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Reinforcement Learning and Stochastic Control for Sepsis Treatment: The

Promise, Obstacles and Potential Solutions

Thesath Nanayakkara, PhD

University of Pittsburgh, 2022

We develop clinically motivated, computational methods for sepsis decision-making. Sepsis

is a life-threatening syndrome, with enormous mortality, morbidity, and economic burden.

However, despite decades of research spanning various academic disciplines, a thorough

understanding of sepsis treatment has proved elusive.

Recent advances in data-driven machine learning and control methods have led to

numerous attempts to gain insight and learn intelligent treatment strategies directly from

observed data. Stochastic optimal control and Reinforcement Learning, are in particular

popular as they are a natural fit to formalize clinical decision-making. However, although such

methods carry significant promise, there are multiple obstacles at all levels. Thus, the goal of

our work is to identify, and address these challenges and propose novel solutions. In particular,

we focus on formalizing the problem in a stochastic control framework, encoding physiologic

domain knowledge and improving the patient state representation, and investigating associated

uncertainties.

Through a combination of control theory, deep representation learning, and the integration

of mechanistic modeling we introduce several improvements and novel directions to advance

the current status quo of data-driven interventions for clinical sepsis. We show how our

methods can supplement clinicians, provide new directions for future computational research

and potentially uncover valuable hints toward better treatment strategies.

iv



Table of Contents

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mathematical & Machine Learning Preliminaries . . . . . . . . . . . . . . 4

1.1.1 Reinforcement Learning, Stochastic Optimal Control, Optimization

under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Deep Learning & Representation Learning . . . . . . . . . . . . . . 10

1.1.2.1 Deep Neural Networks: Learning & Optimization . . . . . . 11

1.2 Sepsis And Its Patho-physiology . . . . . . . . . . . . . . . . . . . . . . . 13

2.0 Prologue to Article 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.0 Article 0: Reinforcement Learning & Stochastic Control for Sepsis

Treatment: Challenges and Opportunities . . . . . . . . . . . . . . . . . 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Reinforcement Learning & Control for Sepsis . . . . . . . . . . . . . . . . 19

3.3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1.1 Objective & Rewards . . . . . . . . . . . . . . . . . . . . . 20

3.3.1.2 Partial Observability: State Representation . . . . . . . . . 22

3.3.1.3 Uncertainty Quantification . . . . . . . . . . . . . . . . . . 24

3.3.2 Deep Reinforcement Learning & Algorithmic Challenges . . . . . . 26

3.3.3 Explainability & Trustworthiness . . . . . . . . . . . . . . . . . . . 26

3.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Opportunities and Directions for Future Research . . . . . . . . . . . . . 29

4.0 Prologue to Article 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.0 Article 1: Unifying Cardiovascular Modelling with Deep Reinforcement

Learning for Uncertainty Aware Control of Sepsis Treatment . . . . . 33

5.1 Background & Related work . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



5.1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Distributional & Uncertainty Aware Reinforcement Learning . . . . 35

5.1.3 Reinforcement Learning in Medicine . . . . . . . . . . . . . . . . . 37

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Trajectory Reconstruction Using the Physiology-driven Autoencoder 37

5.2.2 Value Distributions & Expected Values . . . . . . . . . . . . . . . . 38

5.2.3 Vasopressor Treatment Strategies . . . . . . . . . . . . . . . . . . . 41

5.2.4 Uncertainty Aware Treatment . . . . . . . . . . . . . . . . . . . . . 43

5.2.5 Uncertainty Quantification Results . . . . . . . . . . . . . . . . . . 45

5.2.6 A Comment on Off Policy Evaluation . . . . . . . . . . . . . . . . . 46

5.3 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1 Data sources & Preprocessing . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.2.1 Physiology-driven Autoencoder . . . . . . . . . . . . . . . . 51

5.4.2.2 Denoising GRU Autoencoder for Representing Lab History 54

5.4.2.3 Behavior Cloner . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.3 POMDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.4 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.4.1 Estimating the Uncertainty Measure . . . . . . . . . . . . . 57

5.4.5 Uncertainty Aware Treatment . . . . . . . . . . . . . . . . . . . . . 57

5.5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Appendix A: Cohort Details . . . . . . . . . . . . . . . . . . . . . . 59

5.5.2 Appendix B: Neural Network Architectures and Implementation Details 59

5.5.2.1 Physiology-driven Autoendcoder . . . . . . . . . . . . . . . 59

5.5.2.2 Denoising Lab Autoencoder . . . . . . . . . . . . . . . . . . 60

5.5.2.3 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.2.4 Bootstrapping and Deep Ensembles . . . . . . . . . . . . . 60

5.5.2.5 Distributional Q learning . . . . . . . . . . . . . . . . . . . 61

vi



5.5.3 Appendix C: Additional Results . . . . . . . . . . . . . . . . . . . . 61

5.5.3.1 RL Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.3.2 Uncertainty Quantification Results . . . . . . . . . . . . . . 63

5.5.3.3 OPE Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.4 Appendix D: Limitations and Open Problems . . . . . . . . . . . . 66

5.5.4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.0 Prologue to Article 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.0 Article 2: Deep Normed Embeddings for Patient Representation . . 70

7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.1 Contrastive Learning & Representation Learning for Clinical Time

Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.2 Reinforcement Learning for Medicine . . . . . . . . . . . . . . . . . 74

7.2 Deep Normed Embeddings: Learning and Optimization . . . . . . . . . . 74

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Patient Representation on the Unit Ball . . . . . . . . . . . . . . . 79

7.3.2 Hyper-parameter effects . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3.3 Norm as a Predictor of Mortality Risk and Representation Learning

for Downstream Machine Learning Tasks . . . . . . . . . . . . . . . 85

7.3.3.1 Ablation: β and Intermediate Loss . . . . . . . . . . . . . . 88

7.3.4 Reinforcement Learning: Rewards and Representation . . . . . . . . 89

7.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Broader Impact Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.6 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.6.1 Data Sources and Preprocessing . . . . . . . . . . . . . . . . . . . . 95

7.6.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 96

7.6.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.6.3.1 Contrastive Representation Learning . . . . . . . . . . . . . 97

7.6.3.2 Baseline Representation Learning . . . . . . . . . . . . . . . 98

7.6.3.3 Auxiliary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6.3.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 99

vii



7.6.4 More Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6.5 More RL & Control: Results and Discussions . . . . . . . . . . . . 101

8.0 Prologue to Article 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.0 Article 3: Reinforcement Learning For Survival: A Clinically Motivated

Method For Critically Ill Patients . . . . . . . . . . . . . . . . . . . . . . 105

9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.3 Reinforcement Learning for Survival . . . . . . . . . . . . . . . . . . . . . 109

9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.4.1 Data Sources & Prepossessing . . . . . . . . . . . . . . . . . . . . . 113

9.4.2 RL4S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.6 Discussions & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.7 Appendix A: Proof of Fixed Point Theorems . . . . . . . . . . . . . . . . 119

9.8 Appendix B: Stochastic Approximation Theorem . . . . . . . . . . . . . . 120

9.9 Appendix C: Implementation Details . . . . . . . . . . . . . . . . . . . . 121

9.10 Appendix D: RL4S: Recommended Actions . . . . . . . . . . . . . . . . . 122

10.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix A. Towards a Simulated Environment Using a Deep Probabilistic

Mixture of Gaussians and a Survival Model . . . . . . . . . . . . . . . . 126

Appendix B. Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

viii



List of Tables

1 Mean square error of reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Cohort details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 RL algorithm hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Mean model uncertainty for survivors and non-survivors in training & validation

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Averaged relative jumps for various β . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Averaged relative jumps for various intermediate loss choices, with β = 0.75 . . 85

7 AUROC for predicting if a state is t hours from death for various t . . . . . . . 86

8 Average test AUROC for predicting if a state is t hours from death for various t 87

9 Average AUROCs for different β . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10 Average AUROCs for intermediate loss choices- β = 0.75 in each. . . . . . . . . 88

11 Percentages of states with no treatment . . . . . . . . . . . . . . . . . . . . . . 92

12 Contrastive learning hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . 98

13 RL algorithm hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

14 Percentage of recommended actions under different schemes and the clinician . 101

15 RL algorithm hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

16 Percentages of actions (Act.) recommended by RL4S and clinicians . . . . . . . 122

ix



List of Figures

1 Proposed decision support system (A): We use the compete patient history, which

includes, vitals, scores, and labs, and previous treatment, to infer hidden states. These

would all combine to make the state St. Our trained agent, takes this state and

outputs value distributions for each treatment, its own uncertainty, and an approximate

clinician’s policy. We then factor in all 3 to propose uncertainty-aware treatment

strategies. The electrical analog of the cardiovascular model (B) This provides

a lumped representation of the resistive and elastic properties of the entire arterial

circulation using just two elements, a resistance R and a capacitance C. This model

is used to derive algebraic equations relating R, C, stroke volume (SV), filling time

(T), to heart rate (F) and pressure. The Cardiac Output (CO) can be then computed

as (SV)F. These equations define the decoder of the physiology-driven autoencoder.

Complete physiology-driven autoencoder network structure (C) Patient history

is sequentially encoded using three neural networks. A patient encoder computes initial

cardiovascular state estimates using patient characteristics, a recurrent neural network

(RNN) encodes the past history of vitals and scores, up to and including the current

time point, and a transition network which takes the previous cardiovascular state, the

action and the history representation to output new cardiovascular state estimates. . 36

2 Reconstruction of two validation patient trajectories using different levels of corruption

using the physiology-driven autoencoder, Left: Heart Rate. Right: Systolic Blood

Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Value distributions for validation patients averaged according to different times

from death or discharge, Top row: Non Survivors. Bottom row: Survivors. . 39

4 Scatter plots of scaled features : Top row: Marker colors indicates if V̂ ∗(S) < 5

(Blue) or V̂ ∗(S) ≥ 5 (Red) Bottom: Top 10 features measured by feature

permutation. Here, l_k denotes the kth component of the latent lab representation. 40

x



5 Top row: Percentage of states with vasopressors recommended for the training

and validation states, with time to eventual death. Here a p% voting agent,

denotes an agent which only prescribes vasopressors if an only if least p% of the

Bootstrapped Ensembles have agree on giving vasopressors. Bottom row: The

percentages of states with vasopressors recommended or given with respect to

cardiovascular states and SOFA score. . . . . . . . . . . . . . . . . . . . . . . . 42

6 Expected value evolution of the main agent for two patients: (A) A

patient who died in the ICU. (B) A survivor. The marker size indicates the

parametric uncertainty associated with a particular action. Also shown are the

standardized values of SOFA score, Systolic blood pressure, and the unidentifiable

cardiovascular state (CO)R. The x-axis indicates the hours from ICU admission.

Recommended treatments under various preference parameters: (see

Eq. 28). (C)(E) Recommendations for the same patient as in (A). (D)(F)

Recommendations for the same patient as in (B). Actual clinician treatments:

(G) treatment for the patient in (A), (H) treatment for the patient in (B). . . . 44

7 (A) Model Uncertainty with time to death for non-survivors, (B) Model Un-

certainty with time to discharge for survivors (C) Averaged entropy of value

distributions for non-survivors with time to death, (D) Averaged entropy of value

distributions for survivors with time to release. (E) Average Model Uncertainty

for data points with density less than the p-th percentile. . . . . . . . . . . . . 47

8 Feature Importance measured by feature permutation. Here, lk denotes the kth

component of the latent lab representation . . . . . . . . . . . . . . . . . . . . 62

9 Expected Values of random validation patients, Top: Non-survivors, Bottom:

Survivors. As with Fig 4, the blob size indicate the uncertainty . . . . . . . . . 62

10 L: Heat-plots for recommended actions, under β = 0.8, lλ = 0.25 and Ensembled

Distribution Expected Values. Shown are clinician’s vs Agent for overall (orange),

low sofa (green), medium sofa (blue), high score (purple) and non survivors last

24 hrs (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11 Box plots of validation (weighted important sampling) OPE estimates for boot-

strapped ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



12 Expected Values of non-survivor, Left: Trained for 2 epochs, Right : Trained

for 7 epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

13 The proposed training scheme: We use a triplet based sampling scheme,

where 3 patient states are sampled. One of them, the anchor, is always a terminal

state (corresponding to death or release), and the others include a near death

and a near release state. Our loss function is then defined in terms of the end

result of the anchor state as shown in the figure. . . . . . . . . . . . . . . . . . 75

14 A: Norm2 of validation cohort non-survivors, B: Norm2 of validation cohort

survivors, C: A sample of non-survivor patient states, marked by the worst organ

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

15 Embedded trajectories for two non-survivors: One patient is labeled with

star markers and black/green trajectory, the second with triangle markers and

orange trajectory. The marker color indicates the system with the highest organ

failure score: Cardio (blue), Liver (Maroon) CNS (Purple). The first trajectory is

50 hrs long, black for the first 36 hrs, green for the last 14. The highest severity

organ failure changes from cardio to CNS at 36 hrs. The embedding trajectory

approaches the cluster a few hours before the organ scores indicate the change

(see detail). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

16 Embedded state distributions for various β: The labels indicate the worst organ

systems as in Figure 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

17 Embedded state distributions without orthogonal weight initialization. Labels

indicate the worst organ system . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

18 Averaged embedding norm with time to death (for non-survivors) and release (for

survivors): for different β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

19 Averaged embedding norm with time to death (for non-survivors) and release (for

survivors): for various intermediate loss choices . . . . . . . . . . . . . . . . . . 84

20 Results of the MLP model A: Norm2 of validation cohort non-survivors, B:

Norm2 of validation cohort survivors, C: A sample of non-survivor patient states,

marked by the worst organ system . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



21 Box plots of optimal values: The results are shown for different reward

schemes and representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

22 Box plots of optimal values: The results are shown for different reward schemes103

23 Box plots of averaged Q values: For RL4S and standard RL and stratified by

patient outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

24 Percentage of states with vasopressors: Recommended by RL and RL4S and

administered by the clinicians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiii



1.0 Introduction

Sepsis is a life-threatening inflammatory response to infection which could result in severe

tissue and organ damage. Sepsis has an enormous burden in terms of mortality, morbidity and

economic cost. In fact, sepsis has previously been attributed to over 6% of all hospitalizations

and 35% of all in hospital deaths in the US, and an estimated economic burden of over $20

Billion per year. The outlook is not any better around the globe, with an estimated 11 million

deaths per year. Treating sepsis at the ICU is very challenging due to the vast heterogeneity

in septic patients at all levels: from the underlying infections, the progression of the disease,

inflammatory responses, and responses to medical interventions. Moreover, despite decades of

research, questions regarding vasopressor and fluid treatment have remained open. Therefore,

recently there has been considerable interest in using data-driven methods to personalize

clinical decision making and even to automate the decision making at the ICU.

Reinforcement Learning (RL) and stochastic optimal control are general frameworks for

optimizing sequential decision making. RL when used alongside deep neural network based

function approximators (Deep RL) has achieved superhuman performance in various domains,

and at least in theory, is well suited to formalize clinical decision making at the ICU. However,

leveraging modern methods to critical care medicine is far from trivial. In fact, there are

significant challenges encountered at all levels.

The goal of this thesis is to identify such challenges and propose solutions from a holistic

and inter-disciplinary perspective. Indeed, the efforts of optimal control theory itself have

been dispersed among various mathematics, engineering, operations research, and artificial

intelligence (AI) communities. The problem of treating sepsis, on the other hand, has

been extensively researched by medical researchers over the past few decades with varying

degrees of success. Recently, there have been various data driven methods proposed by a

wide range of academic communities. Thus, we aim this work to bridge a large number of

research areas, both primarily computational fields and biomedical research efforts which

embrace such computational methods. The very interdisciplinary nature of the problem is a

source of many obstacles and constraints the mathematical machinery that can be applied.

1



However, a guiding philosophy of work presented here is that the combination of traditional

applied mathematics and modern machine learning methods can work in unison, and can be

incredibly powerful by complementing the strengths of each other. For example, first principle

mechanistic mathematical models embody decades of medical and physiological knowledge,

and using such models can amongst other things improve explainability, trustworthiness and

provide some causal inference in AI systems. Uncertainty quantification can tell us when and

when not to be confident on the results of such a system.

The main content of the thesis is presented via four articles. Before each article, we have

included a prologue chapter that discusses how the article fits in to the greater scope of the

text. However, the articles themselves are presented almost exactly 1 as they were published

or submitted for publication, thus do contain some overlap.

The first article (Article 0) is an abridged version of a review article, which discusses

the stochastic control problem and the various efforts which have been made to make it

more amenable to formalize intensive care decision making. This article also presents a

detailed discussion of challenges and the potential of RL, which motivated the work that

follow. However, we omitted some sections of this article as they are mentioned elsewhere in

the thesis.

The next article presents our efforts to improve the patient representation using a

relevant physiological cardiovascular model. In particular, we show how first principle

based mechanistic models and modern deep learning methods can work together to provide

physiologically meaningful representations from EHR data; and how such a representation can

be used to combat the problem of partial observability of the state. This article also presents

our uncertainty quantification efforts, focused on both aleatoric and epistemic uncertainties.

Finally, we present a simple framework for uncertainty aware decision making with human

clinicians in the loop and compare the recommendations from the RL agent with observed

clinicians’ actions.

The third article is based on a novel contrastive optimization method that has multiple

benefits even beyond RL. Here, we encode high dimensional patient states to a lower

dimensional unit ball such that patients with the same mortality risk are mapped to the same
1With the exception of Article 0 which is intended as a review article.
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level set (with respect to the embedded norm). Further, we show how the learned method

can map different physiological causes (organ failures) to different parts of the sphere, thus

creating an embedded space that is aware of both mortality risk and organ failure. The norm

of the learned embedded space can be taken as a mortality risk score. Therefore, that work

also presents a systematic method of defining rewards for the RL problem, which is one of

the most challenging issues faced when using RL for critical care applications.

In the fourth article, we present a novel clinically motivated control objective for critically

ill patients. We then refine this objective to a practical Deep Reinforcement Learning

algorithm, which works with any value based Deep RL algorithm with one line modification.

We show our method has the same theoretical guarantees as Q learning and then empirically

show how this method results in clinically intuitive results.

In summary, major contributions of this work include:

• Discussing the inherent challenges of applying any mathematical or computational method

to control sepsis treatment, and potential solutions from an unified perspective.

• Introducing a way to encode physiological knowledge by a novel unsupervised learning

method we call physiology driven autoencoder.

• Formalizing parametric uncertainty in offline RL and proposing a simple computational

method to estimate this quantity for Deep Reinforcement Learning methods. We then

propose a framework for uncertainty aware decision making with humans in the loop.

• Introducing a novel semi-supervised, contrastive method to embed high dimensional

EHR data in a lower dimensional unit closed ball. By using simple geometric priors this

embedding is aware of both mortality risk and underlying physiological causes. We also

propose a method to define rewards for RL systematically and empirically show how the

resulting policies could depend on the reward choice.

• Introducing a novel control objective and Deep RL method called RL4S: Reinforcement

Learning for Survival. This objective is naturally suited for critically ill patients. We

then discuss several alternate interpretations of this method, resulting in a simple RL

algorithm. Further, we present theoretical results and conduct various experiments.
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1.1 Mathematical & Machine Learning Preliminaries

1.1.1 Reinforcement Learning, Stochastic Optimal Control, Optimization under

Uncertainty

Sequential decision making under uncertainty is ubiquitous in all forms of human activity.

Naturally, this problem has been examined in detail by numerous research communities.

Indeed, the terms Reinforcement Learning (RL), Stochastic Control, Sequential Optimization

all describe classes of methods for decision making such that some objective will be optimized

over some horizon [116, 15, 95, 21, 85, 75].

We will start by defining the stochastic control problem in the most abstract form, as

defined in [15], and later discuss the more specific case which is more common in recent RL

literature. However, we will focus exclusively on the discrete time case.

Our presentation here strongly follows [15], with minor changes in notation and definitions

to be consistent with modern RL literature.

We will use the following notations and definitions throughout this presentation.

• S and A denote the state and action spaces.

• For every s ∈ S there exists, a set (possibly A itself) A(s) ⊆ A, which is the control

constraint.

• A policy π is a (possibly stochastic) mapping from N× S to A, such that π(t, s) ∈ A(s),

for all s ∈ S. and t ∈ N. When the policy does not depend of time, we call the policy

stationary. Such a policy can be considered as function from S to A. Our focus will be

on stationary policies, from this point.2 We will use Π to denote the class all stationary

policies.

We will further borrow the following notations from [15], to define the abstract problem.

