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Abstract 

Iontronic Devices for Neuromorphic Computing and Health Monitoring 

 

Qingzhou Wan, Ph.D. 

 

University of Pittsburgh, 2022 

 

 

 

 

Iontronics is an emerging interdisciplinary field that bridges electronics and ionics, 

exploring the electronic properties or functions of the materials controlled by ionic movement and 

arrangement. Two intriguing mechanisms in iontronics are electrochemical charge doping and 

electrostatic effects at the electric-double-layer (EDL) interface, which can be leveraged to 

modulate the carrier density of low-dimensional materials and achieve the supercapacitance at the 

EDL interface. In this dissertation, we develop two types of iontronic devices: electrochemical 

synapses and supercapacitive pressure sensors for neuromorphic computing and health monitoring 

applications, respectively.  

We first report three-terminal electrochemical synapses with programmable spatio-

temporal dynamics using novel materials such as two-dimensional layered topological insulator 

(BixSb1-x)2Te3 and perovskite tungsten trioxide. Inspired by the Li-ion battery, the channel 

conductance (i.e., synaptic weight) of the electrochemical synapses can be continuously and 

controllably modulated via electrochemical reactions (e.g., involving Li+ ion flows) through a gate 

terminal. Our electrochemical synapses exhibit a large dynamic range, a high precision (multiple 

analog states), a linear and symmetric synaptic weight update, and small variations that are ideal 

for traditional artificial neural networks (ANNs). Additionally, time-dependent synaptic functions 

such as short-term and long-term plasticity, pair-pulse facilitation, and temporal filtering are 

demonstrated. The excellent energy efficiency and potential cognitive capabilities of our 
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electrochemical synapses could lead to the hardware acceleration of brain-inspired, neuro-realistic 

ANNs.  

We also propose a high-fidelity iontronic tonometric sensor (ITS) with high sensitivity 

(4.82 kPa-1), high linearity (R2 > 0.995), and a large dynamic range (up to 180 % output change) 

over a broad working range (0-38 kPa) that can fully cover the normal blood pressure (BP) range 

(5-25 kPa). Our ITS demonstrates a low limit of detection at 40 Pa, a fast load (35 ms) and release 

time (35 ms), and a stable response over 5000 load/release cycles. We further explore the 

application of our ITS in monitoring real-time beat-to-beat BP by measuring the brachial and radial 

pulse waveforms. Our ITS work provides a rational design for a wearable pressure sensor with 

high sensitivity, high linearity, and a large dynamic range for real-time continuous and non-

invasive BP monitoring. 
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1.0 Introduction 

In this chapter, section 1.1 will present the iontronics fundamentals, including the focus of 

the iontronic devices in this dissertation: electrochemical synapses and supercapacitive pressure 

sensors. Section 1.2 will introduce the concept of neuromorphic computing and artificial neural 

networks (ANNs), and the requirements for the building blocks of the ANNs: artificial synapses. 

Section 1.3 will review various types of emerging artificial electronic synapses and list the special 

advantages of electrochemical synapses for ANNs. Section 1.4 will give a brief introduction to 

arterial blood pressure monitoring methods and present the sensor requirements for continuous, 

non-invasive applanation tonometry monitoring. Section 1.5 will review various types of flexible 

pressure sensors and their advantages for applanation tonometry monitoring. 

1.1 Iontronics Fundamentals 

1.1.1  What is Iontronics? 

The term “Iontronics” is thought[1] to originate from the organic semiconductor 

community, first appearing in a 2016 book titled Iontronics: Ionic Carriers in Organic Electronic 

Materials and Devices, written by Janelle Leger, Magnus Berggren and Sue Carter.[2] In this book, 

the concept of iontronics only refers to ion-based organic electronics. However, with the fast 

development of emerging materials and devices, the concept of iontronics has since that original 

mention been extended to all related devices by which electronic properties or functions are 
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controlled by ionic movement and arrangement.[1, 3] This includes a large variety of devices 

consisting of any substances or materials, including electrochemical batteries, field-effect 

transistors, memory devices, light-emitting devices, sensors, actuators, thermoelectric devices, 

neuromorphic devices, and energy-harvesting devices. The typical materials for iontronics can be 

categorized into three types: electronic conductors (but ionic insulators), ionic conductors (but 

electronic insulators), and mixed ionic conductors (both electronic and ionic conductors). 

Electronic conductors commonly include conductive metals. Ionic conductors include ionic 

solutions, polymer electrolytes and polyelectrolytes, ceramics (oxides, sulfides, phosphates), ionic 

liquids, and ion gels.[1] Mixed ionic conductors include organic materials (conjugated polymers) 

and inorganic materials (transition metal chalcogenides, nonstoichiometric perovskite, layered 

oxides, oxyhydroxides).[4, 5]  

The typical structure of iontronics consists of an ionic conductor layer sandwiched by two 

electronic conductors or mixed ionic conductors, as shown in Figure 1.1. Iontronic devices 

generally use one of two underlying mechanisms: electrochemical ion intercalation via redox 

reactions and electrostatic supercapacitive effects via EDL.[5, 6] Figure 1.1a illustrates the 

electrochemical ion intercalation and deintercalation (or ion insertion and extraction) processes. In 

these processes, the ions are transported and inserted (extracted) into (from) the layered host 

materials under external applied potential while the electrons from the external circuit compensate 

the host materials to reach charge neutrality. Figure 1.1b shows the electrostatic effects via EDL, 

similar to field-effects in traditional semiconductors, where a high density of carriers accumulates 

at the ionic/electronic interface, accompanied by an ultra-high electric field as well as a large 

capacitance at the EDL interface. By leveraging these two fundamental mechanisms, along with 
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different materials systems and device structure designs, we can design various iontronic devices 

aimed at different applications. 

 

Figure 1.1. Iontronic underlying mechanisms. a) Electrochemical intercalation/deintercalation via redox reactions. b) 

Electrostatic effects via electric-double-layer. 

1.1.2  Advantages of Solid-State Iontronic Devices 

In this dissertation, solid-state iontronic devices refer to iontronics that work in solid-state 

environments, characterized by usage of ceramics (e.g., oxides, sulfides, phosphates), solid 

polymers, or broadly ionic gels as solid-state ionic conductors (electrolytes). Traditional liquid 

electrolyte-based devices usually suffer from safety issues (leakage, flammability) and low 

Ionic Conductor

(Polymer Electrolyte)

e-e-

Li+
Li+

M
ix

e
d
 I

o
n
ic

 C
o
n
d
u
c
to

r

(L
i 0

.6
F

e
P

O
4
)

M
ix

e
d
 I

o
n
ic

 C
o
n
d
u
c
to

r

(B
S

T
)

Li+

(a)

Te

Bi/Sb
Li+ intercalant

quintuple 

layer

c

a b

(b)
Intercalation Deintercalation

Electronic Conductor 

(Au)

Au Au

Ionic Conductor

(Polymer 
Electrolyte)

Li+

ClO4
-

Mixed Ionic Conductor (BST)
e- e- e- e- e- e-e-

Conduction Band EC

Fermi Level EF

Valence Band EV

Electrostatic Potential Ei

Ultra-high Electric Field

(> 107 V cm-1) 

Electric-double-layer (EDL): ~ 1 nm

e-
e-

e-

High Surface Carrier Density 

via Accumulation (1014 cm-2)

Ultrahigh EDL Capacitance (~ µF cm-2)



 4 

stability.[4] By replacing the liquid electrolyte with the solid electrolyte, the iontronic devices are 

more practical and portable for use in ambient environments mainly due to the following 

advantages: 1) offering more convenience for encapsulation and packaging of the device; 2) 

avoiding usage of flammable or toxic aqueous solvents; 3) boosting thermal and mechanical 

stability; 4) providing better scalability and flexibility for device design; 5) enabling easier device 

characterization and testing; 6) facilitating the device integration with other solid-state systems; 

and 7) opening up more opportunities in flexible, wearable device applications.[1, 4] Though they 

offer numerous exciting advantages, it is very challenging to develop low-cost solid-state 

electrolytes that have high ionic conductivity and mobility at room temperature, easy processibility, 

cheap deposition techniques, and excellent compatibility with complementary metal-oxide 

semiconductor (CMOS) fabrication. However, different approaches combining the use of 

inorganic ceramics and organic polymers to form composite electrolytes have great potential to 

overcome the bottlenecks in current solid-state electrolytes.[4] 

1.1.3  The Focus of Iontronic Devices in This Dissertation 

In this dissertation, we will focus on developing innovative iontronic devices such as 

electrochemical synapses or electrochemical random access memory (ECRAM) and wearable 

supercapacitive sensors, aiming for applications in neuromorphic computing and blood 

monitoring, respectively.  

Recently, emerging three-terminal electrochemical redox transistors, or ECRAM, have 

become a promising candidate for mimicking biologic synapses due to their low power, high 

precision, linear and symmetric response, low variation, and good endurance performance.[7-14] 

The channel conductance (i.e., synaptic weight) of the electrochemical synapses can be 
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continuously and controllably modulated via electrochemical reactions (e.g., involving Li+ or H+ 

ion flows) through a gate terminal. In addition, the three-terminal configuration of these transistors 

enables the decoupling of the energy barrier for retention and programming,[12] hence leading to 

both good retention and low-power programming, an accomplishment that is difficult to achieve 

in two-terminal memory devices such as RRAMs.[15, 16] While the Li+ ion in the gel electrolyte 

could potentially be a source of contamination for CMOS fabrications, it is a good material for 

proof-of-concept of our electrochemical redox transistors due to its well-known electrochemical 

behaviors. Our developed electrochemical synapses exhibit excellent spatio-temporal dynamics, 

opening up great possibilities for bio-inspired and cognitive computing.  

We have also developed wearable supercapacitive sensors for health monitoring. A new 

type of sensing mechanism, known as supercapacitive or iontronic sensing, has been developed to 

achieve high fidelity and high sensitivity in pressure sensors.[17-19] Previously, to amplify the 

sensing signal and enhance sensitivity, organic field-effect transistors[20, 21] or two-dimensional 

transistors[22] have been utilized coupled with piezocapacitive sensors. However, those transistor-

based piezocapacitive devices require complex fabrication and device integration methods. 

Iontronic sensors, replacing the conventional dielectric layer with an ionic film, take advantage of 

the supercapacitive nature of the EDL at electrolytic-electronic interface[23] and exhibit ultrahigh 

unit area capacitance (UAC), which is on the order of several µF cm-2
 (1000 times higher than that 

of traditional piezocapacitive sensors). This ultrahigh UAC improves the sensing signal-to-noise 

ratio, increases immunity to external electromagnetic and transmission line noises, and boosts 

sensitivity. Our work in wearable sensors provides a rational design for a flexible pressure sensor 

with high sensitivity, high linearity, and a large dynamic range for real-time continuous and non-

invasive blood pressure monitoring. 
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1.2 Neuromorphic Computing and Artificial Neural Networks 

As transistor technology has moved closer and closer to the limits of Moore’s law, the need 

for next generation devices with higher performance and better energy efficiency has rapidly 

increased. With this in mind, researchers have turned their attentions to mimicking the 

performance of the most efficient known computational entity, the human brain. The human brain 

excels at complex cognitive tasks, such as pattern recognition and all of the constant small 

calculations needed to keep a body functioning through everyday life, and all of this with an energy 

consumption as low as 20 W.[24] In contrast, the number one publicly reported super computer at 

Oak Ridge National Laboratory (as of 2018) uses an astonishing 9.78 MW of power.[25] Both of 

these offer computational capabilities on the peta-flop scale, making the brain a truly 

extraordinarily efficient device.[24]  

One of the major causes of the disparity in energy usage is what is referred to as the von 

Neumann bottleneck.[26] In modern computing systems, the dedicated central processing units 

(CPUs) are physically separated from the main memory areas. In addition, these CPUs are 

programmed to execute operations sequentially, where relevant information needs to be shuttled 

back and forth between the CPU and the memory.[27] This shuttling of bits not only puts an inherent 

cap on the speed of computations, but also drastically increases energy usage.  

In contrast, biological and biologically inspired systems use synapses that are capable of 

both storing information and performing complex operators at the same location.[28] This property 

enables biological systems to carry out computations in massively parallel networks, reducing the 

energy cost per operation. Hence, researchers are motivated to develop neuromorphic computing 

systems that can rival or even exceed the cognitive capabilities and energy efficiency of the human 

brain.  
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In this pursuit, ANNs have been developed and successfully applied in various fields 

including: image and pattern recognition,[29] speech recognition,[30] machine translation,[31] and 

beating humans at chess and, more recently, Go.[32] Despite these recent strides in neuromorphic 

computing, the hardware implementation of these ANNs has been hampered by the fact that the 

digital transistors, the basic computing unit of modern computers, do not behave in the same 

manner as analog synapses, the basic building block of the biological neural network.  

In the following sections, we will review the basic neural network operations including 

neuromorphic computation, deep neural networks (DNNs) and spiking neural networks (SNNs), 

followed by a review of a number of different approaches currently being investigated that aim to 

improve the performance of synaptic devices towards the hardware acceleration of ANNs. After 

that, we will introduce numerous types of emerging artificial electronic synapses including PCM-

based synapses, RRAM-based synapses, Electrochemical synapses and 2D materials-based 

synapses. Finally, we will finish this chapter with a comparison of different device metrics and 

specifically introduce the advantages of electrochemical synapses based on 2D materials. 

The human brain presents an interesting computing model, made up of extremely dense 

networks of computing elements (neurons) with versatile memory elements (synapses), all 

operating at extremely low power levels.[33] The human brain has ~1011 neurons, with a 

corresponding ~1015 total synapses.[34] A single neuron in the brain can have around 10,000 

inputs/outputs to other neurons in the brain through synapses.[33] The neuron is composed of many 

different parts, as demonstrated in Figure 1.2. The soma makes up the main body of the neuron 

and is connected to the network via dendrites and an axon. Dendrites are responsible for receiving 

information from other neurons (inputs) and the axon, with its terminal branches, is responsible 

for transmitting information out (output). The synapses are small (20-40 nm) gaps between the 
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axon end of the previous neuron and the dendrites of the next neuron. The “weight” of the synapse, 

i.e., the connection strength between neurons, can become stronger (potentiation) or weaker 

(depression) through a process called synaptic plasticity, as the brain adapts to new information. 

As synaptic plasticity is widely believed to dictate the learning and memory processes in the brain, 

mimicking the weight update during learning epochs is at the heart of neuromorphic computing.  

When a neuron is excited, it will release a signal (pulse) that will travel down the axon and 

through the synapses into the dendrites of the next neurons. The amount of this signal that makes 

it to the next neuron is dependent on the strength of these connections (synaptic weight). If the 

neuron has enough input signal, it too fires, propagating the signal throughout the network.  

In order to implement an ANN that can be scaled up, many systems adopt a crossbar 

synaptic array structure, as pictured in Figure 1.2. Each input line is connected to output lines 

through programmable resistors, as such the total output of each line is influenced by each input. 

It is these connection resistors (synaptic devices) that determine how much of the input signal goes 

to each output signal. Modern arrays also include different selection devices, to prevent errors 

arising from so called sneak currents falsely influencing the output.[35] 

Extensive research efforts have been devoted to optimizing the performance of these 

synaptic devices and building the best neuromorphic system possible. Towards that end, we will 

briefly review the operating principles behind ANNs, as well as discuss the device characteristics 

that impact the performance of these networks. 
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Figure 1.2. Comparison of biological and artificial neurons. Schematics of a biological neuron (left) vs. an artificial 

neural network (right).  

1.2.1  Neuromorphic Computation 

To illustrate how ANNs perform their computations, we use a simple example here on the 

recognition of handwritten digits through a basic feed-forward network, as shown in Figure 1.3. 

The initial image is broken up into N binary inputs (black or white), each corresponding to a 

specific area of the image, which are then put through one hidden layer, where the computation 

takes place. Each input element here is connected to each of the M hidden neurons, just as each 

hidden neuron is connected to each of the 10 output neurons.  

The total inputs into a neuron is summed and if the amount of signal input passes a SET 

threshold, then that neuron propagates its signal down into the next layer. This happens in each 

layer of the network until eventually it hits the output layer, in this case 10 output neurons 
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corresponding to the digits zero through nine. Depending on which final neuron fires, the system 

can detect which digit is in the initial image.  

The important concept here then is how to determine the threshold on the amount of input 

that a neuron needs to fire, as well as how to determine the connection strength between the 

neurons, i.e., the synaptic weight. This weight is what determines how much of each input signal 

gets distributed through to each neuron in the next layer. These synaptic weights can then be 

trained through different algorithms, usually by putting a large series of known data into the system 

and adjusting the relevant synaptic weights until the output is the known correct output. This 

method is known as offline learning, and while successful, it has some drawbacks. Mostly, there 

needs to be an already established, extensive data sets need to be fed into the networks, and the 

training process can take lots of time. Another method of training called online training does exist 

that is used for data sets that are more dynamic.This type of network is being trained as the data 

comes in. However this process needs extensive peripheral circuits to perform the large number of 

weight update calculations in real time as well as more on-chip memory to store the new weight 

values.[36] Since the synapses are typically updated more often on-the-fly, synaptic devices used 

for online training have higher endurance requirements. In addition, these devices should also have 

a large number of conductance states with a preferably linear weight change characteristic to make 

it easier for the network to converge to an error minima.   

Once training is complete, the network will be able to operate on its own, with varying  

degrees of success depending on the efficiency of the training scheme. There are several different 

ways to train the network, both online or offline, depending on the network type and what the 

intended task is.[37] Of the many different network types, most fall under two major categories: 

DNNs and SNNs. DNNs have been shown to be powerful in many applications such as image 
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classification and speech recognition; SNNs are a burgeoning field. They resemble biological 

neural systems more closely with the hope that they can be used to push ANNs to their maximum 

potential. 

 

 

Figure 1.3. Simple pattern recognition example. 2-Layer multilayer perceptron example of a simple network structure 

for handwritten digits recognition. The image is broken into a grid of N total areas, (the N input elements) those 

elements are all connected into a Hidden Neuron layer of size M, and those Hidden Neurons are then connected to the 

10 Output Neurons, representing the digits 0-9. Reproduced with permission.[38] Copyright 2017, IEEE.  

1.2.2  Deep Neural Networks (DNNs) 

The original work for neural networks was developed by McCulloch and Pitts in 1943, and 

was implemented in the first perceptron in 1958.[39] However, due to the lack of computing power 

at the time, these first devices were largely forgotten until the 1980s. With the discovery of error 

backpropagation techniques as well as the chain rule, neural networks were able to steadily 

increase in accuracy and sophistication through the end of the 20th century.[39] 
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With the advent of modern computational power in the early 21st century, DNNs 

(Multilevel Perceptrons, Deep Belief Networks, Convolutional Neural Networks etc.) rapidly 

exploded as the driving force behind modern day neural network advances. DNNs are networks 

with a large amount of complexity along with many layers. These networks were capable of 

supervised, semi-supervised and unsupervised learning, and excelled in tasks that had large 

amounts of training data.[39] Furthermore, with the recent commercial availability of powerful 

parallel computation devices like graphic processor units (GPUs) and field programmable gate 

arrays (FPGAs), the field of DNN has blossomed as researchers develop new learning algorithms 

as well as network structures.[40] 

However, as DNNs continued to progress, it requires a huge amount of computational 

resources for the training, due to the rise of its complexity. As such, extensive research efforts have 

been devoted into the development of custom-designed DNN accelerators. By using on-chip 

buffers, current CMOS devices are employed to fabricate certain DNN accelerators.[41] However, 

the scalability of these solutions remains in question as the amount of needed memory devices, 

typically static random access memories (SRAMs), is quite large. Not only do these memory 

devices drastically increase the size of the device (as each SRAM cell consists of eight transistors) 

but the energy efficiency of the chip is low due to the power consumed by the leakage current in 

the memory devices.[41] In order to advance the existing DNN schemes, further progress on 

synaptic devices are necessary to provide the device density as well as energy efficiency needed 

to rival human cognitive capabilities. 
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1.2.3  Spiking Neural Networks (SNNs) 

SNNs have recently attracted a lot of attention due to their close similarity to biological 

systems. In SNNs, the input signals are spikes, rather than the constant feed found in traditional 

neurons. Being able to process spikes is widely believed to be one of the main reasons that the 

brain is so spectacular at sequence recognition as well as memory.[42] Sequence recognition is one 

of the more important topics in computing, as it directly impacts the system’s capabilities of 

working with stimuli that are strongly timing dependent, such as speech recognition  and image 

detection.[43]  

In order to make SNNs a reality, there needs to be a method in place to govern spike-

timing-dependent plasticity (STDP), which is postulated to be what governs causality in the brain. 

