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Abstract: Epidemiologic evidence consistently links urban air pollution exposures to health, even after
adjustment for potential spatial confounding by socioeconomic position (SEP), given concerns that
air pollution sources may be clustered in and around lower-SEP communities. SEP, however, is often
measured with less spatial and temporal resolution than are air pollution exposures (i.e., census-tract
socio-demographics vs. fine-scale spatio-temporal air pollution models). Although many questions
remain regarding the most appropriate, meaningful scales for the measurement and evaluation of each
type of exposure, we aimed to compare associations for multiple air pollutants and social factors
against cardiovascular disease (CVD) event rates, with each exposure measured at equal spatial
and temporal resolution. We found that, in multivariable census-tract-level models including both
types of exposures, most pollutant–CVD associations were non-significant, while most social factors
retained significance. Similarly, the magnitude of association was higher for an IQR-range difference
in the social factors than in pollutant concentrations. We found that when offered equal spatial and
temporal resolution, CVD was more strongly associated with social factors than with air pollutant
exposures in census-tract-level analyses in New York City.

Keywords: spatial scale; social factors; socioeconomic position; urban air pollution; cardiovascular
disease (CVD)

1. Introduction

Evidence from environmental epidemiology consistently links urban air pollution to a variety of
health risks including increased mortality, cardiovascular disease and respiratory disease [1]. It has
become standard practice, in this field, to adjust models for potential confounding by socioeconomic
position (SEP), because air pollution is often higher in lower-SEP communities [2–4] and because many
factors associated with lower SEP (i.e., poverty, lower education, violence, poor diet) may directly
impact health.
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In epidemiology, exposure misclassification can lead to biased estimates of association that can be
towards or away from the null, depending on whether the misclassification is differential (i.e., if the
measurement of the exposure does not depend on the ‘true’ exposure), and whether the misclassification
is dependent (e.g., if there is an unmeasured variable that influences misclassification in one or more
covariates) [5]. Comparing associations with health for two different exposures, measured at different
resolutions, may reveal stronger associations for the measured with less error, assuming that the errors
are not dependent [6].

In air pollution epidemiology, increasing emphasis has been placed on minimizing misclassification
in air pollution exposure estimates, in both time and space [7]. Often, however, less attention is given
to possible effects of misclassification in the confounders, including SEP. This is perhaps most notable
in the commonplace use of demographic or other ecologic (area-level) administrative variables as
SEP indicators (e.g., census tract poverty rate), even where individual measures would be preferable.
Although an increasing number of studies have been investigating whether and how SEP, and its
component social stressors, may modify air pollution-health relationships [8–13]), fewer studies have
rigorously compared social stressors as co-exposures with air pollution [14,15], to assess their relative
impacts on health.

Many individual-level studies of air pollution health effects estimate pollution exposures at
fine spatio-temporal scales—often residence-specific daily estimates, using regulatory data (e.g.,
U.S. EPA AQS monitors), or estimates derived from land-use regression (e.g., [16–18]), spatial
interpolation (e.g., [19,20]), or related methods [21]. In contrast, the SEP indicators used are often,
at best, individual-level categorical variables (e.g., income category, education level), and there is
often an implicit assumption that these factors do not vary over time, although, in actuality, factors
such as income can vary greatly over time, particularly for low-income or precariously-employed
individuals [22,23]. More commonly, however, investigators rely on area-based administrative data as
proxy indicators for SEP, especially for larger cohorts. These indicators tend to be reported as annual
averages but are actually collected even less frequently. For example, the U.S. Census is performed once
every ten years, and the American Community Survey (ACS) reports annual, three-year, or five-year
running averages, reported at census tract or block group. This vast mismatch in temporal and spatial
resolution between air pollution and SEP exposure estimates may lead to problematic, and largely
unknown, patterning in residual confounding, misleading comparisons of attributable health effects,
and unknown problems in testing effect modification (interactions) among variables measured with
different accuracy.

A further conceptual challenge is that air pollution and social factors have different meaningful
scales of variation—an issue related to the ‘Uncertain Geographic Context Problem’ (UGCoP), which
states that researchers often lack knowledge of the “true causally relevant” geographic scale at which
a given exposure may influence health or other outcomes [24]. For example, air pollution is known
to differ sharply within several hundreds of meters of a major road [4,25]; as such, persons living
immediately adjacent to highways may have exposures many times higher than those living only a
few hundred meters away. This meaningful scale differs by pollutant and urban structure, however;
primary pollutants (e.g., nitrogen oxides (NOx)) decay rapidly near-source, while secondary pollutants
produced via chemical reactions can be more spatially homogenous [26]. In contrast, some social
factors may vary meaningfully at the neighborhood scale, if the “neighborhood” accurately captures a
social and political space that is relatively homogenous (as in the case of census sociodemographic
data) or delineates access to shared resources (e.g., schools). Other social factors may exert influence on
health at very different scales, however; the impact of a violent event on distress and health may be very
different, for example, if the event occurs on one’s block, several blocks away, or on the other side of
the neighborhood [22,27]. A further nuance is that neighbors can define and delineate neighborhoods
differently [28]; researcher-imposed neighborhood delineations are often driven by data availability,
rather than meaningful neighborhood scales [29,30].
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In terms of temporality, air pollution can vary greatly across seasons, day-to-day, and within-day
with meteorology, changes in source intensity (e.g., rush hours), and photochemistry. Many social
factors (e.g., neighborhood poverty rate) may change more slowly, although some social factors, such as
urban violence, have distinct seasonal and diurnal patterns. Although some studies in air pollution
epidemiology and social epidemiology have explored scales of measurement appropriate to each
exposure individually (i.e., different radial buffers in air pollution exposures [16], or neighborhood
definitions for social stressor measurement [28]), no studies, to our knowledge, have examined spatial
scale of measurement on epidemiological effect estimates for both exposures.

