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Big data has evolved as a new research domain in the digital era in which we live to-

day. This domain deals with the study of huge datasets with numerous different features,

whose volumes are rapidly snowballing with time. These types of datasets can be produced

by different autonomous sources, including scientific experiments, engineering applications,

government records, financial transactions, etc. The availability of big data is of a great

value because of the opportunity this provides for making better-informed decisions, but it

also requires advanced analytical tools to derive important insights for these decision. This

is the main reason that artificial intelligence (AI) and machine learning (ML) have gained

immense popularity in recent years.

Time-series forecasting is an important application area for machine learning. It is

important because there are so many prediction problems from various application domains

that involve a time component. However, the temporal dimension also makes time-series

problems more challenging to handle as opposed to many other prediction tasks. For this

purpose, the goal of this dissertation is to design end-to-end frameworks and build advanced

models for time-series forecasting that are based on deep learning. The discussed frameworks

in this dissertation share three important characteristics: 1) the ability to generate forecasts

for multiple steps ahead in the future, 2) the ability to provide estimates of uncertainty

associated with these forecasts, and 3) the flexibility to incorporate exogenous factors. Our

approach is to harness the encoder-decoder architecture to learn from historical data and

capture important relationships embedded in the time-series, and to then use this knowledge

to generate forecasts for multiple steps in the future along with estimates on the uncertainty

associated with these forecasts.

In our study, we validate the proposed models on real data from two important applica-

tion domains: intelligent transportation systems (ITS) (Chapter 3 & Chapter 4), and finance

(Chapter 5).
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1.0 Motivation and Research Objectives

Over the years, technology has revolutionized our world and radically changed our daily

lives. Technology has created powerful tools and resources, putting lots of useful information

at our fingertips. These tools and resources are driven by complex systems interacting with

dynamic environments. Modeling these dynamics is vital when we seek to create a smart

system tailored towards a particular objective function that eventually serves humanity and

improves the quality of life. Although new tools and applications are being introduced

every day, many of the current systems are still far from optimal and their design and

operation can be significantly improved. Artificial intelligence (AI) has shown great potential

in improving these systems, by helping machines to think and act like humans. In particular,

machine learning (ML) is a subset of AI that focuses on algorithms that help machines to

automatically learn and improve from experience without explicitly programming them; ML

has become the core engine for most of the smart systems behind many of the applications

we use today. In the last decade, a sub-field of machine learning called deep learning (DL),

has been leading the state of the art in modeling complex systems in areas such as speech

recognition and natural language processing (NLP). In a nutshell, deep learning uses the

composition of many nonlinear functions to model the complex dependency between input

features and target labels. It is widely acknowledged that two vitally important factors have

contributed to the success of deep learning:

• Huge datasets that often contain millions of samples

• Immense computing power resulting from clusters of graphics processing units ((GPU))

Our work is motivated by: 1) the necessity to process substantial amounts of time-series

data in many smart systems, and 2) the promising performance of deep learning on a broad

class of problems. With reference to the latter point, sequence-to-sequence (Seq2Seq) learning

is the approach most closely related to our work. In simple words, Seq2Seq is about training

models to map sequences from one domain to sequences in another domain. For example,

in a translation machine, we might convert sentences (sequences of words) in English to
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sentences (equivalent sequence of words) in French. The contribution of our work is in

combining advanced deep learning tools in order to design end-to-end predictive modeling

frameworks with novel complex architectures for analyzing complex dynamic systems. The

specific focus of this work is to explore how we can leverage the power of deep learning to

address complex real-life systems that deal with large volumes of time-series data.

Broadly speaking, a time-series comprises data that collectively represents the progres-

sion of a system over time. A major distinguishing characteristic for this type of data is

the temporal dimension (i.e., the timestamp). Time-series data has long been valuable, but

is of growing significance with the rapid growth in the Internet of Things (IoT). The avail-

ability of time-series data of continuously increasing size is being driven by the emergence

of modern sensor, communication, and computing technologies. However, time-series pro-

cessing and forecasting is more challenging compared to simpler tasks such as regression

and classification; the temporal dependencies between data points add to the complexity of

the problem. At the same time, the temporal structure of the data adds important context

and enhances the modeling with the underlying trend and seasonality. Traditionally, linear

regression and its variants (e.g. ARIMA), or heuristics such as exponential smoothing have

been the dominant methods to model time-series data due to their effectiveness, simplicity

and interpretability [11, 56]. Nevertheless, these models exhibit major limitations:

• The assumption of a linear relationship might not be valid

• The temporal dependencies between observations must be diagnosed and the number of

lags need to be specified in advance

• There is a lack of flexibility in incorporating exogenous factors

Classical machine learning models have also been developed to model time-series data

[80, 19, 90, 50, 33, 16]. For example, a Support Vector Machine (SVM) based model has

shown good experimental results. SVM is suitable for handling regression tasks; it con-

structs a linear decision function by mapping samples from the original space to a higher

dimensional space [76]. An ensemble boosting based model has also been proposed [68].

However, this class of models cannot learn features independently and requires extensive

feature engineering.
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The power and capabilities of neural networks suggests that deep learning could be a

good fit for modeling time-series. Those capabilities can be summarized as following:

• Neural networks use a feature learning mechanism to understand the complex underlying

interactions in the data.

• Neural networks learn arbitrary mapping functions.

• Neural networks can handle non-stationary time-series.

• With a properly designed architecture, neural networks support multivariate inputs as

well as multi-step outputs.

• Different architectures provide different capabilities; Convolutional Neural Networks

(CNN) support feature learning while Recurrent Neural Networks (RNN) enable learning

of temporal dependencies.

• Hybrid models combining different architectures improve the learning process.

In Chapters 3 & 4, our focus is on intelligent transportation system (ITS). Specifically, we

focus on building a travel demand prediction model for both taxi and car sharing companies

that can be used to allocate resources more efficiently. The world’s population is growing

significantly, and almost 50% of humanity today lives in cities. In many instances, current

infrastructure is not readily scaled to the exponential growth of cities as people move in from

rural areas seeking better education and jobs [22]. Thus there is an increasing emphasis on so-

called smart cities, where digital enhancements enable a more comfortable life. An intelligent

transportation system (ITS) is one of the essential components of a smart city. However,

existing decision support systems for efficiently managing transportation within a successful

shared economy (including ride-sharing services) encounter various challenges related to

demand prediction and matching supply with demand [63]. Demand-supply imbalances

can cause severe problems for the entire system, including traffic congestion, price surges,

poor resource utilization, and an unpleasant overall user experience. In order to be able to

pick up customers as soon as possible after they request service, drivers need to be allocated

appropriately. This is a challenge because one does not have full prior knowledge on where

demand might occur. Effective vehicle distribution and dispatching strategies will help both

drivers and passengers minimize wait-times, and accurate demand prediction is vital in order

3



to organize the fleet and plan operations effectively by distributing the available fleet based

on the demand across the entire city [95, 73].

We start by building a region-based prediction model (Chapter 3) that focuses on fore-

casting demand at specific micro-geographic locations. Next, we extend this further to pre-

dict demand for specific origin-destination pairs (Chapter 4). The two different tasks can be

used for different use cases that eventually contribute to the development of smarter dispatch

systems. For example, solo ride products such as traditional taxi services and UberX benefit

the most from knowing in advance the pick up locations that are likely to have high demand

in order to be there at the right time when riders need the service. At the company level,

car-sharing providers use the region-based demand forecasting models to allocate resources

properly and feed their pricing models with this information for optimization purposes. Car

sharing providers also use the region-based models to ensure the availability of supply when

demand is expected in order to maintain reliability of service. Also, drivers’ promotion and

incentives are designed to encourage more supply for specific locations during specific times.

The challenges associated with building a region based forecasting model revolve around

the spatial & temporal interactions within the dynamic environment. For instance, demand

around a stadium will be generally stable and at low to moderate level if not surrounded by

other attractions, but when there is a game or other event at the stadium, the demand in

this region can spike. This in turn requires prior supply allocation. Understanding this trend

and the causality between a sporting event and high demand around the stadium is very

important to capture in the region-based model. The complexity of the task increases with

finer resolutions in terms of time and space. Destination incorporation further adds to the

complexity of the modeling since graphs representing the flow between different zones will

be introduced; this will result in more computational challenges with the use of large sparse

adjacency matrices representing the demand flow across the entire region being studied.

4



The second application domain is finance, where we design a deep-learning model for

stock price prediction (Chapter 5). Our model accounts for the different factors of sequence

modeling in the finance world such as market volatility and trends. In the following chapters,

detailed problem definitions will be presented for each topic along with statements on specific

contributions made by this work.
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2.0 Deep Learning Methods

In this chapter, we introduce fundamental deep learning concepts and architectures that

we will use to build our models in subsequent chapters.

2.1 Feed Forward Neural Networks

Feed forward neural networks lie at the heart of deep learning models, and were initially

proposed to imitate how the human brain works. Their general structure is shown in Figure 1.

The first neural network ever proposed was the perceptron [70]. There are two observations

that motivated the development of the perceptron:

1. The human brain demonstrates intelligent behavior, and therefore intelligent systems

can be built by reverse engineering.

2. Conversely, building mathematical models for intelligent systems can help answer scien-

tific questions on how the human brain works.

The perceptron is a version of a feed forward neural network where loops are disallowed

while connecting the nodes in the network. It receives one or multiple inputs which are

multiplied by weights and then aggregated. The concept of weights is derived from the role

of the synapse (the gap between biological neurons in the brain) that can give a different

emphasis to different signals transmitted between neurons. This aggregated value is then

passed to an activation function which simulates the status of the neuron (firing or not

firing). The mathematical representation of a perceptron function is as follows:

f(x) =

1 if x.w + b ≥ 0

0 otherwise

(2.1)

A multi-layer perceptron (MLP) is simply a set of stacked layers where each layer contains

a set of perceptrons. The learning algorithm for the perceptron is straightforward; it is
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based on reducing the weights via a pre-determined learning rate if the difference between

the ground truth and the predicted output is negative and increasing the weights if the

converse is true. The MLP can also be thought of as a deep feed forward neural network.

Unfortunately, there was a major issue with the multi-layer perceptron in the 1980’s that

caused a huge drop in interest in exploring neural networks. The issue was the lack of

a suitable learning algorithm for deep, stacked layers. This lasted until the development

of the backpropagation algorithm to resolve this issue and unblock the untapped potential

of neural networks [71]. The algorithm is based on gradient descent, which is an iterative

process to find a local minimum for a loss function by moving in the direction of the negative

gradient. Minimization of the loss function is the main objective of the learning process in

neural networks. The gradient descent iteratively computes the gradient of the loss function

relative to each set of weights and biases and then updates these accordingly with the aim of

improving the loss function. The bias is basically a vector of constant values corresponding

to each layer, and the value for a particular layer is added to the inner product of the input

and weight vectors corresponding to that layer. It has the role of moving the resultant value

either negatively or positively in order to improve the learning.

In a supervised learning setting, we are given a set of input-output pairs. The main

objective is to find a proper mapping from the input to the output. This can be achieved

via the following general steps:

1. Split the data into training and validation sets

2. Initialize the weights of the network randomly

3. Feed forward the training input data through the network and calculate the error between

the ground truth values and the predicted ones (i.e. loss function)

4. Perform backpropagation by calculating the gradients backward to updates the weights

5. Iterate till the weights are optimized

6. Use cross validation to measure the generalization capability of the network

In essence, neural networks enable learning the structure of the data or information and

have been used widely to perform tasks such as clustering, classification, and regression.

7



Figure 1: General structure for a classical Feed Forward Network: input layer, hidden lay-

er/layers, and output layer [4]
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2.2 Convolutional Neural Networks

The Convolutional Neural Network (a.k.a ConvNet or CNN) is an artificial neural net-

work (ANN) that has been most commonly used for analyzing images. Although image

analysis has been the most popular use case, CNNs can also be exploited for other analysis

or classification problems. CNNs are powerful artificial neural networks capable of feature

extraction and pattern detection. We could think of them as specialized structures for picking

up patterns and interpreting them. The main differentiator between a CNN and a classical

neural network in the form of multi-layer perceptron or MLP (i.e. stack of layers) is the

presence of special layers called convolutional layers.

A typical convolution network is composed of an input layer, a series of convolutional

and non-convolutional layers, and finally an output layer. The input layer could be two-

dimensional, like with an image, and we do not need to flatten it or convert it to a 1-D

vector as we do for a classical artificial neural network. The basic flow of a CNN comprises

receiving an input and passing it through a sequence of layers, including the convolutional

ones. For each convolutional layer we need to specify the number of filters (a.k.a kernels)

which are responsible for detecting patterns. A pattern could be edges, shapes, or textures for

an image; or trends or seasonality for time-series. Different filters detect different patterns.

For example, some filters can detect edges and are called corner detectors, while other filters

detect squares, circles or any regular geometries. The deeper one goes within the network,

the more sophisticated these filters become. Hence, for layers in the middle of deep networks,

the filter might detect objects like leaves, eyes, ears, etc. The filters attached with layers

even deeper in the network and closer to the output layer, can detect even more sophisticated

objects like flowers, cats, dogs, etc.

The convolution operators have five hyper-parameters to be specified:

1. Filter size

2. Stride

3. Padding

4. Dilation

5. Activation function
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Figure 2: Convolutional neural network [20]
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To illustrate this further, assume that we have a 5 pixel by 5 pixel image (Figure 2).

Each pixel has a value representing the darkness of its color (0 for black, and 255 for white).

The convolution process can be described as passing an n× n filter over the image starting

from the top left corner, multiplying the filter values by the pixels values and aggregating

the results. From a computational point of view, smaller filters are preferred over larger

filters since the learning algorithm needs to learn the values within each filter, and as the

size increases so does the training complexity. Then the filter moves one or more steps to

the right depending on the specified value for a hyper-parameter called the stride. Once the

filter hits the far right pixel of the image, it moves down again based on the stride value.

The process is carried on till the filter scans all pixels in the image.

Clearly, by applying smaller filters, the resultant image will be smaller in size. If we

want to keep the same size of the image to apply filters of subsequent layers on, then we

can use padding. Padding is basically introducing hypothetical pixels in each direction of

the image (left, right, top, down) as shown in Figure 3. The values of the imaginary new

pixels could be zeros or any other specified values. Figure 3 shows a 3 × 3 filter applied to

5× 5 image with zero-padding of size 1 in each direction. The dilation parameter is used for

a larger receptive field (i.e. portion of the image that impact the calculation of the values

of the filter). As shown in Figure 4, the dilation frees the filter from being applied only to

contiguous pixels and allows it to cover wider receptive field. This way the learning process

can proceed and converge faster.

After the filter passes through the entire image, an activation function is applied to

introduce non-linearity. The most common function used in literature is ReLU which maps

every negative number to 0 (or a small positive number in the case of a Leaky ReLu) and

retains all positive values (Figure 5).

The main advantage of using convolutions is with parameter sharing. In simple terms,

the filter being used on a portion of the image is used to scan the remaining pixels of the

image without adding more filters. The intuition here is that a filter applied to a portion of

the image to learn local features will most likely be able to also capture other local features

in other parts of the image. Hence, a single filter is convolved over the whole input image

and the parameters (i.e. values of the filter) are shared. Moreover, sparsity of connections
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Figure 3: Illustration of padding in CNNs [20]
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Figure 4: Illustration of Dilation [20]
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Figure 5: Illustration of ReLu activation function

present another advantage since each filter value is dependent on a relatively small number

of inputs instead of the entire set of pixel values of the image. Convolutional neural networks

can also be applied to 1-D vectors, such as time-series and voice data, and 1-D CNNs are

efficient and do not require any feature extraction or dimension reduction.

2.3 Recurrent Neural Networks

In a feed forward network (e.g., CNN) information flows only in a forward direction,

starting from the input nodes, passing thorough stacked hidden layers and then to the

output layer. They have no cycles or loops in the architecture. While CNNs and other types

of feed forward neural networks have shown great success in regression and classification

problems including image processing and object detection, there are some issues that limit

where they can be used:

1. They cannot handle sequential data

2. They consider only the current input

3. They lack the ability to memorize previous input
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A Recurrent Neural Network (RNN) is a special type of neural network that was de-

signed to overcome these limitations and enable working with sequential data. Sequential

data include any data form where order (or context) matters, such as audio and text. RNN

is a generalization of feed forward networks with an internal state (i.e. memory) that can

represent context information. The internal memory enables RNNs to remember important

aspects about the received input sequence, which allows them to better predict the next

output. This is the main reason why RNNs are preferred over other architectures for se-

quential data including time-series, financial data, speech recognition, text, weather, etc.

The ability to capture dependencies within the input sequence is what makes RNNs pop-

ular for many complex tasks such as machine translation, time-series forecasting, financial

analysis, weather forecasting and video processing. In other neural networks, it is assumed

that the inputs are independent. With RNNs, in order to produce the next-step output,

information cycles through feedback loops that enable us to share information while con-

sidering the memorized context along with the current input. In other words, RNNs add

the immediate past to the current to predict the next output. Figure 6 shows the difference

between feed forward neural networks and recurrent neural networks. Similar to any neural

network, RNNs assign weights randomly and then try to optimize them using the backprop-

agation algorithm. However, RNNs account for both current and past information when

optimizing weights through the gradient descent algorithm and back-propagation through

time (BPTT).

While feed forward neural networks can only map one input to one output (e.g. image

to class) there are other different mappings that RNNs can perform (Figure 7):

1. One to many: music generation

2. Many to one: voice classification

3. Many to many: machine translation

RNNs are the proper choice for modeling sequential data where there is a time de-

pendency between input data; however, they cannot handle dependencies in data that are

significantly far apart in time. This is due to the vanishing (exploding) gradient problem,

where the gradient of the loss function decays (grows) exponentially with time. In response
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Figure 6: Recurrent Neural Networks vs. Feed Forward Networks [5]

Figure 7: Recurrent Neural Networks types [5]
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Figure 8: seq2seq example: machine translation [5]

to this shortcoming, Long Short Term Memory (LSTM), which is a special kind of RNN was

introduced [35]. LSTM is capable of handling long-term dependency between input data

while avoiding the the vanishing (exploding) gradient problem. It has a gating mechanism

that controls the flow of information and decides what past information to keep or forget.

This is discussed further in the context of each of our models where we introduce them.

2.4 Sequence Modeling and seq2seq

Sequence modeling deals with data where either the input or the output is a sequence

of data (e.g. text, time-series). A special class of sequence modeling is seq2seq where both

the input and the output are sequences. Consider an example where the input is a sentence

in English: “nice to meet you” and the output is its translation in French: “ravi de vous

rencontrer” (Figure 8). Here, we have an input sequence, a sentence in English, and an

output sequence, a sentence in French. Google translation is based on seq2seq modeling.

For seq2seq models, we leverage an architecture called the encoder-decoder architecture

(Figure 9). At a high level, the encoder-decoder architecture is composed of three parts:
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Figure 9: Encoder-decoder general structure

1. Encoder: It reads each token (i.e. word) in the input sequence to try and extract all

its associated information and then compresses it into a vector (i.e. the context vector).

The context vector is of a fixed size length. After processing all tokens in the input

sequence, the encoder produces the context vector and passes it to the decoder.

2. Context vector: It is constructed with the expectation that it will contain all the impor-

tant information associated with the input in order to help the decoder generate accurate

predictions. We can think of it as the final internal hidden state of the encoder block.

3. Decoder: The decoder receives the resultant vector and uses it to predict the output

sequence, token by token.

Although the encoder-decoder structure is very efficient and widely used for seq2seq

modeling, its performance begins to degrade as the size of the sequence grows. This is

mainly because it becomes difficult to encapsulate all the compressed information of a long

sequence within a fixed size context vector. The overall prediction accuracy can thus be

negatively impacted by long input sequences. This is where “attention” comes into play.

Attention is simply a way to help the decoder know what portions of the input sequence

to focus on when predicting each token in the output sequence [60]. The attention mechanism
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applies different weights to each part of the input sequence for different tokens in the output

sequence. For instance, in the context of the machine translation example given above, more

weight will be assigned to the word “nice” in the input sequence when the decoder is trying

to predict “ravi” and more weight to “meet” when predicting “rencontrere”. Attention can

be viewed as a shortcut to align the most relevant words in the input sequence for each word

in the output sequence.

The internal architecture of the encoder or decoder typically employed RNNs & LSTMs

by default. However, more recently a new architecture called Temporal Convolution Net-

works (TCNs) was proposed as an alternative. TCN is a descriptive term that refers to a

family of architectures and is a variation of the convolutional neural network (CNN). The

notion of using CNNs for sequence modeling was proposed by Google DeepMind [81]. There

are two major characteristics of TCNs:

1. They can handle a sequence of any length

2. The convolutions are causal; they cannot move bidirectionally and so they do not allow

information leakage from the future to the present.

TCN may be considered as a set of stacked, dilated causal convolution layers. Dilated

causal convolutions are preferred to simple causal convolutions because they allow the recep-

tive field to grow exponentially with every additional layer. As discussed in the subsection

on CNNs, a larger dilation enables a wider range of inputs to be represented by an output

at the top level. Figure 10 shows a dilated causal convolution with dilation factors: 1, 2, 4

and filter size 3.

In summary, the purpose of this chapter is to introduce the most basic elements of

important deep learning concepts for a reader who is not familiar with common architectures

such as FNN, CNN, RNN, LSTM, and seq2seq. These architectures will be used as the

building blocks in our novel models in subsequent chapters.
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Figure 10: TCN structure illustration [9]
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3.0 Region Based Probabilistic Prediction for Travel Demand

3.1 Introduction

Ride-sharing has disrupted the way people commute, by leveraging the concept of a

shared economy to provide more price-competitive products than traditional taxi services.

In a shared economy resources are turned into services so that individuals and groups share

them in a collaborative way. For ride-sharing, a driver shares his or her own car and time to

provide a service for an individual or a group in exchange for money. Recent advancements

in technology have accelerated the adoption of ride-sharing services where a request with a

specific location can be placed through an app and then an offer with an estimated time of

arrival and an up-front price is presented. This is different than the traditional taxi services

where price is not determined beforehand. A major contributor to the success of ride-sharing

services is the concept of surge pricing (a.k.a. dynamic pricing), where supply and demand

are encapsulated within the determination of price. Therefore, demand prediction becomes

even more important with the ride-sharing form of transportation in order to manage supply

and ensure reliable service, which is critical for strategic growth. Prior knowledge of demand

enables the service providers to take the right course of action such as notifying drivers where

demand is or incentivizing non-active drivers to log in by offering a platform fees discount.
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Arriving at accurate predictions at a micro-geographical level (as opposed to the level

of a city, precinct or large neighborhood) is a challenging problem. Furthermore, obtaining

these predictions for multiple future time steps along with reliable estimates of prediction

uncertainty adds another layer of complexity. The problem becomes even more challenging

when demand is volatile, and during holidays and special events (e.g., sports fixtures or

concerts) when many external factors contribute to the sudden demand changes. In this

setting, better multi-step-ahead forecasts of demand across relatively small geographical

areas, along with accurate uncertainty estimation, can help us build robust systems that are

responsive to demand fluctuations. It is worth noting that in recent years there has been a

growing interest within the research community in addressing this topic and in developing

reliable solutions for smart transportation systems [61, 83, 92, 84, 44, 93].