• Let F be the set of all extended real valued functions J : S → R∗ or J : S ×A → R∗

• Let B be the Banach space of all bounded real valued functions J : S → R, and this case

||J || is the standard sup-norm. i.e. ||J ||= sups∈S J(s)

2This does not sacrifice any generality as the state can be defined to include time, so any policy is a
stationary policy with respect to the new state space.
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Next, we have a given mapping

H : S ×A× F → R∗ (1)

Informally, H can be interpreted as a relationship between the total cost/reward at the

Nth stage, and the (N + 1)st state. Now, for a fixed policy π ∈ Π, we define the mappings

Tπ, T : F → F by:

Tπ(J)(s) = H(s, π(s), J) (2)

and

T (J)(s) = sup
π∈Π

H(s, π(s), J) (3)

The following monotonicity property for H is assumed. ∀π, J, J ′ ∈ F :

J(s) ≤ J ′(s) ,∀s =⇒ H(s, π(s), J) ≤ H(s, π(s), J ′) (4)

Now we are ready to define the formal control objective. Suppose we have a given real

valued function J0, defined on S (or on S × A). For some N ∈ N, let’s define the N stage

(episodic) reward function 3. associated with the policy π as

JN,π(s) = TN
π (J0)(s) (5)

Here, TN
π is Tπ composed with itself N times.

Similarly, we can define the infinite horizon reward function as:

Jπ(s) = lim
k→∞

T k
π (J0)(s) (6)

Now we define our N stage problem as (for any s ∈ S):

maximize JN,π(s) such that π ∈ Π, (7)

And its analogous infinite horizon problem as (again for any s ∈ S):

maximize Jπ(x) such that π ∈ Π (8)

(Provided the limit exists)
3Note that we have not used any definition of rewards as yet, we have changed the terminology from cost

to reward to be consistent with RL terminology
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For a fixed s ∈ S, we denote the corresponding the optimal reward functions by, J∗
N and

J∗. A policy π∗ ∈ Π, is said to be optimal for the two problems if JN,π∗ = J∗
N and Jπ∗ = J∗

respectively. A policy is said to be uniformly N optimal if the policy is N − i optimal for all

i = 0, 1, ...N − 1.

Under this setting, it can be shown that under some mild assumptions, optimal reward

functions and optimal policies can be computed from a Dynamic Programming (DP) like

method. That is for the N stage problem as J∗
N = TN(J0) for an appropriate J0, and for

the infinite state problem as J∗ = T ∗(J∗). We refer the reader to [15] for more details and

measurability concerns for uncountable probability spaces. This general setting subsumes

the deterministic optimal control problem, stochastic optimal problem, among many others.

However note that this formulation typically requires the knowledge of the environment, but

there exist some iterative algorithms such as Q Learning, which we will describe later in the

context of RL.

We will now return to the more familiar setting of RL. There, J will represent a value

function or a value distribution, defined in terms of rewards and T, Tπ will be appropriate

Bellman operators. We will return to the abstract setting when we discuss alternate objectives

for the RL problem for sepsis. In addition, we believe the abstract stochastic control problem

can provide valuable insight for future algorithmic design. We will also briefly compare the

RL problem with the abstract setting at the end of this section.

RL can be formalized by a Markov Decision Process (MDP) framework. The state and

action spaces S and A are the same as above. In addition, there exists a (typically unknown)

Markov probability kernel p(|s, a), which gives the dynamics of the next state, given the

current state and the action and a reward process with a kernel r(|s, a).

Given a discount factor γ ∈ (0, 1], the return is defined as the cumulative discounted

rewards :
∑∞

t=1 γ
trt, which is a random variable. In RL, the agent’s performance is measured

in terms of the return, and typically most of the attention has been focused on the expected

return.

Therefore, the value of a policy π at state s (V π(s)), is defined as the expected future

rewards starting from state s, and following the policy π. That is :

V π(s) = Ep,π[Σtγ
trt|s0 = s, π], ∀s ∈ S (9)
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The Bellman equation for the value function can be written as:

V π(s) = Ep,π[r + γV π(s′)], (10)

If V ∗ is the optimal value function, V ∗ satisfies the following Bellman optimality equation:

V ∗(s) = sup
π∈Π
{Ep,π[r + γV ∗(s′)} (11)

Similarly the state action value function or Q function can be defined as:

Qπ(s, a) = Ep,π[Σtγ
trt|s0 = s, π, a0 = a], ∀s ∈ S, a ∈ A (12)

The Q function can be interpreted as the expected return, when starting at state s, taking

the action a, and then following the policy π. Then, the following can then be verified.

The Bellman equation for the Q function:

Qπ(s, a) = Ep[r] + γEp,π[Q
π(s′, a′)], (13)

4

and the Bellman optimality equation for the Q function:

Q∗(s, a) = Ep[r] + γEp[sup
a′∈A

Q∗(s′, a′)] (14)

(where Q∗(s, a) is the optimal Q function, and s′ denotes the random next state).

We can notice that equations 10 and 13, are analogous to 2 in our abstract control problem

with H : S × A× F → R∗ as Ep[r(s, π(s)] + γEp,π[J(s
′)] and Ep[r(s, a)] + γEp,π[J(s

′, π(s′)]

respectively for the two cases. Similarly, for finite action spaces, equations 11 and 14 are

analogous to 3, with the same function H.

Indeed, it can be shown that under some regularity conditions all four Bellman operators

are contractions in L∞. So an iterative algorithm would converge to either optimal value

functions or the policy induced value function. Value iteration and policy iteration are two

such dynamic programming algorithms.
4Note that here, r is a random variable distributed according to an appropriate conditional distribution,

conditioned on both s and a. Whilst r in 10 is only conditioned on the state and the policy (If the policy is
deterministic the interpretation becomes similar). However, we don’t make the conditioning explicit in our
notation, for simplicity.
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However, note that until now we have assumed the knowledge of the environment. As

we mentioned earlier in RL, we usually do not have access to the underlying probability

kernel nor the reward process. Therefore the goal of RL is to learn from experience which

typically consists of observed transitions of the form (st, at, st+1, rt). Therefore, there are

numerous algorithms that do not assume environment dynamics [116]. These include Monte

Carlo methods and temporal difference methods. Monte Carlo methods are the simplest, and

these methods estimate a policy induced value function, by averaging the objective values

generated from multiple trajectories starting at a state and following a policy. However these

methods are typically on-policy, which means in order to estimate a value of a given policy,

the data must be collected by following the same policy.

Temporal difference (TD) methods leverage Equations 10, 13 and 14 to derive incremental,

stochastic approximation based algorithms. For example, TD (0) uses Equation 10 to estimate

V π, for a fixed policy π. More specifically, given an experience tuple (rt, st, st+1, at) where at

is sampled with respect to π. We can then define the temporal difference (TD) error δt as

δt := rt + γV π(st+1)− V π(st). Notice, that δt is a sample based estimator of the difference

between left and right hand sides of Equation 10. Then using an initial estimate of V π(s) for

all states s, the following incremental algorithm can be derived.

V π(s)← V π(s) + αtI{s=st}(δt) (15)

Where αt ∈ (0, 1] is the step size. Notice that at each iteration the value function estimate

only changes at s = st. For finite state MDPs, we can use a look up table to represent the

approximate values for all states and assuming all states are visited infinitely often, this

algorithm converges if αt satisfy the Robbins-Monro conditions [106] : Σ∞
t=0αt = ∞ and

Σ∞
t=0α

2
t <∞

Analogously, Q Learning [127] uses an incremental algorithm motivated by Equation 14,

which learns the optimal state, action value function directly without learning any policy

induced value. Similarly to above if we observe an experience tuple of the form (rt, st, st+1, at)

(where now at can be any action, and thus Q learning is off-policy), we can define δt as :

δt = [rt + γmaxa′∈AQ
∗(st+1, a

′)]−Q∗(s, a)
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Then the incremental algorithm uses the following update :

Q∗(s, a)← Q∗(s, a) + αtI{s=st,a=at}(δt) (16)

Again, for the discrete state space, if all states are visited infinitely often the same

convergence properties as TD(0) hold.

However, in practice state spaces are high dimensional and continuous. Therefore it

is common to parameterize the Q function or the V function, by a function approximator

[116]. The parameters are then learned with the intention of minimizing the td-errors (δt ).

Examples include Fitted Q iteration, which could be used with parametric or non-parametric

function approximators [21]. Depending on the class of function approximators contraction

based arguments can be used to deduce convergence.

Deep Reinforcement Learning (Deep RL) can be defined as the set of methods that

use a (deep) neural network to parametrize the value function 5. In Deep RL typically,

several heuristic tricks [87] are used to help performance and the theoretical foundations of

convergence are less understood.

Distributional Reinforcement Learning [11] considers the whole distribution of the

return rather than focusing on just the expected value. Using the notation used in [11], we

will denote the random return following a policy π at a state s by Gπ.

That is :

Gπ(s) = Σtγ
trt(st, at), where s0 = s

Then they show that the analogous distributional Bellman equation:

Gπ(s) =d r + γGπ(S ′) (17)

holds. Where S ′ is a random variable distributed according to transition dynamics p(|s, a)

and d denotes distributional equivalence. (i.e. both random variables on the left hand side

and the right hand side have the same distribution function).
5There are alternate parameterizations including policy optimization: where a parametric function can

represent a policy and then directly optimize the policy using sampled returns and actor critic methods :
which is a combination between value based methods and policy based methods.
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Policies and Risk Sensitive Reinforcement Learning: In more traditional RL, given

the value function or the Q function the optimal actions were defined as the actions which

maximize Q or V .

For example, using the Q function the optimal action a∗ at state s can be computed as

a∗ = argmaxa∈AQ(s, a), or using the value V the optimal policy π∗ can be computed as :

π∗ = argmax
π∈Π

V π = argmax
π∈Π

Eπ[Gπ(s0)] (18)

where s0 is the initial state. (Here we implicitly assume the maximum exists in the class of

policies or actions).

Using distributional methods, we can now replace the expectation operator in Equation

18 with a general risk measure ρ acting on the random return random variable Gπ. Then the

policy can instead be defined as.

π∗ = argmax
π∈Π

ρ(Gπ(s0)) (19)

Some possible risk measures include a) value at risk ρτV AR(Z) = F−1
Z (τ). (Where Fz is

the cumulative distribution function of a random variable Z), and b) conditional value at risk

: ρτCV AR(Z) = E[Z|Z < [F−1
Z (τ)].

1.1.2 Deep Learning & Representation Learning

Deep Learning [44] is a set of computational tools, which were originally inspired by

the neural structure of human brains (Thus, these methods were historically called artificial

neural networks). Although the analogy between human neural circuits has weakened, deep

neural networks have achieved incredible, sometimes super-human success in various tasks

[114, 35, 20, 57, 23, 100], and are becoming an indispensable tool across all computational

science fields.

Mathematically, a deep neural network is just a composition of differentiable (or almost

everywhere differentiable) functions parameterized by a set of parameters. Modern neural

networks can have billions of different parameters and these parameters are tuned by stochastic
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gradient based optimization methods (such as [62]). Informally, deep learning methods use a

hierarchy of ordered abstract representations, with each representation building on previous

representations. The success of deep learning can be attributed to learning these intelligent

representations with minimal or no human intervention: in contrast to more traditional

machine learning methods that typically require a carefully prepared feature representation.

Representation Learning [13, 44] is the use of machine learning to learn an informative

representation, usually with the intention of using the learned representation for a downstream

task.

As a subset of Machine Learning, Deep Learning methods are typically categorized

into supervised and unsupervised learning, where supervised learning refers to problems

where the learning task can be framed as learning a mapping between input data and labels

(targets). However, Self-Supervised Learning [73] has received considerable attention in recent

times. Self-supervised methods do not depend on labeled data 6, but attempt to obtain the

supervision by exploiting some underlying structure of the data automatically. An example

of a common self-supervised learning method in Natural Language Processing (NLP) is to

train a network to predict a hidden part of a sentence using the remaining part. The idea

is that by performing the less-useful auxiliary task the network will learn the structure of

natural language. It has been argued [72], that self-supervised learning is a way to build

background knowledge and of common sense in AI systems.

One of the most powerful self-supervised methods: contrastive methods [71, 26] learn an

embedded space where similar pairs of data are mapped close to each other, and different

pairs are mapped away from each other. A somewhat related concept is metric learning [65],

where a similarly metric (This use of metric is not always consistent with the mathematical

notion of a metric) is learned using data.

1.1.2.1 Deep Neural Networks: Learning & Optimization

We have used neural networks heavily in all of the work discussed in the main text. The

general and optimization theory of deep neural networks are active research areas, with
6The distinction between self-supervised learning and unsupervised learning is often blurred.
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plenty of questions yet to be answered. We will still mention some fundamental concepts of

the learning problem and optimization methods briefly. For ease of notation, we will use a

supervised learning setting to define and discuss the learning problem. It is, however trivial

to modify this to unsupervised or semi-supervised problems.

Typically machine learning models aim to learn the parameters of a model such that the

expected performance or cost is optimized using some criteria [44, 14].

Formally, assuming a cost function L and a supervised learning problem we can define

the objective as a mapping from the parameter space as:

J(θ) = E(x,y)∼pdata [L(fθ(x), y)] (20)

Where pdata is the data generating distribution. The hope is to find the parameters θ, such

that Equation 20 is minimized. Of course, in practice, we don’t know the underlying data

generating distribution, but we assume we have a training set and a test set which were

sampled from the data generating distribution. Then the data distribution can be estimated

by the empirical distribution induced by the necessarily finite training data. Assuming we

have N , (x, y) pairs of training data. We can write the empirical loss (or empirical risk) as :

J(θ) =
ΣN

i=0L(fθ(xi), yi)

N
(21)

The process of minimizing Equation 21 is called empirical risk minimization. The standard

methods use some variation of gradient descent based optimization algorithms. Therefore,

L is assumed to be differentiable and when the desired objective is non-differentiable (For

example, the accuracy of a classification task), a smooth surrogate objective is used (For

classification, this is usually a form of log-likelihood).

It should be noted that the desired goal is not to compute the mathematical minimum of

21 in the parameter space, but to minimize the generalization error (Informally, the error

on unseen data). Modern neural networks are also heavily over-parameterized and have a

high capacity. Thus, in practice a number of regularization methods are also used to prevent

over-fitting to the training data. In the context of neural networks the simplest of which

would be early stopping, which is monitoring a corresponding metric of a validation data set,

and stopping training, when the validation metric doesn’t improve.
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Further, given the volume of data used it is usually computationally prohibitive to optimize

21 on the whole dataset, therefore a mini-batch based optimization scheme is used: typically

a variation of stochastic gradient descent (SGD). The idea is to estimate the gradients of

21 using a randomly sampled mini batch of data, usually several magnitudes smaller than

the full dataset. We typically require the data in each batch to be identically, independently

distributed so the mini-batch gradient is an unbiased estimator of the full gradient. Then this

process is iteratively performed where the dataset is randomly divided into, mini-batches,

and for each mini-batch a gradient descent step is taken with an appropriate learning rate.

Typically several passes over the whole dataset are taken. It has been argued that smaller

batch sizes also add a regularizing effect [44].

Optimizing deep networks is however subject to considerable challenges, and to date

despite the empirical success, several theoretical questions remain open. For example, 21 is

usually severely non-convex, thus there are no guarantees that the optimization algorithms

will find the global minimum. It may also contain saddle points and sub-optimal local

minimums. However, empirically, SGD seems to achieve satisfactory performance and the

classical learning theory is deemed insufficient to explain or understand many observed

phenomena of deep learning [14].

The mathematical analysis of deep neural networks is still at its infancy. We refer the

reader to [14] for a discussion of the current theoretical efforts and progress.

1.2 Sepsis And Its Patho-physiology

Sepsis is a life threatening condition characterized by a pathological response to an

underlying infection, resulting in severe organ and tissue damage. Sepsis has enormous

mortality, morbidity and economic burden [78, 102, 91] and despite decades of research there

is still significant ambiguity and even controversy regarding optimal treatment strategies

[84, 53, 83]. The challenge in treating sepsis is partially caused by the heterogeneity it

displays at all levels: primary infection, inflammatory response, response to treatment, and

progression of the immune response.
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Amongst other physiological disturbances sepsis patients exhibit display hypovolemia

(abnormally low extracellular fluid), sepsis induced vasodilation (dilatation of blood vessels)

vasoplegia (decreased response to compensatory mechanisms that increase vascular tone in

normal physiological states). Thus, hemodynamic optimization is one of the primary goals of

sepsis treatment [82]. The Surviving Sepsis Campaign [103] recommends the administration

of vasopressors and fluids to counter hemodynamic abnormalities.

Vasopressors and fluids are among the treatment administrated to septic patients. We

will focus exclusively on these two treatment strategies in this thesis, consistent with almost

all previous work on RL for sepsis [63, 99, 74, 39]. One reason for such a focus is that

there is little agreement among medical researchers on best practices that guide fluid or

vasopressor administration beyond initial resuscitation. For instance, it has been shown

that both vasopressors and fluids can cause negative effects in some patients [126] (For

example excessive fluid administration could result in interstitial fluid accumulation and

organ dysfunction).

Vasopressors are intended to counter sepsis-induced hypotension. Indeed, it has been

observed that vasodilatation of systemic resistance vessels in severe sepsis can decrease by

up to 75% [132]. Thus, vasopressors aim at correcting vasodilatation and vascular tone

depression, as well as improving organ perfusion pressure [112]. Fluids are intended to

improve tissue perfusion and oxygenation and augment cardiac output, as well as combat

any hypotension caused by hypovolemia.

There are further a large variety of vasopressors and fluids at the bedside. Different

vasopressors target different vascular receptors [112], among which Norepinephrine (NE) is the

most commonly used. NE is also recommended as the first-line agent by the Surviving Sepsis

Campaign. Other vasopressors include vasopressin, Epinephrine and Dopamine. IV fluids can

be categorized as crystalloid (Solutions of ions) or colloid solutions (Suspensions of molecules

in a carrier fluid) [110]. Surviving Sepsis Campaign recommends isotonic crystalloids as

the first line fluid, amongst them saline (0.9% sodium chloride) being the most popular.

However, there has been considerable debate on the fluid choice and the amount of fluid to

be administered [110]. The differences between fluid and vasopressor types complicates the

problem of mathematically modeling sepsis treatment.
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Several organ function scores are used to assist clinicians and quantify organ failure. One

such score is the Sequential Organ Failure Assessment or SOFA score [124]. We will use the

SOFA score heavily in the sequel.

The SOFA score is based on six different scores, one for each of the respiratory, cardio-

vascular, liver, coagulation, renal and neurological systems. Each individual score takes an

integer value from 0 to 4, inclusive of both 0 and 4: The higher the score, the worse the organ

failure is. Thus SOFA score can take values from 0 to 24. A SOFA score of 2 or more is one

of the necessary conditions needed to meet the current definition of sepsis.

A thorough discussion of sepsis is of course out of the scope of this text. We refer the

interested reader to medical literature for more details. In addition, medical knowledge

of sepsis dynamics are ever changing, and there’s certainty hope that the ever-expanding

research from both medical and quantitative communities will help increase this knowledge

and improve the outcomes of treating sepsis.
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2.0 Prologue to Article 0

The following article was originally motivated as an extended version of an oral presentation

we presented at ICCAI 2021: AI in critical illness: emergence and emergent issues, and to

be published in the Journal of Critical Care as an extended abstract. However, whilst that

presentation focused on Deep Reinforcement Learning, we will be taking a more general view

of Reinforcement Learning and Stochastic Control in this version. However, we do narrow

the scope from a medical point of view, only focusing on sepsis rather than critical care

applications in general.

We discuss the unique challenges critical care medicine and sepsis provide for RL based

decision making systems. In each case, we present some approaches taken from different

research communities to alleviate the said issues, and some promising avenues for potential

solutions.

This article is intended as an introduction to the problems and promise of RL which

motivated the work that follows in this thesis, as well as the bigger picture of the work.

However, we have written this article in such a way that it can be read in isolation, therefore

we do briefly mention some results which are explained in more detail in later articles.

