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Compression 

 

Xianheng Guan, PhD 
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Abstract 

 

This thesis examines two situations in the buckling of thin films subjected to compression: 

the buckling of elastic thin films attached to viscous substrates, and the free-surface creasing of a 

viscoelastic liquid.  

When a thin film on a layer viscous liquid is compressed steadily at a fixed rate, two distinct 

buckling modes are observed: roughly-sinusoidal, global wrinkling, and formation of highly-

localized ridges well-separated by more-or-less flat regions. Although both buckling modes have 

been reported previously, there is no understanding of ridge localization. Further, the quantitative 

aspects of how parameters such as loading rate and liquid substrate thickness influence the 

buckling process are also unknown. With our experiments and simulations, ridge localization can 

be understood as buckling phenomenon starting with wrinkles emerging in the form of wave 

packets with a longer length scale modulation which is rate-dependent. The size of these wave 

packets captures the dependence of inter-ridge on the compression rate and the liquid layer 

thickness observed far from threshold in experiment and simulation. Further, the effects of end-

relaxation on the buckling behavior for relatively short films were also examined by simulations. 

It is well-known that the free surface of an elastic material develops sharp cusp-like creases 

when compressed beyond a certain critical strain. Here we examine a viscoelastic fluid under 

similar compression. Experiments show that a viscoelastic liquid undergoes a similar, but rate-



 v 

dependent, creasing instability such that the strain required for creasing increases as rate decreases. 

A model is developed wherein the creasing criterion known previously for neo-Hookean elastic 

solids is applied to the elastic portion of the deformation of a viscoelastic liquid. Using the upper-

convected Maxwell model for viscoelasticity, we derive an analytical criterion for viscoelastic 

creasing which is in good agreement with experiments. It predicts that the strain for creasing 

increases with decreasing Weissenberg number, and creasing is not possible below a critical 

Weissenberg number. 
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1.0 Introduction 

  

 

When a compressive load is applied on both ends of a short beam, the beam fails when 

the load applied is beyond the compressive yield strength. A long beam however buckles into a 

roughly sinusoidal deformed shape before failure occurs. The critical load to induce buckling, 

the critical bending moment, and the deformed shape of beam can be predicted by Euler column 

buckling theory1-3. A column under uniaxial compression buckles at the longest wavelength 

specified by constraints. Another simple example is compressing a piece of paper laying flat on 

smooth table by pushing on its ends. A sinusoidal-shape deformation with a single hump can be 

observed indicating that the wavelength has the longest possible value, which spans the two ends 

being pushed. 

However, buckling becomes more complicated if the film is bonded to a compliant 

support. An example is the uniaxial compression of a thin film floating on the surface of liquid. 

The thin film still prefers to buckle at the longest wavelength if possible. However, the liquid 

layer prefers to maintain a flat surface due to gravity. Thus there is a competition between the 

elastic energy of the film and the gravitational potential energy of the liquid, and buckling occurs 

at a smaller length scale as compared with the buckling of an unsupported column. Specifically, 

the film develops numerous uniform wrinkles at a wavelength which is independent of the film 

length4.  

The buckling mechanics of thin films on compliant substrates has been studied widely in 

the recent years5-16. One well-studied case is the one from the previous paragraph: a thin film 

floating on a substrate buckles into different patterns under uniaxial compression. Distinct 
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buckling modes can be observed under various conditions. When the substrate is viscous liquid, 

which is of interest to Chapter 3 to 5, wrinkles are induced under uniaxial compression and turn 

into ridges with high amplitude when compressed more10 (Fig. 1.1). When the substrate is 

inviscid rather than viscous, wrinkles and ridges can also be observed11-13. When film is floating 

on a spherical liquid drop and buckling is induced by tension14,15, crumples appear as another 

form of localized buckling. When the substrate is elastic and soft, films also buckle into wrinkles 

and sometimes localized into high ridges or period-doubling wrinkles5-9. Films bonded to rigid 

elastic substrate can also buckle due to delamination. Buckling delamination and sliding-folding 

delamination can be observed under compression or thermal swelling16 and creasing can also be 

observed if film and substrate are tightly bonded and have same material properties17-27, which 

will be discussed in Chapter 6.  Some of these buckling modes are shown in Fig 1.1 to Fig 1.4.  

 

  
Figure 1.1: Buckling modes of film bonded on viscous liquid (A) wrinkles observed by 

Chatterjee10 (B) localized ridges observed in crude hand experiments done by undergraduate 

researchers Anantha Sarma and Eshwar Hamesh in the Velankar research group. 

 

(A) 

(B) 
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Figure 1.2: Buckling modes of film bonded on inviscid liquid28 (A) wrinkles (B) folds (C) 

crumples29. Figure reproduced from citation 28 with permission from the Royal Society of 

Chemistry and figure reproduced from citation 29 with permission from American Physical 

Society. 

 

Figure 1.3: Buckling modes28 of film bonded on soft elastic substrate (A) wrinkles (B) double-

period wrinkles (C) ridges30.  Figure reproduced from citation 28 and 30 with permission from 

the Royal Society of Chemistry. 

 

(A) 

(B) 

(C) 
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Figure 1.4: buckling modes of a film when a strain mismatch with respect to a substrate forces 

compressive stress in the film (A) delaminated buckles30 (B) sliding-folding buckles31 (C) 

creasing22. Figure reproduced from citation 10 with permission from American Chemical Society 

and Figure reproduced from citation 22 with permission from Royal Society of Chemistry. 

 

 

1.1 Overview 

 

 

This thesis includes two topics in the area of compression-induced instabilities. The first 

one is ridge localization of thin film on viscous liquid and the second one is about viscoelastic 

liquid creasing. Below I provide a brief overview of each of these topics. 
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1.1.1 Ridge localization of thin film on viscous liquid 

 

The ridge localization of thin film on soft solid substrate or inviscid liquid are fully 

discussed in recent 20 years. However, ridge localization on viscous supports are rarely 

mentioned. To our knowledge, a previous paper published from our laboratory10 is the only 

article that mentions ridge localization on viscous substrates. Yet, even that article focused on 

uniform wrinkling, and did not examine ridge formation in detail. Accordingly, there is no 

understanding of why ridges appear and the conditions under which they appear.  

While ridge formation on elastic substrates can be understood based on energy 

minimization principles28,32, viscous substrates dissipate energy, which makes the energy 

minimization method unavailable. Therefore we cannot understand ridge formation just based on 

existing literature on elastic and inviscid substrates. Thus, a central goal of this thesis was to 

conduct new experiments and simulations to get a deeper understanding of the underlying 

mechanisms. In Chapter 3, the experimental setup and result of film buckling mechanics will be 

discussed in detail. Simulation results and a more detailed analysis of film buckling mechanics 

will be introduced in Chapter 4 and 5. Specifically, Chapter 4 will focus on identifying the 

conditions under which films of finite length show wrinkles vs ridges, and Chapter 5 will then 

examine infinite-length conditions and obtain details of development of interridge distance and 

wavelength. 

 

1.1.2 Viscoelastic creasing mechanics 

 

It is well-known that an elastomeric material forms cusp-shaped, self-contacting buckles 

when compressed to a large extent17-27,33. Such buckles are called creases and understood as free 
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surface buckling instability. Past research has focused on understanding creasing in elastic 

systems. However, creases can also be observed on the surface of viscoelastic liquids when 

compressive strain is sufficiently high. However, as may be expected, such creasing is rate-

dependent: a  viscoelastic liquid will not crease under low-rate compression. This phenomenon 

has never been explored in the literature and not at all understood quantitatively. Chapter 6 

describes the experiments and theory of viscoelastic creasing and identifies the conditions under 

which viscoelastic liquid under compression will creases at its free surface. 
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2.0 Background 

 

 

In this chapter, I will review past research on buckling of thin films bonded to compliant 

surfaces as a background for Chapters 3, 4, and 5. The background literature on free surface 

creasing is reviewed in Chapter 6.  

The buckling mechanics of thin films has been heavily studied in the recent 20 years. The 

most well-studied cases are that of a thin film floating on a liquid, or thin film bonded to a soft 

elastic substrate. Both situations buckle into different patterns under compression or thermal 

swelling2,11-13,29,34-41. Much of the research has focused on the evolution of buckling mode and 

give a prediction of wavelength, evolution of amplitude with strain, and changes in mode.  

 

 

2.1 Buckling of thin films on viscous layer 

 

The most well-studied cases are that of rectilinear compression of a thin elastic film 

floating on an inviscid liquid42, or thin film bonded to a soft elastic substrate5-9,32,34,42-45. Both 

situations buckle into different patterns under compression or thermal swelling. Much of the 

research has focused on the evolution of buckling mode and give a prediction of wavelength, 

evolution of amplitude with strain, and changes in mode7,34,42.  

When a thin film floating on inviscid substrate is compressed, it first buckles into 

uniform and global wrinkles. If the compression increases, wrinkles might evolve to localized, 

high amplitude folds with nearly flat region among the folds. This process of evolution is called 
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wrinkle-to-fold transition34,42,46. Other methods to induce it has also been discussed by 

researchers, such as placing a drop on the film14,47 or lifting the center of film11-13. Beyond 

wrinkles, more complex patterns have also been observed. When elastic thin film floating on 

liquid is placed under biaxial compression, highly localized patterns which called crumples10,11 

appear. When the substrate is elastic rather than liquid, wrinkles undergo a post-buckling 

transition into period-doubling behavior 5-9. Considering adhesion energy between film and 

substrate, delamination is also one of the possible buckling modes. Also, highly localized 

mountain ridges were observed by Cao and Hutchinson48 when soft elastic substrate was highly 

prestreched. Similar ridges can also be induced when there is a large mismatch of Young’s 

modulus of film and substrate36 even when the substrate prestretch is modest.  

However, none of the above experimental, theoretical, or computational studies of 

wrinkling on viscous supports mention ridge localization which will be introduced in next 

paragraph in detail. To our knowledge, Chatterjee et al10 is the only article that definitively 

mentions ridge localization of elastic films on viscous substrates. There is no earlier research 

about how such long-wavelength buckling modes develop, the role of fluid viscosity, whether 

the process is rate-dependent, or whether ridges have a preferred spacing. This motivated our 

research to gain a deeper understanding of the ridge localization. 

In our research of films on viscous supports that follows in Chapters 3-5, two distinct 

buckling modes can be identified and here we define them clearly. As in the previous literature 

on elastic systems, the wrinkling mode corresponds to roughly sinusoidal buckles appearing 

uniformly all along the film. In contrast, the ridges are more localized with large amplitude, and 

separated by nearly flat regions. The folding modes on energy-conserving substrates can have 

distinct buckling patterns. Depending on the properties of material, ridges may take on the form 
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of can be deep furrows in liquid substrate, or on period-doubled wrinkles on elastic substrates, or 

high mountain ridges on elastic substrate. To determine the buckling mode appearing under 

specific conditions, energy minimization theory has been applied7. The buckling of thin film 

floating on energy-conserving substrate can be understood as the competition between bending 

energy of film and elastic strain energy of substrate. A buckling mode with lower total system 

energy should always be more favorable7,20,22,32,49. Further, wrinkle wavelength and critical 

buckling strain can also be predicted by the energy method7.  

However, the problem is entirely different if the liquid support is viscous, and hence fully 

energy-dissipative. Two experiments of thin film buckling on viscous layer are shown in Fig 2.1. 

In both cases, a rubber strip with B15 liquid layer (details provided in Chapter 3) is firstly 

prestretched and held. Then an elastic film is bonded to the surface of the liquid layer. Finally, 

the rubber strip is released at a controlled rate and the film buckles into different buckling 

patterns. It is noteworthy that the patterns can show wrinkles or localized ridges. In these 

experiments, the viscous liquid substrate is completely energy-dissipative and the previous 

methods, such as finding the equilibrium state with lowest total system energy3,4,7, cannot solve 

this problem. Thus, the basic model of this problem is no longer a competition between energies. 

Instead, the buckling can be understood as the strain applied to the film drives the buckling, 

whereas the viscous layer slows it down. Thus, the viscous stresses in the liquid film should be 

taken into consideration rather than the elastic energy of liquid support because the viscous 

liquid will dissipate mechanical energy. Since buckle development takes time, compression rate 

effects (which are clearly evident in Fig 2.1) must be accounted for.  
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Figure 2.1: Buckling experiment with (a) 0.053 𝑠−1 compression rate and 0.19mm liquid 

thickness (b)  0.053 𝑠−1 compression rate and 1.52mm liquid thickness, this is conducted by 

undergraduate researchers Anantha Sarma and Eshwar Hamesh in the Velankar research group 

A simpler scenario of a film under prestrain (rather than continuous compression) was 

provided by Sridhar and Suo in 200150.A film of thickness ℎ under a compressive strain 𝜖0 is 

placed on the surface of initially-solid substrate. Then the solid substrate is melted into a viscous 

liquid by heating. After that, the compressive stress can be relieved by bucking accompanied by 

fluid flow. Sridhar and Suo conducted a linear stability of this situation and calculated the growth 

rate for wrinkling as a function of wavenumber 𝑘. The normalized growth rate as a function of 

dimensionless wave number ℎ𝑘 is shown with different thickness ratios of substrate to the film. 

There is a critical wavenumber 𝑘𝑐 such that that any wavenumber smaller than 𝑘𝑐 will not be 

stable. In other words, any wrinkle with a wavelength larger than 
2𝜋

𝑘𝑐
 will grow, whereas wrinkles 

with wavelength smaller than 
2𝜋

𝑘𝑐
 will not grow. There is also a wavenumber 𝑘𝑚 with the 

maximum instability rate, which corresponds to the fastest growing wavelengths. This can also 

be explained qualitatively: wrinkles with sufficiently long wavelength should be more favorable 

because they have lower strain energy for bending. However, long wavelength wrinkles need 

(a) 

(b) 
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longer time to evolve and hence grow slowly. Sridhar and Suo showed that both ℎ𝑘𝑐 and ℎ𝑘𝑚 

are proportional to the prestrain √𝜖0, and increase as the substrate becomes thinner. It is notable 

that unlike on a solid substrate, there is no critical strain for buckling; lower prestrains induce 

buckles at larger wavelength. Instead, buckling is a time-dependent process.  
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3.0 Experiment Observation in Film Buckling Problem 

 

 

Portions of this chapter are included in a manuscript by Xianheng Guan, Anantha P. Sarma, 

Eshwar Hamesh, Junyu Yang, Nhung Nguyen, Enrique Cerda, Luka Pocivavsek, Sachin 

Velankar, Compression-induced buckling of thin films bonded to viscous substrates: Uniform 

wrinkles vs localized ridges, submitted to International Journal of Solids and Structures, 

submitted March 2022 

    

While the basic phenomena of wrinkling and ridge localization can be illustrated easily 

by experiments, controlled experiments required careful selection of materials and geometry. 

Although we have conducted experiments in the wrinkle regime previously51, for studying ridge 

localization, significant changes are needed. Of the many changes, two are worthy of detailed 

comment. First, previous experiments used a fluid of viscosity of about 1400 Pa.s, whereas here 

a fluid of far higher viscosity (see next paragraph) was used. This offers several fundamental and 

operational advantages as described in Appendix A. Second, due to the relatively low viscosity 

used previously, the liquid was simply poured onto the rubber substrate, allowed to self-level 

under gravity, and the film was gently placed on the liquid surface. Those procedures are not 

viable for the high viscosity fluid here; instead the film was applied onto a pre-stretched liquid 

substrate as per the procedure described below. 

 

 



 

 13 

3.1 Materials and methods 

 

Materials: Butyl rubber strips of 1.58 mm thickness were cut to a width of either 1 inch 

(25.4 mm) or 0.5 inch (12.7 mm). The liquid used was BASF Oppanol B15, which is 

polyisobutylene (PIB) of molecular weight of roughly 85 kg/mol as quoted by the manufacturer. 

The rheological characteristics of this fluid are shown in Fig. 6.2. The complex viscosity at low 

frequency is roughly 106 Pa.s, with modest shear thinning. In most of the experiments, the rates 

applied were on the order of 0.01 s-1 and shear thinning effects, although present, may be modest. 

The highest rates in our experiments were roughly 0.09 s-1 and shear thinning may be somewhat 

significant for these experiments. The fluid is also viscoelastic as judged by the significant 

magnitude of the storage modulus 𝐺′ as compared to the loss modulus 𝐺′′. At the conditions 

typical of most of the experiments (rates on the order of 0.01 s-1 and strains of a few percent), we 

may estimate the stress contributions as follows: The fluid stresses attributable to viscous forces 

are on the order of (𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦) × (𝑟𝑎𝑡𝑒)~106 × 0.01 ~104 𝑃𝑎. The stresses attributable to 

elastic forces are on the order of (𝑚𝑜𝑑𝑢𝑙𝑢𝑠) × (𝑠𝑡𝑟𝑎𝑖𝑛)~104 × 0.05 ~500 𝑃𝑎. This suggests 

that most of the phenomena are due to viscosity, and hence a purely viscous Newtonian fluid 

would show the same phenomena, at least qualitatively. Indeed crude experiments conducted 

with an approximately Newtonian fluid show all the qualitative features noted in the careful 

experiments with Oppanol B15 PIB. Further, as will be shown in this chapter, ridges appear at 

low rates, not high. This gives further confidence that the central interest of this research – 

localization of buckles – is primarily a Newtonian fluid effect. 

The films used in the experiments were polyester shimstock film purchased from 

McMaster-Carr Supply Co. with a film thickness of ℎ =25.4 micron.  
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Sample preparation: A long worm-like cylinder of polyisobutylene of the desired mass 

and length (~130 mm) was placed lengthwise on the rubber strip. The PIB was then covered with 

a sheet of silicone rubber, pressed in a compression molding machine with the desired spacers to 

regulate the final compressed thickness, and silicone rubber layer removed.  

The experimental setup illustrated in Fig. 3.1 consists of clamping the rubber strip, 

already covered with the liquid layer, between grips which attach the strip onto the surface of 

cylindrical drums of diameter 44 mm. The stress-free length of the rubber strip between the grips 

was 180 mm. The drums were then counter-rotated to stretch the rubber strip to about 130% of 

its original length. After waiting for several minutes to allow relaxation of any stresses in the 

liquid layer, the film of length 2𝐿 =100 mm was applied on the liquid surface taking care to 

avoid air blisters. The drums were then counter-rotated at the desired circumferential velocity 

(henceforth denoted the clamp velocity) to allow the rubber strip to recover to ~120% of its 

original length.  Further, the central portion of the rubber strip rests on a lubricated flat surface 

which was raised a few mm with respect to the drums. This forces the rubber strip to remain flat, 

i.e. avoid tension-buckling. 
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Figure 3.1: Schematic of the experiment. Note that the low-magnification camera views the film 

at a steep angle, whereas the high-magnification camera at a shallow angle. Bottom right: cross-

sectional view defining the geometric parameters. This schematic is not to scale; in fact 2𝐿 is far 

larger than the other dimensions. 

 

Imaging and image analysis: The film was visualized at two different magnifications 

using two cameras. The conversion from image pixels to mm was calibrated by images of 1 mm 

thick slabs placed at the exact location of the samples. Visualizing the details of ridge formation 

is complicated by the fact that the location of the ridge is unpredictable, and the film 

compression is often too rapid to allow adjusting the camera position during the experiment. 

Moreover the ridges are often well-spaced and hence the high magnification camera would 

sometimes see only a few ridges. All figures in this chapter are frames extracted from the higher 

magnification videos, which allow details of the ridge amplitude to be evaluated.  
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In the experimental setup, the local strain within the sample cannot be controlled directly. 