In this empirical paper, we aimed to examine the relative contributions of air pollution and
social factors on CVD, comparing exposures measured on the same spatial and temporal scale. To do so,
we estimated multiple air pollutants and social factors (i.e., community SEP and violence) at the same
spatial (census tract) and temporal (annual) scale in New York City (NYC), and examined their joint
association with age-adjusted rates of cardiovascular disease (CVD) emergency department (ED) visits
at NYC hospitals from 2005 to 2011.

2. Materials and Methods

2.1. Design and Data

This ecologic study included all emergency department (ED) visits for CVD (ICD-9 code: 390–459)
in NYC from 2005 to 2011. Data were obtained from the New York State Department of Health
Statewide Planning and Research Cooperative System (SPARCS). Cases less than 18 years old or older
than 95 were excluded from analysis (~2% of cases), in keeping with most studies in this field, because:
(1) CVD in children or the very old is likely confounded with multiple co-morbidities, on which we
lacked high-quality information; and (2) this small number of cases were too few to substantially alter
results. We applied a multi-step address validation and geocoding process [31] for the remaining
1,113,185 case addresses, which we then assigned to NYC census tracts (n = 2167 in total, using year
2010 census boundaries) using point-in-polygon methods.

We examined relationships between socioeconomic position and chronic air pollution exposures
on census tract CVD event rates using two composite socioeconomic indicators (a Socioeconomic
Deprivation Index (SDI) and the Index of Concentration at the Extremes for Income and Race/Ethnicity
(ICE R&I), both detailed below), plus a number of social indicators capturing key aspects of social
and socioeconomic susceptibility (i.e., economic/material deprivation, exposure to crime, and racial/ethnic
composition). Indicators of spatial variation in chronic air pollution exposures were derived from NYC
Community Air Survey (NYCCAS) spatial surfaces, as described below.

2.2. Air Pollution

Citywide air pollution data were obtained from the NYC Community Air Survey (NYCCAS),
one of the largest studies of intra-urban variation in multiple air pollutants. Spatial saturation
monitoring of multiple pollutants was performed year-round at 150 sites across all NYC communities
for two years, from December 2008 to November 2010 [32]. Land use regressions were used to model
long-term average intra-urban spatial variation in fine particles (PM2.5) and elemental constituents,
nitrogen dioxide (NO2), wintertime sulfur dioxide (SO2), and summertime ozone (O3) [33]. Details
about methods, validation, and results from the NYCCAS exposure models for each pollutant are
described in [32] and [33]. The NYCCAS surfaces provided annual-average concentration estimates
(season-specific averages for SO2 and O3) at the centroid of every 100 m grid cell across the city, which,
for purposes of this analysis, we averaged by census tract.
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2.3. Social Factors at the Census Tract Level

2.3.1. Felony Assault and Violent Crime Rates

Data on all violent offenses (including murder, assault, burglary, robbery) within NYC from 2006
to 2017 were obtained from NYC OpenData [34]. Rape was excluded, as these crimes are not geocoded.
Data were coded as felony assault or violent crime according to the FBI Uniform Crime Reporting
program [35]. Crime data included latitude and longitude, which we spatially joined to census tracts,
and summed to obtain the total number of felony assaults and total violent crime events per census
tract. Crime rates per 10,000 population were calculated using the census tract residential population,
obtained from the ACS 2007 to 2011 5 year estimates [36]. Crime rates were created from the 2009
data, which covers the mid-point of our study period; we confirmed that spatial patterns in crime are
extremely consistent in NYC, with census tract annual-average crimes rates correlating at r > 0.90
across all data years.

2.3.2. Sociodemographic Data

Data on poverty and race/ethnicity at the census tract level were extracted from the 2007 to 2011
ACS 5 year estimates [36], which covers the mid-point and majority of our 2005–2011 study period.
These variables include the proportion of the population: living at or below 200% of the federal poverty
level (FPL), non-Hispanic white, non-Hispanic black, and Hispanic.

Socioeconomic Deprivation Index (SDI): To examine material deprivation, we created a citywide
socioeconomic deprivation index (SDI) using a spatially-stratified principal components analysis (PCA)
with 25 SEP indicators from the ACS 2007 to 2011 5 year estimates [36] (see Supplemental Material on
SDI Methods). This measure was created following standard PCA processes and the methods we used
previously [37]. Briefly, local indicators of spatial autocorrelation (LISA) tests were used to identify
spatial strata (areas) that maximized internal and minimized external correlation among the 25 SEP
variables. We then ran a citywide PCA to remove redundant variables, followed by a PCA within each
borough to identity key local variables. The final SDI included eight SEP variables (median household
income, % of residents with less than a high school diploma, % of families with annual income <$35,000,
% of renter or owner housing costs in excess of 30% of household income, % of households living at
or below 200% of FPL, % of households receiving public assistance, % of households receiving food
stamp/SNAP benefit, and % of households with an annual income >$50,000). The first factor of the
PCA explained 53% of the total variance. We operationalized SDI as the census-tract level interquartile
range (IQR) of standardized scores.

Index of Concentration at the Extremes: Income+Race/Ethnicity (ICE R&I): We observed distinct spatial
patterning in residential location by race in NYC, which coincided with exposures to chronic social
stressors (Figure 1). To begin to explore this racialized economic segregation in NYC, we calculated
the Index of Concentration at the Extremes: Income + Race/Ethnicity (ICE R&I) [38,39]. This index
is designed to empirically capture entrenched racialized patterns in poverty, wherein low-income
black and high-income white persons occupy opposite ends of the U.S. socioeconomic spectrum [39].
This measure quantifies the extent to which an area’s residents are disproportionately comprised of
individuals at either extreme of socioeconomic or racial privilege. A value of 1 means that 100% of the
population is comprised of white and higher-SEP individuals; a value of −1 indicates that 100% of the
population is comprised of black and lower-SEP individuals.
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Figure 1. Spatial distribution in social covariates across NYC. Maps are scaled to depict global (overall)
patterns across all 2167 census tracts of NYC, corresponding to global analyses presented here, rather
than fine-scale differences between individual tracts.