However, we have abridged the article to minimize repetitions. For example, the full version

contains a background section, which is omitted as it is almost identical to the previous

section on preliminaries. Similarly, we omitted some discussions on RL for Survival (RL4S)

as this method is presented separately in Article 4.
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3.0 Article 0: Reinforcement Learning & Stochastic Control for Sepsis

Treatment: Challenges and Opportunities

3.1 Introduction

Recently, there has been considerable interest in learning optimal treatment strategies for

septic patients directly from observational data or mathematical models [63, 28, 99, 74, 90,

92, 39, 61]. This work is motivated by a number of sound reasons: i) Sepsis has an enormous

cost all around the world, in terms of mortality, morbidity and economic burden [78, 102, 91],

ii) there is still ambiguity regarding optimal treatment strategies and accepted guidelines

for treatment [84, 53] iii) critical care medicine is a data rich field, and the success of data

driven methods in various domains suggests enormous potential positive impact if this data

could be leveraged intelligently. However, there are numerous challenges at all levels when

leveraging RL and optimal control theory for septic patients. Whilst some of these challenges

are common to most control problems, there are plenty of challenges that are unique to

critical care medicine. 1 Thus, in this article our intention is to both discuss these challenges

and limitations of the current state of using computational methods to assist sepsis related

clinical decision making. We further discuss relevant promising work of various research

communities. However, this article is not intended as an exhaustive survey of all attempts of

using control theory or RL for sepsis.

Our discussion follows a natural order. We start by discussing the stochastic control

problem in the most general abstract setting 2, then move on to more standard RL and then

distributional RL methods. Whilst this discussion is detailed and long, we feel it’s beneficial

to review the abstract problem first to provide an unified view of approaching the problem at

hand. We then discuss various framing of our problem and challenges that can be faced in

each, discussing appropriate solutions and methods found in the literature.
1We will focus on sepsis but most of these challenges are proposed solutions carry over to offline control

problems in critical care medicine.
2As mentioned in the prologue section, this section is omitted in this text. However, we didn’t modify the

rest of the article for consistency.
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We conclude by discussing the numerous opportunities these methods present, and

promising directions for future work.

In summary, in this article :

• We identify key obstacles to RL and control applications for sepsis, and survey various

solutions presented in previous work. These include sepsis specific research as well as

more general work in representation learning, risk sensitive RL, uncertainty quantification

and stochastic control.

• We provide a thorough discussion on quantifying the control objective and reward choice

for algorithms which use some functional of cumulative sum of rewards as the objective.

• We discuss some potentially promising avenues for future research and propose novel

perspectives.

3.1.1 Related Work

As interest in using RL for healthcare grew, there have been numerous reviews, and

surveys on using RL for healthcare and critical care applications [77, 133]. There have also

been a number of research on leveraging RL for sepsis [63, 92, 99, 90, 74] as well as guidelines

for researchers [45].

The closest to this article however is [104]. The authors provide a detailed discussion on

RL applications to healthcare problems in general, whilst also discussing the sepsis problem

as a special case. They also discuss the challenges of defining rewards and potential solutions,

which is a major focus of this work. However, in this work, we discuss a larger class of RL

and control methods. Moreover, we focus exclusively on sepsis and thus the proposals and

challenges are sepsis focused. We also discuss the control problem from classical stochastic

control literature [15], hoping the abstract point of view will inspire novel algorithms more

suited for critical care medicine. However, for the sake of completeness, we do mention some

challenges and solutions that were already discussed in [104].
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3.2 Background

Omitted due to the significant overlap with the previous chapter. Please refer Chapter

1.1.

3.3 Reinforcement Learning & Control for Sepsis

The general framework introduced in the previous section is naturally suited to formalize

clinical decision making at the ICU. Indeed, it is well matched to the actual behavior

of physicians, who observe, summarize a patient’s condition, and react with the goal of

maximizing chances of survival and the patient’s overall health. However, there are significant

challenges at all levels, and we intend to discuss these challenges and solutions proposed by

different research communities: proposing some novel avenues for some of them. We will,

however focus exclusively at the research level, and do not mention the considerable issues

involved in the production of a real time decision support system. Nor do we discuss the

potential ethical issues and philosophical dilemmas involved in any automated approach to

healthcare.

It is important to recall that our setup will be to learn optimal treatment strategies from

a fixed set of trajectories. Almost any application of RL to medicine has to be done in such

an offline manner. Therefore, we do note that some of these challenges can be mitigated if

we had access to an accurate simulated environment, but learning such a simulator itself will

be incredibly challenging, given the complexities of the septic patients.

Further, we note that, whilst this problem shares the challenges common to all Offline RL

problems and all RL to healthcare problems, we do believe sepsis and critical care medicine

present unique challenges. Thus we bias our discussion strongly around treating sepsis,

however, we do discuss some general solutions which can be used for these applications. (For

example, we discuss some recent methods introduced in representation learning which could

be directly applied).

Further, the discussion will be mainly focused on RL and discrete time methods because
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this is the most common setting used in recent work. However, there has been some work

using continuous time optimal control methods [28].

We will now begin our discussion with first focusing on the ambiguity on how the problem

should be set up.

3.3.1 Problem Setup

Armed with the lengthy discussion of the control problem and modern Deep RL methods,

let’s try to frame the problem of treating sepsis at the ICU. We will focus on vasopressor and

fluid treatments, and whilst there can still be ambiguity on how actions should be defined

(For example: discrete or continuous?, how to combine when different vasopressors are given

at the same time?) it’s still less challenging than identifying the relevant states and objectives.

Therefore we won’t focus on defining the action space any further.

We will start by discussing the control objective and defining rewards for the standard

additive RL returns.

3.3.1.1 Objective & Rewards

As mentioned previously, almost all RL methods use a cumulative future rewards (return)

based objective to optimize, whether it is the expected value of the return or learning the full

distribution and optimizing some risk sensitive criteria. Therefore we will first focus on these

objectives, and later we will explore some idealized objectives, and possible computational

methods.

Focusing on additive returns: the most natural reward choice is to define terminal rewards

in terms of death or release at the end of the ICU stay (say +1 or− 1 depending on death or

release or just a negative reward for death), without using any intermediate rewards. This

objective makes sense as a clinical objective as the primary goal of sepsis treatment is to

decrease mortality. Indeed, there are plenty of work using RL for sepsis [63, 61, 74] which

have used exclusively terminal rewards. There is also support for such a reward choice from

the success of RL in other domains such as learning to play games such as Chess and Go

[114]. However, it is important to note that these problems are all online RL problems, where
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an arbitrarily large amount of data can be collected, whereas our problem belongs to the

class of offline (batch) RL. If an accurate simulator of septic patients were to be developed

then we believe using such terminal-only rewards could suffice, as then (simulated) online

learning is possible. As we stated earlier given the immense complexities and heterogeneity

in septic patients learning such a simulator would itself be a significant challenge. Therefore,

at the moment RL efforts are constrained by a fixed dataset of observed trajectories, and

sparse rewards choices are known to induce a high sample complexity.

Therefore we hypothesize that the terminal rewards by themselves would not suffice to

learn optimal policies - at least in the current data regime. And that leads to the question of

how intermediate rewards should be defined. Intermediate rewards can in theory be used to

reflect short term goals of the clinicians. However such shorter term goals themselves are

ambiguous and do not always correlate with reduced mortality risk [46].

Further, there is enough evidence in RL, of reasonable looking intermediate rewards

resulting in undesirable behavior. Therefore, it is important that the reward choice is clinically

motivated and to verify that maximizing the cumulative (discounted) future rewards is indeed

a desirable goal. Alternatively one could verify that the learned policy is still optimal with

the previous terminal reward scheme, however this could be mathematically challenging.

[99] use a clinically motivated intermediate reward scheme using the SOFA score and

lactate to define intermediate rewards. More specifically they use rewards of the form :

r(st, st+1, a) = C0I{SOFAt+1=SOFAt & SOFAt>0}+C1(SOFAt+1−SOFAt)+C2tanh(Lact+1−Lact)

Where SOFA and Lac denotes the SOFA score and lactate. A modification of this rewards

was used in more recent work [90].

In addition to this reward scheme, the only other intermediate reward design we are

aware of is [92]. The authors define intermediate rewards using a predictive model trained to

predict probability of mortality at a given state. Then, intermediate rewards were defined in

terms of log odds.

In the context of critical care applications, a well suited intermediate reward would

be one of the form R(s) − R(s′), where R is a suitable notion of mortality risk. Then

ignoring discounting, the cumulative rewards has the desirable property of minimizing the
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cumulative mortality risk. Recent work [89] learns such a non-probabilistic risk score using a

semi-supervised learning scheme. In particular, they project EHR data to a lower dimensional

unit ball such that patients with similar mortality risk will be on the same level sphere. Then,

they experiment by using the difference of the squared norm of the consecutive embedded

vectors as intermediate rewards.

Another potential approach may be to use Inverse Reinforcement Learning (IRL) to

learn a reward function under which the observed behavior is optimal [4]. However, the

later assumption arguably makes it less attractive as by definition, the observed behavior is

optimal with respect to the learned reward function. In addition, IRL comes with its own set

of obstacles [4].

Even after deciding on a suitable reward choice, there is still ambiguity on which operator

on the value distribution should be optimized. Distributional RL methods [11, 9, 33] are well

suited to optimize a risk sensitive criteria such as C-var. The use of these methods in the

context of sepsis treatment has been limited [39].

3.3.1.2 Partial Observability: State Representation

Partial observability of the state is another key challenge in applying RL techniques

for critical care medicine. Recall that in a MDP formalism, the state should summarize

the entire system at a given time. For septic patients, this should ideally summarize all

relevant physiologic processes, diagnoses, previous treatment amongst others. Ideally, the

state should be at least as rich as all the patient level information a clinician would consider

before making a decision. However, as we have mentioned multiple times, despite the vast

amount of data collected at the ICU, the true physiologic state of a patient is rarely captured

by the observable data, and the complexities and the heterogeneity of septic patients make it

extremely challenging to have a well defined but easily computable state.

However, there have been promising work and significant progress made by various research

communities which can be readily applied to improve the temporal state representation of a

patient. We will discuss some such approaches next.

Some RL focused design choices include clustering patient readouts [63], using recurrent
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autoencoders to summarize the history of the physiologic time series (labs, vitals and scores)

[92, 90] and using probabilistic belief methods [74]. Further, [61] empirically evaluated a

number of different representation learning methods, including neural ordinary differential

equations [25] and other more recent developments in Deep Learning. [76] uses a discrete

state space which maximizes correlation with outcomes and interventions.

In our methods, we believe strongly in the integration of first principle based mechanistic

models whenever possible. For example, in [90] we integrated a simple cardiovascular model

which relates unobservable cardiovascular states to observable states, with a deep GRU

based autoencoder. Then using this neural network architecture, we estimated unobservable

cardiovascular states, in a patient specific manner. Augmenting the state with such clinically

relevant cardiovascular states is a way to encode medical and physiological knowledge and also

improves the trustworthiness of an AI system and can be used to check if the recommended

policies are consistent with clinical knowledge. However, integrating such models may require

more granular data than what is available in publicly available data sources.

There are also several non-RL specific representation learning methods which could benefit

RL. Representation learning methods have had incredible success in various other domains

such as computer vision and natural language processing [26, 48, 35]. Recently, there has been

a number of work that use Deep Representation Learning for clinical time series and other

biological data [113, 131, 89]. These methods could work in self-supervised, semi-supervised

or even supervised settings. The promise of these methods is that they can potentially learn

intelligent representations with no or minimal supervision. Even in the semi-supervised or

supervised setting, the learned representations can uncover insights beyond the supervision

signals provided. With proper care these methods can also be adapted to encode prior

knowledge using relevant geometric priors or by modifying the optimization process.

Another benefit of representation learning methods is that they provide an unified way

to encode information from multiple sources and modalities corresponding to a patient’s

stay and clinical history. These may include clinicians’ notes and diagnoses, medical images,

audio signals and possibly bio-markers, genomics amongst other modalities. In doing so the

strengths of modern machine learning methods for unstructured data (especially images and

natural language) can be exploited. There have been work in medical AI, which have used
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multiple data modalities [119, 94, 120, 59]. For example, [94] used audio signals of cough

sounds, and clinical reports to identify respiratory disorders in children. [59] used NLP to

extract cancer outcomes from radiology reports. To the best of our knowledge, multi-modal

models have been under-explored in RL applications, however, we do expect to see such

methods in the future.

3.3.1.3 Uncertainty Quantification

Ignoring uncertainty and risk when making clinical decisions can result in catastrophic

results. Further, the problem of treating sepsis is full of uncertainties at all levels. Thus,

it should be of no surprise that identifying and quantifying all forms of uncertainties are

both incredibly challenging but extremely important. Indeed, it has been argued that a

principled and a formal approach to uncertainty quantification (UQ) is essential for any

machine assisted clinical decision making system [7, 64]. A full discussion of all possible

dimensions of uncertainty however is not possible within the scope of this text (But we have

already discussed some forms of uncertainty, for example of the state in the previous section),

so we will focus on some prominent aspects of UQ, and how they affect the sepsis control

problem.

Uncertainty is usually classified into two broad categories. Aleatoric (environment)

uncertainty and epistemic (model, parametric) uncertainty [52]. Although the definitions

of these terms could be nebulous and inconsistent among different sources, at a high level

aleatoric uncertainty denotes the inherent and irreducible uncertainty within a system of

interest. In contrast, epistemic uncertainty denotes the uncertainty resulting from a lack of

knowledge. This itself is a broad definition and includes a variety of forms of uncertainty. For

example, when a model is used, epistemic uncertainty include: the uncertainty of the model

on its own outputs, model limitations and (if the model is parametric) the uncertainty of its

true parameters. In offline RL, a clear form of epistemic uncertainty is caused by the quantity

and the quality of data available. Quantifying and acknowledging epistemic uncertainty is in

particular important in any application of deep RL, because it is well known that deep neural

networks can produce unreliable outputs when the inputs are away from the distribution it
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was trained on.

Distributional RL methods are well suited to quantify the inherent environment (aleatoric)

uncertainty over future rewards 3 [11, 33, 9]. In other words, these methods acknowledge that

due to the randomness of the environment dynamics and possibly the reward process itself,

the return is a random variable and its full distribution naturally gives more information

than a scalar quantity such as an expected value or a percentile. The risk sensitive operators

on the return distribution and risk sensitive distributional RL methods which we previously

discussed attempt to minimize adverse results from aleatoric uncertainty 4. Therefore we

believe that distributional methods are well suited for RL applications for medicine.

Quantifying epistemic uncertainty could be more complicated and depends on the al-

gorithms used. Bayesian methods are a natural fit for most UQ problems. and there are

plenty of work which use Bayesian methods for optimal control [101, 30, 5]. For deep learning

based systems (not necessarily in the context of RL) [22] identifies three most common UQ

methods: Bayesian Neural Networks (BNN), Concrete Dropout (CD), and Deep Ensembles

(DE). Any of these models can be used whenever a deep neural network is used in the RL

setting (for example to represent a policy, a value function or environment dynamics).

There is work that integrate UQ with RL for sepsis. The main motivations of these

methods include: quantifying the confidence of each proposed action and potentially abstaining

from recommending an action if and when the uncertainty is too high for a given patient

state, preventing the recommendation of any dangerous or risky strategies and quantifying

the effects of distributional shift. [90] uses a distributional RL agent to learn the environment

uncertainty and quantify epistemic uncertainty using deep bootstrapped ensembles. They also

propose a preference score to recommend decisions after discounting high model uncertainties

(And also considering an estimated probability). This preference score can directly be used

in the optimization (ignoring possible computational resource constraints), in an Actor-Critic

framework [116]. [39] decomposes the two types of uncertainties. Essentially, they take a

Bayesian approach to learn the quantiles of the return distribution. [76] uses a method where
3This however is not the only form of environment uncertainty, for example, physiological processes and

treatment responses have inherent randomness, however at least in a model free RL setting these can be
captured by the randomness of the returns.

4Although some such methods can be adapted to factor in model uncertainty.
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they compute confidence bounds on Q values of sepsis interventions. Outside of medicine,

there have been various uncertainty aware methods for RL in safety critical domains [58, 80].

Before concluding this section, we again emphasize that UQ is one of most important

components of any clinical decision making system and refer the reader to UQ focused articles

for a more thorough treatment. [7, 64, 111, 1, 22]

3.3.2 Deep Reinforcement Learning & Algorithmic Challenges

Most modern success of RL has resulted from using deep neural networks as function

approximators. However deep learning and in particular deep reinforcement learning do not

yet have the strong theoretical guarantees that more traditional methods possess.

In online environments, this may not be a major obstacle as the performance of a policy

can always be verified by interacting with the environment multiple times. However in offline

RL, especially in critical care medicine the lack of clear evaluation criteria (especially when

the rewards themselves are ambiguous), makes deciding between different model classes,

hyper-parameter choices and even detecting over-fitting extremely challenging.

We note that given the complex dynamics of septic patients and the high dimensional

and possible multi-modal nature of the patient’s state, deep learning based methods are

better suited as function approximators than most alternatives. However, it is important to

be aware of the limitations and epistemic uncertainties of the models. A reasonable strategy

would be to use UQ to incorporate a confidence level with each decision and recommend an

approximate behavior policy if the confidence is low. This approach is also recommended in

[64] and [46].

3.3.3 Explainability & Trustworthiness

The ability to explain its decisions is a highly desirable feature in any computational

medical decision support system. Unfortunately, almost all machine learning methods and

even traditional engineering and control methods can fail to sufficiently explain their choices.

In the context of modern RL and AI, explainable artificial intelligence (XAI) is an active

and rapidly progressing research area, but most of the research has focused on supervised
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learning. [98] [128] and [49] provide comprehensive surveys of recent efforts to make RL more

explainable and trustworthy. [128] divide these efforts into either: providing query-based

explanations, summarizing learned policies, human-in-the-loop collaboration, verification of

systems using expert knowledge, or highlighting visualizations.

For treating sepsis, explaining each individual treatment recommendation would be very

challenging, and to the best of our knowledge, the current state of RL does not include a

well accepted procedure to provide such an explanation. However, as we have mentioned

previously, one way to provide some explainability and improve trustworthiness is to encode

medical knowledge using physiological models. Whilst this would not make the system explain

every individual decision made, it can provide some form of explainability by query based

explanations and policy summarizing (by comparing the recommended treatment with relevant

physiological states). For example, vasopressors are intended to increase systemic vascular

resistance (SVR) therefore if the system on average, associates more frequent vasopressor

recommendations with decreased SVR, the confidence of the system would improve.

We also strongly believe in having human experts in the loop whenever possible, from the

design of systems to evaluating and eventual deployment. Amongst other things, clinicians

would be best equipped to evaluate decisions made by a RL system. All automated decision

making systems can only be used to supplement and support clinicians, at least in the

foreseeable future. Therefore, having clinicians involved from the start could significantly

accelerate progress.

Further, it is important to be aware of the limitations of RL systems. For example,

uncertainty quantification discussed previously, would increase the trustworthiness of an

AI system. Other factors to address include the validation and transparency of the data

the model was trained on, identification and elimination of any opportunities that negative

human biases could have been encoded, robustness of the policies (For example, is there any

possibility of adversarial attacks?) and verification of all assumptions.
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3.3.4 Evaluation

The lack of a well defined criteria to evaluate the performance of a learned policy is

arguably the biggest challenge faced by RL applications to medicine. However this aspect has

been discussed in detail in other work [46, 104, 45], and thus we will keep our presentation

brief.

Currently, the best (and arguably the only) possible solution seems to be off-policy

evaluation (OPE) [118, 117, 97], using a validation dataset. Informally, OPE attempts to

estimate the value (expected cumulative discounted future rewards) or some other functional

of a policy using data generated by another behavior policy. These efforts can be divided into

three methods, importance sampling based methods, model based methods or a combination

of the two approaches. However, the most widely used and unbiased OPE estimators are

importance sampling based estimators.

It has been argued that all OPE methods are ill-suited for clinical applications [46].

Indeed, arbitrarily bad policies can result in high OPE estimates. For example, consider

importance sampling based methods where the return of each trajectory is re-weighted using

a product of importance ratios
∏T

t=0
πe(at|st)
πb(at|st)

where πe and πb are the probability of the action

at taken at state st in the policy we are evaluating and the behavior policy respectively 5,

and T is the trajectory length. Notice that at is the action taken in the observed dataset.

Now, suppose a RL agent recommends not to administer any treatment to patients with

high mortality risk. Therefore for most non-survivors, the importance ratio would approach

zero, as it is very likely that the observed data, generated by human clinicians would have

administered some treatment for these patients and for those actions the evaluating policy

will have 0 probability. Of course, these non-survivors are the source of almost all negative

rewards, regardless of the reward formulation. Thus, our hypothetical RL agent would

have eliminated all possible negative rewards. Another issue is, as mentioned in [46], if the

evaluated policy is deterministic, the importance weights of a trajectory will be identically

zero unless the actions match with the observed actions at all time steps.