It is only possible to control the rotational speed, and hence the circumferential velocity, of the 

drums that permit retraction of the rubber. Since viscous stresses are proportional to the strain 

rate, it is critical to know the actual strain rate experienced by the rubber underneath the film. 

This rate was measured by digital image correlation analysis. The camera-facing edge of the 

rubber strip was marked with ink spots, and the Blender software was used to extract the 

displacement of these spots with time.  

These early experiments guided us in formulating two key questions. First: Does the 

width of the film play a role in ridge localization? For example, films with width comparable to 

the liquid thickness or to the wavelength may behave differently than much wider films. Further, 

the edge may affect buckling, e.g. due to effects such as liquid recession. Ridges may even 

initiate at the edges similar to how buckle delamination of films often initiates at edges52,53. In 

contrast, if width effects are modest, one may regard the situation as a 2D problem, greatly 

facilitating any theoretical or computational development. We conducted systematic experiments 

addressing this first question and identified conditions under which effects of sample width are 

modest, and a 2D approximation may be justifiable. Here we turn to the second question of how 

the two main parameters, compression rate and liquid layer thickness, affect wrinkling vs ridge 

localization. 

Here we turn to the second question of how the two main parameters, compression rate 

and liquid layer thickness, affect wrinkling vs ridge localization. 
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3.2 Qualitative aspects of wrinkling vs ridge localization 

 

Experiments were conducted at clamp velocities ranging from 0.1 to 10 mm/s, at liquid 

layer thicknesses 𝐻0 ranging from 0.25 mm to 1.59 mm. Two series of experiments are 

conducted: one varying rate at fixed 𝐻0 = 0.25 𝑚𝑚, and another varying 𝐻0 at fixed clamp 

velocity of 10 mm/s, which is shown in Compression.mp4. The immediate qualitative conclusion 

from these videos is that low speeds and low liquid layer thicknesses both promote ridge 

localization. This section uses frames from these videos to discuss some qualitative aspects of 

wrinkling and ridge localization. 

To illustrate the extreme situations of wrinkling and ridge localization, Fig..2 shows a 

sequence of frames extracted from two selected videos. Fig.2A exemplifies the wrinkling 

situation which is more common at relatively large liquid layer thickness and rate. Upon being 

compressed from a flat stat, at a strain of roughly 0.02, buckles with a few-mm wavelength 

appear across the entire film surface and grow steadily up to the end of the compression. In some 

experiments, more complex phenomena may appear, e.g. coalescence of two neighboring peaks 

into a single one. Nevertheless, at the end of the compression process, the film has more-or-less 

uniform buckles everywhere. 

Fig..2B, exemplifies the situation of ridge localization which is more common at 

relatively small liquid layer thickness and rate. Even at the earliest stage when buckles first 

appear, they are not uniform across the surface; instead they appear in “packets” of relatively 

large amplitude, separated by regions which have wrinkles of much smaller amplitude. With 

increasing strain, one or two buckles grow much more than the others, whereas some of the 

surrounding buckles grow much less or even reduce in amplitude. Fig..2B also shows that 
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occasionally, a buckle may delaminate from the liquid layer altogether. We presume this is due 

to some preexisting defect at the liquid-film interface. Yet, such delamination does not appear to 

interfere with the evolution of neighboring buckles. By the end of the compression process, the 

film has tall buckles separated by regions that are more-or-less flat. 

 

 

Figure 3.2 :Wrinkles (left) or localized ridges (right) developing under continuous compression. 

A. 𝐻0 = 1.5 𝑚𝑚, 𝜖̇ = 0.064, corresponding to each clamp moving at 10 mm/s. B. 𝐻0 =

0.25 𝑚𝑚, 𝜖̇ = 0.0192, corresponding to each clamp moving at 3 mm/s. The numbers in each 

image correspond to the strain 𝜖 in the rubber. The small arrows highlight complementary 

markers in the film and in the rubber layer. 
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Experiments across the range of 𝐻0 and rate values show that this packet-like emergence 

of buckles becomes more pronounced as 𝐻0 or rate reduces. Indeed at the lowest rate and 

thickness examined (corresponding to 𝐻0 = 0.25 𝑚𝑚, rate of 6.4 × 10−3 𝑠−1), ridges appears 

with little evidence of neighboring wrinkles suggesting that the film transitions directly from a 

flat state to localized ridges. 

Close examination of the videos reveals a striking difference between the displacement of 

the paint markers, viz. that the paint markers undergo significant horizontal motion with respect 

to the rubber strip when ridges appear. Indeed, we had expected since simulations conducted 

prior to the experiments had already indicated this possibility. To illustrate this, Fig.2 compares 

markers on the film and on the rubber strip that are at the same horizontal position initially. The 

small pink ovals denote some well-defined small features on the rubber strip, and the dashed 

vertical pink lines are centered on these pink ovals. The blue ovals denote well-defined paint 

markers on the film surface. These are selected to be precisely above the pink markers in the top 

images. In Fig..2A, the blue and pink markers remain approximately coincident along the 

horizontal direction throughout the experiment, i.e. material points on the film and material 

points in the rubber strip do not separate significantly along the x-direction. In Fig. 2B however, 

there is significant relative motion: material points on the film near the fold “slide” towards the 

fold over distances that appear to be far larger than 𝐻0. Such sliding requires shear flow in the 

film and will be discussed further later.  

While this research is only focused on buckling behavior during compression, the films 

can undergo significant changes under quiescent conditions as well as illustrated in Fig. 3.3. This 

film was compressed under conditions corresponding to weak localization. Accordingly, the 

initial state is almost homogeneously wrinkled, although some peaks are narrower and taller than 
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others. However within 20 s under quiescent conditions, some of the wrinkles flattened 

significantly whereas others grew into localized ridges. This evolution continued so that at 180 s, 

tall ridges well-separated by much flatter regions are clearly evident. Yet, the formation of a 

localized ridge is not an irreversible process. For example, the small red arrows mark two ridges 

that first grew and then reduced in amplitude. In contrast, the small blue arrows mark a ridge that 

grew continuously under quiescent conditions. This ridge reorganization occurs over a long time 

and it is possible that gravity plays a significant role in this process.  

To gauge the effect gravity, a small cylinder of the B15 fluid, roughly 2 mm in diameter 

(somewhat larger than the dimensions of a ridge), was placed on the surface of a 0.25 mm thick 

layer of B15. This cylinder was video-recorded as it sagged under gravity. There was little 

visible change in the cylinder height over 30 minutes. Thus we conclude that gravity does not 

affect the quiescent evolution of buckles in Fig. 3.3. These observations of quiescent evolution 

not only show that wrinkles can change into localized ridges, but further that these films prefer 

an ever-increasing degree of localization, and hence any particular ridge may eventually lose 

amplitude to a neighboring ridge. 
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Figure 3.3: Evolution of buckles under quiescent conditions. The top image corresponds to a 

nearly-homogeneous state of a sample with 𝐻0 = 0.8 𝑚𝑚 created by compressing at 𝜖̇ = 0.064, 

corresponding to each clamp moving at 10 mm/s. The numbers correspond to the time in seconds 

after the end of compression (QuiescentBehavior.mp4).  

 

 

3.3 Displacement of material points 

 

We now turn to a more localized view of the buckling process, focusing not on averages, 

but on narrow regions that span only a few buckles. Our video imaging was optimized for 

viewing relatively large areas of film to quantify interridge distances, and not for measuring 

buckle amplitudes. Specifically, imaging several ridges requires capturing film lengths of about 

40 mm, whereas even the highest buckle amplitudes are 100-fold smaller. Moreover, since the 

liquid layer extends beyond the film edge in the width direction, a view along the y-direction – 
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which would be suitable for capturing ridge amplitudes – is not possible since the troughs may 

become invisible as they get “buried” under the surface of the adjacent liquid. Nevertheless, with 

a shallow view angle, and by tracking markers on the film surface, we can approximately 

quantify the displacement of material points on the film with respect to the rubber strip. This can 

quantify buckle amplitudes as well as the horizontal motion of the film mentioned in Section 3.2.  

Fig. 3.4 performs this quantification for two experiments corresponding respectively to 

wrinkling (left column of Fig. 3.4) and ridge localization (right column of Fig. 3.4). For this 

quantification, we track marker pairs: one marker on the film and an immediately-adjacent ink 

mark along the edge of the rubber (see Fig. 3.4A and B). The difference between the 

displacements of these two markers, dubbed separation in the rest of this section, approximates 

the relative motion of material points in the film relative to underlying material points in the 

rubber substrate. Note in the absence of buckling, vertical separation between a pair of markers 

would increase due to the incompressibility of the rubber and of the liquid layer.  

Fig. 3.4A corresponds to the development of a roughly homogeneous wrinkled state, and 

we track five markers which eventually become three adjacent peaks and two intermediate 

troughs in the homogeneously-wrinkled region. The spatial trajectories (Fig. 3.4C) show 

approximately vertical motion of the peaks, whereas the troughs show little displacement. When 

examined as a function of strain, the vertical separation of the markers (Fig. 3.4G) shows 

behavior typical of a wrinkling transition wherein all markers move in tandem up to buckling, 

followed by a sharp increase in the separation at the peaks and a decrease in the separation at the 

troughs. Further, over most of the experimental time, the horizontal separation of the marker 

pairs (Fig. 3.4E) remains small with no sharp changes with strain.  
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Fig. 3.4B corresponds to ridge formation. Of the five markers, one eventually becomes 

the peak of a ridge, two become neighboring peaks, and two become the intermediate troughs. 

Fig. 3.4D shows a sharp difference with respect to Fig. 3.4D: the peak of the ridge moves almost 

vertically with respect to the rubber, whereas the neighboring markers have predominantly 

horizontal motion towards the central marker. Examining the strain dependence, at small strain, 

all five markers move in concert, with the horizontal separation remaining near zero. Buckles 

first become visible at a strain of roughly 0.02, indicated by the small vertical arrows in Fig. 6F 

and H. At a strain of roughly 0.03, the vertical separation of the central marker starts increasing 

rapidly (Fig. 3.4H). Simultaneously, all the markers start moving horizontally (Fig. 3.4F).  
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Figure 3.4: Quantification of motion of material points in wrinkling experiment (left column), 

and localization ridge experiment (right column). A&B: Regions of interest selected for 

estimating separations.  The yellow boxes indicate the material locations that are tracked. C&D: 

Spatial trajectories of marker separations (see text). E&F: Horizontal separation (see text for 

definition) vs strain, and G&H: Vertical separation vs strain. In F and H, the small vertical 

arrows indicate the first appearance of visible buckles. 

The differences between wrinkling and localized ridge are much more stark when recast 

in non-dimensional terms, which corresponds to the left y-axes in Figs. 3.4E-H. The non-

dimensional amplitude of the ridge is almost 4-times larger than of the wrinkles. Further, the 
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ratio of the horizontal separation to 𝐻0 is a measure of the local shear strain in the fluid, and a 

comparison of Fig. 3.4E vs G shows that this shear strain is at least an order of magnitude larger 

in the localization ridge situation. Further, the markers near the central peak in Fig. 3.4F show a 

shear strain of as much as 1.5 strain units, which is over 10-fold larger than the applied 

compressive strain. By implication, the shear rate in the liquid is also 10-fold larger than the 

applied compression rate.  

 

 

3.4 Discussion of experiments 

 

To summarize the central experimental observations, the Section 3.1 pointed out that the 

film width and the film edge both play a complex role in the entire process. Yet, for film widths 

that are not too narrow, one may simplify and treat the situation as approximately 2D – at least in 

the sense that ridges appear qualitatively independent of film width. The experiments of Section 

3.1, which were then conducted under these pseudo-2D conditions, show that ridge localization 

is favored by low liquid layer thickness and by low strain rate. Sections 3.2 then quantify the 

videos. We acknowledge that these experiments were not designed to quantify buckle profiles, 

and the displacements of material points may not be quantitatively accurate. Nevertheless, two 

observations can be made with confidence, first that interridge distances reduce as rate or liquid 

thickness increases, and second that the film undergoes significant horizontal motion coincident 

with ridge development. Indeed both observations are qualitatively obvious even by viewing the 

videos.  



 

 26 

We now speculate on the mechanics of ridge localization. Section 3.1 noted that even 

samples that show uniform wrinkles during compression evolve into localized ridges after the 

compression is stopped. This suggests that localized ridges provide a lower energy state than 

uniformly-distributed wrinkles. Yet, the fact that wrinkles appear under rapid compression 

suggests that ridges are kinetically limited. At the outset of this research, one goal was to identify 

the strain for a wrinkle-to-ridge transition. However these results suggest rather than a transition 

from wrinkles to ridges, it may be better to regard wrinkling and localization ridges as processes 

that compete against each other. Both relax the elastic energy, but ridge formation is slower, 

presumably because forming well-spaced ridges requires displacing the film (and the underlying 

fluid) over relatively large distances. This is not due to any unique characteristics of ridges, but 

common to any instability in which viscosity plays a retarding role, e.g. capillary instabilities of 

viscous threads54, spinodal decomposition in the bulk55, spinodal dewetting of thin films56, 

buckling of elastic fibers in viscous media57, or indeed sinusoidal wrinkling of elastic films on 

viscous supports50,58. In all these cases, long-wavelength instabilities are energetically-favorable, 

but penalized by their slow kinetics. 

As per this physical picture therefore, whether an experiment results in uniform wrinkles 

or localized ridges depends on the compression rate. At low rates, the film may directly buckle 

into localized ridges. As a ridge develops, it relieves the local compressive strain in the film, thus 

wrinkles can no longer form. We speculate that any pre-existing defects may accentuate the 

tendency to form localized ridges, and hence encourage transition directly from a flat to a folded 

state. As loading rate increases, ridges cannot develop sufficiently rapidly and hence the film 

first wrinkles, and then reorganizes into ridges during compression. At sufficiently high rates, 

wrinkles grow almost uniformly up to the end of the compression. The driving force for 
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localization persists however, and therefore after stopping compression, wrinkles gradually 

become non-homogeneous. 

The effect of the liquid layer can be thought of in three distinct ways: gravity, 

incompressibility and viscosity. The first effect of the liquid, that it induces a gravitational 

penalty for any variation in film height, is relevant in many static loading situations. This effect 

is ignored here since gravitational effects are negligible at least over the timescale of the loading 

process. In fact Chatterjee et al had confirmed previously10 that tilting the sample by 90° made 

no qualitative difference to ridge formation. 

 

Figure 3.5: A. Schematic of an elastica (red) placed at a distance H_0 from a surface (rubber 

layer) shown in black. B&C. Shapes expected shape if the elastica minimizes energy at small 

strain (C) and at large strain (D-F) Compression at finite rate. D. Packets of buckles appear at 

small strain. Regions with high amplitude have lower film strain, and the corresponding strain 

gradient induces horizontal film motion (blue arrows). This causes the growth of localized ridges 

if compression is slow (E). At high compression rate, additional buckles grow between the 

packets giving approximately-uniform wrinkles. 

 

The second effect is relevant to sufficiently wide films for which exchange of fluid across 

the edge of the film is negligible over the timescale of the compression. Accordingly the fluid 

imposes an incompressibility constraint so that the volume of fluid under the buckles must be 
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preserved. This liquid incompressibility condition shows most transparently why a localized 

buckle is energetically-favorable. Specifically, consider the following 2D problem posed in 

purely geometric terms: An elastica of length 2𝐿 is placed parallel to an underlying flat surface at 

a certain distance 𝐻0 ≪ 2𝐿 as illustrated in Fig. 3.5A. The end-to-end distance of the elastica is 

now reduced by Δ = 2𝐿𝜖 so that the elastica must be accommodated within the length 2𝐿(1 −

𝜖), while maintaining its contour length. Crucially, fluid incompressibility forces the area 

between the elastica and the underlying flat surface to remain at a value of 2𝐿𝐻0. At small values 

of strain 𝜖, the two constraints (length of elastica and area under the elastica) can be satisfied by 

a single sinusoidal profile (Fig. 3.5B) with a wavelength spanning the system length. At small 

strain, the amplitude of this single sinusoid is proportional to 𝐿√𝜖. With increasing strain, the 

amplitude increases until the film is forced to contact the underlying surface. It seems intuitive 

that in such a situation, the lowest energy state is not multiple buckles, but a single localized 

buckle of a shape qualitatively illustrated in Fig. 3.5C.  

An unexpected result from our experiments is that buckles first appear in “packets”, 

which then grow into ridges with no change in position. We conjecture that these packets of 

wrinkles add natural imperfections to the film and select the positions where ridges may develop. 

But ridges actually develop only if their amplitude can grow sufficiently rapidly as compared to 

the primary wrinkles. We therefore propose Fig. 3.5D-F as the mechanism whereby buckles 

grow as localized ridges or uniform wrinkles. Due to the packets at the buckle threshold (Fig. 

3.5D), some regions have higher amplitude than others. Since buckling relieves compressive 

strain, these high-amplitude regions have lower film strain than their neighboring regions. The 

resulting film strain gradient induces a stress in the film that pushes the film from the low-

amplitude to high-amplitude region (Fig. 3.5D), thus making the ridges taller (Fig. 3.5E). 
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Crucially, this horizontal motion also relieves the compressive strain in the adjacent film, thus 

inhibiting buckle growth in the region around the ridges. Indeed the same mechanism is active 

near the film ends: a gradient in film strain induces horizontal motion at the film ends (which can 

be captured by the shear lag model10,59), thus suppressing buckling near the ends. In the present 

situation, since ridge growth requires film motion over multiple wavelengths, it is possible only 

at relatively low compression rates. At high compression rate, horizontal motion is too slow to 

relieve compression in the neighboring regions, and hence buckles grow everywhere (Fig. 3.5) 

giving nearly uniform wrinkles. The driving force for localization persists however, and 

therefore after stopping compression, wrinkles gradually localize into ridges, and ridges localize 

further into fewer ridges, as shown in Fig. 3.3. 

In the above physical picture, horizontal motion of the film is crucial to ridge growth, as 

was indeed shown in Fig. 3.2. This horizontal motion of the film is regulated by the third effect 

of the fluid layer, which is to retard flow between the film and the rubber strip. It is helpful to 

think of the film motion parallel to the rubber strip separately from the motion perpendicular to 

the strip. For two parallel surfaces moving perpendicular to each other at a specified rate, 

lubrication theory60 states that the viscous resistance scales as 𝐻−3 where 𝐻 is the local liquid 

thickness. Accordingly, for sinusoidal wrinkles of amplitude 2𝐴, the viscous resistance under the 

trough (~[𝐻0 − 𝐴]−3) may far exceed that under the peak  (~[𝐻0 + 𝐴]−3), thus causing a large 

up-down asymmetry between peaks and troughs. This asymmetry is such that the liquid 

thickness under a peak can change readily, whereas the liquid thickness under a trough cannot. 

This asymmetry by itself would not induce localization; it would only cause initially-sinusoidal 

wrinkles to develop increasingly flat troughs as the strain increases. Ridge growth further 

requires long-range film motion parallel to the rubber strip. As per lubrication theory, the viscous 
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resistance to local parallel motion between the film and the rubber strip scales as 𝐻−1, a 

dependence that is far less severe as compared to perpendicular motion. Thus, with the film 

strain gradient (previous paragraph) as the driving force, one ridge may grow rapidly by 

“gathering up” the contour length of neighboring ridges or wrinkles.  