This chapter is motivated by the fact that prior work has largely focused on macro-

geographic, deterministic, next-time step prediction, and without explicit uncertainty esti-

mation [15, 30, 96, 37, 38, 44, 103, 99]. We believe that for a robust and responsive system,

it is important to have real-time, multi-step ahead forecasts at a micro-geographical level

across an entire city or metropolitan area, along with estimates of the uncertainty associated

with these forecasts.

There are several practical reasons for each of our desired features. First, multi-step-

ahead forecasting enables us to make operational and tactical decisions over longer time

horizons, rather than making short-sighted decisions that might negatively affect resource

distribution during later time periods. Second, a micro-geographical breakdown enables us to

capture characteristics of specific locations over time. The nature of travel demand prediction

requires us to account for the interaction between the spatial and the temporal aspects.

Demand distribution at a particular location can be totally different from that at another

location during the same time period, and similarly, the distribution at a given location could

be very different at different points in time. Third, effective decision-making requires that

we quantify our confidence about the results produced by the model through an accurate

estimation of its uncertainty. In addition to these three objectives, it is also important to

incorporate exogenous factors (e.g. weather, time-series trends and seasonality, and temporal

clustering) into the forecasts, especially during time periods with high variability. Temporal

22



clustering basically groups specific times (day of the week and hour of the day) based on

their similarities in terms of average demand and variance. For example, there are specific

hours of the week with high average demand and low variance such as afternoon peak-time

and Friday early evening. These hours can belong to the same cluster (high average demand

and low variance).
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In this chapter, we address the issues listed above and develop a method that exploits

the deep-learning techniques described in the previous chapter to obtain accurate and reli-

able multi-step-ahead forecasts of demand at a micro-geographical level. There are specific

technical challenges that must be addressed, such as:

• Accounting for complex spatial/temporal and pick-up/drop-off interactions

• Incorporating important exogenous factors into sequence modeling

• Obtaining acceptable computational performance

• Estimating uncertainty associated with forecasts in a stochastic setting

• Obtaining robust multi-step ahead forecasts

To briefly elaborate on each of these challenges, first, demand and drop-off at a certain

node (location) might affect the demand at another node in the network (city). Similar to

how an earthquake often triggers the occurrence of more earthquakes in the same area within

a specific period of time, pick-up and drop-off at a particular node might affect the demand

at other nearby nodes [57]. Demand can also be time dependent not just with respect to the

immediate prior point in time, but possibly over longer periods of time. Second, traditional

ML approaches to sequence modeling often lack the flexibility to include external factors

along with the time series data. Third, the methods suffer from slow convergence in the

process of capturing long time dependence. Fourth, uncertainty estimates are hard to obtain

with a classical neural network. Finally, for sequential multi-step forecasting, errors in the

early steps can propagate and affect the forecasts at subsequent steps.

Motivated by recent advances in deep learning for sequential modeling [13, 78, 87, 66],

we propose an end-to-end encoder-decoder framework with a novel architecture in order to

address the foregoing challenges. We provide a high level overview here and the details of

our approach are provided in Section 2.3. Our framework encodes demand history, which is

then decoded to predict future demand. We use a multi-stage model; in the first stage we

pass only the sequential data, while in the second we do transfer learning, and incorporate

the exogenous factors. To overview our model, in the first stage, the input to our encoder is

a sequence of spatiotemporal demand that is passed through a convolutional layer to extract

the spatiotemporal features, along with pick-up and drop-off interactions. Subsequently, we
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exploit the power of convolution operations and pass the data stream through a temporal

convolutional network to learn additional features that encapsulate the hidden characteristics

of the sequence. For each time step in the forecasting horizon, the decoder receives the

demand information from the previous time period and passes it through long short term

memory cells (LSTM). We then deploy an attention mechanism on the resulting hidden

representation of the LSTM layer in the decoder along with the output of the encoder. This

allows the model to address the importance of each segment of the input at that specific

time step in the prediction horizon. The attention is then concatenated with the output

of the final LSTM layer and fed to a multi-layer perception (MLP). In addition, we use a

sampling trick (teacher-forcing) to improve the robustness of our model to any deviation

that takes place in the early steps in the forecast horizon. In the second stage, we use the

encoder from the pre-trained model to concatenate its output with exogenous factors and

pass them to a MLP. Finally, a Monte Carlo dropout (MC dropout) technique is used to

measure uncertainty [25].

The contributions of the work in this chapter are threefold:

• From a methodological perspective, we introduce Multi-stage Probabilistic Temporal

Convolution Network (MSP-TCN) as a novel deep learning architecture. The first stage

combines the power of learning a latent representation with less expensive computation

for time-series data. The second stage deploys transfer learning and incorporates exoge-

nous factors (e.g., time-series trends & seasonality, and temporal clustering) to enhance

the learning process. The transfer learning is essential to separate the stage where learn-

ing occurs from the time-series and the stage where exogenous factors are incorporated.

• From an application perspective, we address an important problem of predicting travel

demand that has received a lot of attention during the last few years. Our framework

enables multi-step ahead predictions with the ability to generate demand distributions for

each step in the prediction horizon. The proposed framework neither require a Bayesian

graphical network nor results in major changes to the architecture design.

• From a computational perspective, we conduct a comprehensive study using two differ-

ent real-world datasets. We demonstrate that (with both datasets) our deep learning

approach results in very good predictions, with performance that is superior along sev-
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eral different evaluation metrics to other common DL approaches for multi-step ahead

prediction. Moreover, the number of parameters to be learned by our approach is an

order of magnitude smaller than that of the only comparable DL approach in our tests..

The remainder of this chapter is organized as follows. Section 3.2 introduces related work

on prediction applications with taxi data, and sequence learning applications of LSTMs,

Section 3.3 provides preliminaries including background and definitions, and Section 3.4

describes in detail, the proposed deep multi-stage sequence learning model. In Section 3.5,

we discuss our experimental study and performance metrics, and present the results. Finally,

in Section 3.6, we provide a brief summary along with conclusions.

3.2 Related Work

3.2.1 Travel Demand Prediction

We begin with a review of the main streams of work related to travel demand prediction

and for each of these we summarize some of the shortcomings that our approach aims to

address.

Traditionally, prediction of travel demand based on historical data has been done mainly

via classical time series models. More specifically, these have largely been variants of auto-

regressive integrated moving average (ARIMA) models [11, 56]. Ensemble methods have

also been investigated along with streaming data to predict the spatial distribution of taxi

passengers [58], where a combination of a Poisson model and ARIMA was used to gener-

ate predictions. Space–time auto-regressive integrated moving average (STARIMA) models

that consider the spatial correlation among locations have also been studied [17]. However,

these models have limited fidelity and limited tolerance for incorporating exogenous factors,

which requires multiple training rounds, feature extraction, and extensive manual parameter

tuning. Moreover, they are scale-sensitive since their performance degrades when working

with multi-dimensional time series.
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In a second stream of work, recent studies have investigated traditional machine learning

models that also incorporate exogenous factors such as weather, demographics and special

events data [80, 19, 90, 50, 33, 16]. For example, Deng et al. [19] used a latent space

model for road networks to capture their sophisticated topological dependencies and the

dynamic environment with changing road conditions. They introduced an online algorithm

that exploits real-time sensor data to make real-time predictions. Other advanced machine

learning algorithms such as support vector machines (SVM) have been explored to predict

short term passenger flow [76], where a hybrid model combining Wavelet Transform and SVM

was proposed. The approach first decomposes the sequence into low and high frequencies

using Wavelet Transforms, then SVM is used to perform prediction. Another recent study

[68] used boosting Gaussian conditional random field (boosting-GCRF) to build a short-

term demand prediction model. Conditional random fields (CRF) constitute a well-known

class of discriminative models best suited to prediction tasks where contextual information

or dependence structure among outputs affect the prediction [65]. The proposed model is an

ensemble model that uses GCRF as a base learner to model the interaction between every

pair of elements in a historical demand sequence and output data. A boosting approach

similar to the one used in the well-known Adaboost algorithm is implemented. This specific

approach is sensitive to noise in the data, increases complexity and is hard to implement

in real time. Also, we believe shadow base learners are not strong enough to capture the

sophisticated pick-up and drop-off interactions or the nonlinear spatiotemporal relations

that exist with the problem that we are addressing herein. One of the assumptions made

in the study is the Gaussian distribution for any output at a specific time in the future.

While this setup does enable uncertainty estimation, it limits the mapping function to just

Gaussian distributions, and might vary significantly with any change in the baseline network

structure. In addition, the model neither incorporates exogenous factors nor captures pick-up

and drop-off interactions. In general, the literature indicates that while traditional machine

learning models have shown better results than the classical time series models, they all

have limitations in learning hidden features in order to capture the complex and dynamic

spatiotemporal interactions.
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A third and more recent stream of research in this field, has focused on leveraging the

power of deep learning [61, 83, 92, 84, 89, 40, 29, 26, 100, 59]. This line of research is driven

by the ability of neural networks to learn features and model nonlinear interactions. Xu et

al. [89] introduced a deep learning based sequential model that remembers demand history

and relevant information through LSTM units to anticipate taxi demand. A recent study

by Tang et al. [79] proposed a multi-community passenger demand prediction model by

leveraging a graph convolutional network. Temporal correlation is encoded by using a Gated

Recurrent Unit (GRU), while the spatial correlation among regions is encoded in a graph,

followed by a Louvain algorithm to generate predictions. Yao et al. [92] proposed a unified

multi-view model that jointly captures the spatial, temporal and semantic relations. First,

spatial dependency among nearby region is modeled by using a local CNN. Then, an LSTM

model and graph embedding are used to capture the temporal and semantic aspects. These

models are superior to traditional machine learning when it comes to learning complex spa-

tiotemporal features. However, the models reviewed focus on next-step prediction, without

any accompanying confidence measure. Also, the computational cost of these models is high

due to the relatively large number of parameters that must be tuned with these.

3.2.2 Sequence to Sequence Learning with Neural Networks

In this subsection we examine prior work on other sequence learning applications of

LSTMs. The sequence to sequence (seq2seq) architecture was first introduced to translate a

sentence from French to English [78]. This work was a breakthrough in the field of natural

language processing and also inspired researchers from other, different domains [36, 89].

The proposed architecture consists of two components: an encoder and a decoder. In the

encoder, a stack of LSTM layers is used to map the input sentence to a vector. This

mathematical representation is then fed to another multilayered LSTM (the decoder) to

generate the sentence in English. It is worth mentioning that the input sentence and the

generated translation can be of different lengths (no. of words) and orders (word sequence).

The “listen attend and spell” (LAS) model extended this work to perform speech recognition,

where an audio input generates an output that is a transcript [13]. In this study, at each
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input step the LSTM uses its hidden state to guide an attention mechanism to compute

a “context” vector from the high level representation of the listener (encoder). The speller

(decoder) uses the context along with the LSTM output to generate a probability distribution

for the next word, conditioned on all previous outputs. The encoder-decoder framework has

also been used in the field of image processing to perform complex tasks such as image

restoration and image segmentation [8, 52].

3.2.3 Bayesian Neural Networks

Finally, we review the work related to estimation of uncertainty. A Bayesian Neural

Network (BNN) is comprised of a probabilistic model along with a neural network. The

design of a BNN aims to exploit the strengths of neural networks in a stochastic setting. The

main difference between BNN and other designs is that weights have probability distributions

attached to them. The probability distribution is used to capture uncertainty with respect

to the best set of weights, and ultimately, can be used to measure prediction uncertainty.

The network is given a prior distribution for the weights and the goal is to find the posterior

distribution. However, an analytical solution for the posterior in neural networks doesn’t

always exist and can be hard to find even when it does exist. Lately, several methods

have been proposed to approximate the posterior distribution [62, 32, 28, 49, 21, 47, 86].

The basic idea with most of these algorithms is variational inference. Parameters for the

distribution of weights are learned rather than the weights themselves. The objective function

of this approach is to minimize the Kullback-Leibler divergence between a prior assumed

distribution and the true posterior distribution. However, this line of work requires working

on different optimization problems guided by the adjusted loss functions. Also, the network

architecture needs to be adjusted and the computational effort is impacted by the substantial

growth in the number of learnable parameters.

Dropout is a well-known technique that serves as a regularization to avoid overfitting

[75]. During the learning process, randomly selected neurons are dropped, but only during

training, in order to reduce the generalization error. During testing, predictions are deter-

ministic and no further random dropping is done. On the other hand, the Monte Carlo (MC)
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dropout approach employs dropout during both training and testing [25]. The prediction

during testing is no longer deterministic, but depends on the randomly selected neurons.

Therefore, there can be different predictions for a single data point. The predictions gener-

ated can be interpreted as samples from a probabilistic distribution. This framework does

not require any change to the network architecture and provides model uncertainty estimates

without any added computational complexity. A recent study discussed this framework and

sources of randomness with respect to travel demand data [102]. The study showed that

the prediction uncertainty can be divided into model uncertainty, inherent noise and model

mis-specification. A BNN framework was proposed for time series prediction, along with

uncertainty estimation by using MC dropout. However, this study was not for real-time pre-

diction and considered only a macro-geographical level. Also, the spatiotemporal interaction

was not part of the model.

Inspired by the BNN framework, in this study, the proposed model is designed to include

MC dropout to enable uncertainty estimation for real-time multi-step predictions.
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3.3 PRELIMINARIES

3.3.1 Background

We begin by briefly introducing the deep learning tools exploited in our implementation.

A deep neural network is a composition of L layers where layer i is a functional representation

of the input domain [64]. Each layer i takes the output of the previous layer i − 1 as

input and passes it through a nonlinear activation function. The output of the layer is

controlled by the choice of the activation function and a set of parameters θi which are

weights connecting the layers that form the entire network [23]. Thus, the final output y

from a neural network is obtained by performing the following sequence of computations,

given an input x = (x1, ..., xT ) to the first layer:

y = fL(θL, fL−1(θL−1, fL−2(θL−2, . . . , f1(θ1,x)))) (3.1)

where fi is the activation function at layer i.

3.3.1.1 Convolutional Network Deep Convolutional Neural Networks (CNNs) have

been successfully applied in many fields such as Natural Language Processing (NLP) and

image recognition [42, 45]. Motivated by the success of CNNs, researchers have started

exploiting them for time series analysis [91]. In image processing, CNNs apply a sliding

filter over two dimensions (width and height). However, the sliding filter for time series is

uni-dimensional and convoluted only across time. The general approach to applying CNN

over a time stamp t with a filter F of length l was described by Fawaz et al. [23] as follows:

Ct = σ(F ⊛Xt−l/2:t+l/2 + b) ∀t ∈ T (3.2)

where Ct is the result of applying the filter F on the uni-variate time series X of length T

at time t, b is a bias, and σ is a nonlinear function. The weights of the filter are dependent

on the dataset and have to be learned. A discriminative classifier resulting from a pooling

operation follows the convolutional layer to ensure that we have a discriminative filter [23].
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Figure 11: Detailed structure of Long Short-Term Memory (LSTM) cell [14]
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A downsampling pooling operation takes the time series and reduces it to either a single

value when using global pooling or to T
l
values with local pooling, such as max-pooling [23].

3.3.1.2 Recurrent Neural Network The idea behind recurrent neural networks (RNNs)

is to make use of sequential information. RNNs are called “recurrent” due to the internal

closed loop resulting from feedback connections. They provide recursive dynamics in the

network, which capture nonlinear dependencies exhibited in time series data. In general,

a recurrent model can be seen as a nonlinear dynamical system with a differentiable state-

transition function. Suppose xt ∈ Rd is the input to the system at time t, and θ ∈ Rm is

the parameter vector. Given two matrices of weights W ∈ Rn×n, U ∈ Rn×d, bias vector

bh ∈ Rn, and the nonlinear, differentiable state-transition function σ, the internal or hidden

state of the system ht ∈ Rn at time t for a recurrent neural network [14, 74, 54] is given by:

ht = σ(Wht−1 +Uxt + bh) (3.3)

However, when the sequential data have long-term temporal dependency, standard RNNs

might not be the proper choice. This is due to the vanishing (exploding) gradient problem,

where the gradient of the loss function decays (soars) exponentially with time. This limitation

leads to Long Short-Term Memory (LSTM), which is a special kind of RNN that is capable

of learning long-term dependencies through a gating mechanism as illustrated in Figure 11

[35]. The core of an LSTM cell is the memory unit ct. The main objective of this unit

is to represent the information in the input sequence up to that point. The memory unit

takes the previous hidden state ht−1 and current input xt, and produces the hidden state

for the current step ht. The main distinction between LSTM and RNN is the structure of

the gating mechanism in LSTM cells, which includes three gates: input, forget, and output.

The purpose of these gates is to regulate information flow to and from the memory cell.

The forget gate decides which relevant information from the prior steps is important and

needed. The input gate determines what essential information can be incorporated from the

current step, and the output gate produces the next hidden state [14]. As an example in the

context of our application, suppose that users are requesting transportation to a baseball

game. Then the LSTM can remember that many requests had the same drop-off location and
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predict that demand will be high when the game is over. It can also forget this information

for the same time during the following week if the data shows there is no scheduled game at

that time. LSTMs perform the same task for every element of a sequence, with the output

being reliant on the previous computations. More formally, let the internal state vector be

a pair of vectors s = (c,h). Then an LSTM layer has the following weights:

• Recurrent weights: Wa,Wi,Wf ,Wo Wy ∈ Rn×n

• Input weights: Ua,Ui,Uf ,Uo ∈ Rn×d

• Bias weights: ba,bi,bf ,bo by ∈ Rn

The state-transition function of the LSTM (forward pass at a layer) can be written as [74]

[54]:

at = σ(Ua xt +Wa ht−1 + ba) (3.4)

it = σ(Ui xt +Wi ht−1 + bi) (3.5)

r

ft = σ(Uf xt +Wf ht−1 + bf ) (3.6)

ot = σ(Uo xt +Wo ht−1 + bo) (3.7)

ct = at ⊙ it + ft ⊙ ct−1 (3.8)

ht = tanh (ct) ⊙ ot (3.9)

ŷt = Wy ht + by (3.10)

where at, it, ft, ot are the input activation, input gate, forget gate, and output gate, re-

spectively, σ is a point-wise nonlinear activation function (e.g. ReLU, sigmoid), and ŷt is

the predicted output at time t. A bidirectional LSTM is a variation of LSTM that takes

into consideration the relationship between the current output and the subsequent as well

as the previous values [101]. For instance, in text translation the context is important to
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predict the next word, which in turn, can be strongly related to words that come later in the

sentence. In the Bidirectional setting, the forward LSTM passes through the input sequence

in order from x1 to xT and produces a hidden forward sequence
−→
h t, while the backward

LSTM passes through the input in reverse order and computes a backward hidden sequence
←−
h t. The two sequences are then combined to compute the output [101]:

−→
h t = σ(U−→

h
xt +W−→

h

−→
h t−1 + b−→

h
) (3.11)

←−
h t = σ(U←−

h
xt +W←−

h

←−
h t+1 + b←−

h
) (3.12)

ŷt = W−→y
−→
h t +W←−y

←−
h t + by (3.13)

3.3.2 Definitions

The city to be studied is split into L micro-geographical zones, and the aggregate demand

per unit time (e.g., 1 hour) for each zone is obtained. This pre-processing step converts the

data into a time-sequence of demand in each zone.

Definition 1: Let Dt = (d1t , . . . , d
L
t ) be a demand vector representing the demand at

locations (1,2,...,L) for a specific time period t. Each element in this vector indicates the

demand (i.e. number of trip requests) for location l in time period t.

Definition 2: Let Vt = (v1t , . . . , v
L
t ) represents the number of drop-offs at locations

(1,2,...,L) in time period t.

Definition 3: Let JD
t = (Dt−k, . . . ..,Dt) be a demand (pick-up) trajectory for all loca-

tions, i.e., a time-ordered sequence where k is a hyper-parameter for the look-back period

that we are going to specify in our implementation.

Definition 4: Let JV
t = (Vt−k, . . . ..,Vt) represent a drop-off trajectory over all locations

over the same look-back period.

Note that we use JV
t to explicitly consider the drop-off sequence and its effect on demand.

The two trajectories for pick-up and drop-off are combined to form the input vector Jt =
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{JD
t ∪JV

t }. The goal of our model is to predict demand at all locations over the next F time

periods (Dt+1, .....,Dt+F ), based upon the trajectory (Jt).

Definition 5: Let D̂t = (d̂1
t , . . . , d̂

L
t ) be the predicted demand (i.e. number of trip re-

quests) at all locations for a specific time period t. The element l in this vector indicates the

predicted demand for location l at time period t.

Definition 6: The predicted demand trajectory for all locations Ĵt = (D̂t, . . . .., D̂t+F ), is

a time-ordered sequence where F is a hyper-parameter for how many steps in the future to

forecast.

3.4 Multi-Stage Encoder Decoder Framework

We now describe our two-stage deep learning model in detail. The objective of the

first stage is to learn the best latent representations for the spatiotemporal travel demand

data, while the objective of the second stage is to incorporate exogenous factors in order to

generate more accurate predictions. Our approach leverages an integrated architecture that

receives historical time-series data on demand and drop-off along with exogenous factors,

and generates multi-step ahead travel demand predictions. The purpose of the two-stage

modeling approach is to enhance the learning process: in the first stage the focus is on

the historical time-series data and on extracting a suitable embedding that captures only

demand/drop-off history. In the second stage, this pure time-series embedding is further

exploited by considering exogenous factors in order to obtain more accurate predictions

for multiple steps ahead. This two-stage sequence helps with de-noising the time-series by

mapping it to a latent representation before incorporating the exogenous factors, which in

turn helps our predictive model generalize beyond the training data.

3.4.1 First Stage

In this stage we adopt an encoder-decoder structure, which is commonly used for sequence

to sequence prediction, to be trained on the given data. In a nutshell, the encoder maps the
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Figure 12: Illustration of region-based travel demand model
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input sequence onto some latent space of fixed dimension (i.e., a latent representation), and

this mapping is then fed to the decoder to generate a demand sequence in future time steps.

Our model is illustrated in Figure 12.

The encoder of our model employs TCN, which leverages parameter-sharing and local

connectivity of convolutional layers to reduce the total number of trainable parameters,

thereby achieving more efficient computational performance. TCN is a generic term that

represents a family of architectures with two distinguishing characteristics: 1) the architec-

ture can only handle input-output sequences of the same length; and 2) the convolutions in

the architecture are causal, i.e., an output yt at time t is convolved only with elements yτ in

the previous layer, where τ ≤ t [9].

TCN may be viewed as a set of stacked, dilated causal convolution layers. Dilated causal

convolutions are preferred to simple causal convolutions because they allow the receptive field

to grow exponentially with every additional layer. In other words, a larger dilation enables a

wider range of inputs to be represented by an output at the top level. More formally, given

an input sequence, x ∈ Rk and a kernel function ψ(.) : {0, . . . , N − 1} −→ R, the dilated

convolution C(.) on element s of the sequence is defined as

C(s) = (ψ ⊛d x)(s) =
N−1∑
i=0

ψ(i) .xs−d∗i, (3.14)

where d = 2η is the dilation factor, η is the depth of the network, N is the kernel size, and

s − d ∗ i accounts for the direction of the past. Dilation can be seen as a sweep of fixed

step-size between every two adjacent kernels. To ensure that there is some kernel convolving

with each element within the history while allowing for an extremely large effective history

using deep networks, d is increased exponentially with the depth of the network η [9]. For

example, consider Figure 12 (i.e. input sequence x = D), and suppose the index s = 8.