2.4. Statistical Analysis

Age-adjusted CVD incidence rates per 100,000 population were calculated for census tracts
using the SPARCS ED data and 2000 U.S. Standard Population. Of the 2167 total NYC census tracts,
we excluded those with fewer than 200 residents (N = 63), leaving N = 2104. We further excluded census
tracts that were outliers for air pollution and social factors, identified as +/− 3 standard deviations from
the mean and, in order to compare across multiple models, performed listwise deletion for missing
data across census tracts (N = 123). The final sample included N = 1981 census tracts. All pollutant
and social factor covariates were IQR-standardized.

We quantified correlations among age-adjusted CVD incidence rates, annual-average NO2, PM2.5,
SO2, and O3, and social factors at the census tract level using Pearson correlation coefficients. We used
negative binomial regression to model CVD incidence rates as a function of each air pollutant separately,
with and without adjustment for social factors. We first modeled each pollutant and social stressor
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in separate unadjusted models, then included each social factor in a model simultaneously with
each pollutant.

Our social indicators represented three broad categories: (1) economic/material deprivation (i.e.,
SDI, % living at or below 200% of the FPL); (2) exposure to crime (i.e., violent crime rate, assault
rate), and (3) racial/ethnic composition (i.e., % non-Hispanic white, % non-Hispanic black, % Hispanic).
In final fully-adjusted models for each pollutant-stressor combination, we adjusted using the strongest
predictor from each of the other two stressor categories. (i.e., SDI was the strongest predictor among
economic deprivation variables, and thus used as an adjustment variable; violent crime the strongest
crime variable; % non-Hispanic black was the strongest ethnicity/race variable.) For example, the final
model for NO2 and assault rate was adjusted for SDI and % non-Hispanic black, but not for violent
crime rate.

Sensitivity analyses were conducted to evaluate the consistency of our estimates. We examined
the impacts of spatial autocorrelation on measures of association using Moran’s I and spatial filtering
methods to assess and remove spatial autocorrelation from the residuals of negative binomial regression
and negative binomial generalized linear models (GLMs). In addition to the census tract-level analyses,
we estimated the relative contributions of air pollution and social factors on CVD at the United Hospital
Fund area scale (N = 34) (see Materials and Methods UHF in the Supplemental Material). Finally,
because CVD is a very broad category, and the mechanisms linking both pollutants and stressors are
many and varied, the associations reported here may differ by sub-diagnosis; as a sensitivity-test,
we also ran these models for Ischemic Heart Disease (IHD), the most-prevalent sub-diagnosis in
our dataset.

Study procedures were reviewed and approved by the Drexel University Institutional
Review Board.

3. Results

3.1. Descriptive Statistics

From January 1, 2005 to December 31, 2011 there were 1,113,185 acute CVD events presented
at hospitals in NYC. Table 1 presents summary statistics for age-adjusted CVD incidence rates,
average pollutant concentrations, and social factors by census tract. Census-tract CVD incidence rates
averaged 14,387 per 100,000 population (range = 1293–58,500). Census-tract mean concentrations
of annual-average NO2 and PM2.5, wintertime SO2, and summertime O3 concentrations were 24.4
(SD = 3.4), 10.4 (SD = 1.0), 4.4 (SD = 2.0), and 27.2 (SD = 1.5), respectively.
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Table 1. Summary statistics by census tract.

N Min Mean Max Std Dev Median IQR

Age-Adjusted CVD/100,000 1981 1293 14,387 58,500 6316 13,046 7671
Average NO2 1981 12.7 24.4 38.0 3.4 24.4 3.9

Average PM2.5 1981 8.5 10.4 14.4 1.0 10.2 1.4
Average SO2 1981 1.4 4.4 11.7 2.0 3.8 2.1
Average O3 1981 21.1 27.2 32.9 1.5 27.4 1.6

Socioeconomic Deprivation
Index (SDI)* 1981 −1.3 0.1 1.9 0.7 0 1.0

ICE Index: Race and Income
(ICE R&I)* 1981 −0.6 0 0.6 0.2 0.0 0.3

200% of Federal Poverty Line 1981 0 0.4 0.9 0.2 0.4 0.3
Median Household Income 1981 9662 54,344 136,053 22,903 51,786 30,679

Violent Crime Rate 1981 0 44.2 323.3 39.0 33.8 44.3
Assault Rate 1981 0 20.3 175.1 20.4 14.2 23.5

Non-Hispanic white 1981 0 0.3 1.0 0.3 0.2 0.6
Non-Hispanic black 1981 0 0.3 1.0 0.3 0.1 0.4

Hispanic 1981 0 0.3 0.9 0.2 0.2 0.3

CVD = cardiovascular disease, NO2 = nitrogen dioxide, PM2.5 = fine particulate matter, SO2 = sulfur dioxide,
O3 = ozone, Std Dev = Standard Deviation, IQR = interquartile range * SDI and ICE are composite variables.

Age-adjusted CVD incidence rates were not strongly correlated with any annual-average air
pollutant concentration (Table 2). All social factors were correlated with CVD rates in the hypothesized
direction; all were positively correlated with CVD, except for median household income, percent
non-Hispanic white residents, and the ICE race and income index, each of which was negatively
correlated with CVD rates (Table 2).