If one event seems to cause/correlate another event multiple times, this causality/correlation is 

reinforced in the brain through changes of synaptic connections,[44] as summarized by the quote 

from Löwel and Singer – “neurons that fire together, wire together.”[45] Consider a single post 

synaptic neuron, with a pre-synaptic neuron in the layer behind it, as shown in Figure 1.4a. If the 

pre-synaptic neuron continuously fires before the considered post-synaptic neuron, then it would 

seem that the pre-synaptic neuron has a direct effect on whether or not the post synaptic neuron 

fires, and the connection between the two would be strengthened (excitatory) or weakened 

(inhibitory), depending on the type of the synapse However, if the post-synaptic neuron 

continuously fires before the pre-synaptic neuron does, then it would seem that that pre-synaptic 

neuron has no effect on the considered post-synaptic neuron and that connection should be 

weakened (excitatory) or strengthened (inhibitory). Different forms of STDP and the associated 

synaptic weight change are depicted in Figure 1.4b. In addition to STDP, other factors such as 
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firing rate, spiking orders, and dendritic locations have shown to affect plasticity in the brain as 

well.[46] 

 

 

Figure 1.4. Spike-timing-dependent plasticity (STDP) models. a) Example of a neuron (Neuron A) with its prior 

neuron layer (Neuron B). b) Examples of STDP desired weight change based on the time difference between Neuron 

A and Neuron B firing. Reproduced with permission.[47] Copyright 2018, John Wiley and Sons.  

 

Like DNNs, there have been several approaches to building SNNs, depending heavily on 

the desired application as well as the type of synaptic device involved.[48] However, all of these 

traditional techniques require strict timing mechanisms, as well as extraneous peripheral circuity 

to accomplish. These peripheral circuits not only require large physical chip areas, but also demand 

massive amounts of memory, making the scalability of these circuits unrealistic.[48] As such, there 
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has been a need for a new type of synaptic device that can inherently incorporate STDP like 

characteristics for the implementation of the next generation of SNNs. 

1.2.4  Existing Approaches and Synaptic Device Requriements 

There have been a number of existing neuromorphic systems adopted for the hardware 

acceleration of ANNs. TrueNorth is a DNN system, which uses 4096 CMOS-based neurosynaptic 

cores.[49] These cores form a total of 1 million neurons and 256 million synapses and are capable 

of a reported 58 G-synaptic operations per second (GSOPS). While its power efficiency is decent 

at ~2.5 pJ/op, there is still lots of room for improvement when compared to the human brains, 

which are reported at ~2 fJ/op.[49, 50] SpiNNaker, on the other hand, is a SNN based system.[51] It 

uses 18 general purpose CPUs which can each model a few hundred neurons. Each of these 

neurons has synapses numbering on the order of 1000, although software considerations take up a 

significant portion of the computing resources. While SpiNNaker doesn’t have the same raw 

computational power of other systems, it excels at training speed. SpiNNaker is designed to 

efficiently simulate large scale SNNs in real time, whereas other spiking systems might take hours 

if not days to be trained and start running.[52] 

However, as discussed in previous sections, due to their dependence on traditional digital 

CMOS technology, these systems have difficultly scaling up their sizes due to constraints in power 

and area. In this vein, researchers are actively working on the development of synaptic devices for 

the hardware implementation and acceleration of ANNs.   

Many synaptic devices have been proposed in recent years with varying device properties. 

At a first glance, synaptic devices share a lot of common properties with emerging non-volatile 

memories (NVMs) as both devices need to facilitate programming, reading, and retention of 
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information. That is why emerging NVMs such as PCM, RRAM, and spin-torque transfer random 

access memory (STT-RAM) have been adopted as synaptic devices, as some of the preferred 

metrics of NVMs such as low programming energy, fast switching speed, good scalability etc. are 

equally useful for artificial synapses.[38] However, synaptic devices and NVMs are geared towards 

different applications and therefore have different (or even conflicting) requirements in many 

device metrics. Most notably, NVMs typically are designed to be binary or multi-level cells (MLC) 

with no more than 8 states (i.e. 3 bits) per device, whereas an artificial synapse requires much 

higher precisions (~8-bit or 256 states per device) to achieve the desired learning accuracy and 

device density. Another example is that even though a high on/off ratio is always preferred to 

improve the signal-to-noise ratio in NVMs, an unusually large on/off ratio can potentially result in 

low sensitivity to individual synapses in larger arrays. In addition, certain traits that are 

inconsequential in NVMs may play important roles in an ANNs. For example, linearity and 

symmetry of the current-voltage (I-V) characteristics do not affect the performance in NVMs but 

can dictate the learning accuracy in DNNs. Requirements on endurance and retention of the 

synaptic devices are application-dependent. A neural network that is trained online and performs 

weight update on-the-fly needs good endurance and is less stringent on retention performance. On 

the other hand, an offline neural network with presynaptic weights requires better long-term 

retention behavior with less emphasis on the endurance. 

Now that the basic operating principles of different types of neural networks have been 

established, the types of synaptic devices being developed can now be discussed. The major types 

of device we will focus on are PCMs, RRAMS (including conductive-bridging, filamentary, and 

interfacial), electrochemical based, and finally synapses based on 2D materials. Each of these 

devices will have their working principles presented, as well as reported device metrics from recent 
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literature that assess their capability of being incorporated into existing ANN frameworks: 

operating speed and energy, precision (number of analog states), the degree of symmetry and 

linearity of the state switching, reliability (device variations, endurance, and retention), and finally 

their potential in spatio-temporal dynamics for SNNs. 

1.3 Emerging Artificial Electronic Synapses 

1.3.1  Phase Change Memory (PCM) 

PCM has recently emerged as a promising NVM technology with its fast programming 

speed, good scalability, and high packing density.[53-58] Figure 1.5a shows a typical PCM 

mushroom cell (or T-cell), where the phase change material between the electrodes can be 

reversibly switched between a crystalline phase (i.e. low resistance state or LRS) and an 

amorphous phase (i.e. high resistance state or HRS) via Joule heating.[59] The concept of using 

phase change materials for memory application was originally proposed by Ovshinsky in 1969,[60] 

but it was the discovery of a family of fast switching (<100 ns) chalcogenides (Ge, Sb, and Te 

alloys) by Yamada et al. (Figure 1.5b),[61] which prompted the commercialization of PCM based 

optical data storage (DVDs and blu-rays) in 1990s and subsequently the development of 

electrically programmable phase change random access memory.[62] During the SET step (Figure 

1.5c),[63] an applied electric field induces the threshold switching (a sudden increase in electrical 

conductivity) in amorphous phase change materials and subsequently heats up the cell to above its 

crystallization temperature (typically ~150 °C)[64] via Joule heating, inducing an amorphous (HRS) 

to crystalline (LRS) transition. In the RESET step, an even higher current density is needed to heat 
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up the cell to above its melting temperature, usually >650 °C.[65] This is then followed by a fast 

quenching step to freeze the molten material back to the amorphous phase. The SET process is the 

rate limiting step in PCM since the crystallization process involves atomic movement; whereas 

RESET is the power limiting step as the cell needs to be heat up to its melting temperature. 

 

Figure 1.5. PCM synapse. a) The cross-section schematic of the mushroom PCM device. b) The family tree of fast 

switching chalcogenides. c) The schematic for implementing synaptic plasticity in PCM synapses. a) Reproduced with 

permission.[59] Copyright 2010, IEEE. b) Reproduced with permission.[61] Copyright 2007, AIP. c) Reproduced with 

permission.[63] Copyright 2016, Nature.  

 

Recently, PCM has been employed as artificial synapses for the hardware acceleration of 

ANNs due to its fast speed, good scalability, and its potential for analog switching. To implement 

synaptic plasticity, various pulsing schemes (Figure 1.6a) have been explored to program the PCM 

cell into intermediate states, where the device conductance (synaptic weight) can be modulated by 

tuning the ratio of the amorphous (resistive) and crystalline (conductive) phases in the cell.[63] 

Figure 1.6b shows the cross-section transmission electron microscopy (TEM) images of PCM cell 

in its fully SET, partially RESET, and fully RESET states.[34, 66] This concept has been utilized for 

multi-level cell operation in PCM devices to improve the array density for NVM applications, but 
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a higher precision (# of levels per device) is needed for synaptic devices. An earlier study by 

Wright et al. reported PCM synaptic devices based on Ge2Sb2Te5 (GST) with 10 levels per device 

(Figure 1.7a) and a dynamic range of 50×.[67] Zhong et al. demonstrated similar results in their 

GST synapses (Figure 1.7b) with a dynamic range of 5× and 10× levels per device.[68] In 2012, 

Kuzum et al. were able to push the precision level in their GST synapses to over 120 states per 

device (equivalent to 7-bit per device), while maintaining a good dynamic range (~50×) by using 

pulse trains with increasing amplitudes (Figure 1.7c).[66] This significant increase in precision level 

boosted the prospect of using PCM synapses for the hardware implementation of neural networks. 

However, while the conductance response in these PCM shows decent symmetry, it is highly non-

linear with large variations owing to the stochastic nature of the crystallization and melt-quench 

processes, which negatively affects the learning performance in PCM synaptic arrays.[69-72] 

 

Figure 1.6. Set and reset in PCMs. a) A series of set pulses with low amplitude for set cycle and single high amplitude 

pulses required for reset cycle in blue (top), and corresponding set and reset current in red (bottom). b) TEM images 

illustrating the phase transition from fully set state to partially reset state with small amorphous region shown by small 

mushroom, and fully reset state. a) Reproduced with permission.[63] Copyright 2016, Nature. b) Reproduced with 

permission.[66] Copyright 2012, ACS.  
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Figure 1.7. Synaptic plasticity in PCMs. a) Resistance changes of the PCM device upon the application of 10 pulses 

(~1 V, 60 s). b) Resistance change using simple square pulse for the both set and reset cycles. c) Gradual reset and set 

using pulses with increasing amplitude. a) Reproduced with permission.[67] Copyright 2013, John Wiley and Sons. b) 

Reproduced with permission.[68] Copyright 2015, John Wiley and Sons. c) Reproduced with permission.[66] Copyright 

2012, ACS.  

1.3.2  Resistive Random Access Memory (RRAM) 

RRAM devices, where information is encoded in the programmable resistance levels, have 

garnered a lot of research interest in recent years as an emerging NVM technology because of their 

two-terminal device structure, fast switching speeds, low power consumption, good scaling 

potential and CMOS compatibility. Recently, RRAM devices have also been employed for the 

hardware acceleration of artificial neural networks because of their non-volatility and minimal 

standby leakage power compared to SRAM devices, as well as their potential for large-scale 

integration with the crossbar array structure. Based on current understanding of switching 

mechanisms in various RRAM systems, which are still under active investigations, RRAM can be 

generally categorized into the following three types: CBRAM, filamentary RRAM, and interfacial 
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RRAM (Figure 1.8). We will discuss the working principle of each type of these devices and their 

suitability as artificial synapses in the next sections. 

CBRAM can be switched between LRS and HRS through the formation and dissolution of 

a conductive bridge (Figure 1.8a), consisting of metallic cation such as Ag or Cu, in an otherwise 

insulating switching layer, which can be metal oxides,[73] amorphous silicon,[74] or solid electrolyte 

(chalcogenide glasses mixed with metal).[75] During the SET, the cations are injected into the 

switching layer from the active electrodes, move under the applied electric field (E-field), and 

eventually form a metallic pathway that bridges to the other electrode. During the RESET, the 

conductive bridges are disrupted by an E-field with opposite polarity, resulting in a high resistance 

state.  

 

Figure 1.8. Device structure and working principle of various types of  RRAMs. a) CBRAM is based on the 

conductive metal-ions filament formed electrochemically between active top electrode and resistive switching layer. 

b) Filamentary RRAM is based on oxygen vacancy filament through the resistive switching layer sandwiched between 

two inert metal electrodes. c) Interfacial-type RRAM, is based on the barrier modulation effect at the metal /switching 

material interface layer where the migration of oxygen ions towards the electrode reduces the effective barrier width 

of electron tunneling whereas the immobile oxygen vacancies randomly distribute in the resistive switching layer.  
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Attractive traits such as fast speed switching, good retention and scalability, and low power 

consumption have driven the development of CBRAM based artificial synapses. However, the 

abrupt and stochastic nature of the filament formation and dissolution processes may lead to non-

linear and asymmetrical conductive responses as well as large device variations, both of which can 

negatively impact the performance of ANNs. Another potential issue is that the LRS states in 

CBRAM are often too conductive (typically ranging from 300 Ω to 1 kΩ),[76] which may cause 

large leakage currents in crossbar arrays.  

Similar to CBRAM, the change in conductance in filamentary RRAM is based on the 

formation and rupture of filamentary bridges, which consists of oxygen vacancies instead of 

cations, in an otherwise insulating layer between metal electrodes. A typical metal-insulator-metal 

(MIM) structure of the filamentary RRAM device is shown in Figure 1.8b. The switching layer is 

usually simple metal oxide such as TiOx,
[77, 78] HfOx,

[79-82] AlOx,
[77, 79] WOx,

[83, 84] and TaOx.
[85, 86] 

During SET, an applied E-field induces a soft breakdown (which needs to be limited with a current 

compliance in a DC sweep) in the oxide and creates a conductive pathway consisting of oxygen 

vacancies, switching the device from a HRS to a LRS. For RESET, the filament is ruptured either 

through a recombination of oxygen vacancies with oxygen ions under an applied E-field with 

opposite polarity (bipolar) or via Joule heat under a larger E-field (unipolar as polarity of the E-

field does not matter), inducing the LRS to HRS transition.[87] Advantages of filamentary RRAM 

include the use of highly accessible (in terms of today’s CMOS fabrication facilities) CMOS-

compatible switching materials, a simple structure, low cost, good scalability, and low power 

consumption. However, like CBRAM, it suffers from the abrupt and stochastic nature of the 

switching mechanism, as the filament growth and rupture processes are difficult to control. This 
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results in large device variations, non-linear conductance response, and limited analog states, 

which can limit their performance as artificial synapses.[85] 

Compared to CBRAMs, filamentary RRAMs are expected to have slightly better 

endurance and retention performance due to the fact that oxygen vacancy filaments are typically 

more stable than metal cations filaments. In addition, the RESET process is less sensitive to the E-

field induced drift effect. However, filamentary RRAM, especially those metal oxide based 

RRAMs, suffer from the so-called voltage-time dilemma,[88, 89] implying that there is a trade-off 

between ultra-fast programming speed and a long retention time under the reading voltage stress 

test. Yu et al. showed good endurance behavior with >105 cycles and mediate high temperature 

retention (7200 s at 100 °C) in their TiN/HfOx/AlOx/Pt devices although the device exhibited 50-

ns programming speed.[79] Moreover, the Pt/TiO2-x/Al2O3/Pt device developed by Prezioso et al. 

were cycled >5000 times without signs of degradation and were expected to have a long retention 

time of 10 years at room temperature at the expense of a relatively slow programming speed of 

500 µs.[77] Besides this, large device variations are still an issue for synapses based on filamentary 

RRAM due to the stochastic nature of switching process involved in random distribution of oxygen 

defects.  

Interfacial RRAM, or non-filamentary RRAM, is based on the tunnel barrier modulation 

effect at the interface of the metal/switching layer, through the migration of oxygen ions. Unlike 

filamentary RRAM, an additional oxide layer (typically called the insulating layer) is present to 

act as a load resistor to prevent thermal runaway and to eliminate the need for current compliance 

(Figure 1.8c). Common resistive switching layers include exotic oxides such as TaOx and Pr1-

xCaxMnO3 (PCMO).[90-92] During SET, the oxygen ions in the resistive switching layer migrate 

towards the metal/switching material interface under the applied E-field. This reduces the barrier 
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height for electrons to tunnel from metal into switching layer, leading to the HRS to LRS transition. 

With an oppositely applied E-field during RESET, oxygen ions migrate back to the switching 

layer, thus increasing the tunnel barrier height, and resulting in a HRS. The switching process for 

interfacial RRAM is more gradual (and without the need for forming), making it a suitable 

candidate for artificial synapses. It features unique advantages such as self-compliance, forming-

free, and gradual switching with good analog precision. However, the programming speed in 

interfacial RRAM is relatively slow in order to satisfy the energy requirement needed to ensure 

that a high energy barrier is built for good retention.[33, 88] Additionally, the use of exotic switching 

materials may present fabrication challenges and increase the cost. 

1.3.3  Electrochemical Devices 

Besides technologies that are originally geared towards NVM applications (e.g., RRAM 

and PCM), researchers are also developing new device concepts for synaptic electronics. Recently, 

electrochemical based devices have emerged as a promising candidate due to their high precision 

levels, linear and symmetrical conductance responses, low switching energies, high scalability, 

and built-in timing mechanisms suitable for SNNs.[11, 12, 47, 93] In an electrochemical synapse, the 

synaptic weight (encoded in the channel conductance of the device) can be controllably and 

reversibly modulated via a gate terminal, which dictates the ionic concentration (and hence the 

synaptic weight) in the channel material. This process often involves electrochemical reactions 

through an electrolyte, which facilitates ionic exchanges but limits electron conduction.  

In this section, we discuss the four pioneering electrochemical synapses (Figure 1.9a-d) 

with channel materials consisting of lithium cobalt oxide (LiCoO2),
[11] organic polymers (poly(3,4-

ethylenedioxythiophene): polystyrene sulfonate or PEDOT:PSS),[12] tungsten diselenide 
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(WSe2),
[93] and graphene.[47] These types of synaptic devices have each demonstrated good 

precision, low switching energy, a highly linear response, and good scaling potentials. While these 

electrochemical synapses do require a third gate terminal, it offers a rare combination of low 

programming voltage/energy and good retention characteristics. In two-terminal NVM devices 

such as RRAM[85] and PCM[94], there is often a tradeoff between programming voltage/energy and 

retention because the programming and retention barrier is often the same (Figure 1.9e); whereas 

in the three-terminal electrochemical synapses, the programming and retention mechanisms are 

decoupled (Figure 1.9f), allowing us to achieve both low switching energy and good retention 

behaviors. 

In 2017, Fuller et al.[11] developed a synaptic transistor (Figure 1.9a) consisting of LiCoO2, 

a common cathode material for Li ion batteries (LIBs), and lithium phosphorus oxynitride 

(LiPON), a solid electrolyte with good chemical stability.[95] LiCoO2 is chosen as the channel 

material for this solid-state synapse because of its good endurance and well-characterized 

electrochemical behaviors, based on its performance in LIBs.[96] Through reversible Li 

intercalation, the authors demonstrated controllable tuning of the channel conductance (synaptic 

weight) with a precision of 200 states per device from ~150 to 250 μS range (i.e. an on/off ratio 

~1.67×) with good linear responses (Figure 1.10a). This proof-of-concept demonstration offers a 

new direction for synaptic electronic based on the insertion and extraction of mobile ions.  

Around the same time in 2017, Burgt et al.[12] demonstrated a polymer synapse (Figure 

1.9b) based on reversible electrochemical reactions in a PEDOT:PSS film partially reduced with 

poly-ethylenimine (PEI). The synaptic plasticity in this organic synapse is achieved by the 

controllable insertion and extraction of protons in the PEDOT:PSS/PEI channel. Through pulse 

measurements, a record-high precision of 400 states per devices was achieved with a less-than-
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ideal dynamic range (between 550 to 850 μS), as illustrated in Figure 1.10b. This polymer synapse 

displays a symmetric, repeatable and highly linear conductance response with very low noise 

(<1%).  

 

Figure 1.9. Electrical chemical synapses. a) A schematic of synaptic transistor with LiCoO2 as active channel. b) An 

organic polymer synapse consisting of liquid electrolyte (NaCl or KCl) sandwiched by PEDOT:PSS and PEI treated 

PEDOT:PSS layers. c) An ionic-gated synaptic transistor based on metal dichalcogenide crystal (WSe2) and 

phosphorus trichalcogenide (NiPS3 and FePSe3). d) An electrochemical graphene synapse. e) Schematics of energy 

barriers for conventional memory technologies. f) Energy barriers for electrochemical synapses are decoupled for 

reading and programming. a) Reproduced with permission.[11] Copyright 2017, John Wiley and Sons. b) Reproduced 

with permission.[12] Copyright 2017, Nature. c) Reproduced with permission.[93] Copyright 2018, John Wiley and 

Sons. d-f) Reproduced with permission.[47] Copyright 2018, John Wiley and Sons.  