Further, by definition OPE estimates are defined in terms of the rewards. Therefore, all
5For simplicity we have assumed that the action space is discrete, if not and the densities exist, the ratios

can be defined in terms of densities
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the obstacles in identifying rewards would carry over.

A more heuristic approach to evaluating policies, used in healthcare literature is to

compare the difference between the observed actions and the recommended actions with

an outcome such as mortality [46]. However [46] shows how these methods are prone to

confounding factors.

3.4 Opportunities and Directions for Future Research

Our presentation so far was focused on the challenges of leveraging RL and control to learn

optimal treatment strategies, however, its potential cannot be understated or undermined.

Whilst we certainly don’t endorse any notion of replacing human clinicians, RL based systems

can be and arguably already is a valuable clinical decision support tool. As an example

a RL system can recommend a policy, its confidence in the policy and an approximate

behavior policy using imitation learning (as in for example [90]). Then, the clinician can use

their own judgment and decide on the appropriate treatment. Even ignoring the chance of

RL uncovering potentially better strategies, an accurate imitation learner itself can provide

valuable information, for inexperienced clinicians. There are plenty of situations across the

world where human expertise is sparse 6, and an imitation learner can provide an approximate

action using data generated by thousands of human clinicians. This view is also echoed in [46],

where the authors claim "Retrospective critical care data sets such as the one we described

are a gold mine of information, and to dismiss them entirely would be the equivalent of telling

a clinician to avoid learning from their colleagues and focus only on their own experience.

Just as it is unethical to present sloppy research results, it is also unethical to not leverage

data that could improve patient health".

Another realistic potential of these methods is to uncover hints towards novel treatment

strategies, which of course should be subject to clinical verification. For example recent

work has suggested hints towards vasopressor policies [90] which were consistent with recent
6However, it is important that such a system is trained and verified on data of that particular region, the

current ICU data is almost exclusively from North America or Europe.
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medical literature [112].

The challenges discussed previously provides an opportunity to develop sophisticated

control methods that are specifically suited for critical care medicine. To develop such

methods, we strongly believe in an inter-disciplinary approach. As mentioned earlier even

from a pure computational and mathematical perspective control theory was historically

dispersed across various disciplines, each focusing on a specific case that is only slightly

different from the general problem. However, there are recent attempts to unify these

methodologies into a common framework. A potential benefit of these attempts among others

would be establishing stronger theoretical results for (Deep) RL problems. Indeed, this was a

motivation for describing the abstract control problem in the background section.

From a medical perspective, it’s imperative to have clinicians, medical scientists and

physiologists involved. There is a large range of opportunities to encode domain knowledge

which could mitigate some of the challenges described earlier. These include, defining and

potentially augmenting the state representation, regularizing the policies to ensure safety,

defining new algorithms and using model based methods. For the later case, a potentially

fruitful approach is to incorporate first principle based mechanistic models. However, most

physiological models are defined in continuous time using differential equations, and may

only hold for a short time span. Therefore, it is most immediately clear how these models

can be used in a discrete time control problem. However, a continuous time stochastic

control problem for septic treatment has been proposed in [28]. Continuous time methods

are certainly under-explored and could be an important direction to follow in the future.

However, the unknown dynamics and the complexities of the sepsis problem some physiologic

models themselves, (which as all models are approximations) may not be appropriate for

septic patients, therefore care should be taken.

However, we do believe there are a lot of opportunities to use methods from traditional

mathematics to improve the current status quo. In addition to physiological modeling, these

include uncertainty quantification, causal inference, differential geometry (for geometric

deep representation learning methods [19]) and stochastic analysis. Of course any potential

AI application to healthcare would have numerous ethical, sociological and educational

implications which were not considered in the scope of this text. We do note that even in
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the computational perspective taken here, some of these dimensions cannot be ignored. For

example, most current work using RL for sepsis uses the MIMIC-III database. Whilst, this

is a rich data source, the patients are only from two intensive care units located in Boston.

Therefore there is an obvious lack of representation of critically ill patients from other parts

of the world, whose treatment responses could be different due to a number of reasons. Thus,

care should be taken when interpreting the results of any RL system when a potential new

patient is away from the training data distribution.
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4.0 Prologue to Article 1

The following article titled Unifying Cardiovascular Modelling with Deep Reinforcement

Learning for Uncertainty Aware Control of Sepsis Treatment is published in PLOS Digital

Health [90]. What follows is presented in the exact same way as the published article,

followed by its supplementary information. Note that, due to formatting conventions the

methods are presented after the results.

This work addresses two main challenges in Reinforcement Learning applications for

sepsis: Partial Observability and Uncertainty.

In particular, we leverage mechanistic mathematical models which embody decades

of medical research to introduce a novel physiology aware neural network architecture.

This network is trained in an unsupervised manner, to dynamically estimate personalized

unobservable cardiovascular states. Augmenting the state with the learned cardiovascular

representation and another recurrent neural network based representation for lab history, we

use Deep Distributional Reinforcement Learning to learn value distributions. We further,

mathematically define parametric uncertainty for Offline RL, and quantify the uncertainty of

the results. Moreover, we introduce a framework for uncertainty-aware decision support with

humans in the loop.

We show that our method learns physiologically explainable, robust policies, that are

consistent with clinical knowledge. Further, our method consistently identifies high-risk

states that lead to death, which could potentially benefit from more frequent vasopressor

administration, providing valuable guidance for future research.

This work is co-authored by committee members Dr. Christopher James

Langmead, Dr. Gilles Clermont, and Dr. David Swigon.
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5.0 Article 1: Unifying Cardiovascular Modelling with Deep Reinforcement

Learning for Uncertainty Aware Control of Sepsis Treatment

Sepsis is a major host response to infection which can result in tissue damage, organ

damage and death. The mortality and economic burden of sepsis is very large. In the

U.S., sepsis is responsible for 6% of all hospitalizations and 35% of all in-hospital deaths

[78, 102], and an economic burden of more than $20B per year [91]. The treatment of sepsis

is extremely challenging, due to the high variability among patients, with respect to both

the progression of the disease, the host response to infection, and the response to medical

interventions, suggesting the need for a dynamic and personalized approach to treatment

[84, 70, 36]. Presently, the search for treatment strategies to optimize sepsis patient outcomes

remains an open challenge in critical care medicine, despite decades of research.

Recently, there has been considerable interest in the application of Reinforcement Learning

(RL) [116] to extract vasopressor and intravenous (IV) fluid treatment policies (i.e., strategies)

for septic patients from electronic health records data (ex. [63, 99, 92, 74, 61]). Informally,

the goal is to learn a policy that maps the patient’s current state to an action (i.e., medical

intervention), so as to maximize the chances of future recovery. The RL framework is

well-matched to the actual behaviors of physicians, who continuously observe, interpret, and

react to their patient’s condition. The promise of RL in medicine is that we might be able

to find policies that outperform humans (as it has in other domains, ex. [87, 114, 41]), by

automatically personalizing the treatment strategy for each patient, as opposed to using

one that is expected to work well on the typical patient [77, 133]. However, there are many

challenges that must be met before RL can be used to guide medical decision making in

real-life settings [45].

A particularly severe challenge is partial observability of patient state. Despite the

richness of data collected at the ICU, the mapping between true patient states and clinical

observables is often ambiguous. We believe that this ambiguity can be reduced through

the use of mechanistic mathematical models of physiology that relate observables to a more

complete representation of the patient’s cardiovascular state. Such models are plentiful in
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the literature, and embody decades of research in physiology and medicine. Our proposed

solution integrates, for the first time, a clinically relevant mechanistic model into a Deep

RL framework. The specific model we use was chosen because it estimates the unobservable

aspects of cardiovascular state that are relevant to specific interventions (vasopressors and

IV fluids), and the clinician’s goals — counteracting hypovolemia, vasodilation, and other

physiological disturbances. This model is integrated into our framework using a self-trained

deep recurrent autoencoder that uses a variety of inputs, including the patient’s vital signs,

organ function scores, and previous treatments.

The second challenge addressed by our framework is uncertainty in the learned policy, and

thus the expected outcomes. Similar to previous efforts to extract sepsis treatment policies

from retrospective data (ex. [63]), our method works in the Batch Reinforcement Learning

setting [68], where the agent cannot explore the environment freely. In this setting, it is

well known that RL can perform poorly [42], if the agent encounters states that are rare or

even unobserved in the training data. For this reason, it has been argued that all forms of

uncertainty should be quantified in any application of Artificial Intelligence to Medicine [8].

Thus, we quantify model uncertainty1 via bootstrapping and take a distributional approach

to factor in environment uncertainty. We also propose a decision framework where the

clinician is presented with a quantitative assessment of the distribution over outcomes for

each state-action pair.

5.1 Background & Related work

5.1.1 Reinforcement Learning

Reinforcement Learning is a framework for optimizing sequential decision making. In

its standard form, a Markov Decision Process (MDP), consisting of a 5-tuple (S,A,r,γ,p)

is the framework considered. Here, S and A are state and action spaces, r : (S,A, S)→ R
1This should not be confused with the model-based vs model-free RL distinction, because once we have

inferred latent states, our approach qualifies as ‘model-free’. The literature also uses the term epistemic
uncertainty and parametric uncertainty for model uncertainty.
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is a reward function, p : (S,A, S) → [0,∞) denotes the unknown environment dynamics,

which specifies the distribution of the next state s′, given the state-action pair (s, a), and γ

is a discount rate applied to rewards. A policy is (a possibly stochastic) mapping from S to

A. The agent aims to compute the policy π which maximizes the expected future reward

Ep,π[Σtγ
trt]. In the partially observed setting there is a distinction between the observations,

denoted as ot, and the state st, and the environment dynamics includes the conditional

probability density p(ot|st). This extends the MDP formalism to that of Partially Observed

Markov Decision Process (POMDP).

The search for of an optimal policy can be performed in several ways, including the

iterative calculation of the value function, V π(s) = Ep,π[Σtγ
trt(st, at)|s0 = s, π], ∀s ∈ S, which

returns the expected future discounted rewards when following policy π and starting from

the state s, or the Q-function, Qπ(s, a) = Ep,π[Σtγ
trt(st, at)|s0 = s, π, a0 = a],∀s ∈ S, a ∈ A,

which returns the expected future reward when choosing action a in state s, and then following

policy π. Central to many RL algorithms is the Bellman equation [12]:

Qπ(s, a) = Ep[r(s, a)] + γEp,π[Q
π(s′, a′)], (22)

and the Bellman optimality equation:

Q∗(s, a) = Ep[r(s, a)] + γEp[max
a′∈A

Q∗(s′, a′)] (23)

(where Q∗(s, a) is the optimal Q function, and s′ denotes the random next state).

5.1.2 Distributional & Uncertainty Aware Reinforcement Learning

Distributional Reinforcement Learning [10, 107, 6] extends traditional RL methods by

estimating the entire return distribution from a given state, rather than simply an expected

value. It has been shown that distributional RL can achieve superior performance in the

context of Batch RL [2]. For this reason, and because distributions are relevant to our overall

goal of providing clinicians with an assessment of the range of possible outcomes for each

state-action pair, we employ Categorical Distributional RL [10]. Here the state, action value

distribution is approximated by a discrete distribution with equally spaced support. Further,
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Fig. 1: Proposed decision support system (A): We use the compete patient history, which
includes, vitals, scores, and labs, and previous treatment, to infer hidden states. These would all
combine to make the state St. Our trained agent, takes this state and outputs value distributions for
each treatment, its own uncertainty, and an approximate clinician’s policy. We then factor in all 3
to propose uncertainty-aware treatment strategies. The electrical analog of the cardiovascular
model (B) This provides a lumped representation of the resistive and elastic properties of the entire
arterial circulation using just two elements, a resistance R and a capacitance C. This model is used
to derive algebraic equations relating R, C, stroke volume (SV), filling time (T), to heart rate (F)
and pressure. The Cardiac Output (CO) can be then computed as (SV)F. These equations define
the decoder of the physiology-driven autoencoder. Complete physiology-driven autoencoder
network structure (C) Patient history is sequentially encoded using three neural networks. A
patient encoder computes initial cardiovascular state estimates using patient characteristics, a
recurrent neural network (RNN) encodes the past history of vitals and scores, up to and including
the current time point, and a transition network which takes the previous cardiovascular state, the
action and the history representation to output new cardiovascular state estimates.

36



we employ Deep Ensembles [22] to quantify the uncertainty associated with each state action

pair. These ensembles are constructed using bootstrap estimates, as explained in the methods

section.

5.1.3 Reinforcement Learning in Medicine

Reinforcement Learning has been used for various healthcare applications. References

[133] and [77] provide comprehensive surveys of healthcare and critical care applications

respectively. In the specific context of sepsis treatment, Komorowski et al. [63] used a discrete

state representation created by clustering patient physiological readouts, and a 25 dimensional

discrete action space to compute optimal treatment strategies using dynamic programming

based methods. Others have considered continuous state representations [99] and partial

observability [92].

Our proposed decision support system is based on a preference score as shown in Fig

1A. In contrast to previous work, we choose a lower dimensional action space (9 actions), to

ensure sufficient coverage in the training data, and a reduced decision time-scale, to be more

aligned with clinical practice. The short time scale also provides a clinical justification for the

less granular action space. Our rewards are based on previous work [99] (see Methods), which

has intermediate SOFA-based rewards, and ±15 terminal rewards, depending on survival.

5.2 Results

5.2.1 Trajectory Reconstruction Using the Physiology-driven Autoencoder

One of the key features of our method is the physiology-driven structure of the autoencoder

that represents the cardiovascular state of the patient (see Fig 1B and Fig 1C). The decoder

of this autoencoder is a set of algebraic equations that map the latent state to observable,

and clinically relevant physiological parameters, such as heart rate and blood pressure. Fig 2

shows selected reconstructed trajectories for one representative patient, using various levels of

data corruption (see Methods). As the figure illustrates, the model successfully reconstructs
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the observable outputs and their trends with corruption probabilities as high as 25%. It

is only at extreme levels of corruption (50%) that the model’s accuracy degrades. Such

robustness to moderate levels of corruption was typical among training and validation patient

trajectories. We thus conclude that the autoencoder has learned an effective representation

of the cardiovascular state of the patient.

Fig. 2: Reconstruction of two validation patient trajectories using different levels of corruption using
the physiology-driven autoencoder, Left: Heart Rate. Right: Systolic Blood Pressure.

Below, we present (in Table 1) average unnormalized mean square error of the four

dimensional output, per time step to the nearest integer.

Table 1: Mean square error of reconstruction

Corruption probability MSE per time step
0% 6
10% 45
25% 59
50% 258

5.2.2 Value Distributions & Expected Values

We next investigated whether the learned values are generalizable, consistent with clinical

knowledge, and correlated with the risk of death in non-survivors. To do this, we examined

the value distributions that are produced at each time-step for patients in the validation
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set, stratified by outcome (i.e., survivor vs non-survivor). Fig 3 plots the average value

distributions output for non-survivors (top) and survivors (bottom) at 48, 24, and 1 hour from

death or discharge. The individual lines in each panel correspond to the value distributions

under the nine discrete actions available to the agent. We emphasize that these plots were

generated for the purpose of analyzing the learned models. In particular, the network only

sees the current state when it outputs such distributions; it is not given with any information

about the future.

Fig. 3: Value distributions for validation patients averaged according to different times from death
or discharge, Top row: Non Survivors. Bottom row: Survivors.

Fig 3 clearly exhibits bi-modal distributions over values for non-survivors as much as

48 hours in advance of death. Further, as the patient gets closer to death, the mass shifts
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Fig. 4: Scatter plots of scaled features : Top row: Marker colors indicates if V̂ ∗(S) < 5 (Blue) or
V̂ ∗(S) ≥ 5 (Red) Bottom: Top 10 features measured by feature permutation. Here, l_k denotes
the kth component of the latent lab representation.

towards the left peak (which corresponds to death). This behavior is consistent with the

patient’s deteriorating condition. Additionally, the distribution associated with the “no

treatment” action has a larger left peak than others, highlighting that for these states the

lack of treatment for even one hour can be fatal. The mass of the distributions for survivors,

in contrast, is concentrated closer to the right limit and there is little difference between

actions. Both of these observations are consistent with the expectation that survivors are

less likely than non-survivors to enter the highest risk states, and so the consequences of a

change in action/treatment are less extreme.

We then investigated the dependence of features and inferred states on the value distribu-
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tions and determined that they are explainable, and consistent with clinical expectation. For

example, Fig 4 shows two scatter plots contrasting representative pairs of variables, stratified

by an optimal expected value threshold of five. (This threshold was chosen arbitrarily, and

we could observe similar results for any reasonable threshold.) It is clear that the model

associates different states with different expected rewards/risk. For example, the model

associates low SBP (hypotension) and high SOFA scores with an increased risk of death, which

is consistent with medical knowledge. Thus the agent has learned to discriminate between

low and high risk states in an explainable manner. The ability to learn such associations is

noteworthy because the training and test data are highly imbalanced. In particular, 89% of

states have the property V ∗ ≥ 5.

Finally, we quantified the importance of each feature using feature permutation [88].

Briefly, for each patient we permute a selected feature while keeping others fixed. The

mean absolute value difference of the Q function (across states and actions) is taken as the

importance score for that patient. The above table lists the top 5 features across the entire

cohort. The complete feature ranking can be found in the supplementary materials (Appendix

C in S1 text). The cardiovascular states and the latent lab representations are among the

most important features, highlighting the importance of representation learning.

5.2.3 Vasopressor Treatment Strategies

We observed that the RL agents consistently recommend vasopressors for near-death

(non-survivor) states, and that the percentage of such states increase closer to the patient’s

eventual death. This phenomena is also shared by validation cohort states, as illustrated in

Fig 5A, suggesting that this behavior isn’t due to overfitting. In contrast, clinicians have

only administered vasopressors on average around 40% of the time, and this number drops

off rapidly in the last 10 hours. We investigated whether these differences are an artifact of

our choice of method by evaluating different training options and algorithms. Specifically,

we: (i) trained networks with and without weighted experience sampling scheme (explained

under Methods); (ii) used a different distributional RL algorithm, called Quartile Regression

Q Learning [33]; (iii) considered an artificial voting ensemble agent, which only administers
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Fig. 5: Top row: Percentage of states with vasopressors recommended for the training and validation
states, with time to eventual death. Here a p% voting agent, denotes an agent which only prescribes
vasopressors if an only if least p% of the Bootstrapped Ensembles have agree on giving vasopressors.
Bottom row: The percentages of states with vasopressors recommended or given with respect to
cardiovascular states and SOFA score.

vasopressors if at least p% of the ensemble agrees on giving vasopressors, at a given state;

and (iv) consider the expected value of the ensemble agent, which takes a weighted average

(weighted by the number of patients it’s trained on) of expected values of each bootstrapped

network. In each case we observed similar results, as shown in Fig 5B.

We also investigated the relationship between vasopressor recommendation and car-

diovascular states, and SOFA score. As illustrated in Fig 5C, the RL agents recommend

vasopressors, much more regularly as (SV)R (product of stroke volume and resistance) and

mean blood pressure drop. This is consistent with physiological knowledge, and latest critical

care research. For example, [40] shows that hemodynamic effects of norepinephrine extends

beyond blood pressure, and it effects SV and CO, and as described earlier, increasing systemic

vascular resistance and blood pressure, are among the primary goals of vasopressor therapy.
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However, it is interesting to note that the clinicians have not necessarily associated lower

blood pressure, or (SV)R with more frequent vasopressor administration. However they

do seem to give vasopressors more regularly as SOFA score increase. These results could

potentially provide an important direction and hints towards better treatment strategies.

This difference between the AI agent and human physicians is not unexpected, and does

not imply that physicians are systematically acting sub-optimally. Rather, this difference

reflects the fact that the rewards that the agents were trained on only consider the final

state of the patient. They do not, for example, incorporate decisions that were made by the

patient’s family to cease extraordinary measures, after consultation with the physician. Such

status changes are common, but were not available in the training data.

In contrast to vasopressors, RL agents and clinicians had similar frequencies of fluid

administration for non-survivors. However, there were some disagreement even amongst the

ensembles on whether or not to administer fluids for survivors (at less risky states). We

present a more detailed analysis along with global results in the supplementary information

(Appendix C in S1 text).