As expected, NO2, PM2.5, and SO2 were highly correlated with one another, and negatively
correlated with O3 (a secondary pollutant). Social factors were not strongly correlated with pollutants,
in keeping with our prior results [40].
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Table 2. Pearson correlations between census-tract level CVD rates, annual-average air pollutant concentrations, and social factors.

CVD NO2 PM2.5 SO2 O3
SDI

Index
ICE: R&I

Index Poverty Median
Income

Violent
Crime

Assault
Rate

%Non-
Hispanic

white

% Non-
Hispanic

black

%
Hispanic

Mean Age-Adjusted CVD/100,000 1.00
Average NO2 0.16 1.00

Average PM2.5 0.21 0.83 1.00
Average SO2 0.15 0.57 0.76 1.00
Average O3 −0.12 −0.92 −0.80 −0.57 1.00

Socioeconomic Deprivation Index (SDI)* 0.60 0.24 0.33 0.33 −0.16 1.00
ICE Index: Race and Income* −0.64 −0.10 −0.12 −0.15 0.04 −0.70 1.00
200% of Federal Poverty Line 0.57 0.29 0.37 0.34 −0.20 0.95 −0.63 1.00
Median Household Income −0.51 −0.19 −0.24 −0.27 0.10 −0.90 0.72 −0.86 1.00

Violent Crime Rate 0.56 0.28 0.28 0.19 −0.19 0.46 −0.53 0.44 −0.39 1.00
Assault Rate 0.57 0.25 0.26 0.18 −0.17 0.51 −0.56 0.48 −0.43 0.89 1.00

Non-Hispanic white −0.51 −0.12 −0.15 −0.19 0.06 −0.54 0.84 −0.48 0.49 −0.49 −0.50 1.00
Non-Hispanic black 0.47 −0.02 −0.07 −0.04 0.02 0.17 −0.72 0.10 −0.18 0.40 0.42 −0.65 1.00

Hispanic 0.34 0.18 0.37 0.43 −0.11 0.59 −0.31 0.57 −0.48 0.28 0.30 −0.46 −0.18 1.00

Bolded values indicate stronger correlations, with absolute value >0.60. ICE: R&I = index of concentration at the extremes: race and income; SDI = social deprivation index. *SDI and ICE
are composite variables.
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3.2. Unadjusted Models

Table 3 presents estimated unadjusted associations between CVD incidence rates and each annual
average pollutant concentration and social factor at the census tract level. In unadjusted models,
NO2, PM2.5, and SO2 were significantly positively associated with CVD rates; O3 displayed significant
protective (negative) associations with CVD rates.

Table 3. Associations from unadjusted negative binomial regression models, for each pollutant and
social factor separately vs. census tract CVD incidence rate. Incidence rate ratio (IRR) represents the
change in the CVD incidence rate that occurs with a 1-IQR change in each covariate. Bolded values
indicate statistical significance after adjusting for the false discovery rate. N = 1981.

IRR (95% CI) AIC

Air Pollutants

Average NO2 1.09 (1.07, 1.12) 39,765
Average PM2.5 1.14 (1.11, 1.17) 39,721
Average SO2 1.07 (1.05, 1.09) 39,776
Average O3 0.94 (0.92, 0.96) 39,793

Social Factors

Socioeconomic Deprivation Index 1.43 (1.40, 1.46) 38,901
ICE: Race and Income 0.69 (0.68, 0.70) 38,649

% living below 200% of Federal Poverty Line (FPL) 1.45 (1.42, 1.49) 38,998
Median Household Income 0.75 (0.73, 0.76) 39,142

Violent Crime Rate 1.33 (1.31, 1.36) 39,023
Assault Rate 1.34 (1.32, 1.37) 38,990

% Non-Hispanic white 0.65 (0.64, 0.67) 39,086
% Non-Hispanic black 1.35 (1.32, 1.38) 39,264

% Hispanic 1.21 (1.18, 1.24) 39,567

IRR = incident rate ratio; 95% CI = 95% confidence interval; ICE: R&I = index of concentration at the extremes:
race and income; SDI = social deprivation index. SDI and ICE are composite variables. AIC = Akaike Information
Criterion. Bolded values indicate significant associations.

The two social composite indices—the SDI and ICE—were significantly associated with CVD
in the hypothesized directions. All other social factors, except median household income and
percent non-Hispanic white population, were significantly positively associated with CVD rates.
As hypothesized, median household income and percent non-Hispanic white population were
negatively associated with CVD rates, such that, for instance, a 1-IQR increase in the percent
non-Hispanic white was associated with an expected 35% decrease in CVD incidence rate (IRR = 0.65,
95% CI = 0.64–0.67).

The magnitude of association for each social factor with CVD rates was much higher than for the
air pollutants. For example, a 1-IQR increase in NO2 was associated with a 9% increase in CVD cases
per 100,000 population (IRR = 1.09, 95% CI = 1.07–1.12); in contrast, a one-IQR increase in the SDI
was associated with a 43% increase in CVD cases (IRR = 1.43, 95% CI=1.40–1.46), an increase almost
5 times greater.

3.3. Mutually-adjusted Models

In mutually-adjusted models (Table 4), examining each pollutant-social factor combination against
census-tract CVD rate, the social factors consistently demonstrated a substantial parameter estimate in
the hypothesized direction; all were positively associated with CVD, except for the ICE Index, median
household income, and percent non-Hispanic white population, all negatively associated with CVD.
When adjusted for multiple testing (i.e., false discover rate), some of these associations were no longer
significant (shown as not bolded in Table 4).
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Table 4. Mutually-adjusted negative binomial models for each pollutant-social factor combination, vs. census tract CVD incidence rate. Incident rate ratio (IRR)
represents the change in CVD incidence rate per 1-IQR change in each covariate. Bolded values indicate statistical significance after adjusting for the false discovery
rate. N = 1981.