The physical picture proposed here will be tested in later chapters and in fact we will 

show that a few well-spaced ridges do indeed have lower energy than uniform wrinkles. Further, 

simulations confirm that for ridge formation the film undergoes large translation parallel to the 

rubber layer, whereas for wrinkle growth, the film motion is almost entirely perpendicular to the 

rubber layer. 
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4.0 Compression-induced Buckling of Thin Films Bonded to Viscous Substrates: Film 

Length Effect    

 

 

Portions of this chapter are included in a manuscript by Xianheng Guan, Nhung Nguyen, Enrique 

Cerda, Luka Pocivavsek, Sachin Velankar, Compression-induced buckling of thin films bonded 

to viscous substrates: Film Length effect, to be submitted to Journal of Mechanics and Physics of 

Solids 

 

When a thin elastic film such as a sheet of paper is compressed uniaxially, it readily 

buckles at the longest wavelength permitted by its boundary constraints. For clamped 

boundaries, this corresponds to a single sinusoid with a peak in the center. However if the sheet 

is attached to a compliant substrate, the energy needed to deform the substrate penalizes long-

wavelength buckling. In such cases, buckles take on the form of sinusoidal wrinkles at a 

wavelength that depends on the mechanical properties and geometry of the film and the 

substrate, but is independent of film length61-64. Upon further compression, a variety of post-

buckling transitions can induce buckle localization. For soft elastic substrates that are relatively 

thick, the buckles can undergo period-doubling wherein alternate wrinkle troughs become 

increasing deep and sharp32,44,49. For relatively thin elastic substrates that are much softer than 

the film, the reverse happens: alternate wrinkle peaks become much taller, and this is called ridge 

localization65. Ridges can also appear if the substrate is prestretched before attaching the 

film45,49,66. Finally, for liquid substrates under gravity where the hydrostatic pressure associated 

with the buckle amplitude imposes an energy penalty, an extreme form of localization can appear 
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where a single trough becomes increasingly deep, while the remaining film reverts to being flat. 

This is generally dubbed fold localization34,39,42.  

In this research, we consider buckling of elastic films bonded to viscous substrates in the 

geometry of a film atop a viscous layer of specified thickness, which is itself bonded to a rigid 

substrate. Most past research in this field has examined the situation when the film bears a 

compressive prestrain (Fig. 4.1A), e.g. due to a mismatch in thermal expansion coefficients, or 

an epitaxial mismatch when the film was originally deposited. Such a prestrain is conceptually 

equivalent to applying an instantaneous compressive strain 𝜖0 to the substrate at some initial time 

𝑡 = 0. In response the film instantaneously develops the same compressive strain, which then 

reduces with time as the film develops uniform wrinkles11,12,14,29,32,36. The physics of such 

wrinkling formation is entirely different from that in the previous paragraph because a viscous 

substrate cannot store energy and hence does not impose an energy penalty. Instead, the wrinkle 

wavelength is selected by a tradeoff between the energy of buckling (short wavelengths are 

energetically-unfavorable because they require large bending energy) and the kinetics of 

buckling (long wavelengths grow slowly because they require long-distance motion of the 

viscous fluid50,58). Thus, wrinkles appear at the wavelength corresponding to the most unstable 

(i.e. fastest growing) buckle mode. Linear stability analysis, with the assumption of with the 

assumption of lubrication flow in the liquid, can successfully predict the wavelength and the 

growth rate of this most unstable buckle mode. Notably, unlike the case of a soft elastic 

substrate, such buckles do not have a critical strain – instead wrinkles develop with time with at a 

wavelength that is already determined from the prestrain at 𝑡 = 0. 

Fig. 4.1A is reasonable when the compressive strain is applied rapidly before significant 

buckles appear. For instance, if the compression results from a mismatch in thermal expansion, 
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the time needed for temperature changes may be far less than the time to develop significant 

wrinkle amplitude, especially if the viscosity is high. Yet, this “instantaneous loading” 

assumption is untenable if the compression is slow, or if the compressive strain is large. In those 

situations, buckles may appear even while the compression is in progress, and therefore the rate 

of compression must affect the buckling process. In fact, dimensional analysis can be readily 

conducted in two limiting cases, one that is strain-controlled, and the other that is rate-controlled. 

In the first corresponding to Fig. 4.1A, the film is compressed at infinite rate to a strain 𝜖0. In this 

case, no non-dimensional combination of material properties is possible and hence the buckling 

mode is determined by 𝜖0 and the film geometry; material properties only affect the rate of 

buckle growth, not the mode. In second limit, an initially strain-free film is compressed steadily 

at a fixed rate 𝜖̇. In this case the buckling mode, the critical strain for buckling, and the post-

buckling evolution under continued compression, must depend on the geometry and a non-

dimensional rate (viscosity)× 𝜖̇/(film modulus).  

Unlike the many examples of buckling under the conditions of Fig. 4.1A 11,12,14,29,32,36, the 

rate dependence of buckling has received very little attention. A previous paper from our lab10 

examined appears to be the only published example of continuous compression in the literature. 

The most remarkable result from that study was that two very distinct buckling modes can 

appear: either roughly sinusoidal wrinkles over the entire surface, or a few tall, well-spaced 

ridges separated by flat regions. While that study did not focus on ridge formation, more recently 

we showed experimentally67 that low compression rates favor ridge localization, whereas high 

compression rates favor uniform wrinkling. Despite these two studies, our understanding of rate 

effects in film buckling on viscous substrates remains very limited. 
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Yet, examining the rate-dependence of film buckling is complicated by end effects. As 

illustrated in Fig. 4.1C, and elucidated by Liang et al3, a film of finite length can relax 

compressive strain by outwards displacement of its ends, a process that is dubbed “end-

relaxation” in this research. End-relaxation competes with buckling in that both processes reduce 

the in-plane compressive strain, and hence the elastic energy, in the film. Thus, if end-relaxation 

is sufficiently rapid, the compressive strain in the film can reduce to negligible values before 

buckles can grow significantly, as explored by Liang et al3 for the case of films under a prestrain. 

The effects of end-relaxation under steady compression have not been explored, but we 

anticipate that they will differ from Liang et al in some key ways. Most importantly, a film with 

a prestrain must eventually relax to a stress-free state. In contrast, for continuous compression, 

the long-term fate of the film is expected to be much more complex. For example, the film may 

sustain a steady buckled shape where buckles in the middle coexist with a flat region at the ends 

(where strain is low). Alternately, the film may have unbounded growth of wrinkles in the 

middle, while maintaining flat ends. Ridge formation introduces further richness, and we will 

show here at relatively large strains, wrinkles turn into localized ridges near the center, whereas 

the film ends remain flat.  
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Figure 4.1: An elastic film (red) is bonded to a viscous liquid layer (blue) resting on a substrate 

(black). A. The black substrate is subjected to an instantaneous compressive strain 𝜖0 at 𝑡 = 0, 

inducing gradual development of buckles on the film. B. The black substrate is subjected to 

continuous compression at a constant rate 𝜖̇ starting from 𝑡 = 0. Note that the lowermost 

schematic in B shows non-uniform buckle amplitude as noted in this research and in 

experiments67. C. A finite-length film with end-relaxation. The fluid undergoes shear flow near 

the film ends. The compressive strain remains low near the ends, and hence the film remains 

unbuckled near the ends. 

The goal of this chapter is to examine the effects of end-relaxation on the buckling of 

films on viscous substrates by numerical simulations. This information will help guide further 

simulations (next chapter) in which buckling can be studied in isolation from end-relaxation 

effects.  

One means of examining end-relaxation effects is to fix the material properties and 

geometry, and vary the rate of compression; as discussed above, slower rates allow more time for 

end-relaxation to relax compressive strain, and hence inhibit buckling. While this approach is 

viable, it is less convenient because experiments67 indicate that even in very long films where 

end-effects become negligible, rate strongly affects the buckling process. Instead, we examine 
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the effects of end relaxation by keeping rate fixed, but varying film length, an approach similar 

to Liang et al3. As clarified in Section 4.1, the time required for the effects of end-relaxation to 

be felt at the center of the film scale with the square of the film length. Therefore, for a long film, 

end-relaxation only affects a narrow region near the ends, whereas end-relaxation affects the 

entirety of a short film. 

 

 

4.1 Simulation method 

 

 

Simulations were conducted for the geometry of Fig. 4.2 under plane strain conditions 

using ABAQUS explicit solver2. The simulation geometry is shown in Fig. 4.2, with a finite 

length along the 𝑥-direction, 2𝐿. The film and the rubber substrate were both modeled by neo-

Hookean 1D beam elements with shear modulus 𝐺𝑓𝑖𝑙𝑚 and 𝐺𝑟𝑢𝑏𝑏𝑒𝑟. The modulus of the film 

referred to in the main text is 𝐸 = 2𝐺𝑓𝑖𝑙𝑚(1 + 𝜈𝑓𝑖𝑙𝑚) where 𝜈𝑓𝑖𝑙𝑚 = 0.49 to approximate 

incompressibility. The liquid layer was modeled as a 2D viscoelastic material with a modulus 

that decreases exponentially in time (see below). The meshing density of elements in all parts of 

the model is sufficiently high to ensure the accuracy of simulations. In all simulations, all 

elements are plane strain and domains are attached to each other with no slip. 

The free surface of the film was set to be stress-free. The ends of the film were set to 

have zero force and moment. The ends of the rubber layer were translated inwards at fixed 

velocity 𝑣𝑒𝑛𝑑, and out-of-plane deformation of this layer was forbidden via a roller boundary 

condition. The modulus and thickness of the rubber was set to be much larger than of the film 
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ensuring that the in-plane strain, 𝜖 =
𝑒𝑛𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑟𝑢𝑏𝑏𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ
= 𝜖̇𝑡, at all locations in the rubber was 

equal to the nominal value. Here the compressive strain ϵ and strain rate ϵ ̇ are both taken as 

positive quantities. Accordingly, the compression of the rubber appears as a boundary condition 

on the lower surface of the liquid. Viscous forces in the liquid layer then transmitted the 

compression to the film, which buckled. 

To model the viscous fluid layer, we use a viscoelastic material with an exponentially-

decaying modulus. The time-dependent modulus is defined as 𝐺(𝑡) = 𝐺0 exp (−
𝑡

𝜏𝑣
). 

Accordingly, the corresponding fluid part has a viscosity 𝜂 = ∫ 𝐺(𝑡)𝑑𝑡
∞

0
= 𝐺0𝜏𝑣. It is expected that 

for the condition 𝜖̇𝜏𝑣 ≪ 1 the system is dominated by viscosity and displacements become 

important. To compute large displacements correctly, we use a hyperelastic material for the 

liquid layer. Specifically, a Neo-hookean model defined by the parameters 𝐶1 = 𝐺0/2 and 𝐷1 =

3(1 − 2𝜈0)/[(1 + 𝜈0)𝐺0] Since the elastic part is irrelevant for the large time behavior of the 

fluid, the initial modulus 𝐺0 was set as equal to the film modulus, 𝐺𝑓𝑖𝑙𝑚. Although the fluid is 

incompressible, numerical instability is observed for a Poisson ratio 𝜈0 = 1/2; hence, the 

Poisson ratio of the viscoelastic material was set to a safe value of 𝜈0 =0.475.  

 

Fig. 4.2B shows example snapshots of simulations at three different film lengths, which 

will be discussed in detail later.  
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Figure 4.2: A. Schematic of “sandwich structure”: red film bonded to the blue liquid substrate, 

which is itself bonded to black rubber layer. In the simulation, the ends of the rubber layer are 

translated inwards (thick black arrows) at a specified velocity. B. A snapshot of simulations with 

different film length showing the buckling profile (red arrows indicate the end of film and blue 

arrows indicate the end of buckling region) under same compressive strain of 𝜖 = 0.075. All 

dimensions have been magnified by a factor of 2 in the vertical direction for clarity. 

 

 

4.2 Results 

 

4.2.1 Shear lag model prior to buckling 

 

Before describing the simulation results, this section briefly reviews the mechanics prior 

to film buckling10. For finite films under plane strain conditions, the mechanics of the film prior 

to buckling can be captured by four non-dimensional parameters, the non-dimensional strain rate 

𝛽 = (1 − 𝜈2)𝜂𝜖̇/𝐸, the non-dimensional half length of the film 𝐿/𝐻0, the non-dimensional 

liquid thickness 𝐻0/ℎ, and the strain 𝜖 = 𝜖̇𝑡, where 𝐸 is the film modulus, 𝜈 is the Poisson ratio 
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of the film (set to 0.49 in the simulations), 2𝐿 is the length of film , 𝜂 is the viscosity, 𝐻0 is the 

thickness of liquid (𝐻0 ≪ 𝐿). Assuming lubrication flow in the liquid layer, Chatterjee et al 

showed that the x-direction displacement in the film, 𝑢(𝑥, 𝑡), is given by a diffusion equation 

 

𝑑𝑢

𝑑𝑡
=

𝐸𝐻0ℎ

𝜂(1 − 𝜈2)

𝑑2𝑢

𝑑𝑥2
+ 𝜖̇𝑥 (4.1) 

Here the quantity 
𝐸𝐻0ℎ

𝜂(1−𝜈2)
 plays the role of diffusivity, whereas the applied strain (last 

term on the right hand side) serves as a source term in the diffusion equation. Chatterjee et al 

solved for the displacement 𝑢 and hence obtained the film strain 𝜖𝑓 = 𝑑𝑢/𝑑𝑥  in the form of a 

series solution  

𝜖𝑓(𝑥, 𝑡) =
𝛽𝐿2

2ℎ𝐻0
(1 −

𝑥2

𝐿2) + ∑ 𝐾𝑚 cos ((2𝑚 − 1)
𝜋

2

𝑥

𝐿
) exp (−(2𝑚 − 1)2

𝑡

𝜏
) 

∞

𝑚=1

 (4.2) 

where the coefficients 𝐾𝑚 were given previously10. In the above equation 𝜏 =

4𝐿2

𝜋2ℎ𝐻0

𝜂(1−𝜈2)

𝐸
 , called the shear lag time, is a characteristic diffusion timescale over which the 

effects of end-relaxation propagate over the distance 𝐿.  In the short-time regime 𝑡 ≪ 𝜏, Eq. 4.2 

reduces to 

𝜖𝑓(𝑥, 𝑡) = 𝜖 = 𝜖̇𝑡   𝑓𝑜𝑟   𝑡 ≪ 𝜏 (4.3) 

over almost all the film except a narrow region at the ends where the film relaxes. This 

end-relaxation zone propagates towards the center over a timescale of 𝜏, beyond which Eq. 4.2 

reaches a long-time regime, which is a time-independent parabolic strain distribution  
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𝜖𝑓(𝑥, 𝑡) =
𝛽𝐿2

2ℎ𝐻0
(1 −

𝑥2

𝐿2
)    𝑓𝑜𝑟   𝑡 ≫ 𝜏 (4.4) 

Fig. 4.3A illustrates the long and short time limits by plotting the film strain at the center 

(i.e. Eq. 4.2 evaluated at 𝑥 = 0) vs the applied strain 𝜖 = 𝜖̇𝑡. These graphs are plotted for the 

same three film lengths as Fig. 4.3B, and in all cases, the transition from the short to long-times 

occurs at 𝑡 ≈ 𝜏. The corresponding applied strains at the transition are simply 𝜖̇𝜏 =
4𝐿2

𝜋2ℎ𝐻0
𝛽, and 

are indicated by the short vertical lines in Fig. 4.3A.  

 

Figure 4.3: A. Prediction of shear lag model (Eq. 4.2) for the film strain at the center of the film 

vs strain applied on the bottom rubber layer. Vertical dot-dashed lines correspond to the strain 𝜖̇𝜏 

for each of the three films (see text). B. The average strain 〈𝜖𝑓〉 in the middle one-third of the 

film. In both graphs, dashed black line corresponds to 〈𝜖𝑓⟩ = 𝜖 = 𝜖̇𝑡. 

The film may buckle at any stage during this strain evolution, and since the highest 

compressive strain is in the mid-section of the film (Eq. 4.4), buckles are likely to initiate at or 

near the center. Thus, buckles may initiate in two limiting conditions: either at 𝑡 ≪ 𝜏 when most 
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of the film is in a spatially-homogeneous strain state (Eq. 4.3), or 𝑡 ≫ 𝜏 when the film has 

reached a parabolic strain distribution (Eq. 4.4). Note that the short time regime persists for 𝑡 ≪

𝜏, i.e. to 𝜖 ≪ 𝜖̇𝜏 =
4𝐿2

𝜋2ℎ𝐻0
𝛽, a value that increases quadratically with film length. Thus longer 

films are more likely to buckle while the strain state is still spatially-homogeneous. This 

distinction between buckling in the short vs long films will be made more clearly in the 

following sections. 

 

4.2.2 Effects of film length on buckling 

 

Fig. 4.2B shows snapshots for three different film lengths but identical 𝐻0/ℎ = 9.84, 

𝛽 = 6.3 × 10−7 and 𝜖 = 0.075 chosen to illustrate three distinct behaviors. The uppermost 

image corresponds to a relatively short film (𝐿/𝐻0 = 35) that does not buckle at all during 

compression. The middle image shows a longer film (𝐿/𝐻0 = 80) that develops a few buckles 

near its center, but has large buckle-free regions near the film ends. The lowermost image shows 

an even longer film (𝐿/𝐻0 = 190) that has numerous buckles near its center, but further, the 

buckles are clearly localized with regions of large buckle amplitude separated by regions that are 

nearly flat. The rest of this section analyzes in greater detail the evolution of buckles in all three 

cases. 
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Figure 4.4: A-C Spatial profiles distribution of film strain, and D-F. spatial profiles of non-

dimensional amplitude Δ𝐻/𝐻0 (defined in Eq. 4.9) in films with the  Δ𝐻/𝐻0 values of 35 (left 

column), 80 (middle column) and 190 (right column). In the lower row of graphs,  Δ𝐻/𝐻0 

profiles at various strains have been shifted vertically with respect to the previous by one unit. 

 

The upper row in Fig. 4.4 shows the evolution of the in-plane strain in the film, 𝜖𝑓(𝑥, 𝑡) 

during compression, whereas the lower row shows the amplitude profile normalized by the liquid 

thickness (the precise definition of amplitude is given in Eq. 4.9 later, but briefly H(x) is the 

height profile  of the film, and DeltaH(x) is the amplitude profile). For the following discussion, 

it is also useful to have a measure strain in the film at its center. Yet, post-buckling, the strain in 

the film varies with position, and hence rather than using the strain at 𝑥 = 0, instead we 

calculated the average film strain 〈𝜖𝑓〉 in the middle one-third of the film (−
𝐿

3
< 𝑥 <

𝐿

3
), whose 

strain-evolution is shown in Fig. 4.3B. 
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At the earliest times, the evolution of film strain of all three films is similar: 𝜖𝑓(𝑥, 𝑡) 

remains independent of position near the center, whereas it reduces towards zero near the film 

ends. Further, the average film strain near the center equals the applied strain, i.e. 〈𝜖𝑓〉 = 𝜖 = 𝜖̇𝑡 

(Fig. 4.3B), consistent with Eq. 4.3. At later times, the behavior depends on film length.  

For the shortest film with 𝐿/𝐻0 = 35, as strain increases, 𝜖𝑓 becomes position-dependent 

throughout the film length (Fig. 4.4A). Further, the mean value near the center is far lower than 

the applied strain (Fig. 4.3B). Both these are attributable to the effects of end-relaxation rapidly 

diffusing to the center. As a result, film strain does not rise to a sufficient level to induce 

buckling within the compressive strain applied in the simulations. Instead, the film (Fig. 4.4D) 

simply rises upwards (due to fluid incompressibility) while maintaining a nearly flat profile, 

except for a small upward rise near the ends consistent with experiments. Further, the film strain 

profile, 𝜖𝑓(𝑥, 𝑡) is in good agreement with Eq. 4.2 as shown in the Fig. S5. 