5.2.4 Uncertainty Aware Treatment

Next, we consider representative patients, and analyze the expected values of all distribu-

tions and model uncertainty. Fig 6A shows the evolution of expected values for a non-survivor

(ICU ID: 263969). This was typical among all non-survivors; initially there’s less variability

among the expected values, but as the patient’s health deteriorates the variation becomes

more drastic, and there is a clear preference towards vasopressor-based actions. The marker

size indicates how much the agent is uncertain of its own results. We observe that the model

is less certain when the patient’s health starts deteriorating. This can be attributed to the

fact that these states are uncommon in the training data, and that the underlying cause

driving deterioration can vary widely in septic patients.

For comparison, Fig 6B shows the expected values of a survivor (ICU ID: 279413). Here

the expected values take a downward slide at around 25 hours from admission, with the

values associated with no treatment considerably lower. This coincides with SOFA score
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Fig. 6: Expected value evolution of the main agent for two patients: (A) A patient who
died in the ICU. (B) A survivor. The marker size indicates the parametric uncertainty associated
with a particular action. Also shown are the standardized values of SOFA score, Systolic blood
pressure, and the unidentifiable cardiovascular state (CO)R. The x-axis indicates the hours from
ICU admission. Recommended treatments under various preference parameters: (see Eq.
28). (C)(E) Recommendations for the same patient as in (A). (D)(F) Recommendations for the
same patient as in (B). Actual clinician treatments: (G) treatment for the patient in (A), (H)
treatment for the patient in (B).

increasing and SBP (CO)R rapidly decreasing, clearly indicating that the patient’s health is

deteriorating. However, as SOFA score improves and the pressure and (CO)R goes up, the
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expected values do go up, and the difference between expected values of each distribution is

considerably less. The uncertainty levels are also much lower.

The fact that expected values of different actions are close to each other in healthy

patient states can be explained by equation 23. State-action values are calculated under the

assumption that the agent always takes the optimal action. Our agent chooses an action every

hour, and the intermediate rewards are much smaller in value than the terminal rewards.

Thus, the value of the choice of action is not likely to change very much in a healthy patient

state from hour to hour. Put another way, any mistake made by the agent is easily reversed

by taking the correct action in the next hour if the patient is non-critical. In contrast, in

more critical states, a wrong action can have irreversible consequences.

Fig 6C-Fig 6F show different treatment recommendations under our proposed framework

for uncertainty-aware decision support. Briefly, the user specifies their relative confidence

in the RL-agent and a behavior cloner (which represents the human agent) by specifying a

parameter, β. Lower values of β place more emphasis on the behavior cloner. An action

preference score (see. Methods, Eq. 28) is then calculated for each action in the current state.

The score is a simple mixture of the scaled (using a softmax function) expected value of the

ensembled distribution and the behavior probability, discounted by the model uncertainty

corresponding to the state-action pair, using a parameter λ. Panels C-F illustrate that

different choices are made, depending on the value of β and λ. Further, the sequence of

treatments are qualitatively different for the non-survivor (panels C and E) and the survivor

(panels D and F), because the agent has learned to identify critical states that require

interventions; the average non-survivor tends to remain in such states for longer stretches,

and so the agent makes relatively few adjustments, compared to the survivor. Once again,

the agent does not know the ultimate fate of the patient. For comparison, panels G and H

show the actual clinician treatments for the two patients.

5.2.5 Uncertainty Quantification Results

We now, briefly mention some interesting results on both model and environment uncer-

tainties. Further results are available in the supplementary information (Appendix C in S1
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text).

Fig 7A and Fig 7B present how model uncertainty changes with time to death and

release for non-survivors and survivors respectively. It is interesting to note that on average

the model is a lot more uncertain about non survivors compared with survivors. Further,

as a patient gets closer to death the uncertainty increases, whilst for survivors the model

uncertainty decreases closer they are to ICU release. This observation is not surprising since

death states are relatively uncommon, and also there are a wide variety of ways a septic

patient may face increased mortality risk. However for survivors, we do expect all of them to

approach a healthy state as they approach eventual discharge.

Fig 7C and Fig 7D show the average entropy of the value distributions for each of the

actions (again with time to death and release). This can be interpreted as a form of inherent

environment uncertainty over future rewards. Now, there is less of a difference between the

survivors and non-survivors and we can see a drastic drop in entropy for non-survivors as

they approach death. This is not unexpected as the environment uncertainty should reduce

when a patient’s state has deteriorated beyond a certain point. Similarly the entropy of value

distributions reduce for survivors nearer they are to release. It is also interesting to note that

on average vasopressor based actions have a lower model uncertainty but a higher entropy.

Next we fit a Gaussian Mixture model for the data, and examined the model uncertainty

with the predicted likelihood. Fig 7E shows the how the average (across all actions) model

uncertainty for each data-point with a likelihood less than p th percentile. As one could

expect the model uncertainty is higher for data-points with low density and reduces as the

likelihood increases. This shows how the networks are uncertain of data away from the

training distribution, and the value of having a large representative dataset.

5.2.6 A Comment on Off Policy Evaluation

Off policy evaluation (OPE) is the quantitative or statistical evaluation of the value of a

learned policy, usually using another dataset. Although attractive in theory, most unbiased

OPE methods use importance sampling, and are therefore dependent on a known behavior

policy. This is not the case when the data were generated by human clinicians. Even if
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Fig. 7: (A) Model Uncertainty with time to death for non-survivors, (B) Model Uncertainty with
time to discharge for survivors (C) Averaged entropy of value distributions for non-survivors with
time to death, (D) Averaged entropy of value distributions for survivors with time to release. (E)
Average Model Uncertainty for data points with density less than the p-th percentile.

a suitable behavior policy were known, an obviously bad policy can result in a very high

OPE value in our setting. For example, an agent that always prescribes no treatment for

critical patients would, in effect, eliminate most of the rewards accumulated by non-survivors

which are, of course, the source of the majority of the negative rewards. Such a policy

would have a misleadingly high OPE, because human clinicians rarely withhold treatment

for critical patients (the one exception being a conscious decision by the family to terminate
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extraordinary interventions), and so the the importance weights for such trajectories will

tend towards 0.

We note that previous research has also argued at all OPE methods are unreliable in the

context of sepsis management, and state-of-the-art OPE methods may fail to differentiate

between obviously good and obviously bad policies [46]. However, we mention OPE results

in the supplementary material (Appendix C in S1 text). We do note that developing OPE

techniques suited for the critical care domain is an important area of research to explore in

the future.

5.3 Discussion & Conclusion

We present an interdisciplinary approach which we believe takes a significant step towards

improving the current state of data-driven interventions in the context of clinical sepsis, in

terms of improving both outcome and interpretability. Indeed, we believe that the maximum

benefit of Artificial Intelligence applied to medicine is best realized through the integration of

mechanistic models of physiology whenever possible, uncertainty quantification, and human

expert knowledge into sequential decision making frameworks.

Our contribution improves the status quo in several ways. Compared to prior work,

our approach deals with partial observability of data, yet known physiology, by leveraging

a low-order two-compartment Windkessel-type cardiovascular model in the context of self-

supervised representation learning. As mentioned previously, this has several benefits. First,

in the context of sepsis treatment, estimating the cardiovascular state is essential because

the clinical decision to administer intravenous fluids or vasopressor is driven by an implicit

differential diagnosis by the clinician, as to whether insufficient organ perfusion and shock are

secondary to insufficient circulating volume (thus requiring fluids), vasoplegia (thus requiring

vasopressors), or some combination of both fundamental pathophysiologies. Second, there

is typically insufficient data to determine whether heart function is adequate (contractile

dysfunction), but a mechanistic model provides an indirect means for estimating cardiac

function by imposing known physiology. Finally, the incorporation of physiologic models
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improves model explainability, while deep neural networks and stochastic gradient-based

optimizers make it possible to learn robust and generalizable representations from large data.

We expect the unification of models based on first-principles and data-driven approaches will

provide a powerful interface between traditional computational sciences and modern machine

learning research, mutually benefiting both disciplines. We have not fully examined the

association between inferred physiological state and treatment recommendation to confirm

whether recommended actions are indeed clinically sensible. Such work is currently underway.

We also introduce an approach to quantifying model uncertainty, which is essential in any

practical application of RL-based inference using clinical data. To the best of our knowledge,

this is the first time uncertainty quantification is used to quantify epistemic uncertainty in

RL-based optimization of sepsis treatment, and of critical care applications more generally.

(Previous approaches ex. [74] have considered inherent environment uncertainty). The

method’s uncertainty estimates, combined with the recommended action comprise a simple

framework for automated clinical decision support. This principle aligns with the larger

goal of combining different forms of expertise and knowledge for better decision making, a

philosophy consistent with the rest of this work.

We chose a decision time step of one hour. Compared to similar work, this is much

more compatible with the time scale of medical decision making in sepsis, where fluid and

vasopressor treatments are titrated continuously. Accordingly, on such a time scale, there

does not appear to be large differences in the relative merit of different dosing strategies. This

makes intuitive sense: there is presumably a lesser need for major treatment modifications if

decisions are made more frequently. Yet, a frequent finding across patients, especially the

sickest ones, was that inaction (no intervention) was a consistently worse strategy. This also

meets clinical intuition.

Reducing the time scale of decisions is not only appealing clinically in situation of rapidly

evolving physiological states, such as is the case in early sepsis, but it also provides a more

compelling basis for a less granular action space. Indeed, if decisions are made hourly, it does

meet clinical intuition to have fever discrete actions. Few physicians will argue that there

is likely to be little difference in administering 100cc or 200cc of fluids in the next hour. In

the extreme, if time were continuous, the likely decision space at any given time, is whether
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a fluid bolus should be administered or not. A similar reasoning applies to vasopressors

(increase, reduce, status quo). We further notice that our methods consistently identify high

risk, non-survivor patient states which can potentially benefit from more frequent vasopressor

treatment. These results should of course, be subject to clinical verification.

An important open problem in the application of offline RL to medicine is the means by

which one evaluates learned treatment policies, given the obvious ethical issues associated

with allowing an AI to exert some control over treatment. Still, proper clinical trials will be

necessary, eventually, so the critical care community should define for itself the standards

by which an AI would be deemed safe enough to enter clinical trials [105]. In this work,

we have largely relied on a combination of medical expertise, and the fact that our model

leverages prior knowledge in the form of a simple model of cardiovascular physiology, to

argue that the learned policy is reasonable. We make no claim that the policy is expected to

produce superior outcomes in sepsis patients, relative to human clinicians. One important

area for future work may be the incorporation of more detailed models of physiology into our

framework, or perhaps using such models in the context of in silico trials (ex. [31]) as a first

step towards demonstrating that a learned policy is safe, and perhaps suitable for pre-clinical

and clinical trials. Additional areas for future work include the design of alternative rewards

(ex. based on time-dependent hazard ratios for death), and the application of risk-averse

offline RL (ex. [121]).

5.4 Methods

5.4.1 Data sources & Preprocessing

Our cohort consisted of adult patients (≥ 17) who satisfied the Sepsis 3 [55] criteria from

the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III v1.4) database

[56], [93]. We excluded patients with more than 25% missing values after creating hourly

trajectories, and patients with no weight measurements recorded. The starting point of

trajectories is ICU admission.
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We further excluded patients who got discharged from the ICU but ended up dying a few

days or weeks later at the hospital. Since we don’t have access to their patient data after the

ICU release, treating the final ICU data as a terminal state would damage generalizability.

We cannot treat those patients as survivors, however, as they were not released from the

hospital.

Actions were selected by considering hourly total volume of fluids (adjusted for tonicity),

and norepinephrine equivalent hourly dose (mcg/kg) for vasopressors. In computing the

equivalent rates of each treatment, we followed the exact same queries as Komorowski et al

[63]. When different fluids were administrated, we summed up the total fluid intake within

the hour, and discretized the resulting distribution. For vasopressors, we considered the

maximum norepinephrine equivalent rate administered within the hour to infer the hourly

dose. We used 0.15 mcg/kg/min norepinephrine equivalent rate, and 500 ml for fluids, as the

1,2 cutoff when discretizing. These were chosen, considering the mean, median of non zero

rates and medical knowledge, We also observe that due to the low dimensional action space,

there is flexibility in choosing the cutoffs. A separate 0 action for each was added to denote

no treatment.

Missing vitals and lab values were imputed using a last value carried forward scheme, as

long as missingness remained less than 25% of values. A detailed description on extracting,

cleaning and implementation specific processing as well as additional cohort details are

included in the supplementary information (Appendix A and Appendix B in S1 text).

5.4.2 Models

5.4.2.1 Physiology-driven Autoencoder

Autoencoders are a type of neural networks which learn a useful latent, typically lower-

dimensional representation of input data, while assessing the fidelity of this representation

by minimizing data reconstruction error. Our autoencoder architecture provides an implicit

regularization by constraining the latent states to have physiological meaning, and the decoder

to be a fixed physiologic model described in the next section. We further use a denoising

scheme by randomly zeroing out input with a probability of 10-25% , when feeding into the
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network. This random corruption forces the network to take the whole patient trajectory

(prior to the current time point) and previous treatment into account when producing its

output, because it prevents the network from memorizing the current observation. In essence,

we ask the inference network to predict observable blood pressures and the heart rate using

corrupted versions of itself, by first projecting it into the cardiovascular latent state, and

then decoding that to reconstruct.

More precisely, at time t, suppose the full history up to and including t is represented by

ht. Then, the output of the system ôt satisfies,

ôt = f(g(h̃t, at, d)).

Here h̃t is the corrupted history computed as,

h̃t = ht(⊙)p

where p is a vector of same dimensions as ht such that each element is sampled independently

from a Bernoulli distribution, and (⊙) denotes element wise multiplication. g, f are the

encoder and the decoder respectively, at denotes the treatment at time t and d denotes

the demographic variables. The decoder f is detailed out in the next section, and g is the

composition of neural networks as shown in Fig 1.

Fig 1C, shows the complete architecture of our inference network. As shown in the figure,

the encoder is comprised of three neural networks, a patient encoder which computes initial

hidden state estimates, a gated recurrent unit (GRU) [29] based recurrent neural network to

encode the past history of vitals and scores up to and including the current time point, and a

transition network which takes the previous state, the action and the history representation to

output new cardiovascular state estimates. We train this structure end-to-end by minimizing

the reconstruction loss, using stochastic gradient-based optimization. The supplementary

material (Appendix B in S1 text) provides a detailed description of model and architecture

hyper-parameters, and training details.

The cardiovascular model, is based on a two-element Windkessel model illustrated using

the electrical analog in Fig 1B. This model provides a lumped representation of the resistive

and elastic properties of the entire arterial circulation using just two elements, a resistance
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R and a capacitance C, which represent the systemic vascular resistance (SVR), and the

elastance properties of the entire systemic circulation, respectively. Despite it’s simplicity,

this model has been previously used to predict hemodynamic responses to vasopressors [16]

and as an estimator of cardiac output and SVR [17].

The differential equation representing this model is:

dP (t)

dt
= − 1

RC
P (t) +

Q(t)

C
(24)

where Q(t) represents the volume of blood in the arterial system. As explained in [16], over

the interval [0, T ] (where T is the filling time of the arterial system) we can write Q(t) as

Q(t) = SV δ(t), where SV stands for Stroke Volume, the volume of blood ejected from the

heart in a heartbeat. When the system is integrated over the interval [0, T ] we obtain the

following expressions for Psys, Pdias, PMAP , i.e., the systolic,diastolic, mean arterial pressure,

respectively,

Psys =
SV

C

1

1− e−T/RC
, Pdias =

SV

C

e−T/RC

1− e−T/RC
, PMAP =

(SV )R

T
=

(SV )FR

60
(25)

T is the filling time and F is the heart rate, which is determined by T . This system of

algebraic equations is used for the decoder of our autoencoder. Since heart rate can itself be

affected by vasopressors and fluids, we added heart rate (F ) as an additional cardiovascular

state despite it being observable.

Therefore we have a multivariate function f : {R,C, SV, F, T} → {Psys, Pdias, PMAP , F},

represented by the equations above, and the trivial relationship F = F (Despite the obvious

relationship we used both F and T , for ease of training and stability.) As stated previously,

to prevent it from just using the current observations, we use a denoising scheme for training.

This ensures at a fixed time, the model cannot memorize the current observation and learn

to invert f , since there is a nonzero probability of corruption. Thus it has to learn to factor

in the history and the treatments when determining the cardiovascular states. Once SV is

inferred, the cardiac output (CO), can be computed as CO = (SV )F .

Since f is not one to one, typically not all states are identifiable. To arrive at a better

approximation we used the latent space to only model deviations from fixed baselines. We
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also posit that identifiable combinations of states, when trained with a denoising scheme,

should provide important cardiovascular representations in the POMDP setting.

5.4.2.2 Denoising GRU Autoencoder for Representing Lab History

We use another recurrent autoencoder to represent patient lab history, motivated by the

fact that labs are recorded only once every 12 hours. Forward filling the same observation for

12 time points, is almost certainly sub-optimal, and the patterns of change in lab history

can be helpful in learning a more faithful representation. Thus, we use a denoising GRU

autoencoder constructed by stacking three multi-layer GRU networks on top of each other,

with a decreasing number of nodes in each layer, the last 10 dimensional hidden layer was

used as our representation. This architecture is motivated by architectures used in speech

recognition [24].

This model was also trained by corrupting the input, where each data-point was zeroed

with a probability of up to 50%. (The rate was gradually increased from 0 to 50%). As

with the previous autoencoder, this provides an extra form of regularization, and forces the

learned representation to encode the entire history.

Model architecture and training details and presented in the supplementary materials

(Appendix B in S1 text).

5.4.2.3 Behavior Cloner

We use a standard multi-layer neural network as our imitation learner. This model is

trained using stochastic gradient-based optimization by minimizing the negative log-likelihood

loss, between the predicted action and the observed clinician action, with added regularization

to prevent overfitting.

We do mention that there are many other options that could be used as a imitation

learner, including nearest neighbor-based method as in [92].
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5.4.3 POMDP Formulation

A state is represented by 41 dimensional real-valued vector consisting of:

• Demographics: Age, Gender, Weight.

• Vitals: Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Arterial

Blood Pressure, Temperature, SpO2, Respiratory Rate.

• Scores: 24 hour based scores of, SOFA, Liver, Renal, CNS, Cardiovascular

• Labs: Anion Gap, Bicarbonate, Creatinine, Chloride, Glucose, Hematocrit, Hemoglobin,

Platelet, Potassium, Sodium, BUN, WBC.

• Latent States: Cardiovascular states and 10 dimensional lab history representation.

To ensure each action has a considerable representation in the dataset, we discretize

vasopressor and fluid administrations into 3 bins, instead of 5 as in previous work [99], [63]

[92]. This results in 9 dimensional action space.

1 hour

We use the reward structure that was suggested by Raghu et. al [99], with a minor

modification. Since lactate was very sparse amongst out cohort we only considered SOFA

based intermediate rewards. Specifically, whenever st+1 is not terminal, we use reward of the

form:

r(st, a, st+1) = −0.025I((sSOFA
t+1 = sSOFA

t & sSOFA
t+1 > 0)− 0.125I(sSOFA

t+1 − sSOFA
t ) (26)

For terminal rewards we put r(st, a, st+1) = 15 for survival and r(st, a, st+1) = −15 for

non-survival.

5.4.3.1 Training

We only mention important details of training the RL algorithms here. Representa-

tion Learning related training and implementations are detailed out in the supplementary

information (Appendix B in S1 text).
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We train the Q networks using a weighted random sampling-based experience replay, anal-

ogous to the prioritized experienced replay [108], which has resulted in superior performance

in classical DRL domains, such as Atari games.

In particular for each batch, we sample our transitions from a multinomial distribution,

with higher weights given to terminal death states, near death states (measured by time of

eventual death), and terminal surviving states. We used a batch size of 100, and adjusted

weights such that on average there is 1 surviving state, and 1 death state in each batch.

This does introduce bias, with respect to the existing transition dataset, however we argue

that this would correspond to sampling transitions from a different data distribution, which

is closer to the true patient transition distribution, we are interested in, as we are necessarily

interested in reducing mortality. We empirically observe that, when using such a weighting

scheme the value distributions align more closely to clinical knowledge in identifying risky

states, and near death states.

A same weighting scheme was used for all ensemble networks, which are trained to

estimate uncertainty. As mentioned previously, we verify that the main results on vasopressor

treatment strategies hold even for pure random sampling.

5.4.4 Uncertainty

In this section, we consider model uncertainty, and not the inherent environment uncer-

tainty. Model uncertainty stems from the data used in training, neural network architectures,

training algorithms, and the training process itself.