NO2 PM2.5 SO2 O3

Exposures IRR (95% CI) AIC IRR (95% CI) AIC IRR (95% CI) AIC IRR (95% CI) AIC

Pollutant 1.01 (0.99, 1.03) 38,902 1.00 (0.98, 1.02) 38,903 0.96 (0.95, 0.98) 38,884 1.00 (0.98, 1.01) 38,903
SDI 1.43 (1.4, 1.46) 1.43 (1.4, 1.47) 1.46 (1.43, 1.49) 1.43 (1.4, 1.46)

Pollutant 1.04 (1.03, 1.06) 38,623 1.07 (1.05, 1.09) 38,597 1.01 (1, 1.03) 38,647 0.97 (0.96, 0.98) 38,634
ICE: R&I 0.69 (0.68, 0.7) 0.69 (0.68, 0.71) 0.69 (0.68, 0.7) 0.69 (0.68, 0.7)

Pollutant 1.00 (0.98, 1.02) 39,000 0.99 (0.97, 1.01) 38,999 0.97 (0.95, 0.98) 38,984 1.00 (0.99, 1.02) 38,999
% < 200% FPL 1.45 (1.42, 1.49) 1.46 (1.42, 1.5) 1.48 (1.44, 1.52) 1.46 (1.42, 1.49)

Pollutant 1.03 (1.01, 1.05) 39,133 1.04 (1.02, 1.07) 39,130 0.99 (0.98, 1.01) 39,144 0.98 (0.96, 0.99) 39,138
Median Income 0.75 (0.74, 0.77) 0.75 (0.74, 0.77) 0.74 (0.73, 0.76) 0.75 (0.73, 0.76)

Pollutant 1.00 (0.98, 1.02) 39,025 1.03 (1.01, 1.06) 39,016 1.02 (1, 1.03) 39,020 1.00 (0.98, 1.02) 39,025
Violent Crime 1.33 (1.31, 1.36) 1.32 (1.29, 1.35) 1.33 (1.3, 1.35) 1.33 (1.31, 1.36)

Pollutant 1.00 (0.99, 1.02) 38,992 1.03 (1.01, 1.05) 38,984 1.02 (1, 1.03) 38,988 1.00 (0.98, 1.02) 38,992
Assault Rate 1.34 (1.31, 1.37) 1.33 (1.3, 1.36) 1.33 (1.31, 1.36) 1.34 (1.31, 1.37)

Pollutant 1.04 (1.03, 1.06) 39,065 1.07 (1.05, 1.1) 39,047 1.01 (1, 1.03) 39,086 0.97 (0.95, 0.99) 39,075
% non-Hispanic white 0.66 (0.64, 0.68) 0.67 (0.65, 0.68) 0.66 (0.64, 0.68) 0.66 (0.64, 0.68)

Pollutant 1.09 (1.07, 1.11) 39,184 1.16 (1.13, 1.18) 39,093 1.08 (1.06, 1.1) 39,185 0.94 (0.93, 0.96) 39,227
% non-Hispanic black 1.35 (1.32, 1.38) 1.36 (1.33, 1.39) 1.35 (1.32, 1.38) 1.35 (1.32, 1.38)

Pollutant 1.05 (1.03, 1.08) 39,544 1.06 (1.03, 1.09) 39,552 1.00 (0.98, 1.02) 39,569 0.96 (0.94, 0.98) 39,554
% Hispanic 1.20 (1.17, 1.23) 1.18 (1.16, 1.21) 1.21 (1.18, 1.24) 1.20 (1.18, 1.23)

IRR = incident rate ratio; 95% CI = 95% confidence interval; ICE: R&I = index of concentration at the extremes: race and income; SDI = social deprivation index. SDI and ICE are composite
variables. AIC = Akaike Information Criterion..
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In most cases, after adjusting for SDI, poverty, or violence rates, air pollution–CVD associations
became null. NO2 and PM2.5 retained statistical significance with adjustment for median household
income, the ICE index, and race/ethnic composition. In a few cases, SO2–CVD associations reversed
direction with adjustment for SDI or poverty. All associations between O3 and CVD rate were null,
except for an adverse association where adjusting for race/ethnic composition and the ICE index.

After mutually adjusting for each pollutant-social factor combination, the magnitude of association
for social factors with CVD incidence rate remained much higher than that of air pollutants. In fact,
the IRR for a one-IQR increase in SDI remained at 1.43 (as observed in the unadjusted models [Table 3])
for models adjusted for NO2 (95% CI: 1.40−1.46), PM2.5 (95% CI: 1.40−1.47), and O3 (95% CI: 1.40−1.46)
and increased to 1.46 after adjusting for SO2 (95% CI: 1.43−1.49).

3.4. Fully-adjusted Models

Table 5 presents the results from the fully-adjusted models for each pollutant–social factor
combination (i.e., these models were additionally adjusted for the strongest predictor from each of the
other two social factor categories—the SDI, percent non-Hispanic black residents, and/or violent crime
rate). In most cases in these fully-adjusted models, there was no evidence of a significant association
between air pollutants and census tract CVD rates. In all cases except for percent Hispanic, the original
social factor maintained a significant association in the hypothesized direction, and IRRs for a 1-IQR
change in any social factor were several times larger than those for pollutants. Associations for %
Hispanic all became null.

All associations between NO2 and CVD rate were null, except for a significant protective association
in models adjusted for percent non-Hispanic white or Hispanic.

Associations between PM2.5 and CVD rate were non-significant, except for significant adverse
associations in models adjusted for the ICE index or median household income, and similar to NO2,
protective associations in models testing percent non-Hispanic white or Hispanic.