In the other extreme, for the longest film with 𝐿/𝐻0 = 190 (Fig. 4.4E), the film strain 𝜖𝑓 

increases until the film buckles. Buckling is marked by a sharp decrease in 〈𝜖𝑓〉 as the film 

rapidly unloads its compressive stress. Prior to buckling, 𝜖𝑓(𝑥, 𝑡) ≈ 𝜖 throughout the mid-section 

of the film, i.e. buckling occurs from a spatially-homogeneous strain state which is not affected 

by end-relaxation. Near the film ends however there is a buckle-free zone because the 𝜖𝑓 

remains small.  

The intermediate case of 𝐿/𝐻0 = 80 (Fig. 4.4B) is similar to Fig. 4.4C in some respects: 

the film strain rises sufficiently to induce buckling, buckling is marked by a sharp decrease in 

〈𝜖𝑓〉, and there is a buckle-free zone near each end. The crucial difference however is that in Fig. 

4.4B, the film strain profile 𝜖𝑓(𝑥) evolves to a nearly parabolic distribution before buckles 
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appear. Thus, for 𝐿/𝐻0 = 80 the buckling occurs from a non-homogeneous strain state, and 

therefore must be affected by end relaxation, whereas for 𝐿/𝐻0 = 190, the buckles are isolated 

from end-effects. 

The discussion thus far mirrors the distinction between small, intermediate, and large 

lengths of film (“islands”) made by Liang et al. In that case, the films bore a spatially-uniform 

prestrain which was relieved by end-relaxation. Small islands relaxed from their ends without 

buckling, analogous to Fig. 4.4A. However intermediate and large islands developed wrinkles 

before eventually reverting to a flat state analogous to Fig. 4.4B and C. Yet, the post-buckling 

behavior with continuous compression is quite different from that in Liang. As mentioned in the 

introduction, in the case of a fixed prestrain a film of finite length must eventually revert, by end-

relaxation, to a flat, stress-free state. In contrast, Fig. 4.4 shows remarkable features. For both 

𝐿/𝐻0 = 80 and 𝐿/𝐻0 = 190, after buckling, ⟨𝜖𝑓⟩ quickly reduces to a time-invariant post-

buckling plateau value which will be denoted ⟨𝜖𝑝𝑏
𝑓

⟩ in the rest of this research. I.e. increasing 

compression is entirely accommodated by amplitude growth, with no further compression of the 

film. Perhaps most remarkably, amplitude profile becomes highly localized such that some 

buckles become much taller than others. This non-homogeneous buckling will be dubbed the 

“ridge” regime henceforth, and is especially clear in the uppermost profile at 𝜖 = 0.075 in Fig. 

4.4F, and the corresponding snapshot in Fig. 4.4B. 

Simulations were conducted across a wide range of film lengths for the same parameters 

(𝛽 = 6.3 × 10−7 and 𝐻0/ℎ = 9.84) as Fig.4.4. For each of these simulations several quantities 

were extracted. The critical strain in the rubber 𝜖𝑐 at the onset of buckling, and the corresponding 

average strain in the middle one-thirds of the film 〈𝜖𝑐
𝑓
〉 can identified from the steep drop in 〈𝜖𝑓〉 

in plots of 〈𝜖𝑓〉 vs 𝜖 (e.g. Fig. 4.4). Both these quantities are shown in Fig. 4.5A. The wavelength 
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immediately after buckles develop can be obtained from a correlation analysis of the amplitude 

profile, and is shown in Fig. 4.5B. Post-buckling, two quantities are reported, both at an applied 

strain of 𝜖 = 0.075 (chosen arbitrarily). These are the post-buckling plateau strain 〈𝜖𝑝𝑏
𝑓

〉 (Fig. 

4.5C), and the length of the buckle-free zone, 𝐿𝑓𝑙𝑎𝑡 near the film ends (Fig. 4.5D). The latter 

quantity is defined as the region near the film ends where the buckle amplitude (defined in Eq. 

4.9 later) was less than 0.002𝐻0.  

Fig. 4.5A shows for the longest films, 〈𝜖𝑐
𝑓
⟩ = 𝜖𝑐 whereas as film length reduces, 𝜖𝑐 

increases sharply, whereas 〈𝜖𝑐
𝑓
〉 reduces only slightly. Indeed the difference (𝜖𝑐 − 〈𝜖𝑐

𝑓
〉) is a 

quantitative measure of the extent to which end-relaxation affects buckling, and one may 

conclude that for 𝐿/𝐻0 > 140, the initiation of buckles becomes is independent of end 

relaxation. Fig. 4.5D shows that the buckle wavelength that appears at the buckling threshold is 

almost completely insensitive to 𝐿/𝐻0. Further, Fig. 4.5B and C show 〈𝜖𝑝𝑏
𝑓

〉 ≈ 0.0136 and 

𝐿𝑓𝑙𝑎𝑡 ≈ 66, also nearly independent of film length, suggesting that the post-buckling evolution is 

also independent of end-relaxation. Overall Fig. 4.5 indicates that for sufficiently long films 

(roughly 𝐿𝑠 > 140), the buckling behavior of the mid-section and the relaxation near the ends 

are decoupled from each other, and hence both can be examined separately presuming infinite 

film conditions. This will be done in the following two sections. 

Two other observations may be made from Fig. 4.5. First, the shortest film that develops 

buckles in our simulations corresponds to 𝐿𝑠/𝐻0 = 70 which is close to only slightly larger than 

𝐿𝑓𝑙𝑎𝑡/𝐻0. This suggests a simple physical picture: a length of 𝐿𝑓𝑙𝑎𝑡 near the ends cannot buckle 

due to end-relaxation, and for 𝐿 ≈ 𝐿𝑓𝑙𝑎𝑡, buckling is suppressed because the entire film 

constitutes the buckle-free region. Second, at the buckling threshold we may draw an analogy 
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that the film resembles a free-standing column of length 𝜆 with clamped ends under a uniform 

axial load. For such a column, the buckling criterion becomes 

𝜖𝑐
𝑢𝑛𝑖 = 10.45 (

ℎ2

𝜆2
) = 10.45 (

ℎ2

𝐻0
2)(

𝐻0
2

𝜆2
) (4.5) 

where the superscript 𝑢𝑛𝑖 refers to uniform axial loading. All the simulations in this research 

used 𝐻0/ℎ=9.84. Then substituting the observed value of 𝜆/𝐻0 from Fig. 4.5B yields 𝜖𝑐
𝑢𝑛𝑖 =

0.02, which slightly underestimates critical strain 𝜖𝑐
𝑓
. We propose the following interpretation: 

buckling initiates when the strain in the film slightly exceeds the strain that would induce 

buckles at a wavelength 𝜆 in a free-standing film with a uniform axial load. Post-buckling, the 

situation is more complex since the strain becomes highly non-uniform. Nevertheless, the film 

maintains an average strain 〈𝜖𝑝𝑏
𝑓 〉 that is only somewhat lower than 𝜖𝑐

𝑢𝑛𝑖.  
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Figure 4.5: Dependence of A. strain in the rubber and the mean strain in the film at the onset of 

buckling, B. normalized wavelength C. strain in the film after buckling and D. normalized 

buckle-free length, on length of film. Vertical dashed line corresponds to 𝐿/𝐻0 = 55 at which 

buckles did not appear up to the strain applied in the simulations. 

 

4.2.3 End relaxation and buckle-free length 

 

 

After buckles appear, the strain in the film reduces significantly, and the shear lag model 

Eq. 4.2 no longer agrees with the strain profile. Nevertheless, near the film ends, the strain 

distribution can still be captured quantitatively by the shear lag approach. Conceptually, we may 

think of the buckle-free region as a flat region of the film of length 𝐿𝑓𝑙𝑎𝑡 which has strain of 

〈𝜖𝑝𝑏
𝑓 〉 on one side, and a strain of zero at the free end. Accordingly, the strain distribution in the 

buckle-free region must be parabolic 
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𝜖𝑓 =
𝛽𝐿𝑓𝑙𝑎𝑡

2

2ℎ𝐻0
(1 −

𝑥2

𝐿𝑓𝑙𝑎𝑡
2 ) 

 

(4.6) 

where the maximum strain 
𝛽𝐿𝑓𝑙𝑎𝑡

2

2ℎ𝐻0
 is set equal to 〈𝜖𝑝𝑏

𝑓 〉, i.e. 

𝐿𝑓𝑙𝑎𝑡 = √
2ℎ𝐻0 〈𝜖𝑝𝑏

𝑓 〉

𝛽
 

 

(4.7) 

In effect, 𝐿𝑓𝑙𝑎𝑡 “adjusts itself” to the value needed to sustain the strain 〈𝜖𝑝𝑏
𝑓 〉 in the 

buckled region. Using 〈𝜖𝑝𝑏
𝑓 〉 = 0.0135 (obtained from Fig. 4.5B), Eq. 4.7 gives 𝐿𝑓𝑙𝑎𝑡/𝐻0 = 66, 

which is in excellent agreement with Fig. 4.5C. Fig. S6 plots the near-ends film strain 

distribution from the simulations for 𝐿/𝐻0 values of 80 and 190. This shows that although Eq. 

4.7 captures 𝐿𝑓𝑙𝑎𝑡, it underestimates the film strain near the ends. Incidentally, later this this 

chapter, we will show that Eq. 4.7 also captures the dependence of 𝐿𝑓𝑙𝑎𝑡 on rate correctly.  

One goal of this research is to identify the length beyond buckles appear, and also the 

length beyond which end effects can be ignored. The former is important if buckling is 

undesirable, whereas the latter is useful to examine fundamental questions regarding the 

mechanics of buckling under conditions that approximate infinite films. Eq. 4.7 now provides a 

simple way to estimate these lengths. In the previous section we mentioned that the post-

buckling strain 〈𝜖𝑝𝑏
𝑓 〉 is somewhat lower than 𝜖𝑐

𝑢𝑛𝑖. Replacing 〈𝜖𝑝𝑏
𝑓 〉 with 𝜖𝑐

𝑢𝑛𝑖 in Eq. 4.7 gives  

𝐿𝑓𝑙𝑎𝑡 = √
2ℎ𝐻0𝜖𝑐

𝑢𝑛𝑖

𝛽
= √

2ℎ𝐻0

𝛽
3.23 (

ℎ

𝜆
) 

 

(4.8) 

which is expected to slightly overestimate 𝐿𝑓𝑙𝑎𝑡. Eq. 4.8 can be applied only based on knowledge 

of the wavelength, which is highly insensitive to film length. Thus, for any given set of 

properties and rates, one may conduct a single simulation or experiment (at any film length) to 
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measure 𝜆, and therefore estimate 𝐿𝑓𝑙𝑎𝑡 from Eq. 4.8. Buckling is not expected when 𝐿 is less 

than the estimated 𝐿𝑓𝑙𝑎𝑡, and buckling is expected to become insensitive to film length wen 𝐿 is a 

few-fold larger than 𝐿𝑓𝑙𝑎𝑡.  

 

4.2.4 Uniform wrinkling vs ridge localization 

 

 

As reported elsewhere10,67 and commented on at the end of Section 4.2.2, a striking 

aspect of buckling on viscous substrates is that at high strain, buckles can localize to form well-

spaced ridges. Qualitatively at least, ridges can be identified by two visually-obvious features. 

First, individual buckles or a pair of adjacent buckles becomes much taller than their neighbors, 

i.e. the amplitude becomes highly non-uniform across the sample. Second, the amplitudes 

become highly non-sinusoidal so that the peaks of ridges grow significantly whereas the troughs 

do not become significantly deeper. We have proposed67 that this asymmetry of peaks vs troughs 

is because due to the small liquid thickness under troughs, viscous forces under the troughs are 

far larger than under the peaks. Thus, as buckles evolve, it becomes easier to grow peaks than 

deepen troughs.  

The goal of this section is quantify the strain at which more-or-less uniform wrinkles 

transition into tall ridges. Since the transition is not an abrupt one, we must first construct a 

quantitative criterion to judge whether the buckled film is in a wrinkled state or ridged state 

based on the height of the buckles. We first define (Fig. 4.6A) the local amplitude  Δ𝐻(𝑥) as 

 Δ𝐻(𝑥) = 𝐻(𝑥) −
𝐻0

1 − 𝜖̇𝑡
 

(4.9) 
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where 𝐻(𝑥) is the local liquid height. Here the latter term on the right hand side is the 

change in liquid thickness expected even in the absence of buckling, i.e. without buckling, the 

film would simply rise upwards due to liquid incompressibility. Now we recognize that uniform 

wrinkles have an approximately sinusoidal profile and hence the amplitude of the peaks and the 

troughs is roughly equal. In contrast, as mentioned above, a signature of localized ridges is that 

the amplitude of the peaks far exceeds the amplitude of the troughs. Accordingly we list the 

amplitudes of all the peaks ( Δ𝐻𝑝 values) and troughs ( Δ𝐻𝑡 values) in the central one-third of the 

film and calculate the root-mean-square (RMS) averages: 

𝑝 = √∑( Δ𝐻𝑝 − 〈 Δ𝐻𝑝〉)
2
     𝑎𝑛𝑑    𝑡 = √∑( Δ𝐻𝑡 − 〈 Δ𝐻𝑡〉)2 

(4.10) 

  

Fig. 4.6 A and B show the strain-evolution of 𝑝/𝐻0 and 𝑡/𝐻0 in two simulations of different film 

length. Immediately after buckling, 𝑝 and 𝑡 grow in tandem, whereas upon further compression, 

they diverge from each other. We now set an arbitrary criterion that the film is deemed to have 

localized ridges if 𝑝/𝑡 exceeds some value 𝐶. The value of 𝐶 must be selected such that the two 

key features of ridge formation mentioned above (highly non-uniform amplitude and peak-

trough asymmetry) are clearly evident at 𝑝/𝑡 = 𝑐, but not for 𝑝/𝑡 < 𝑐. By examining the strain-

evolution of the amplitude profiles, the value of 𝐶 = 1.3 was found to satisfy this requirement. 

The benefit of this criterion is that since it uses all the peaks and troughs, it does not need manual 

judgements on which peaks are “sufficiently tall” to be deemed ridges. 
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Figure 4.6: Strain-evolution of RMS of buckle peaks and troughs for films with the 𝐿/𝐻0 values 

listed at the top of each graph. 

 

Adopting this criterion, Fig. 4.7 now constructs a state map of the regions of parameter 

space within which the film stays flat, wrinkles uniformly, or shows localized ridges.  
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Figure 4.7: State diagram of the strains at which films of various length remain flat, develop 

uniform wrinkles (blue curve), or localized ridges (red curve). The vertical dashed blue line 

corresponds to 𝐿/𝐻0 = 55 at which buckles do not appear up to the maximum strain examined. 

Note that the lower curve is identical to the upper curve in Fig. 4.5A 

 

4.2.5 Energetics of wrinkling vs ridge localization 

 

 

Although Fig. 4.7 maps the strain needed for ridge localization at any given film length, it 

does not provide a mechanistic reason for why ridges develop, i.e. why instead of buckles 

growing uniformly, the amplitude becomes non-homogeneous with some buckles becoming 

much taller whereas others flatten. In Section 3.3 we proposed an energy-based explanation for 

ridge formation. Briefly, for sufficiently long films, since the liquid is incompressible, buckles 

must grow without changing the volume under the film. This implies that for thin liquid layers, 

the lowest energy state of the buckle must be a single tall ridge. However, forming such a ridge 

requires fluid motion over the entire length of the film, a process that becomes increasingly slow 
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as film length increases, and cannot occur over the timescale of compression. In contrast, 

sinusoidal wrinkles can form rapidly because they only require fluid motion over the scale of one 

wavelength. However, sinusoidal wrinkles require the entire film length to sustain a curvature, 

thus resulting in high bending energy. Therefore we proposed that multiple well-spaced ridges 

are a compromise: Since substantial portions of the film can become flat, their bending energy is 

lower than of sinusoidal wrinkles (although higher than a single tall ridge), but they no longer 

require fluid motion over the lengthscale of the entire film. 

Crucially, this proposed explanation hinges on the idea that forming localized ridges 

offers lower energy than uniform wrinkles. In that experimental research67, we were not able to 

test this quantitatively. However, simulation allow this explanation to be evaluated since the film 

energy can be calculated explicitly.  

To compare the energy of the uniformly-wrinkled state vs a ridged state, the simulation 

with 𝐿/𝐻0 =190 (corresponding to Fig. 4.4 C&F) which is sufficiently long to approximate 

infinite film conditions, was selected. The critical strain for this simulation was 𝜖𝑐 = 0.027, 

beyond which it developed wrinkles with 𝜆/𝐻0=2.29. At higher strains, some of the buckles 

grew much more than the others to form ridges at an average interridge distance of 21𝐻0. For 

our energy comparison, this simulation was repeated, but paused at a strain of 0.025 (below 𝜖𝑐), 

and a perturbation was applied. The perturbation consisted of a 1% decrease in the modulus of 

the film at a spatial periodicity of either the wavelength or the interridge distance. The 

compression was continued with this perturbed film, and after a small additional strain, the film 

buckled, but along two distinct pathways. The film perturbed at a periodicity of the wavelength 

developed uniform wrinkles, whereas the one perturbed at a periodicity of the interridge distance 

developed ridges (exemplary snapshots shown in Fig. 4.8B). The benefit of the perturbation 
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method is that these two states were achieved with no change in mechanical properties, 

geometry, or compression rate.  

The evolution of the energy for bending and for the in-plane compression (often dubbed 

stretching energy in the literature) in both states was calculated as  

𝑈𝐵 =
1

2
𝐴𝐸 ∫ 𝜖𝑓2

𝑑𝑠
𝐿/3

−𝐿/3

 

𝑈𝑆 =
1

2

𝐴𝐵

ℎ
∫ 𝜅2𝑑𝑠

𝐿/3

−𝐿/3

 

(4.11) 

 

 

 

(4.12) 

where 𝐴 is the cross sectional area (product of width and thickness) of the film, 𝑠 is the 

coordinate along the film, and 𝐵 = 𝐸ℎ3/12 is the bending stiffness of the film. The curvature 𝜅 

was calculated from the amplitude profile. To avoid end effects, only the middle one-third of the 

film was used for these calculations (specifically, the integration was conducted using the portion 

of the film which lay between −𝐿/3 < 𝑥 < 𝐿/3 at the beginning of the simulation. The results 

of these energy calculations are shown in Fig. 4.8 where the energy is normalized by 𝐸𝑉𝑓𝑖𝑙𝑚 

where 𝑉𝑓𝑖𝑙𝑚 is the volume of the film used in the integration. 
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Figure 4.8: A. Evolution of elastic energy for bending, for in-plane compression, and their sum, 

for simulations with defects that induce the film to buckle in the wrinkle mode or the ridge mode. 