Then the dilated convolution C(.) of factor d = 1 and kernel size N = 2 will be:

C(s) =
1∑

i=0

ψ(i) .D8−d.i = ψ(0) .D8 + ψ(1) .D7 (3.15)

A residual block stacks two dilated causal convolution layers together, and the results

from the final convolution are added back to the input to obtain the output of the block. If
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there is a dimension mismatch between the width (number of in-channels) of the inputs and

the width (number of out-channels) of the second dilated causal convolution layer, a 1-D

convolution is applied to the input before adding the block outputs to make the dimensions

match. Weight normalization is applied to the kernels of both layers, followed by rectified

linear units (ReLU) and a spatial dropout for regularization. Residual blocks effectively help

avoid the problem of exploding/vanishing gradients.The output (latent representations) of

the TCN is stored in two parallel linear layers, which produce the so-called keys and values

as shown in Figure 12.

The ground-truth sequence containing the last demand element in the input sequence

along with the subsequent ones, is used to initialize the decoder. The decoder predicts the

sequence of future travel demand at each location. The decoder of our model consists of a

linear layer, followed by two LSTM layers, an attention model, and a two-layer MLP.

For convergence efficiency and learning stability, we employ teacher-forcing. This is a

technique for efficiently training recurrent neural networks that utilizes both the ground

truth and the model prediction output from the previous time step. In a nutshell, teacher-

forcing generally selects the ground truth from a prior time step and passes it on as an

input. However, it occasionally (as determined by some specified probability p) passes the

prediction generated by the model from a previous time step as an input instead of the

ground truth. This is illustrated in Figure 12, where we pass the predicted demand D̂11 to

the decoder instead of the ground truth D11. Teacher-forcing guards against overfitting and

ensures better generalization.

The teacher-forced input sequence is passed to a linear layer whose output ντ is then fed

to the first LSTM layer. The first cell in the first LSTM layer uses the output of the linear

layer ντ to initialize its internal state slτ , while its hidden state hlτ is initialized randomly.

These are both used to then produce both internal and hidden states for the next time

step or layer. Other cells take internal states from previous layers sl−1τ , hidden states from

the prior time step hlτ−1 and the attention context from the prior time step cτ to generate

{slτ , hlτ}. For further details see the training algorithm (Algorithm 1).

Attention is an interface that monitors the flow of contextual information from the en-

coder to the decoder. It allows the model to pay more attention to significant elements of
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the input sequence and learn the association between them [60]. The attention mechanism

varies its focus for different parts of the sequence by assigning a score to each element in

the sequence. More precisely, at each decoder time step τ , the attention model computes a

score, also known as energy, by applying batch matrix multiplication between the current

output of the last LSTM layer (qτ ) and its corresponding element of the keys sequence at

encoder time step t (kt) as

et,τ = kTt qτ , (3.16)

where et,τ denote the energy computed at decoder time step τ and encoder time step t.

Then, a normalized vector over the encoder times steps (αt,τ ) is derived using the softmax

function as

αt,τ =
exp (et,τ )∑
t

exp (et,τ )
(3.17)

Finally, the normalized vector is used to compute the attention context vector (cτ ) at each

decoder time step τ . This operation is carried out by applying batch matrix multiplication

between the energy (et,τ ) at decoder time step τ , and its corresponding element of the values

sequence (vt) as

cτ =
∑
t

αt,τ vt (3.18)

The attention context vector is then concatenated with the current output of the last

LSTM layer (qt) and fed to an MLP to generate the final predictions of the travel demand

sequence (D̂t).
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Algorithm 1 Training of MSP-TCN

Input: training data {Jt}Mt=1, window size R
Output: {Ĵt}M+R−1

M+t=1 ; MSP-TCN modelM(.)
First-stage training:
Initialize the encoder G(.), and decoder F(.) in Fig. 12
while stopping criteria not met do
pick a batch of instances uniformly from the training data
for t = 1, . . . , do
kt,vt = G(Jt)
pick Jt = {Dτ ,Vτ}tτ=t−k such that ∀τ ,

Dτ =

{
D̂τ , V̂τ w.p. p

Dτ ,Vτ , otherwise

{νt−k, . . . , νt} = ϕ(Jt), where ϕ(.) is a linear layer
For each LSTM cell and hidden state,

{sτ ,hτ}tτ=t−k =


lstm(ντ ,h

l
τ−1, cτ−1), if l = 1

lstm(sl−1τ ,hl
initialized,0), if τ = 1

lstm(sl−1τ ,hl
τ−1, cτ−1), otherwise

use kt,vt to compute cτ as in (3.16) - (3.18).
iτ = concatenate[cτ , sτ ]
Ĵt = MLP ({i}tτ=t−k)
perform backward passes to update parameters of G(.) and F(.) by minimizing the loss
function L({Ĵt}M+R+1

t=M+1 , {Jt}M+R+1
t=M+1 )

end for
end while
output the trained encoder model G(.)
Second-stage training:
while stopping criteria not met do
pick a batch of instances uniformly from the training data
for t = 1, . . . , do
kt,vt = G(Jt)
oτ = concatenate[gt,kt,vt]
{Ĵt}M+R+1

t=M+1 = MLP ({o}M+R+1
t=M+1 )

perform backward passes to update parameters of MLP (.) by minimizing the loss function
L({Ĵt}M+R+1

M+t=1 , {Jt}M+R+1
t=M+1 )

end for
end while
return {Ĵt}M+R+1

t=M+1 ; trained MSP-TCN modelM(.)
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Figure 13: Illustration of the second stage
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Algorithm 2 Inference of MSP-TCN

Input: testing data {Jt}Qt=P ; trained MSP-TCN model M(.), exogenous factors vector gt,

dropout probability p, number of iterations N

Output: prediction mean µJt and uncertainty ξJt

1: for i = 1, . . . , N do

2: Ĵi
t = Dropout(M(Jt, gt), p)

3: end for

4: µJt =
1
N

N∑
i=1

Ĵi
t

5: ξ2Jt
= 1

N

N∑
i=1

(Ĵi
t − µJt)

2

6: return µJt , ξJt

3.4.2 Second-Stage

The objective of the second stage is to perform transfer learning from the first stage and

incorporate the vector gt representing exogenous factors, in order to generate more accurate

travel demand predictions; details about gt are provided where our experimental study is

discussed. Our model is illustrated in Figure 13. The trained encoder of the first stage is

used with the weights frozen in order to produce the best latent representations, kt and vt,

of the spatiotemporal travel demand data. The latent representations are concatenated with

the exogenous factors and fed as input to the MLP, which generates the final travel demand

sequence predictions at future time steps. The only trainable part in the second stage is the

MLP, and thus the computational burden is much lower here.

3.5 Experimental Study

In this section, we evaluate and compare the performance of our multi-stage probabilistic

TCN (MSP-TCN) model to other advanced models. We first describe the datasets used in

the study as well as the experimental settings, and we then discuss the results in details.

The city we consider is New York City, with two types of transport services: traditional
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Figure 14: Travel Demand in NYC [6]

ride-hailing (Yellow and Green Taxis), and For-Hire Vehicles (FHV). The latter includes all

ride-sharing companies, which are refereed to as High Volume For-Hire Vehicles (HVFHV).

3.5.1 Datasets

Our experiments are conducted on two real-world datasets. The first dataset addresses

demand for ride-hailing service and in particular, for Yellow Taxis. The second dataset is

for the largest ride-sharing service provider in the city (Uber). We test our model on data

from both services. As Figure 14 shows, there has been a substantial shift from ride-hailing

to car-sharing between 2015 and 2019. We use 2018 data in our experiments, where the

average monthly demand for Yellow Taxis is around 8 million, compared to approximately

21 million trips per month for HVFHV (Figure 15). The data was obtained from the NYC

Taxi and Limousine Commission (TLC).

Figure 16 shows a heat map of average hourly demand for both Uber and Yellow Taxis

over the entire New York area, which is divided into 265 pick-up zones. The darker a zone,

44



Figure 15: Trip requests per month in NYC for yellow taxi and HVFHV [6]
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Figure 16: Hourly average of actual demand per location

the higher is the average demand that it has. For Yellow Taxis, it appears that the majority

of demand is generated from zones within Manhattan and from JFK international airport.

Uber’s demands exhibit a similar pattern, but with additional high demand locations in

some zones in Brooklyn as well as a few in Queens.

As one might expect in practice, an examination of the data showed numerous defective

records (e.g., negative or extremely high values for distance/payment). These records were

dropped, but given the size of our dataset, the number of deleted records represents less than

0.001% of the data. We used a well defined micro-geographical breakdown to represent the

pick-up zones according to the boundaries predetermined by authorities. This breakdown

enables real-time prediction at a micro-spatial level. We computed the aggregate number

of trips per hour for each zone, and the trip records were further pre-processed to convert

the data into a proper format that can be used for sequential modeling. The sequence to

be fed to the Stage 1 model is a trajectory of pick-up and drop-off data. For the exogenous

factors in the Stage 2 Model, we consider weather, and additional temporal information

such as day of the week and holidays. Weather data was extracted from the official weather

information for NYC from the National Oceanic and Atmospheric Administration (NOAA),
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and pre-processed to only include temperature, humidity, wind speed, weather description

and a binary attribute to identify extreme weather conditions. We also added temporal

clustering to our exogenous factors, which clusters specific times of the day/week based on

their historical average demand and variation. This information helps the model understand

the demand behavior specific to a particular time. The temporal clustering attributes en-

capsulate this additional information and feed it to the model in the second stage to improve

its performance. A hierarchical clustering technique was used and resulted in 10 clusters.

Furthermore, we also normalized all inputs, demand and pick-up trajectories and exogenous

factors prior to the training process so as to ensure learning stability and efficiency [67].

3.5.2 Experimental Setup

We compare (MSP-TCN) with the following five models, ranging from simple to more

sophisticated ones. In all cases, parameters are fine-tuned and best performance is reported:

1. Multi-Layer Perceptron (MLP): Four fully connected linear layers with batch normaliza-

tion and ReLU activation.

2. Vanilla LSTM: An LSTM model that has a single hidden layer of LSTM units, and an

output layer used to make a prediction.

3. Multi-LSTM: Three LSTM layers followed by an output layer.

4. seq2seq ([31]): An encoder-decoder with 2 BLSTM layers.

5. Modified LAS ([13]): LAS is a sequence model with attention mechanism that is based

on the encoder-decoder framework. The encoder consists of 3 pyramidal bidirectional

LSTM (pBLSTM) layers and the decoder is composed of 2 BLSTM layers. A convolution

layer was added to the encoder described in this study which enhanced the learning of

this model. The major characteristic of the convolutional layer is that it learns local

features by convolving kernels. Hence, it works as an automatic feature extractor.

We also separately evaluate the impact of adding the drop-off information (as it could

have an impact on the pick-up information), and exogenous factors on the model’s perfor-

mance.
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We implement all the methods in Python and use PyTorch for the neural network-based

approaches on Google Colab Pro. The MSP-TCN is trained using Adam optimizer with a

learning rate of 0.001 without momentum for both datasets. In terms of additional parame-

ters associated with the architecture of MSP-TCN, we performed extensive experimentation

and fine-tuning to get to the best possible performance (local minimum). The hidden sizes

of dilated convolution, linear, and LSTM layers are 528, 256, and 256, respectively. We

have used 8 workers with a batch size of 32 for both datasets. Our independent test dataset

covers a total of T = 2891 time steps for each location in the city. The look back window we

consider in our model is 50 time steps and for each location and each time step we obtain

forecasts for the next 50 steps. In stage 1, we have 2 residual blocks with TCN architecture

with dilated convolution layers with a hidden size of 528. The two stacked linear layers

representing the output of the encoder have 265 neurons each.

We study the performance of our model and each of the aforementioned models using

three different metrics: Root Mean Square Error (RMSE), Symmetric Mean Absolute Per-

centage Error (sMAPE), and Smooth L1 (sL1). The last measure, also called Huber loss, is

less sensitive to outliers and uses a squared term only if the absolute error is less than 1.

RMSE =
1

K ∗ T
∗

√√√√ T∑
t=1

K∑
k=1

(Dk
t − D̂k

t )
2 (3.19)

sMAPE =
1

K ∗ T
∗

T∑
t=1

K∑
k=1

|Dk
t − D̂k

t |
(|Dk

t | − |D̂k
t |)/2 + 1

(3.20)

smoothL1 =
1

K ∗ T
∗

T∑
t=1

K∑
k=1

zkt (3.21)

where zkt is given by:

zkt =

0.5 ∗ (Dk
t − D̂k

t )
2, if |Dk

t − D̂k
t | < 1

|Dk
t − D̂k

t | − 0.5, otherwise

(3.22)
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Table 1: Performance of the Region-based Travel Demand Models

Dataset Model RMSE sMAPE sL1

MLP 0.1446 0.1147 0.0107

Vanilla LSTM 0.1828 0.1165 0.0112

Uber multi-LSTM 0.1381 0.1074 0.0093

seq2seq 0.1133 0.0965 0.0076

modified LAS 0.0983 0.0853 0.0064

MSP-TCN 0.0971 0.0793 0.0055

MLP 0.0746 0.0499 0.0030

Vanilla LSTM 0.0752 0.0530 0.0031

Yellow Taxi multi-LSTM 0.0691 0.0492 0.0026

seq2seq 0.0568 0.0346 0.0019

modified LAS 0.0421 0.0289 0.0011

MSP-TCN 0.0396 0.0276 0.0011
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Note that we have a total of K = L ∗ 50 forecasts for each time step. Here t is the

timestamp order in the sequence, k is a forecast index, and Dk
t and D̂k

t are the actual and

predicted demand vectors corresponding to forecast k.

In addition to the three performance metrics we are also interested in studying the

uncertainty associated with our forecasts (Algorithm 2). For this, we keep the dropout

layers activated during inference and run the model iteratively for 1000 epochs. We focus

only on the one-step-ahead forecasts, and for each location and each time step in our test

dataset we thus have a total of 1000 separate one-step-ahead forecasts. This allows us to

build a suitable confidence interval for each of the forecasts (we constructed both 90% and

95% intervals). The metric we use to evaluate the model’s uncertainty estimation is the

coverage probability (CP), which is the proportion of the confidence intervals built for the

one-step-ahead forecasts at each time step and each location that contain the true value of

the demand being forecast.

3.5.3 Results

Table 1 shows the performance, based on our three metrics, of our model and the other

five models, evaluated over the entire test dataset for both the Uber and the Yellow Taxi

datasets. The first thing that stands out is that forecasts for the Yellow Taxi dataset are

better than those for the Uber dataset for all models. This is due to the fact that there

is less variability in demand (this is borne out by the sMAPE values, which are higher for

the Uber dataset than for the Yellow Taxi dataset, indicating that the former has higher

variation). The sL1 values show that even by reducing the effect of outliers, the error is still

higher for the Uber dataset.

In looking at the relative performance of the different models, as one might expect, the

simplest methods - MLP and Vanilla LSTM - have the poorest performance. Although

Vanilla LSTM is designed to capture long-term relationships, MLP actually outperforms it

by a small amount, and even though this might appear counter-intuitive, the depth of MLP

seems to provide a more powerful representation. The multi-LSTM clearly outperforms the

first two models, because it possesses both LSTM cells and network depth. Adopting the
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Figure 17: Relative Performance of the Different Models

Figure 18: RMSE for each pickup zone
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seq2seq framework with LSTM boosts the performance significantly. The reason is that

learning the latent representations allows for more accurate data representation. Finally,

the adoption of an attention mechanism in the modified LAS, yields significant gains in

accuracy, because the implemented attention better exploits long-term associations between

inputs and outputs of the dataset.

Our MSP-TCN model brings additional enhancement to the table along two significant

dimensions: (1) the two-stage framework leverages transfer learning of the underlying la-

tent representations and robustly incorporates exogenous factors, and (2) The TCN encoder

leverages local connectivity and parameter-sharing to achieve more efficient and stable learn-

ing of the first-stage. This allows the MSP-TCN to outperform all the other models along all

three performance metrics and on both datasets. Figure 17 graphically depicts the perfor-

mance of each method relative to the best, where the best method is scaled to a value of 1.00

for each metric. This figure shows that our MSP-TCN outperforms all five other methods

along all three metrics and for both test datasets. It is obvious that the first four models

are clearly inferior, and that the modified LAS approach is the only one that is competitive

with our model. However, as we discuss a little later in this section, the MSP-TCN model

is far superior from a computational perspective.

We next examine the effect of incorporating pick-up/drop-off interactions and exogenous

factors into our model. For the Uber dataset, Table 2 indicates that including pick-up/drop-

off interactions results in an approximate 5% drop in the RMSE. The sMAPE and sL1 are

also reduced by around 10% and 12% respectively. Incorporating both pick-up/drop-off

and exogenous factors yields even better results, with reductions of 7%, 17% and 24% in

the RMSE, sMAPE and sL1, respectively. The corresponding reductions with the Yellow

Taxi dataset are even better. These results clearly display the value of including drop-off

information and exogenous factors when making forecasts.

Figure 18 demonstrates the prediction performance of MSP-TCN in terms of the RMSE,

across all areas of New York for both datasets. While our model outperforms the other

models considered, its accuracy varies slightly from one area to another and Figure 18 shows

how accurate our model is for any given area (the lighter the better). From a practical

standpoint, such information can be leveraged for better resource allocation. For example,
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Table 2: Incorporation of Additional Information to the Region-based Travel Demand Pre-

diction Model

Dataset Model RMSE sMAPE sL1

Pickup Only 0.1043 0.0886 0.0072

Uber Pickup+Drop off 0.0994 0.0793 0.0063

Pickup+Drop off+Exogenous 0.0971 0.0793 0.0055

Pickup Only 0.0498 0.0376 0.0016

Taxi Pickup+Drop off 0.0412 0.0315 0.0013

Pickup+Drop off+Exogenous 0.0396 0.0276 0.0011

from the figure, it appears that the model yields somewhat less accurate forecasts around

the JFK airport area. Such an observation can be used by the taxi company to increase fleet

capacity assigned to that area to hedge against this reduced accuracy.

Next, we examine the uncertainty associated with our model in order to provide some

measure of confidence in our forecasts. We limit our comparisons to one-step-ahead forecasts

and only with the modified LAS, since this is the only method that could be considered as

being competitive with our MSP-TCN method in terms of performance. Table 3 compares

the coverage probability (CP) of these two methods and captures the uncertainty surrounding

forecasts and the errors associated with them, at multiple confidence levels, and in an efficient

and actionable manner. From a decision-making standpoint, an estimate of the percentage

of times that our forecasts fall within predetermined confidence levels is more valuable than

knowing the characteristics of the error distribution, or the variance associated with the

forecasts produced by the model. With both datasets, the CP of MSP-TCN is higher than

that of the modified LAS by 1% to 2% at the 95% confidence level, and by 2% to 3% at

the 90% confidence levels. Obviously, the CP of both models increases significantly as we

decrease the confidence level (because the intervals are now wider). The advantage of MSP-

TSN is somewhat more pronounced as well when this happens. In addition, both models
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Figure 19: 95% confidence interval of the hourly average of the actual demand for a five days

period
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display higher CP for the Uber dataset. Our analysis suggests that the higher variation and

smaller size of the Yellow Taxi dataset account for this.

Table 3: Coverage Probability of the Region-based Travel Demand Prediction Model

Dataset Model CP at 95% CP at 90%

Uber Modified LAS 0.80 0.88

MSP-TCN 0.81 0.90

Yellow Taxi Modified LAS 0.77 0.86

MSP-TCN 0.79 0.89

Figure 19 corresponds to the Uber dataset and provides an illustration of our uncertainty

estimates. It shows the hourly average of the actual demand across all pickup zones of NYC

for each of the 120 one-hour time steps over a five-day period that we selected at random.

The lower and upper bands around this plot correspond to the average (across all locations)

of the lower and upper bounds, respectively, of the individual 95% confidence intervals of the

forecasts for each time step. It is clear from the figure that on average, our model’s confidence

bounds miss only the bottoms of the actual demand curve. From a practical standpoint,

this is significant because our model is conservative here and its forecasts ensure that the

demand is always met. A more serious problem would be when demand exceeds our upper

confidence limit on the forecast,but as the figure shows, this happens quite infrequently.

We end this section with some observations related to computational efficiency. This is

an essential contribution of our work and the results related to this are shown in Figure 20.

The comparison shows the number of learnable parameters with MSP-TCN as compared to

the only other competitive model among the others, i.e., the modified LAS approach. For

Stage 1, the modified LAS has more than 14 million parameters, while MSP-TCN has less

than 3 million parameters, which reflects a very significant reduction.

The implementation of MSP-TCN without transfer learning requires training 1.3 million

parameters, which is under 10% of the corresponding number with the modified LAS. Trans-

fer learning allows us to reduce this figure further to only about 0.5 million parameters. In

this case, for Stage 2, our model does not have a computational advantage over the modified
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Figure 20: Number of learnable parameters for TCN and modified LAS

LAS since the network weights to fine tune are the same for both models. However, by

looking at the total number of learnable parameters with transfer learning, MSP-TCN is

more efficient, with a reduction of 79% in this number.

3.6 Summary & Conclusions

In this chapter we develop an approach that overcomes several of the limitations of exist-

ing methods for forecasting travel demand, and we demonstrate its effectiveness and superior

performance compared to other advanced machine learning models through numerical com-

parisons using two real-world datasets (Uber and Yellow Taxi). In particular, our method is

based on a novel multi-stage, deep, probabilistic model. It accounts for spatiotemporal inter-

actions and incorporates exogenous factors to develop multi-step ahead forecasts of demand

at a micro-geographical level. In addition to addressing the technical challenges associated

with our goals it also provides uncertainty estimates for the predictions. We design a two-

stage model that takes historical pick-up and drop-off sequences and predicts the demand
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for multiple steps ahead in the future. In the first stage, we leverage the encoder-decoder

framework to map the input to a latent representation. The encoder structure consists of a

temporal convolution network (TCN), while the decoder is a two-stacked LSTM component.

An attention mechanism is used, and teacher-forcing helps the model recover when deviation

occurs in the early steps of prediction. In the second stage, we perform transfer learning from

the first stage and incorporate exogenous information; our tests show that this significantly

improves the model’s accuracy. Monte Carlo dropout is used to design a probabilistic setting

that enables us to quantify uncertainty in the predictions. This can be achieved by running

the model multiple times for each time step to obtain confidence intervals instead of single

forecasts. Our experiments show that our model outperforms other advanced models.

Unlike other models, ours provides distributions of accurate demand forecasts for the en-

tire city, and for multiple steps ahead. This specific form of output helps with planning dis-

patch operations more efficiently. A second advantage that our model has when compared to

the baseline methods described, is its superior computational performance with a significant

reduction in the number of learnable parameters. This is obtained by leveraging the TCN

structure in the model’s architecture. In terms of possible limitations, our model assumes

access to external data beside the demand drop-off history. Also, our model does not capture

the flow of demand which can be very valuable for shared-ride products. In other words, our

model predicts where demand originates but doesn’t specify the destination. Joint origin-

destination (O-D) demand prediction can further empower better supply-demand matching

with multiple passengers possibly sharing the same supply along the same route. This O-D

prediction will be the focus of the next chapter.