Associations between SO2 and CVD rate were protective except for null associations in models
including percent the ICE index or median household income. All associations between O3 and
CVD rate were null, except when adjusted for percent Hispanic in which a borderline increased risk
was observed.

Compared to the mutually-adjusted models (Table 4), associations between social factors and
CVD rate were attenuated in these fully-adjusted models.
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Table 5. Fully-adjusted negative binomial models for each pollutant-social factor combination vs. census tract CVD rate, additionally adjusted for the strongest
predictor of CVD from the other two social factor categories (SDI in the economic/material deprivation category, Violent Crime Rate in the exposure to crime category,
and/or % non-Hispanic black in the racial/ethnic composition category). Incident rate ratio (IRR) represents the change in CVD incidence rate per 1-IQR change in each
covariate. Bolded values indicate statistical significance after adjusting the false discovery rate. N = 1981.

NO2 PM2.5 SO2 O3

Exposures IRR (95% CI) AIC IRR (95% CI) AIC IRR (95% CI) AIC IRR (95% CI) AIC

Pollutant 0.99 (0.98, 1.01) 38,192 1.01 (0.99, 1.02) 38,192 0.98 (0.96, 0.99) 38,182 1.01 (0.99, 1.02) 38,192
SDI 1.30 (1.27, 1.33) 1.30 (1.27, 1.32) 1.31 (1.29, 1.34) 1.30 (1.27, 1.33)

Pollutant 1.01 (0.99, 1.02) 38,406 1.03 (1.02, 1.05) 38,394 1.00 (0.99, 1.01) 38,407 0.99 (0.98, 1.01) 38,406
ICE: R&I 0.75 (0.74, 0.77) 0.75 (0.74, 0.77) 0.75 (0.74, 0.77) 0.75 (0.74, 0.77)

Pollutant 0.99 (0.97, 1) 38,205 1.00 (0.98, 1.02) 38,209 0.98 (0.97, 0.99) 38,200 1.01 (1, 1.03) 38,205
% <200% FPL 1.33 (1.3, 1.36) 1.32 (1.29, 1.35) 1.34 (1.31, 1.37) 1.33 (1.3, 1.36)

Pollutant 1.00 (0.99, 1.02) 38,387 1.03 (1.01, 1.05) 38,376 1.00 (0.98, 1.01) 38,388 1.00 (0.98, 1.01) 38,388
Median Income 0.82 (0.81, 0.84) 0.83 (0.81, 0.84) 0.82 (0.81, 0.84) 0.82 (0.81, 0.84)

Pollutant 0.99 (0.98, 1.01) 38,192 1.01 (0.99, 1.02) 38,192 0.98 (0.96, 0.99) 38,182 1.01 (0.99, 1.02) 38,192
Violent Crime 1.12 (1.1, 1.14) 1.12 (1.1, 1.14) 1.12 (1.1, 1.14) 1.12 (1.1, 1.14)

Pollutant 1.00 (0.98, 1.01) 38,224 1.01 (0.99, 1.03) 38,223 0.98 (0.97, 0.99) 38,216 1.00 (0.99, 1.02) 38,224
Assault Rate 1.11 (1.09, 1.14) 1.11 (1.09, 1.13) 1.12 (1.09, 1.14) 1.11 (1.09, 1.14)

Pollutant 0.98 (0.96, 0.99) 38,423 0.98 (0.96, 1) 38,425 0.96 (0.95, 0.97) 38,399 1.01 (1, 1.03) 38,427
% non-Hispanic white 0.85 (0.83, 0.88) 0.85 (0.83, 0.88) 0.85 (0.82, 0.87) 0.85 (0.83, 0.88)

Pollutant 0.99 (0.98, 1.01) 38,192 1.01 (0.99, 1.02) 38,192 0.98 (0.96, 0.99) 38,182 1.01 (0.99, 1.02) 38,192
% non-Hispanic black 1.21 (1.18, 1.23) 1.21 (1.18, 1.23) 1.20 (1.18, 1.23) 1.21 (1.18, 1.23)

Pollutant 0.97 (0.96, 0.99) 38,530 0.97 (0.95, 0.99) 38,531 0.96 (0.94, 0.97) 38,513 1.02 (1, 1.04) 38,535
% Hispanic 0.99 (0.97, 1.02) 1.00 (0.98, 1.02) 1.01 (0.99, 1.03) 0.99 (0.97, 1.01)

IRR = incident rate ratio; 95% CI = 95% confidence interval; ICE: R&I = index of concentration at the extremes: race and income; SDI = social deprivation index. SDI and ICE are composite
variables. AIC = Akaike Information Criterion.
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3.5. Sensitivity Analyses

Most models presented had significant Moran’s I values in the residuals, indicating significant
spatial autocorrelation in census tract CVD rates not accounted for by the pollutants and social variables
tested here. In sensitivity analyses (Tables S1–S4), we found that implementing the Moran eigenvector
filtering function in negative binomial GLM models provided slightly better model fit and reduced
spatial autocorrelation, but associations among air pollutants, social factors, and CVD rates did not
differ substantially from negative binomial regression models.

We repeated analyses at the larger United Health Fund (UHF) spatial scale (n = 34 in NYC),
where a larger suite of social variables was available, supporting factor analyses and identification of
spatially-correlated suites of social stressors (see Supplementary Materials about UHF methods) [39].
Results mirror those of the census tract-level analyses; adjusting each air pollutant for each social factor,
most pollution-CVD associations became null. Most associations between social factors and CVD rate
remained evident after adjusting for any pollutant, and the magnitude of association for each social
factor-CVD rate relationship was higher than for air pollutants (Tables S5–S9).

