0.30% 0.357 2.74 × 10−3 0.86%
Exact value 0.0360 - - 0.360 - -

5.2 Boundary Heat Flux Identification

In this section, we apply our framework to study an inverse heat conduction problem (IHCP) where boundary conditions
are partially accessible. Typically, these problems arise in a plethora of industrial and engineering applications where
measurements can only be made in easily-accessible locations or the quantity of interest can be measured indirectly.
Unfortunately, inverse problems are ill-posed and ill-conditioned because unknown solutions and parameter values
usually have to be determined from indirect observable data that contains measurement error [5, 29, 62, 69]. Here, we
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aim to identify spatio-temporal boundary heat flux given partial spatio-temporal temperature observations inside the
domain as in the work of Wang and Zabaras [69].

∂T

∂t
=
∂2T

∂x2
+
∂2T

∂y2
, 0 < x, y < 1, t ∈ [0, 1], (36a)

T (x, y, 0) = −2 sin(πx) sin(πy), 0 ≤ x, y ≤ 1, (36b)
T |x=1 = T |y=1 = 0, 0 < t < 1 (36c)

∂T

∂x

∣∣∣∣∣
x=0

= qx (unknown), 0 < t < 1, (36d)

∂T

∂y

∣∣∣∣∣
y=0

= qy, (unknown) 0 < t < 1, (36e)

where qx and qy are the unknown heat fluxes to be discovered. As considered in [69], an analytical solution to this
problem can be obtained as follows

T (x, y, t) = −2π sin(πx) sin(πy)e−2π2t, (37)

with the exact heat fluxes as follows

qx = −2π sin(πy)e−2π2t (38a)

qy = −2π sin(πx)e−2π2t. (38b)

An exact representation of qx and qy are presented in Fig. 7(a) and (c). The inverse problem is to discover qx and
qy given partial observation from a set of thirteen thermocouples with 0.125 space interval and 0.125 distance to the
boundary as shown in Fig. 7(c).

(a) (b) (c)

Figure 7: (a) exact qx, (b) exact qy , (c) location of thermocouples

The sampling time interval is taken as dt = 0.002. The heat flux history was reconstructed for the time range
t ∈ [0 : 0.05], N = 25, hence, there are 325 observations. Wang and Zabaras [69] represented the unknown flux
quantities by parametric linear functions and proposed a Bayesian approach by employing a specialized model of
Markov random field (MRF) as prior distribution. Three different cases were considered. Uncertainty in temperature
measurements was modeled as stationary zero-mean white noise with standard deviations of σ = 0.005 , σ = 0.01
and σ = 0.02. We employ a 3 hidden-layer fully-connected neural network with 30 neurons per layer to learn the
temperature field for the entire domain. Our optimizer is LBFGS with its default parameters and strong-wolfe line
search function built-in PyTorch framework. We set the limiting penalty parameter µmax = 104 similar to previous
problems and we train our network for 10000 epochs. We use Sobol sequences to sample 512 residual points in the
domain, 512 points for the Dirichlet boundary conditions, and 512 points for the initial condition only once before
training our network. The predictions of our neural network model are shown in Fig. 8. We observe that our network
has successfully inferred heat fluxes for all three cases. A summary of the error percentage from our method along with
the best results from [69] are provided in Table 5. We observe that our approach has improved the reported results of
[69] by a factor of 10 in all three cases.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Heat flux reconstruction: Top row: qx (a) predicted flux distribution for case I, (b) predicted flux distribution
for case II, (c) predicted flux distribution for case III. Bottom row: qy, (d) predicted flux distribution for case I, (e)
predicted flux distribution for case II, (f) predicted flux distribution for case III.

Table 5: qx reconstruction error by different methods with noisy measurement data

Models σ = 0.005 σ = 0.01 σ = 0.02

Ref. [69] 4.62% 5.45% 5.75%
PECANN with MF data 0.53% 0.61% 0.89%

5.3 Patient-specific Tumor Growth Modeling

In this section, we aim to develop a patient-specific tumor model using noisy magnetic resonance images (MRI).
Treatment for tumors involves surgery, radiation, and chemotherapy. Nevertheless, cancer cells may remain after
surgery, resulting in recurrence of the tumor and eventual death [65, 17]. Therefore, models based on patient-specific
information are needed to identify tumor cells that may lie beyond the threshold visible to magnetic resonance imaging.
Assuming isotropic brain structure and radial symmetry, we can describe tumor cell density evolution using the following
non-linear reaction-diffusion type partial differential equation [31, 33, 51, 50, 60].