In 2018, two other groups reported electrochemical synapses based on 2D materials. 2D 

materials are attractive due to their interlayer spacings, which offer good sites for mobile ions to 
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move through electrochemical intercalation. Zhu et al.[93] built ionic gated synaptic devices based 

on WSe2 and phosphorus trichalcogenide while Sharbati et al.[47] demonstrated graphene synapses 

through Li intercalation. In both studies, a gel electrolyte (lithium perchlorate (LiClO4) dissolved 

in polyethylene oxide (PEO)) were used for ionic exchange. Zhu et al. adopted Au as the ionic 

gate, while Sharbati et al. employed lithium ion phosphate (LFP) as the ion reservoir (similar to 

the reference electrode in LIBs) in their graphene device to facilitate controllable electrochemical 

reactions. The reported precision level per device for WSe2 based synapse was 60 states with 

dynamic range ~263 to 570 pS, while the graphene synapse showed > 250 precision states with a 

dynamic range 130 to 1130 µS (i.e., an on/off ratio ~ 8.7×), as shown in Figure 1.10c,d. The 

electrochemical synapses have better precision levels compared to technologies that are originally 

designed for binary or MLC NVMs (usually <16 levels per device), because the carrier 

concentration in their channels can be controllably tuned by modulating the ionic concentration 

via the gate terminal. This gradual change in conductance in electrochemical synapses has also led 

to more linear conductance responses compared to PCM and RRAM devices in general.  
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Figure 1.10. LTP and LTD in electrochemial synapses. a) the LiCoO2 synaptic transistor by Fuller et. al. b) the 

polymer synapse by Burgt et al. c) the WSe2 synapse by Zhu et al. d) the graphene synapse by Sharbati et al. a) 

Reproduced with permission.[11] Copyright 2017, John Wiley and Sons. b) Reproduced with permission.[12] Copyright 

2017, Nature. c) Reproduced with permission.[93] Copyright 2018, John Wiley and Sons. d) Reproduced with 

permission.[47] Copyright 2018, John Wiley and Sons.  

1.3.4  Two-Dimensional (2D) Devices 

2D materials, consisting of graphene (Figure 1.11a), hexagonal boron nitride (h-BN) 

(Figure 1.11b), transition metal dichalcogenides (TMDs) with the form of MX2 (where M = 

transition metal and X = chalcogen, such as MoS2 in Figure 1.11c), and black phosphorus (BP) 

(Figure 1.11d), offer a set of uniquely attractive optical,[97] electrical,[98] and thermal properties.[99] 
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These include sub-nanometer thickness without dangling bonds, transition from indirect (bulk) to 

direct (monolayer) band gaps when thinned down (MoS2, WS2),
[100] highly in-plane anisotropy 

(BP)[101] and anisotropic thermal transport (high in the in-plane direction[102] and low in the cross-

plane direction[103]). These 2D materials also demonstrate various band structures: semi-metal 

(graphene, WTe2),
[104] small band gaps for low-power transistor applications (MoTe2, HfSe2),

[105] 

semiconducting (MoS2, WS2, BP),[106] and large band gap or insulating h-BN, making them 

promising candidates for the next-generation computing devices.  

Based on a rich collection of physical mechanisms such as charge trapping, resistive 

switching, Joule heating etc., researchers are developing 2D based artificial synapses as illustrated 

in Figure 1.11e-j. Tian et al. reported one of the first 2D synapses with tunable plasticity based on 

twisted bilayer graphene.[107] As shown in Figure 1.11e, the synaptic weight is encoded in the 

graphene channel conductance and can be modulated by the amount of trapped charges at the AlOx 

defect sites, which in turn is controlled via the programming pulses from the top gate.[107] Shi et 

al. built a multilayer h-BN synapse (Figure 1.11f), where the device conductance was tuned 

through the generation of boron vacancies as well as the formation of metallic ions conductive 

pathways.[108] The switching mechanism in metal/h-BN/metal synapses is similar to that in 

CBRAM, with the difference being that the formation of cation pathways in h-BN synapses is 

accompanied by the generation of boron vacancies.[108] 
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Figure 1.11. 2D synapses. a, b) Lattice structures of graphene and h-BN. Reproduced with permission.[109] 2017, 

Springer Nature. c) Lattice structure of MoS2. Reproduced with permission.[110] 2013, American Chemical Society. d) 

Lattice structure of BP. Reproduced with permission.[111] 2014, American Physical Society. e) A schematic of a 

graphene dynamic synapse. Reproduced with permission.[107] 2015, American Chemical Society. f) A schematic of a 

h-BN synapse. Adapted with permission.[108] 2018, Springer Nature. g) A schematic of a MoS2 synapses based on 

Joule heating. h) A schematic of a back-gated MoS2 hysteresis synapse. i) A schematic of a BP synaptic device. j) A 

schematic of the BP/SnSe heterojunction synaptic device. a-g) Adapted with permission.[112] 2018, American 

Chemical Society. h) Reproduced with permission.[113] 2017, American Chemical Society. i) Reproduced with 

permission.[114] 2016, Wiley. j) Reproduced with permission.[115] 2017, American Chemical Society.  

 

Sun et al. demonstrated synaptic plasticity through Joule heating effect in monolayer MoS2 

devices (Figure 1.11g).[112] Resistive heating in MoS2 leads to a residual temperature increase, 

which can modulate the synaptic weight based on the temperature-dependence of the device 
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conductance.[112] Arnold et al. also built a MoS2 synapse (Figure 1.11h) taking advantage of the 

hysteresis in its I-V characteristics, which is likely due to charge trapping by adsorbed gas 

molecules, and/or by MoS2/SiO2 interface and/or by defects in MoS2.
[113] Tian et al. reported a BP 

synapse exploiting the charge transfer between the BP channel and the native POx functional layer, 

where the channel conductance was modulated through charge transfer induced by gate pulses 

(Figure 1.11i).[114] Lastly, a BP/SnSe junction-based synaptic device was also demonstrated by 

Tian et al. employing the tunable electronic properties of the BP and SnSe heterojunction to mimic 

the synaptic plasticity (Figure 1.11j).[115] 

1.3.5  Device Metrics Comparison 

The development of synaptic electronics for the hardware implementations of ANNs has 

progressed rapidly in the last few years. Because of similar requirements in programming and 

retention, emerging NVM technologies such as PCM and RRAMs have attracted much attention 

as possible candidates for building large-scale artificial neural networks. It should also be noted 

that an ideal synaptic device also possesses properties that are traditionally less important (even 

irrelevant) in NVM applications such as good precision levels, high linearity, and symmetrical 

conductance responses. In addition, the specific requirements of synaptic devices are likely 

application-dependent, for e.g., good retention is more important for a neural network that is 

trained offline, where online training requires better endurance and more linear behaviors due to 

the frequent weight update. Hence, emerging devices based on electrochemical reactions or 2D 

materials, which are not originally geared towards NVM applications, are also being extensively 

investigated by researchers and reviewed here.  
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Figure 1.12. Radar graph comparing the device metrics among emerging synaptic devices. PCM (blue lines), CBRAM 

(purple lines), Filamentary RRAM (red lines), Interfacial RRAM (Orange lines), Electrochemical synaptic devices 

(brown lines) and 2D Materials-based synaptic devices (green lines) are compared in terms of precision, energy, speed, 

linearity, reliability, temporal characteristics. 1 to 4 represents the four different degrees of desirability, respectively.  

Figure 1.12 summarizes the performances of a number of synaptic devices based on PCM, 

the three types of RRAMs (CBRAM, filamentary, and interfacial), electrochemical devices, and 

2D materials in terms of crucial device metrics such as precision (# of states), switching energy, 

operating speed, the degree of linearity and symmetry of the conductance response, reliability 

(device variations, endurance, and retention), and the potential in spatio-temporal dynamics for 

SNNs. PCM synapses have fast speed, decent precision and adequate endurances; but its non-

linear behavior, high RESET power, and large variation from the melt-quench process may hamper 

its performance. RRAMs offer CMOS compatibility, simple structure, and good scalability; 

however large device variation from the stochastic nature of the switching mechanisms can limit 

learning accuracy in large-scale neural networks. In addition, the abrupt SET process in CBRAM 

and filamentary RRAM can result in non-linear and asymmetrical response and also limit the 

device precision. Interfacial RRAMs have shown more gradual switching with better precision, 

PCMCBRAM
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Interfacial RRAM

Electrochemical
2D materials
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though it typically comes with a smaller dynamic range and has a slower switching speed 

compared to other RRAM devices. 

Nanoscale devices based on electrochemical reactions offer good precision, linearity, and 

potentially low device variations. The low operating speed due to the slow ionic movement may 

be mitigated by device scaling. But reactive cations (e.g., Li+) can pose contamination issues and 

may be incompatible with CMOS devices. 2D materials offer good scalability and the potential 

for in-memory computing as 2D devices are considered as promising candidates for next-

generation logic devices. However, researchers are still looking for an ideal switching mechanism 

in 2D devices as current 2D synapses based on charge trapping offer limited precisions, non-linear 

and asymmetrical responses, and poor reliability.  

To implement timing based plasticity for SNNs, many of the existing approaches employ 

complex timing circuitry and are thus not scalable. Techniques that utilize secondary effects with 

built-in temporal components such as electrostatic gating, Joule heating, or charge trapping are 

preferred. 

While most existing synaptic device cannot fulfill the requirement of an ideal electronic 

synapse at the moment, there is an enormous opportunity to achieve orders of magnitude 

improvement in computation capability and energy efficiency through the hardware acceleration 

of ANNs. By combing electrochemical reaction effect with 2D materials, an artificial electronic 

synapse, optimized for the hardware acceleration of ANNs, can be achieved.  

In the following chapters, electrochemical synapses based on topological insulator (BixSb1-

x)2Te3 film and perovskite tungsten trioxide will be presented with programmable spatio-temporal 

dynamics, high precision, linear and symmetric weight response, and great scalability in terms of 
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energy and speed, which shows its promising potential to lead to the hardware acceleration of truly 

neurorealistic ANNs with superior cognitive capabilities and excellent energy efficiency.  

1.4 Arterial Blood Pressure Monitoring 

1.4.1  Blood Pressure Monitoring Techniques 

Blood pressure  is one of the most vital hemodynamic parameters in the cardiovascular 

system, especially for patients with hypertension or hypotension.[116-118] Close monitoring of the 

arterial blood pressure (ABP) is beneficial to providing early disease intervention and 

treatment.[119] Figure 1.13 demonstrates the common BP monitoring techniques. Invasive blood 

pressure monitoring via implanted catheter into the artery offers a continuous, accurate real-time 

BP measurement, which is regarded as the clinical reference method; it is used mostly in intensive 

care unit (ICU) settings.[120] Some disadvantages of invasive BP monitoring are that it requires 

high-risk surgical procedures, medical expertise, and long operation time, and it may cause 

complications such as embolism and ischemia.[118] Non-invasive blood pressure (NIBP) 

monitoring techniques including auscultation, palpation, and oscillometry, are quite popular in 

non-intensive settings such as for routine clinic care as well as ambulatory and at-home monitoring 

since they offer great accessibility and convenience. [116-118] However, they are intermittent and 

only produce systolic and diastolic BP values. Continuous non-invasive blood pressure (CNIBP) 

monitoring is advantageous in settings where the hemodynamic stability or BP stability of patients 

is of greater interest since it is able to more quickly recognize patients’ hemodynamic status and 

reveal real-time BP levels consisting of comprehensive hypotensive and hypertensive episodes. 
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Thus, it renders earlier disease diagnosis and immediate treatment for patients where cases of 

stroke or heart failure can be prevented.[118, 120] 

 

Figure 1.13. BP monitoring techniques. 

1.4.2  Sensor Requirements for Arterial Applanation Tonometry  

CNIBP monitoring can be achieved using volume-clamp based photo-plethysmography 

(PPG) sensors,[121-126] arterial applanation tonometric (AAT) sensors,[20, 127-129] and ultrasound 

sensors.[130] Of these sensor types, AAT sensors, which use transducers that press against an 

underlying artery on the skin to measure the external BP,[117] have garnered much research interest 

due to their simple sensing mechanism and convenient electro-mechanical signal acquisition and 

calibration. Mechanical pressure pulse waves that are associated with blood flow changes in the 

underlying artery are transduced into electrical signals detected by AAT sensors.[117] Commercial 

AAT sensors, called T-Line devices,[128, 129] have been clinically proven to be reliable, but they are 
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bulky and uncomfortable to wear due to the usage of rigid materials. It has been found by Pressman 

et.al[131] and Kemmotsu et. al[132] that an accurate AAT system must meet the following 

requirements: 1) the sensing element must be very sensitive; 2) the artery surface below the 

pressure sensor must be flattened under external force; and 3) the sensor must be positioned well, 

right on top of the artery surface and conformable to the skin. The metrics for evaluating AAT 

sensor performance are summarized in Figure 1.14a[133]. Figure 1.14b indicates the basic working 

principles of the arterial applanation tonometry.[134] According to Laplace’s law of cylindrical 

tubes, the transmural pressure is governed by Pt = (T × µ) / r, as shown in Figure 1.14b. The applied 

applanation pressure is used to flatten the underlying blood vessels in order to maximize the 

detected BP signals. Ideally, the maximized BP signals occur when the applanation pressure equals 

arterial blood pressure.[134] Therefore, developing an ATT sensor that is soft, conformable to the 

skin, linear and sensitive over a large pressure range, with high fidelity signals and a large dynamic 

range would greatly enhance the BP sensing accuracy. 

 

Figure 1.14. The AAT sensor performance metrics and working principles. 
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1.5 Existing Flexible Pressure Sensors  

In this section, various types of flexible mechano-electric sensors including piezoelectric, 

piezoresistive, piezocapacitive, and supercapacitive iontronic sensors are reviewed. Figure 1.15 

demonstrates the working mechanisms of these various types of flexible pressure sensors. Table 

1.1 provides a summary of characteristics of the reviewed flexible pressure sensors as reported in 

the literature, including the sensor structure, working range, sensitivity, linearity, limit of detection, 

and response time.   

 

Figure 1.15. Working mechanisms of various types of flexible pressure sensors. 
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Piezoelectric sensors (Figure 1.15a) take advantage of the characteristics of piezoelectric 

crystalline materials,  which allow them to align dipole moments and generate electric voltages 

under external mechanical pressure.[127, 135] While piezoelectric sensors are highly sensitive to 

dynamic pressure changes, they cannot respond to static pressure changes. Also, they exhibit fast 

response time (0.1 ms) and very small limit of detection (0.005 Pa), but the working range of 

common piezoelectric sensors is very limited.[127]  

Piezoresistive sensors measure the electrical resistance change between two electrodes. 

Fabrics,[136] foam composites,[137] or microstructures[138] can be utilized as active materials, where 

external applied pressure induces resistance changes via changing the shape of the active materials 

or contact areas between electrodes and dielectrics. Piezoresistive sensors (Figure 1.15b) have a 

simple sensing mechanism, and, unlike Piezoelectric sensors, respond to both dynamic and static 

pressure and enable linear pressure – resistance responses in a wide working range.[136-138]  

However, there is a tradeoff between working range and sensitivity. Moreover, the resistive 

changes are susceptible to thermal and electromagnetic transmission line noise.  

Piezocapacitive sensors (Figure 1.15c) have been studied a lot because of their simple 

device structure, simple sensing mechanism, good response to both static and dynamic pressure, 

and immunity to thermal and electromagnetic noise. However, most piezocapacitive sensors 

demonstrate only low to medium sensitivity, [139-144] partly because they rely on the physical 

distance (d) between two electrodes to modulate the capacitance, which is limited by the structural 

stiffness of the active soft elastomer. Moreover, the limited dielectric constant of the active 

dielectric soft materials and the small physical distance between electrodes usually renders the 

capacitive values in the pF cm-2 range. This small capacitance value is susceptible to parasitic 

charges and environmental noises.[145]  



 39 

Iontronic supercapacitive sensors (Figure 1.15d), as a new type of iontronic device, have 

demonstrated excellent sensing performance in that they exhibit a broad working range, high 

sensitivity, medium to high linearity, and low limit of detection. [146-151] Most importantly, 

leveraging the supercapacitive effects at iontronic/electronic interface results in an ultrahigh unit 

area capacitance (~ µF cm-2) for iontronic pressure sensors. This ultrahigh capacitance is beneficial 

to improving the sensing resolution and sensitivity of the sensor, and it helps to obtain high-fidelity 

output signals without the use of external amplifying elements. Additionally, it provides an 

excellent immunity from environmental noises and offers strong responses to both dynamic and 

static pressure changes. One issue for iontronic supercapacitive sensors, however, is their relatively 

slow response time; the response is likely limited by the low ionic mobility in the ionic dielectric 

layers. Therefore, materials selection plays an important role in both determining the sensor 

performance and electrochemical stability.  

In the following chapters, the development of a high-fidelity iontronic tonometric sensor 

(ITS) with high sensitivity, high linearity, and a large dynamic range within a broad working range 

is discussed. We demonstrate that we can control the initial interfacial contact area and tune the 

sensitivity of the device by microengineering the contact electrodes that interface with the 

iontronic film into different micropyramid patterns. We tune the performance of our ITS to meet 

the requirements for AAT BP monitoring. We further explore the application of our ITS in 

monitoring real-time beat-to-beat BP by measuring the brachial and radial pulse waveforms. The 

detected pulse waveforms can be utilized to recognize patients’ hemodynamic status and reveal 

real-time BP levels. Our ITS work provides a rational design for a flexible pressure sensor with 

high sensitivity, high linearity, and a large dynamic range for real-time CNIBP monitoring. 



 40 

Table 1.1. The reviewed flexible pressure sensors in the literature. 

Type Device Structure 

Working 

range 

(kPa) Linearity  Sensitivity (kPa-1) 

LOD 

(Pa) 

Response 

time 

(ms) 

Recovery 

time 

(ms) 

Ref 

# 

Piezoelectric 

PI/PZT/Pt/ SiNM n-MOSFET  0 - 0.01 NA NA 0.005 0.1 0.1 [127] 

ITO/PET/PTFE woven/PDMS 0 - 1.2 NA 10.3 - 47.5 mV/Pa 2.5 5 5 [135] 

Piezoresistive 

PEN/Fabric/Au electrode/PI 0 - 35 High 0.585  NA 4 4 [136] 

Au/ Hollow foam composite /Au 0 -60 High 15.9  NA 1.2 NA [137] 

Elastomer/Liquid metal/ 

Microbump/Microchannel  0 - 50 High 0.158  16 77 NA [138] 

Piezocapacitive 

Ecoflex/CNT/Porous PDMS 

/CNT/Micropyramid Ecoflex 0 - 30 Low 2.24  2 84 117 [139] 

Si/Al/Micropyramid 

PDMS/Al/Si 0 - 22 Medium 0.2  NA NA NA [140] 

PET/ITO/Micropyramid 

PDMS/ITO/PET 0 - 200 Medium 0.02  NA NA NA [141] 

PI/Au/PMMA/Conductive 

porous nanocomposite/Au/PI 0 - 50 Medium 0.43 - 3.13  7 94 NA [142] 

Silicone/Wrinkled 

Au/Dielectric/Wrinkled 

Au/Silicone 0 - 700 High 0.148  NA NA NA [143] 

Micropyramid PDMS gated 

organic field-effect transistors 0 - 18 Medium NA NA 300 500 [21] 

PET/ITO/Micropyramid PDMS 

dielectric gated organic field-

effect transistors 0 - 56 Low 0.38- 8.2  NA 10 10 [20] 
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Table 1.1. (continued). 

Piezocapacitive 

PET/ Au - coated Micropyramid 

PDMS dielectric gated 2D 

MoS2/WSe2 transistors 0 - 2.15 NA 103 - 107 NA 40 40 [22] 

PET/ITO/Porous pyramid 

PDMS/ITO/PET 0 - 35 Medium 0.124 - 44.5  0.14 9 30 [144] 

Supercapacitive 

PET/ITO/Nafion Ionic film/Skin 0 - 30 Low 0.15 - 5 nF/kPa NA NA NA [18] 

PI/Au/Fabric IL/Au/PI 0 - 175 High 6.5 - 13.5  7.5 30 30 [146] 

PET/Au/Micropilllar Ionic 

film/Au/Microdome epoxy resin 0 - 485 High 49.4  NA 0.61 3.63 [147] 

PET/ITO/Micropyramid Ionic 

film/ITO/PET 0 - 50 Medium 2 - 41.64  NA 21 22 [148] 

Ag-plated fiber/Ionic gel 

film/Ag-plated fiber 0 - 4 NA 308 nF/kPa 300 272 234 [149] 

Au-coated microstructured 

PDMS/Ionic nanofibrous 

membrane/Au-coated 

microstructured PDMS 0 - 300 High 1.5 - 5.5  2 70.4 92.8 [150] 

PDMS/Cu/Ion gel/Sandpaper 

molded CNT/PDMS microbump 

nanocomposite/Ion 

gel/Copper/PDMS 0 - 8 NA 0.25 -  9.55  5 52 52 [151] 

Conductive fibric/Nanofibrous 

layer/Conductive fabric 0 - 10 Medium 14.8 - 114 nF/kPa 2.4 4.2 NA [152] 

PI/Au/Sandpaper molded 

microstructured ionic gel 

film/Au/PI 0 - 360 Medium 229.9 - 3302.9 0.08 9 9 [19] 
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Table 1.1. (continued). 