B. Snapshots of each simulation at different values of applied strain 

Prior to buckling, the bending energy is zero, and since 𝜖𝑓 ≈ 𝜖 over the entire mid-

section, 𝑈𝑠/𝐸𝑉𝑓𝑖𝑙𝑚 ≈ 𝜖2/2. After buckling, 𝑈𝑠 reduces sharply for both modes, whereas 𝑈𝐵 rises 

as the film develops curvature. For both modes, 𝑈𝑆 remains approximately constant as strain 

increases, with the ridged mode having a slightly lower value than the wrinkle mode. However, 

there is a large difference in bending energy where 𝑈𝐵 of the wrinkle mode rises much more 

steeply. We propose that the relatively gentle rise in bending energy of the ridge mode is because 

large portions of the film separating the ridges become nearly flat. As the rubber compresses 

further, these flat regions do not reduce in length; instead the “excess length” is transferred to the 

ridge which grows in height. In an approximate sense, these flat regions between adjacent ridges 

behave analogous to short films which remain unbuckled due to end-relaxation. Regardless of 

details, the total energy of the ridge mode is much lower, thus confirming our previous 

explanation from Section 3.3. 
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4.2.6 Strain-strain rate map for wrinkles and ridges 

 

 

Unlike in purely elastic systems, buckling on viscous substrates should depend on the 

compression rate. If film is sufficiently long, end-relaxation effect can be ignored. The buckling 

behavior will depend on strain and strain rate is thickness of liquid is fixed. Accordingly 

simulations were conducted at a variety of rates, using film lengths that were sufficient to 

approximate infinite length. The evolution of strain profiles resembled Fig. 5.5C and F in all 

cases in that buckles appeared from a homogeneous strain state when 𝜖𝑓 ≈ 𝜖 in the mid-section 

of the film. 

 

Figure 4.9: A. Effect of rate on strain after buckling, Dashed line in has a slope of 0.1 and dotted 

line has a slope of 0.25 for illustration. B. Effect of rate on buckle-free length. + symbols in B 

are calculated from Eq. 4.7.  C. Effect of normalized liquid thickness on strain after buckling, 

The dotted line has a slope of -0.75 for illustration. D. Effect of normalized thickness on buckle-

free length. + symbols are calculated from Eq. 4.7. 

Fig 4.9A shows that the average film strain 〈ϵpb
f 〉 near the center is nearly independent of 

strain rate (the dependence of 𝛽0.1 is shown to illustrate the weak dependence). Figure 4.9B 
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shows that 𝐿𝑓𝑙𝑎𝑡 is in close agreement with close agreement with Eq. 4.7 Due to the very weak 

dependence of 〈ϵpb
f 〉 on rate, 𝐿𝑓𝑙𝑎𝑡 varies approximately as 𝛽−0.5, also consistent with Eq. 4.6.  

Fig 4.10 shows that the average film strain 〈ϵpb
f 〉 near the center depends on the 𝜆 and 

〈ϵpb
f 〉 varies approximately as  𝜆−2, which is shown in Eq. 4.5.  

 

Figure 4.10: Effect of strain at steady state on wavelength. Dashed line has a slope of -2 for 

illustration. Note that both axes are logarithmic. 

The same analysis as Fig. 4.7 was conducted on these simulations to classify the regions 

of the strain-strain rate parameter space within which the film remains flat, shows uniform 

wrinkling, or ridge localization. The resulting state map is shown in Fig. 4.11; note that this 

figure refers to infinite film conditions. An aspect is that ridges appear much after wrinkles, and 

at high rates, ridges do not appear within the strain range of simulations. In fact, in the next 

chapter we will show that, by using a different method to identify ridges, ridge formation is 

evident almost simultaneously with the buckle threshold.  
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Figure 4.11: Buckling map based on strain in rubber 𝜖 and strain rate. The blue curve indicates 

the critical strain to induce buckling as the red curve indicates the critical strain to induce ridge 

localization. 
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5.0 Buckling of Long Films 

 

 

Portions of this chapter are included in a manuscript by Xianheng Guan, Nhung Nguyen, Enrique 

Cerda, Luka Pocivavsek, Sachin Velankar, Ridge Localization Driven by Wrinkle Packets, 

submitted to Physical Review Letters, March 2022 

 

The Chapter 4 clarified how film length affects buckling behavior. However, the end-

effect can be ignored for sufficiently long films and film length is no longer a dominant 

parameter. The goal of this chapter is to find a method of quantifying wavelength and interridge 

distance. Further, the dependent of buckling behavior on compressive rate or liquid thickness is 

discussed. 

The simulation method was same as described in section 4.1. For sufficiently long films 

under plane strain conditions, the mechanics of the film prior to buckling can be captured by 

three non-dimensional parameters the non-dimensional strain rate 𝛽 = (1 − 𝜈2)𝜂𝜖̇/𝐸, the non-

dimensional liquid thickness 𝐻0/ℎ, and the strain 𝜖 = 𝜖̇𝑡, where 𝐸 is the film modulus, 𝜈 is the 

Poisson ratio of the film (set to 0.475 in the simulations). The quantity 𝛽−1 ∝ 𝐸/𝜂𝜖̇ has the form 

of a stiffness mismatch ratio 𝐸/𝐸𝑠, and plays a key role in our description. Incidentally the 

literature on thin film buckling sometimes uses the in-plane stiffness 𝑌 = 𝐸ℎ and the bending 

stiffness 𝐵 = 𝐸ℎ3/12(1 − 𝜈2) (rather than 𝐸 and ℎ) to characterize the film. In that case, the 

suitable non-dimensional numbers would be 𝛼 = 𝜂𝜖̇𝐻0/𝑌, the von Kármán number 𝑁 =

√𝑌𝐻0
2/𝐵, and the strain 𝜖. However, our choice of using 𝛽 and 𝐻0/ℎ offers the benefit of 

cleanly separating the material parameters from the geometric ones. The video file 
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Simulation.mp4 exemplary cases of wrinkling and ridge localization, and corresponding 

snapshots are shown in Fig. 5.2A and 5.2B. The first portion of the video shows that at high 

compression rate (large 𝛽), roughly-sinusoidal buckles grow almost uniformly. At the end of the 

simulation (Fig. 5.2A), there are no significant variations in buckle amplitude over the film. In 

contrast, at low rate (small 𝛽), as strain increases, a few buckles grow rapidly, whereas the 

remaining buckles grow much less or reduce in amplitude. Eventually, the film has a few tall 

buckles separated by regions that are more-or-less flat (Fig. 5.2B).  

 

Figure 5.1: A. Schematic of the experiment. A film (orange) is attached to a viscous liquid layer 

coated onto a pre-stretched rubber strip. The rubber strip is allowed to relax (yellow arrows). B. 

2D sketch of geometry before buckling, and C. after buckling. D-F. Experimental images where 

rate and liquid thickness varies. 
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Figure 5.2: Snapshots from A. Wrinkling simulation, and B. Ridge localization simulation, 

taken at strain values listed on top of each image. Note that a wider region is shown for the ridge 

localization simulation, making the liquid layer appear thinner. In fact both have the same initial 

liquid thickness. The color map is the pressure reported by ABAQUS, which is simply the 

negative mean of the three principal stress. 

 

 

For quantitative analysis of the simulations, we must isolate film motion that is 

specifically attributable to buckling. We characterize the film kinematics by two quantities, the 

x- displacement 𝑢(𝑥, 𝑡) of a material point on the film from its initial position, and the height 

𝐻(𝑥, 𝑡) of the film, which is also the liquid layer thickness. If the film stayed flat without 

buckling, these two quantities would follow:  

𝑢𝑓𝑙𝑎𝑡 = −𝜖̇𝑥𝑡    ;    𝐻𝑓𝑙𝑎𝑡 =
𝐻0

1 − 𝜖̇𝑡
 (5.1) 

The first equation states that x-displacement of the film matches that of the bottom rubber 

layer. The second is a statement of liquid incompressibility: as strain increases, the film rises to 

preserve liquid volume, as indicated by the dashed blue line in Fig. 5.1C. Once the film buckles, 

the local values of 𝑢 and 𝐻 deviate from Eq. 4.9, and these deviations are written in normalized 

form as: 
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Δ𝑢

𝐻0
=

𝑢 − 𝑢𝑓𝑙𝑎𝑡

𝐻0
    ;    

Δ𝐻

𝐻0
 =

𝐻 − 𝐻𝑓𝑙𝑎𝑡

𝐻0
 (5.2) 

We adopt Δ𝐻 as the definition of the local buckle amplitude. The spatial gradient 
𝑑Δ𝑢

𝑑𝑥
 is 

simply the film strain 𝜖𝑓 discussed in the previous chapter. Further, the x-direction velocity of 

the film relative to the rubber layer is Δ�̇� = 𝜕𝑡(Δ𝑢). The importance of this relative x-velocity is 

explained below. 

The red lines in Fig. 5.3 show the evolution of the non-dimensional amplitude profile 

Δ𝐻/𝐻0 in the same simulations as the two videos. The onset of buckling is marked by the 

appearance of non-zero values of Δ𝐻/𝐻0 at sporadic locations over the film. As expected from 

visual examination of the videos, at high rate, the buckled region expands until the entire film 

has roughly sinusoidal height variations. In contrast, at low rate, the buckles become localized so 

that regions of tall buckles are separated by flat regions.  
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Figure 5.3: A&B: Snapshots of buckled geometry at 𝜖 =0.075 for the (A) wrinkling and (B) 

ridge localization simulations at the 𝛽 and 𝐻0/ℎ values listed. A wider region is shown for B, 

making the liquid layer appear thinner. In fact, both have 𝐻0/ℎ = 9.84. C&D. Evolution of 

amplitude (red) and x-velocity (blue) profiles in each simulation. (E) Fourier transform of the 

amplitude profile at threshold and fits to gaussian (see text) where horizontal lines indicate width 

of the gaussian. The upper two data are moved vertically by 1 and 2 units respectively.  

 

A major goal of this research is to quantify inter-ridge distance. But the lowest image in 

Fig. 5.1D indicates a complexity: ridge localizations do not necessarily comprise single tall 

buckles. Instead, there are often two or more adjacent buckles that are comparable to each other, 

but much taller than their neighbors. Should two neighboring tall buckles should count as a 

single localized ridge or two? This question can be resolved by examining the x-direction 

velocity profiles. 

We found that inter-ridge distance can be identified reliably from the Δ�̇�(𝑥) profiles, 

rather than by measuring the distance between the tallest buckles from the amplitude profiles. 

The blue lines in Fig. 5.3 plot these relative x-velocity profiles in non-dimensional form 

Δ�̇�/𝜖̇𝐻0 . The first remarkable observation is that in the low-rate simulation, (Fig. 5.3D), while 

the buckle amplitude is still modest (Δ𝐻/𝐻0 < 0.2), the Δ�̇�/𝜖̇𝐻0 develops a long-wavelength 
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modulation. The modulation is such that the film moves towards locations with relatively large 

Δ𝐻 values; these locations “accumulate film” and grow taller, whereas neighboring regions 

“supply film” and themselves become flat. With increasing strain, the regions with tall ridges 

become increasingly narrow, and the velocity profile takes on a sawtooth shape. Yet the 

wavelength of the modulation and the location of the zeroes in Δ�̇�/𝜖̇𝐻0 remain pinned 

throughout. In contrast, at high-rate (Fig. 5.3C), Δ�̇�/𝜖̇𝐻0 temporarily takes on large values in the 

vicinity of buckles. But long-range correlations in Δ�̇�/𝜖̇𝐻0 do not appear, and subsequently all 

the buckles increase their amplitude uniformly. Thus, the modulation in Δ�̇�/𝜖̇𝐻0 is a reliable 

method to find interridge distances; it sidesteps the need to judge which buckles are “tall 

enough” to be counted as ridges. In particular, the modulation unambiguously shows that the 

closely spaced pairs of tall ridges evident in Fig. 5.3D constitute an indeed single buckle 

localization. With this insight about the modulation of x-velocity of the film, the two length 

scales that characterize the buckling, the wavelength 𝜆, and the interridge distance 𝑓, can now be 

estimated readily which is done below. 

 The second remarkable observation is that the fact that Δ�̇� ≠ 0 immediately implies a 

shear flow in the liquid layer. What is striking is that magnitude of the shear flow far exceeds the 

applied compression rate. The local shear rate is roughly Δ�̇�/𝐻 ≈ Δ�̇�/𝐻0. Thus, the quantity 

plotted in Fig. 5.3C and D, Δ�̇�/𝜖̇𝐻0  is the ratio of the shear rate to the applied compression rate. 

For the ridge localization situation of Fig. 5.3D, the highest magnitudes of  Δ�̇�/𝜖̇𝐻0  are about 

15, and these coincide with the troughs neighboring the highest amplitudes. I.e. the shear rate in 

the liquid adjacent to the ridge peak is roughly 15-times larger than the applied compression rate. 

This estimate is consistent with experiments which indicates a shear rate that is 10-fold higher 
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than the compression rate. For the wrinkling scenario, the highest values of  Δ�̇�/𝜖̇𝐻0 is 10, a 

smaller, but still very significant shear flow. 

 

Figure 5.4: A&C: Autocorrelation function of amplitude and velocity of wrinkling simulation 

which is shown in Figure 5.2A. B&D: Autocorrelation function of amplitude and velocity of 

wrinkling simulation which is shown in Figure 5.2B. 

For this, we calculate the spatial autocorrelation functions 𝐶𝑎 for the amplitude and 𝐶𝑣 for 

the velocity, which is shown in Fig. 5.4. 𝐶𝑎 always shows a strong first peak at a non-zero 

distance, followed by several overtones. The location of the first peak is taken as 𝜆. 𝐶𝑣 shows a 

well-defined peak only at low 𝛽 values or at low 𝐻0/ℎ values. The location of this peak is taken 

as 𝑓. For large values of 𝛽 or 𝐻0/ℎ, the peak 𝐶𝑣 is ill-defined, and hence 𝑓 cannot be estimated 

reliably. Visual inspection of the amplitude profiles confirms that in such cases, the amplitude of 

the tallest ridges no longer dominates over all the others. Accordingly, such cases are deemed to 
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be in the wrinkled state, and 𝑓 is not reported. Figure 5.5 shows how 𝜆/𝐻0 and 𝑓/𝐻0 both vary 

with increasing rate at fixed liquid thickness (Fig. 5.5A), or with increasing liquid thickness at 

fixed rate (Fig. 5.5B). 

 

 

Figure 5.5: Dependence of normalized wavelength and inter-ridge distance on non-dimensional 

A. rate 𝛽, and B. liquid thickness 𝐻0/ℎ. Blue symbols correspond to inter-ridge distance, 

whereas red symbols to wavelength. The error bars on the experimental 𝑓 values indicate the 

range of distances measured. Error bars on the experimental 𝜆 values are smaller than the 

symbols. Some simulations or experiments do not show clear wrinkles or ridges, and therefore 

the corresponding points do not appear.  

 

Detailed theoretical analysis was conducted collaboratively by Prof. Cerda, University of Santiago, 

Chile and the lines are predictions of that theory. The theory is the perturbation analysis of Eq. 5.1 

based on lubrication approximation. Then the dynamics of the film constrained to deformations in 

the x-z plane is captured by two given equations: 

𝜕𝑡𝑢 = −𝐻2𝜕𝑥𝑝/(2𝜂) + 𝐻𝜏/𝜂 + 𝜕𝑡𝑢
𝑓𝑙𝑎𝑡 (5.3) 
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𝜕𝑡𝐻 = 𝜕𝑥[𝐻
3𝜕𝑥𝑝/(3𝜂) − 𝐻2𝜏/(2𝜂)] − 𝜕𝑥(𝜕𝑡𝑢

𝑓𝑙𝑎𝑡)𝐻 (5.4) 

  

In the analysis, the criterion of instability is that the amplitude of the perturbation must grow by a 

certain factor, which is the initial unknown perturbations of the system. This certain factor can be 

determined by fitting simulations. The final predictions68 for wavelength and interridge distance 

are as follows, 

𝜆𝑐 ≈ 2𝜋𝐻0𝑐2𝑆0
−

1
8 (1 − 𝑣2)−

3
8𝛽−

1
8 (

𝐻0

ℎ
)
−

5
8

 (5.5) 

𝑓

𝜆
= (

96𝑆0

𝜋2
)
−

1
2

 (5.6) 

These two equations are shown as straight lines in Fig. 5.5 above. 𝑐2 = 2−
7

83−
1

4 = 0.41 and 𝑆0 =

70. 

            From the autocorrelation function of amplitude and velocity shown in Fig. 5.4A, a new 

criterion judging the critical strain to induce ridge localization is proposed. Ridge localization 

can be captured if the peak 𝐶𝑣 is well-defined, vice versa. Then Fig. 4.11, which is the buckling 

map based on strain rate and strain, can be redrawn with new criterion. The advantage of new 

criterion is that velocity modulation can be captured even earlier than the localized in amplitude 

plot.  
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Figure 5.6: Buckling map based on strain in rubber ϵ and strain rate. The blue curve indicates 

the critical strain to induce buckling as the red curve indicates the critical strain to induce ridge 

localization. A. 𝑝/𝑡 criterion, which is same as Fig 4.11. B. velocity modulation criterion. 

Finally, we turn to a Lagrangian view of buckles focusing on the motion of material 

points, i.e. individual nodes of the mesh, and more specifically on how their local motion gives 

either wrinkles or localized ridges. The time-trajectory (𝑢, 𝐻) from ABAQUS tracks the motion 

of each node in lab coordinates. From this, Eq. 5.2 gives the spatial-trajectory of (Δ𝑢, Δ𝐻). The 

corresponding nodal trajectories (Δ𝑢, Δ𝐻), normalized by 𝐻0, are shown in Fig. 5.7. For this 

plot, a three wavelengths-wide region of film was selected in each simulation. In the wrinkling 

case Fig. 5.7A, the trajectories are almost sinusoidal with all displacements being nearly vertical. 

Once a certain node becomes a peak or a trough early during the buckling process, it remains that 

way. In sharp contrast, Fig. 5.7B shows individual nodes moving towards the central fold with 

the x- and z-direction displacements being comparable in magnitude. Therefore nodes near the 

main peak follow highly complex paths, for example, two nodes are highlighted which first 

become a peak and then a trough, or vice versa. Indeed there are even material points that 

traverse across the trough (i.e. start on the left of a trough and move to the right of it or vice 
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versa) while the thickness of the liquid under trough remains at nearly constant height. This 

further strengthens the schematic picture of Fig. 3.5 that peaks can grow due to lateral motion of 

the film, without needing much change of the liquid height in the neighborhood of the peak. 

 
Figure 5.7: Trajectories of material points in the film for A. Wrinkling simulation, and B. Ridge 

localization simulation. Each line is a trajectory of (
𝛥𝑢

𝐻0
,
𝛥𝐻

𝐻0
). The regions selected correspond to 

roughly three wavelengths in each case. The dot-dashed line passes through the initial position of 

each node. The two thick trajectories in B show nodes that first become troughs and then peaks, 

or vice versa. 