This work can be further extended to exploit more information such as specific spatial

characteristics. A second promising direction is to extend this work and study the interac-

tions between supply and demand. The model can be deployed in a more comprehensive

setting to develop a supply-demand matching algorithm and a more reliable dispatching

decision support system. With autonomous vehicles that have the potential to revolution-

ize transportation mobility, such systems will become even more important. Finally, with

necessary modifications to reflect the actual system dynamics, we could also explore the

application of our model to other domains with time series characteristics, such as finance.
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4.0 Travel Demand Flow Prediction

4.1 Introduction

This chapter continues the discussion on travel demand prediction with a shift of focus

from region based demand to origin-destination demand. Despite the fact that demand pre-

diction at the region level can empower fleet dispatch systems, incorporating trip destination

forecasting in the modeling task can lead to better quality supply-demand matches. The

origin-destination (O-D) level forecasting captures the flow between different geographical

regions, which is especially important for ride-sharing products (e.g. UberPool, Lyft ride-

share). Ride-sharing products are key to offering inexpensive ride options and gaining more

market share while saving a lot of supply hours. The Uber X4Less product is an example

that illustrates the importance that car-sharing companies place on expanding this segment

of products. In this product, a customer requesting a solo trip receives an offer to join a

shared ride at a discounted price with the guarantee that it will be a last-in first-out (LIFO)

trip.

However, these products have more operational challenges than solo ride products be-

cause the pricing model and dispatch system associated with them have more factors to take

into account. With limited supply, a company needs to decide on the competitive price to at-

tract users to switch to the shared ride option while also keeping sufficient supply resources

available for future requests. Moreover, supply-demand matching becomes more complex

due to the fact that route optimization and utilization goals need to be achieved for multiple

pick-ups and drop-offs. For example, for a ride-share supply that includes an active trip (i.e.

one with a rider in the car) originating in region A with region B being the destination, it is

more efficient to have additional matches (i.e. riders added to the trip) on the same general

route. However, additional matches that significantly deviate from the route would cause

damage to the supply network as a whole because it will require additional supply time while

also leading to a more unpleasant user experience. It should also be noted that assigning

available supply to awaiting requests is done sequentially based on short session windows,
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with the possibility of re-matching within a short period of time. Thus, knowing in advance

the predicted demand flow between two regions can reduce the uncertainty associated with

trip requests on the same route received in the next few minutes. In short, the matching

algorithm needs to be empowered with demand flow forecasting, which can improve the

quality of matches, reduce service time, and improve user experience.

This work is motivated by the fact that prior work has largely focused on deterministic

next step demand prediction at the region level [30, 96, 44]. However, only a few studies have

discussed passenger demand flow prediction [48, 103, 96, 39]. The latter approach, where

the focus is shifted from pick-up zones to origin-destination pairs, is more challenging for a

number of reasons: 1) spatiotemporal correlations between flow pairs are complex, dynamic

and bi-directional, 2) the demand flow matrix associated with short time intervals is usually

sparse, and 3) computations related to demand flow are more expensive [97]. To illustrate the

dynamic bidirectional spatiotemporal interactions, consider demand flows from a residential

region to two different commercial zones. Thee flows will tend to be positively correlated

during morning rush-hour because flows from residential zones to commercial ones can be

expected to be high during morning peak-time. It is reasonable to see similar demand flows

but in the opposite direction during evening peak-hours as people return to their homes.

These relationships between O-D pairs are important to capture and incorporate within the

modeling. Furthermore, we believe that for a reliable and responsive system, it is imperative

to have real-time, multi-step-ahead flow forecasts for the entire city network. Many aspects of

the platform can benefit from long-term forecasting by making decisions to reduce expenses,

allocate resources, take advantage of trends and avoid surprises. We also need to quantify

our confidence about the model’s output through an accurate estimation of its uncertainty

in order to make better-informed decisions.

In this study, we investigate the problem of long-term demand flow prediction in a

network, and address the challenges mentioned above. We propose a deep learning framework

with a novel architecture capable of producing reliable demand flow networks for multiple

steps ahead along with uncertainty estimation. First, we construct dynamic demand flow

graphs to represent the ride-hailing demand data across the entire city. Then, we encode

a time-series sequence of historical demand flow graphs into a latent representation. This
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representation is then decoded to produce demand flow networks for multiple steps ahead.

More precisely, we pass the historical sequence of demand flow networks through special

graph convolution layers to extract the hidden features of topological and spatial demand

flow. Then, LSTM layers are used to capture the temporal interactions. The output produced

by the encoder is exploited by the decoder to generate demand flow networks for future time

intervals. For uncertainty estimation, we leverage Monte Carlo (MC) dropout layers and

keep them activated during inference, similar to what was done in the previous chapter.

The main contributions of this study can be summarized as follows:

• From a task perspective: we forecast travel demand network distributions instead of

deterministic region-level forecasting.

• From a methodological perspective: we propose a novel end-to-end stochastic encoder-

decoder architecture for multi-step ahead forecasting. Our architecture understands the

graphical representation of demand flow by using GNN, which helps in looking at the data

as interrelated entities instead of isolated data points. The proposed architecture can

produce demand network distributions without major changes to the encoder-decoder

design by using MC dropout layers.

• From an experimental perspective: we evaluate our model on both taxi and ride-hailing

services, both before and after the onset of COVID-19; we show that the proposed

framework outperforms baselines.

The reminder of this chapter is organized as follows. Section 4.2 discusses related work.

Section 4.3 provides the problem definition and details of our proposed framework. Section

4.4 covers the experimental study, including the settings and results. Finally, in Section 4.5,

we provide a summary and conclusions.

4.2 Related Work

Recently, the deep learning research community has realized the importance of incorpo-

rating both origin and destination in the transportation demand prediction task. A number

60



of deterministic regression models aiming at O-D travel demand prediction using graphical

neural networks have been proposed [48, 103, 96, 39]. However, the research done in this

area is still limited and can be further expanded to improve the ride-hailing user experience.

4.2.1 Graphical Neural Network

Deep learning has demonstrated its ability in capturing patterns of many types of data

(e.g. images, text, and videos). This is achieved by applying linear algebra operations on

fixed-size matrices. The classical deep learning toolbox (e.g. CNN, RNN, VAE) was actually

designed for Euclidean type of data (linear sequences, fixed-size grid). However, this toolbox

is not applicable to data of arbitrary size from non-Euclidean domains represented as graphs.

The arbitrary size and complex topological structure of graphs make the task of capturing

patterns more complex. Graphs lack the spatial locality (i.e. regular geometry/ fixed size of

neighborhood set) that exists in fixed-size grid linear sequences. In addition, they are order

invariant which means there is no reference point (left, right, up, down) or fixed ordering

(Figure 21). The arbitrary size of graphs makes it very challenging to build models that

can handle this inherited feature. This is mainly due to the fact that most of the existing

architectures require fixed-size input on which to to apply mathematical operations. For

example, CNNs require fixed size images (i.e. number of pixels) in order to be able to apply

filters and aggregate the result at each layer and pass it through to the next layer. As

discussed in Chapter 2, the hyper-parameters of CNN (e.g. stride and padding) and the

sizes of the hidden layers are determined based on the input size. Thus, when the fixed-

size input condition is violated, it is not feasible to perform the mathematical operations

for both feed-forward and back-propagation algorithms and to iterate through stochastic

gradient descent for obtaining a local minimum. Similarly, RNNs require knowledge of the

previous word (left) and next word (right) to understand the temporal dependencies within

a text sequence and to perform back-propagation through time.

Incorporating edge information for a graph is another challenge within the modeling. In

some cases the topology of a graph changes dramatically over time. Consider a social network

example, where nodes represent users and edges show the connection between users: if two
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Figure 21: Networks have arbitrary structure while images & text have a reference point [1]

users (i.e. nodes in the graph) “unfriend” each other at a specific point in time, the edge will

disappear, which in turn will affect the entire structure of the graph. In fact, even generating

the graph is a major challenge to start with. Therefore, graphs, which we find naturally in

many application domains surrounding us, require more specialized algorithms to handle

their complex structure and detect patterns that exist in their dynamic environments.

The structure of a Convolution Neural Networks (CNN) can be used to empower machines

and help them perform tasks like image classification, image recognition, or object detection.

The way CNN works on images is by first transforming the image into a grid of pixels, then

sliding a convolutional operator window across the two-dimensional grid. An image can be

viewed as a ‘grid graph’ where each node corresponds to a pixel, and adjacent to its four

neighbors (Figure 22) . The computation performed by the sliding convolutional operator

is twofold: 1) collect information “messages” from the center node as well as nodes in the

scanned part of the image (i.e. neighbors), and 2) aggregate the collected messages. The

main idea in our GNN is to consider graphs as a strict generalization of images and apply

the convolution concept.

Graph Neural Networks (GNNs) are neural networks that can be directly applied to

graphs, and perform prediction at one of the following levels (Figure 23):

• Node-level: Node classification is performed by mapping each entity to an embedding
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Figure 22: Illustration of viewing an image as a graph [2]

Figure 23: GNN scope of task illustration [3]
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and then classifying a node based on the similarity of its embedding to the embedding

of other nodes. Problems of this type are mostly trained in a semi-supervised way, with

only a portion of the graph being labeled. A common example of this is categorizing

online users in e-commerce. In this scenario, user-item graphs are generated where a

node could be an item or a user and an edge between a user and an item represents the

quantity of purchased units of the item by the user. Understanding these graphs can help

in customer segmentation, which is important for targeted marketing and personalized

ads.

• Edge-level: In this case, the aim is to predict the existence or strength of a relationship

between several entities in a graph. This can for example be used in recommendation

systems for social networks to identify potential connections. For example, Facebook

uses this type of modeling to understand connection within the network and provide

friend suggestions to grow its user-base and improve engagement with the platform. The

nodes in this network are users and the edges represent a binary relationship (i.e. if

two users are friends, there is an edge connecting them). The friend suggestion could be

2-hop neighbor (a friend of a friend).

• Community-level:The goal of this type of task is to classify a sub-graph in a vast network,

e.g., fraud detection in ride-hailing or financial services networks. Ride-sharing companies

use network analysis to detect fraud. For example, consider collusion behavior, which

basically means cooperative fraud among users. Here users (i.e. nodes) collude by taking

fake trips with stolen credit cards resulting in charge back (a bank-initiated refund for a

credit card purchase). Edges would represent connections between users including both

drivers and riders. GNNs can be used to detect these communities.

• Graph-level: Graph-level tasks include graph classification and graph representation

learning. The task of graph classification is to label the entire graph into different classes.

It is similar to image classification, but the target changes into the graph domain. Graph

classification is widely used and range from determining whether a protein is an enzyme

or not in bioinformatics, to categorizing on-demand streaming content reviews and clas-

sifying documents in NLP. The learning of travel demand network embedding discussed

in this chapter can be viewed as an example of graph representation.
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Figure 24: Node embedding [3]

Next, we will briefly discuss how neural networks can work on graphs. In graph theory,

we use the concept of a Node embedding (Figure 24). In other words, we map a node’s

feature vector to a lower dimensional space rather than the actual dimension of the node’s

feature vector, so similar nodes in the graph are embedded close to each other in the latent

space. The mapping is done by using the encoder-decoder framework and then applying the

typical deep learning training algorithm. The training is performed to optimize a defined

loss function measuring the distance between the feature vectors of the nodes after they are

mapped to the latent space (e.g. cosine similarity function).

The encoder function needs to find the locality in the network and then aggregate infor-

mation from the node itself and its neighbors. The locality information is obtained through

the use of computational graphs, as shown in Figure 25. Increasing the depth of the compu-

tational graph to 2 layers will provide access to the information about the 2-hop neighbors.

Clearly, as we increase the number of layers, we expand access to other connected nodes

in the network (i.e. n layers will access and aggregate information about all nodes which
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Figure 25: Computational Graph [3]

are n-steps away from the central node of interest). The aggregation function must be

permutation-invariant (e.g. sum, average, and max) in order to use a neural network for the

process of learning the embedding.

At the graph-level, the same process can be applied to obtain network embedding (Figure

26). Graph Auto Encoder, is an example of network embedding. The goal is to map the

network to a latent representation, from which we can reconstruct the original network.

First, the encoder exploits the feature vectors of the nodes in the network along with the

corresponding adjacency matrix, which captures the edge level information, to understand

the topological characteristics of a graph. Then the decoder uses the network embedding to

generate the original adjacency matrix. The loss function to optimize for during training is

the reconstruction error.

With respect to the theoretical work that has accelerated the implementation of GNN,

Kipf and Welling [43] have introduced Graphical Convolution Network (GCN) which uses a

layer-wise update rule that is based on first-order approximations of spectral convolutions

on networks. The main contribution of this work is the symmetric normalization of the

adjacency matrix by multiplying it by the inverse square root of the degree matrix on both

sides. This approach is very scalable and has the ability to learn how to encode both
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Figure 26: Graph Autoencoder [88]

graph structure and node attributes. An extension of this work has focused on edge-wise

mechanisms where messages (i.e. arbitrary vectors) are computed along graph edges before

using a permutation-invariant aggregation function [27, 82].

4.3 Proposed Framework

In this section we introduce the notation used in this study, and then describe the details

of our framework.

4.3.1 Notation and Problem Definition

First, the city to be studied is split into N micro-geographical zones, and the aggregate

demand flow per time unit (e.g., 1 hour) is obtained for each O-D pair. This pre-processing

step converts the data into a time-sequence of O-D graphs. Demand flow will be presented

as a graph G(V,E,A) where the set of vertices V represents the disjoint geographical zones

(nodes; |V | = N), E denotes the set of edges, and A ∈ RN×N represents the adjacency

matrix with entries corresponding to the demand flow between O-D pairs. The demand flow
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between the O-D pair is captured by the edge weight. In other words, the weight of an edge

going from node i to node j in the network representation is equivalent to the adjacency

matrix entry (aij). Looking at the past T time steps, we define a tensor

G = {G1, G2, ....., GT} ∈ RT×N×N (4.1)

which represents the historical demand flow networks over those T steps. This tensor will be

the input to our model with an objective of predicting demand flow for multiple steps ahead

Ĝ = {ĜT+1, ĜT+2, ....., ĜT+F} (4.2)

where F is a hyper-parameter denoting the length of the prediction horizon. Also, let the

vector Qt represent the exogenous factors at time t; this will be discussed in more detail in

the experimental study section.

4.3.2 Model

We now introduce our deep learning based model: Probabilistic Encoder-Decoder Graph

Neural Network (PED-GNN) (Algorithm 3). Our model exploits the encoder-decoder struc-

ture, which is commonly used for sequence-to-sequence prediction. In essence, the encoder

reads the historical demand flow sequence and maps the corresponding sequence of adjacency

matrices to a fixed size vector in some latent space. This is done by passing them through

multiple GNN and LSTM layers. This embedding is then fed to the decoder to generate

demand flow networks at future time steps. Our approach is based on the conjecture that

an appropriate latent representation for the historical travel demand flow can result in more

accurate forecasts. The architecture of our model is illustrated in Figure 27.

The input sequence to the encoder is a historical time-series of demand flow networks.

Our encoder leverages graph convolution network (GCN) layers to understand the topo-

logical characteristics of the citywide demand flow. The encoder receives the demand flow

time-series G and passes each graph through two stacked GCN layers. The deployed graph

convolutional operator is

X′ = D̂−1/2ÂD̂−1/2XW (4.3)
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where Â = A + I denotes the adjacency matrix with inserted self-loops to account for the

possibility of having demand flow within the same zone (i.e. node on our graph). D̂ denotes

the degree matrix of the graph with self-loops (a diagonal matrix with entries equal to the

number of edges incident to the corresponding node). X represents the node feature matrix

(a matrix containing the feature vectors for all nodes), which we initialize with the identity

matrix I. W denotes the weight matrix (a matrix that represents the connections between

two layers in the neural network) of the GCN. The node-wise formulation is given by:

x
′

i = W .
∑

j∈N (i)∪{i}

aj,i√
d̂j d̂i

xi (4.4)

wehere N (i) is the set of neighbors of node i.

The GCN layers are then followed by two stacked convolution layers to further understand

the local characteristics of our input. Subsequently, an LSTM layer is applied to capture

the temporal interactions in our sequence. This is done by passing the concatenated vector

encapsulating the intermediate embedding produced by the convolution layers through a

layer of LSTM cells. This yields the encoder output, which is a latent representation of the

historical demand flow time-series.

For the decoder architecture, we use two stacked LSTM layers followed by a multi-layer

perceptron (MLP). First, we initialize the decoder with the embedding of the ground-truth

graph of the previous step with some predetermined probability α, or the embedding of

the most recent predicted graph with probability (1− α). This teacher-forcing technique is

the same as the one used in the previous chapter, and is used to stabilize the learning and

yield more efficient convergence. It basically reduces the effect of inaccurate predictions on

the subsequent forecasts over the prediction horizon. This is especially important because

the focus of our model is to generate predictions for multiple steps into the future. For

each time step in the prediction horizon, the teacher-forced graph needs to go through a

graph embedding block identical to the one described in the encoder architecture. The

graph embedding then passes through the first LSTM layer. For the most immediate time

step in the prediction horizon, the latent representation produced by the encoder is used

to initialize the hidden states. This is the point where the decoder receives and leverages
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Figure 27: Illustration of our O-D encoder-decoder model
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the learned mapping of historical demand flow to generate forecasts for future demand flow.

Finally, to further enhance the learning process, we concatenate the output of the second

LSTM layer with the exogenous factors vector and pass the concatenated vector through the

final component of the decoder (MLP). The exogenous factors considered in this study are

discussed in the following section.

4.4 Experimental Study

In this section we introduce the experiments conducted on the same two real-world

datasets described in Chapter I to validate the efficiency of our model. We compare our model

against four baselines and evaluate the performance of each in predicting travel demand flow

while using three different evaluation metrics.

4.4.1 Datasets

We obtained Uber (largest ride-hailing service provider in NYC) and taxi trips data from

the NYC Taxi and Limousine Commission (TLC). Both datasets have millions of records;

each includes the trip pickup/drop-off locations as well as the time stamps of pick-up and

drop-off events. The longitude and latitude can be mapped to administrative geographical

zones pre-determined by TLC. We use the same geographical breakdown in our modeling for

consistency purposes. A sample of the geographical breakdown for some neighborhoods in

NYC is shown in Figure 28. The daily trips for ride-hailing apps and traditional Yellow Taxi

is illustrated in Figure 29 . At first glance, there is a growing popularity of ride-hailing apps,

while the demand for Yellow Taxis is declining over the years. In particular, 2017 appears

to be when demand for ride-hailing services started to exceed the demand for Yellow Taxis,

thus disrupting the transportation model that was dominant for decades. Another important

observation is the disruption caused by COVID-19, which resulted in a steep sudden decline

during early 2020. The same pattern along with the impact of COVID-19 are observed across

major ride-hailing operators in NYC such as Uber & Lyft. The positive trend towards the
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Figure 28: Geographical breakdown for Manhattan and Brooklyn areas[6]

end of 2020 through 2021 suggests an after-pandemic demand recovery. We test our model

on travel flow both before the pandemic (Jul-Aug 2018), and after the pandemic had started

to subside (April-May 2021) so as to evaluate the robustness of our model and avoid missing

anything related to the impact of COVID-19.

With respect to exogenous factors, we incorporated a 6-dimensional vector containing

(a) weather-related features (temperature, humidity, wind speed, and a categorical weather

description feature such as rainy, sunny, etc.), and (b) time-related features (day of the week

and hour of the day). With respect to the weather data, our data source was the official

weather information for NYC from the National Oceanic and Atmospheric Administration

(NOAA). The data was extracted and pre-processed to only include the items of interest

listed above.

4.4.2 Experimental Setup

We performed data pre-processing on the raw trip records to convert the data into a

proper format for graph-supervised learning. We used the Networkx package in Python

to generate graphs, where the nodes represent the micro-geographical zones and the edge
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Figure 29: Trips per day in NYC [6]

weights represent the aggregated demand flow between the source (pick-up zone) and desti-

nation (drop-off zone).

We compare the performance of our model with that of each of the following five methods:

1. Multi-Layer Perceptron (MLP): Five fully connected linear layers with activation function

(ReLU).

2. Vanilla LSTM (VLSTM): A single LSTM layer followed by an output layer.

3. seq2seq [31]: An encoder-decoder with 2 BLSTM layers.

4. LAS [13]: Listen, attend and spell (LAS) is a sequence model with attention mecha-

nism. It uses an encoder-decoder framework where the encoder uses three pyramidal

bidirectional LSTM (pBLSTM) layers, and the decoder uses two BLSTM layers.

All methods were implemented in Python using the Adam optimizer with a learning rate of

0.001, without momentum. We used PyTorch on Google Colab Pro for the neural network-

based approaches.

We use 10 steps as the size of the sliding window for the historical demand flow networks,

and we forecast future demand flow networks over three different forecast horizon lengths:
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one-, three- and five-steps ahead. Additionally, we separately assess the effect of exogenous

factors. In our analysis, we used the same set of evaluation metrics as the ones in the previous

chapter: Root Mean Square Error (RMSE), Symmetric Mean Absolute Percentage Error

(sMAPE), and Smooth L1 (sL1). The impact of outliers is better captured by the RMSE

and sMAPE, since sL1 (a.k.a. Huber loss) is less sensitive to anomalies. However, learning

the degree to which outliers disrupt the demand flow network is not our focus here, and this

is left as future work.