Supercapacitive 

PET/Graphene/Ionic liquid 

droplet/Graphene/PET 0 - 15 Medium 31.1 NA 78 78 [153] 

PI/Au/Ionic gel/Au-coated 

micropillar PDMS electrode 0 - 180 High 7.49 - 33.16 0.9 9 9 [154] 

PI/ITO/Ionic gel/sandpaper 

molded PDMS-Ppy elastic 

electrode/PI 0 - 100 Medium 3.65 - 26.6 2.88 NA NA [155] 

Au-coated PDMS micropillar/ 

Skin/Au 0 - 15 Low 0.3 - 11.8 0.2 15 15 [156] 

PI/AgNWs/Calathea zebrine leaf 

molded microstructured ionic 

gel/AgNWs/PI 0 -115 Medium 1.03 -  54.31 0.1 29 37 [157] 

PDMS/AgNWs/Sandpaper 

molded iontronic 

film/AgNWs/PDMS 0 -33 Medium 11.73 - 131.5 1.12 43 71 [158] 
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2.0 Dynamic (BixSb1-x)2Te3 (BST) Synapses with Spatio-Temporal Dynamics 

2.1 Motivation 

Neuromorphic computing has recently emerged as a promising paradigm to overcome the 

von-Neumann bottleneck and enable orders of magnitude improvement in bandwidth and energy 

efficiency. However, existing CMOS digital devices, the building block of our computing system, 

are fundamentally different from the analog synapses, the building block of the biological neural 

network, rendering the hardware implementation of the ANNs not scalable in terms of area and 

power, with existing CMOS devices. In addition, the spatio-temporal dynamic, a crucial 

component for cognitive functions in the neural network, has been difficult to replicate with CMOS 

devices. Here, we present the first topological insulator (TI) based electrochemical synapse with 

programmable spatio-temporal dynamics, where long-term and short-term plasticity in the TI 

synapse are achieved through the charge transfer doping and ionic gating effects, respectively. We 

also demonstrate basic neuronal functions such as potentiation/depression and paired-pulse 

facilitation with high precision (>500 states per device), as well as a linear and symmetric weight 

update. We envision that the dynamic TI synapse, which shows promising scaling potential in 

terms of energy and speed, can lead to the hardware acceleration of truly neurorealistic ANNs with 

superior cognitive capabilities and excellent energy efficiency. 
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2.2 The Structures and Properties of BST Synapses 

2.2.1  The Structures of BST Synapses with Electrochemical Effects 

Here, we present the first ternary topological insulator (Bi0.2 Sb0.8)2Te3 based synaptic 

device – with a programmable spatio-temporal response, a high precision (>500 states per device), 

and a linear and symmetric weigh update – for the hardware implementation of artificial neural 

networks. In the BST synapse (Figure 2.1a), the channel conductance represents the synaptic 

weight, which can be reversibly modulated through the ionic gate.[47] We choose the ternary TI 

compound BST for this work because of its potential in large-scale, high-quality fabrication 

through molecular beam epitaxy (MBE), its layered structure to accommodate intercalated ions, 

and its tunable transport properties via band structure engineering.[159] The band structure of BST 

can be tuned to reach an insulating bulk state with conducting surface states, which is useful for 

synaptic applications because having this initial insulating bulk state can lead to a larger dynamic 

range as we increase the channel conductance through Li intercalation. Transport and angle-

resolved photoemission spectroscopy (ARPES) measurements from our prior work[159] indicate 

that the stoichiometry with x = 0.2 in (BixSb1-x)2Te3 leads to a very insulating bulk state at 300 K, 

with the sheet resistance close to its maximum value, thus eliminating the need to go down to low 

temperatures for synaptic applications. Moreover, the atomically-flat surfaces from the MBE-

grown epitaxial films help promote the strength of the ionic gating effect,[160] which contributes to 

the short-term synaptic plasticity. 

The schematics of our three-terminal BST synaptic device is shown in Figure 2.1a, where 

BST film grown on sapphire substrate forms the conduction channel (patterned by 

photolithography combined with dry etching process), representing the synaptic weight. The 
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source and drain electrodes consist of Cr/Au (20/100 nm); and the ionic gate (as well as the Li+ 

ion reservoir) is made of lithium iron phosphate (i.e., Li0.6FePO4 or LFP). LFP is a common 

cathode material in Li-ion batteries because of its safety, nontoxicity, and low cost; and it provides 

a constant electrochemical reference to ensure stable operations in the BST synapse.[161, 162] Solid 

polymer electrolyte (prepared by dissolving LiClO4 in polyethylene oxide (PEO))[163] is spin-

coated onto the device to facilitate ionic exchange (but electrically insulating) between the LFP 

gate and the BST channel. The read operation is done by applying a small signal to access the 

conductance between the source and drain (with the gate open); while the write operation is 

through programming pulses between the gate and the BST channel.  

One of the unique features of our electrochemical BST synapse is its programmable spatio-

temporal dynamics – demonstrating tunable long-term and short-term plasticity, which is crucial 

for implementing a truly neurorealistic ANN and a feature that has been difficult to achieve with 

conventional CMOS and memory devices. The long-term (non-volatile) effect originates from the 

charge transfer doping through the intercalated ions.[164] BST has a layered rhombohedral structure 

(Figure 2.1b), where five covalently bonded atomic sheets (Te-Bi/Sb-Te-Bi/Sb-Te) form one 

quintuple layer (QL) (~1 nm).[165] We choose to intercalate Li+ ions in this work because of its 

well-characterized electrochemical behaviors from the LIB industry and its small diameter (1.5 

Å)[166] for ease of intercalation, especially since successful intercalation in BST has been 

demonstrated with slightly larger Cu+ ions (1.8 Å).[167] As positive Li+ ions are electrochemically 

intercalated into (de-intercalated out of) the van der Waal spacing between the neighboring QLs 

in BST, the negative electrons enter (leave) the BST conduction band and result in a long-term 

increase (decrease) in carrier concentration and the channel conductance (synaptic weight).  
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The short-term (volatile) effect stems from the ionic gating effect[164] (Figure 2.1c), where 

an electric double-layer is formed at the electrolyte/BST interface and induces strong electrostatic 

gating in the BST channel. The ionic gating effect is volatile since the EDL and its associated 

change in carrier concentration in BST dissipate when the programming pulse is removed. 

Combining these two mechanisms, we have demonstrated synaptic characteristics such as short-

term and long-term plasticity, potentiation and depression, and paired-pulse facilitation with the 

BST synapse in this work. We can also engineer the spatio-temporal response in these 

electrochemical synapses by manipulating the pulse amplitude, the pulse width, and the device 

dimensions, as we will detail in the following sections. 

 

 

Figure 2.1. TI based dynamic synapse. Schematics of a) (Bi0.2Sb0.8)2Te3 (BST) based synaptic device; b) Charge 

transfer doping through Li intercalation for long-term plasticity. c) Ionic gating for short-term plasticity.  

2.2.2  Materials Characterization of Molecular Beam Epitaxy Grown BST  

High-quality epitaxial BST films were grown on (0001) sapphire substrates in an ultra-

high vacuum Perkin Elmer MBE system at 200 °C substrate temperature. We performed in-situ 

reflection high energy electron diffraction (RHEED) to monitor the surface of the growth film. 
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The periodic intensity oscillation at a single spot during the MBE growth indicates the layer-by-

layer growth, where each intensity peak represents the formation of a new QL.[168] Our film 

thickness is around 6.5 QLs, as indicated in Figure 2.2a. The inset RHEED pattern in Figure 2.2a 

demonstrates the high-quality growth of the atomically flat BST film. To ensure a good crystal 

structure of the BST film, we performed X-ray diffraction (XRD), as shown in Figure 2.2b, where 

the characteristic peaks of the grown BST film agreed well with those reported previously.[169]   

 

 

Figure 2.2. Characterization of the MBE grown BST film. a) RHEED oscillations indicating layer-by-layer growth 

and a film thickness around 6.5 QLs (i.e. ~6.5 nm). The insert is the RHEED pattern, suggesting high quality growth. 

b) XRD of the BST film on sapphire substrate. c) Transport measurement of the BST Hall-bar structure (0.5 × 1 mm2). 

The red curve shows the sheet resistance Rs as a function of temperature from 300 K down to 10 K and the blue curve 

shows how the hall resistance RHall changes as a function of the out-of-plane magnetic field H, where the calculated 

density of state is n2D = 6 × 1012 cm-2. The insert shows the schematic of the band structure and position of the Fermi 

level.  

40 50 60 70

In
te

n
s
it
y
 (

a
.u

.)

2θ (deg)

0 100 200 300 400

In
te

n
s
it
y
 (

a
.u

.)

Growth time (s)

Sapphire(0006)

(0015)
(0018) (0021)

(a)

(b) Growth time (s)
00 100 200 300 400

In
te

n
s

it
y
 (

a
.u

.)
In

te
n

s
it

y
 (

a
.u

.)

2θ (deg)
40 50 60 70

New QL

-10 -5 0 5 10

-100

-50

0

50

100

R
H

a
ll 
(

)

H (kOe)

10 100

3.0

3.5

4.0

4.5

5.0

R
s
 (

k


)

T (K)

BCB

BVB

EF

DP

-100

-50

0

50

100

-10 -5 0 5 10
H (kOe)

R
H

a
ll

(Ω
)

R
s

(k
Ω

)

T (K)
10 100

3.0

3.5

4.0

4.5

5.0
(c)

BVB

BCB

EF

DP

(c)



 48 

2.2.3  Electrical Characterization of BST Film 

Ternary (BixSb1-x)2Te3 can exhibit different Dirac band structures with different values of 

x, and thus manifesting distinctive transport properties.[159] Through the measurement of transport 

properties (Keithley 6221 and Stanford SR830 amplifier) of the BST film, we can estimate the 

stoichiometric ratio of Bi to Sb and Dirac band structure for our BST film. Figure 2.2c shows the 

BST sheet resistance (Rs) as a function of temperature and the relationship between the hall 

resistance (RHall) and the out-of-plane magnetic field (H) properties of the patterned Hall-bar BST 

device (0.5 × 1 mm2). By comparing the sheet resistance and hall resistance curve with reported 

relationships in the literature,[159, 170] we estimated x = 0.2 for our (BixSb1-x)2Te3 sample. The inset 

in Figure 2.2c shows the Dirac band structure of our BST film, where Dirac Point (DP) and EF lie 

within the bulk energy bandgap between the bottom edge of bulk conduction band (BCB) and the 

top edge of bulk valence band (BVB).[159, 170] We choose x = 0.2 in (BixSb1-x)2Te3 for this work so 

that the BST synapse can achieve a larger dynamic range with a more insulating initial state. 

2.3 Electrochemical Characterization of BST During Li Intercalation 

2.3.1  Galvanostatic Discharge of BST Film 

The reversible electrochemical intercalation process is illustrated in Figure 2.3a, where the 

polarity of the current flow in the external circuit determines if Li+ ions are driven into (purple 

arrows) or out of (red arrows) the BST lattice. An advantage of this approach is that the ionic 

concentration (and hence the carrier concentration and the synaptic weight) can be precisely 
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controlled, as the amount of Li+ ions moving into/out of the BST synapse equals to the amount of 

electrons (e-) transferred in the external circuit – as governed by charge neutrality.[47, 171] This can 

also contribute to a more linear and symmetric weight update, as the amount of increase in carrier 

concentration from each identical writing pulses will be the same – another desirable trait that can 

improve the learning accuracy of the artificial neural network. 

Figure 2.3b demonstrates the galvanostatic discharge measurement (through a BioLogic 

SP-200 workstation) of the BST device by applying a constant discharging current (50 nA) for 

electrochemical Li intercalation. The electrochemical potential of BST first decreased 

monotonically as Li ions were intercalated into the BST lattice[171] until it reached a plateau at ~-

1.15 V vs. LFP. While the physical origin of this plateau in intercalated BST is unclear and requires 

further theoretical calculations and analysis,[172] voltage plateaus in the galvanostatic discharge 

measurement are often associated with structural changes for 2D materials such as the stage 

transformation in graphene[47, 173] and the 2H to 1T phase transformation in MoS2.
[171, 174] 

2.3.2  In-Operando Raman Spectra of BST Film during Intercalation 

In order to gain a better understanding of the electrochemical intercalation process, we 

performed in-operando Raman spectroscopy (Horiba LabRam with a 473 nm) on a BST film under 

different ionic (Li+) concentrations, as shown in Figure 2.3c. For pristine BST (before Li 

intercalation), we observed two prominent peaks at ~111 cm-1 and 160 cm-1, corresponding to the 

in-plane (Eg
2) and out-of-plane (A1g

2 ) vibration modes, respectively, as others have reported in the 

literature.[167, 169, 175] Upon Li intercalation, we noticed that a new peak (~122 cm-1) started to 

appear when the BST’s electrochemical potential is at -1.15 V vs. LFP, corresponding to the 
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voltage plateau we observed in the galvanostatic discharge process (Figure 2.3b). Analogously to 

the new peak observed in Cu-intercalated Bi2Se3,
[167] we speculate that this new peak likely stems 

from the formation of extra bonding between intercalated ions and host TI materials though further 

investigations are needed to identify the exact origin of the peak. 

2.3.3  Electrical Conductance Response of BST Film upon Li Intercalation 

To characterize the dynamic range of the BST synapse, we monitored the change in BST 

channel conductance (GDS) during the electrochemical intercalation process by applying a 10 mV 

read voltage between the source and drain terminals. The read voltage was kept small to minimize 

any potential inhomogeneity in ionic concentration in the BST channel. The channel conductance 

showed a steady and linear increase from ~50 μS to 65 μS, as we carried out the Li intercalation 

(Figure 2.3d). This 130% dynamic range is less than ideal as it would require an intricate peripheral 

circuitry for readout, potentially negating the advantages of having a high precision synapse. Thus, 

further investigations need to be carried out to improve the dynamic range of the electrochemical 

synapse, such as through tuning the stoichiometry in BST or exploring similar layered topological 

insulators with a more insulating pristine state and/or a higher capacity for intercalated ions. In 

addition, careful device design (e.g., optimizing the device geometry/resistance and the precision 

level) are needed to ensure that the resistance difference between adjacent states is sufficiently 

high to be easily distinguished by the peripheral circuitry. 
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Figure 2.3. In-operando Raman spectra and electrical characterization of BST devices. a) The schematics of the 

reversible electrochemical Li intercalation/de-intercalation process. b) Galvanostatic discharge of BST with a constant 

discharging current (50 nA). c) Raman spectra of intercalated BST films at different electrochemical potentials (i.e. 

ionic concentrations). d) Current and conductance response of the BST film (under a 10 mV read voltage) upon Li 

intercalation.  

2.4 Neuronal Functionality of BST Electrochemical Synapses 

2.4.1  Long-Term Plasticity (LTP) and Short-Term Plasticity (STP) 

We performed single pulse measurement (Keithley Semiconductor Characterization 

System 4200A with Pulse Measuring Units) on the BST synapse to demonstrate basic potentiation 

and depression functions and elucidate the long-term and short-term effects. As shown in Figure 
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2.4a, synaptic potentiation can be achieved by sending a positive current pulse (5 nA, 10 ms) from 

the gate terminal to the BST channel, which has an initial conductance G0 at ~50 μS and a channel 

dimension of ~130 µm (L) × 20 µm (W) × 6.5 nm (t). We observe a significant increase in synaptic 

weight (ΔG ~1 μS or 2% of G0) immediately upon the potentiation pulse, due to the combined 

effect from charge transfer doping and ionic gating (Figure 2.1b and 2.1c). At the end of the 

programming pulse, the channel conductance gradually decayed as the electric double-layer and 

its associated doping effect dissipated – analogous to the short-term plasticity behaviors in 

biological synapses.[176] Unlike the volatile ionic gating effect, the charge transfer doping from the 

electrochemically intercalated Li+ ions is non-volatile, as we still observe a long-term increase in 

the synaptic weight ΔGLT when the channel conductance stabilizes – mimicking the long-term 

plasticity in biological synapses. We observe similar short-term and long-term dynamics in the 

depression step (-5 nA, 10 ms), where the time-dependent change in synaptic weight [ΔG(t)] 

consists of a constant long-term component ΔGLT and a volatile short-term component [ΔGST(t)] 

such that ΔG(t) = ΔGLT + ΔGST(t).  

 

2.4.2  Programmable LTP Using Single Pulse 

This built-in temporal component in our electrochemical BST synapse mimics the spatio-

temporal dynamics in biological synapses and can be useful to realize causality and logical 

inference. We further explore how we can engineer the spatio-temporal response by tuning both 

the amplitude and timing constant of the ΔG(t). The amplitude of the long-term weight change    

ΔGLT due to charge transfer doping depends on the increase in carrier concentration (Δn), which 

in turn scales linearly with the increase in ionic concentration that is dictated by the total charge 
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transferred (= pulse amplitude (IG) × width (tw)) in the programming pulse. Indeed, we observed a 

pseudo-linear increase in ΔGLT as we increased the amplitude of the current pulse from 5 nA to 

100 nA (Figure 2.4b), due to the increase in ionic and carrier concentrations in the BST channel. 

We also varied the pulse width from 10 ms to 60 ms (Figure 2.4c), where we observed a similar 

pseudo-linear trend in ΔGLT when the pulse width was less than 20 ms. We plot the combined 

results in Figure 2.4d, where ΔGLT scales almost linearly when the total charge in the programming 

pulse is less than 1600 pC and gradually saturates beyond that point. This saturation behavior is 

likely because that with the fixed potential difference between the gate terminal (LFP) and BST 

during programming, the BST film can only accommodate a limited amount of Li+ ions, dictated 

by the electrochemical potential difference, which is in turn set by the pulse amplitude. This linear 

relationship between ΔGLT and pulse amplitude/width suggests promising tunability for our BST 

synapses. 

 

Figure 2.4. Single-pulse response showing programmable short-term and long-term plasticity. a) Potentiation and 

depression responses from the BST synapse with both short-term and long-term components. The amplitude of the 

long-term plasticity as a function of b) the pulse amplitude; c) the pulse width; d) the total charge (= pulse amplitude 

× width).  
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2.4.3  Paired-Pulse Facilitation (PPF) of BST Synapses 

Leveraging the unique dynamics of our BST synapse, we demonstrate paired pulse 

facilitation, an important neuronal function in biological synapses,[176] through a two-pulse 

programming scheme. In PPF, two consecutive current pulses are sent to the synapse at a time 

interval Δt apart, where the increase in synaptic weight upon the second pulse is a function of Δt, 

as illustrated in Figure 2.5a inset. This dynamic is often characterized in the PPF ratio, which is 

defined as the ratio of the current level after (I2) and before (I1) the second programming pulse. 

We varied the time interval between two identical potentiation pulses (5 nA, 10 ms) from 10 to 

1000 ms to investigate how the PPF ratio in our electrochemical synapse changed as a function of 

Δt, as shown in Figure 2.5a. We observe an exponential decay in the PPF ratio, which can be 

modeled using a three-term exponential decay function 𝐼2 𝐼1⁄ = 1 + 𝐶1exp⁡(−Δ𝑡/𝜏1) +

𝐶2exp⁡(−Δ𝑡/𝜏2) + 𝐶3exp⁡(−Δ𝑡/𝜏3). 

The three time constants are 𝜏1 = 50 ms, 𝜏2⁡= 310 ms, and 𝜏3⁡= 3000 ms for this BST 

device, similar to previously the time scale in biological synapses[176] and previously reported 

artificial synapses[12, 47, 177, 178] involving ionic movements. We speculate that the two smaller time 

constants (𝜏1 and 𝜏2) depend on the BST channel width (20 μm) and length (50 μm), while the 

larger 𝜏3, due to the presence of our ionic reservoir (LFP), depend on the distance between the LFP 

gate and the BST channel (~150 μm), originating from the ion diffusion process. We repeated the 

PPF measurements on BST synapses with different geometries (from 7 µm to 200 µm) and fit a 

power law dependence (τ ~ L2.03) between the time constants and the device dimensions (Figure 

2.5b), consistent with the diffusion kinetics governed by Einstein’s diffusion equation 𝜏𝐷 =

𝐿2/2𝐷 , where 𝜏𝐷 , L, and D denote the diffusion time, dimension, and diffusion coefficient, 
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respectively.[47] This suggests that the temporal dynamics in the PPF ratio and the short-term 

plasticity in electrochemical synapses depend on the ionic diffusion process, similar to previously 

reported results. This offers an excellent opportunity for us to engineer the time constants and 

hence the spatio-dynamics of our BST synapses by changing the device dimensions, and at the 

same time indicates good scaling potential of the electrochemical synapse, as the switching time 

scales approximately to L2. 

2.4.4  Scaling Performance of BST Synapses 

We further study the scalability of the BST synapse in terms of switching energy, as shown 

in Figure 2.5c. The switching energy (needed to induce a 0.4% ΔGLT/G0 change) scales linearly 

with the channel area (= L × W), since the weight change depends on the ionic concentration, i.e., 

the amount of charge transferred per unit area. The switching energy for our smallest device (70 

μm × 7 μm × 6.5 nm) is 18 pJ. Estimating from scaling trends in switching speed and energy, we 

project the programming speed and energy for a nanoscale device (25 nm × 25 nm × 6.5 nm) to be 

~100 ns and ~28 aJ – providing significantly better energy efficiency than existing CMOS devices.  
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Figure 2.5. Paired-pulse facilitation and the scaling behavior of the BST synapse. a) The PPF response can be fitted 

with a three-term exponential function with three time constants (50 ms, 310 ms, 3000 ms). The inset demonstrates 

two consecutive pulses (IG = 5 nA, tw = 10 ms, ∆t = 10 ms). b) The time constants (τ) show a power law dependence 

with the device dimension (L) such that τ ~ L2.03. c) The scaling trend of the switching energy as a function of the BST 

device area.  