Finally, we considered differences by sub-diagnosis; repeating models with NO2 and Ischemic
Heart Disease (IHD), we found that IRRs were nearly identical both for NO2 and the social factors,
using either total CVD or IHD as the outcome (Table S10).

4. Discussion

We compared associations with census-tract CVD rates for annual-average concentrations of
multiple air pollutants and a range of social factors. We found that, after accounting for social factors,
most pollutant-CVD associations were quite weak; in contrast, most social factors retained their
association, and the magnitude of association was much higher for a 1-IQR difference in social factors
than in pollutant concentrations.

Although substantial questions remain regarding the most appropriate, meaningful scales for
the measurement and evaluation of air pollutants and social factors in terms of their associations
with various health outcomes, our results indicate that, when offered equal spatial and temporal
resolution, associations between social factors and CVD are much stronger than are pollutant–CVD
associations. It is well known that associations between variables can vary depending on the spatial
scale of the analysis (i.e., modifiable areal unit problem (MAUP)) [41], although the true spatial scale of
variation for associations between exposures and health outcomes is often unknown (i.e., Uncertain
Geographic Context Problem (UGCoP)), and can vary for exposures of very different types (e.g., social
stressors and pollution exposures) [24], or for different disease endpoints. Though these exposures
may not vary most meaningfully at the census tract level, we used that scale here as a common scale of
variation to attempt to address the differential spatial misclassification which has often been ignored in
epidemiologic studies combining social and environmental exposures. Future research aimed towards
identifying the meaningful scale at which environmental and social exposures may influence health
may also be improved by focusing on more specific sub-diagnoses, and selecting potential spatial
scales of measurement informed by the social and structural properties of the places under study,
physical and chemical processes under which pollutants are dispersed and concentrations decay,
and the pathophysiology though which specific pollutants or stressors are hypothesized to impact a
specific disease under study.

Many studies that investigate the role of air pollutants and measures of social factors on a given
health outcome only investigate effect modification of the air pollutant-health outcome by the social
factor(s) [42,43], or assess social and environmental exposure in separate models [44]. Our results are in
keeping with findings from other health studies investigating co-exposure to environmental and social
variables on the same spatial scale. Servadio et al. (2019) assessed the relationship of air pollutants
and social factors with respiratory disease and CVD prevalence in Atlanta; with all exposures at the
census tract level and adjusting for spatial autocorrelation, they likewise found that, after adjusting for
social variables, associations between air pollutants and health were no longer evident, suggesting a
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larger role for social variables than air pollution in these health outcomes [45]. Similarly, Pala et al.
(2019) examined associations between PM2.5 and social factors with asthma hospitalizations and ED
visits in NYC [46]. They concluded that air pollution was likely not the only determinant of asthma
exacerbations, because associations with asthma were weaker for pollutants than for social factors at
the UHF42 level. This study did not, however, examine models that included both PM2.5 and social
factors simultaneously [46]. We observed protective associations between ozone and CVD, as has
been noted elsewhere [47,48]. In some locations, this effect has been shown in settings where higher
concentrations of ozone, a secondary pollutant, are observed in less-dense, wealthier parts of the
study area [49,50], and hence protective effects may be attributable to residual confounding by SEP.
In NYC, however, the wealthiest communities in dense areas have substantial primary pollution (i.e.,
Upper East Side), and consequently lower concentrations of ozone, due to scavenging. Perhaps more
importantly, strong chemical scavenging of ozone by fresh emissions leads to an inverse spatial and
temporal relationship between NOx and ozone, so much so that NO2 (with a negative coefficient) is the
strongest spatial predictor of ozone concentrations (r = −93) in NYC [51]. As a result, an apparently
protective effect of ozone may, in fact, indicate a detrimental impact of fresh combustion emissions
on CVD.

4.1. Strengths

Our study had a number of notable strengths. First, we have a large sample size (over 1.1 million),
and complete hospitals records covering the entire city over several years. Our exposure data includes
very fine-scale data on multiple pollutants (100 m resolution), and citywide coverage in a number of
key social variables drawn from extensive prior work examining spatial correlations among a wider
array of social stressors than in most studies [40], and which has also validated their relationship with
resident perceptions of community stressor exposures [52].

Because census tracts are very small in many parts of NYC (n = 2167), we were able to examine
relations among pollutions, social factors, and health with excellent spatial resolution. We were also
able to test relationships at multiple spatial scales (i.e., United Health Fund (UHF) area), in sensitivity
analyses, to establish consistency in results.

A tremendous advantage in examining combined effects of pollution and social characteristics
in NYC is that NYC has many high-income neighborhoods in dense areas with high pollution
concentrations, and vice versa. These “off-diagonal” communities help to ameliorate the challenges
associated with persistent spatial confounding between pollution and social stressors in many settings,
allowing us to examine independent and interaction effects with lesser risk of persistent confounding
and/or off-support inference.

Our primary goal in this paper is to raise the issue of spatial and temporal resolution of co-exposures
in epidemiology, and to encourage epidemiologists give more rigorous consideration to the scale of
resolution for all exposures/covariates, not only for the main exposure of interest; we believe more
attention to scale of resolution will facilitate more accurate estimation of health effects, and a better
understanding of the spatial and temporal scales at which very different types of exposures may matter
for health. Clearer articulation of what is a “meaningful” spatial scale for various exposures could also
help to more effectively target interventions to improve health and to more accurately and characterize
susceptible sub-populations and communities where emissions reductions could have greater benefits.