RMSE =
1

T
∗

√√√√ T∑
t=1

(Gt − Ĝt)2 (4.5)

sMAPE =
1

T
∗

T∑
t=1

|Gt − Ĝt|
(|Gt| − |Ĝt|)/2 + 1

(4.6)

smoothL1 =
1

T
∗

T∑
t=1

zt (4.7)

where zt is given by:

zt =

0.5 ∗ (Gt − Ĝt)
2, if |Gt − Ĝt| < 1

|Gt − Ĝt| − 0.5, otherwise

(4.8)

We keep the MC dropout layers active during inference in order to enable uncertainty es-

timation (Algorithm 4). Since different neurons are being activated each time we run the

model, different forecasts are generated for the same input. In our experiments, we run the

model 100 times and obtain 100 sets of forecasts for each input in the test dataset. We

then compute the mean and standard deviation of the forecasts for each step in the forecast

horizon, and construct our prediction intervals. To assess the accuracy of our prediction

intervals, we used Coverage Probability (CP ), which is an empirical statistical measure that

represents the proportion of times that our prediction intervals contain the ground truth

being forecast. The significance levels considered in this study are 95% and 90%.
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Figure 30: Comparison of the RMSE metric

Figure 31: Coverage Probability at 95% Confidence Level
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Figure 32: Coverage Probability at 90 % Confidence Level

Table 4: Performance of the Models

Forecast window One-step Three-steps Five-steps

Dataset Model RMSE sMAPE sL1 RMSE sMAPE sL1 RMSE sMAPE sL1

MLP 7.89 0.03 0.59 8.31 0.03 0.59 8.44 0.03 0.62

VLSTM 7.82 0.03 0.59 7.37 0.02 0.58 7.65 0.03 0.61

Uber (Prior COVID-19) seq2seq 4.91 0.027 0.55 5.30 0.02 0.57 5.40 0.02 0.58

LAS 4.35 0.01 0.53 4.47 0.013 0.57 5.37 0.016 0.58

PED-GNN 4.24 0.01 0.52 4.29 0.01 0.55 5.32 0.015 0.57

MLP 7.32 0.025 0.55 7.35 0.027 0.56 9.20 0.03 0.59

VLSTM 7.31 0.025 0.54 7.28 0.026 0.55 8.66 0.03 0.59

Taxi (Prior COVID-19) seq2seq 4.65 0.018 0.51 4.77 0.019 0.52 4.47 0.02 0.57

LAS 3.56 0.009 0.48 4.32 0.01 0.52 4.38 0.02 0.56

PED-GNN 3.31 0.007 0.49 3.36 0.01 0.51 4.13 0.018 0.55

MLP 6.68 0.026 0.59 6.74 0.03 0.60 8.55 0.03 0.61

VLSTM 5.79 0.022 0.59 6.14 0.027 0.60 7.63 0.029 0.59

Uber (Post COVID-19) seq2seq 3.55 0.012 0.57 3.98 0.013 0.57 5.97 0.015 0.57

LAS 3.20 0.008 0.54 3.23 0.009 0.54 5.89 0.01 0.54

PED-GNN 3.07 0.006 0.53 3.11 0.006 0.54 5.81 0.009 0.55

MLP 8.34 0.025 0.56 8.41 0.03 0.57 9.73 0.03 0.61

VLSTM 8.25 0.025 0.55 8.38 0.028 0.57 9.13 0.03 0.59

Taxi (Post COVID-19) seq2seq 5.75 0.013 0.54 6.18 0.015 0.55 6.49 0.019 0.57

LAS 4.23 0.01 0.53 4.40 0.01 0.53 5.52 0.016 0.56

PED-GNN 4.10 0.009 0.53 4.21 0.01 0.53 5.12 0.013 0.55
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4.4.3 Results

Table 4 shows the performance of our model compared to the four baseline methods,

evaluated over the entire dataset for both Uber and taxi services and for both prior to

and after the COVID-19 pandemic. Looking at the simple MLP, the evaluation metrics all

show weakness in learning the underlying spatiotemporal relationships in the data across all

specified prediction horizons. Leveraging the LSTM unit, which is focused on understanding

the long term temporal interactions of the time-series input, resulted in only a marginal

improvement (the vanilla LSTM model). The relatively poor performance of these two

models compared to the other baseline methods as well as our proposed model indicates that

simple models struggle with understanding the sophisticated dynamics of travel demand flow.

However, when we modify the LSTM model to have more depth by stacking multiple layers

and deploy an encoder-decoder framework, the performance improves significantly. The

observed improvement using the seq2seq model is mainly due to the learned representation

of historical time-series within the encoder-decoder framework. Finally, the learning process

was enhanced even further by adopting the attention mechanism in the LAS model, which

decides what parts of the input sequence to focus on at each step in the prediction horizon.

Also, the analysis unsurprisingly suggests an inverse relationship between the length of the

prediction horizon and the performance of the model, i.e., as we look further into the future,

the performance of the model degrades.

Coming to our model (PED-GNN), Table I shows that it is, in general, superior to to

all baseline methods, with only the LAS model being competitive in a subset of the cases.

This conclusion is consistent across all forecast windows and for all evaluation metrics, for

both before and after COVID-19. The superior performance of PED-GNN can be attributed

to two key factors: 1) the graph embedding component which captures the topological

characteristics of the demand flow networks, and 2) the representation learning of historical

demand flow, which is achieved by passing the O-D demand adjacency matrix through

the encoder part of our model. Shifting the data representation from isolated origin and

destination data points into networks encapsulating the topological relationships of demand

flow, and incorporating that into the learning process leads to the superiority of PED-
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Table 5: Incorporation of Additional Information

Dataset Model RMSE sMAPE sL1

Uber (Prior COVID-19) DF Only 4.59 0.012 0.53

DF + Exogenous 4.42 0.01 0.52

Taxi (Prior COVID-19) DF Only 3.41 0.008 0.51

DF + Exogenous 3.31 0.007 0.49

Uber (Post COVID-19) DF Only 3.25 0.008 0.53

DF + Exogenous 3.07 0.006 0.53

Taxi (Post COVID-19) DF Only 4.32 0.01 0.54

DF + Exogenous 4.10 0.009 0.53

GNN. Furthermore, the construction of the decoder with stacked LSTM Cells applied to

the graph embedding, along with teacher-forcing, also assist in generating more accurate

forecasts for steps beyond the most immediate in the forecasting horizon. Figure 30 provides

a visualization of the RMSE metric across all prediction horizon lengths for all models

considered in this paper.

Next, we assess the value of incorporating data beyond the demand flow (DF) networks

by performing an ablation test on the models with the one-step ahead forecasts. The focus

here is on the importance of incorporating the exogenous factors discussed in Section 3.

Table 5 illustrates the learning enhancement achieved by incorporating the external factors.

More specifically, the RMSE of the model for the Uber dataset improves by 4% before and

6% after the pandemic. With respect to the taxi data, the RMSE score improves by 3%

for the pre-COVID-19 dataset, and 5% for the post-COVID-19 dataset. The same general

trend can be noticed for the other two evaluation metrics for all datasets included in this

study. This analysis demonstrates the importance of incorporating exogenous factors when

designing the model’s architecture.
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Table 6: Coverage Probability

Dataset Model CP at 95% CP at 90%

Uber (Prior COVID-19) LAS 0.73 0.69

PED-GNN 0.82 0.79

Yellow Taxi (Prior COVID-19 LAS 0.71 0.64

PED-GNN 0.76 0.72

Uber (Post COVID-19) LAS 0.71 0.66

PED-GNN 0.79 0.75

Yellow Taxi (Post COVID-19 LAS 0.70 0.61

PED-GNN 0.75 0.70

We conclude our experimental study by evaluating the prediction intervals associated

with our model. As with Chapter 3, We restrict our comparisons to the only competitive

baseline model (LAS), and we limit ourselves to just the one-step-ahead prediction for this

analysis. As shown in Table 6, our model (PED-GNN) is more powerful than the LAS

model in capturing the ground truth with the prediction intervals that are constructed. The

coverage probability (CP) of PED-GNN exceeds that of the LAS by 9%, 10%, 8%, and 9%

for the Uber dataset pre- and post-pandemic at 95% and 90% confidence levels respectively

(Figures 31, 32). The test on the taxi datasets demonstrates similar superiority of PED-GNN

over LAS across all comparison levels.

4.5 Summary & Conclusions

In this chapter, we propose a probabilistic encoder-decoder graphical neural network

(PED-GNN) for demand flow network prediction. The novelty of our approach comes from

the fact that we are feeding the model with a time-series composed of demand networks

79



instead of numeric vectors of fixed size. The challenging aspect of feeding this type of data

to a ML model is the arbitrary size of demand networks, which can be a huge hurdle for

running gradient decent and back-propagation algorithms to optimize the weights of the

neural network. These algorithms were designed to handle input and output of fixed size,

which is not the case with graphs. For this reason, in the design of our architecture, we

make use of a graph convolution network to learn the topological structure of a demand

flow network and to understand the interactions between micro geographical nodes of the

network. The GNN units enable us to overcome this challenge since they are capable of

reading graphs and mapping them to a fixed size embedding, as explained earlier. We also

apply LSTM layers on the resulting graph embedding to capture the interactions in the

temporal dimension. The choice of an encoder-decoder framework enables one to map the

historical time-series composed of demand flow networks into a latent representation. This

latent representation is then decoded to generate forecasts for multiple steps ahead in the

forecast horizon, and the teacher-forcing policy is deployed to limit the impact of inaccurate

predictions on subsequent forecasts in the prediction horizon.

We find that incorporating exogenous factors enhances the learning process, and improves

the model performance. Monte Carlo (MC) dropout also allows us to construct prediction

intervals, which quantify our confidence in the generated forecasts. Our experimental study

demonstrates that our model outperforms other advanced learning models on two real-world

datasets from both before and after the surge in the COVID-19 pandemic.

We believe the next step would be to expand this work and incorporate supply data

to build reliable pricing models and more comprehensive matching algorithms. Another

promising path is to explore using a variant of our model to capture the dynamics of other

types of networks to build useful forecasting models for other application domains such as

supply chains and cloud computing.
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Algorithm 3 Training of PED-GNN

Input: training data {G1, ....,GN}, {Q1, ...,QN}, lookback hyper-parameter k, Forecast

horizon length F

Output: PED-GNN modelM(.)

1: Initialize the encoder ζ(.), and decoder ϑ(.)

2: while stopping criteria not met do

3: for t = k, . . . ,N do

4: kt,vt = ζ(Gt−k, ..., Gt) latent representation produced by encoder

5: Decoder:

6: for τ = t, ..., t+ F do

7:

Gτ =

Ĝτ w.p. α

Gτ otherwise teacher forcing case

8: δτ = ω(Gτ ), where ω(.) is a graph embedding block

9: Perform the forward pass for each LSTM cell (LSTM outputs: o, h)

{dτ , hτ} =


lstm(δτ ,h

l
τ−1,oτ−1), if l = 1

lstm(dl−1
τ ,hl

initialized,0), if τ = 1

lstm(dl−1
τ ,hl

τ−1,oτ−1), otherwise

10: iτ = concatenate[oτ , Qτ ]

11: Ĝτ =MLP ({i}τ )

12: end for

13: perform backpropagation to update weights of ζ(.), and ϑ(.) to minimize the gap

between predicted values and ground truth values L(Ĝt,Gt)

14: end for

15: end while
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Algorithm 4 Inference of PED-GNN

Input: testing data {Gt}; trained PED-GNN model M(.), exogenous factors vector Qt,

dropout rate r, number of epochs N

Output: predicted values mean µGt and standard deviation ξGt

1: for i = 1, . . . , N do

2: Ĝi
t = Dropout(M(Gt, Qt), r)

3: end for

4: µGt =
1
N

N∑
i=1

Ĝi
t

5: ξ2Gt
= 1

N

N∑
i=1

(Ĝi
t − µGt)

2

6: return µGt , ξGt
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5.0 A Novel Hybrid Deep Learning Model For Stock Price Forecasting

In this chapter we study the extension of our model framework and test its applica-

bility to a different application domain, namely finance. The stock market is an essential

component of any open economy and a major indicator for gauging the economic health

of a country. Many factors affect the behavior of the stock market, including political &

social conditions, the state of the global economy, and financial performance of enterprises.

Generally speaking, in the finance community, investing strategies can be divided into three

categories: fundamental, technical and quantitative. Investors who follow the fundamental

strategy focus mainly on the performance of an individual company and its track record

to value a stock, while technical analysis considers only historical time series data to dis-

cover patterns. The core of the quantitative strategy is to use mathematical and statistical

modeling to map historical time-series, along with other external factors, to the future stock

price. Forecasting stock prices is a challenging task in the finance world due to its complexity

and the dynamics associated with stock prices. We propose an approach that is similar to

technical analysis in that we use time-series data to make forecasts.

Most prior work in the area of time-series stock price forecasting has used classical mod-

els such as Auto-Regressive Moving Average (ARMA) [98], linear regression [12], and even

simple moving averages [24, 55]. These models are based on parameterizing pre-defined

equations to fit a mathematical model to a sequence of historical data. The major drawback

of these models is that they lack the ability to capture the natural non-linear dynamics

in the data. Also, these models cannot incorporate external factors (e.g., interactions be-

tween different companies) since they only consider univariate time-series. This limitation

largely affects the ability to generalize one model based on historical time-series data of a

specific stock, to other stocks. Apart from the classical models, traditional machine learn-

ing algorithms such as support vector machines (SVM), random forest (RF), and artificial

neural networks (ANNs) have also been used for financial time-series forecasting and these

generally yield higher forecast accuracy [10, 46, 18]. However, these models still assume

a pre-determined non-linear mathematical form, which may not capture the true underly-
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ing nonlinear relationship. Another line of research uses recent advances in deep learning

for stock price forecasting [51, 7, 34, 41, 72, 77, 53, 94, 85]. However, most of the work

has focused only on deterministic next step prediction, or classification of the stock price

direction.

In this study, we investigate the problem of obtaining reliable forecasts for multi-step-

ahead stock prices for a target company by using deep learning. The technical challenges to

overcome include complex and nonlinear interactions, combining time-series with exogenous

factors in financial sequence modeling, achieving acceptable performance, and quantifying

the uncertainty associated with the model’s output in a probabilistic setting. We believe

that forecasting multi-step ahead stock price for a particular company is essential in order

to make better informed trading decisions. We also believe that in addition to the past

performance record of the target company, the future stock price is dependent on both the

impact of and the correlation with stock prices of other companies. Therefore, our framework

will incorporate this along with other technical and macroeconomic indicators.

In order to address the challenges mentioned above, we propose an end-to-end feature

learning framework with a novel architecture for multi-step stock price forecasting. Similar

to the concept of converting a natural language sentence to a word vector embedding, we

conjecture that finding an appropriate embedding for the stock price history will enhance

the learning process. Hence, we first encode a time-series sequence of historical records for

the target company. This is then decoded to forecast the multi-step ahead closing prices.

More specifically, in the encoder, the sequence of historical records are passed through a

temporal convolutional network to extract the stock price’s hidden characteristics. We then

employ an attention mechanism to encapsulate the portions of the input sequence on which

we should focus for each time-step in the forecast horizon. Concurrently, exogenous factors

are mapped to a lower dimensional latent representation by passing them through an auto-

encoder. For uncertainty estimation, we exploit Monte Carlo (MC) dropout layers and keep

them activated during inference.
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The reminder of this chapter is organized as follows. Section 5.1 discusses background.

Section 5.2 provides the problem definition and details of our proposed framework. Section

5.3 covers the experimental study, including the settings and results. Finally, in Section 5.4,

we provide a summary and conclusions.

5.1 Background

5.1.1 Representation Learning

It is widely believed that learning representations is one of the main factors associated

with the success of deep neural networks. In fact, the performance of machine learning

algorithms can be greatly affected by the choice of data representation. Finding good repre-

sentations for complex input data helps algorithms better understand the data and do the

necessary processing. The computational aspect of this is also crucial because mapping large,

complex data to a lower-dimensional space contributes to the algorithm’s computational ef-

ficiency. The lower dimensional representation can also help avoid over-fitting and yield

better generalization to unseen data. Principal component analysis (PCA) is a fundamental

technique in dimensionality reduction, where the raw data with p features is projected lin-

early to a q dimensional vector where q <= p [69]. There are many equivalent mathematical

ways for deriving the principal components. The first principal component is the direction

which explains a maximal amount of variance in the data (the eigenvector corresponding

to the largest eigenvalue of the covariance matrix for the data). The kth component is the

variance-maximizing direction orthogonal to the previous k − 1 components. The orthogo-

nality condition ensures this component is uncorrelated with the preceding components.

Another learning representation method that is widely used in deep learning is Restricted

Boltzmann Machines (RBM). RBM is a shallow artificial neural network consists of two

layers: visible and hidden. These two layers are connected by a fully bipartite graph, where

no two nodes within the same layer are connected, while every node in the visible layer

is connected to every node in the hidden layer and vice versa. There are three primary
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steps in the learning process: 1) forward pass, 2) backward pass, and 3) reconstruction error

calculation. We pass the input to the hidden layer, and then reconstruct the input from the

hidden layer. The loss function computes the distance between the generated output and

the original input. Thus, RBM is an unsupervised learning algorithm that leverages back-

propagation to find the best representation that can be used in order to later reconstruct the

input. Auto-encoders have the same concept but with a deep network instead of a shallow

one.

5.1.2 Dropout in deep learning

In deep learning, dropout layers are used for regularization in order to avoid overfitting

[75]. Reduction in generalization error can be achieved by randomly dropping neurons of the

network during training. This technique can be further expanded to quantify uncertainty

[25]. The generated predictions of the network can be non-deterministic if Monte Carlo

(MC) dropout is used. The main distinction is that MC dropout layers remain active during

inference for multiple runs. Thus, for the same input, running the trained model multiple

times will generate multiple predictions. The predictions generated can be viewed as samples

from a probabilistic distribution. There are two main advantages of this framework: 1) it

provides uncertainty estimation without any additional computational effort, and 2) it does

not require any change to the network architecture.

5.2 Proposed Framework

In this section we introduce the notation used in this study, and then describe the details

of our framework.

5.2.1 Notation and Problem Definition

Looking into the past for t days, we define S = {S1,S2, ...,Sj} as the stock price time-

series for the target company we are interested in, where Sj = {Hj, Lj, Oj, Cj, Vj}. Here, St
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represents the stock price vector for the target company at time j, and is composed of the

highest (Hj), lowest (Lj), opening (Oj) and closing (Cj) prices as well as the volume (Vj) of

traded stocks for the company. We also use Xj to represent the external factors at time j,

which includes stock prices of other companies as well as some relevant macroeconomic indi-

cators. The ground truth output is the closing price for the next F days C = Ct+1, ...., Ct+F ,

while the predicted value is Ĉ = Ĉt+1, ...., Ĉt+F . The aim of our model is to learn a non-linear

mapping σ to the multi-step ahead closing price:

Ĉ = σ(S1,S2, ...,St,Xt) (5.1)

Algorithm 5 Auto-Encoder training algorithm

Input: Dataset X1, ....,Xn

Output: Encoder ζ, Decoder ϑ

1: Initialize parameters ζ(.) = W,b & ϑ(.) = W′,b′

2: repeat

3: for i = 1, . . . , N do

4: L =
N∑
i=1

||Xi − σ′(W′(σ(WXi + b)) + b′)||2 calculate sum of reconstruction errors

5: ζ(.)ϑ(.)←− update encoder decoder parameters

6: end for

7: until convergence of parameters ζ(.) & ϑ(.)

5.2.2 Model

Our deep learning model has two sub-models that require sequential training. The aim

of the first is to map the exogenous factors into a lower-dimensional space. Then, we learn a

latent representation for the stock price history and concatenate it to the output of the first

model to forecast future stock price. We now describe each sub-model in details.
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Algorithm 6 Training of CAED-TCN

Input: training data {S1, ....,SN}, {X1, ...,XN}, lookback window size k, Forecast window

F , trained auto-encoder ζ(.) & ϑ(.)

Output: CAED-TCN modelM(.)

1: Initialize the encoder G(.), and decoder F(.) in Fig. ??

2: while stopping criteria not met do

3: for t = k, . . . ,N do

4: kt,vt = G(St−k, ..., St) encoder output

5: Decoder:

6: for τ = t, ..., t+ F do

7:

Cτ =

Ĉτ w.p. p

Cτ otherwise teacher forcing case

8: ντ = ϕ(Cτ ), where ϕ(.) is a linear layer

9: For each LSTM cell and hidden state(h and r are the two outputs of the LSTM)

{dτ , hτ} =


lstm(ντ ,h

l
τ−1, rτ−1), if l = 1

lstm(dl−1
τ ,hl

initialized,0), if τ = 1

lstm(dl−1
τ ,hl

τ−1, rτ−1), otherwise

10: use kt,vt to compute the attention vector aτ

11: Zτ = ζ(Xτ−1)

12: iτ = concatenate[aτ , rτ , Zτ ]

13: Ĉτ =MLP ({i}τ )

14: end for

15: perform backward passes to update parameters of G(.) and F(.) by minimizing the

loss function L(Ĉt,Ct)

16: end for

17: end while
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5.2.2.1 Learning Embedding of Exogenous Factors The main task of this portion

of the model is to learn a suitable embedding for the exogenous factors (Algorithm 5).

To achieve this, we deploy an auto-encoder architecture consisting of encoder and decoder

stages. The auto-encoder is different from PCA since the orthogonality condition is relaxed

in addition to stacking multiple linear layers, with a nonlinear activation function. In the

encoder stage, we compress the exogenous factors vector (discussed later in the experimental

study section) into a lower-dimensional vector by passing it through three linear layers with a

rectified linear units (ReLU) activation function. Then, in the decoder stage, we reconstruct

the original input from the compressed representation by passing it through similar stacked

layers in reverse order. Hence, the architecture presents a bottleneck in the middle, from

which the reconstruction of the input data is implemented. Figure 33 shows the details of

our auto-encoder. More formally, we split the network into two segments: the encoder ζ and

the decoder ϑ.

ζ : X→ Z

ϑ : Z→ X′
(5.2)

The encoder and decoder can be represented by a standard neural network, where X, X′,

σ and Z are the exogenous factors vector, the reconstructed vector, the activation function

and the bottleneck representation, respectively. Let W, b, W′, and b′ represent the encoder

and decoder weights and biases. Then

Z = σ(WX+ b)

X′ = σ′(W′Z+ b′)

Objectivefunction : min
ζ,ϑ
||X− (ζ ◦ ϑ)X||

(5.3)

The loss function of the auto-encoder is the squared distance between the original input

and the constructed one:

L = ||X−X′||2 = ||X− σ′(W′(σ(WX+ b)) + b′)||2 (5.4)
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Figure 33: Learning exogenous factors embedding

5.2.2.2 Time-series encoder decoder We leverage the encoder decoder framework to

understand time-series history and forecast future stock prices (Algorithm 6). The main

assumption here is that an appropriate embedding for the stock price history can result

in more accurate forecasts. The advantage of this approach is that it removes noise from

the original input and captures only important local features. Hence, the main objective

of the encoder in our framework is to map the history of stock price S = {S1,S2, ...,St−1}

to a latent representation of a fixed dimension vector. The vector is then passed to the

decoder to generate the predictions. Our model is shown in Figure 34. The encoder usually

consists of stacked Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU)

layers; however, we use a Temporal Convolution Network (TCN) architecture in our encoder.

The encoder receives the financial sequence St and passes it through the TCN to extract

local characteristics of the time series. The TCN reduces the total number of trainable

parameters through the concept of parameter sharing, and by leveraging local connectivity

of convolution layers. The architecture of TCN can only handle input-output sequences
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Figure 34: Encoder-Decoder Model

of the same length. Another important characteristic of TCN architecture is the causality

condition for the convolutions, i.e. an output yt at time t is convolved only with elements

yτ in the previous layer, where τ ≤ t. In other words, future data points in the sequence

cannot be leaked and used in the convolution [9].

Simple causal convolutions are less preferred to dilated convolutions due to the ability

of the latter to allow the receptive field to grow exponentially as we increase the number

of layers. Mathematically, given an input sequence, x ∈ Rk and a kernel function ψ(.) :

{0, . . . , k − 1} −→ R, the dilated convolution C(.) on element q of the sequence is defined

as

C(s) = (ψ ⊛δ x)(q) =
k−1∑
i=0

ψ(i) .xs−δi, (5.5)

where δ = 2η is the dilation factor, η is the depth of the network, N is the kernel size, and

q − δi accounts for the direction of the past [9]. For example, consider Figure 34 (i.e. input

sequence x = S), and suppose the index q = 8. Then the dilated convolution C(.) of factor
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d = 1 and kernel size N = 2 will be:

C(q) =
1∑

i=0

ψ(i) .S8−q.i = ψ(0) .S8 + ψ(1) .S7 (5.6)

The encoder consists of two stacked residual blocks each consisting of two dilated convo-

lution layers. The kernels of both layers are normalized and passed through ReLU activation

function, followed by a dropout layer for regularization purposes. The problem of explod-

ing/vanishing gradients is handled by these blocks. The encoder produces the latent repre-

sentation in the form of two parallel linear layers, keys and values, as shown in Figure 34.