2.5 Synaptic Device Performance of BST Synapses for ANNs 

2.5.1  Long-Term Potentiation and Long-Term Depression 

Besides programmable spatio-temporal dynamics and good scaling potential, our BST 

synapse also exhibits high precision (~500 states per device) as well as a linear and symmetric 

conductance response – improving the areal density and learning accuracy of ANNs.[33, 179, 180] 
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Figure 2.6a demonstrates the long term potentiation and depression of our BST synaptic device 

through consecutive current pulses. We observe decent linearity and symmetry in the conductance 

response. We employ current pulses for programming because it allows us to achieve precise 

control over the amount of charge transferred during a single programming pulse and hence 

enabling a linear conductance response in the BST synapse. In the future, we plan to adopt similar 

materials for both the gate and the channel materials to minimize the electrochemical potential 

difference between the two, paving towards the simpler voltage control circuitry for programming 

while maintaining good linearity. 

2.5.2  Tunable Synaptic Precision  

By utilizing different current pulses, our BST synapse also demonstrates tunable precision 

(e.g., 100, 150, and 500 states) and dynamic range (Figure 2.6b). While the dynamic range in the 

BST synapse needs be improved for us to enjoy the full benefits of a high precision synapse, our 

proof-of-concept work demonstrates the potential for high precision with good linearity in 

electrochemical synapses, because its underlying programming mechanism is the controllable 

charge transfer doping – in contrast to some of the more stochastic and abrupt processes in 

emerging memory devices (such as filamentary formation in RRAMs[181] and threshold switching 

in PCMs[182]). We observe a trade-off between dynamic range and linearity/symmetry, where the 

linearity and symmetry of the synapse deteriorate slightly when we push the synapse to a larger 

dynamic range, likely associated with the saturation of BST’s capacity to accommodate Li+ ions. 
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Figure 2.6. BST synapses with good precision, linearity, and distinct states. a) A train of pulses (150 potentiation and 

depression or (P/D) pulses with IG = ±1 nA, tw = 10 ms, ∆t = 1 ms) demonstrating long term potentiation and depression 

with high precision, good linearity and symmetry. The conductance was measured with a 0.5 V read voltage. b) 

Tunable synaptic precision in the BST synapse with up to 500 P/D pulses demonstrated (~8-bit precision). c) 

Consecutive cycles of potentiation and depression pulses, demonstrating potentially low device variations. d) The 

zoom-in panel indicates distinct conductance states.  

2.5.3  Distinct Conductance States 

To further explore the device variation, we performed consecutive pulse measurements 

with over 6000 potentiation and depression pulses (Figure 2.6c), where we observed good 

reproducibility. The zoom-in panel in (Figure 2.6d) shows distinct conductance states, though a 

larger difference between adjacent states is preferred to improve the sensitivity and minimize 

readout errors.  
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2.5.4  Device Variations 

We investigated both the spatial (device-to-device) and temporal (cycle-to-cycle) 

variations in our BST synapses since device variation plays a vital role in achieving high learning 

accuracies in high-precision synaptic arrays. In Figure 2.7a, we plotted the maximum and 

minimum conductance states for 20 BST synapses with identical geometries, where we observed 

an overlapping conductance range for all devices from 53 μS to 60 μS. We further characterized 

the ΔG in 10 devices upon an identical programming pulse starting from G0 = 53 μS in Figure 2.7b. 

While the variation in ΔG (σ/μ = 1.47%) for BST synapses need to be improved via better process 

optimizations to minimize the write noise, we are encouraged by the potential of the 

electrochemical synapse as high-precision synapses due to its capability of incremental 

conductance change. In Figure 2.7c, we studied the endurance performance of the BST synapse 

over 100 cycles, where each cycle consisting of 300 potentiation and depression (P/D) 

programming pulses (IG = ±1 nA, tw = 10 ms), where we observed fairly consistent programming 

characteristics. We plotted the cycle-to-cycle variations of ΔG (σ/μ = 0.98%) per a single 

programming pulse (IG = 1 nA, tw = 10 ms) starting from 53 μS in Figure 2.7d, confirming the 

potential for low device variation in the electrochemical synapse. 
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Figure 2.7. BST device variations. a) The distribution of the maximum and minimum conductance states for 20 BST 

synapses with the same geometry, showing an overlapping conductance range from 53 µS to 60 µS. During 

programming, 500 P/D pulses with IG = ±1 nA, tw = 10 ms, ∆t = 1 ms were applied to each device. b) The distribution 

of ΔG upon a single programming pulse (IG = 1 nA, tw = 10 ms) from an initial conductance of 53 μS for 10 BST 

synapses. c) Endurance performance of a BST synapse over 60, 000 programming pulses (or 100 cycles consisting 

300 P/D pulses per cycle) from an initial conductance of 53 µS. d) The cycle-to-cycle variation of ΔG upon a single 

programming pulse (IG = 1 nA, tw = 10 ms) from an initial conductance of 53 μS over 100 cycles.  

2.5.5  Benchmark BST Synapses Performance in DNNs 

To gain an idea of the performance of our BST synapses, we modelled an idealized 2-layer 

multilayer perceptron (MLP) crossbar array using MLP simulator (+Neurosim).[38, 183] Due to the 

ON/OFF ratio required for the program to model analogue synapses, digital synapses with 

appropriate Ron and Roff were used with the number of digital bits simulating the number of states 

per synapse. Due to this compromise, the amount of noise in the system is negligible compared to 
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what a real network would experience, but this figure of merit is good for a first order 

approximation. This idealized network achieved a 93% learning accuracy after 125 training epochs 

when identifying the handwritten MNIST digits[184] as shown in Figure 2.8. Although this 

simulation is only a first order approximation, there is still lots of room for optimization in physical 

network structure as well as learning algorithm utilization, so while a physical ANN using these 

devices might not meet the 93% reported here, we have confidence that these BST synapses will 

still be a promising candidate for future real-world applications.  

 

Figure 2.8. Neural netwrok simulation using BST synapses. MNIST simulation results (up to 93% accuracy with 125 

epochs) using the BST synapse (with a precision of 100 states per device) in a cross-point 2-layer multilayer perceptron 

(MLP) neural network.  

2.6 Conclusion 

In summary, we develop the first electrochemical synapses based on ternary TI (Bi0.2 

Sb0.8)2Te3 with programmable spatio-temporal dynamics (both amplitude and time constant), 

suitable for implementing neurorealistic artificial neural networks. We demonstrate basic neuronal 
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functions such as short-term and long-term plasticity as well as paired-pulse facilitation, utilizing 

the built-in temporal component in our BST synapse. The BST synapse shows good scaling 

potential with a projected switching speed and energy at 100 ns and 28 aJ at nanoscale dimensions 

(∼25 nm). The high precision (500 states per device), decent linearity, and symmetry in the weight 

update further improve the learning accuracy (93%), when BST synapses are benchmarked with 

the MNIST dataset. Our work elucidates the fundamental electrical and ionic transport in 

electrochemically intercalated TI devices and develops an energy efficient dynamic synapse that 

can potentially lead to the hardware acceleration of the neurorealistic artificial neural network, 

significantly improving the energy efficiency and cognitive capability of computing systems. 
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3.0 Low-Voltage Electrochemical LixWO3 Synapses (LiWES) for SNNs 

3.1 Motivation 

Neuromorphic computing has the great potential to enable faster and more energy-efficient 

computing by overcoming the von Neumann bottleneck. However, most emerging NVMs based 

artificial synapses suffer from insufficient precision, nonlinear synaptic weight update, high write 

voltage, and high switching latency. Moreover, the spatio-temporal dynamics, an important 

temporal component for cognitive computing in SNNs, are hard to generate with existing CMOS 

devices or emerging NVMs. Herein, a three-terminal, LixWO3-based electrochemical synapse 

(LiWES) is developed with low programming voltage (0.2 V), fast programming speed (500 ns), 

and high precision (1024 states) that is ideal for artificial neural networks applications. Time-

dependent synaptic functions such as PPF and temporal filtering that are critical for SNNs are also 

demonstrated. In addition, by leveraging the spike-encoded timing information extracted from the 

STP behavior in the LiWES, an SNNs model is built to benchmark the pattern classification 

performance of the LiWES, and the result indicates a large boost in classification performance (up 

to 128×), compared with those NO-STP synapses. 

3.2 Design of Low-Voltage Electrochemical LiWES 

In the previous chapter, BST based electrochemical synapses exhibit a programmable 

spatio-temporal response governed by a combination of long-term charge transfer doping and 
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short-term ionic gating effects, a high precision (>500 states per device), and a linear and 

symmetric weight update. However, voltage programming pulses are favored to be implemented 

for modulating the spatio-temporal dynamics of synapses.[33, 179] Moreover, reducing programming 

voltage amplitude and increasing programming voltage speed at synaptic device level are 

necessary to lower the latency and energy consumption during the training and inference of  the 

neural networks.[185]       

Thus, in this  chapter, we develop a three-terminal LiWES with low-programming voltage 

(i.e. ~0.2 V enabled by our self-gated design[13] with near-zero open circuit voltages (OCVs) 

between the gate and the channel), fast programming speed (500 ns), and high precision (1024 

states) that is ideal for DNNs. We also demonstrate time-dependent synaptic functions such as 

paired-pulse facilitation and temporal filtering that are critical for SNNs. In addition, by utilizing 

the  time-encoded spikes in our LiWES dynamic synapses, we build a SNNs model to benchmark 

the pattern classification performance, which shows a large boost (128× improvement) in 

classification performance in highly time-dependent scenarios. 

3.2.1  Advantages of WO3-based Li-ion Electrochemical System 

Tungsten oxide (WO3), consisting of corner-sharing [WO6]-octahedral structures, can be 

considered as a pseudo-perovskite oxide with absent A-site cations.[186, 187] The absence of A-site 

cations can be used as interstitial space for ion intercalation and extraction,[188-190] thus making 

WO3 a good candidate for electrochemical synapses. Moreover, insulator-to-metal transition has 

been demonstrated in epitaxial WO3 film via electrolyte gating,[191-194] which provides a large 

conductivity modulation window for building high-precision synapses with a large dynamic range 

that are ideal for neuromorphic computing applications.[195] Another advantage of using WO3 film 
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as the channel material is that the high quality epitaxial WO3 film can be deposited by radio-

frequency (RF) magnetron sputtering,[160, 194] providing a route towards scalable fabrications that 

enable the wide-spread of smart electronics in the era of the Internet of Things (IoTs).  

While WO3-based electrochemical synapses have demonstrated promising potentials in 

prior pioneering studies,[196-198] more research efforts are necessary to lower the programming 

voltage (e.g. 4 V[198]) and improve the programming speed (e.g. 70 ms[196]), two key parameters in 

artificial synapses. In addition, most of the prior works on WO3-based electrochemical synapses 

have been focused on improving the precision for DNNs applications with little to no effort 

devoted to producing time-coded spikes that are critical for SNNs applications. 

3.2.2  Epitaxial Growth and Materials Characterization of WO3 Film 

Epitaxial tungsten oxide (WO3) thin films were deposited on (100) LaAlO3 substrates (MTI 

Ltd.) using radio-frequency (RF) magnetron sputtering with WO3 target (99.99% purity from 

Sigma-Aldrich). A total RF power of 80 W was used. The process pressure was kept at 60 mTorr 

with a gas ratio of 1:2 for Ar : O2, while the deposition temperature was kept at 650 °C to achieve 

a deposition rate at 1 nm per min. The resulting WO3 film thickness was 60 nm, measured by a 

surface profiler (KLA-Tencor AlfaStep IQ).  

For the characterization of the as-deposited epitaxial WO3 film, XRD (Figure 3.1a) and 

atomic force microscopy (AFM) (Figure 3.1b) measurements were used to confirm the good 

crystallinity of the deposited WO3 film with an atomically-flat surface (root-mean-square 

roughness < 600 pm). The Bruker D8 Discover instrument was used for XRD measurement. The 

WO3 film sample for XRD was annealed at 650 °C in air for 1 hour. The asylum MFP-3D was 

used for AFM measurement and a scan area of 1 µm × 1 µm was chosen for surface roughness 
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analysis. Having a high-quality, crystalline thin film with a smooth surface is critical for promoting 

the conductance modulation efficiency in our electrochemical synapse, which involves the 

electrolyte gating process that is sensitive to the surface smoothness.[160, 194]  

 

Figure 3.1. Characterization of the epitaxial WO3 film on LaAlO3 (100) substrate. Characterization of the epitaxial 

WO3 film on LaAlO3 (100) substrate. a) XRD of the epitaxial WO3 film on LaAlO3 (100) substrate. b) AFM image of 

the epitaxial WO3 film, showing the atomically flat surface with an rms roughness less than 1 nm.  

3.2.3  Low-Voltage Self-Gate Design and Fabrication of LiWES 

The structure of our LiWES is similar to that of biologic synapse, as illustrated in Figure 

3.2a. In a biologic neural network, a synapse is the small gap (20-40 nm) between a pre-synaptic 

neuron and a post-synaptic neuron. This connection strength is referred to as the synaptic weight, 

which can be increased (potentiation) or decreased (depression) by modulating the Ca2+ 

concentration. The electrical signal from pre-synaptic neurons activates the opening of calcium 

channels, triggering the release of neurotransmitters from pre-synaptic neurons into post-synaptic 

neurons. The schematic of our three-terminal LiWES is shown in Figure 3.2b, where the channel 

conductance, modulated by the gate terminal, represents the synaptic weight. Tungsten oxide, 
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which contains a large number of vacant A-sites, is ideal for reversible intercalation and de-

intercalation of Li ions (Li+), as evident in its wide use in commercial electrochromic devices.[199] 

By intercalating (extracting) Li+ into (out of) the LixWO3 channel, we can potentiate (depress) the 

synaptic weight (represented by the channel conductance) of our synapse.[7, 14] An optical image 

of the electrochemical synapse is shown in Figure 3.2c, depicting a three-terminal planar transistor 

structure where WO3 thin films (60 nm) are deposited on LaAlO3 (100) substrate as both the gate 

and the channel. During the deposition of WO3 film, a shadow mask was used for patterning. 

Devices of different channel areas (from 1000 × 200 µm2 to 200 × 50 µm2) were fabricated for 

variation study. For the electrical characterization and pulse measurement, devices of 400 × 200 

µm2
 channel area were used. Au contacts (100 nm) with a Ti adhesion layer (5 nm) were deposited 

using an electron-beam evaporator and patterned by a shadow mask. The deposited Ti/Au metal 

contacts are on top of the as-grown WO3 film. Adopting the same material for both the gate and 

the channel allows us to minimize the OCV between the two terminals,[13] hence achieving a low 

programming voltage. 

 

Figure 3.2. Low-voltage self-gate design of LiWES. a) Biologic neuron and synapse structure. b) Schematic of our 

LiWES and the inset shows the crystal structure of WO3 octahedrons. c) Optical image of the LiWES without 

electrolyte coating.  
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3.3 Electrochemical Characterization of LixWO3 During Li Intercalation 

3.3.1  Electrochemical System of LiWES 

In Figure 3.3, we employ Li0.6FePO4 (LFP) as the Li+ ion reservoir as well as the reference 

gate for us to modulate the Li content in both the LixWO3 channel and self-gate, since it provides 

a near-constant electrochemical window (~3.4 V vs. Li/Li+ as LFP’s Li content changes from 

Li0.02FePO4 to Li0.9FePO4) to ensure stable operations.[161, 162, 200] The reference gate LFP was 

placed about 2 mm away from the WO3 channel. The LFP gate was prepared by manually coating 

the LFP slurry[13] onto a Au contact pad. The PEO electrolyte was prepared by mixing 30 wt % 

LiClO4 (Sigma-Aldrich) with poly(ethylene oxide) (molecular weight 600, 000 from Sigma-

Aldrich) in acetonitrile solvent. Subsequently, the PEO electrolyte (~ 1 µm)[201] was drop-casted 

to cover both the WO3 gate/channel and the LFP reference gate. The PEO serves as an electrolyte 

for Li+ ions transport in both cases: LixWO3 self-gate and channel, LFP gate and LixWO3 channel. 

The difference between self-gate and LFP gate is the OCV between gate and channel as well as 

the required programming voltage. To remove the residual solvent, the sample was heated at 80 °C 

on a hot plate overnight. All the chemical preparation and operation steps were performed in an 

Ar-gas glovebox. We can achieve controllable tuning of the LixWO3 channel conductance (i.e. 

synaptic weight) via changing the Li content through reversible Li intercalation and de-

intercalation, where Li intercalation/de-intercalation is a combination of non-volatile charge 

transfer doping and the volatile ionic gating effects.[7]  
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Figure 3.3. The schematic of electrochemical system of LiWES. Inspired by the Li-ion battery system, a all-solid 

electrochemical synapse is achieved with WO3 film electrode (anode) and LFP reference (cathode), all covered with 

PEO polymer electrolyte.  

3.3.2  Galvanostatic Discharge of WO3 film During Li Intercalation 

We first performed galvanostatic discharge measurements of WO3 with a constant current 

of 0.1 nA to establish how the electrochemical potential of LixWO3 relative to the standard 

potential of Li/Li+ electrodes (V vs. Li/Li+) changes as a function of the Li concentration (Figure 

3.4). The measurement was carried out with an SP-200 Biologic workstation. A constant 

discharge/charge current of 0.1 nA was applied with the WO3 channel connected to the working 

electrode and the LFP reference gate connected to the counter/reference electrodes. To convert the 

electrochemical potential of LixWO3 (vs. LFP) to the potential (vs. Li/Li+), a value of 3.4 V is 

added to the measured electrochemical potential of LixWO3 (vs. LFP). Consistent with prior 

studies,[188, 190] the electrochemical potential of LixWO3 decreases as Li content increases. The 

increase of the Li content in LixWO3 film induces the phase transformation in a WO3 crystal 

structure, where the voltage plateaus correspond to the phase separation as shown in M+T and 

T+C labeled regions in Figure 3.4. The voltage plateau in M+T region is less obvious largely likely 
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due to the fast discharge/Li intercalation process. An advantage of our electrochemical approach 

over conventional resistive memory based synapse is that it allows us to control the Li content 

(and hence the synaptic weight) in the channel accurately, enabling us to build high-precision, 

analog synapses[33, 195] that are desirable for DNNs applications. 

 

Figure 3.4. Galvanostatic discharge (intercalation) of WO3 film. A constant current 0.1 nA during in-operando Raman 

spectra was used. The graph indicates the electrochemical potential of LixWO3 change relative to the standard potential 

of Li/Li+ electrodes (V vs. Li/Li+) as a function of Li concentration.  

3.3.3  Phase Transformation of  WO3 film During Li Intercalation 

Previous studies suggest that  Li intercalation can induce phase transformation in WO3 

crystal structure,[188, 190, 192, 193] where the LixWO3 film goes through phase transformations from 

monoclinic (0 < x < 0.01), tetragonal (0.05 < x < 0.12), to cubic (0.32 < x < 0.7) with increased 

crystal symmetry as its Li content increases, partly accounting for the electrical properties change 

in LixWO3 films.[188, 189, 192] As shown in Figure 3.4, non-linearity behavior exists due to the phase 

transformation of WO3 crystal, which is why it is important to lithiate the WO3 channel and 
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modulate its electrical conductance during the cubic phase region for obtaining a more linear 

response. We did in-operando Raman measurements[14] using the Horiba Scientific system with a 

633 nm laser (1800 gr mm-1 grating). The absorbed laser power was kept low (< 5 mW) to avoid 

excessive laser heating. The Raman spectra in Figure 3.5 suggests similar crystal structure changes 

during the lithiation process. Two strongest peaks in Raman spectra of WO3 film are located at ~ 

715 cm-1 and ~ 804 cm-1, corresponding to the asymmetric and symmetric stretching vibrations of 

W6+-O bonds, while the peak at ~278 cm-1  is due to the bridging O-W-O bonds.[202, 203] The 

intercalation of Li ions induces a larger lattice distortion, forcing the crystal structure to become 

more symmetric which leads to the gradual diminishing of the peak at 715 cm-1 as well as a blue 

shift of the peak from ~804 cm-1 to ~ 806 cm-1
 resulting from the slightly decreased lattice 

parameters of LixWO3 bronzes.[190]  

 

Figure 3.5. In-operando Raman spectra of WO3 film. The result indicates a relatively reversible Li intercalation and 

de-intercaltion processes.  
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3.3.4  Tunable Electrical Conductance of WO3 film  

As illustrated in Figure 3.6a, the channel conductance increases monotonically as the Li 

concentration increases. This is likely because that Li ions can act as n-type dopants, increasing 

the channel conductance by shifting s-band high above the Fermi level with the charge-balancing 

electrons occupying the d conduction band in Tungsten.[189] The channel conductance can be 

continuously modulated over four orders of magnitude, suggesting a large dynamic range that is 

necessary for high-precision synapse. We note that the dynamic range becomes slightly smaller 

after the 1st cycle of intercalation/de-intercalation, likely due to a small amount of Li ions trapped 

inside the WO3 host.[199] The conductance modulation windows between the two cycles are fairly 

consistent, indicating a repeatable dynamic range for synaptic weight updates.  