Inspired by statistical learning theory [123], and the associated structured risk minimiza-

tion problem [134], we define the model uncertainty, (conditioned on a state s and a action

a), given our learning algorithm, and model architecture as :

Eθ,D[l(θ,ED[θ])|s, a] =
∫

l(θ,ED[θ])|s,ap(θ,D)dθdD =

∫
l(θ,ED[θ])|s,ap(θ|D)p(D)dθdD

(27)

Here, D denotes the unknown distribution of ICU patient transitions that we are at-

tempting to learn our policies with respect to. θ is a random variable which characterizes
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the value distributions. (For the C51 algorithm this can be interpreted as an element in

R51). This is outputted by our networks trained on a dataset sampled from D, for a given

state action pair. This random variable is certainly dependent on the training data, and the

randomness stems from the inherent randomness of stochastic gradient based optimization

[62] and random weights initialization. The quantity l is a divergence metric appropriate for

comparing probability distributions. We use the Kullback–Leibler divergence [66] for l.

5.4.4.1 Estimating the Uncertainty Measure

We construct a Monte-Carlo estimate of the integral in (27) by bootstrapping 25 different

datasets, each substantially smaller than the full training dataset, and training identical

distributional RL algorithms in each. This can be done efficiently due to the sample efficiency

of distributional methods. Additionally, we can approximate E[θ] either by the ensemble value

distribution, or by the value distribution of the model trained on the full training dataset.

5.4.5 Uncertainty Aware Treatment

In this section, we describe a general framework for choosing actions that factors in

uncertainty. Notice that, because our RL algorithm learns (an approximation of) the optimal

value distributions, making decisions by considering additional information does not violate

any assumption underlying the learning process.

When suggesting safe treatment strategies, we want the proposed action to have high

expected value, however we would also like our agent to flexible enough to propose an

action with less model uncertainty, if two actions have very close expected values to each

other. Another important factor to consider is how likely an action is to be taken by a

human clinician. This will have significance in a situation where human expertise is scarce.

Large retrospective datasets subsume experience of hundreds of clinicians, and knowing what

previous clinicians have done in similar situations, will be valuable such situations. Therefore

we use behavior cloning to learn an approximate behavior policy of clinicians on average.

To satisfy all three goals, we propose a general framework for choosing actions, based on

an action preference score, P(s, a), parameterized by two parameters. This general framework
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is flexible, yet simple, and the end-user can choose the parameters to reflect their own expert

knowledge, and confidence of the framework.

Let G(s, a) be a human behavior likelihood score function. In this work we equate G(s, a)

with the probabilities outputted by the behavior cloning network described in section 6.2.3.

Given a state s, we define P(s, a) associated with each action a, as:

P(s, a) = β(Softmax(Q̃∗(s, a)) + (1− β)G(s, a)− λu(s, a) (28)

where β, λ ≥ 0, u(s, a) is the parametric uncertainty associated with the state-action pair,

s, a, G(s, a) is the behavior likelihood probability and Q̃∗(s, a) is the Q function computed

from the ensembled value distributions. When human expertise is available, G(s, a) can be

modified or even re-defined to factor in expert opinion. λ penalizes uncertainty, and a low

β forces the action to be close to a clinician action. We could recover the expected value

criteria by setting β = 1, λ = 0, and we could use the system as a pure behavior cloner, by

setting β = 0, λ = 0. Therefore β controls how far from the highest expected value/behavior

likelihood score can the agent choose an action.
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5.5 Supplementary Information

5.5.1 Appendix A: Cohort Details

Our total patient cohort consists of 18,472 patients, out of which 1,828 were non-survivors.

Table 2: Cohort details

Cohort % Female Mean Age Mean ICU Stay Total Population
Overall 42.33 % 66.05 7 days 15 hours 18472

Non-Survivors 42.67 % 68.8 9 days 13 hours 1828
Survivors 42.14 % 65.91 5 days 13 hours 16644

This resulted in an experience replay consisting a total of 2596604 transitions.

5.5.2 Appendix B: Neural Network Architectures and Implementation Details

5.5.2.1 Physiology-driven Autoendcoder

Encoder :

• Patient Encoder: Multi-layer feed-forward neural network, with 3 hidden layers with 64

nodes each, followed by exponential linear unit, (eLU) non-linearity applied element wise.

• Transition: Multi-layer feed-forward neural network, with 8 hidden layers with 128 nodes

each, followed by exponential linear unit, (eLU) non-linearity applied element wise.

• RNN: Gated recurrent unit, based RNN, with 1 hidden layer, with 64 nodes.

We note that, as inputs for the network specifically the RNN, we included all vitals, and

SOFA-related scores, including the four dimensional observations, systolic blood pressure,

diastolic blood pressure, mean blood pressure and heart rate.

For training, we used Adam [62], with a low learning rate (1e-5), the corruption was only

introduced after the model has been trained for several epochs. For RL representation we

used the model trained with 10% corruption.
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5.5.2.2 Denoising Lab Autoencoder

This is comprised of three GRU networks stacked on top of each other.

• Network 1 : 12 hidden units, with 512 nodes, outputs a 128 node vector.

• Network 2 : 5 hidden units 128 nodes each, outputs a 10 dimensional vector.

• Network 3: 3 hidden units, with 10 nodes each, the last of which is taken as our hidden

lab representation.

We train this again using Adam, and corruption is gradually introduced starting from 0%

to 50%. We use the network trained under 50% corrupted inputs, when inferring the hidden

lab representation for RL.

We standardized all the labs before feeding into the network.

5.5.2.3 Imitation Learning

Muli-layer neural network with 4 hidden layers: 3 with node size 512, and the last 256.

All hidden (and input) layers are followed by a rectified linear unit (reLU) non-linearity.

Training was again using Adam with a standard learning rate, and we minimized a

negative log-likelihood loss, which is standard in classification problems.

5.5.2.4 Bootstrapping and Deep Ensembles

To learn each bootstrapped network, we first sampled from the all patients to arrive at

a bootstrapped patient list. Then we train the networks, for 2 or 3 epochs each (to have

further randomness), using a process identical to training the main RL algorithm.

For the uncertainty quantification step, we trained the majority of bootstrapped ensembles

on as little as 40% of total patients, however for the results presented under vasopressor

administration, we only considered ensembles which were trained on a cohort of 65-80% of

patients. The number of patients was also picked at random. There were 20 such bootstrapped

ensembles.
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5.5.2.5 Distributional Q learning

We use the standard C51 training algorithm as in [10]. Q network was a multi-layer

neural network. Apart from the weighted sampling described in the main body of the text,

training steps were all standard.

We use a target network, and update the target networks using polyak target updating

with τ = 0.005. (i.e. after every iteration/training step we set the target network weights to a

linear combination of it’s own weights, weighted by (1-τ) an the Q network weights, weighted

by τ). This kind of target network is common amongst all deep Q learning, algorithms.

We summarize the hyper-parameters involved in table below.

Table 3: RL algorithm hyper-parameters

Hyper-Parameter Value
Support size 51

Maximum value 18
Minimum value -18

γ 0.999
Batch size 100

Number of iterations 51932
Optimizer Adam

Learning rate 3 ∗ 10−4

τ 0.005

5.5.3 Appendix C: Additional Results

5.5.3.1 RL Results

In this section, we present further results of the distributional RL algorithm, and 

un-certainty quantification. First, in Fig 8 we present the feature importance of all 

features.
Fig 9 shows, expected value trajectories, of randomly selected validation patients. As we

have mentioned previously these results indicate the generalizability of our value networks.

To be consistent with previous work (e.x. [99]), we present heat plots of global actions,

overall, low SOFA (< 5), medium SOFA (≥ 5 < 15) and high SOFA (> 15) separately. We
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Fig. 8: Feature Importance measured by feature permutation. Here, lk denotes the kth component
of the latent lab representation

Fig. 9: Expected Values of random validation patients, Top: Non-survivors, Bottom: Survivors.
As with Fig 4, the blob size indicate the uncertainty

further provide last 24 hours on non-survivors and results from decisions taken with respect to

the expected value of the an ensembled weighted distribution, (corresponding to β = 1, λ = 0)

and β = 0.8, λ = 0.25.

However, at its core, our approach strives to extract and use patient specific recurrent
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representations to learn personalized treatments. Therefore global analysis is unlikely to

provide much insight into the intricacies that underline the decision making process. Further

when analyzing the proposed treatment, it should be noted that each action is proposed

considering only the current, actual state. Therefore for a fixed patient trajectory at a fixed

time, the agent does not know what it has proposed previously, nor how its action would

have impacted the state.

The most striking difference is for non survivors near death states. Our methods con-

sistently recommend vasopressors. It is also interesting that RL methods have in general

preferred low/medium (corresponding to 1) vasopressors and fluids as opposed to high doses

(2). Just as we mentioned in the main text, when ensembled, agents do not recommend fluids

for survivors’ less critical states. It must be noted however that the agent trained on the

whole cohort did have fluids recommended regularly, but there is disagreement amongst the

ensembles.

5.5.3.2 Uncertainty Quantification Results

In this section, we briefly mention results of uncertainty quantification.

The common pattern is that for most patients who have died, the model is less confident

about its value distributions as they become closer to death. Uncertainty among each action

varies from patient to patient. However for survivors this behavior is the exact opposite, as

the agent is more confident of its results and becomes even more confident as the patient

gets closer to discharge from the ICU. We illustrated this in Fig 7 in the main text, which

presented averaged model uncertainty with time to death and discharge for non-survivors

and survivors respectively.

Table 4 presents average uncertainty, among all patient states, grouped by the training

and validation datasets and whether the patient was a survivor or a non-survivor. As we

mentioned in the main text, the uncertainty is much higher for non survivors than survivors.

Further uncertainties for validation non-survivors are higher than training non-survivors.

However for survivors the training and validation uncertainty are very similar on average.

Both Table 4 and Fig 7 agree with our expectations, because near-death states, are
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Fig. 10: L: Heat-plots for recommended actions, under β = 0.8, lλ = 0.25 and Ensembled
Distribution Expected Values. Shown are clinician’s vs Agent for overall (orange), low sofa (green),
medium sofa (blue), high score (purple) and non survivors last 24 hrs (red).

relatively uncommon, and also there could be a lot of different ways a septic patient may

have increased mortality risk. However, for survivors, we do expect our agent to be confident

of their survival, as their states should approach a healthy state.
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Table 4: Mean model uncertainty for survivors and non-survivors in training & validation data

Action Non-Survivors Train. Survivors Train. Non Survivors Val. Survivors Val.

Vaso 0 Fluids 0 0.1916 0.0887 0.3617 0.0861

Vaso 0 Fluids 1 0.1591 0.0855 0.3085 0.0894

Vaso 0 Fluids 2 0.1587 0.0846 0.3104 0.0879

Vaso 1 Fluids 0 0.1547 0.0820 0.3066 0.0850

Vaso 1 Fluids 1 0.1451 0.0815 0.2676 0.0847

Vaso 1 Fluids 2 0.1482 0.0827 0.2776 0.0850

Vaso 1 Fluids 0 0.1634 0.0839 0.3135 0.0853

Vaso 2 Fluids 1 0.1498 0.0831 0.2710 0.0860

Vaso 2 Fluids 2 0.1488 0.0808 0.2850 0.0832

5.5.3.3 OPE Results

Despite the inherent limitations of OPE methods, we present results of Weighted Im-

portance Sampling (WIS) OPE estimates of the validation cohort. Here, we compute the

OPE estimates assuming our agent takes an action based on a score (either the expected

value or the preference score in Equation 28) with a probability of 0.99 and takes a random

action with a probability of 0.01. This was done to make the policy stochastic, because taking

importance sample based estimates of deterministic policies can be problematic.

For a dataset D the WIS value estimate is computed as,

WIS(D) =
1∑n

i=1wi

n∑
i=1

wi(
Li∑
t=1

γt(rit)) (29)

Where wi =
∏Li

t=0 πe(at|st)/πb(at|st), ai is the action taken in the dataset, πe is the policy

being valuated and πb is the behavior policy. And Li is the length of the trajectory of the ith

patient

As mentioned in the main text, Importance Sampling based OPE methods require a
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known behavior policy. We estimate this by training a neural network as a behavior-cloner

on the observable variables.

The clinicians’ value estimate for the validation cohort was 12.44. The OPE value estimate

for the ensemble agent taking actions with β = 0.8, λ = 0.25 was 13.03. The ensemble agent

taking actions under expected value resulted in an OPE value estimate of 13.3. We further

evaluated the value estimates on each of the bootstrapped ensemble. These numbers are

shown as a box plot in Fig 11. Whilst all of the values were greater than the clinicians’ value,

for the reasons explained in the main text we note that these results don’t necessarily imply

that the RL agent is superior to the clinicians.

Fig. 11: Box plots of validation (weighted important sampling) OPE estimates for bootstrapped
ensembles

5.5.4 Appendix D: Limitations and Open Problems

As stated in the main text, and discussed in previous work, the main limitation of any

data driven or computational approach to finding optimal treatment is proper evaluation of

the learned policy. In this work we relied on medical expertise and physiologic knowledge in

interpreting the results, but evaluating learned policies is an active research area in offline

RL, and future research could find better methods which are more suited to critical care

applications.

A related issue is model selection. Like supervised learning, it has been shown previously
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that training deep RL algorithms longer on the same dataset can result in poor performance

and overfitting. A lack of an obvious evaluation metric (such as test accuracy for a classification

problem) makes model selection complicated. We used results after only two full passes of the

dataset (51932 iterations), observing that the results don’t make the same sense, clinically,

when it is trained for too long. Indeed Fig 12 shows the expected value evolution for a

validation cohort non-survivor for different weights. As we can see, its results are far too

optimistic when the patient is a few hours away from death, if trained longer. However, the

vasopressor recommendation results for non-survivors, which was presented earlier, do hold

for all the different training weights.

Fig. 12: Expected Values of non-survivor, Left: Trained for 2 epochs, Right : Trained for 7 epochs

In the context of sepsis treatment, as we mentioned under Discussion, a further challenge

is designing rewards. For example even survivors have a high risk of relapse, and their

physiologic age is significantly higher than their actual age. Therefore it can be argued that

survival at the ICU should not be rewarded as much as (in absolute value) death. Further

organ damage and mortality could be competing objectives for some patients. Whilst it is

possible to have a weighted combination, of both as we did, a multi-objective RL framework

could also be looked into. As we mentioned before we hope to explore these questions in

future work.

5.5.4.1 Future Work

There are other avenues we would like to explore.

Model-based RL With Physiological Models: Model-based RL aims to explicitly

model the underlying environment and then use this information in various ways for control.
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2 This paradigm provides a natural place to incorporate mechanistic models, which could

potentially help both control and interpretability. Clearly, the availability of more granular

data, or of additional domains of data, could allow better estimation of the underlying

physiological model and thus reduce uncertainty.

Reward Structure: Our reward structure was based on previous work and has clinical

appeal. However, rewards are an essential component of any RL algorithm and is the only

place where the agent can judge the merit of its proposed actions. This is potentially another

place to include physiological knowledge. Ideally, we would want our reward structure to

capture an accurate mortality risk, and an organ damage score, with each state. Risk-

based rewards, rooted in anticipated evolution over a meaningful clinical horizon, should be

considered in future schemes.

Risk Averse RL: It could be argued that, maximizing the sum of expected future

rewards may not best reflect the end goals of safety critical domains. Whist the rewards

can be engineered to promote risk aversion, risk averse RL is a fast growing research area,

which we are keen to explore, if the RL objective itself can be tweaked to be more suitable

for critical care research.

2It could in theory be argued that our work itself is a model based and model free hybrid method.
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6.0 Prologue to Article 2

The next article introduces a novel contrastive representation learning objective and a

training scheme for clinical time series. Specifically, we project high dimensional EHR. data

to a closed unit ball of low dimension, encoding geometric priors so that the origin represents

an idealized perfect health state and the Euclidean norm is associated with the patient’s

mortality risk. Moreover, for septic patients, we show how we could learn to associate the

angle between two vectors with the different organ system failures, thereby, learning a compact

representation which is indicative of both mortality risk and specific organ failure. We show

how the learned embedding can be used for online patient monitoring, supplement clinicians

and improve performance of downstream machine learning tasks.

This work uses semi-supervised contrastive learning exploiting the underlying structure

and regularity among critically ill patients.

Whilst this thesis is focused on sepsis and RL, the work presented in this article can

be applied to any critically ill patient distribution, and has benefits beyond RL. However,

the challenges of RL for sepsis motivated this work (The need to introduce a systematic

way of defining intermediate rewards). Hence, we also show how such a design in terms of

the learned embedding can result in qualitatively different policies and value distributions,

compared with using only terminal rewards.

This work is joint work with supervisors Dr. Christopher James Langmead,

Dr. Gilles Clermont, and Dr. David Swigon.
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7.0 Article 2: Deep Normed Embeddings for Patient Representation

Recently contrastive methods, usually framed as self-supervised learning problems have

enjoyed tremendous popularity and success across various domains [48, 26, 129], but their

applications for electronic health record data have been limited [131]. Whilst this can be

explained by complexity and noise in medical time series and the difficulty to create medically

meaningful augmented versions of the patient states, there is an underlying regularity and

structure amongst critically ill patients which we believe can be exploited, to produce a

representation using simple geometric priors, working in the semi-supervised 1 setting instead

of the fully self-supervised or supervised settings. For this purpose, we introduce a new

optimization criteria, using which we embed high dimensional patient states to a lower

dimensional unit ball. The embedding has the property that the mortality risk can be

associated with the level sphere the embedded vector belongs to, and it can distinguish

between variations and similarities between patients states subjected to the same mortality

risk, using minimal supervision.

We evaluate our method on a large cohort of septic patients from the MIMIC-III [93, 56]

database. Since our experiments are focused on septic patients, we encode similarly using

major systems of organ failure. However, we note that the method can be easily adopted

for any subset of patients who exhibit a few major, loosely defined physiological classes of

criticality, and can approach higher mortality risks in different ways. By leveraging such basic

medical knowledge, our method avoids the need to compute data augmentations to create

similar pairs. Unlike in images, augmentations may not produce realistic patient states, due

to the high complexity and correlations amongst the data dimensions, and the invariances

amongst patient states are less clear. Therefore, we define similarities across two dimensions,

a) mortality risk. b) major organ system failures (or a similar notion of similarity), and use a

triplet based learning scheme, leveraging local stochastic gradient optimization. We illustrate

our method using two simple network architectures a) an auto-regressive GRU network using
1Throughout, we use semi-supervised learning to mean learning with some form of partial supervision.

We acknowledge that this use may be different from how it may be defined in other work.
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a fixed horizon, followed by a MLP head -trained on the raw data b) a single straightforward

feed-forward neural network, which uses previous representation learning used in [90] 2

The underlying assumptions and geometry which we encode in our training scheme are

as follows:

• Each septic3 patient faces mortality risk, and whilst the underlying physiological causes

and infections may be different we can still define a form of similarity using the risk

a patient faces. Whilst this can be approached using probabilistic methods, we avoid

complications in framing the problem in a probabilistic manner by using semi-supervision.

In particular, we require a level set of the unit n-hyperball to consist of the equivalence

class of all patient states facing the same risk of death.

• As two patients with the same mortality risk can have two fundamentally physiological

causes (for example different organ failures), these embeddings should be on the same

level sphere, but on different parts of the sphere.

To achieve these goals, we have to project the embedding into the unit closed ball, in

contrast to contrastive methods, where the embedding is constrained to the sphere [26, 48].

Further, we do not have a strict disjoint set of classes, so we cannot use any class based losses

such as [34, 79]. Instead, in addition to similarity in terms of survival, as we stated above

we use a softer notion of similarity such as organ failure, noting that it can be possible for

a given patient to have multiple organ failures. We also use a triplet based optimization

scheme as opposed to using more recent developments in contrastive representation learning

such as [122].

We show several benefits of the proposed method, for both assisting clinicians and for

downstream machine learning tasks. For example, the learned embeddings can be used to

identify possible new organ failures in advance, and provide early warning signs via the angle

of the embeddings and identify increased mortality risk using the norm. The later being

considerably better than SOFA score as a predictor for mortality risk for septic patients.

Our work was partially motivated by the desire to introduce a systematic criteria of
2This choice was made to be consistent with state definitions used in the RL step-which in turn was chosen

to be consistent with previous research using RL for sepsis.
3As we mentioned earlier, we illustrate our method on the specific example of septic patients, but the

method is readily applicable with minor modifications for any critically ill patient distribution.
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defining rewards for offline reinforcement learning (RL) applications in medicine. There

has been a lot of interest recently in leveraging RL for critical care applications [63, 99, 77].