4.2. Limitations

Our study also had several limitations. For example, in this analysis we were not able to test
associations across multiple time scales. By using annual-average air pollution concentrations, rather
than daily concentrations, our study emphasizes relationships between chronic exposures and CVD,
rather than examining relationships between acute high pollution exposures and CVD events. Our
purpose, however, was to put social and environmental exposures on the same scale. In actuality,
crime and other social exposures vary day-to-day and by season; this variation is consistently lost
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in that most social/sociodemographic data are only available as annual averages, at best (NYC
crime rates are reported as 2 year averages. ACS national sociodemographic data are compiled into
multi-year estimates). Here, we were required to average pollution measures to one year, to match the
previously-aggregated social data. Future studies will use a case-crossover design and related methods
to examine individual-level relationships between spatio-temporal pollutant exposure estimates and
likelihood of CVD event, with and without effect modification by community-level social covariates.

Although the list of census tract-level social variables we were able to examine here is reasonably
long and well-curated, it captures only a limited portion of the depth and complexity of social and
sociodemographic patterning across NYC. Future studies will require deeper investigation into patterns
of persistent racial residential segregation in NYC, as in other U.S. cities, and related processes that may
lead to entrenched spatial clustering in social and economic disadvantage by individual race. Future
studies should additionally investigate if there could be other exposures of interest or confounders of
the association between air pollution and social stressors on CVD.

The results reported here—particularly those related to higher pollution exposures in higher-SEP
communities—may be somewhat unique to NYC [53], although similar relationships have been noted
in other major cities (e.g., Rome [54]). Further research should be done to analyze the relative strength of
associations between air pollution and social factors on other health outcomes and in other geographic
contexts. In addition, studies in other settings should aim to quantify misclassification, and resultant
impacts on epidemiological effect estimates and confounding, attributable to mis-characterization of
spatial units, or due to comparing multiple exposures measured on very different scales.

We excluded a small number of tracts (n = 63) within the urban area with small populations
(<200), generally at the edges of large parks or waterways, due to concerns about (1) the stability of
CVD rates in small-denominator tracts, and (2) spatial errors induced by applying rates based on a
small population at the edge of a tract across the whole tract (i.e., applying an unstable CVD rate based
on a small population at the edge of Central Park, applying that estimate across the whole of a tract that
crosses the park). We believe we likely minimized overall error by this exclusion, but this selection bias
may somewhat limit the generalizability of our result. Such issues of selection bias and generalizability
in spatial data should be considered carefully in subsequent analyses in this and other settings.

Individuals do not spend all of their time in their home census tract; residence-based exposure
estimates, however, continue to explain significant variation in CVD and other health outcomes, in part
because the residential location represents a small but consistent portion of the individual’s total daily
exposure profile, and captures a meaningful portion of the exposure contrast across the cohort. In using
the residential location to estimate both pollution and social stressor exposures, we have some degree
of misclassification in both, though no reason to believe that the misclassification attributable to using
the residential address is necessarily greater for one exposure than the other, which is the comparison
of interest for this analysis.

As an ecologic analysis, our study represents a valid comparison across areas (tracts), but observed
associations should not be interpreted to be valid at the individual level. Issues of segregation are
particularly salient in this regard, as segregation is a process in which individuals are “assigned” to
communities (ecologic) based on individual characteristics (i.e., race, wealth). The consequent health
effects of segregation are thus based in cross-level (individual-community) interactions, which are
beyond the scope of this analysis, but will be addressed in subsequent studies. Finally, reliance on
hospital data carries inherent errors related to coding and transcription errors; future studies of CVD
and sub-diagnoses may benefit from chart review and other outcomes validation procedures.

5. Conclusions

We compared associations with census-tract CVD rates in NYC for annual-average concentrations
of multiple air pollutants and a range of social factors. We found that, after accounting for social factors,
most air pollutant–CVD associations were no longer evident; in contrast, most social factors retained
significance, and the magnitude of association was much higher for an IQR-range difference in social
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factors than in pollutant concentrations. Future studies of social and environmental exposures on
health should carefully consider the relative spatial and temporal resolution of exposure measurement,
to account for the influence of both types of exposures on health, to the furthest extent possible.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/23/4621/s1,
SDI Methods, Material and Methods—United Hospital Fund (UHF) area, Table S1. OLS and SAR regression
models for NO2 and social factors vs. age-adjusted census tract CVD event rates. Moran’s I was used to assess
autocorrelation in model residuals. All variables are IQR-standardized, Table S2. OLS and SAR regression
models for PM2.5 and social factors vs. age-adjusted census tract CVD event rates. Moran’s I was used to assess
autocorrelation in model residuals. All variables are IQR-standardized, Table S3. OLS and SAR regression
models for SO2 and social factors vs. age-adjusted census tract CVD event rates. Moran’s I was used to assess
autocorrelation in model residuals. All variables are IQR-standardized, Table S4. OLS and SAR regression models
for O3 and social factors vs. age-adjusted census tract CVD event rates. Moran’s I was used to assess autocorrelation
in model residuals. All variables are IQR-standardized, Table S5. Descriptive statistics for air pollutants and
social factors at UHF scale (N = 34), Table S6. Pearson correlations of pollutants, social factors, and CVD rates at
UHF scale (N = 34), Table S7. Separate OLS models for UHF-area average pollutant concentrations and social
stressors on age-adjusted CVD rates (not mutually adjusted) (n = 34), Table S8. Combined (mutually-adjusted) OLS
models for UHF-area average pollutant concentrations and social stressors on age-adjusted CVD rates (n = 34),
Table S9. OLS and SAR regression models testing bivariate measures of association between CVD and pollutant or
social stressor across UHF-34 neighborhoods. Moran’s I to assess autocorrelation in model residuals. Table S10.
Fully-adjusted models for each NO2-social factor combination vs. census tract CVD and ischemic heart disease
(IHD) rate, adjusted for SDI, Violent Crime Rate, and % non-Hispanic black (except where each is main social
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