We prepared a new LiWES device (200 × 50 µm2 ) for exploring the repeatability of the 

conductance modulation during the Li intercalation/de-intercalation. During the test, a small DC 

reading voltage (0.1 V) was applied between the Source and Drain to continuously monitor the 

current/conductance level, while a gate dual-sweeping voltage ranging from 1.95 V to 2.75 V (V 

vs. Li/Li+) was applied to the LFP for Li intercalation/de-intercalation. Up to 4 consecutive cycles 

of the conductance modulation can be seen in Figure 3.6b, further demonstrating the good 

repeatability of conductance modulation in our LiWES.  

We fabricated a control sample without depositing WO3 film and only deposited the Au 

(100 nm)/Ti (5 nm) metal contacts for Source and Drain. The reference gate LFP was placed about 

2 mm away from the Source/Drain contacts and was manually coated with LFP slurry. PEO 

electrolyte was prepared[14] and drop-casted to cover both the Source/Drain contacts and LFP 

reference gate. The sample was heated at 80 °C on a hot plate to remove the residual solvent in 

Ar-gas glovebox. During the test, the sample was transferred into the vacuum probe station (JANIS 
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ST-500-UHT) and annealed at 350 K for ~2 hours to eliminate the residual moisture before the 

electrical measurements. During the test, a small DC reading voltage (0.1 V) was applied between 

the Source and Drain to continuously monitor the current/conductance level, while a gate dual-

sweeping voltage ranging from 1.95 V to 2.82 V (V vs. Li/Li+) was applied to the LFP for Li 

intercalation/de-intercalation. As shown in Figure 3.7, there is negligible current/conductance 

change during the gate dual-sweeping processes, which confirms that the 4 orders of magnitudes 

of conductance changes are due to the Li intercalation into WO3 films, rather than electrical 

conductance changes of the PEO electrolyte. 

 

Figure 3.6. Tunable electrical conductance via modulating intercalated Li concentrantion. a) The electrical channel 

conductance change as a function of the electrochemical potential of LixWO3 change during 2 cycles of Li 

intercalation/de-intercalation.b) The conductance change as a function of the electrochemical potential of LixWO3 

change during 4 consecutive cycles of Li intercalation/de-intercalation, demonstrating good repeatability. 
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Figure 3.7. Control test without WO3 channel and only PEO electrolyte. ISD and GSD response as a function of the 

gate sweeping voltage (V vs. Li/Li+) when no WO3 film is deposited as the channel and only PEO electrolyte is coated 

to cover the LFP reference electrode and channel area.  

3.4    Low-Voltage and High-Precision Synapses 

3.4.1  Dynamic Range and Precision  

While LFP serves as a good reservoir of Li ions due to its stable electrochemical window, 

it is not an ideal control gate for a three-terminal artificial synapse because it would require a high 

programming voltage to overcome the electrochemical potential difference (ranging from ~0.45 V 

to 1.45 V)[190] between the channel (LixWO3) and the gate (LFP). Hence we adopt a self-gate 

structure, where we use the same material (LixWO3) for both the channel and the control gate and 

hence minimizing the potential difference[13] as well as achieving sub-1 V operations. We first 

lithiated both as-deposited WO3 gate and WO3 channel to the same lithiation levels (Li0.4WO3) 
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gate and the channel as well as a cubic WO3 crystal structure for obtaining a more linear 

conductance response via pulse modulation. We envision that only one global LFP gate is needed 

as the ionic reservoir for a self-gated synaptic array, where pre-charge operations (to charge the 

self-gate to the desired electrochemical level) are sparingly performed. This will enable low-

voltage programming as well as both short- and long-term plasticity while keeping the fabrication 

and circuity design complexity at a manageable level. 

Combining this with the high-precision nature of our synapse originating from the large 

dynamic range as well as the good tunability enabled by the electrochemical intercalation, we 

demonstrate both potentiation and depression functions in Figure 3.8 with low programming 

voltages (0.5 V) and good precision (1024 distinct states). Electrical characterization and pulse 

measurement were performed with Keithley Semiconductor Parameter Analyzer (4200-SCS) with 

pulse measuring units. During the test, the sample was transferred into the vacuum probe station 

(JANIS ST-500-UHT) and annealed at 350 K for ~2 hours to eliminate the residual moisture before 

the electrical measurements. We applied 512/1024 potentiation pulses (0.5 V, 10 ms) and 512/1024 

depression pulses (-0.5 V, 10 ms) at Li0.4WO3 self-gate, where we observed a relatively linear and 

symmetric weight updates. We note a trade-off between the dynamic range and linearity/symmetry, 

where the linearity and symmetry of conductance response are slightly reduced when larger 

number of pulses are used to push the synapse to a larger dynamic range, likely associated with 

the saturation of accumulated electric charges at the interface between LixWO3 channel/electrolyte 

and the asymmetry of electric charges accumulation (potentiation) and release (depression) 

processes under different directions of electric fields. 
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Figure 3.8. Dynamic range and precision of our low-voltage LiWES. Different dynamic ranges and precisions are 

able to be achieved by using different numbers of programming potentiation pulses (0.5 V, 10 ms) and depression 

pulses (-0.5 V, 10 ms) at Li0.4WO3 self-gate side (the inset).   

3.4.2  Tunable Synaptic Weight via Varying Programming Pulses 

In biological synapses, the amount of weight change (represented by the change in channel 

conductance ΔGSD in our device) often varies for different neuronal signals.[204] We can mimic this 

behavior in our synapse to achieve different ΔGSD by varying the amplitude, width and numbers 

of the programming pulse(s) at self-gate Li0.4WO3 , as illustrated in Figure 3.9. We observed 

pseudo-linear relationships between ΔGSD with respect to the pulse amplitude (from 0.1 V to 2 V, 

Figure 3.9a) and width (from 10 ms to 500 ms, Figure 3.9b), respectively. This is likely because 

the ΔGSD is dependent on the amount of Li ions being transferred into the LixWO3 film during the 

programming pulse. We observe a similar pseudo-linear relationship between ΔGSD and the pulse 
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electrochemical potential between the channel and the gate, which is dictated by the pulse 

amplitude (i.e., 0.5 V in Figure 3.9c) and the lithiation concentration in the channel). 

 

Figure 3.9. Tunable synaptic weight of LiWES via varying programming pulses. a) Synaptic weight change as a 

function of pulse amplitude. b) Synaptic weight change as a function of pulse width. c) Synaptic weight change as a 

function of pulse number.  
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To study the endurance behavior of our synapse, we cycled our synapse over 2000 pulses 

(20 cycles of 50 potentiation (0.5 V, 10 ms) and 50 depression (-0.5 V, 10 ms) pulses, as shown in 

Figure 3.10a), where we observed reversible and repeatable conductance change with a 500% 

dynamic range. We also performed long-time endurance LiWES using 1000 cycles of 50 

potentiation (0.5 V, 10 ms) and 50 depression (-0.5 V, 10 ms) pulses with a dynamic range ~ 500 % 

(Figure 3.10b), where the synapse showed no sign of degradation after 105 pulses. We carried out 

thermal stability test for two different states: pristine WO3 (before lithiation) and Li0.4WO3 (initial 

conductance state for self-gate and channel after lithiation), where we observed minimal resistance 

drift over 11 hours at 80 °C for both states (Figure 3.10c). 
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Figure 3.10. Endurance and retention test of our LiWES. a) Endurance test using 20 cycles of 50 potentiation pulses 

(0.5 V, 10 ms) and 50 depression pulses (-0.5 V, 10 ms) at Li0.4WO3 self-gate side. b) Endurance test for 105 pulses 

on our LiWES using 1000 cycles of 50 potentiation (0.5 V, 10 ms) and 50 depression (-0.5 V, 10 ms). No degradation 

of the device is found even after the 105 pulses. c) Stability test for two different states: pristine WO3, Li0.4WO3 (initial 

conductance state for self-gate and channel), using reading voltage of 0.1 V at 80 °C.  

3.4.4  Variations  

Variations, including cycle-to-cycle (pulse-to-pulse) variation and device-to-device 

variation, are very important parameters to evaluate the synaptic device performance.[195] Small 

variations of the synaptic devices can contribute to less noisy and more accurate neural networks 

training and inference performance.[205, 206] We leveraged the data from Figure 3.10a and 

statistically analyzed the conductance change ΔGSD per pulse over the whole dynamic range 

window. As shown in Figure 3.11a, we find a relatively small variation ~11% of ∆GSD per pulse 

for potentiation pulses (red) and ~13% for depression pulses (blue). For device-to-device variation 

(Figure 3.11b), we fabricated four different devices of the same dimensions (400 × 200 µm2) in 

one single batch and applied a single potentiation pulse (0.5 V, 10 ms) to the LixWO3 gate while 

monitoring the channel conductance change using a small reading voltage (0.1 V) between LixWO3 
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Source/Drain. We find a small variation of 6.5 %, which demonstrates the good repeatability of 

our devices. 

 

Figure 3.11. Variations of our LiWES. a) Cycle-to-cycle (pulse-to-pulse) variation, plotted using data from Figure 

3.10a. Small variation ~11% of ∆GSD per pulse is found for potentiation pulses (red) and ~13% variation of ∆GSD per 

pulse is found for depression pulses (blue). b) Small device-to-device variation ~6.5% of ∆GSD per pulse using single 

potentiation pulse (0.5 V, 10 ms).  

3.5 Temporal Dynamics  

3.5.1  Switching Mechanisms of Short-Term and Long-Term Plasticity 

For SNNs, a dynamic synapse with both long-term and short-term plasticity (LTP and STP) 

is essential for learning applications.[7, 8, 207] However, it has been difficult to implement such 

temporal dynamics with traditional CMOS devices.[208] Our LiWES naturally possesses both LTP 

and STP, owing to a combination of the volatile ionic gating (Figure 3.12a) and the non-volatile 

charge transfer doping (Figure 3.12b) effects. Non-volatile charge transfer doping effect  results 

in LTP as intercalated Li ions could stay at vacant A-sites in pseudo-perovskite tungsten oxide for 
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a long time via the electrochemical reaction as Li0.4WO3 + xLi+ + xe- ↔ Li0.4+xWO3, while volatile 

ionic gating effect results in electrical double layer formation. The ionic gating effect is short term 

because the accumulated electric charges (Li+ ions in the PEO electroyte) at the interface between 

LixWO3 channel and electrolyte would quickly diffuse back to the electrolyte when the external 

applied electric field (gate voltage) is removed.  

 

Figure 3.12. Shor-term and long-term plasticity of our LiWES. a) Ionic gating effect for STP. b) Charge transfer 

doping effect for LTP, where the electrochemical reaction occurs as Li0.4WO3 + xLi+ + xe- ↔ Li0.4+xWO3.  

3.5.2  Short-Term to Long-Term Plasticity Transition 

We are able to achieve the transition of STP to LTP by switching from a LixWO3 self-gate 

to a LFP reference gate. As shown in Figure 3.13a, the LixWO3 self-gate is used to apply voltage 

pulses which enables a low programming voltage (~ 0.2 V) owing to the near-zero OCV between 

LixWO3 self-gate and channel. We observed a spike in channel conductance after the programming 

pulse due to ionic gating effects. As the volatile ionic gating effect dissipates after the voltage 

pulse, the channel conductance returns towards its original value. In this case, we observed no 

obvious charge transfer doping effect (LTP) likely because the electrochemical reaction driving 

force (electrochemical potential differences between gate and channel) for LTP is weak since there 

is a near-zero OCV between LixWO3 self-gate and channel. By switching from the self-gate to a 
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LFP gate (Figure 3.13b), we observed a spike in channel conductance likely due to combined ionic 

gating [ΔGST (t)] and charge transfer doping effects [ΔGLT]. Since the electrochemical OCV 

between LFP gate and LixWO3 channel is ~ 1.1 V, there is enough electrochemical reaction driving 

force for charge transfer doping effect and thus the resulting time-dependent channel conductance 

consists of a long-term component [ΔGLT] and a time-dependent, short-term component [ΔGST (t)] 

such that ΔGSD (t) = ΔGLT  + ΔGST (t). 

 

 

Figure 3.13. Transition from short-term to long-term plasticity via swithing gate. a) STP using Li0.4WO3 gate and 

Li0.4WO3 channel, controlled by different amplitudes of single pulse at Li0.4WO3 gate side. The inset shows the test 

setup. b) LTP using LFP gate and Li0.4WO3 channel, controlled by different amplitudes of single pulse at LFP gate. 

The inset shows the test setup.  

3.5.3  Long-Term Potentiation and Depression  

We further explored the long-term potentiation and depression by switching to use the LFP 

gate. For synaptic weight modulation via multiple pulses, we applied 50 potentiation pulses (3 V, 

10 ms) and 50 depression pulses (- 1 V, 10 ms) applied at LFP gate as shown in Figure 3.14a. A 
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dynamic range (~ 200 %) was achieved. During the test, a small DC reading voltage (0.1 V) was 

applied between the Source and Drain to continuously monitor the current/conductance level, 

while programming pulses were applied at LFP gate. Since the electrochemical OCV between LFP 

gate and Li0.4WO3 channel is ~ 1.1 V, we need to use potentiation pulses (3 V) and depression 

pulses (-1 V) at LFP gate to achieve a base voltage level (1 V) that can offset the OCV difference 

in order to obtain a more linear and symmetric conductance response.  

For confirming the intermediate conductance level stability in Figure 3.14a, we applied 5 

potentiation pulses (3 V, 10 ms) at LFP gate (Figure 3.14b) and then used a small DC reading 

voltage (0.1 V) at 80 °C to monitor the channel conductance and observed small gradual stability 

degradation that is likely due to the slow self-extraction of the pulse-injected Li ions under high 

temperature at 80 °C. We also studied the long-time stability of the device after applying 5 

depression pulses (-1 V, 10 ms) (Figure 3.14c) and no obvious stability degradation was observed. 

 

 

Figure 3.14. Long-term potentiation and depression via LFP gate. a) Synaptic weight modulation via multiple cycles 

of 50 potentiation pulses (3 V, 10 ms) and 50 depression pulses (- 1 V, 10 ms) applied at LFP gate. b) Long-time 

stability test of the LiWES device after 5 potentiation pulses (3 V, 10 ms) were applied. There is small gradual stability 

degradation, likely due to the slow self-extraction of the pulse-injected  Li ions under high temperature at 80 °C. c) 

Long-time stability test of the LiWES device after 5 depression pulses (- 1 V, 10 ms) were applied. No obvious stability 

degradation was observed.  
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3.5.4  High-Speed Programming and Low Programming Energy 

We also investigate how the pulse duration may affect the amount of weight change using 

LixWO3 self-gate (Figure 3.15a). We still observe STP due to ionic gating with pulses as short as 

500 ns, consistent with the time scale reported in the literature for ionic gating and electrical double 

layer formation.[209] The amount of STP decreases, as the pulse duration decreases, likely because 

smaller amount of electric charges accumulate at the interface between LixWO3 channel/electrolyte 

and, thus, induce less electrons inside the LixWO3 channel in shorter pulses. In addition, we are 

able to achieve consistent weight updates over 20 cycles of 50 potentiation (1 V, 1 μs) and 50 

depression (- 1 V, 1 μs) pulses, with similar linearity and symmetry (Figure 3.15b ) compared with 

long pulses (10 ms, Figure 3.10a). 

We fabricated devices of different channel areas (from 1000 × 200 μm2 to 200 × 50 μm2) 

and applied single potentiation pulse at LixWO3 gate while monitoring the channel conductance 

change. We define the programming energy as E = I × V× t, which is enough to induce 10% 

increase of conductance change (ΔGSD/ G0). Since there is near-zero OCV between our LixWO3 

gate and channel, V and t denote the programming voltage pulse amplitude and programming 

voltage pulse width, respectively, while we define the current I as the average current between our 

LixWO3 gate and channel. As shown in Figure 3.15c, our smallest device (200 × 50 μm2) 

demonstrates a very small programming energy (~ 2 pJ) and it shows a pseudo-linear scalability 

trend as previously reported.[210] 
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Figure 3.15. High-speed programming and scaling performance of programming energy. a) High-speed switching 

using different width of single pulse applied at Li0.4WO3 self-gate. b) Synaptic weight modulation via 20 cycles of 50 

potentiation pulses (1 V, 1 µs) and 50 depression pulses (- 1 V, 1 µs) applied at Li0.4WO3 self-gate. c) Scaling 

performance of switching energy as a function of channel area. 

3.5.5  Paired-Pulse Facilitation 

In addition to LTP and STP, time-encoded spikes containing rich temporal information, 

which are responsible for learning and logical inference in biological neural network, are also 

desirable for SNNs applications. To better focus on studying temporal dynamics of our synapses, 

the benchmark of their performance in DNNs would be omitted here but we believe our LiWES 

synapses could potentially demonstrate decent DNNs performance because of their small energy 

consumption (~ 2 pJ) for a single pulse event (Figure 3.15c), fast programming speed, high 

precision and low variations. Leveraging the natural decay in our synapses, we demonstrate time-

dependent synaptic functions such as PPF and temporal filtering in Figure 3.16, which have been 

difficult to implement with traditional CMOS devices. Tunable conductance change ∆G for a pair 

of pulses can be achieved by adjusting the time interval (∆t) between these two pulses at Li0.4WO3 

self-gate (Figure 3.16a), mimicking the short-term, dynamic phenomenon in biological neural 
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are related.[176] In particular, the incremental effect (G2 – G1) in our synapse becomes less as the 

time interval becomes longer, as shown in Figure 3.16b. This resembles the biological learning 

behavior where the learning effect is better reinforced when two stimulations are more closely 

related. We also fit two characteristic timescales with a two-term exponential function:  τ1 = 19 ms 

and τ2 = 433 ms, which are consistent with those found in biological synapse[176] and other 

previously reported artificial synapses.[12, 14] Those two characteristic timescales are likely related 

to the diffusion dynamics of Li ions[12, 14, 196] and can be engineered by changing the device 

dimension as demonstrated in prior studies.[7, 12]  

 

 

Figure 3.16. Bio-realistic, time-dependent synaptic functions for SNNs. a) Two consecutive pulses (0.5 V, 10 ms, ∆t 

= 50 ms) showing paired-pulse facilitation. b) Paired-pulse facilitation with exponential decay fitting. c) High-pass 

temporal filtering characteristics of the our LiWES via applying 10 potentiation pulses (0.5 V, 10 ms) with different 

frequencies (1/∆t). d) The frequency-dependent conductance gain. 
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3.5.6  Temporal Filtering 

STP can be used to generate filtering functions that are used in information processing, e.g. 

fish view the surrounding environment through the low-pass temporal filtering by which activated 

patterns of slow frequency (<10 Hz) are passed while repetitive patterns of fast frequency (> 10 

Hz) are rejected.[211] The frequency-dependent high-pass temporal filtering can be mimicked by 

short-term facilitation (STF).[207, 212] By varying the signal frequency (i.e. time interval between 

pulses), we can modulate the maximum conductance level of our device, mimicking a high-pass 

temporal filtering. As we increase the frequency of a pulse train consisting of 10 consecutive pulses  

(0.5 V, 10 ms for each pulse) from 1 Hz to 80 Hz at Li0.4WO3 self-gate (Figure 3.16c), the 

maximum obtainable conductance level increases.[207] We also studied frequency-dependent gains 

of high-pass temporal filtering (Figure 3.16d), where the gain is defined as the ratio of the 

maximum conductance level of the tenth pulse (G10) to the first pulse (G1), demonstrating our 

LiWES can act as a high-pass temporal filter for information processing that is highly desirable 

for temporal computation in SNNs. 

3.6 SNNs Computation Implementing Temporal Spiking Information 

The goal of this section is to show how our LiWES devices’ dynamic behaviors could be 

used to boost classification performance in highly time-dependent scenarios. The principle behind 

the proposed computation is that when the LiWES devices receive a set of spikes, their 

conductance value will change depending on the temporal structure (individual spike timings) of 

the input spike train (Figure 3.16). Furthermore, in absence of LTP when using LixWO3 self-gate 
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and channel, the conductance of the device will be uniquely determined by the input spiking pattern 

and the time of integration,[213, 214] granting the device the ability to integrate temporal information 

and distinguish between different spike patterns.  