 

To summarize, the simulations capture the experimental trends well. Yet, they also bring 

up several complexities that are not obvious experimentally. (1) Fig. 5.2 shows large pressure 

gradients along both, the x-direction as well as the thickness direction. (2) The negative pressure 

under the ridge peaks might serve to make the ridge regions narrower and contribute to high 

local curvature. (3) In the ridge localization simulation, material points in the film undergo large 

x-direction motion, with respect to the substrate with a long-wavelength modulation which tracks 
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ridge localization. (4) Under the troughs neighboring the ridge peaks, the shear deformation is at 

least an order of magnitude larger than the applied compressive deformation. Some or all of 

these complexities may be essential ingredients of even a minimal theoretical model. In 

particular, the last item suggests that motion of the film parallel to the surface is accommodated 

readily by shear flow in the liquid layer. This may justify a theoretical approach wherein viscous 

stresses associated with squeezing flow are included, but those associated with shearing are 

ignored.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 71 

6.0 Rate-dependent Creasing of a Viscoelastic Liquid 

 

 

Portions of this chapter are included in a manuscript by Xianheng Guan, Likhitha Reddipalli, 

Dylan Butler, Qihan Liu, Sachin Velankar, Rate-dependent creasing of a viscoelastic liquid, 

submitted to Extreme Mechanics Letters, accepted in May 2022 

 

A homogenous block of rubber, gel, or many other soft elastic materials, shows surface 

creases under severe compression17-27,33. An initially smooth free surface develops sharp cusp-

like, self-contacting features once a certain critical strain is exceeded. In contrast, viscous liquids 

do not show such an instability, and the free surface remains flat under compression, at least as 

long as viscous effects dominate over any inertial effects. This research is concerned with the 

intermediate case of viscoelastic materials which have both solid-like and liquid-like 

characteristics. We quantify viscoelastic creasing by experiment, and establish a theoretical 

model for the crease forming conditions. 

The first theoretical analysis of the compression-induced instability of the free surface of 

neo-Hookean materials was conducted by Biot33. The onset of elastic instability was taken as the 

strain at which Rayleigh surface wave speed becomes zero. This linear stability analysis 

predicted that the surface should wrinkle at a compressive strain of 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 = 0.46 under plane 

strain conditions. However, experiments showed that localized creases, rather than uniform 

wrinkles, appear at a much lower critical strain 𝜖𝑐𝑟𝑒𝑎𝑠𝑒 = 0.35 17,18,20. This value has been 

reproduced by simulations of a crease, which can be infinitesimal in size but involves a singular 

strain field around the crease tip 21,38,66,69,70. Cai et al19 and Liu et al21 examined the role of 
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surface tension in the creasing process. Since creasing distorts the free surface, it increases the 

surface area as compared to the area expected if the surface remained flat under compression. 

Accordingly, surface tension penalizes creasing, thereby creating a nucleation barrier for the 

initiation of creases18,20. When surface tension is taken into account, creases can appear at any 

strain between 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 and 𝜖𝑐𝑟𝑒𝑎𝑠𝑒. Defects of sizes larger than the elastocapillary length tend to 

reduce the creasing strain to values near 𝜖𝑐𝑟𝑒𝑎𝑠𝑒
21. In contrast, defects that are small relative to 

the elastocapillary length become smoothed out due to surface tension and do not induce 

creasing until the strain approaches 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒. The values of 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 and 𝜖𝑐𝑟𝑒𝑎𝑠𝑒 depend on the 

dimensionless ratio  𝛾/𝐺𝐻. Here 𝛾 is the surface tension, 𝐺 is the shear modulus, 𝛾/𝐺 is known 

as the elastocapillary length, and 𝐻 is the sample thickness. The values 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 = 0.46 and 

𝜖𝑐𝑟𝑒𝑎𝑠𝑒 = 0.35  cited above correspond to samples that are much thicker than the elastocapillary 

length (𝛾/𝐺𝐻 ≪ 1). Further details of creasing in elastic materials, including the effects of 

geometric variables, inhomogeneity of material properties, and more complex material 

constitutive behavior have been examined by many researchers71-79. 

Moving beyond purely elastic effects, the role of inelastic deformation was examined by 

Yang et al. who showed that a material capable of permanent deformation requires a higher 

strain to develop creases24. The role of viscoelasticity, the topic of this research, has not been 

examined previously.  

Intuitively one may expect that the free surface of a viscoelastic liquid should show 

creasing, but only if the compression rate is sufficiently high that the fluid deformation is 

substantially elastic in nature. On the other hand, at rates that are sufficiently low that the liquid 

can relax elastic stresses almost completely, creases are not expected. In fact, such a rate-

dependent creasing instability can be demonstrated readily with Silly Putty™, a familiar 
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viscoelastic fluid (Fig. 6.1). At high deformation rates, Silly Putty behaves as an elastomer, for 

example, bouncing like a ball when dropped onto a surface, or snapping like a rubber band if 

stretched rapidly. However Silly Putty flows like a viscous liquid at low loading rate, for 

example spreading into a puddle when left undisturbed on a horizontal surface. In fact, all 

materials have viscoelastic properties, although the timescales of viscoelasticity are often too 

short or too long for observation. Silly Putty is convenient because it has a relaxation time of a 

few seconds, thus, viscoelastic creasing can be illustrated with crude “hand” experiments as 

shown in the supplementary video file (Hand experiment.mp4). For the illustrative experiment of 

Fig. 6.1, a long cylinder of Silly Putty was laid onto a strip of silicone rubber and allowed to 

relax and spread under gravity into a long puddle with a smooth surface typical of a liquid. The 

rubber strip was then stretched, held for roughly 30 s to allow stress relaxation of the Silly Putty, 

and then unloaded. If unloaded slowly, the free surface of the Silly Putty remains nearly flat with 

only weak distortions. Rapid unloading caused the free surface to develop deep self-contacting 

furrows that strongly resemble creases in elastomers.  
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Figure 6.1: Creases in Silly  induced by compression of the rubber sheet supporting it.  

A. 3D schematic of the hand experiment. Images after compression at B. low rate C. high rate.  

 

 

6.1 Experimental results 

 

Creasing is known to be highly sensitive to defects48. Most formulations of Silly Putty are 

believed to contain particles, which may act as defects, and hence Silly Putty is less suitable for 

experiments. Therefore, experiments were conducted on Oppanol B15, a polyisobutylene of 

molecular weight of roughly 75 kg/mol (as per the manufacturer, BASF). Fig. 6.2 shows the 

oscillatory moduli of the fluid measured in the linear viscoelastic region using an Anton Paar 

MCR-302 rheometer in a 25 mm parallel plate geometry. As may be expected for a polydisperse 

molten polymer, the relaxation spans several decades in frequency. To a first approximation, the 

crossover between the storage modulus 𝐺′ and the loss modulus 𝐺′′ marks the transition between 
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solid-like and liquid-like behavior. This crossover appears at a frequency of 0.20 rad/s, 

corresponding to a timescale of 5.0 s. 

 

Figure 6.2: The oscillatory moduli of the viscoelastic liquid Oppanol B15. 

 

The PIB was placed onto a silicone rubber (Sylgard 184) substrate and allowed to spread 

under gravity at 45℃ to obtain a thick sheet of PIB. A sample of several mm dimension was cut 

from this sheet. Since adhesion between PIB and silicone rubber is very weak, this cut piece 

could be peeled off readily, weighed, and then immediately placed onto a strip of natural rubber. 

It was then further allowed to spread for 8 hours at 65℃ into a layer of thickness ~1 mm. The 

rubber strip was then mounted onto the stretching/compression apparatus. At no point during this 

procedure did the free surface touch any other surface, thus avoiding any defects at the free 

surface which may affect the creasing. 

The stretching/compression apparatus, shown schematically in Fig. 6.3, consists of two 

counter-rotating cylinders to whose surface the rubber strip was clamped. The rubber strip was 

folded along its long direction so that the surface of the sample faced sideways (Fig. 6.3A and 

B). This allowed an unimpeded sideview of the free surface using a downward-pointed camera. 

Despite the fact that the free surface of the sample is vertical, the sample undergoes negligible 
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flow during the experiment owing to its high viscosity. Moreover, in the middle section, the 

radius of curvature of the rubber strip is at least 10-fold larger than the sample thickness. 

Rotation of the cylinders was controlled by two stepper motors. The cylinders were rotated 

manually until the rubber strip was slightly taut. The cylinders were then rotated by the motors 

so that the strip was stretched between the cylinders, thus forcing the PIB viscoelastic liquid to 

stretch as well. The system was then held for at least 5 min. This initial state serves as the 

relaxed state for the fluid. The cylinders were then permitted to counterrotate, allowing the 

rubber strip to recoil, and therefore compressing the viscoelastic fluid layer. The circumferential 

velocity of the cylinders ranged from 0.13 mm/s to 120 mm/s. Since the distance between the 

cylinders is fixed, the nominal compression rate is simply the ratio of the circumferential 

velocity of each cylinder to half of the distance between the cylinders. In all cases, at the end of 

the compression, the rubber strip remained in tension to avoid it from going slack. Further, the 

adhesion of PIB to natural rubber is relatively strong, and hence the PIB did not delaminate in 

these experiments. The strain was measured by tracking marker particles placed on the rubber 

surface. This strain rate was found to be within a few percent of the nominal strain rate obtained 

from the ratio of the cylinder surface velocity to the inter-cylinder distance. The compressive 

strain during this step, and the corresponding compression rate, were the two parameters varied 

experimentally.  
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Figure 6.3. A. The stretching/compression apparatus. The magnified image on the left shows the 

sample more clearly. B. Schematic of the setup. The right hand cartoon illustrates a cross-section 

of showing how the free surface of the sample is curved, allowing a clear view of the free 

surface. C. Images of the samples after low rate compression, and D. after high rate compression. 

From top to bottom, samples were subjected to one, two, or three compression cycles 

respectively. This set of experiments is done with the help from undergraduate researcher 

Likhitha Reddipalli in our group. 

 

Figs. 6.3C and 6.3D show the appearance of the sample after releasing at low and high 

strain rates respectively. The surface remains nearly flat when unloaded at a low rate, but 

becomes distorted after a high rate unloading. Yet, the creases in the top image of Fig. 6.3D are 

not as sharp as seen in typical elastic systems after stretching and compressing22, and hence it is 

difficult to judge whether the sample is creased or not. To enable a clearer classification between 

creased and flat states, we therefore applied three stretching-compression cycles with a 5 min 

duration between cycles, and a strain rate of 0.044𝑠−1 during stretching. Creasing is a localized 

surface instability and sensitive to defects22. Therefore, the slight distortions generated during the 

first cycle act as defects in the next cycle, and the depth of crease increases rapidly. Note that the 
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5 min waiting time far exceeds the ~5 s timescale for the crossover in Fig. 2, and hence erases 

memory of past cycles; multiple cycles only serve to amplify the creases. While the rate 

dependence of the instability is clear even after the first compression (top images in Fig. 6.3 C vs 

D), three cycles allow a more unambiguous determination of whether the surface is stable to 

compression or not. Incidentally cyclic tension/compression can lead to a different kind of stripe 

pattern comprising alternate peaks and troughs aligned perpendicular to the tension/compression 

direction80. Although those stripe patterns were visually somewhat similar to Fig. 6.1 B, their 

phenomenology and mechanism was entirely different. In that case the materials were not 

viscoelastic liquids, but plastic liquids with a yielding behavior; stripe formation was driven by 

strain localization in the troughs; residual stress between cycles was crucial to the phenomenon; 

and rate of deformation affected the stripe formation only weakly. 

Experiments such as in Fig. 6.3 allow creating the map (Fig. 6.4) of creased vs flat states 

as the strain 𝜖 and strain rate 𝑟 is changed. In samples marked as “creased”, the free surface has 

relatively sharp creases at many locations along the surface after three cycles. In samples marked 

as “flat”, the free surface remains nearly flat after three cycles. Additional experiments 

conducted at strains lower than the blue circles in Fig. 6.4 also showed a flat state and are not 

shown in Fig. 6.4. 
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Figure 6.4. Map of viscoelastic creasing determined experimentally.  

In this study, experimental compression rates range from 0.02 𝑠−1 to 30 𝑠−1, and crease 

appear only at rates exceeding 0.4 𝑠−1. From Fig. 6.2, in the frequency range from 0.02 rad/s to 

30 rad/s, the shear modulus 𝐺~10𝑘𝑃𝑎 or higher. The surface tension of PIB 81 is 𝛾~0.03 N/m, 

and hence the elastocapillary length 𝛾/𝐺 is on the order of 1 𝜇𝑚. Therefore at our sample 

thickness of 𝐻~1mm, 𝛾/𝐺𝐻 is on the order of 10−3. At such small values of 𝛾𝐺/𝐻, 

elastocapillary effect has negligible influence on  𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 and 𝜖𝑐𝑟𝑒𝑎𝑠𝑒. Accordingly, 

𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 =0.46 and 𝜖𝑐𝑟𝑒𝑎𝑠𝑒=0.35 will be assumed. Indeed Fig. 6.4 shows that at high strain rate 

(𝑟~102 𝑠−1), the transition between crease states and flat states happens between 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 and 

𝜖𝑐𝑟𝑒𝑎𝑠𝑒. This is in agreement with our hypothesis that viscoelastic liquid behaves like elastic 

material when strain rate is sufficiently high. 
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6.2 Theoretical model 

 

 

The goal of this section is to develop a viscoelastic creasing criterion, i.e. a prediction for 

the critical strain 𝜖𝑐,𝑣𝑒 for creasing that depends on the compression rate. In viscoelastic liquids 

such as Oppanol B15 and Silly Putty, only a part of the deformation is elastic. We hypothesize 

that only this elastic part of the deformation controls creasing behavior. In this section we first 

develop a constitutive model that is equivalent to the upper-convected Maxwell model 

commonly used for viscoelastic liquids 82, but in a form suitable for crease analysis. Then we 

derive a viscoelastic creasing criterion based on the model. 

The total deformation of a material can be represented by a deformation gradient 𝐅 that 

maps from an unperturbed reference state to the deformed current state. For a viscoelastic liquid, 

part of the deformation is elastically recoverable, while the rest of the deformation is an 

unrecoverable viscous flow. Consequently 𝐅 can be decomposed into the elastic and the viscous 

part as 𝐅 = 𝐅𝑒𝐅𝑣,  Fig.6.5B. Here 𝐅𝑒 represents the elastic deformation, which microscopically 

corresponds to stretching the polymer chains without shifting the relative positions between 

chains. 𝐅𝑣 represents the viscous flow, which microscopically corresponds to the relative sliding 

between the polymer chains without deforming them.  
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Figure 6.5 A. 2D schematic of the experimental system, and the coordinate directions used in the 

model. The 𝑥2 direction is taken as out-of-plane of this diagram. B. The deformation of a 

polymer melt or polymer solution can be decomposed into the viscous part and the elastic part. 

The viscous part consists of the relative sliding between neighboring polymer chains without 

deforming the chains. The elastic part consists of stretching the polymer chains while keeping 

the relative positions of the chains fixed. C. A Maxwell model where the viscous deformation F𝑣 

generates a viscous stress and the elastic deformation F𝑒 generates an equal elastic stress. 

 

As a simple viscoelastic material model, we assume that the elastic deformation 𝐅𝑒 

stretches each chain affinely and each polymer chain behaves like a Gaussian chain under 

stretch. Consequently, the elastic deformation generates a stress according to the neo-Hookean 

model83: 
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                                   𝛔𝑒 = 𝑁𝑘𝑇(𝐅𝑒𝐅𝑒
𝑇 − 𝐈)  (6.1) 

Here 𝑁 is the number of polymer chains per volume, 𝑘 is the Boltzmann constant, and 𝑇 

is the thermodynamic temperature. In the intermediate state in Fig. 6.5B, polymer chains are in 

their stress-free relaxed state.  For the viscous deformation 𝐅𝑣, we assume that the sliding 

between chains generates a stress following Newton’s law of viscosity: 

𝛔𝑣
∗ = 𝑁𝑘𝑇𝜏(�̇�𝑣𝐅𝑣

−1 + 𝐅𝑣
−𝑇�̇�𝑣

𝑇) (6.2) 

Here 𝜏 is the relaxation time of the polymer chain, and the quantity 𝑁𝑘𝑇𝜏 is the viscosity. 

Note that a polymer chain has a distribution of relaxation times83, whereas we only consider a 

single relaxation time in our model. The stress in Eq. 16 corresponds to the intermediate state. 

Transforming it to the current state84: 

𝛔𝑣 = 𝑁𝑘𝑇𝜏𝐅𝑒(�̇�𝑣𝐅𝑣
−1 + 𝐅𝑣

−𝑇�̇�𝑣
𝑇)𝐅𝑒

𝑇 (6.3) 

We assume that the viscous and the elastic parts of the deformation interact as in a Maxwell 

model, Fig. 6.5C, which gives the microscopic force balance: 

𝛔𝑣 = 𝛔𝑒 (6.4) 

The Supplementary Material shows that Eqs. 11-14 constitute a nonlinear viscoelastic model 

equivalent to the upper-convected Maxwell model.  

Upon substituting 𝐅𝑣 = 𝐅𝑒
−1𝐅, Eqs. 11-14 can be combined to obtain a first order ordinary 

differential equation for the evolution of the elastic part of the deformation: 

𝐅𝑒𝐅𝑒
𝑇 − 𝐈 = 𝜏 (𝐅𝑒𝐅𝑒

−1̅̅ ̅̅ ̅̇ 𝐅𝑒𝐅𝑒
𝑇 + 𝐅𝑒𝐅𝑒

𝑇𝐅𝑒
−𝑇̅̅ ̅̅ ̅̇ 𝐅𝑒

𝑇 + �̇�𝐅−1𝐅𝑒𝐅𝑒
𝑇 + 𝐅𝑒𝐅𝑒

𝑇𝐅−𝑇�̇�𝑇) (6.5) 

For any given deformation history 𝐅(𝑡), this equation can be solved to obtain 𝐅𝑒(𝑡). 

Before proceeding, we note that Eq. 19 has a single material parameter characterizing the 

time dependence, the relaxation time 𝜏. Since the deformation of interest in this research is 

uniaxial compression at rate 𝑟, we can immediately render this rate non-dimensional as 𝑤 = 𝑟𝜏 
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where 𝑤 is the Weissenberg number. The limiting cases of 𝑤 ≪ 1 and 𝑤 ≫ 1 correspond to 

viscous-dominated and elastic-dominated regimes respectively.  

Following the geometry and coordinate system of Fig. 6.5A, the material is uniaxially-

compressed in the 𝑥3 direction. The corresponding deformation gradient 𝐅 is:  

𝐅(𝑡) = [
(1 − 𝜖)−

1
2 0 0

0 (1 − 𝜖)−
1
2 0

0 0 1 − 𝜖

] (6.6) 

where 𝜖 = 1 − 𝑒−𝑟𝑡 relates the nominal strain to the time. Note that Eq. 20 and all subsequent 

equations are written in terms of nominal strain 𝜖, and hence 𝜖 → 1 corresponds to an infinite 

degree of compression. Substituting Eq. 20 into Eq. 19, and integrating the resulting ODE (see 

Appendix E) yields 𝐅𝑒 as a diagonal matrix with diagonal components (𝜆𝑒1, 𝜆𝑒2, 𝜆𝑒3) where:  

𝜆𝑒1 = 𝜆𝑒2 = (
1 − 𝑤(1 − 𝜖)

1−𝑤
𝑤

1 − 𝑤
)

1
2

  (6.7) 

𝜆𝑒3 = (
1 + 2𝑤(1 − 𝜖)

1+2𝑤
𝑤

1 + 2𝑤
)

1
2

 (6.8) 

These 𝜆𝑒 values represent the elastic portion of the stretches experienced by the 

viscoelastic fluid. 