This specific form of output is necessary in the implementation of the attention mechanism

in our model.

The most recent ground truth stock price vector (with probability p) or the most recent

prediction generated (with probability (1 − p)) is used to initialize the decoder; we used a

value equal to 0.1. The decoder consists of two linear layers, followed by two LSTM layers, an

attention model, a CNN layer, and a two-layer MLP (multi-layer perceptron). The decoder

forecasts the future stock closing price Ĉ for the target company. For random instances in

the forecast horizon, with predetermined probability p, we feed the decoder with the forecast

generated at the previous step instead of the associated ground truth. This technique helps

with training the model to avoid the propagation of any inaccurate prediction to subsequent

forecasts in the forecast horizon.

We also integrate the general attention mechanism in our model, which is a component

of our network’s architecture, and is in charge of quantifying the interdependence between

the input and the output [13]. It helps the model focus on the most important segments of

the input sequence at each time step in the forecast horizon. More precisely, for each time

step in the forecast horizon, we pass the current output of the last LSTM layer along with

the output of the encoder, keys and values, to the attention function. Then, through batch

matrix multiplication, we obtain the attention context, which identifies the significant input

segment at the current time step.
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5.3 Experimental Study

In this section, we evaluate our model and compare it with a set of baseline models

from the literature. We start by describing the dataset used in our study along with the

experimental settings and then provide an analysis of the results.

5.3.1 Dataset

We consider two datasets to train and evaluate our framework. Amazon is the target

company in the first dataset, while we use Apple in the second. The selection is based on the

large trading volumes of these enterprises, which affects the entire market and the S&P 500

companies in particular, since we aim to study the effect of market indices (e.g. S&P 500)

on individual stocks. We fetched the historical multivariate time-series data from the Yahoo

Finance website for the last 10 years. The time-series includes the daily open, close, low,

and high prices in addition to the traded volume. For the exogenous factors, we obtained the

closing price for the rest of the S&P 500 companies, as well as the NASDAQ, S&P 500, and

Dow Jones indices. We also used VIX, a.k.a the Chicago Board Options Exchange (CBOE)

index, which is a real-time market index that captures the market’s expectation of 30-day

forward-looking volatility. In addition, we performed feature engineering to obtain technical

indicators such as the moving average based on different rolling values, the difference in

traded volumes over the previous two days, as well as the time-series seasonality, trend and

residual for the target company. Furthermore, we normalized all inputs to ensure learning

stability and efficiency [67].

5.3.2 Experimental Setup

We evaluate the performance of our confident, attentive, encoder-decoder model with

TCN architecture (CAED-TCN), and compare it to the performance of the following base-

lines, where each is implemented with with the necessary fine-tuning.

• MLP: A multi layer perceptron composed of stacked linear layers

• Vanila LSTM: A single LSTM layer followed by an output layer
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Table 7: Performance of the Stock Price Prediction Models

Forecast window One-step Three-step Five-step

Dataset Model RMSE sMAPE sL1 RMSE sMAPE sL1 RMSE sMAPE

MLP 0.068 0.0033 0.057 0.073 0.0032 0.057 0.074 0.0036 0.059

Vanilla LSTM 0.069 0.0034 0.065 0.073 0.0031 0.058 0.074 0.0037 0.059

AMZN multi-LSTM 0.067 0.0033 0.055 0.067 0.0032 0.054 0.068 0.0033 0.054

Enc-Dec LSTM 0.064 0.0030 0.052 0.067 0.0031 0.054 0.067 0.0032 0.053

modified LAS 0.048 0.0011 0.043 0.048 0.0014 0.037 0.049 0.0015 0.037

CAED-TCN 0.026 0.0004 0.021 0.035 0.0010 0.034 0.042 0.007 0.028

MLP 0.044 0.0010 0.039 0.058 0.0017 0.051 0.064 0.0021 0.059

Vanilla LSTM 0.043 0.0012 0.039 0.047 0.0011 0.039 0.050 0.0012 0.041

AAPL multi-LSTM 0.039 0.0007 0.033 0.040 0.0009 0.034 0.046 0.0011 0.041

Enc-Dec LSTM 0.062 0.002 0.058 0.064 0.0021 0.060 0.074 0.0029 0.070

modified LAS 0.025 0.0003 0.023 0.040 0.0008 0.033 0.044 0.0009 0.038

CAED-TCN 0.017 0.0001 0.0142 0.035 0.0006 0.031 0.035 0.0008 0.029

• Multi-LSTM: Three LSTM layers followed by an output layer.

• Encoder-Decoder LSTM: An encoder and a decoder, each with two LSTM layers.

• Modified LAS (Chan, William 2015[13]): Listen attend and spell (LAS) is an encoder-

decoder sequence model with attention. The structure of the encoder consists of 3 pyra-

midal bidirectional LSTM (pBLSTM) layers and the decoder is composed of 2 BLSTM

layers.
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The sliding window size for our input sequence is 50 days, which we used to forecast over

three different forecast horizon lengths (one, three and five steps ahead). We also evaluated

the impact of exogenous factors and the correlation with other companies on the performance

of the model. The evaluation metrics used in our analysis are: Root Mean Square Error

(RMSE), Symmetric Mean Absolute Percentage Error (sMAPE), and Smooth L1 (sL1).

Similar to the previous chapter, although learner sensitivity to outliers is not the focus of

our work and can be further investigated in future studies, the effect of anomalies are better

captured by RMSE and sMAPE. The last measure, also called Huber loss, is less sensitive

to outliers and uses a squared term only if the absolute error is under 1.

RMSE =
1

T

√√√√ T∑
t=1

(Ct − Ĉt)2 (5.7)

sMAPE =
1

T

T∑
t=1

|Ct − Ĉt|
(|Ct| − |Ĉt|)/2 + 1

(5.8)

sL1 =
1

T

T∑
t=1

zt (5.9)

where zt is given by:

zt =

0.5 ∗ (Ct − Ĉt)
2, if |Ct − Ĉt| < 1

|Ct − Ĉt| − 0.5, otherwise

(5.10)

During inference, for uncertainty estimation in our forecasts, we focus on the one-step-

ahead (o−s−a) forecasts and run the model for 1000 epochs while keeping the MC dropout

activated (Algorithm 7). For the same input, this process generates 1000 different o− s− a

forecasts for each period, which in turn allows us to build a confidence interval for the forecast

for each period. We constructed both 90% & 95% confidence intervals, and we then used

the coverage probability (CP ) metric to evaluate the uncertainty estimation. Here CP is

the proportion of the confidence intervals constructed that contain the ground truth being

forecast.
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Algorithm 7 Inference of CAED-TCN

Input: testing data {St}; trained CAED-TCN model M(.), exogenous factors vector Xt,

dropout probability p, number of iterations N

Output: prediction mean µJt and uncertainty ξJt

1: for i = 1, . . . , N do

2: Ĉi
t = Dropout(M(Ct, Xt), p)

3: end for

4: µCt =
1
N

N∑
i=1

Ĉi
t

5: ξ2Ct
= 1

N

N∑
i=1

(Ĉi
t − µCt)

2

6: return µCt , ξCt

5.3.3 Results

Table 7 shows the performance, based on our three metrics, of our model and the other

five models, evaluated over the entire test dataset for both the AMZN and the AAPL datasets

for three different forecast horizon lengths. As expected, the performance of all models starts

to degrade as we increase the length of the forecast window (except in a couple of cases, with

respect to sL1, which treats errors selectively). This observation agrees with the fundamental

forecasting concept where forecast accuracy is lower as we look further into the future.

In looking at the baseline models, although Vanilla LSTM is designed to capture long-

term relationships, MLP actually performs as well or slightly better. This might be at-

tributable to the fact that the depth of MLP can provide a more meaningful representation.

However, both MLP and vanilla LSTM have the poorest performance metrics relative to the

other models, indicating that simple models do not efficiently capture stock market dynam-

ics. Modifying the vanilla LSTM model by stacking multiple LSTM layers (multi-LSTM)

improves the performance since the model now is deep and with LSTM components. The

model performs even better with the adoption of the encoder-decoder framework. The key

to this performance enhancement is the latent representation learning performed within this

framework. Finally, the modified LAS outperforms all previous models with the adoption

of an attention mechanism. The main advantage of adopting the attention mechanism is to
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Table 8: Incorporation of Additional Information & Attention in the Stock Price Prediction

Model

Dataset Model RMSE sMAPE sL1

univariate 0.048 0.0014 0.039

AMZN multivariate 0.042 0.0012 0.034

multivariate & exogenous factors 0.035 0.0007 0.028

multivariate & exogenous factors w/o attention 0.041 0.0010 0.034

univariate 0.071 0.0029 0.064

AAPL multivariate 0.051 0.0013 0.045

multivariate & exogenous factors 0.035 0.0008 0.029

multivariate & exogenous factors w/o attention 0.047 0.0011 0.042

exploit the long-term associations between inputs and outputs of the dataset.

As Table 7 illustrates, our model, CAED-TCN, is superior to the baseline models with

respect to all metrics and all forecast horizons. In fact, even the five-steps-ahead forecasts

from our model outperform the one-step-ahead forecasts from all of the baseline models.

There are two major reasons for this: 1) the adoption of the TCN architecture for the

encoder, and 2) the incorporation of the learned representation for exogenous factors. In

addition to the enhancement provided by the attention mechanism, teacher forcing and the

representation learning of the exogenous factors, the TCN encoder exploits local connectivity

and parameter-sharing to provide more efficient and stable learning. Although the Modified

LAS approach provides the closest performance to our model, it requires learning 13, 680, 500

parameters while our model only has 1, 362, 688 learnable parameters. This is an essential

contribution of our work, where we are able to reduce the learning computational complexity

by approximately 90%.

Next, we focus on the five-steps ahead forecasts and illustrate the importance of incor-

porating exogenous factors as well as the multivariate time-series data in our model. The

univariate time-series input contains only closing price history, while the multivariate time-

series includes all values in St. Clearly, learning the latent representation for the multivariate
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Table 9: Coverage Probability of the Stock Price Prediction Model

Dataset Model CP at 99% CP at 95%

AMZN Modified LAS 0.71 0.57

CAED-TCN 0.89 0.83

AAPL Modified LAS 0.87 0.71

CAED-TCN 0.98 0.87

time-series feeds the decoder with more information that better explains the past behavior

of the target company stock. For AMZN this modification to the stock history encoding

yields a reduction of around 12%, 14% and 13% for the RMSE, sMAPE and sL1 respec-

tively, as shown in Table 8. Furthermore, the representation learning of the external factors

discussed in the previous section advanced the performance by 16% for the RMSE, 41%

for sMAPE and 17% for the sL1. Similarly, for AAPL stock, the incorporation of multi-

variate time-series reduced the RMSE by 28%, while the incorporation of exogenous factors

led to a further 16% reduction. The same general trend can be observed for the other eval-

uation metrics. Therefore, the analysis here suggests that including exogenous factors and

the more comprehensive encoding for the stock price history enhances the learning of our

model. Furthermore, the table illustrates the importance of the attention related aspect in

our architecture for the learning enhancement process.

Finally, we end our discussion by examining the uncertainty estimation associated with

our model to provide some measure of confidence in our forecasts. Once again, we restrict our

attention to the one-step ahead prediction, and the comparison is limited to our CAED-TCN

model and the only other truly competitive baseline model (modified LAS). Table 9 shows

the coverage probability (CP) for both models for both datasets. The CP of our CAED-

TCN is higher than the CP of modified LAS for both datasets across different confidence

levels. More precisely, at a 95% confidence level, the CP for CAED-TCN exceeds that of

the modified LAS by 26% and 16% for AMZN and AAPL respectively. The same pattern is

observed at a 99% confidence level with a 27% advantage for the AMZN dataset and 11%

98



Figure 35: 99% Confidence intervals
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for AAPL. Our model was able to capture the movement of the closing price with narrower

confidence intervals for both stocks (Figures 35 & 36). These figures provide more support

to the conclusion that CAED-TCN is superior to the modified LAS model.

5.4 Conclusion

In this chapter we have proposed a confident, attentive, encoder-decoder with TCN

(CAED-TCN) model, a novel deep-learning based approach for stock closing price predic-

tions. We address several technical challenges such as representation learning for exogenous

factors, latent representation for multivariate time-series, model robustness, and forecast un-

certainty estimation. We first design the auto-encoder to learn how to represent exogenous

factors. Then, we leverage the encoder-decoder framework to map the historical records of

the target stock to a latent representation. Our design for the encoder consists of a temporal

convolution network (TCN) structure, while the decoder has two stacked LSTM layers fol-

lowed by a convolution layer and an MLP. A general attention mechanism is deployed, and

a teacher-forcing policy helps the model to learn how to recover from early mistakes in the

forecast horizon.

We learn that representation learning with exogenous factors, and additional historical

time-series data incorporation enhance the performance of our model. We quantify uncer-

tainty estimation by designing the architecture with Monte Carlo dropout layers. This step

is done during inference by running the model multiple times to build a confidence interval

instead of relying on a single forecast. Our experimental study on AMZN and AAPL stocks

demonstrates that our model outperforms other advanced models.

The next step would be to extend the model to perform online learning and predict stock

prices in real time. It can also be deployed as an input model to design a more comprehensive

automated trading system. Another direction for this work might be to tailor this model to

fit other application domains with relatively similar underlying structures.
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Figure 36: 95% Confidence intervals
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6.0 Summary and Conclusions

The work discussed in this dissertation has been in the realm of harnessing advancements

in deep learning to build reliable time-series forecasting models for real-life applications. Our

models for the three applications studied share three fundamental characteristics: 1) the

ability to generate demand for multiple steps in the future, 2) the ability to produce forecast

distributions instead of single estimates, and 3) the flexibility to incorporate exogenous

factors. In Chapters 3 & 4, we focus on forecasting travel demand for both taxi & ride-

sharing companies. This is vital to develop efficient and effective dispatch systems that

can optimize important business metrics. The main task of Chapter 3 was to design a

novel, reliable region-based prediction framework that is capable of providing the following

information: 1) Expected real-time demand originating from each micro-geographical region

within a specific time interval for multiple steps in the future, and 2) An uncertainty estimate

for each forecast. Our contribution in this chapter can be described as following:

• We introduce a two-stage novel deep neural network (MSPN-TCN). Our network uti-

lizes the encoder-decoder framework with TCN architecture and MC dropout layers to

generate the desired distributions.

• We deploy transfer learning in the second stage to incorporate exogenous factors (e.g.,

time-series trend and seasonality, and temporal clustering) for further learning enhance-

ment.

• Our experimental study shows the superiority of our model over other advanced baselines

on two datasets for NYC Taxi and Uber services.

• The number of learnable parameters are significantly lower with the deployment of TCN

and transfer learning when compared to modified-LAS (the most competing model).

In Chapter 4, the scope of our approach was extended to include destination information

in our forecasting. This results in a time series of graphs, and we forecast not just demand

but the flow of demand. Demand flow network forecasting is essential, especially in a world

that is moving increasingly towards a shared economy. Recent innovative ride-sharing prod-
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ucts rely heavily on prior knowledge of demand with similar routes. The availability of such

information can greatly improve the quality of supply-demand matches. The desired out-

comes of our model are the same as in Chapter 3, but for the demand flow network instead

of pick-up zones based demand. The incorporation of destination in the modeling substan-

tially affects the nature of data we deal with, and changes the view point of demand from

one involving isolated data points to one involving relationships and interactions between

geographical nodes. Our contributions in Chapter 4 can be summarized as following:

• We introduce an end-to-end encoder-decoder framework capable of understanding the

topological characteristics of travel demand flow networks and generating stochastic

travel demand networks for multiple step ahead in the future.

• We test our model on two real-world datasets and the results confirm the advantage our

model has over other common advanced baselines based on three different evaluation

metrics.

• We test our model on data prior and post COVID-19 pandemic, and the results support

the robustness of our model.

Finally, in Chapter 5, we studied how the overall structure of our deep learning approach

might generalize to other domains, by applying it to another complex area, namely finance.

The structure of the model is similar to the models described in Chapters 3 & 4 where the

encoder-decoder framework is used for representation learning. Also, the output of the model

is in the form of prediction intervals for multiple steps in the future. The goal in Chapter 5

is to build a deep-learning based model for stock price distribution forecasting for multiple

steps ahead. Our contributions in this chapter are twofold:

• We propose an end-to-end feature learning framework with a novel architecture for multi-

step stock price forecasting. We use an auto-encoder for the unsupervised learning part

where we learn an embedding for the external factors that include the stock price of

other companies in the market along with important market indices. We also leverage

the encoder-decoder framework to map the historical time-series into a latent represen-

tation and then decode it to generate future forecasts. The architecture of our model

incorporates MC dropout for future stock price uncertainty estimation.
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• We validate our model on two real datasets for AMZN and AAPL stocks and our experi-

ments demonstrate the performance improvement obtained by our model when compared

to other baseline methods.
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Appendix A Glossary

AI Artificial Intelligence. 1

ANN Artificial Neural Network. 9

BNN Bayesian Neural Network. 29

CNN Convolutional Neural Network. 3

CP Coverage Probability. 98

CRF Conditional Random Field. 27

DL Deep Learning. 1

GCRF Gaussian Conditional Random Field. 27

GPU Graphical Processing Unit. 1

GRU Gated Recurrent Unit. 28

IoT Internet of Things. 2

ITS Intelligent Transportation Systems. 3

LAS Listen Attend Spell. 28

LSTM Long Short Term Memory. 17

ML Machine Learning. 1, 24

MLP Multi Layer Perception. 6

NLP Natural Language Processing. 1

RF Random Forest. 83

RNN Recurrent Neural Network. 3

SVM Support Vector Machine. 2

TCN Temporal Convolution Network. 19
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Appendix B Region Based Model

Data loading:

class MyDataset ( data . Dataset ) :

def i n i t ( s e l f , X, window=50):

s e l f .X = X

s e l f . window=window

def l e n ( s e l f ) :

return len ( s e l f .X)−2∗ s e l f . window

def g e t i t em ( s e l f , index ) :

X = torch . from numpy ( s e l f .X[ index : index+s e l f . window , : −22 ] ) . f loat ( )

X ext=torch . from numpy ( s e l f .X[ index+s e l f . window , −22 : ] ) . f loat ( )

Y = torch . from numpy ( s e l f .X[ index+s e l f . window : index+2∗ s e l f . window , : −22 ] ) . f loat ( ) #. reshape (522)

Y 2=torch . from numpy ( s e l f .X[ index+s e l f . window+1 , : −22]) . f loat ( )

return X,Y, X ext , Y 2

num workers = 8 i f cuda else 0

ba t ch s i z e=32

# Train ing

t r a i n d a t a s e t = MyDataset ( t r a i n )

t r a i n l o a d e r a r g s = dict ( s h u f f l e=True , b a t ch s i z e=batch s i z e , num workers=num workers , pin memory=True )

i f cuda else dict ( s h u f f l e=True , b a t ch s i z e=ba t ch s i z e )

t r a i n l o a d e r = data . DataLoader ( t r a i n da ta s e t , ∗∗ t r a i n l o a d e r a r g s )

# Tes t ing

t e s t d a t a s e t = MyDataset ( t e s t )

t e s t l o a d e r a r g s = dict ( s h u f f l e=False , b a t ch s i z e=batch s i z e , num workers=num workers , pin memory=True )

i f cuda else dict ( s h u f f l e=False , b a t ch s i z e=ba t ch s i z e )

t e s t l o a d e r = data . DataLoader ( t e s t da t a s e t , ∗∗ t e s t l o a d e r a r g s )
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TCN:

class Chomp1d(nn . Module ) :

def i n i t ( s e l f , chomp size ) :

super (Chomp1d , s e l f ) . i n i t ( )

s e l f . chomp size = chomp size

def forward ( s e l f , x ) :

return x [ : , : , :− s e l f . chomp size ] . cont iguous ( )

class TemporalBlock (nn . Module ) :

def i n i t ( s e l f , n inputs , n outputs , k e r n e l s i z e , s t r i d e , d i l a t i on , padding , dropout =0.2) :

super ( TemporalBlock , s e l f ) . i n i t ( )

s e l f . conv1 = weight norm (nn . Conv1d ( n inputs , n outputs , k e r n e l s i z e ,

s t r i d e=s t r i d e , padding=padding , d i l a t i o n=d i l a t i o n ) )

s e l f . chomp1 = Chomp1d( padding )

s e l f . r e l u1 = nn .ReLU( )

s e l f . dropout1 = nn . Dropout ( dropout )

s e l f . conv2 = weight norm (nn . Conv1d ( n outputs , n outputs , k e r n e l s i z e ,

s t r i d e=s t r i d e , padding=padding , d i l a t i o n=d i l a t i o n ) )

s e l f . chomp2 = Chomp1d( padding )

s e l f . r e l u2 = nn .ReLU( )

s e l f . dropout2 = nn . Dropout ( dropout )

s e l f . net = nn . Sequent i a l ( s e l f . conv1 , s e l f . chomp1 , s e l f . re lu1 , s e l f . dropout1 ,

s e l f . conv2 , s e l f . chomp2 , s e l f . re lu2 , s e l f . dropout2 )

s e l f . downsample = nn . Conv1d ( n inputs , n outputs , 1) i f n inputs != n outputs else None

s e l f . r e l u = nn .ReLU( )

s e l f . i n i t w e i g h t s ( )

def i n i t w e i g h t s ( s e l f ) :

s e l f . conv1 . weight . data . normal (0 , 0 . 01 )

s e l f . conv2 . weight . data . normal (0 , 0 . 01 )

i f s e l f . downsample i s not None :

s e l f . downsample . weight . data . normal (0 , 0 . 01 )

def forward ( s e l f , x ) :

out = s e l f . net ( x )

r e s = x i f s e l f . downsample i s None else s e l f . downsample (x )

return s e l f . r e l u ( out + re s )

class TemporalConvNet (nn . Module ) :

def i n i t ( s e l f , num inputs , num channels , k e r n e l s i z e =2, dropout =0.2) :

super (TemporalConvNet , s e l f ) . i n i t ( )

l a y e r s = [ ]

num leve l s = len ( num channels )

for i in range ( num leve l s ) :

d i l a t i o n s i z e = 2 ∗∗ i

i n channe l s = num inputs i f i == 0 else num channels [ i −1]

out channe l s = num channels [ i ]

l a y e r s +=

[ TemporalBlock ( in channe l s , out channe ls , k e r n e l s i z e , s t r i d e =1, d i l a t i o n=d i l a t i o n s i z e ,

padding=( k e r n e l s i z e −1) ∗ d i l a t i o n s i z e , dropout=dropout ) ]

s e l f . network = nn . Sequent i a l (∗ l a y e r s )

def forward ( s e l f , x ) :

return s e l f . network (x )

class TCN(nn . Module ) :

def i n i t ( s e l f , i npu t s i z e , output s i z e , num channels , k e r n e l s i z e , dropout ) :

super (TCN, s e l f ) . i n i t ( )

s e l f . tcn = TemporalConvNet ( i npu t s i z e , num channels , k e r n e l s i z e=k e r n e l s i z e , dropout=dropout )

def forward ( s e l f , inputs ) :