In standard neuromorphic SNNs with NO-STP synapses, the synaptic efficacy (or weight), 

which remains fixed during inference, is used to simply scale current pulses directed towards the 

post-synaptic neuron. In these models, the temporal integration of stimuli is left solely to the 

neuron; whereas in STP enabled networks, synapses also encode temporal information through 

weight changes, enriching network dynamics[207, 215, 216] and increasing the ability of neurons to 

discriminate between temporal stimuli.[217] For this reason, when compared to NO-STP synapses, 

a network including the proposed LiWES device should increase its performance in highly time-

dependent tasks, such as classification of different spike patterns. In order to test this hypothesis, 

we propose a test tailored to compare our LiWES to an IDEAL synapse (a noiseless LiWES device)  

and a standard NO-STP synapse. Here, we connect a post-synaptic neuron, modelled with Leaky 

Integrate and Fire profile (parametrized with the membrane decay constant τm and spiking 

threshold = ∞), to a pre-synaptic neuron, which is a Poisson Spike generator (Figure 3.17a). As 

shown in Figure 3.13a, the channel conductance response of our LiWES shows a spike profile, 

where the conductance quickly reaches the maximum conductance level followed by an 

exponential decay back to initial conductance level, due to ionic-gating governed STP effect.  

Thus, we are able to model the conductance response of our LiWES with a linear rise equation 

(gate-pulse applied) and a double exponential decay equation (gate-pulse removed). (See the next 

section for model build details). Every time the synapse receives a new spike at the time t i, the 

parameter Goff gets updated to the last conductance value while a set of parameters are drawn to 

generate a response as the one shown in Figure 3.17b.  
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In the proposed task, we generate multiple pre-synaptic neuron spike trains with a fixed 

maximum duration. Since each spike sequence is randomly generated at a fixed frequency, 

therefore it differs from the others mainly by its temporal characteristics (the timestamps of 

individual spikes) and it represents a single class of a classification problem. The beginning of 

each spike train is delimited by tonset. A “sequence end spike” is added at the end of each spike 

train at a specific time tend (Figure 3.17c) and the post-synaptic neuron membrane potential is read 

out at tread (Figure 3.17d), representing the output of the system. Each spike train is presented to 

the synapse multiple times to obtain multiple membrane potential read-outs for the same “class” 

(or spike pattern). To calculate the class separability of the read-outs, we define a distance metric 

as the difference between the Euclidean distance of points between different classes (inter-class 

distance) and the distance of the points within the same class (intra-class distance) in Figure 3.17e. 

Since the membrane potential of the post-synaptic neuron is always read out at the same time (tread) 

after the last spike (tend), a neuron unable to integrate temporal information will have similar 

membrane potential for different spike patterns and therefore it will have an average inter-class 

distance of zero or close to zero, However, for an STP enabled neuron, its membrane value depends 

on previous spiking activity, which gives different values of inter-class distance based on different 

classes. This is the case shown in Figure 3.17f, where a fast spiking neuron (τm = 10 ms) is 

stimulated with Poisson generated spikes at a slow mean 10 Hz frequency. The number of classes 

used for this simulation was 50, each one presented 10 times (for intra-class measurement), for a 

total number of 500 points. In this case, class separability (inter-class distance – intra-class 

distance) is ~3.8 × 10−4 for the NO-STP synapse, ~4.9 × 10−2 for our LiWES device (~128× higher 

relative to NO-STP synapse), and ~8.6 × 10−2 for the IDEAL synapse (~226× higher compared to 

NO-STP synapse), with using a synaptic weight k of 4.3 (See the next section for model build 
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details). As both comparison synapses (NO-STP and IDEAL synapses) are totally deterministic, 

their mean intra-class distance is 0. The same simulation parameters were used in Figure 3.17g for 

a much slower post-synaptic neuron (τm = 100 ms). Even though the post-synaptic neuron is 

relatively slower to integrate temporal information, a boost in class separation (~1.4× in our 

LiWES and ~1.7× in the IDEAL synapse, relative to the NO-STP synapse) can still be achieved 

owing to the natural stochastic STP in our LiWES. The class separability  is ~8.4 × 10−2 , ~1.2 × 

10−1 , ~1.4 × 10−1 , for the NO-STP synapse, our LiWES device, and the IDEAL synapse 

respectively, with using a synaptic weight k of 16.7. By implementing the temporal spiking 

information in STP of our LiWES, we improve the pattern classification performance (up to 128× 

comparted to NO-STP synapse ) in highly time-dependent scenarios. 
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Figure 3.17. SNNs computation based STP of our LiWES. a) The diagram of our network, a Poisson pre-synaptic 

(PRE) neuron connected to a Leaky  and  Integrate  and  Fire  post-synaptic (POST) neuron through  a  synapse (NO-

STP,  our LiWES or  IDEAL synapse). b) An example of a  Poisson train spike eliciting activity in our LiWES and 

the consequently generated membrane potential. c-e) An example of the proposed spike-based SNNs computation 

model for classification performance benchmark. c) The PRE-Neuron produces multiple random spike trains, at the 

end of each one  we  add  a  “sequence  end”  spike  occurring  always  at  the  same  timestamp(tend).   Each  spike  

train  represents  a  different  class  in  a  classification  problem. d) We  then  record  multiple  POST-Neuron  responses 

(three responses per each spike train),  in order to better characterize the device noise and cycle-to-cycle variation, 
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and finally we save the membrane value after the “sequence end spike” (at tread). e) Lastly, for each point we calculate 

the inter-class distance between  points  of  different  spike  trains,  and  the  intra-class  distance  between points of 

the same spike train class.  These measures indicate how much each point position encodes for temporal information 

and how well the points are separable in a classification task. f,g) The classification result of the benchmarked 

synapses. f) The classification comparison for a 10 Hz Poisson PRE-Neuron and a fast POST-Neuron (τm= 10 ms). g) 

The classification comparison for the same 10 Hz Poisson PRE-Neuron but a much slower POST-Neuron (τm= 100 

ms). 

3.6.1  SNNs Computation Model 

We model our LiWES device behavior using a linear rise (Equation 3.1) and a double decay 

exponential model (Equation 3.2), using Equation (3.3) to define the rise and decay parts, 

respectively. 

𝐺𝑟𝑖𝑠𝑒(𝑡) = (𝐴1̂ + 𝐴2̂)
𝑡−𝑡𝑖

𝑤
+ η + 𝐺𝑜𝑓𝑓⁡⁡                                                                                      (3.1) 

𝐺𝑑𝑒𝑐𝑎𝑦(𝑡) = (𝐴1̂ +
𝐺𝑜𝑓𝑓

2
) 𝑒

−(
𝑡−𝑡𝑖
τ1̂

)
+ (𝐴2̂ +

𝐺𝑜𝑓𝑓

2
) 𝑒

−(
𝑡−𝑡𝑖
τ2̂

)
+ ⁡η                                                  (3.2) 

𝐺(t) = {⁡
𝐺𝑟𝑖𝑠𝑒(𝑡)⁡𝑤ℎ𝑒𝑛⁡(𝑡 − 𝑡𝑖) < 𝑤

𝐺𝑑𝑒𝑎𝑐𝑦(𝑡)⁡𝑤ℎ𝑒𝑛⁡(𝑡 − 𝑡𝑖) ≥ 𝑤
⁡                                                                                    (3.3) 

 

The model parameters (𝐴1̂, 𝐴2̂, 𝜏1̂, 𝜏2̂)⁡are drawn from Gaussian distributions fitted on 

experimental recordings obtained with a single pulse stimulus of a given amplitude and pulse width 

w. Additive Gaussian noise η with a mean of 0 is also added to simulate device and recording setup 

noise. 

In order to obtain the Gaussian distributions of the LiWES parameters (𝐴1̂, 𝐴2̂, 𝜏1̂, 𝜏2̂) and 

the standard deviation the additive noise, we fit the decay equation (Equation 3.2) on the device 
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response to a single pulse (1 V, 200 μs) for 20 consecutive trials. Every trial produces a set of 

parameters (A1, A2, τ1, τ2, η), which can be then averaged to produce the Table 3.1. 

 

Table 3.1. SNN model parameters for a single pulse (1 V, 200 μs). Results of an averaged fit over 20 consecutive 

recordings. All parameters are presented with their mean ± standard deviation except for η, which is the mean standard 

deviation of each individual fit. 

A1 τ1[ms] A2 τ2 [ms] η 

0.57± 0.27 5 ± 2 0.5 ± 0.05 92 ± 18 0.11 

 

When simulating the noise-free, IDEAL synapse, we use the same parameters presented 

above but set all standard deviations and additive Gaussian noise η to 0. Finally, the NO-STP 

synapse is modelled as a weighted Dirac pulse centered on the input spike timestamp ti (Equation 

3.4): 

𝐺(𝑡) = ∑ 𝑘δ(𝑡 − 𝑡𝑖)𝑡𝑖                                                                                                                  (3.4) 

where k is the synaptic weight chosen so that the peak response of the post-synaptic neuron 

to a single spike is the same to the IDEAL synapse. 

3.7 Conclusion 

In summary, we develop a WO3-based, electrochemical synapse with low programming 

voltage (0.2 V), fast programming speed (500 ns), high precision (1024 levels), low variations, as 

well as a relatively linear and symmetric response. In addition, our dynamic synapse naturally 

exhibits both LTP and STP behaviors owing to the combined effects from charge transfer doping 
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and ionic gating, which is desirable for SNNs applications. We demonstrate various time-

dependent synaptic functions such as pair-pulse facilitation and temporal filtering. By leveraging 

the spike-encoded timing information extracted from the short-term plasticity exponential decay 

behavior, we build a SNNs model to benchmark the pattern classification performance of our 

LiWES, which shows a large boost (128× improvement) in classification performance in highly 

time-dependent scenarios.  
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4.0 Towards Real-Time BP Monitoring via Iontronic Tonometric Sensors (ITS)  

4.1 Motivation 

Continuous, non-invasive blood pressure monitoring provides valuable hemodynamic 

information that renders detection of the early onset of cardiovascular diseases. Wearable 

mechano-electric pressure sensors that mount on the skin have been great candidates for 

monitoring continuous BP pulse waveforms due to their excellent conformability, simple sensing 

mechanisms, and convenient signal acquisition. However, it is challenging to acquire high-fidelity 

BP pulse waveforms since it requires highly sensitive sensors that respond linearly with pressure 

change over a large dynamic range. Here, we introduce a high-fidelity iontronic tonometric sensor 

(ITS) with high sensitivity (4.82 kPa-1), high linearity (R2 > 0.995) and a large dynamic range (up 

to 180 % output change) over a broad working range (0-38 kPa) that can fully cover the normal 

BP range (5-25 kPa). Additionally, our ITS demonstrates a low limit of detection at 40 Pa, a fast 

load response time (35 ms) and release time (35 ms), and a stable response over 5000 load/release 

cycles. We further explore the application of our ITS in monitoring real-time beat-to-beat BP by 

measuring the brachial and radial pulse waveforms. Our work provides a feasible design for a 

wearable pressure sensor with high sensitivity, high linearity and a large dynamic range for real-

time CNIBP monitoring. 
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4.2 Experimental Section 

4.2.1  Preparation of Micropyramid Electrodes 

First, 1000 nm thermally-grown SiO2/Si (100) substrates (1.5 × 1.5 cm2) were patterned 

via photolithography.  A buffered oxide etch (BOE) (7:1) was then applied to form a SiO2 hard 

mask used for potassium hydroxide (KOH) etching in subsequent steps. KOH etching is a well-

developed anisotropic Si etch process that can be used to form the V-shaped pyramid depth. A 

mixing solution (47% KOH: isopropyl alcohol (IPA) = 4:1, v/v) was used at 80 °C under vigorous 

stirring for KOH etch, where IPA was used to facilitate the anisotropy of the V-shaped depth. The 

KOH etch rate was ~ 1 µm min-1. Si Molds of two different depths were fabricated: 11 µm and 30 

µm. The as-fabricated Si molds were then cleaned with acetone, methanol, and IPA in an ultrasonic 

bath, followed by a N2 gun blow dry and O2 plasma clean for 5 mins. The Si molds were silanized 

with (TRIDECAFLUORO-1,1,2,2-TETRAHYDROOCTYL)TRICHLOROSILANE (Gelest) to 

facilitate the subsequent release of the drop-casted PDMS film from the Si molds. A 1:10 mixture 

of curing agent and PDMS elastomer (Sylgard 184, Dow Corning) was prepared and stirred for 10 

mins. The solution was then drop-casted onto the Si molds, followed by degassing in a desiccator 

for at least 1 h until no bubbles were observed. The sample was transferred into the oven and baked 

at 90 °C for 4 hours to cure the PDMS elastomer. After the cool-down of the sample, the PDMS 

elastomer film was peeled-off from the Si molds and coated with 70 nm Au via electron beam 

evaporation in a cleanroom to form the MP-PDMS electrode. We chose to use Au as the 

conducting layer on the micropyramid PDMS elastomer because of its great ductility and 

flexibility. 
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4.2.2  Preparation of IG Film 

A polar polymeric matrix Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) 

(Sigma aldrich) and an ionic liquid 1-Ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([EMIM] [TFSI]) (Sigma aldrich) was mixed in a weight ratio 

of 1:4 (ionic liquid : polymer) and then dissolved in acetone solvent in an Ar-filled glovebox. The 

ionic gel solution was vigorously stirred at 75 °C for 30 mins and then drop-casted onto a clean 

Si/SiO2 substrate (~ 400 µL). The substrate coated with the ionic gel solution was annealed at 75 

°C overnight to evaporate all the solvent. The prepared ionic gel films were then cut and transferred 

to the purchased ITO/PET films (Fisher Scientific). 

4.2.3  Assembly of the ITS devices 

A conductive copper electrode was attached to the prepared MP-PDMS electrode of 1.5 × 

1.5 cm2 using silver conductive epoxy (Ted Pella, Inc). An ITO/PET electrode was tailored to an 

area of 1.5 × 4 cm2 to allow for some space for wire contact during the electrical measurement. 

The ionic gel film was sandwiched by the MP-PDMS electrode and ITO/PET electrode, and then 

the device was encapsulated using polyimide thin film (Fisher Scientific) and polyimide tape 

(Fisher Scientific). 

4.2.4  Measurement and Characterization 

The capacitance of the ITS sensors was measured using a capacitance-voltage unit (CVU) 

module of a Keithley semiconductor parameter analyzer 4200-SCS under ambient conditions. The 
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C-f  test for characterization of UAC of the ITS was performed by sweeping the AC voltage 

frequency from 1 to 10 kHz at a fixed DC voltage of 0.5 V. For piezocapacitance measurements 

of the ITS, an automated test stand (Mark 10, ESM 303) with a digital force gauge (M5-2, 2 lbf) 

was controlled using a customized LABVIEW program to apply external compressive pressure to 

the ITS device, while a two-probe C-t sampling test (sampling frequency 30 Hz) was conducted 

to measure the real-time capacitance of the ITS using a fixed AC voltage frequency of 1 kHz and 

0.5 V DC voltage. For arterial BP monitoring, instead of using a force gauge, an aneroid 

sphygmomanometer kit (Dixie EMS on Amazon) was used to apply applanation pressure while a 

C-t sampling test (sampling frequency 30 Hz) was conducted using alligator clips attached to the 

contact electrodes of the ITS. All experiments related to the human body complied with the 

necessary medical standards with consents from the tested person. The thickness measurement of 

the MP-PDMS electrode and IG film was performed using a surface profiler (Bruker DektakXT). 

The SEM images were taken using a 3 kV accelerating voltage via Zeiss SIGMA VP SEM. 

4.3 Design and Fabrication of the ITS  

Figure 4.1a demonstrates the fabrication flow of our ITS. First, silicon molds were 

fabricated via photolithography patterning and wet etch in a cleanroom. They were then silanized 

to facilitate the peel-off of the cured dielectric elastic elastomer polydimethylsiloxane (PDMS) 

films from the molds in the following steps. Second, the peeled-off PDMS film on each was coated 

with 70 nm Au to form the MP-PDMS electrode. The patterns of MP-PDMS electrode duplicate 

the etched V-shape holes in silicon molds. An ionic gel (IG) film, consisting of a polar polymeric 

matrix Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and an ionic liquid 1-
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Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] [TFSI]), was prepared 

and transferred via the cut-stick method[23] onto the purchased indium tin oxide coated 

Polyethylene terephthalate film (ITO/PET) electrode. Lastly, the MP-PDMS electrode, IG film 

and ITO/PET electrode were all laminated together via encapsulation using polyimide films. A 

conductive copper electrode was then attached to the MP-PDMS electrode via conductive silver 

paste. 

 

Figure 4.1. The fabrication process and structure of the ITS. a) Schematic illustration of the fabrication process of the 

ITS. b) 25°-tilt SEM image of 11 μm-height Au-coated (70 nm) MP-PDMS electrode. c) 25°-tilt SEM image of 30 

μm-height Au-coated MP-PDMS electrode. d) Optical image of the encapsulated ITS with effective sensing area of 

1.5 cm × 1.5 cm. e) Equivalent circuit diagram of the ITS.   

We combine the micropyramid electrode with the iontronic interface in our ITS design to 

achieve high-fidelity, linear and highly sensitive piezocapacitive sensor performance. Our ITS 
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way of improving a material's compressibility and thus is useful for enhancing the sensitivity of 

the traditional piezocapacitive sensor.[21] Iontronic sensing, or interfacial supercapacitive sensing, 

was first introduced by Prof. Pan’s group at UC Davis to achieve high-fidelity capacitance outputs, 

improved detection resolution and device sensitivity.[17] We will elaborate on the iontronic 

supercapacitive effects in the next section.  

Although there have been studies reporting on creation of microengineered iontronic 

sensors,[148, 157] the reported sensors demonstrated gradually saturated sensitivity and less than ideal 

linearity in normal BP range (< 25 kPa). This is likely because they used an ionic gel film as an 

elastic material.  Ionic gel film has a relatively small Young’s modulus (~ 1.3 MPa)[23] and thus 

reaches structural stiffness early in a small pressure region. We utilized a PDMS film as a pressure-

sensitive elastic material because of its suitable Young’s modulus (~ 3 Mpa)[141] and great 

compatibility with human skin.[21] Use of this film enabled our ITS to demonstrate a broad working 

range with decent sensitivity. A unique characteristic of iontronic sensing is that it relies on the 

interfacial contact area change (∆A), rather than the physical vertical distance change (∆D) 

between two electrodes in traditional two-plate piezocapacitive sensor, to modulate the 

capacitance output. The usage of MP-PDMS electrodes interfaced with IG film in our ITS design 

provided us with an effective way of controlling the initial interfacial contact area (A0). Sensitivity, 

defined as the minimum input parameter that generates a detectable output change, is one of the 

most important parameters used to evaluate the accuracy and resolution of a sensor. The sensitivity 

of a piezocapacitive sensor can be expressed as in Equation 4.1: 

𝑆 = ⁡
𝜕 (

∆𝐶
𝐶0

)

𝜕𝑃
⁡ (4.1)
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where C0  denotes the initial capacitance,  C = C - C0 denotes the capacitance change and 

P denotes the external pressure. In iontronic sensors, the relationship between EDL capacitance 

CEDL and interfacial contact area A is defined[145] asin Equation 4.2: 

𝐶𝐸𝐷𝐿 ⁡⁡ = ⁡UAC⁡ • ⁡𝐴⁡ (4.2) 

Thus, controlling the A0 allows for an effective tuning of the initial capacitance C0 and the 

sensitivity. Figure 4.1b and 4.1c indicate the SEM images of two different height designs for  MP-

PDMS electrodes, 11 µm and 30 µm respectively. The top-view and cross-sectional SEM images 

of the silicon molds are shown in Figure 4.2, where two different patterns are achieved, 11 µm 

and 30 µm depth. The 25°-tilt SEM images of an array of MP-PDMS electrodes are indicated in 

Figure 4.3, confirming the successful pattern duplication of MP-PDMS electrodes from the silicon 

mold. We expect a smaller A0 and a higher sensitivity  in our 30 µm-ITS than in the 11 µm-ITS. 

Figure 4.1d is a photo of our prepared ITS with an effective sensor area of 1.5 × 1.5 cm2. The 

thickness of the prepared MP-PDMS electrode and IG film are 1178 µm and 171 µm, respectively 

(Figure 4.4). A 130 nm ITO coated PET film (127 µm, purchase from Sigma Aldrich) was used 

as the bottom electrode. Two contact electrodes consisting of a copper electrode (yellow) and an 

ITO/PET electrode (transparent) were used for electrical capacitance measurements. Figure 4.1e 

shows an equivalent circuit diagram of the ITS, where Ctop is a summation of EDL capacitance for 

an individual micropyramid/IG film capacitor and Cbot is the EDL capacitance for a planar ITO/IG 

capacitor. Since the total A between the arrays of micropyramid electrodes and IG film is much 

smaller than that between the bottom planar ITO/PET electrode and IG film, i.e., ∑𝐶𝐸𝐷𝐿
𝑝𝑦𝑟𝑎𝑚𝑖𝑑 ⁡≪

⁡𝐶𝐸𝐷𝐿
𝑃𝑙𝑎𝑛𝑎𝑟,  the measured capacitance between top and bottom electrode can be expressed in 

Equation 4.3: 
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𝐶𝑚𝑒𝑎𝑠 = [
1

𝐶𝑡𝑜𝑝
+⁡

1

𝐶𝑏𝑜𝑡
]

−1

=⁡⁡ [
1

∑𝐶𝐸𝐷𝐿
𝑝𝑦𝑟𝑎𝑚𝑖𝑑

+⁡
1

𝐶𝐸𝐷𝐿
𝑃𝑙𝑎𝑛𝑎𝑟

]

−1

≅⁡∑𝐶𝐸𝐷𝐿
𝑝𝑦𝑟𝑎𝑚𝑖𝑑⁡ (4. ) 

Under external pressure, the deformation of MP-PDMS induces a change in the ∑𝐶𝐸𝐷𝐿
𝑝𝑦𝑟𝑎𝑚𝑖𝑑

. 