∂u(r, t)

∂t
= D

∂2u(r, t)

∂r2
+ ρu(r, t)(1− u(r, t)), in Ω× [0, 5] (39)

∂u(r, t)

∂r
= 0, on ∂Ω (40)

u(r, 0) = ϕ(r), in Ω (41)

where Ω = {r | 0 ≤ r ≤ 10} is the domain with its boundary ∂Ω, u(r, t) is the unknown tumor cell density at time
t [year] and distance r [mm]. D is the unknown diffusion coefficient of tumor cells in the brain tissue and ρ is the
unknown proliferation coefficient. ϕ is a point source initial condition. It is assumed that at the time of death t = 5, the
visually detectable area of tumor volume is equal to a circle of 10 mm in radius. As a proof of concept, we generate
synthetic MRI data by solving Eq. (39) in forward mode using finite difference scheme with ∆r = 0.0196,∆t = 10−5

assuming D = 0.50, ρ = 1.00 with the following initial condition

ϕ(r) =
1

10
e−r, in Ω. (42)

Our synthetic data includes two solutions at t = 1 and t = 2 that simulate patient tumor cell density distribution
obtained from MRI of brain scans at the corresponding time states. We further corrupt these data using uncorrelated
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Gaussian noise with σ = 0.01. The corresponding noise percent of the data is presented in Table 6. From Table 6

Table 6: Error percentage of corrupted MRI data with uncorrelated Gaussian noise with standard deviation σ = 0.01

u(r, t = 1) u(r, t = 2)

Noise % 10.34% 5.01%

we observe that our data contain different levels of noise which indicates different levels of fidelity. Finally, we use
our corrupted tumor density distribution at t = 1 and t = 2 as low fidelity data along with Eq. (40) as our boundary
constraint (high fidelity data) to infer unknown parameters of Eq. (39). For this problem, we generate NΩ = 512
residual points to approximate the loss on Eq. (39) andN∂Ω = 512 to constrain the boundaries only once before training.
We also generate 512 points with their labels from our corrupted synthetic brain scan data. We use a feed-forward neural
network with two hidden layers each with 10 neurons per layer. Our optimizer is LBFGS with its default parameters
and strong wolfe line search function built in PyTorch framework [53]. Our network is trained for 200 epochs with
Xavier initialization scheme [18]. We initialize D ∈ [0.3285, 0.973] and ρ ∈ [0.73, 2.92] randomly as suggested in
[39]. From Fig. 9 we observe that our model not only reconstructs the original data from corrupted noisy data, but also
generalizes well to predict the unseen MRI data at the terminal year t = 5. A summary of our inferred parameters are

Figure 9: Natural tumor cell density distribution at different time states. Top row: (a) synthetic brain scan at year one
used for training, (b) synthetic brain scan at year two used for training, (c) synthetic brain scan at year five used for
testing . Bottom row: (d) reconstructed brain scan data at year one, (e) reconstructed brain scan data at year two, (f)
predicted brain scan data at year five.

presented on table 7 over 10 independent trials with random Xavier initialization scheme [18].

Table 7: Tumor growth modeling. Summary of inferred parameters using multi-fidelity data in the learning process
averaged over ten independent trials with random initialization

D ρ

Exact 0.50 1.00
PECANN with MF data 0.49± 4.90× 10−3 1.00± 9.93× 10−4
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6 Conclusion

We have shown that the unconstrained optimization problem formulation pursued in physics-informed neural networks
(PINN) is a major source of poor performance when the PINN approach is applied to learn the solution of more
challenging multi-dimensional PDEs. We addressed this issue by introducing physics- and equality-constrained artificial
neural networks (PECANN), in which we pursue a constrained-optimization technique to formulate the objective
function in the first place. Specifically, we adopt the augmented Lagrangian method (ALM) to constrain the PDE
solution with its boundary and initial conditions, and with any high-fidelity data that may be available. The objective
function formulation in the PECANN framework is sufficiently general to admit low-fidelity data to regularize the
hypothesis space in inverse problems as well. We applied our PECANN framework for the solution of both forward
problems and inverse problems with multi-fidelity data fusion. For all the problems considered, the PECANN framework
produced results that are in excellent agreement with exact solutions, while the PINN approach failed to produce
acceptable predictions.