Insight into the viscoelastic creasing can be obtained by examining the elastic energy 

density 𝑈 stored in the material under uniaxial deformation: 

𝑈 =
1

2
𝑁𝑘𝑇(𝜆𝑒1

2 + 𝜆𝑒2
2 + 𝜆𝑒3

2 − 3) 
(6.9) 

Fig. 6.6 plots the evolution of elastic energy density with applied strain for various values 

of Weissenberg number. For the elastic limit of 𝑤 → ∞, Eqs. 15 and 16 approach 𝜆𝑒1 →
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(1 − 𝜖)−1/2 and 𝜆𝑒3 → 1 − 𝜖, which are simply the values of the uniaxial stretches applied on 

the sample. In this elastic limit therefore, Eq. 23 approaches the familiar expression defining the 

strain-energy relationship of incompressible neo-Hookean solid. In the other extreme of 𝑤 → 0, 

the 𝜆𝑒 values obtained from the left hand side of Eqs. 15 and 16 approach 1, and hence 𝑈 → 0 

for all strains. This is consistent with the idea that no elastic energy is stored during low-rate 

deformations. For intermediate values of 𝑤, two behaviors are possible. For 𝑤 > 1, the elastic 

energy density increases monotonically with strain. For 𝑤 < 1, the elastic energy increases, and 

then approaches a limiting value which can be obtained by setting 𝜖 → 1 (i.e. infinite 

compression) into Eq. 21 and 22. Fig. 6.6 therefore provides the following physical explanation 

as to why viscoelastic creasing is rate-dependent. At sufficiently low values of 𝑤, no matter how 

large the applied strain, the viscoelastic material accumulates only a finite level of elastic 

deformation which may not be sufficient to cause creasing. At sufficiently high 𝑤 values, the 

elastic energy increases without bound and hence all elastic phenomena, including creasing, must 

appear upon sufficient compression. 
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Figure 6.6. Evolution of normalized elastic energy 𝑈/𝑁𝑘𝑇 during compression at various values 

of Weissenberg number 𝑤.  

 

Although Fig. 6.6 provides physical insight into why creasing occurs, the energy analysis 

does not directly predict the critical strain 𝜖𝑐,𝑣𝑒 for creasing. For a uniformly deformed 

incompressible neo-Hookean material, the creasing criterion is given by 19,69: 

𝜆3

𝜆1
< (1 − 𝜖𝑐,𝑒)

2
 (6.10) 

Here 𝜆1, 𝜆2, 𝜆3 are the principal stretches of elastomer, and the crease is aligned parallel 

to the 𝑥2 direction as illustrated in Fig. 6.5A. 𝜖𝑐,𝑒 is the critical strain to induce creasing of a neo-

Hookean elastic material under plane strain conditions. As discussed in the Introduction, the 

limiting values of 𝜖𝑐,𝑒 are 𝜖𝑐,𝑒 = 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 for a defect-free sample, and 𝜖𝑐,𝑒 = 𝜖𝑐𝑟𝑒𝑎𝑠𝑒 for a 

sample with relatively large defects.  

We hypothesize that only the elastic deformation of a viscoelastic liquid is responsible 

for crease formation. Consequently, the crease criterion for the Maxwell fluid would be applying 

Eq. 16 using 𝜆𝑒’s: 
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𝜆𝑒3

𝜆𝑒1
< (1 − 𝜖𝑐,𝑒)

2
 (6.11) 

The left hand side of Eq. 23 is an explicit analytical function of 𝜖 and 𝑤, and hence Eq. 

15 is the desired criterion for rate-dependent creasing. At any specified value of 𝑤, a viscoelastic 

fluid develops creases at the strain 𝜖𝑐,𝑣𝑒 at which Eq. 23 is first satisfied during compression.  

The application of Eq. 23 to obtain the critical condition for creasing is illustrated in Fig. 

6.7A. The solid green curve is 𝜆𝑒3/𝜆𝑒1 drawn at a fixed Weissenberg number (𝑤 = 2 is shown in 

Fig. 6.7A for illustration). The horizontal lines correspond to the limiting cases of 

(1 − 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒)
2 and (1 − 𝜖𝑐𝑟𝑒𝑎𝑠𝑒)

2. The intersection of the green curve with these horizontal 

lines identifies the creasing strain for the viscoelastic fluid in the wrinkle and crease limit 

respectively. Repeating this calculation at various values of 𝑤 yields the two curves marking the 

lower and upper bounds for crease formation, shown by the dashed and solid black curves in Fig. 

6.7B.  

In the limit of high 𝑤, Eq. 25 reverts to the limit of a neo-Hookean solid in uniaxial 

compression, for which creases appear between a compressive strain of 0.56 (wrinkle limit) and 

0.44 (crease limit), in agreement with existing literature.19 For 𝑤 below a certain critical value of 

𝑤𝑐, Eq. 25 cannot be satisfied at any strain and hence creases cannot appear. The critical value, 

w_c, can be obtained by letting nominal strain approach 1 in Eq. 25, which corresponds to 

compressing the material to an infinite extent. The limiting values for 𝑤𝑐 are found to be 0.78 

(wrinkle limit) and 0.61 (crease limit).  
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Figure 6.7. A. Solid green line is the evolution of 𝜆𝑒3/𝜆𝑒1 for the selected value of 𝑤 = 2. The 

inersections of the green line with the two horizontal lines are the critical strains 𝜖𝑐,𝑣𝑒 for 

viscoelastic creasing based on setting 𝜖𝑐,𝑒 to either 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 or 𝜖𝑐𝑟𝑒𝑎𝑠𝑒. B. Map of viscoelastic 

creasing. Solid and dashed curves are 𝜖𝑐,𝑣𝑒(𝑤) as per the creasing or the wrinkling criterion. 

Points are the same experimental data as Fig. 6.4, made non-dimensional using 𝜏 = 5𝑠. 

 

A comparison between the theoretical prediction and the experimental data requires 

choosing a relaxation time 𝜏 to render the experimental measurements non-dimensional. We use 

the time 𝜏 = 5 𝑠 associated with the crossover in 𝐺′ and 𝐺′′ from Fig. 6.2. With this choice and 

no fitting parameters, Fig. 6.7B shows that the experimentally measured transition between 

wrinkle and crease falls entirely between the wrinkle limit and the crease limit predictions. 

Indeed with any choice of 𝜏 ranging from 2.5 s to 5.2 s, the experimental data fall between the 

two theoretical limits. 
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6.3 Conclusion 

 

In summary, we have examined the crease in a homogenous viscoelastic liquid under 

uniaxial steady-rate compression. The creasing instability has been well-studied for fully-elastic 

solids such as rubbers or crosslinked gels, but heretofore, the creasing behavior of a viscoelastic 

liquid was altogether undocumented. Experiments were conducted using a molten (i.e. solvent-

free) polymer as the viscoelastic fluid. The strain required for creasing was found to increase as 

the compression rate reduced. In the limit of high rate, the creasing strain was found to be 

comparable to that for a purely-elastic solid. 

We have developed an analytical model for viscoelastic creasing in which an upper-

convected Maxwell liquid is subjected to uniaxial compression at a fixed rate. The total 

deformation of the viscoelastic material was decomposed into a viscous part and an elastic part. 

The creasing criterion known from the past literature for elastic solids was applied to the elastic 

portion of the deformation. This yielded an analytical criterion in which the strain for 

viscoelastic creasing increased with a decrease in Weissenberg number. Notably, the model 

predicts that creasing is not possible at all if the Weissenberg number is below some critical 

value.  
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7.0 Future Works 

 

 

In this chapter, we will discuss some ideas or directions that were attempted during the 

thesis research, but some of them are not taken to completion. 

 

 

7.1 Elastoviscous length 

 

In chapter 5, we discussed the dominant parameters which can affect the buckling 

behavior of thin film floating on viscous liquid. For example, wrinkles are favorable under high 

compressive rate or thick liquid thickness while localized ridges are more favorable under low 

compressive rate or thin liquid thickness. Similarly, a long film can easily buckle or show 

localized ridges when a short film can hardly buckle. However, all parameters mentioned above 

are considered individually and never combined. Thus, we considered defining a combination of 

parameters , the elastoviscous length. Then we assigned a symbol ℓ to the elastoviscous length. 

ℓ = (
𝐵

𝜂𝜀̇
)

1
3
 (7.1) 

  

where bending stiffness 𝐵 =
1

12
𝐸ℎ3 

. T eq. above implicitly assumes that the film can be treated as a 2D membrane and 

defined by a single parameter 𝐵 (rather than modulus 𝐸 and thin film thickness ℎ separately). 
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This is justified because In experiments or simulations, the thickness of thin film is much smaller 

than liquid, I.e. 𝐻0/ℎ ≫ 1, and further, the reciprocal of the curvature of the film is always 

much smaller than the thickness h. Then for infinitely long films, there are only two lengthscales 

in the problem: ℓ and 𝐻0. 𝐻0/ℓ  is now a dimensionless parameter which may be regarded as a 

non-dimensional liquid thickness 

𝑛𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑞𝑢𝑖𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
𝐻0

ℓ
=

𝐻0

(
𝐵
𝜂𝜀̇)

1
3

= 𝐻0 (
𝜂𝜀̇

𝐵
)

1
3
 

(7.2) 

For infinitely long films, no other parameters are possible, thus the entire buckling 

process should be captured by this single parameter! Obviously, this approach has merit only if 

we think of the film as a membrane without any gradients in the thickness direction.  

To test the idea that this single parameter can capture the entire buckling process, we 

conducted three sets of simulations which varied the rate, the liquid thickness while holding 

fixed 𝐻0/ℓ values. The corresponding profiles are shown in the following figure. 

𝐻0/ℓ = 0.27 is defined as thin liquid layer. These simulations show ridge localization 

under some circumstances. 𝐻0/ℓ = 0.81 is defined as intermediate liquid layer. No ridge 

localization is seen. 

𝐻0/ℓ  = 2.4 is treated as thick liquid layer. No ridge localization is seen, but the profiles 

become a bit irregular at long times. But these are rather high strains and it might also be due to 

wrinkle coalescence, so we should probably not focus on these irregular profiles. 

 



 

 91 

 

Figure 7.1: Buckling profile when 
H0

ℓ
= 0.27,

H0

ℓ
= 0.81,

H0

ℓ
= 2.4. Each plot is made at strain 

ϵ = 0,0.19,0.38,0.56,0.75, from bottom to top. 
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As expected, the effect of increasing rate is qualitatively similar to that of increasing 𝐻0. 

Either a large 𝐻0 value or a large 𝜖̇ will make the dimensionless parameter larger and the film 

will likely buckle into wrinkles. On the other hand, a small 𝐻0 value or a small 𝜖̇ will make the 

dimensionless parameter smaller and the film will likely buckle into localized ridges. This is 

consistent with the observations from experiments and simulations. 

 

Figure 7.2: The relationship between normalized wavelength and liquid thickness. 

 

Fig 7.2 is a plot of wavelength vs. liquid thickness across a wider range of simulations 

which vary rate, thickness, and film modulus to access a wider range of elastoviscous lengths . 

When 𝐻0 ≪ ℓ, I.e. thin liquid limit, the fitting slope is approximately 0.5, which indicates that 

𝜆

ℓ
 ~ (

𝐻0

ℓ
)
0.5

. Then 𝜆 will be proportional to 𝛽−
1

6 𝐻0

1

2, which is close to Dr. Cerda’s prediction68 

(𝜆~𝛽−
1

8𝐻0

3

8). obtained by an entirely different approach. 𝐻0 ≫ ℓ (thick limit), we expect that the 

buckling behavior will not depend on the liquid thickness However, this expectation is not met 

𝜆

ℓ
￼ still depends somewhat on liquid thickness.  
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In conclusion, the scaling for wavelength from thin limit simulations are not too far with 

Dr. Cerda’s theory68. More importantly, at least in the thin limit, data from different simulations 

collapse onto each other approximately suggesting that 
𝐻0

ℓ
 is a reasonable parameter to capture 

the buckle wavelength in the thin limit. However, this approach did not lead to any other good 

insights beyond that yet. Certainly except for wavelength, the remaining buckling characteristics 

are not preserved even when 
𝐻0

ℓ
 is held fixed. It seems that the ratio of liquid thickness and 

elastoviscous length is not the right dimensionless parameter controlling the buckling behavior.  

The failure of this approach is puzzling. For thin films which may be treated as 

membranes with a bending modulus, dimensional analysis does not permit any variable other 

than 
𝐻0

ℓ
 to be defined. The fact that the buckling data do not collapse may be an indication that 

behavior of the film prior to buckling may have large effects. Specifically, the critical strain 

cannot be predicted by treating the film as a membrane, and this may affect buckling behavior 

significantly. 

More simulations need to be conducted to assess whether elastoviscous length is the 

appropriate dimensionless parameter that controls the buckling behavior under any conditions. 

 

 

7.2 Further simulations with defects 

 

In Section 3.3, along with Fig. 3.5, we proposed that buckle packets behave as defects 

that can then transform into ridges. Further we proposed that ridges lower the energy compared 
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to wrinkles. A partial test of this was provided in Section 4.2.5. Here we will test this further by 

simulations.  

As in Section 4.2.5, we created several “defects” by reducing the modulus of 

corresponding elements by 1% in the middle section of thin film. The distance between defects is 

close to interridge distance of Fig. 5.3. Then two simulations are conducted, one with 0.005𝑠−1 

compressive rate and one with 0.04𝑠−1. The profile and normalized horizontal velocity are 

plotted below in Fig. 7.3. It is shown that the defects are “ignored” when compressive rate is 

high enough. On the other hand, the ridges will localized in the initial defects if compressive rate 

is low enough. This simulation strongly supports the idea that development of ridges vs wrinkles 

is driven entirely by kinetics. At sufficiently high rate, the pre-existing defects – even though 

they are at the spacing suitable for forming ridges – do not permit ridge development. In contrast 

at low rate, ridges can form. 
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Figure 7.3: Evolution of profile and velocity. (A) 𝜖̇ = 0.005𝑠−1 (B) 𝜖̇ = 0.04𝑠−1. From top to 

bottom, strain is 0.03, 0.06, 0.09, 0.10, 0.12, 0.13, 0.14, 0.15. 

A second application of defect simulations is to examine the quiescent evolution of 

buckles seen in section 4.2.5.  We first apply a compressive strain of 0.05 all along the film by 

compression at a relatively high rate. This strain is lower than the critical strain for this film and 

hence the film is still flat at the end of the compression. Then we stop the compression and create 

several defects in the middle section of film by reducing modulus of film by 1%. As in Section 

4.2.5, in one simulation, the distance between defects is set to be the wavelength of buckled film 

in Fig. 5.2A. In the second simulation, the distance between defects is set to be the wavelength of 

buckled film in Fig. 5.2B. As expected, the first simulation buckles into uniform wrinkles at the 

assigned wavelength and the second one into localized ridges at the assigned interridge spacing. 
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Different from all other simulations in this paper, this buckling occurs under quiescent 

conditions. The time-evolution of amplitude profile and normalized horizontal velocity profile of 

the two simulations are plotted below in Fig. 7.4. 

 

Figure 7.4: Evolution of profile and normalized horizontal velocity in 0.1, 0.2, 0.3, 0.5, 1.5, 3, 6, 

9 second after buckling. (A) “Wrinkling” simulation (B) “localized ridge” simulation. 

 

We now compare the film energy following the two pathways in in Fig. 7.5. The solid 

line is the total energy output by Abaqus. The dot-dash bending energy is calculated from 

integrating 𝜅2𝑑𝑠 over middle one-third of the film length 𝜖2𝑑𝑠 following Eq. 4.11 and Eq. 4.12 

As expected, the sum of these two agrees with the energy output by abaqus (solid line), lending 

confidence to the energy calculations. The vertical black lines are the timepoints at which the 

profiles were plotted in the previous two slides. During loading, the in-plane energy increases 



 

 97 

quadratically as expected. After stopping, both simulations rapidly (within 0.3 seconds) reduce 

their total energy. This decrease comes because their in-plane strain energy reduces.  

At the end of this rapid drop, the bending and in-plane energy are comparable to each 

other. Beyond this point, the energy in the wrinkling film reduces very gradually and the ridge-

forming film however has a second significant decrease over the next 1-2 seconds. The physical 

picture therefore is that short-wavelength wrinkles appear at short times because they allow rapid 

decrease in energy. But wrinkles get arrested because the only way to reduce energy is through 

wrinkle coalescence, which is difficult (especially in a plane-strain simulation where there are no 

“Y-defects”.). 

The ridge mode offers the advantage of letting long segments of the film relax their in-

plane strain to very low levels (although not zero). But developing ridges takes time, which is 

why short-wavelength wrinkles appear first. Though the relation of film energy and buckling 

behavior is roughly discussed in this section, more detailed simulations or experiments using this 

defect approach may be very fruitful to get a deeper understanding of “energy favorable” 

buckling mechanisms. 
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Figure 7.5: Film energy of wrinkling simulation and localized ridge simulation. The vertical 

solid lines are 𝑡 = 0.1, 0.2, 0.3, 0.5, 1.5, 3, 6, 9 second after buckling 

 

 

7.3 Improvement in creasing experiments 

 
Figure 7.6: Map of viscoelastic creasing determined experimentally with theorical prediction. 
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The creasing research is based both on experiments and theoretical analysis. Fig 7.6 is the 

experimental result obtained using B15 as the viscoelastic liquid. The theoretical model is based 

on a single relaxation time whereas B15 has a broad spectrum of relaxation times. This set of 

experiments can be improved by using another viscoelastic liquid rather than B15. Thus, a more 

critical test of the theory could be done by selecting a fluid that has a much narrower distribution 

of relaxation times, e.g. a molten polymer with a narrow polydispersity. Further B15 has a 

smooth surface without defects. Another critical test of the theory would be to create defects by 

adding a small amount of particles into B15, and testing whether we the critical strain to 

approach the lower dashed line in Fig. 7.6. 
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Appendix A Advantages of using a high viscosity liquid 

 

 

The experiments in this research used a fluid with much higher viscosity fluid than our 

previous experiments10. The reasons are as follows. Previously we showed10 that with the 

lubrication assumption in the liquid layer, prior to buckling, the in-plane displacement of the film 

propagates diffusively through the film with a diffusivity given by 
𝐸ℎ𝐻0

𝜂
 where 𝐻0 is the initial 

liquid layer thickness, ℎ is the film thickness, 𝐸 is the film modulus, and 𝜂 is the liquid viscosity. 

The compression imposed by relaxation of the prestretched rubber appeared as a “source term” 

in the diffusion equation for the displacement, whereas the free ends served to relax the 

displacement. Upon solving the resulting diffusion equation, we showed that the compressive 

stress profile evolves from an initial zero stress (prior to the deformation) to a parabolic profile 

over a diffusion time-scale given by  

𝜏 =
4𝐿2

𝜋2ℎ𝐻0

𝜂(1 − 𝜈2)

𝐸
 

(S1) 

If not interrupted by buckling, the maximum strain of the parabolic profile would be 

𝜖𝑓,𝑚𝑎𝑥 =
𝐿2

2ℎ𝐻0

𝜂𝜖̇(1 − 𝜈2)

𝐸
=

𝜋2

8
𝜏𝜖̇ 

(S2) 

For the conditions used in our previous experiments10, 𝜏~0.005 𝑠 and 𝜖𝑚𝑎𝑥~10−3. Wrinkles 

were found to appear at times much longer than 𝜏 indicating that the wrinkles initiated from a 

strain state that was non-uniform. Further, due to the rapid relaxation from the film ends, only a 

few buckles appeared. Both these reasons make these experimental conditions undesirable: It 

would be better if the strain was uniform prior to buckling, and if the film were sufficiently long 
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that end-effects could be ignored. As apparent in the above equations, 𝜏 and 𝜖𝑚𝑎𝑥 can both be 

increased by changing various material and geometric parameters. Of all the parameters, 𝜂 is the 

most convenient to induce significant changes in 𝜏 and 𝜖𝑚𝑎𝑥 since fluids with viscosities 

spanning several orders of magnitude are readily available. 