””” Inpu t s have to have dimension (N, C in , L in ) ”””

”””N: ”””

””” C in : ”””

””” L in : s e q l e n ”””

y1 = s e l f . tcn ( inputs ) # inpu t s hou l d have dimension (N, C, L)

return y1
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Attention:

class Attent ion (nn . Module ) :

def i n i t ( s e l f ) :

super ( Attention , s e l f ) . i n i t ( )

def forward ( s e l f , query , key , value ) :

’ ’ ’

: param query : (N, c o n t e x t s i z e ) Query i s t h e ou tpu t o f LSTMCell from Decoder

: param key : (N, k e y s i z e ) Key Pro j e c t i o n from Encoder per t ime s t e p

: param va l u e : (N, v a l u e s i z e ) Value P ro j e c t i o n from Encoder per t ime s t e p

: r e t u rn ou tpu t : At tended Contex t

: r e t u rn a t t e n t i on mas k : A t t en t i on mask t h a t can be p l o t t e d

’ ’ ’

energy = torch .bmm( key . permute (1 , 0 , 2 ) , query . unsqueeze ( 2 ) )

energy=energy . squeeze ( 2 ) . to ( dev i ce )

a t t en t i on = nn . f un c t i ona l . softmax ( energy , dim=1)

context = torch .bmm( at t en t i on . unsqueeze (1 ) , va lue . permute ( 1 , 0 , 2 ) ) . squeeze (1)

return context , a t t en t i on

Encoder:

class Encoder (nn . Module ) :

def i n i t ( s e l f , input dim , hidden dim , v a l u e s i z e =256 , k e y s i z e =256):

super ( Encoder , s e l f ) . i n i t ( )

s e l f . tcn = TCN( i n pu t s i z e=input dim , ou tpu t s i z e=hidden dim , num channels =[32 , 528 , 50 ] ,

k e r n e l s i z e =2,dropout =0.1)

s e l f . key network = nn . Linear (50 , v a l u e s i z e )

s e l f . va lue network = nn . Linear (50 , k e y s i z e )

def forward ( s e l f , x ) :

x = x . permute (0 , 2 , 1 )

x = s e l f . tcn (x )

keys = s e l f . key network (x . permute ( 0 , 2 , 1 ) )

value = s e l f . va lue network (x . permute ( 0 , 2 , 1 ) )

return keys , va lue
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Decoder

class Decoder (nn . Module ) :

def i n i t ( s e l f , input dim , hidden dim , v a l u e s i z e =256 , k e y s i z e =256 , i sAttended=False ) :

super ( Decoder , s e l f ) . i n i t ( )

s e l f . l i n e a r 1=nn . Linear ( input dim , hidden dim )

s e l f . lstm1 = nn . LSTMCell ( i n pu t s i z e=hidden dim+va lu e s i z e , h i dden s i z e=hidden dim )

s e l f . lstm2 = nn . LSTMCell ( i n pu t s i z e=hidden dim , h i dden s i z e=k ey s i z e )

s e l f . i sAttended = isAttended

i f ( i sAttended ) :

s e l f . a t t en t i on = Attent ion ( )

s e l f . l i n e a r 2 = nn . Linear ( k e y s i z e+va l u e s i z e , input dim )

s e l f . r e l u e=nn .ReLU( )

def forward ( s e l f , keys , values , y=None , t r a i n=True , t e a c h e r f o r c i n g r a t e =0.8) :

keys=keys . permute (1 , 0 , 2 ) #se q l e n , batch , k e y s s i z e

va lues=va lues . permute (1 , 0 , 2 ) #se q l e n , batch , v a l u e s s i z e

ba t ch s i z e = keys . shape [ 1 ]

i f ( t r a i n ) :

max len = y . shape [ 1 ]

out1 = s e l f . l i n e a r 1 (y )

else :

max len = 50

p r e d i c t i o n s l i s t = [ ]

h i dden s t a t e s = [ None , None ]

p r ed i c t i on = torch . z e ro s ( ba t ch s i z e , 1 ) . to ( dev i ce )

for i in range ( max len ) :

’ ’ ’

t e a c h e r f o r c i n g t e c hn i q u e

’ ’ ’

i f ( t r a i n ) :

i f y ==None :

t e a c h e r f o r c i n g r a t e=0

i f i ==0:

t e a c h e r f o r c i n g r a t e=1

t e a c h e r f o r c i n g = True i f random . random () < t e a c h e r f o r c i n g r a t e else False

i f t e a c h e r f o r c i n g :

downsampled input = out1 [ : , i −1 , : ]

else :

print ( ” i ” , i , np . shape ( p r ed i c t i on ) )

downsampled input=s e l f . l i n e a r 1 ( p r ed i c t i on )

else :

downsampled input = s e l f . l i n e a r 1 ( p r ed i c t i on )

i f i ==0:

context=torch . z e ro s ( ba t ch s i z e , va lues . s i z e ( −1)) . to ( dev i ce )

inp = torch . cat ( [ downsampled input , context ] , dim=1)

h idden s t a t e s [ 0 ] = s e l f . lstm1 ( inp , h idden s t a t e s [ 0 ] )

inp 2 = h idden s t a t e s [ 0 ] [ 0 ]

h i dden s t a t e s [ 1 ] = s e l f . lstm2 ( inp 2 , h idden s t a t e s [ 1 ] )

output = h idden s t a t e s [ 1 ] [ 0 ]

query=output

value=va lues [ : , : , : ]

i f ( s e l f . i sAttended ) :

context , a t t en t i on=s e l f . a t t en t i on ( query , keys , value )

else :

context=value [ − 1 , : , : ]

p r ed i c t i on = s e l f . l i n e a r 2 ( torch . cat ( [ output , context ] , dim=1))

p r e d i c t i o n s l i s t . append ( p r ed i c t i on . unsqueeze ( 1 ) )

return torch . cat ( p r e d i c t i o n s l i s t , dim=1)

Seq2seq:

class Seq2Seq (nn . Module ) :

def i n i t ( s e l f , input dim , hidden dim , v a l u e s i z e =256 , k e y s i z e =256 , i sAttended=False ) :

super ( Seq2Seq , s e l f ) . i n i t ( )

s e l f . encoder = Encoder ( input dim , hidden dim )

s e l f . decoder = Decoder ( input dim , hidden dim )

def forward ( s e l f , x , y=None , t r a i n=True ) :

key , value = s e l f . encoder (x )

i f ( t r a i n ) :

p r e d i c t i o n s = s e l f . decoder ( key , value , y )

else :

p r e d i c t i o n s = s e l f . decoder ( key , value , y=None , t r a i n=False )

return p r ed i c t i o n s
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Decoder (stage II):

class Stage2 (nn . Module ) :

def i n i t ( s e l f , input dim , hidden dim , output s i z e , v a l u e s i z e =256 , e x t e n a l s i z e =22):

super ( Stage2 , s e l f ) . i n i t ( )

s e l f . encoder = Encoder ( input dim , hidden dim )

s e l f . l i n e a r 1 = nn . Linear ( v a l u e s i z e+ex t ena l s i z e , hidden dim ∗2) #269=hid d im+ex t d im

s e l f . l i n e a r 2 = nn . Linear ( hidden dim ∗2 , hidden dim )

s e l f . l i n e a r 3 = nn . Linear ( hidden dim ∗2 , hidden dim )

s e l f . l i n e a r ou tpu t = nn . Linear ( hidden dim , ou tpu t s i z e )

s e l f . r e l u e=nn .ReLU( )

s e l f . bn=nn . BatchNorm1d ( hidden dim ∗2)

s e l f . bn2=nn . BatchNorm1d ( hidden dim )

def forward ( s e l f , x , x ext ) :

b a t ch s i z e=x . s i z e (0 )

zz , enc output=s e l f . encoder (x )

out=F. dropout ( enc output , p=0.3 , t r a i n i n g=True )

inp=torch . cat ( [ out [ : , − 1 , : ] . reshape ( ba t ch s i z e , −1) , x ext ] , dim=1)

del zz

del enc output

inp = s e l f . l i n e a r 1 ( inp )

inp=s e l f . r e l u e ( inp )

inp=F. dropout ( inp , p=0.2 , t r a i n i n g=True )

inp = s e l f . l i n e a r 2 ( inp )

inp=s e l f . r e l u e ( inp )

inp=F. dropout ( inp , p=0.2 , t r a i n i n g=True )

l i n e a r ou tpu t= s e l f . l i n e a r ou tpu t ( inp )

return l i n e a r ou tpu t

Training Function:

def t r a i n (model , t r a i n l o ad e r , c r i t e r i o n , c r i t e r i o n 2 , c r i t e r i o n 3 , opt imizer , i ) :

model . t r a i n ( )

loss RMSE = 0

loss L1 smooth=0

loss sMAPE=0

s t a r t t ime = time . time ( )

for batch num , (x , y , X ext , Y 2 ) in enumerate ( t r a i n l o a d e r ) :

x = x . to ( dev i ce ) #( batch , s e q l e n =130 , inpu t d im=522)

y = y . to ( dev i ce )

p r ed i c t i o n s = model (x , y )

l o s s = torch . sq r t ( c r i t e r i o n ( p r ed i c t i o n s [ : , 0 : 2 6 4 ] , y [ : , 0 : 2 6 4 ] ) )

l o s s 2 = c r i t e r i o n 2 ( p r ed i c t i o n s [ : , 0 : 2 6 4 ] , y [ : , 0 : 2 6 4 ] )

l o s s 3 = c r i t e r i o n 3 ( p r ed i c t i o n s [ : , 0 : 2 6 4 ] , y [ : , 0 : 2 6 4 ] )

l o s s . backward ( )

opt imize r . s tep ( )

loss RMSE+=l o s s . item ( )

loss L1 smooth+=l o s s 2 . item ( )

loss sMAPE+=lo s s 3 . item ( )

del p r ed i c t i o n s

del l o s s

del x , y

loss RMSE /= len ( t r a i n l o a d e r )

loss L1 smooth/= len ( t r a i n l o a d e r )

loss sMAPE/= len ( t r a i n l o a d e r )

end time=time . time ( )

return loss RMSE , loss L1 smooth , loss sMAPE
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Validation function:

def va l (model , va l l o ade r , c r i t e r i o n , c r i t e r i o n 2 , c r i t e r i o n 3 , opt imizer , i ) :

with torch . no grad ( ) :

model . eval ( )

loss RMSE = 0

loss L1 smooth=0

loss sMAPE=0

s t a r t t ime = time . time ( )

output =[ ]

for batch num , (x , y , X ext , Y 2 ) in enumerate ( v a l l o ad e r ) :

x = x . to ( dev i ce )

y = y . to ( dev i ce )

p r ed i c t i o n s = model (x , y , t r a i n=True )

# pr i n t (” p r e d i c t i o n s ” , p r e d i c t i o n s . s i z e ( ) )

l o s s = torch . sq r t ( c r i t e r i o n ( p r ed i c t i o n s [ : , 0 : 2 6 4 ] , y [ : , 0 : 2 6 4 ] ) )

l o s s 2 = c r i t e r i o n 2 ( p r ed i c t i o n s [ : , 0 : 2 6 4 ] , y [ : , 0 : 2 6 4 ] )

l o s s 3 = c r i t e r i o n 3 ( p r ed i c t i o n s [ : , 0 : 2 6 4 ] , y [ : , 0 : 2 6 4 ] )

output . append ( p r ed i c t i o n s )

loss RMSE+=l o s s . item ( )

loss L1 smooth+=l o s s 2 . item ( )

loss sMAPE+=lo s s 3 . item ( )

del p r ed i c t i o n s

del l o s s

del x , y

loss RMSE /= len ( v a l l o ad e r )

loss L1 smooth/= len ( v a l l o ad e r )

loss sMAPE/= len ( v a l l o ad e r )

end time=time . time ( )

return loss RMSE , loss L1 smooth , loss sMAPE , output
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Appendix C Demand Flow Prediction

Graph generation:

def ge t comp l e t e ad j ( g , edge idx , zones =270):

matrix=np . z e ro s ( ( zones , zones ) )

a t t l i s t=l i s t ( nx . g e t e d g e a t t r i b u t e s (g , ’demand ’ ) . va lues ( ) )

keys=l i s t ( nx . g e t e d g e a t t r i b u t e s (g , ’demand ’ ) . keys ( ) )

for i in range ( len ( keys ) ) :

r , c=int ( keys [ i ] [ 0 ] ) , int ( keys [ i ] [ 1 ] )

matrix [ r−1,c−1]= a t t l i s t [ i ]

return matrix

def g r a p h l i s t ( data , weather ) :

data=data . dropna ( )

GRAPHS=[]

ex t e rna l =[ ]

adj =[ ]

edge idx =[ ]

min time=pd . to datet ime ( data [ ’ Pickup DateTime ’ ] .min ( ) ) . f l o o r ( ’h ’ )

max time=pd . to datet ime ( data [ ’ Pickup DateTime ’ ] .max( ) ) . f l o o r ( ’h ’ )+pd . DateOffset ( hours=1)

t im e h ou r l i s t=pd . date range (min time , max time , f r e q=’H ’ )

for t in t im e h ou r l i s t :

t=str ( t )

print ( t )

window=data [ ( data [ ’ Pickup DateTime ’ ] >= t ) & ( data [ ’ Pickup DateTime ’ ] <

str (pd . to datet ime ( t)+pd . DateOffset ( hours =1))) ]

print ( len (window ) )

data window=pd . DataFrame (window . groupby ( [ ’ PUlocationID ’ , ’ DOlocationID ’ ] ) . count ( ) )

[ ’ Pickup DateTime ’ ] . r e s e t i nd ex ( )

data window . rename ({ ’ Pickup DateTime ’ : ’demand ’ } , ax i s =1, i np l a c e=True )

g=graph generat ion ( data window )

ext=g e t e x t e r n a l f a c t o r s ( t , weather )

ex t e rna l . append ( ext )

GRAPHS. append ( g )

edge idx . append ( g . edges ( data=True ) )

ad j matr ix=ge t comp l e t e ad j ( g , edge idx )

adj . append ( adj matr ix )

return GRAPHS, np . array ( adj ) , edge idx , ex t e rna l
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Data loading:

class MyDataset ( data . Dataset ) :

def i n i t ( s e l f , adj , ext , window=5,pred window=5):

s e l f . adj = adj

s e l f . ext=np . array ( ext )

s e l f . window=window

s e l f . pred window=pred window

def l e n ( s e l f ) :

return len ( s e l f . adj )−2∗ s e l f . window

def g e t i t em ( s e l f , index ) :

adj=torch . from numpy ( s e l f . adj [ index : index+s e l f . window ] ) . f loat ( )

x=torch . eye ( s e l f . adj . shape [ 1 ] ) . f loat ( )

x = x . repeat ( s e l f . window , 1 , 1 )

y=torch . eye ( s e l f . adj . shape [ 1 ] ) . f loat ( )

y = y . repeat ( s e l f . pred window , 1 , 1 )

ad j y=torch . from numpy ( s e l f . adj [ index+s e l f . window : index+s e l f . window+s e l f . pred window ] ) . f loat ( )

ex t e rna l=torch . from numpy ( s e l f . ext [ index+s e l f . window : index+s e l f . window+s e l f . pred window ] ) . f loat ( )

return x , adj , y , adj y , ex t e rna l

num workers = 8 i f cuda else 0

ba t ch s i z e=32

# Train ing

t r a i n d a t a s e t = MyDataset ( t ra in , e x t t r a i n )

t r a i n l o a d e r a r g s = dict ( s h u f f l e=True , b a t ch s i z e=batch s i z e , num workers=num workers , pin memory=True )

i f cuda else dict ( s h u f f l e=True , b a t ch s i z e=ba t ch s i z e )

t r a i n l o a d e r = data . DataLoader ( t r a i n da ta s e t , ∗∗ t r a i n l o a d e r a r g s )

# # Tes t ing

t e s t d a t a s e t = MyDataset ( t e s t , e x t t e s t )

t e s t l o a d e r a r g s = dict ( s h u f f l e=False , b a t ch s i z e=batch s i z e , num workers=num workers , pin memory=True )

i f cuda else dict ( s h u f f l e=False , b a t ch s i z e=ba t ch s i z e )

t e s t l o a d e r = data . DataLoader ( t e s t da t a s e t , ∗∗ t e s t l o a d e r a r g s )

Encoder:

class Graph embedding ( torch . nn . Module ) :

’ ’ ’

Graph Conv to g e t embeddings

’ ’ ’

def i n i t ( s e l f , in channe l s , out channe l s ) :

super (Graph embedding , s e l f ) . i n i t ( )

s e l f . conv1 = DenseGCNConv( in channe l s , out channe ls , b i a s=True ) #in channe l=B∗N∗N
s e l f . conv2 = DenseGCNConv( out channe ls , in channe l s , b i a s=True )

def forward ( s e l f , x , adj , add loop=True ) :

x=s e l f . conv1 (x , adj )

x = F. r e l u (x )

return x

class Encoder ( torch . nn . Module ) :

’ ’ ’

Encode h i s t o r y o f demand graphs

’ ’ ’

def i n i t ( s e l f , in channe l s , out channe l s ) :

super ( Encoder , s e l f ) . i n i t ( )

s e l f . graph emb=Graph embedding ( i n channe l s =1, out channe l s=hidden dim )

s e l f . Conv2D=nn . Conv2d (1 , 1 , k e r n e l s i z e =16, padding=1, d i l a t i o n =10) #i n p u t s i z e =270

s e l f . Conv2D2=nn . Conv2d (1 , 1 , k e r n e l s i z e =16, padding=1, d i l a t i o n =5)

s e l f . L inear=nn . Linear (2401 ,512)

s e l f . lstm = nn .LSTM( i npu t s i z e =512 , h i dden s i z e =1024)

def forward ( s e l f , x , adj , ) :

ba t ch s i z e , s e q l e n=adj . shape [ 0 ] , adj . shape [ 1 ]

E=[ ] #Graph Embeddings

for i in range ( s e q l e n ) :

e=s e l f . graph emb (x [ : , i , : , : ] , adj [ : , i , : , : ] )

e=s e l f . Conv2D( e . unsqueeze ( 1 ) )

e=s e l f . Conv2D2( e )

e=torch . f l a t t e n ( e , s ta r t d im=1)

e=s e l f . L inear ( e )

E. append ( e )

E=torch . s tack (E)

output lstm , l a t en t =s e l f . lstm (E)

return output lstm , l a t en t
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Decoder:

class Decoder (nn . Module ) :

def i n i t ( s e l f , in channe l s , out channe ls , nodes=270 , i sAttended=False ) :

super ( Decoder , s e l f ) . i n i t ( )

s e l f . graph emb=Graph embedding ( i n channe l s =1, out channe l s=hidden dim )

s e l f . Conv2D=nn . Conv2d (1 , 1 , k e r n e l s i z e =16, padding=1, d i l a t i o n =10) #i n p u t s i z e =270

s e l f . Conv2D2=nn . Conv2d (1 , 1 , k e r n e l s i z e =16, padding=1, d i l a t i o n =5)

s e l f . l i n e a r g=nn . Linear (2401 ,512)

s e l f . lstm1 = nn . LSTMCell ( i n pu t s i z e =512 , h i dden s i z e =1024)

s e l f . lstm2 = nn . LSTMCell ( i n pu t s i z e =1024 , h i dden s i z e =1024)

s e l f . i sAttended = isAttended

i f ( i sAttended ) :

s e l f . a t t en t i on = Attent ion ( )

s e l f . l i n e a r 1 = nn . Linear (1024 ,2048)

s e l f . l i n e a r 2 = nn . Linear (2048+60 , nodes∗nodes )

s e l f . l i n e a r 3 = nn . Linear (4096 , nodes∗nodes )

s e l f . r e l u=nn .ReLU( )

def forward ( s e l f , l a t ent , exte rna l , y=None , ad j y=None , t r a i n=True , t e a c h e r f o r c i n g r a t e =0.8) :

’ ’ ’

: param key : (T,N, k e y s i z e )=( t ime / s e q l e n , batch , k e y s i z e ) Output o f t h e Encoder Key p r o j e c t i o n l a y e r

: param va l u e s : (T,N, v a l u e s i z e ) Output o f t h e Encoder Value p r o j e c t i o n l a y e r

: param t e x t : (N, s e q l e n ) Batch inpu t o f s eq w i th t e x t l e n g t h

: param t r a i n : Train or e v a l mode

: r e t u rn p r e d i c t i o n s : Returns t h e c ha r a c t e r p e r d i c t i o n p r o b a b i l i t y

’ ’ ’

ba t ch s i z e = y . shape [ 0 ]

i f ( t r a i n ) :

max len = y . shape [ 1 ]

else :

max len = 3

p r e d i c t i o n s l i s t = [ ]

h i dden s t a t e s = [ None , None ]

p r ed i c t i on = torch . z e ro s ( ba t ch s i z e , 270∗270 ) . to ( dev i ce )

for i in range ( max len ) :

’ ’ ’

Here you shou l d implement Gumble no i s e and t e a c h e r f o r c i n g t e c hn i q u e s

’ ’ ’

i f ( t r a i n ) :

i f y ==None :

t e a c h e r f o r c i n g r a t e=0

i f i ==0:

t e a c h e r f o r c i n g r a t e=1

t e a c h e r f o r c i n g = True i f random . random () < t e a c h e r f o r c i n g r a t e else False

i f t e a c h e r f o r c i n g :

dec input x , de c input ad j=y [ : , i , : , : ] , ad j y [ : , i , : , : ]

else :

print ( ” i ” , i , np . shape ( p r ed i c t i on ) )

dec input x=torch . eye ( s e l f . ad j y . shape [ 1 ] ) . f loat ( )

dec input x= dec input x . repeat ( ba t ch s i z e , 1 , 1 ) . to ( dev i ce )

de c input ad j=pr ed i c t i on

else :

dec input x=torch . eye ( s e l f . ad j y . shape [ 1 ] ) . f loat ( )

dec input x= dec input x . repeat ( ba t ch s i z e , 1 , 1 ) . to ( dev i ce )

de c input ad j=pr ed i c t i on

i f i ==0:

la tent h idden , l a t e n t ou t=l a t en t [ 0 ] . squeeze (0 ) , l a t en t [ 1 ] . squeeze ( 0 ) . to ( dev i ce )

e=s e l f . graph emb ( dec input x , de c input ad j )

e=s e l f . Conv2D( e . unsqueeze ( 1 ) )

e=s e l f . Conv2D2( e )

e=torch . f l a t t e n ( e , s ta r t d im=1)

e=s e l f . l i n e a r g ( e )

h idden s t a t e s [ 0 ] = s e l f . lstm1 ( e , ( l a tent h idden , l a t e n t ou t ) )

inp 2 = h idden s t a t e s [ 0 ] [ 0 ]

h i dden s t a t e s [ 1 ] = s e l f . lstm2 ( inp 2 , h idden s t a t e s [ 1 ] )

l a tent h idden , l a t e n t ou t = h idden s t a t e s [ 1 ] [ 0 ] , h i dden s t a t e s [ 1 ] [ 1 ]

output=l a t en t ou t

output=s e l f . l i n e a r 1 ( output )

output=F. dropout ( output , p=0.2 , t r a i n i n g=True )

output=torch . cat ( [ output , ex t e rna l . reshape ( ba t ch s i z e , −1) ] , dim=1)

output=s e l f . l i n e a r 2 ( output )

p r ed i c t i on=s e l f . r e l u ( output )

p r e d i c t i o n s l i s t . append ( p r ed i c t i on . unsqueeze ( 1 ) )

p r e d i c t i o n s l i s t=torch . s tack ( p r e d i c t i o n s l i s t ) . to ( dev i ce )

return p r e d i c t i o n s l i s t

114



Seq2seq:

class Seq2Seq (nn . Module ) :

def i n i t ( s e l f , i npu t s i z e , hidden dim , v a l u e s i z e =270 , k e y s i z e =270 , i sAttended=False ) :

super ( Seq2Seq , s e l f ) . i n i t ( )

s e l f . encoder = Encoder ( i n channe l s=inpu t s i z e , out channe l s=hidden dim )

s e l f . decoder = Decoder ( i n channe l s=inpu t s i z e , out channe l s=hidden dim )

def forward ( s e l f , x , adj , e x t e rna l=None , y=None , ad j y=None , t r a i n=True ) :