However, there are significant challenges at all levels: a most crucial challenge being a lack of

an obvious notion of rewards. Some previous applications of RL for sepsis have for example,

have used just terminal rewards [63] (i.e. a reward for the final time point of a patient stay

depending on release or death) whilst others have used intermediate rewards based on clinical

knowledge and organ failure scores [99]. Given the limited number of trajectories and the

vast heterogeneity amongst critically ill patients, we hypothesize that terminal rewards do

not suffice by themselves to learn the desired policies. Indeed, our experiments show that

policies and value functions are qualitatively different and more consistent with medical

knowledge when we use intermediate rewards. Research in RL has also shown performance

and convergence can be improved when the agent is presented a denser reward signal [69].

Therefore, we show how a reward can be defined systematically using the learned embeddings,

and explore the differences in the policies and value distributions. However, we do keep the

RL discussion deliberately brief, and defer a further analysis for future work.

In summary, our major contributions are as follows:

• We propose a novel learning framework where high dimensional electronic health record

(EHR) data can be encoded in a closed unit ball so that level spheres represent (equivalence

classes of) patients with same mortality risk and patients with different physiological

causes are embedded in different parts of the sphere.

• We introduce a loss to encode the desired geometry in the unit ball, since the standard

losses in metric learning and contrastive learning were ill-suited for this purpose. Further,

we describe a simple sampling scheme suited for this method, and show how the sampling

scheme and basic domain knowledge can obviate the need to construct data augmentations.

• We experiment using a diverse sepsis patient cohort, and show how the method can

identify mortality risk in advance, as well as identify changes in physiological dynamics

in advance.

• We show how this learned embedding can be used to systematically define rewards for RL

applications. Such a definition changes the value functions and the policies considerably,

when compared with using only terminal rewards.
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7.1 Related Work

7.1.1 Contrastive Learning & Representation Learning for Clinical Time Series

Self supervised learning and contrastive methods have enjoyed increased popularity and

success in recent years, particularly in computer vision and natural language applications

[26, 48, 27, 34, 79, 50]. Self-supervised learning methods can categorized into two broad

categories [48]. Pretext tasks, where an auxiliary task is solved with the intention of learning

a good intermediate representation. Loss function based methods were a representation is

learned by directly optimizing an intelligent loss function. We use the latter approach here.

Whilst contrastive representation learning has been popular in other domains, the only

similar application to EHR time series we are aware of is [131]. They propose supervised and

self-supervised contrastive learning schemes for EHR data, using a neighborhood criteria for

the supervised version.

Our work differs from [131] in several ways. First, our method does not require artificial

augmentations to define similarity. However we do use very basic medical knowledge about

critically ill patients. In that sense, our method belongs to the class of semi-supervised

learning rather than self-supervised learning, where most previous contrastive methods were

used, with notable exceptions being supervised contrastive learning [60] for images, and some

recent work on semi-supervised contrastive learning for automatic speech recognition [129].

This work also significantly differs with respect to the optimization and sampling scheme

from all of the previous contrastive methods.

As noted in [131], there have been research on using deep representation learning for EHR

data both in isolation [81], and in the context of RL [61, 74, 90]. [81] uses sequence to sequence

models in both pretext (forecasting future signals) and loss function (autoencoding) contexts.

Denoising stacked autoencoders were used by [86], to create a time invariant representation

of patients. Autoencoders were also used by [67], to stratify patient trajectories to a lower

dimensional vector.
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7.1.2 Reinforcement Learning for Medicine

There has been considerable interest in leveraging RL for medical applications [63, 99, 61,

77, 99, 90, 96]. There have also been guidelines and discussions on challenges associated [45].

However, for the best of our knowledge the only other work which deals with systematically

defining rewards is [96]. There, the authors define a class of reward functions for which

high-confidence policy improvement is possible. They define a space of reward functions that

yield policies that are consistent in performance with the observed data, and the method is

general for all Offline RL problems. In comparison our method presented here is a simple by

product of the learned embedding and has a simple clinical interpretation for critically ill,

where reduced mortality is the primary goal.

7.2 Deep Normed Embeddings: Learning and Optimization

We now motivate our training scheme and optimization criteria, before providing the

mathematical formulation. Figure 13 illustrates the geometry we encode on the unit ball,

using a 2-dimensional ball as an example. Our optimization algorithm is based on a triplet

sampling scheme.

In each triplet, the anchor is a terminal state, either a death state or a release (survival)

state. The remaining two states are sampled such that, one is a survivor state and the other

is a non-survivor state: both in the last t hours of the corresponding stay. (With t being a

hyper-parameter, which should be interpreted as being sufficiently close to death or release.

We used t = 12, 24, 48, 72 in our experiments). The state which has the same outcome as the

anchor is labeled as positive, the other is labeled as negative. (For example, if the anchor

is a death state, then the non-survivor state is labeled as positive and the survivor state as

negative. Note that here, the word positive denotes the similarity to the anchor and not the

desirability of the given state.)

The triplet of states is then sent through a neural network parameterized by θ, with fθ(x)

being the lower dimensional embedding of an input x to the network. The optimization
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Fig. 13: The proposed training scheme: We use a triplet based sampling scheme, where 3
patient states are sampled. One of them, the anchor, is always a terminal state (corresponding to
death or release), and the others include a near death and a near release state. Our loss function is
then defined in terms of the end result of the anchor state as shown in the figure.

scheme learns the neural network parameters such that similar states are mapped to proximity

while distance between dissimilar states is maximized, and simultaneously the anchor death

states are mapped to the boundary and the anchor release states are mapped to near 4 the

origin. The positive and negative states, are also mapped near the boundary or the origin,

depending their end outcome.

In addition to dissimilarity between survival vs non-survival states, we use an additional

level of dissimilarity among non-survival states that occur due to different organ failure modes.

Critically ill patients can face mortality risk in various different ways. For example, septic

patients display enormous heterogeneity in the underlying infection and the primary organ

failure. Therefore, we require our embedding to identify similarity among the patient states

using partial supervision. In our example of septic patients, we use four major organ system

scores : i) Cardiovascular ii) Central Nervous System (CNS) iii) Liver and iv) Renal, and pick
4The releases states should not be mapped exactly to the origin as even survivors have some risk of

mortality, and research has shown there is a substantial readmission risk and a shortened life time for septic
patients, even when they survive the ICU stay.
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the organ system with the worst (highest) score as the worst organ system. Each non-survivor

state in the triplet is then annotated with the worse organ system. When the anchor state is

a death state, we use a cosine embedding loss, between the two embedded non survivor states.

Informally, the goal is to maximize the angle of the embedding of states corresponding to

different organ failures and minimizing the angle between two states corresponding to the

same organ system failure.

When the anchor is a release state, instead of the cosine embedding loss we use the triplet

loss, between anchor, positive and negative. This enables the patient states to be spread

across the hyper-ball, and the high mortality risk states to be differentiated from less risky

states.

Formally, we optimize the loss function

loss(x; θ) = β(lossterminal(x; θ)) + (1− β)(losscontrastive(x; θ)) + lossintermediate(x; θ) (30)

Here θ denotes the neural network parameters we are optimizing, and x a triplet of the

form (xa, xp, xn) (The implementation uses batches of triplets which is the norm in Deep

Learning). The loss function in (30) consists of three components: the terminal (or anchor)

loss, the contrastive loss, and the intermediate loss for non terminal states. The first two

losses are the most important, and are balanced by a hyper-parameter β ∈ [0, 1].

We now describe each component separately. For ease of notation we will use d(x) for

||fθ(x)||22, where ||x||2 denotes the l2 Euclidean norm on the embedding space. (We use the

square of the norm instead of the norm itself purely for the ease of optimization.)

The terminal loss,

lossterminal(x, θ) = I{xa=death}((d(xa)− 1)2) + λ1I{xa=release}(d(xa)) (31)

essentially distributes the terminal states to the correct part of the ball. (with respect to

the embedded norm). I.e. the death states are embedded on the boundary and the release

states near the origin. As we explained previously we want to be more generous on release

states mapped away from the origin, since survivors could exhibit non-trivial mortality risk

for critically ill patients. Thus we discount the release term with λ ≤ 1 to encourage the

network to learn these patterns automatically.
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The contrastive loss,

losscontrastive(x, θ) = I{xa=release}tripletloss(xa, xp, xn)+I{xa=death}cosineloss(xa, xp, yap) (32)

is responsible for determining the separation of states. This loss depends on whether the

chosen anchor is a dead state or a release state. Triplet loss is the standard loss as introduced

in [109] defined as:

tripletloss(a, p, n) = max{||a− p||−||a− n||+margin, 0} (33)

We used 0.2 for the triplet loss margin. The cosine embedding loss is only considered

when the anchor is a death state. This term depends on the similarity of the two non-survivor

states yap, where yap = 1 if both the states belong to the same class and 0 otherwise. We

experimented with two options for the cosine embedding loss:

(i) The standard cosine embedding loss used in metric learning defined as :

cosineloss(xa, xp, yap) =

1− cos(fθ(xa), fθ(xp)) yap = 1

max(0, cos(fθ(xa), fθ(xp))−margin) yap = 0

(ii) Cosine loss based on inner product <,>:

cosineloss(xa, xp, yap) = I{yap=0} < fθ(xa), fθ(xp) >

Where cos(a, b) :=< a, b > /
√
< a, a >

√
< b, b >.

Thus, we expect formula (ii) to be similar to (i) near death states, where
√
< fθ(xa), fθ(xa) > ≈

1 ≈
√

< fθ(xp), fθ(xp) >.5 Our results in the next sections used the first version with a

margin close to 0. Using the second version was more stable in training, but the separation

of different organ systems were more clear when the first version was used.

The intermediate loss is intended to help the network by mapping near death states

near the boundary and near release states near the origin. We note that there are a few
5Note that is this formulation we only use similarity as a loss when the organ failures are different. In

either case. the anchor state is a death state.
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hyperparameters in this loss, but our experiments show that the method is quite robust for

most reasonable hyperparameter choices.

(34)
lossintermediate(x, θ) = λ2(I{d(xp)>1}d(xp) + I{d(xn)>1}d(xn))

+ λ3(I{xa=Death}e
−αd(xp) + I{xa=release}e

−αd(xn))

+ λ4(I{xa=death}d(xn) + I{xa=release}d(xa))

This loss comprises of three components. The first term ensures that the embeddings are

constrained to the closed unit ball by penalizing if the squared norm of the embedding is

greater than one. We noticed that such an implicit regularization is more effective than

explicitly constraining the output of the network. The second and third terms help the

learning process, by mapping the intermediate (positive and negative) terms close to the

boundary or the origin. We use an exponentially decaying loss for the non-survivor states, so

the loss only large, if the norm is close to zero. α is a hyper-parameter which chooses the

desired decay. Similarly the last term ensures the near release survivor states are mapped

close to the origin in general. However we choose λ4 to be much smaller than λ1 and λ3, so

that the network can still identify high risk states.

We discuss the effect of hyper-parameter choices, and present an ablation study in the

next section (Results). Further, we note that it is also important to use an orthogonal weight

initialization [51] in order to learn a distributed representation on the ball and to prevent

dimensionality collapse [54]: This will also be illustrated under Results.

7.3 Results

We will now present some results of our method. The results in this section uses the

recurrent neural network architecture. (See supplementary material for implementation

details). Some corresponding results for the MLP are presented in the supplementary

information.
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Fig. 14: A: Norm2 of validation cohort non-survivors, B: Norm2 of validation cohort survivors, C:
A sample of non-survivor patient states, marked by the worst organ system

7.3.1 Patient Representation on the Unit Ball

For ease of visualization, we present results using representations embedded in the 3d

unit ball, however, the method works for embedding into any dimension.

Figures 14A and 14B show histograms of squared norms of the embeddings for all survivor

79



and non survivor patient states (across all time points) in the validation cohort. 6 As the

figures clearly demonstrate, the learned embedding associates the norm (or alternatively, the

level set Sk of the form Sk = {x : ||fθ(x)||2= k}) of the embedded vector with mortality risk,

with survivor states in general belonging to the lower level sets, and the non-survivor states

belonging to the higher level sets. We later show how the norm can be used as an indicator

of patient mortality risk, compared with the existing scores such as the SOFA score.

Figure 14C presents a randomly selected sample of patient states, embedded into the

3-dimensional closed unit ball. The colors mark the worst organ system for each state. There

is a clear separation amongst different organ failures. We envision, such a presentation can

be used to provide real-time visualization to assist clinicians at the ICU. For example, the

embedding can be used to identify a patient trajectory heading towards a new organ failure.

The embedding being continuous is naturally more granular than the discretized, organ failure

scores which were used as an guidance to the network to distinguish different organ failure

scores. Indeed, an example of such a patient trajectory is given in Figure 15.

Here, two embedded patient trajectories are plotted in the 3d-unit ball. We focus on the

longer trajectory, which is colored in black and green. We focus on the final 50 hrs of this

patient’s stay. The patient’s organ failure scores change at 36 hrs. At this point the patient’s

the cardiovascular score changes from 4 to 3 and then to 1 at 37 hrs. To show how the

embedding predicts this change in the underlying physiology before the organ scores reflect

it, we color the lines of first 36 hours of the trajectory in black and the last 14 in green. For

the first 36 hours the labeled worst organ system is cardiovascular (although, we note for this

patient renal and CNS scores were equal to the cardiovascular score.) and hence marked in

blue stars. As the cardiovascular score decrease the worst organ system was labeled as CNS

and is marked in purple for last 14 hrs. We can notice that the trajectory approaches its

final points, even when the organ failure scores do not indicate the increase in cardiovascular

scores. Indeed the black lines take the trajectory very close to its end set of points. This

is an example of how this learned representation can warn clinicians on changes in patient

dynamics. As we can see from this example, the representation can identify these patterns
6These results use a network trained with β = 0.75, λ1 = 0.7, λ2 = 10.0, α = 3, λ3 = 0.2, λ4 = 0.05. Other

choices are discussed later.
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Fig. 15: Embedded trajectories for two non-survivors: One patient is labeled with star
markers and black/green trajectory, the second with triangle markers and orange trajectory. The
marker color indicates the system with the highest organ failure score: Cardio (blue), Liver (Maroon)
CNS (Purple). The first trajectory is 50 hrs long, black for the first 36 hrs, green for the last 14.
The highest severity organ failure changes from cardio to CNS at 36 hrs. The embedding trajectory
approaches the cluster a few hours before the organ scores indicate the change (see detail).

from the data and is not constrained by the supervision signal (in this case the organ failure

scores) it was given.

The other trajectory is presented for comparison. This is the final 15 hours of another
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non-survivor. As we can see this patient approaches a different part of the boundary as they

become closer to death.

7.3.2 Hyper-parameter effects

Fig. 16: Embedded state distributions for various β: The labels indicate the worst organ systems as
in Figure 14

Now, we will explore the effect of hyper-parameter choices- starting with β. Figure 16

presents the same patient states shown in Figure 16(C) embedded using different β values.

Recall that β balances the terminal loss and the contrastive loss. The former focus on

determining the correct level sphere and the latter on the angle between states. Thus, Figure

16 is not surprising. The states are spread across a larger portion of the ball as β gets smaller.

The figure also illustrates the importance of the contrastive loss, as when β = 1 all the
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states are enclosed into a manifold of much lower volume. The perceptible separation of

organ failure modes is also lost. However, encouragingly for all other values of β, there is a

separation.

Figure 17 presents the embedded states, when no orthogonal weight initialization was

used. As we can observe, the volume of the space covered is much smaller.

Fig. 17: Embedded state distributions without orthogonal weight initialization. Labels indicate the
worst organ system

We also examined the effect of β, on the embedded norm. For this we stratified patient

states by: a) survivor and non-survivor, b) times to death or release. Averaged squared norms

for different values of β are presented in Figure 18. The observations are as expected: higher

β values on average perform better, in mapping states into a more suitable level sphere. The

only exception is for survivor norms, where β = 0.75 has resulted in lower norms than β = 1.0.

Unsurprisingly, when the terminal loss is not used (β = 0), the norms between the survivors

and non-survivors are similar to each other.

In each case, the averaged squared norms increase with time to death and decrease with

time to release.

We then followed the same steps for the intermediate loss. These results can be explored

in Figure 19. As expected, excluding exponentially decaying (either by setting λ3 = 0 or

α = 0) result in lower norms, on average. This was indeed the motivation for using such
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Fig. 18: Averaged embedding norm with time to death (for non-survivors) and release (for survivors):
for different β

a term in our loss function. Similarly, when λ4 is set to 0, on average norms get larger.

It is difficult to evaluate the importance of loss components using Figure 19 in isolation.

However, intuitively, there seems to be value in both intermediate loss components. Since

the intermediate loss only considers the norm and not the angle, it doesn’t have any direct

impact on the separation of physiological causes (although it implicitly impacts the effect of

β).

Fig. 19: Averaged embedding norm with time to death (for non-survivors) and release (for survivors):
for various intermediate loss choices

We also highly desire some smoothness of the norm trajectory generated by a single

patient trajectory. This is particularly important for RL, as we aim to use the difference

of the norm (or a monotonic function of the norm) between two consecutive time steps to

specify rewards. To quantify this. we computed relative jumps (i.e. |d(st+1)−d(st)|
d(st)

). Averaged
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results across all patient states are presented in Table 5 for β and 6 for intermediate loss.

Table 5: Averaged relative jumps for various β

β Average relative jump
0.0 0.128
0.25 0.125
0.5 0.162
0.75 0.264
1.0 0.686

Table 6: Averaged relative jumps for various intermediate loss choices, with β = 0.75

Choice Average relative jump
Base 0.264
λ3 = 0 0.320
α=0 0.319
λ4 = 0 0.160

From Table 5, we can notice that higher β values result in more wiggly curves. We also

observed this visually. Again, this phenomena can be explained by the form of the loss

function. Higher β values, focus heavily on the terminal states. Therefore, the loss could be

minimized by projecting states closer to the boundary or the origin more frequently.

The effects on intermediate loss terms are more interesting. It seems as α (and thus λ3)

has a smoothing effect. However, λ4 seems to be having a increase the magnitude of the

jumps.

7.3.3 Norm as a Predictor of Mortality Risk and Representation Learning for

Downstream Machine Learning Tasks

We investigated how the embedded norm can be used as a predictor of mortality risk. For

this, we created auxiliary tasks of predicting if a state is within 12, 24, 48, 72, or 120 hours

of death. We further used these tasks to compare the quality of the learned embeddings to

other representation learning methods. For the latter goal, we used a linear protocol which is

common in the common evaluation protocol in computer vision representation methods [48].
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First, we calculated the area under the ROC (AUROC), using the norm as the score

associated with each state, for each task. For comparison, we followed the same steps with

the SOFA score, since SOFA is used as a predictor of mortality for septic patients [38]. The

results are presented in Table 7. We can notice that the AUROC with respect to the SOFA

score is very similar for each task, therefore we also computed the AUROC using a SOFA

type, the aggregate score of just 4 organ systems: cardiovascular, CNS, liver, and renal. 7.

Table 7: AUROC for predicting if a state is t hours from death for various t

Task (t) SOFA SOFA(4) Norm (β = 0.5) Norm (β = 0.75)
12 hrs 0.717 0.746 0.847 0.836
24 hrs 0.716 0.741 0.828 0.8176
48 hrs 0.715 0.731 0.807 0.798
72 hrs 0.715 0.725 0.797 0.790
120 hrs 0.719 0.727 0.789 0.782

We do note that the SOFA score is an aggregation of different organ failure scores, and a

patient can face mortality risk from just a few organ failures. Therefore it is not a perfect

score to measure mortality risk. However, it is still used regularly at the ICU to predict

mortality risk and it is encouraging that the learned embedding has shown a significant

improvement in AUROC. The benefit of our method is that it can indicate the risk and the

organ failures (or physiological causes in general) responsible. This would not have been

possible if the method was approached from probabilistic methods for example.

However, we used this problem to investigate the quality of the learned representation,

against other standard representation learning methods. For this, we used a linear evaluation

protocol by simply fitting a logistic regression model on top of the learned representations.

We did this on 100 different train, test splits: training a logistic regression model on one and

noting the test AUROC.