In a nutshell, our design provides a reproductive way of achieving high-fidelity, large-dynamic-

range wearable sensors with tunable sensitivity.  

 

Figure 4.2. The SEM images of as-fabricated silicon mold of two different patterns. a) The top-view SEM image of 

a 11 μm-depth silicon mold. b) The cross-sectional SEM image of one single micro-pyramid with etched depth of 11 

μm. c) The top-view SEM image of a 30 μm-depth silicon mold. d) The cross-sectional SEM image of one single 

micro-pyramid with etched depth of 30 μm. 
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Figure 4.3. SEM images of MP-PDMS electrodes of two different heights. a-b) 25°-tilt SEM image of 11 μm-height 

MP-PDMS. c-d) 25°-tilt SEM image of 30 μm-height MP-PDMS. 

 

Figure 4.4. The measured thickness of the MP-PDMS electrode and IG film. a) The measured thickness of the MP-

PDMS electrode is 1178 μm. b) The measured thickness of the IG film is 171 μm. 
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4.4 Iontronic Supercapacitive Effects  

Iontronics is an emerging interdisciplinary field that studies the electronic properties 

controlled by the ionic motion at an ionic conductor/electronic conductor interface.[1, 3] An 

intriguing characteristic in iontronics is the EDL at the interface, where an accumulation of space 

charges is prompted by ionic motion at the interface under an external applied electric field, also 

known as a Helmholtz layer, with a thickness of ~ 1 nm determined by the shortest distance of the 

nearest ionic molecules in the ionic electrolyte.[218] At the iontronic interface, the EDL can work 

as a nanogap supercapacitor with an ultrahigh UAC, which value can be experimentally 

determined. Figure 4.5a indicates the schematics of the proposed working mechanism of our ITS 

under external mechanical compressive pressure at a fixed applied DC voltage. Increasing the 

external pressure induces the deformation of the MP-PDMS, accompanied by a larger interfacial 

contact area A between the MP-PDMS and the IG film, which increases the amount of accumulated 

charge pairs and the ∑𝐶𝐸𝐷𝐿
𝑝𝑦𝑟𝑎𝑚𝑖𝑑

. Thus, the resulting measured capacitance output Cmeas is expected 

to increase with larger applied pressure. We fabricated a flat PET/ITO/IG film (weight ratio of 

PVDF-HFP : [EMIM] [TFSI] : Acetone = 1:4:7) /ITO/PET iontronic device to experimentally 

determine the UAC value of the EDL capacitance. A fixed DC voltage of 0.5 V was applied 

between two electrodes and the capacitance was measured as the test AC voltage frequency was 

swept from 1 kHz to 10 kHz. Figure 4.5b shows an ultrahigh UAC of 2.1 µF cm-2
 at 1 kHz AC 

voltage, which is 1000 times higher than that of traditional piezocapacitive sensors (several pF cm-

2
 ).

[141] This further confirms the high-fidelity of our designed ITS. Figure 4.5c indicates the initial 

capacitance C0 of two height designs of ITS: 11 µm and 30 µm MP-PDMS. Owing to the 

introduction of micropyramid structures, the C0  at 1 kHz AC voltage can be scaled down to 670 
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nF in 11 µm-ITS and 13 nF in 30 µm-ITS, which agrees well with our design prediction in the 

previous section. Also, according to Equation 4.2 and 4.3, we could deduce a predicted maximum 

dynamic range for our 11 µm-ITS (670 nF to 2360 nF) and 30 µm-ITS (13 nF to 2360 nF) at a 

fixed 0.5 V DC voltage and 1 kHz test frequency using an effective sensor area of 1.5 × 1.5 cm2
 

in Equation 4.4, based on the assumption that the top electrode and bottom electrode will 

completely interface with each other under an extremely high compressive pressure, i.e., Ctop = 

Cbot  = 𝐶𝐸𝐷𝐿
𝑃𝑙𝑎𝑛𝑎𝑟:   

𝐶𝑚𝑎𝑥 = [
1

𝐶𝑡𝑜𝑝
+⁡

1

𝐶𝑏𝑜𝑡
]

−1

≅ ⁡⁡ [⁡
2

𝐶𝐸𝐷𝐿
𝑃𝑙𝑎𝑛𝑎𝑟]

−1

=⁡ [⁡
2

UAC⁡ ×⁡𝐴𝑏𝑜𝑡
𝑃𝑙𝑎𝑛𝑎𝑟⁡

]

−1

= 2 60⁡𝑛𝐹 (4.4) 

 

Figure 4.5. Supercapacitive effects in the ITS. a) Supercapacitive effects governed by the electric-double layer, which 

allows ions to self-fill the interfacial contact area between the Au-coated MP-PDMS electrode and IG film. b) UAC-

voltage frequency response at VDC = 0.5 V for a flat PET/ITO/IG/ITO/PET device. c) Capacitance-voltage frequency 

response at VDC = 0.5 V for the ITS with two different pyramid heights, 11 μm and 30 μm. 
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Overall, our ITS demonstrates a high-fidelity capacitance output benefiting from the simple 

iontronic sensing design. We believe our ITS can more accurately capture the real-time, continuous 

BP signals because the high-fidelity output is immune to the transmission line and environmental 

electromagnetic noises which lie in the pF capacitance level.[145]  

4.5 Sensing Performance 

Sensor sensitivity, dynamic range, pressure working range, linear response between input 

pressure and output capacitance, hysteresis, response time and durability are important parameters 

for sensing performance evaluation. To confirm that our designs enables tunable sensitivity 

through its use of micropyramid engineering, we first investigated the dynamic range, sensitivity, 

and linearity of our ITS. Figure 4.6a shows the results of the dynamic range and sensitivity 

analysis for 3 different ITS devices: flat, 11 µm MP-PDMS, and 30 µm MP-PDMS. Figure 4.6b 

shows the zoom-in of the flat and 11 µm MP-PDMS ITS devices. External compressive pressure 

ranging from 0 to 38 kPa was applied by a digital force gauge mounted on an automated test stand 

(See Experimental Section for details on electrical characterization). The maximum force limit of 

our used digital force gauge is 2 lbf, i.e., 40 kPa for our ITS. To avoid damage to our force gauge, 

we chose a maximum pressure range from 0 to 38 kPa, but we believe our ITS could still respond 

in a high pressure region larger than 38 kPa. From the linear fitting analysis of our ITS devices, 

30 µm MP-PDMS shows a large dynamic range, up to 180 % of the normalized output change, 

with a high sensitivity of 4.82 kPa-1 within the 0-38 kPa working range. A normalized capacitance 

output change was used to get a better benchmark across various types of sensors. The measured 

real-time capacitance output as a function of the applied pressure is shown in Figure 4.7. This 



 106 

large dynamic range confirms the high-fidelity of our designed ITS, and this high sensitivity allows 

for a more accurate capture of the BP values. With the benefit of micropyramid engineering, the 

sensitivity can be boosted by ~ 30 × from 0.0016 kPa-1 (flat) to 0.05 kPa-1 (11 µm-ITS). 

Furthermore, increasing the pyramid heights from 11 µm to 30 µm resulted in sensitivity 

enhancement from 0.05 kPa-1 to 4.82 kPa-1 (~ 100 ×), largely owing to the smaller initial 

capacitance C0 of the 30 µm-ITS. Figure 4.6c indicates a linear response between capacitance 

output and input pressure upon three repeatable pressure loading cycles for 30 µm-ITS. The 

correlation coefficient (R2) of the curve linear fitting is as high as 0.99, demonstrating good 

linearity between input pressure and output capacitance change. This good linearity results from 

the unique interfacial contact area A dependent sensing mechanism of the iontronic interface, 

where the structural stiffening of the elastic elastomer PDMS can be gradually compensated for 

by incremental changes in the contact area. Other iontronic sensors also reported similarly good 

linearity.[147] We benchmarked the sensitivity and linearity of our ITS with other reported 

sensors[136, 138, 142, 144, 146, 148, 151, 154-157] in the BP normal range, from 5-25 kPa, in Figure 4.6d. Our 

work demonstrates a fairly high sensitivity with a good linearity, which is desired for CNIBP 

monitoring.[117, 119]  
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Figure 4.6. Sensitivity and dynamic range for our ITS. a) Comparison of the sensitivity between Au-coated flat-

PDMS/IG/ITO/PET (flat), 11 μm MP-PDMS/IG/ITO/PET (11 μm - ITS), and 30 μm MP-PDMS/IG/ITO/PET (30 μm 

- ITS) from 0-38 kPa. b) The zoom-in of the sensitivity response for flat and 11 μm ITS devices. c) Sensitivity analysis 

for 3 different cycles of loading for 30 μm-ITS. d) Benchmark of the sensitivity and linearity of our 30 μm - ITS with 

other reported pressure sensors[136, 138, 142, 144, 146, 148, 151, 154-157] within normal BP range, from 5-25 kPa. 
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Figure 4.7. The measured capacitance-pressure response for our ITS. aCapacitance range comparison of flat, 11 μm, 

and 30 μm ITS and the linear fitting analysis. b) Zoom-in of the capacitance range  for 11 μm, and 30 μm heights ITS.  

 

Figure 4.8. Sensing performance for 30 μm-ITS. a) Limit of detection as low as 40 Pa. b) Sensing response time for 

load (35 ms) and release (35 ms) of external pressure of 229 Pa. c) Hysteresis of 3 cycles of load and release of external 

pressure in the range 0-38 kPa. d) Dynamic pressure sensing response upon 5 consecutive external pressure pulses 

(0.1 Hz force alternating frequency) at different pressure levels. e) Endurance test of > 5000 cycles under load and 

release of external pressure 20 kPa (0.1 Hz force alternating frequency).  f) Zoom-in of 10 cycles of load and release 

of external pressure 20 kPa. 
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Our 30 µm-ITS also exhibited a small limit of detection at 40 Pa (0.3 mmHg)(Figure 4.8a), 

which enables a sensitive response of our ITS in low pressure regions and a great potential of our 

ITS in electronic skin and human-machine interface applications.[133] Microengineering the elastic 

elastomer PDMS has been demonstrated to accelerate response time of the sensor since the voids 

in the microstructures help the elastomer to more quickly store and release energy reversibly and 

minimize the issues related to the viscoelastic behavior of the elastic polymer.[21] Our 30 µm-ITS 

responded to the applied pressure of 229 Pa in the milliseconds range (35 ms) (Figure 4.8b) due to 

the limit of the capacitance readout instrument sampling rate (~ 30 Hz). Although the response 

time of our ITS is not ideal, our ITS is still fast enough to detect BP fluctuations (normal heart rate 

is 60-100 beats/min) and reveal the important hemodynamic parameters such as arterial stiffness, 

which is extracted from the BP peak-to-peak timescale differences (normally ~ 0.2 s).[127, 219]  

The PDMS elastomer has viscoelasticity and thus our ITS indicates a hysteresis loop when 

the applied compressive pressure loads and releases. Figure 4.8c shows the measured hysteresis 

behavior of our ITS upon 3 different cycles of load and release. Admittedly, there are certain 

sensing variations at fixed static pressure level, particularly at high pressure. These variations are 

most likely due to the increasing shear stress at the MP-PDMS and IG film interface under high 

pressure. Adding a lamination layer[141] or building an interlinked interface[220] have the potential 

to mitigate the sensing variations.  

We applied different pressure levels (5 kPa, 10 kPa, 16 kPa, 25 kPa) at an external force 

alternating frequency of 0.1 Hz to our 30 µm-ITS to evaluate its response upon dynamic pressure 

(Figure 4.8d). We also observed a linear relationship between the capacitance change and the 

applied pressure, which means our ITS can easily be calibrated in the further developed BP sensing 

system. Durability is one essential parameter to evaluate the working lifetime of the sensor. After 
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we applied over 5000 cycles of dynamic pressure 20 kPa at 0.1 Hz force alternating frequency to 

our ITS (Figure 4.8e), our ITS still worked well although certain variations in maximum 

capacitance change did exist. Figure 4.8f shows a zoom-in of the 10 cycles of dynamic pressure 

loads and releases, where each cycle is clear and distinguishable, showing the successful sensing 

functionality of our ITS. We believe that the excellent sensor performance of our developed ITS 

could lead to a detection of real-time, high-fidelity BP waveform signals in a continuous and non-

invasive way. 

4.6 Arterial Pulse Monitoring 

Arterial applanation tonometry relies on the skin-mounted pressure sensor to transduce the 

BP pressure from the applanated underlying artery.[117] Figure 4.9a demonstrates the working 

principle of the applanation tonometry, where a hold-down applanation pressure P0 is applied to 

flatten the surface of the underlying artery. The usage of external applanation pressure decreases 

the intervening tissue damping effects and maximizes the amplitude of the detected pulse 

pressure.[128] An appropriate applanation pressure must be chose to flatten a smaller portion of the 

artery but not completely occlude the artery. As with the traditional cuff-based oscillometric device, 

the maximum arterial BP signal occurs where the applanation pressure is close to the mean arterial 

blood pressure in the human body (70-100 mmHg, i.e., 9-13 kPa).[117, 118, 128] We mounted our ITS 

on the skin surface with polyimide tape at two different body locations: upper arm and wrist, 

aiming at monitoring of brachial and radial arterial BP waveform signals. An aneroid 

sphygmomanometer, i.e., inflatable cuff, was wrapped around the tested arm or wrist to apply 

applanation pressure. Figure 4.9b indicates the measured brachial BP waveform under a P0 of 80 
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mmHg for a 25-year-old adult, who was seated with the left upper arm and heart at the same height 

level. The inset shows images of the mounted ITS on the upper arm with and without external cuff. 

Figure 4.9c shows a zoom-in of two continuous brachial BP waveforms in the dashed box from 

Figure 4.9b, where the human heart rate can be calculated as 70 beats/min. This tested human heart 

rate is normal for a 25-year-old adult, whose resting heart rate is expected to be 60-100 

beats/min.[116, 120] Figure 4.9d and 4.9e indicate the radial BP waveforms obtained by placing the 

ITS sensor at the left wrist of the same tested person, where a resting heart rate of 67 beats/min 

can be estimated. More importantly, from the zoom-in brachial and radial BP raw pulse waveforms 

shown in Figure 4.9c and 4.9e, two characteristic peaks P1 and P2 can be observed, as previously 

reported.[20, 127] These two peaks originate from the superposition of the incident blood wave 

ejected by the left ventricular contraction and the reflected wave from the periphery.[20] Two 

important hemodynamic parameters for arterial stiffness diagnosis, the augmentation index and 

time delay between the first two peaks, can be estimated from the magnitude and timescale of the 

two peaks P1(t1) and P2(t2). The artery augmentation index, defined as AIr = P2 / P1, is estimated 

to be 58 % (left upper arm) and 66 % (left wrist); while the time delay, defined as ∆TDVP = t2 - t1, 

is estimated to be 300 ms (left upper arm) and 375 ms (left wrist). The BP waveform signals using 

our skin surface mounted ITS were weaker than the real intra-arterial BP values, due to the 

intervening tissues and body muscle. To transfer our tested BP waveforms into real-time BP 

pressure values, we need to do BP waveform scaling (Figure 4.9f) using correction functions or 

algorithms. In our future work, we will collaborate with other researchers to develop a BP scaling 

method so that a direct BP pressure can be obtained for the users. Overall, we can capture clear 

and distinguishable brachial and radial BP waveforms continuously, owing to  the high-fidelity, 

high sensitivity and large dynamic ranges of our designed ITS.  
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Figure 4.9. Real-time BP waveform monitoring at the arm and wrist using our 30 μm-ITS. a) The test principle of 

arterial applanation tonometry. b) Measured capacitance response vs. time when ITS is mounted at the left arm of the 

tested person under an applanation cuff pressure of 80 mmHg. c) Zoom-in of two brachial BP waveforms from the 

dashed box in panel b). d) Measured capacitance response vs. time when ITS is mounted at the left wrist of the tested 

person under an applanation cuff pressure of 100 mmHg. e) Zoom-in of two radial BP waveforms from the dashed 

box in panel d). f) Further steps of BP waveform scaling. 
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Moreover, our ITS exhibits a low limit of detection at 40 Pa, a fast response time (35 ms), and a 

good durability after over 5000 load/release cycles. Our work provides a feasible design for 

wearable sensors that could lead to real-time CNIBP monitoring and potential applications in 

electronic skin and human-machine interfaces. 
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5.0 Summary and Future Work 

In summary, two major branches of solid-state iontronic devices have been explored, 

electrochemical synapses and supercapacitive pressure sensors, based on the electrochemical ion 

intercalation/deintercalation and EDL effects. Our developed iontronic devices exhibit great 

potential as artificial synapses for neuromorphic computing and pressure sensors for continuous 

non-invasive BP monitoring. Research outcomes of this dissertation include 5 peer-reviewed 

journal publications (4 first-authored). 

We develop the first electrochemical synapses based on ternary TI (Bi0.2 Sb0.8)2Te3 with 

programmable spatio-temporal dynamics (both amplitude and time constant), suitable for 

implementing neuro-realistic ANNs. We demonstrate basic neuronal functions such as short-term 

and long-term plasticity as well as paired-pulse facilitation, utilizing the built-in temporal 

component in our BST synapse. The BST synapse shows good scaling potential, with a projected 

switching speed and energy at 100 ns and 28 aJ at nanoscale dimensions (~25 nm). Our work 

elucidates the fundamental electrical and ionic transport in electrochemically intercalated TI 

devices and develops an energy-efficient dynamic synapse that can potentially lead to the hardware 

acceleration of neuro-realistic ANNs which significantly improves the energy efficiency and 

cognitive capability of computing systems.  

Moreover, we propose WO3-based electrochemical synapses with a low programming 

voltage (0.2 V), fast programming speed (500 ns),  high precision (1024 levels), and low variation, 

as well as a relatively linear and symmetric response. In addition, our dynamic synapses naturally 

exhibit both LTP and STP behaviors owing to the combined effects from charge transfer doping 

(via electrochemical redox reactions) and ionic gating (via EDL effects), which is desirable for 
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SNNs applications. We demonstrate various time-dependent synaptic functions such as pair-pulse 

facilitation and temporal filtering. Leveraging the spike-encoded timing information extracted 

from the short-term plasticity exponential decay behavior, we were able to build an SNN model to 

benchmark the pattern classification performance of our LiWES, which shows a large boost (128× 

improvement) in classification performance in highly time-dependent scenarios.  

Lastly, we take full advantage of pure EDL effects in iontronics and develop a high-fidelity 

iontronic tonometric sensor (ITS) with high sensitivity (4.82 kPa-1), high linearity (R2 > 0.995) and 

a large dynamic range (up to 180%) within a broad working range of 0-38 kPa that can fully cover 

the normal BP range (5-25 kPa). By microengineering the contact electrodes that interface with 

the iontronic film into different micropyramid patterns (11 µm and 30 µm height ),  we can control 

the initial interfacial contact area and tune the sensitivity from 0.05 kPa-1 (11 µm) to 4.82 kPa-1 (30 

µm),  reaching ~ 100 × improvement. Benefiting from our design, our ITS demonstrates a low 

limit of detection at 40 Pa, a fast load response time (35 ms) and release time (35 ms), and a stable 

response after 5000 load/release cycles. We further explore the application of our ITS in 

monitoring real-time beat-to-beat BP by measuring the brachial and radial pulse waveforms, which 

can be used to recognize  patients’ hemodynamic status and reveal real-time BP levels. Our work 

provides a feasible design for a flexible pressure sensor with high sensitivity, high linearity, and a 

large dynamic range for real-time CNIBP monitoring. 

Our future work can be summarized as the following: 1) exploring new solid-state 

electrolytes via low-cost fabrication methods to provide more flexible design solutions for our 

iontronic devices; 2) building a synaptic array based on our developed electrochemical synapses 

to move a step closer to truly brain-inspired neuromorphic hardware; 3) developing innovative 

neuromorphic circuitry and computation algorithms to fully implement the spatio-temporal 
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dynamics and cognitive capability of our developed electrochemical synapses; 4) scaling down the 

iontronic supercapacitive sensors and building a sensing array to more accurately capture the 

spatial distribution of blood vessels and detect stronger BP signals; and 5) exploring the possibility 

of combining our developed synapses and sensors into artificial afferent nerve systems. 
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