, l a t e n t= s e l f . encoder (x , adj )

i f ( t r a i n ) :

p r e d i c t i o n s = s e l f . decoder ( l a tent , exte rna l , y , ad j y )

else :

p r e d i c t i o n s = s e l f . decoder ( l a tent , exte rna l , y=None , t r a i n=False )

return p r ed i c t i o n s

Training function:

def t r a i n (model , t r a i n l o ad e r , c r i t e r i o n , c r i t e r i o n 2 , c r i t e r i o n 3 , opt imizer r , i =0):

model . t r a i n ( )

loss RMSE = 0

loss L1 smooth=0

loss sMAPE=0

s t a r t t ime = time . time ( )

for batch num , (x , adj , y , adj y , ex t e rna l ) in enumerate ( t r a i n l o a d e r ) :

x = x . to ( dev i ce ) #( batch ,N=nodes , f e a t u r e s i z e =1)

adj = adj . to ( dev i ce ) #( batch ,N,N)

y=y . to ( dev i ce )

ad j y=adj y . to ( dev i ce )

ex t e rna l=ex t e rna l . to ( dev i ce )

ad j hat = model (x , adj , externa l , y , ad j y ) . to ( dev i ce )

ad j y=torch . f l a t t e n ( adj y , s ta r t d im =2). squeeze ( 2 ) . to ( dev i ce )

ad j hat=adj hat . squeeze (2 )

ad j hat=adj hat . permute ( 1 , 0 , 2 ) . to ( dev i ce )

mask=(adj y !=0) . f loat ( )

ad j y=adj y ∗mask

ad j hat=adj hat ∗mask

l o s s=torch . sq r t ( c r i t e r i o n ( adj y , ad j hat ) ) . to ( dev i ce )

l o s s 2=c r i t e r i o n 2 ( adj y , ad j hat ) . to ( dev i ce )

l o s s 3=c r i t e r i o n 3 ( adj hat , ad j y ) . to ( dev i ce )

l o s s . backward ( )

opt imize r . s tep ( )

loss RMSE+=l o s s . item ( )

loss L1 smooth+=l o s s 2 . item ( )

loss sMAPE+=lo s s 3 . item ( )

del adj y , adj hat , l o s s , l o s s2 , l o s s3 , x , y , ex t e rna l

loss RMSE /= len ( t r a i n l o a d e r )

loss L1 smooth/= len ( t r a i n l o a d e r )

loss sMAPE/= len ( t r a i n l o a d e r )

end time=time . time ( )

print ( ’Epoch ’ , i +1, ’ Training RMSELoss : ’ , loss RMSE , ’ Training loss L1 smooth : ’ , loss L1 smooth ,

’ Training loss sMAPE : ’ , loss sMAPE , ’Time : ’ , end time − s ta r t t ime , ’ s ’ )

return loss RMSE , loss L1 smooth , loss sMAPE
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Validation function:

def va l (model , va l l o ade r , c r i t e r i o n , c r i t e r i o n 2 , c r i t e r i o n 3 , opt imizer , i =0):

with torch . no grad ( ) :

model . eval ( )

loss RMSE = 0

loss L1 smooth=0

loss sMAPE=0

s t a r t t ime = time . time ( )

output =[ ]

for batch num , (x , adj , y , adj y , ex t e rna l ) in enumerate ( t r a i n l o a d e r ) :

x = x . to ( dev i ce ) #( batch ,N=nodes , f e a t u r e s i z e =1)

adj = adj . to ( dev i ce ) #( batch ,N,N)

y=y . to ( dev i ce )

ad j y=adj y . to ( dev i ce )

ex t e rna l=ex t e rna l . to ( dev i ce )

ad j hat = model (x , adj , externa l , y , ad j y ) . to ( dev i ce )

ad j y=torch . f l a t t e n ( adj y , s ta r t d im =2). squeeze ( 2 ) . to ( dev i ce )

ad j hat=adj hat . squeeze (2 )

ad j hat=adj hat . permute ( 1 , 0 , 2 ) . to ( dev i ce )

mask=(adj y !=0) . f loat ( )

ad j y=adj y ∗mask

ad j hat=adj hat ∗mask

l o s s=torch . sq r t ( c r i t e r i o n ( adj y , ad j hat ) ) . to ( dev i ce )

l o s s 2=c r i t e r i o n 2 ( adj y , ad j hat ) . to ( dev i ce )

l o s s 3=c r i t e r i o n 3 ( adj hat , ad j y ) . to ( dev i ce )

loss RMSE+=l o s s . item ( )

loss L1 smooth+=l o s s 2 . item ( )

loss sMAPE+=lo s s 3 . item ( )

output . append ( ad j hat )

del adj y , adj hat , l o s s , l o s s2 , l o s s3 , x , y

loss RMSE /= len ( v a l l o ad e r )

loss L1 smooth/= len ( v a l l o ad e r )

loss sMAPE/= len ( v a l l o ad e r )

end time=time . time ( )

print ( ’Epoch ’ , i +1, ’ Test ing RMSELoss : ’ , loss RMSE , ’ Test ing loss L1 smooth : ’ , loss L1 smooth ,

’ Test ing loss sMAPE : ’ , loss sMAPE , ’Time : ’ , end time − s ta r t t ime , ’ s ’ )

return loss RMSE , loss L1 smooth , loss sMAPE , output
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Appendix D Stock Price Prediction

Data loading:

class MyDataset ( data . Dataset ) :

def i n i t ( s e l f , X, window=50, f =1):

s e l f .X = X

s e l f . window=window

s e l f . f=f

def l e n ( s e l f ) :

return len ( s e l f .X)−2∗ s e l f . window

def g e t i t em ( s e l f , index ) :

X = torch . from numpy ( s e l f .X[ index : index+s e l f . window , −12 : ] ) . f loat ( )

X ext=torch . from numpy ( s e l f .X[ index+s e l f . window , : −12 ] ) . f loat ( )

Y = torch . from numpy ( s e l f .X[ index+s e l f . window : index+s e l f . window+s e l f . f , −12 : ] ) . f loat ( )

Y 2=torch . from numpy ( s e l f .X[ index+s e l f . window+s e l f . f , −12 : ] ) . f loat ( )

return X,Y, X ext , Y 2

num workers = 8 i f cuda else 0

ba t ch s i z e=32

# Train ing

t r a i n d a t a s e t = MyDataset ( t r a i n )

t r a i n l o a d e r a r g s = dict ( s h u f f l e=True , b a t ch s i z e=batch s i z e , num workers=num workers , pin memory=True ,

d r op l a s t=True ) i f cuda else dict ( s h u f f l e=True , b a t ch s i z e=ba t ch s i z e )

t r a i n l o a d e r = data . DataLoader ( t r a i n da ta s e t , ∗∗ t r a i n l o a d e r a r g s )

# Tes t ing

t e s t d a t a s e t = MyDataset ( t e s t )

t e s t l o a d e r a r g s = dict ( s h u f f l e=False , b a t ch s i z e=batch s i z e , num workers=num workers , pin memory=True )

i f cuda else dict ( s h u f f l e=False , b a t ch s i z e=ba t ch s i z e )

t e s t l o a d e r = data . DataLoader ( t e s t da t a s e t , ∗∗ t e s t l o a d e r a r g s )
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Auto-encoder:

class Encoder (nn . Module ) :

def i n i t ( s e l f , s eq l en , n f ea tu r e s , embedding dim=64):

super ( Encoder , s e l f ) . i n i t ( )

s e l f . s eq l en , s e l f . n f e a t u r e s = seq l en , n f e a t u r e s

s e l f . embedding dim , s e l f . hidden dim = embedding dim , 2 ∗ embedding dim

s e l f . encoder1 = nn . Linear ( i n f e a t u r e s=s e l f . n f e a tu r e s ,

o u t f e a t u r e s=s e l f . hidden dim )

s e l f . a c t i v a t i on1 = nn .ReLU( s e l f . hidden dim )

s e l f . encoder2 = nn . Linear ( i n f e a t u r e s=s e l f . hidden dim ,

ou t f e a t u r e s=s e l f . embedding dim )

s e l f . a c t i v a t i on2 = nn .ReLU( s e l f . embedding dim )

s e l f . encoder3 = nn . Linear ( i n f e a t u r e s=s e l f . embedding dim ,

ou t f e a t u r e s =128)

s e l f . a c t i v a t i on3 = nn .ReLU( s e l f . embedding dim /2)

s e l f . encoder4 = nn . Linear ( i n f e a t u r e s =128 ,

ou t f e a t u r e s =64)

s e l f . a c t i v a t i on4 = nn .ReLU( s e l f . embedding dim /4)

s e l f . encoder5 = nn . Linear ( i n f e a t u r e s =64,

ou t f e a t u r e s =32)

s e l f . a c t i v a t i on5 = nn .ReLU( s e l f . embedding dim /8)

def forward ( s e l f , x ) :

x = s e l f . encoder1 (x )

x = s e l f . a c t i v a t i on1 (x )

x = s e l f . encoder2 (x )

x = s e l f . a c t i v a t i on2 (x )

x = s e l f . encoder3 (x )

x = s e l f . a c t i v a t i on3 (x )

x = s e l f . encoder4 (x )

x = s e l f . a c t i v a t i on4 (x )

x = s e l f . encoder5 (x )

x = s e l f . a c t i v a t i on5 (x )

return x

def i n i t ( s e l f , s eq l en , input dim=64, n f e a t u r e s =1):

super ( Decoder , s e l f ) . i n i t ( )

s e l f . s eq l en , s e l f . input dim = seq l en , input dim

s e l f . hidden dim , s e l f . n f e a t u r e s = 2 ∗ input dim , n f e a t u r e s

s e l f . decoder1 = nn . Linear ( i n f e a t u r e s =32,

ou t f e a t u r e s =64)

s e l f . a c t i v a t i on1 = nn .ReLU( s e l f . input dim /4)

s e l f . decoder2 = nn . Linear ( i n f e a t u r e s =64,

ou t f e a t u r e s =128)

s e l f . a c t i v a t i on2 = nn .ReLU( s e l f . input dim /2)

s e l f . decoder3 = nn . Linear ( i n f e a t u r e s =128 ,

ou t f e a t u r e s=s e l f . input dim )

s e l f . a c t i v a t i on3 = nn .ReLU( s e l f . input dim )

s e l f . decoder4 = nn . Linear ( i n f e a t u r e s=s e l f . input dim ,

ou t f e a t u r e s=s e l f . input dim )

s e l f . a c t i v a t i on4 = nn .ReLU( s e l f . input dim )

s e l f . decoder5 = nn . Linear ( i n f e a t u r e s=s e l f . input dim ,

ou t f e a t u r e s=s e l f . hidden dim )

s e l f . a c t i v a t i on5 = nn .ReLU( s e l f . hidden dim )

s e l f . ou tput l aye r = nn . Linear ( i n f e a t u r e s=s e l f . hidden dim ,

ou t f e a t u r e s=s e l f . n f e a t u r e s )

def forward ( s e l f , x ) :

x = s e l f . decoder1 (x )

x = s e l f . a c t i v a t i on1 (x )

x = s e l f . decoder2 (x )

x = s e l f . a c t i v a t i on2 (x )

x = s e l f . decoder3 (x )

x = s e l f . a c t i v a t i on3 (x )

x = s e l f . decoder4 (x )

x = s e l f . a c t i v a t i on4 (x )

x = s e l f . decoder5 (x )

x = s e l f . a c t i v a t i on5 (x )

return s e l f . ou tput l aye r (x )
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Encoder:

class Encoders (nn . Module ) :

def i n i t ( s e l f , input dim , hidden dim , v a l u e s i z e =256 , k e y s i z e =256):

super ( Encoders , s e l f ) . i n i t ( )

i n pu s i z e=12

s e l f . tcn = TCN( i n pu t s i z e=input dim , ou tpu t s i z e=hidden dim ,

num channels =[32 , i npu s i z e , 50 ] , k e r n e l s i z e =2,dropout =0.1)

s e l f . key network = nn . Linear (50 , v a l u e s i z e )

s e l f . va lue network = nn . Linear (50 , k e y s i z e )

def forward ( s e l f , x ) :

x = x . permute (0 , 2 , 1 )

x = s e l f . tcn (x )

keys = s e l f . key network (x . permute ( 0 , 2 , 1 ) )

value = s e l f . va lue network (x . permute ( 0 , 2 , 1 ) )

return keys , va lue
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Decoder:

class Decoders (nn . Module ) :

def i n i t ( s e l f , input dim , hidden dim , v a l u e s i z e =256 , k e y s i z e =256 , i sAttended=True ) :

super ( Decoders , s e l f ) . i n i t ( )

s e l f . l i n e a r 1=nn . Linear ( input dim , hidden dim )

s e l f . lstm1 = nn . LSTMCell ( i n pu t s i z e=hidden dim+va lu e s i z e , h i dden s i z e=hidden dim )

s e l f . lstm2 = nn . LSTMCell ( i n pu t s i z e=hidden dim , h i dden s i z e=k ey s i z e )

s e l f . i sAttended = isAttended

i f ( i sAttended ) :

s e l f . a t t en t i on = Attent ion ( )

s e l f . conv=nn . Sequent i a l (nn . Conv1d( in channe l s =1, out channe l s =1, k e r n e l s i z e =3, s t r i d e =1) ,

nn . BatchNorm1d ( num features =1) , nn .ReLU( inp l a c e=True ) )

s e l f . inp = ( ( k e y s i z e+va l u e s i z e +32)−3)//1+1

s e l f . mlp = nn . Linear ( s e l f . inp , input dim ) # o r i g i n a l

def forward ( s e l f , keys , values , x ext , y=None , t r a i n=True , t e a c h e r f o r c i n g r a t e =0.8) :

’ ’ ’

: param key : (T,N, k e y s i z e )=( t ime / s e q l e n , batch , k e y s i z e ) Output o f t h e Encoder Key p r o j e c t i o n l a y e r

: param va l u e s : (T,N, v a l u e s i z e ) Output o f t h e Encoder Value p r o j e c t i o n l a y e r

: param t e x t : (N, s e q l e n ) Batch inpu t o f t e x t w i th s e q l e n g t h

: param t r a i n : Train or e v a l mode

: r e t u rn p r e d i c t i o n s : Returns t h e c ha r a c t e r p e r d i c t i o n p r o b a b i l i t y

’ ’ ’

keys=keys . permute (1 , 0 , 2 ) #se q l e n , batch , k e y s s i z e

va lues=va lues . permute (1 , 0 , 2 ) #se q l e n , batch , v a l u e s s i z e b a t c h s i z e = keys . shape [ 1 ]

i f ( t r a i n ) :

max len = y . shape [ 1 ]

out1 = s e l f . l i n e a r 1 (y )

else :

max len = 50

p r e d i c t i o n s l i s t = [ ]

h i dden s t a t e s = [ None , None ]#, None ]

p r ed i c t i on = torch . z e ro s ( ba t ch s i z e , 1 ) . to ( dev i ce )

for i in range ( max len ) :

’ ’ ’

t e a c h e r f o r c i n g t e c hn i q u e

’ ’ ’

i f ( t r a i n ) :

i f y ==None :

t e a c h e r f o r c i n g r a t e=0

i f i ==0:

t e a c h e r f o r c i n g r a t e=1

t e a c h e r f o r c i n g = True i f random . random () < t e a c h e r f o r c i n g r a t e else False

i f t e a c h e r f o r c i n g :

downsampled input = out1 [ : , i −1 , : ]

else :

print ( ” i ” , i , np . shape ( p r ed i c t i on ) )

downsampled input=s e l f . l i n e a r 1 ( p r ed i c t i on )

else :

downsampled input = s e l f . l i n e a r 1 ( p r ed i c t i on )

i f i ==0:

context=torch . z e ro s ( ba t ch s i z e , va lues . s i z e ( −1)) . to ( dev i ce )

inp = torch . cat ( [ downsampled input , context ] , dim=1)

h idden s t a t e s [ 0 ] = s e l f . lstm1 ( inp , h idden s t a t e s [ 0 ] )

inp 2 = h idden s t a t e s [ 0 ] [ 0 ]

h i dden s t a t e s [ 1 ] = s e l f . lstm2 ( inp 2 , h idden s t a t e s [ 1 ] )

output = h idden s t a t e s [ 1 ] [ 0 ]

query=output

value=va lues [ : , : , : ]

i f ( s e l f . i sAttended ) :

context , a t t en t i on=s e l f . a t t en t i on ( query , keys , value )

else :

context=value [ − 1 , : , : ]

p r ed i c t i on = s e l f . conv ( torch . cat ( [ output , context , x ext ] , dim=1). unsqueeze ( 1 ) )

p r ed i c t i on = s e l f . mlp ( p r ed i c t i on . squeeze ( ) )

p r e d i c t i o n s l i s t . append ( p r ed i c t i on . unsqueeze ( 1 ) )

return torch . cat ( p r e d i c t i o n s l i s t , dim=1)
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Seq2seq

class Seq2Seq (nn . Module ) :

def i n i t ( s e l f , input dim , hidden dim , v a l u e s i z e =256 , k e y s i z e =256 , i sAttended=False ) :

super ( Seq2Seq , s e l f ) . i n i t ( )

s e l f . encoders = Encoders ( input dim , hidden dim )

s e l f . decoders = Decoders ( input dim , hidden dim )

def forward ( s e l f , x , x ext , y=None , t r a i n=True ) :

key , value = s e l f . encoders ( x )

i f ( t r a i n ) :

p r e d i c t i o n s = s e l f . decoders ( key , value , x ext , y )

else :

p r e d i c t i o n s = s e l f . decoders ( key , value , x ext , y=None , t r a i n=False )

return p r ed i c t i o n s

Training function:

def t r a i n (model , t r a i n l o ad e r , c r i t e r i o n , c r i t e r i o n 2 , c r i t e r i o n 3 , opt imizer , i , e x t r a c t o r ) :

model . t r a i n ( )

loss RMSE = 0

loss L1 smooth=0

loss sMAPE=0

s t a r t t ime = time . time ( )

for batch num , (x , y , X ext , y 2 ) in enumerate ( t r a i n l o a d e r ) :

torch . autograd . s e t de tec t anomaly (True )

x = x . to ( dev i ce ) #( batch , s e q l e n =130 , inpu t d im=522)

y = y . to ( dev i ce ) #( batch , s e q l e n =130 , inpu t d im=522)

X ext = X ext . to ( dev i ce )

, l a t en t = ex t r a c t o r ( X ext )

p r ed i c t i o n s = model (x , l a tent , y )

l o s s = torch . sq r t ( c r i t e r i o n ( p r ed i c t i o n s [ : , : , − 6 ] , y [ : , : , − 6 ] ) )

l o s s 2 = c r i t e r i o n 2 ( p r ed i c t i o n s [ : , : , − 6 ] , y [ : , : , − 6 ] )

l o s s 3 = c r i t e r i o n 3 ( p r ed i c t i o n s [ : , : , − 6 ] , y [ : , : , − 6 ] )

l o s s . backward ( )

opt imize r . s tep ( )

loss RMSE+=l o s s . item ( )

loss L1 smooth+=l o s s 2 . item ( )

loss sMAPE+=lo s s 3 . item ( )

del p r ed i c t i o n s

del l o s s

del x , y

loss RMSE /= len ( t r a i n l o a d e r )

loss L1 smooth/= len ( t r a i n l o a d e r )

loss sMAPE/= len ( t r a i n l o a d e r )

end time=time . time ( )

print ( ’Epoch ’ , i +1, ’ Training RMSELoss : ’ , loss RMSE , ’ Training loss L1 smooth : ’ ,

loss L1 smooth , ’ Training loss sMAPE : ’ , loss sMAPE , ’Time : ’ , end time − s ta r t t ime , ’ s ’ )

return loss RMSE , loss L1 smooth , loss sMAPE

121



Validation function:

def va l (model , va l l o ade r , c r i t e r i o n , c r i t e r i o n 2 , c r i t e r i o n 3 , opt imizer , i , e x t r a c t o r ) :

with torch . no grad ( ) :

model . eval ( )

loss RMSE = 0

loss L1 smooth=0

loss sMAPE=0

s t a r t t ime = time . time ( )

output =[ ]

for batch num , (x , y , X ext , y 2 ) in enumerate ( v a l l o ad e r ) :

# fo r batch num , ( x , y , X ext , X ext 2d , y 2 ) in enumerate ( v a l l o a d e r ) :

x = x . to ( dev i ce ) #( batch , s e q l e n =130 , inpu t d im=522)

y = y . to ( dev i ce ) #( batch , s e q l e n =130 , inpu t d im=522)

X ext = X ext . to ( dev i ce )

, l a t en t = ex t r a c t o r ( X ext )

p r ed i c t i o n s = model (x , l a tent , y , t r a i n=True )

l o s s = torch . sq r t ( c r i t e r i o n ( p r ed i c t i o n s [ : , : , − 6 ] , y [ : , : , − 6 ] ) )

l o s s 2 = c r i t e r i o n 2 ( p r ed i c t i o n s [ : , : , − 6 ] , y [ : , : , − 6 ] )

l o s s 3 = c r i t e r i o n 3 ( p r ed i c t i o n s [ : , : , − 6 ] , y [ : , : , − 6 ] )

output . append ( p r ed i c t i o n s )

loss RMSE+=l o s s . item ( )

loss L1 smooth+=l o s s 2 . item ( )

loss sMAPE+=lo s s 3 . item ( )

del p r ed i c t i o n s

del l o s s

del x , y

loss RMSE /= len ( v a l l o ad e r )

loss L1 smooth/= len ( v a l l o ad e r )

loss sMAPE/= len ( v a l l o ad e r )

end time=time . time ( )

print ( ’Epoch ’ , i +1, ’ Val RMSELoss : ’ , loss RMSE , ’ Val loss L1 smooth : ’ , loss L1 smooth ,

’ Val loss sMAPE : ’ , loss sMAPE , ’Time : ’ , end time − s ta r t t ime , ’ s ’ )

print ( ”=” ∗20)

return loss RMSE , loss L1 smooth , loss sMAPE , output
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