It is a common practice to use conventional feed-forward neural networks in the PINN approach. However, these type
of neural networks are known to suffer from the so-called vanishing gradient problem, which stalls the learning process.
Residual layers (a.k.a. ResNets) that were originally proposed by He et al. [24] tackle the vanishing gradient problem
with identity skip connections. In our work, we have modified the original residual layers by restricting them to a single
weight layer with a tanh activation function and identity skip connections. We find our leaner version of the residual
layers to be very effective in improving the accuracy of the PDE predictions for both the original PINN model and our
PECANN model.

Our findings suggest that not only the choice of the neural network architecture, but also the optimization problem
formulation is crucial in accurately learning PDEs using artificial neural networks. We conjecture that future progress in
physics-constrained (informed) learning of PDEs would come from exploring new approaches in the field of non-convex
constrained optimization field. Future endeavors could shed light on challenging questions such as: how does the loss
landscape of neural networks change with respect to the optimization problem formulation? What is the optimal neural
network architecture for PDE learning? And, is there a physics-based approach in searching for optimal architectures?
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A Additional Examples

A.1 One-dimensional Poisson’s Equation

The aims of this pedagogical example are twofold: First, we thoroughly demonstrate the implementation intricacies of
our proposed method and highlight its advantages over the PINN approach. Second, we demonstrate the significant
improvement achieved in the model prediction using our modified residual architecture relative to the original residual
networks [24].

Let us consider the following one-dimensional Poisson’s equation

d2u

dx2
= −(15π)2 cos(15πx), x ∈ Ω, (43)

u(x) = cos(15πx), x ∈ ∂Ω, (44)
where Ω = {x |0 ≤ x ≤ 1} and ∂Ω is its boundary. The exact solution to the above problem is a sinusoidal nonlinear
function u(x) = cos(15πx). Considering a neural network solution for the above equation as û(x; θ) parameterized
with θ, we write the residual form of this one-dimensional Poisson’s equation as follows:

F :=
d2uθ
dx2

+ (15π)2 cos(15πx) x ∈ Ω, (45)

B := uθ(x)− cos(15πx), x ∈ ∂Ω. (46)
Next, we use the above residual form of this differential equation to construct an objective function as proposed earlier
in Eq.(19)

L(θ) =

NΩ∑
i=1

|F(x(i))|2 +

2∑
i=1

λ(i)φ(B(x(i))) +
µ

2

2∑
i=1

|φ(B(x(i)))|2 (47)

15



Physics and Equality Constrained Artificial Neural Networks A PREPRINT

Figure 10: Performance comparison of PINN vs PECAN for different neural network architectures: (a) conventional
neural network, (b) original residual neural network, (c) modified residual neural network. Note that PECANN approach
converged with all network architectures while PINN only converged with our proposed modified residual neural
network but with poor norms of errors

where µ is the penalty parameter and NΩ is the number residual points sample from Ω at every epoch. λ ∈ R2 is a
vector of Lagrange multipliers for the boundary constraints and φ is the quadratic distance function. In contrast to our
constrained optimization with the ALM, the composite objective function adopted in PINNs (i.e. Eq. 4) yields the
following loss function for the current example

L(θ) =
1

NΩ

NΩ∑
i=1

|F(x(i))|2 +
1

2

2∑
i=1

|B(x(i))|2 (48)

Having constructed the objective functions using the constrained-optimization method in the present work and the
composite approach adopted in PINNs, we design three networks in such a way that they have the same number of
neurons and hidden layers to allow a fair comparison. We use six weight layers with 50 neurons per layer in all three
neural network models. More specifically, we have six weight layers in our conventional feed-forward neural network
model. Similarly, our second neural network model with the original residual layers has one weight layer in the front
with two residual layers and an output weight layer, which makes a total of six weight layers. For our last neural
network model with our proposed residual layers, we have a weight layer succeeded by four modified residual layers
and an output weight layer that amounts to six weight layers as well. Therefore, all three models have the same number
of neurons and the same number of weight layers and are end-to-end trainable. For this problem, the parameters of
the network are initialized randomly with the Xavier initialization technique [18]. We use Adam [35] with an initial
learning rate of 10−2. We reduce our learning rate by a factor of 0.95 after 100 epochs with no improvement in the
objective function. We use the same hyperparameters and train all the models under the same training settings with
both objectives as in Eq. (47) and Eq. (48). We set the limiting penalty parameter µmax = 102. As for the collocation
points, we randomly generate NΩ = 654 residual points from across our domain with uniform probability along with
two boundary conditions at each optimization step. The results from all three neural network architectures trained with
the PINN and PECANN approaches are juxtaposed in Fig. 10. We observe from these results that the PINN model with
a composite objective function is visibly sensitive to the neural network choice and benefits the most from the adoption
of modified residual layers, whereas the PECANN model with equality-constrained optimization is qualitatively less
sensitive to the choice of the neural network architecture and performs very well for all three networks. From Table 8 we