The fluid in this research (see rheology in Fig. 6.2) has a viscosity that is about 1000-fold 

larger than our previous experiments, which offers numerous advantages. First, it proportionately 

increases 𝜏 and the maximum strain. Second, buckles appear at a time much shorter than 𝜏 

suggesting that they appear from a more-or-less homogeneous strain state. Third, due to the 

much slower end-relaxation, there are typically over 25 wrinkles over the sample length, thus 

reducing end effects. Yet, even with this high viscosity, at the lowest rates or highest thicknesses 

used in our experiments, end relaxation may still play a role. Fourth, rates of all processes slow 

down. For instance, experiments which need high rate compression, and hence would need a 

high speed camera to resolve the development of folds. Further, the liquid can recede rapidly 

from the film edge. Increasing viscosity mitigates all these problems. Finally, the high viscosity 

allows the liquid to be coated in the form of a layer on a flat rubber strip without significant 

spreading due to gravity or surface tension effects. This was not possible previously and required 

an elastomeric tray. 

A final advantage of a high viscosity of a liquid is that gravitational effects are negligible. 

To verify this, small cylinders of the B15 fluid, roughly 1-3 mm in diameter, were placed on the 

surface of a 0.25 mm thick layer of B15 and video-recorded over time. There was no visible 

sagging over 60 minutes. In fact, the folds are even smaller than these cylinders. Thus we 

conclude that gravity does not affect buckling behavior, neither during compression (where the 

longest experimental times are on the order of 250 s) or the quiescent evolution of buckles. 
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Appendix B Effect of sample width 

 

 

Here we tackle the first key question listed in the Introduction: Does the width of the film 

play a role in fold localization? Some effects of sample width are associated with the edge, e.g. 

recession of the liquid. Other effects may be related to how the width compares with the other 

relevant dimensions such as film thickness, liquid thickness, and the wavelength. 

Fig. S1 shows the results of experiments on films of various widths, all with a liquid layer 

thickness of 𝐻0=0.38 mm, with each clamp moving at a speed of 1 mm/s, giving rates of roughly 

𝜖̇ =0.011 s-1. These experiments were conducted in a different experimental jig which has 

translational clamps (whereas the jig used in the main text uses rotating drum clamps) and 

relatively low quality visualization. In cases Fig. S1A-D, the widths of the rubber strip and of the 

liquid layer are both ~11 mm, and hence the liquid extends far beyond the side-edge of the film 

(schematics on the right hand side in Fig. S1). In Fig. S1E&F, the film, liquid, and rubber all 

have approximately the same width. 
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Figure. S1: Effect of film width on fold localization. In A-E, the relaxed rubber width is ~11 

mm, and the film width is as noted in each figure. In F, the rubber strip and the film are both ~23 

mm wide. The compression rates range from 𝜖̇ =0.0104 s-1 to 0.012 s-1. The schematics to the 

right are approximately-to-scale views of the cross section indicating the relative widths of the 

rubber strip (black), the liquid layer (blue), and the film (red). These experiments were 

conducted with the help of two undergraduate students Anantha Sarma and Eshwar Hamesh in 

the Velankar research group. 

 

Films of width 3 mm, 6 mm, and 8 mm (Fig. S1B,C,D) show qualitatively similar 

behavior: wrinkles develop at small strain, followed by fold localization. Most of the folds span 

the width of the film. For these film widths, a 2D view of buckling may be justified. The 

behavior at 1 mm width (Fig. S1A) is quite different: as the wrinkles grow in amplitude, the film 

delaminates off the liquid. This may be regarded as interfacial/adhesive failure at the film/liquid 
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interface. In fact, delamination was sometimes observed in wider films as well, and may be 

attributable to imperfections (e.g. a small blister between the film and the liquid layer at or near 

the film edge). Visually at least, this appears similar to the delamination from a winkled state for 

a film bonded to a soft solid substrate, although our substrate is a viscoelastic liquid. If the liquid 

has a much lower viscosity, Fig. S1B-F already showed that for narrow films, the liquid recedes 

and air invades under the peaks of the wrinkles. Although this can sometimes visually resemble 

delamination, it is not true delamination since there is no separation of the film from the liquid. 

Instead the liquid remains attached to the film (as well as to the rubber strip).  

Both of these behaviors of narrow films have a common cause which can be understood 

as follows. The large curvature of a fold implies a large elastic energy penalty. One way to 

reduce this curvature is to simply widen the fold, but this requires increasing the volume under 

the fold. Delamination and fluid flow are the two ways whereby the surrounding medium (air in 

this case) can occupy the space under the folds, thus allowing them to become wider. For wide 

samples, both these mechanisms are slowed down, thus allowing the behavior to become nearly 

independent of width effects.  

Fig. S1E shows a film width of ~11 mm, which is the same width as the rubber substrate 

and the liquid layer. In most such situations, the wrinkles and folds are more irregular, 

presumably because the film edge is now affected by imperfections at the side-edge of the liquid. 

Such imperfections are unavoidable with our sample fabrication procedure. Indeed at some 

locations, the film might even slightly overhang the liquid. Such samples often showed sets of 

folds with larger amplitude on opposite edges Fig. S2, rather than buckles that spanned the width 

of the sample. Clearly, a 2D view is not justified here. 
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Figure. S2: Sets of folds with larger amplitude on opposite edges. In this case, the width of the 

film, the liquid layer, and the rubber, are all nearly equal. 

 

Finally, Fig. S1F shows the width of ~23 mm, the widest samples examined in our 

research. Similar to Fig. S1E, the film, the liquid layer, and the rubber strip, all have 

approximately equal width. Fig. S1F shows that such wide samples curl around the compression 

direction. The reason for this is the Poisson effect: as the rubber strip retracts, its width increases. 

The film resists this width expansion (i.e. a tensile stress develops in the film along the width 

direction). The sample can resolve this width mismatch in at least two ways illustrated in Fig. S1. 

The first is via shear in the liquid layer (Fig. S1B), which allows the rubber width to increase, but 

the film width to remain the same. This is expected for relatively thick or stiff rubber films which 

resist bending. As per this mechanism, even if the film and the rubber have the same width at the 

beginning of the experiment, at the end of the experiment, the rubber would be wider. Such shear 

must also reduce the liquid thickness near the edge since some of the liquid that was covered by 

the film would end up outside of the film edge. The second is “curling” around the length 

direction (Fig. S1C), which would be expected if the rubber is relatively thin or soft. For narrow 

films, the shearing mechanism (Fig. S1B) can relieve the width mismatch almost completely and 

hence curling is not evident, whereas significant curling is evident in wide samples. Such curling 
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could be suppressed by conducting experiments with a thicker or stiffer rubber strip, although 

this would require a more robust stretching apparatus to handle larger tensile forces.  

Even if curling can be suppressed completely, Poisson expansion of the rubber along the 

width direction necessarily induces width-direction tension in the film. Since tension can itself 

induce buckles in thin films, it is possible that for large sample widths, this film tension 

encourages buckling. 

In summary, the effects of sample width are much more complex than recognized in our 

previous research. (1) For very narrow film widths, the edge allows at least two kinds of failure. 

One resembles true delamination off a solid substrate. Since this requires violating the no slip 

boundary condition at the film-liquid interface, we speculate that it is only possible if the liquid 

is viscoelastic, and may not appear if the fluid is truly Newtonian. In the second kind of failure, 

the liquid/air interface recedes inwards, thus allowing air to invade the space under the peaks of 

the buckles. (2) Very wide films show width-direction curling. (3) If curling is not visually 

evident, there must be width direction shear to accommodate the Poisson expansion of the rubber 

width. Such shear must induce variations in liquid thickness between the edge vs the rest of the 

film. (4) Poisson expansion must also induce width-direction tension in the film. (5) Finally, the 

sample edge may contribute imperfections that affect the buckling process. The experiments in 

the main text of this research use a film width of 8 mm, keeping the rubber and the B15 liquid 

both significantly wider. Since the liquid extends far beyond the film in all directions, this 

situation may be regarded as a strip of film floating on a sea of liquid. This width was chosen as 

a reasonable compromise between the above complexities. Further, this width is at least two-fold 

larger than the wrinkle wavelengths seen in all our research.  
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Figure. S3: Effect of Poisson expansion of the rubber strip along the width direction. A. Initial 

configuration wherein the black rubber layer has been stretched along the x-direction, whereas 

the red film is stress-free. B. Upon unstretching the rubber along the x direction, Poisson 

expansion along the y-direction (green arrows) is accommodated by shear. There is slight 

bending of the film near the edges. C. Upon unstretching the rubber, Poisson expansion along the 

y-direction (green arrows) is accommodated by bending around the x-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 108 

 

 

 

Appendix C Additional information for Chapter 4 

 

 

 

Figure. S4: Uniform wrinkles and localized ridges observed by Chatterjee et al10. An elastic 

polyester film rested on a liquid layer (molten polystyrene), which was itself coated onto a 

rubber strip. The rubber strip was released to induce wrinkles. The liquid polystyrene was cooled 

rapidly to vitrify it so that these buckled structures could be “frozen” before imaging. Figure 

reproduced from citation 50 with permission from the Royal Society of Chemistry. 

 

 

Figure. S5: Comparison with the film strain reported by simulations vs predictions from Eq. 4.2, 

the shear lag model for 𝐿/𝐻0 = 80. 
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Figure. S6: Black curves are the strain profiles from simulations at a strain of 𝜖 = 0.05. The 

𝐿/𝐻0 values are mentioned at the top left. Dashed red lines is the value of 〈𝜖𝑝𝑏
𝑓 〉. Solid red line is 

prediction of Eq. 6, with using 𝐿 = 𝐿𝑓𝑙𝑎𝑡 as obtained from Eq. 4.7.  
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Appendix D Reproducibility for simulations from Chapter 5 

 

 

Due to the large number of individual interridge distances, it is difficult to show multiple 

experiments on a single plot without crowding the points in Fig. 5.5A. Yet, such a 

reproducibility check is provided in Fig. S7. 

 

Figure. S7: The reproducibility check on the experimental data points on Fig. 5.5A. 
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Appendix E: Solving for the elastic portion of the deformation of the viscoelastic material 

 

 

The following equation for 𝐅𝐞 was derived in the main text: 

𝐅𝑒𝐅𝑒
𝑇 − 𝐈 = 𝜏 (𝐅𝑒𝐅𝑒

−1̅̅ ̅̅ ̅̇ 𝐅𝑒𝐅𝑒
𝑇 + 𝐅𝑒𝐅𝑒

𝑇𝐅𝑒
−𝑇̅̅ ̅̅ ̅̇ 𝐅𝑒

𝑇 + �̇�𝐅−1𝐅𝑒𝐅𝑒
𝑇 + 𝐅𝑒𝐅𝑒

𝑇𝐅−𝑇�̇�𝑇) (S3) 

where 𝜏 is the viscoelastic relaxation time of the material. Given the total deformation applied to 

the material 𝐅, Eq. S3 can be solved to give 𝐅𝑒 as follows.  

The viscoelastic model is uniaxially compressed with a steady true strain rate 𝑟, so  

[

𝑥1̇

𝑥2̇

𝑥3̇

] =

[
 
 
 
 
1

2
𝑟

1

2
𝑟

−𝑟]
 
 
 
 

[

𝑥1

𝑥2

𝑥3

] (S4) 

where the 𝑥1, 𝑥2, 𝑥3 directions are defined by Fig. 5A in the main text. 

Integrating Eq. S4: 

[

𝑥1

𝑥2

𝑥3

] = [
𝑒𝑟𝑡/2

𝑒𝑟𝑡/2

𝑒−𝑟𝑡

] [

𝑥1
′

𝑥2
′

𝑥3
′

] (S5) 

where 𝑥𝑖
′ = 𝑥𝑖(𝑡 = 0). From this, 𝑭 can be calculated: 

𝐅 = [

𝜆1

𝜆2

𝜆3

] =

[
 
 
 
 
 
 
𝑑𝑥1

𝑑𝑥1′

𝑑𝑥2

𝑑𝑥1′

𝑑𝑥3

𝑑𝑥1′
𝑑𝑥1

𝑑𝑥2′

𝑑𝑥2

𝑑𝑥2′

𝑑𝑥3

𝑑𝑥2′
𝑑𝑥1

𝑑𝑥3′

𝑑𝑥2

𝑑𝑥3′

𝑑𝑥3

𝑑𝑥3′]
 
 
 
 
 
 

= [
𝑒𝑟𝑡/2 0 0

0 𝑒𝑟𝑡/2 0
0 0 𝑒−𝑟𝑡

] (S6) 

and 
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�̇� = [

�̇�1

�̇�2

�̇�3

] =

[
 
 
 
 
𝑟

2
𝑒𝑟𝑡/2

𝑟

2
𝑒𝑟𝑡/2

−𝑟𝑒−𝑟𝑡]
 
 
 
 

 (S7) 

Further, since 𝐅𝑒 has no shear components, we assume the diagonal form: 

𝐅𝐞 = [

𝜆𝑒1

𝜆𝑒2

𝜆𝑒3

] (S8) 

where 𝜆𝑒1 = 𝜆𝑒2 because the deformation is uniaxial. 

Combining Eqs. S1, S5, and S6 leads to two uncoupled first order differential equations: 

𝜆𝑒1
2 − 1 = −2𝜏𝜆𝑒1�̇�𝑒1 + 𝑟𝜏𝜆𝑒1

2  (S9) 

𝜆𝑒3
2 − 1 = −2𝜏𝜆𝑒3�̇�𝑒3 − 2𝑟𝜏𝜆𝑒3

2  (S10) 

These can be rearranged as: 

�̇�𝑒1 =
(1 − 𝑟𝜏)𝜆𝑒1

2 − 1

−2𝜏𝜆𝑒1
 (S11) 

�̇�𝑒3 =
(1 + 2𝑟𝜏)𝜆𝑒3

2 − 1

−2𝜏𝜆𝑒3
 (S12) 

Integrating Eqs. S9 and S10 with initial condition 𝜆𝑒1(𝑡 = 0) = 𝜆𝑒3(𝑡 = 0) = 1 we get: 

𝜆𝑒1 = (
−𝑟𝜏𝑒

−𝑡(
1
𝜏
−𝑟)

+ 1

1 − 𝑟𝜏
)

1
2

 (S13) 

𝜆𝑒3 = (
2𝑟𝜏𝑒

−𝑡(
1
𝜏
+2𝑟)

+ 1

1 + 2𝑟𝜏
)

1
2

 (S14) 

Then 𝜆𝑒1 and 𝜆𝑒3 can be expressed in term of 𝑤 and 𝜖  
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𝜆𝑒1 = (
1 − 𝑤(1 − 𝜖)

1−𝑤
𝑤

1 − 𝑤
)

1
2

  (S15) 

𝜆𝑒3 = (
1 + 2𝑤(1 − 𝜖)

1+2𝑤
𝑤

1 + 2𝑤
)

1
2

 (S16) 

where 𝑤 = 𝑟𝜏 is the Weissenberg number, and 𝜖 = 1 − exp (−𝑟𝑡). 

The criterion for viscoelastic creasing adopted in the main text is that creases appear when  

𝜆𝑒3

𝜆𝑒1
< (1 − 𝜖𝑐,𝑒)

2
 

(S17) 

where the limiting values for 𝜖𝑐,𝑒 are 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 and 𝜖𝑐𝑟𝑒𝑎𝑠𝑒. Substituting Eq. S15 and 

S16 into Eq. S17, the creasing criterion is given explicitly as: 

 

(
1 − 𝑤

1 + 2𝑤
×

1 + 2𝑤(1 − 𝜖)
1+2𝑤

𝑤

1 − 𝑤(1 − 𝜖)
1−𝑤
𝑤

)

1
2

< (1 − 𝜖𝑐,𝑒)
2
 

 

(S18) 

 

The strain at which Eq. S18 is first satisfied is taken as 𝜖𝑐,𝑣𝑒. The critical value, 𝑤𝑐, of 

Weissenberg number below which Eq. S18 cannot be satisfied can be obtained by letting strain 

approach 1 in Eq. S18 to obtain 

λe3

λe1
|
𝜖→1

= (
1 − 𝑤𝑐

1 + 2𝑤𝑐
)
1/2

< (1 − 𝜖𝑐,𝑒)
2

 
 

(S19) 

 

The application of Eqs. S18 and S19 is illustrated in Fig. S5. The various curves in Fig. S5 

correspond to the strain-evolution of the left hand side of Eq. S18 for a variety of 𝑤 values. The 

dashed horizontal line corresponds to the right hand side of Eq. S18 with 𝜖𝑐,𝑒 = 𝜖𝑐𝑟𝑒𝑎𝑠𝑒. With 
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this choice of 𝜖𝑐,𝑒, Eq. S19 gives the 𝑤𝑐 = 0.605 which is the critical Weissenberg number in the 

creasing limit. The dot-dashed red line in Fig. S5 shows the evolution of  𝜆𝑒3/𝜆𝑒1 for this critical 

value. A similar diagram with 𝜖𝑐,𝑒 = 𝜖𝑤𝑟𝑖𝑛𝑘𝑙𝑒 (not shown) can illustrate the calculation of 𝑤𝑐 in 

the wrinkle limit. 

 

Figure. S8. A. The stretch ratio 𝜆𝑒3/𝜆𝑒1 vs. strain 𝜖 at various Weissenberg numbers. The 

dashed black line indicates (1 − 𝜖𝑐𝑟𝑒𝑎𝑠𝑒)
2 = 0.42. The intersection between each green line and 

the dashed black line gives the critical strain for creasing at the corresponding 𝑤 value. No 

intersection is possible for 𝑤 < 𝑤𝑐. 
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Appendix F: The equivalency of nonlinear viscoelastic model to the upper-convected 

Maxwell model relevant to Chapter 6 

 

 

Define 𝐁𝑒 = 𝐅𝑒𝐅𝑒
𝑇, and note that 𝛁𝐯 = �̇�𝐅−1 . Accordingly, Eq. S3 becomes: 

(𝐁𝑒 − 𝐈) = 𝜏 (𝐁𝑒𝐁𝑒
−1̅̅ ̅̅ ̅̇ 𝐁𝑒 + (𝛁𝐯)𝐁𝑒 + 𝐁𝑒(𝛁𝐯)𝐓) (S20) 

 

Since 𝐁𝑒𝐁𝑒
−1 = 𝐈, �̇�𝑒𝐁𝑒

−1 = −𝐁𝑒𝐁𝑒
−1̅̅ ̅̅ ̅̇ , we have: 

(𝐁𝑒 − 𝐈) = 𝜏(−�̇�𝑒 + (𝛁𝐯)𝐁𝑒 + 𝐁𝑒(𝛁𝐯)𝐓) (S21) 

 

Use 𝛕𝑒 = 𝑁𝑘𝑇(𝐁𝑒 − 𝐈) to cancel out 𝐁𝑒 

𝛕𝑒 = 𝜏(−�̇�𝑒 + (𝛁𝐯)𝛕𝑒 + 𝛕𝑒(𝛁𝐯)𝐓) + 𝑁𝑘𝑇𝜏 ((𝛁𝐯) + (𝛁𝐯)𝐓) (S22) 

 

Rearranging terms gives the common form of the upper convected Maxwell model: 

𝛕𝑒 + 𝜏(�̇�𝑒 − (𝛁𝐯)𝛕𝑒 − 𝛕𝑒(𝛁𝐯)𝐓) = 𝑁𝑘𝑇𝜏 ((𝛁𝐯) + (𝛁𝐯)𝐓) (S23) 
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