Table 8: One dimensional Poisson’s equation: summary of relative L2 norms and L∞ norms for different neural network
models trained with different approaches

PINN PECANN
Relative L2 L∞ L2 L∞

Conventional NN 1.00 1.00 1.73 × 10−3 1.80 × 10−3

Original Residual NN 4.75 5.84 3.41 × 10−3 3.43 × 10−3

Proposed Residual NN 4.63× 10−2 5.74× 10−2 1.35 × 10−4 1.66 × 10−4

observe that for conventional NN and for the original residual neural network the relative L2 error from our PECANN
model is three orders of magnitude lower than the one obtained from our PINN model. However, with our lean residual
network, it decreases to two orders of magnitude which demonstrates the impact of our neural network architecture.

16



Physics and Equality Constrained Artificial Neural Networks A PREPRINT

Figure 11: Three dimensional Poisson’s equation. Top row: cross section view of the solution at z = 0.2, (a) exact
solution ,(b) predicted solution from PECANN model, (c) absolute point-wise error distribution. Bottom row: plots
over line obtained from different methods, (d) straight line connecting point (0, 0, 0) to point (1, 1, 1), (e) straight line
connecting (0, 0, 0) and (0, 0, 1) points, (f) straight line connecting point (0, 0, 1) to point at (1, 0, 1)

A.2 Three-dimensional Poisson’s Equation

We consider the following non-homogeneous three dimensional Poisson’s equation in a cubic domain

∇2u(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω, (49)

subject to the following boundary conditions

u(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂Ω, (50)

where Ω = {0 ≤ x, y, z ≤ 1} with its boundary ∂Ω, f and g are known source functions in Ω and on ∂Ω . We
manufacture a sinusoidal solution of the following form

u(x, y, z) = cos(2πx) cos(πy) cos(πz),∀(x, y, z) ∈ Ω, (51)

We will use the exact solution eq. (51) to evaluate the source functions f and g and solve Eq.(49). For this purpose, we
use our lean residual neural network with three hidden layers each with 50 neurons. Our optimizer is Adam [35] with
its default parameters and 10−2 initial learning rate. We also reduce our learning rate by a factor of 0.95 if the objective
does not improve after 100 optimization steps. Our network is trained for 15000 epochs with randomly initialized
weights according to Xavier scheme [18]. We generate N∂Ω = 6× 256 number of points on the boundaries ∂Ω only
once before training and NΩ = 256 residual points in the domain Ω at every optimization step. We present a section
view of the predicted solution by our PECANN model in Fig. 11. Since our physics-informed neural network failed to

Table 9: Three dimensional Poisson’s equation: summary of relative L2 norms and L∞ norms for different neural
network models averaged over 10 independent trials with random initialization with Xavier scheme

Models Relative L2 L∞ NΩ N∂Ω

PINN 1.09× 10−1 ± 1.54× 10−2 2.31× 10−1 ± 4.56× 10−2 256× 15000 6× 256
PECANN 2.39 × 10−3 ± 2.93 × 10−4 6.21 × 10−3 ± 1.55 × 10−3 256× 15000 6× 256

converge as can be seen from the error norms in Table 9, we did not include a section view of its predicted solution.
However, we provide plots over straight lines drawn between two points within the domain. From Fig. 11(c)-(e) we
observe that our PINN model either underpredicted or overpredicted the regions with high gradients and regions close to
the boundaries. However, our PECANN model successfully learned the underlying solution. From Table we observe
that for the relative L2 error from our PECANN model is two orders of magnitude lower than the one obtained from our
PINN model which highlights the effectiveness of our method over conventional physics-informed neural networks.
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