For comparison, we learned a recurrent denoising autoencoder [125] with the same

architecture. Briefly, denoising autoencoders attempt to learn an intelligent representation

by reconstructing a corrupted input by a) first projecting into a lower-dimensional space

and then b) decoding this embedding. This method is similar to the autoencoding method
7Whereas the full SOFA score uses 6 organ systems

86



used in [81] 8. As mentioned under related work, autoencoders are a popular choice for EHR

representation learning [86, 67]. We noticed that our method significantly outperformed the

denoising autoencoder of the same hidden dimension, and thus we also used a denoising

autoencoder of a four times larger hidden dimension (12). Further, we used a standard triplet

learning scheme. Here, a randomly selected patient state is corrupted by injecting noise to

define a positive state. A different patient state belonging to a patient with the opposite

end outcome is then selected as the negative state. Then triplet contrastive loss is used as

the objective. More implementation details and problem specifications of these methods are

included in the supplementary material.

Finally, we also fitted a logistic regression model on the full observations. The results are

presented in Table 8. For the normed embeddings we show results corresponding to β = 0.5

(including a) just the 3d embedding b) embedding and the norm as another feature) which

performed the best-numbers corresponding to other choices are stated later. All the models

were trained on the same train, test splits.

Table 8: Average test AUROC for predicting if a state is t hours from death for various t

Task (t) Full Observed Emb. Emb. + Norm Denoise Auto (3d) Denoise Auto (12d) Triplet
12 hrs 0.870 0.863 0.851 0.746 0.834 0.690
24 hrs 0.847 0.837 0.829 0.726 0.811 0.681
48 hrs 0.822 0.812 0.803 0.712 0.787 0.674
72 hrs 0.8097 0.802 0.795 0.704 0.778 0.674
120 hrs 0.796 0.794 0.786 0.705 0.773 0.683

As the results indicate, our method significantly outperforms both baselines of the same

hidden dimension. In fact, even after increasing the hidden dimension of the next best

alternative, its performance was inferior to the method introduced in this work. Indeed,

the AUROC of all tasks are quite close to the AUROCs of models trained on the full 27

dimensional raw input. Further, by comparing both Table 7 and Table 8 we can notice that

even the one dimensional norm itself is competitive as a risk score even against a model

trained on the full input space specifically for these tasks.
8However, we use the same simple architecture as above, instead of the attention based architecture used

in that work.
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7.3.3.1 Ablation: β and Intermediate Loss

Next, we will present the AUROC statistics for various β values and intermediate loss

choices. We present results of fitting logistic regression models across 100 different train

and test splits. In addition, we also computed the AUROC when the norm is used as the

score. For simplicity, we averaged over all the above tasks. The results are presented in Table

9 for β and 10 for the intermediate loss. 9 It is interesting that with respect to this task

β = 0.25, 0.5 have superior numbers despite higher β values focus more on the embedded

norm. Even the model trained with no terminal loss, (recall the intermediate loss is still used)

performs reasonably.

Table 9: Average AUROCs for different β

β LR AUROC Norm AUROC
0.0 0.783 0.693
0.25 0.824 0.815
0.5 0.827 0.813
0.75 0.818 0.805
1.0 0.805 0.803

As Table 10 suggests not using the exponentially decaying terms (either by setting α = 0

or λ3 = 0), reduces the AUROC. This observation is consistent the previous ablations (Figure

19. The effect of λ4 is however unclear. The norm AUROC reduces, when λ4 = 0. However,

the logistic regression AUROC improves slightly.

Table 10: Average AUROCs for intermediate loss choices- β = 0.75 in each.

Choice LR AUROC Norm AUROC
Base 0.822 0.805
λ3 = 0 0.810 0.800
α = 0 0.795 0.787
λ4 = 0 0.828 0.797

We emphasize that whilst these results are promising, these tasks are artificial. Therefore,

performance with respect to the AUROC by itself is certainly not enough to claim that
9Notice that the two tables were generated independently. All the models in the same table used the same

train-test splits, however the splits were different across the two tables. Thus, the numbers corresponding to
β = 0.75 in Table 9 and base in Table 9 are different.
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our representation learning method is necessarily superior to other approaches or that a

specific hyper parameter combination is superior. Benchmark tasks are popular amongst

various machine learning communities. However, evaluating medical machine learning methods

(especially unsupervised, representation learning methods) using adhoc tasks can be ineffective

and even dangerous. Thus, we intentionally avoided conducting a large number of arbitrary

experiments. However, the method introduced here is flexible to be adapted to most similar

medical machine learning tasks. Further, it presents enough opportunities to encode domain

knowledge.

7.3.4 Reinforcement Learning: Rewards and Representation

In this section, we discuss how the learned embeddings can be leveraged for RL. For

consistency between RL state spaces and the inputs of the representation learning, the results

of this section uses the MLP architecture. In particular, both methods takes the same state

as input. We present a detailed description of the RL methods and implementation details in

the supplementary material.

To be consistent with previous work [90], we use deep distributional reinforcement learning

using the categorical c51 algorithm [9], which approximates the return distribution with a

discrete distribution with fixed support. The state and action spaces are also identical to

that work (except when using the embedded vector for state augmentation). We keep the RL

methods simple. For example for the results presented here, we do not re-weight the patient

distribution when sampling as in [90], and we assume actions are taken with respect to the

expected value of each value distribution.

As mentioned previously, our intention is purely to illustrate how the proposed low-

dimensional embedding can be used to define rewards, aid in state augmentation, and how

such a choice affects the recommended policies. Evaluating RL agents in the offline setting is

an open problem and an active research area, and the current off-policy evaluations (OPE)

are particularly ill-suited for critical care applications [46]. Even when OPE methods can be

used they are defined in terms of a fixed reward specification, making it impossible to use

them for comparison of RL algorithms learned under different reward functions. Therefore,
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we do not claim the methods proposed here are superior than the existing methods for RL.

However, our results show qualitative differences in values and policies that meet clinical

intuition, hinting towards the benefit of this formulation.

We experimented with two formulations of intermediate rewards. In each case we used

terminal rewards of −15 for terminal death states. For terminal survivor states, (release

states) we use 15(1− d(s)) as the terminal reward. This was done to acknowledge that not all

survivors are the same and there could be patients with higher mortality risk even amongst

survivors. Indeed medical research have claimed that the life expectancy reduces significantly

even for sepsis survivors. [32, 47]. The scale of 15 was chosen to be consistent with previous

work, for example [99].

In our first formulation we define, intermediate rewards of the form:

r1(s, a, s
′) = 0.375(d(s)− d(s′)) (35)

10 where s, a are the current state and action and s′ is the next state. Here we use d(s)

to denote the square of the norm of the embedded vector of the state s. (i.e. (||fθ(s)||)2).

We have used the current notation for simplicity, noting the slight abuse of notation. This

choice has a natural interpretation of minimizing the cumulative increases of risks between

consecutive time steps. However, we noticed (by comparing the outputs of bootstrapped

networks) that the variance of the learned norm can be high, so (d(s)− d(s′)) can only be

considered as a noisy estimate of the difference in risk. However, using the boostrapped

networks, it is straightforward to include a form of confidence in this estimate, and then

consider a regularized reward to reflect parametric uncertainty. We do not do that here do

keep our RL presentation brief.

In our second formulation, we defined intermediate rewards using the norm in the same

spirit as how SOFA score was used as an intermediate reward in previous work such as [99].

More specifically, in that work there were two components of intermediate rewards depending

on the next state’s SOFA score : (i) A change in SOFA score (SOFA score increasing resulting

in a negative reward, and decreasing a positive reward) (ii) A negative reward for when the
10More generally we can define intermediate rewards of the form r2(s, a, s

′) = α(d(s)− d(s′)) where α>0

90



SOFA score does not improve. Further, a 15 or −15 terminal reward was given for release or

death, respectively.

Therefore, we define intermediate rewards of the form:

r2(s, a, s
′) = 3.75(d(s)− d(s′))− 0.25I{d(s′)>0.5}d(s

′) (36)

where s, a are the current state and action and s′ is the next state. Here we use d(s) to

denote the square of the norm of the embedded vector of the state s. (i.e. (||fθ(s)||)2). We

have used the current notation for simplicity, noting the slight abuse of notation.

Notice that in expression of r2 the first term is positive if and only if the norm of the

next embedded state is less than the current norm. The second term is a penalty included

to discourage keeping a patient at a risky state. For our RL experiments, we used a 10d

embedding, and further for the norm calculation we averaged the norms of 10 bootstrapped

networks. Both of these choices, were intended to reduce the variance of the estimate. Further,

we experimented with augmenting the state representation, with the embedded vector.

Now, we will discuss the changes in the policies. We noticed that when we only use

terminal rewards, the percentage of states with no recommended treatment is much higher

than with intermediate rewards. This phenomena has been observed in previous research

[63]. We present a summary of these results in Table 11. Since, there is variability among

the treatment recommendations, we present averaged results. The averaging was done

using different versions of the function approximating neural network : 5 networks learned

independently using bootstrapped patients and weights of the last 3 epochs when the network

was trained on the whole training dataset. In addition to averaging the actions recommended

by each, we also present results where we average the value functions first and then recommend

actions according to the averaged value function. In each, case we can notice that using

terminal rewards only causes the action with no recommended treatment more frequently.

The breakdown of the full treatment percentages under all 3 reward formulations are presented

in the supplementary information.

We will discuss some properties of the value distributions and present the full action

distribution in the supplementary material.
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Table 11: Percentages of states with no treatment

Method % states with no treatment
Clinician 27.78

Terminal Rewards-Averaged Actions 52.68
Int. Rewards 1 (r1)- Averaged Actions 18.33
Int. Rewards 2 (r2)- Averaged Actions 28.61

Terminal Rewards-Averaged Value Functions 65.00
Int. Rewards 1 (r1) -Averaged Value Functions 26.40
Int. Rewards 2 (r2) -Averaged Value Functions 32.16

7.4 Discussions and Conclusions

In this work, we introduced a novel contrastive representation learning scheme suitable for

EHR data. One of the key differences between our method and other constrastive methods,

across all application domains, is that our method works in the semi-supervised setting rather

than purely self-supervised setting. We believe self-supervision using augmentations could

be challenging for medical time series, and unfortunately most state of the art constrastive

methods depend on heavy augmentations. However, there is enough regularity and domain

knowledge which can be exploited, although we do not have strict classes as for example

the image domain. Hence, we had to work in the semi-supervised setting rather than a fully

supervised setting. Indeed, one of our main aims of this work was to show how minimal and

loosely defined supervision and benefit in contrastive learning for clinical applications, and

we expect this work to be adapted to reflect different goals in machine learning applications

for healthcare.

We have shown that our method has learned to identify mortality risk and changes

in patient dynamics in advance in terms of the underlying physiology (via organ failure).

We believe such an application can strongly supplement human clinicians at the ICU. The

supervision given for this work is minimal and stronger supervision signals about the underlying

physiological mechanisms could result in a better and a more interpretable representation.

However, this would require more granular data than what is routinely collected at the ICU.
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Indeed, one of the key challenges in medical time series is that we do not have access to the

same quantity or the quality of data as for example natural language.

There has been recent interest in exploring the geometry of deep learning [19]. In this work,

we use simple geometrical priors using the norm and inner products of a lower dimensional

hyper-ball to encode the desired behavior. However, in future work, we plan to explore ways

of using stronger geometric priors to encode medical knowledge. We believe such a scheme

could also improve interpretability of the representations, as well as improve performance

of various machine learning tasks. It is also a potential way to leverage well established

mathematical theories of differential geometry and topology (amongst others). However, such

a use is far from trivial and would require more research.

We also note that, our method could be improved for task-specific applications through

hyperparameter optimization and using different neural network architectures. Our aim was

to emphasize on the method and the associated geometric intuitions, and thus we did not

focus on finding the optimal hyper-parameters. Similarly, we note that the performance could

be improved by using recent advances in contrastive learning such as what is introduced in

[26, 48].

Finally, we showed how the learned embedding can be used to define rewards for RL and

how as a result the distribution of values and the policies change considerably. Whilst we

have only used the norm of the embedding for RL results presented here, we anticipate this

method can be used in other ways for RL and control. For example, the organ system changes

can be considered if we can define rewards in terms of the inner product of two consecutive

vectors. However it is not immediate how this should be done, so we defer this to future

work. We may also interpret the lower dimensional embedding as an action induced patient

trajectory and a simplified dynamic patient model (where the action conditioned dynamics

will have to be estimated). This should allow us to use model based control methods, and

the low dimension could enable us to use more traditional control methods. However this

too, would require more research and is another direction we want to explore. Unfortunately,

all RL methods in medicine are subjected to challenges at all levels, including evaluation.

Therefore, we do not make any claims about the performance of the learned RL policies,

rather we emphasize the method and how it can be used to set up the RL framework, more
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systematically compared to previous work.

7.5 Broader Impact Concerns

We emphasize our aim of this work, is to introduce a novel, potentially impactful com-

putational approach. However, as with all computational and data driven approaches to

medicine, significant human evaluation is necessary before such approaches can be utilized at

the ICU. Thus, we certainly don’t recommend this method for practical deployment at its

current state.
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7.6 Supplementary Information

7.6.1 Data Sources and Preprocessing

We used a fixed cohort for all our experiments. This cohort consisted of adult patients (≥

17) who satisfied the Sepsis 3 criteria [55] from the Multi-parameter Intelligent Monitoring in

Intensive Care (MIMIC-III v1.4) database [56, 93]. The excluded patients included patients

with more than 25% missing values (of vitals and scores) after creating hourly trajectories,

patients with no weight measurements recorded and patients discharged from the ICU but

ended up dying a few days or weeks later at the hospital.

We used already pivoted, hourly vitals and scores available through the MIMIC-project.

However, labs were measured more infrequently-in most cases once in every 8-12 hours.

Therefore the lab values were imputed using a last value carried forward scheme, with the

interpretation that the recorded data is the last measured lab. For both vitals and scores,

missing values using a last value carried forward scheme.

More specifically the state consisted of :

• Demographics: Age, Gender, Weight.

• Vitals: Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Arterial

Blood Pressure, Temperature, SpO2, Respiratory Rate.

• Scores: 24 hour based scores of, SOFA, Liver, Renal, CNS, Cardiovascular

• Labs: Anion Gap, Bicarbonate, Creatinine, Chloride, Glucose, Hematocrit, Hemoglobin,

Platelet, Potassium, Sodium, BUN, WBC.

For RL and for the MLP based representation learning we also used the representation

learning used in [90]. These states included 4 cardiovascular states and a 10 dimensional lab

history representation.

For RL, we used the same action definitions as [90]. For fluids, this was the total hourly

volume of fluids (adjusted for tonicity). However for vasopressors it was the maximum

norepinephrine equivalent hourly dose (mcg/kg). The vasopressor 1/2 cut off was 0.15

mcg/kg/min norepinephrine equivalent rate. The corresponding cutoff for fluids was 500 ml

for fluids. Action 0 denotes no treatment.
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In summary, the markov decision process (MDP) used for RL is:

• State: The 41-dimensional state space described above

• Actions: A 9 dimensional discrete action space, where vasopressors and fluids can take

values 0, 1, 2. 0 indicates that treatment wasn’t administrated.

• Rewards: Several choices were used (see main text).

• Time Step: 1 hr

7.6.2 Reinforcement Learning

In this section, we will briefly mention some RL background.

RL is a framework for optimizing sequential decision making. RL can be formalized using

a Markov Decision Process (MDP), consisting of a 5-tuple (S,A,r,γ,p). This includes state

and action spaces S,A, a (typically unknown) Markov probability kernel p(|s, a), which gives

the dynamics of the next state, given the current state and the action and a reward process

with a kernel r(|s, a). A policy π is a possibly random mapping from states to actions.

Given a discount factor γ, the return is defined as the cumulative discounted rewards :∑∞
t=1 γ

trt, which is a random variable. The objective of an RL agent is to optimize some

functional of the return, usually its expected value (Induced by a policy and environment

dynamics).

Thus, the value function, V π(s) = Ep,π[Σtγ
trt(st, at)|s0 = s, π], ∀s ∈ S, is defined as the

expected future discounted rewards when following policy π and starting from the state s.

The Q-function, Qπ(s, a) = Ep,π[Σtγ
trt(st, at)|s0 = s, π, a0 = a],∀s ∈ S, a ∈ A, which returns

the expected future reward when choosing action a in state s, and then following policy π.

Distributional RL methods, attempt to learn the entire probability distribution of the

return, rather than focusing on the expected value. Therefore distributional methods can be

used to define actions with respect to criteria different from the expected value.
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7.6.3 Implementation Details

7.6.3.1 Contrastive Representation Learning

For the autoregressive model, we only considered states after at least 12 hours from

admission. For these states, we first send the past 12 hr history (up to and including the

current time), through a GRU based recurrent neural network. Then, we concatenated the

current GRU hidden state with the current observations and send the new input through a

MLP head. The final layer is sent through a tanh non-linearity.

We trained all our networks for just 10 epochs (passes through the training data). In

each case, we monitored a validation loss (with respect to the same loss that is optimized)

and saved the weights of the network, corresponding to the minimum validation loss.

We used standard, mini-batch stochastic gradient based optimization using Adam [62]

with a batch size of 128 and a learning rate of 3× 10−5. In sampling batches, we first sampled

a number of patients equal to the batch size and their respective terminal states were taken

as the anchor states. Then for each patient, a non-survivor state and a survivor state (in the

last t hours) from two different patients were drawn randomly and depending on the end

outcome of the anchor state, these states were labeled as positive or negative. The worst

organ scores corresponding to each state, were also noted.

We further used a weighted sampling scheme, where non-survivors were sampled more

frequently (as the anchor). However, this was purely due to the heavily imbalanced nature of

our cohort where around 90% of the patients were survivors.

The following table lists all the hyper-parameters used in our implementation. Note that

we have mentioned β

For MLP, the same contrastive loss hyper-parameters were used. However, we used larger

batch sizes of size 256, It had 12 hidden layers of 512 hidden units and ELU non-linearities.

The optimization details were the same as above.
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Table 12: Contrastive learning hyper-parameters

Hyper-Parameter Value
RNN layers 2
MLP layers 8

RNN hidden dimension 128
MLP hidden dimension 512

MLP activation functions ELU
Weight Initialization Orthogonal

Optimizer Adam
Learning rate 3× 10−5

Batch size 128
Non-Survivor Sampling weight 5

α 3
λ1 0.7
λ2 10
λ3 0.2
λ4 0.05

7.6.3.2 Baseline Representation Learning

Denoising Autoencoder: We used the architecture described above as our encoding

neural network. However, we did not use the tanh non-linearity at the end. During, training

we injected noise by randomly zeroing out entries with a probability of 0.1. The decoder was

a MLP with one hidden layer of 128 dimension and a ELU non-linearity. We used a batch

size of 128 and Adam as the optimizer with a learning rate of 3× 10−5. This network was

trained for 25 full epochs, and we used the weights of the network with the best test loss

(computed with corruption).

Triplet Contrastive Learning: For the triplet contrastive method, we again used the

same architecture, except for the tanh non-linearity. We normalized the output so that all

outputs are unit vectors.

We trained by first randomly selecting a patient, and then a state. This was the anchor.

We then, injected independent Gaussian noise to each dimension to create a positive version.

Next, we sampled a patient that had a different terminal outcome. A random time point of

this second patient was taken as the negative state. We again, used batch sizes of 128 and
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Adam with the same learning rate. The triplet loss margin was 0.2

7.6.3.3 Auxiliary Tasks

For logistic regression models, we created 100 different train and test splits by first,

sampling 80% of patients out of the total cohort, and then taking the data-points of these

patients as the training data and the rest as test data. For a given set of features, we trained

a logistic regression model on each of the training data and evaluated the test AUROC.

7.6.3.4 Reinforcement Learning

For RL, we used the c51 distributional algorithm [9], with a 51 dimensional support,

using batch sizes of 100 and Adam as the optimizer. For bootstrapped networks, we first

generated a random number between k 0.6 and 0.85, and selected a random k% sample of

patients. Then, the network was trained on these patient trajectories.

Other relevant hyper-parameters are noted in the following table.

Table 13: RL algorithm hyper-parameters

Hyper-Parameter Value
Support size 51

Maximum value 18
Minimum value -18

γ 0.999
Batch size 100
Optimizer Adam

Learning rate 3× 10−4

τ 0.005

7.6.4 More Results

In this section, we briefly present results when the MLP architecture was used. However,

note that these results were not generated using the same patient cohort as 14.
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Fig. 20: Results of the MLP model A: Norm2 of validation cohort non-survivors, B: Norm2 of
validation cohort survivors, C: A sample of non-survivor patient states, marked by the worst organ
system

100



7.6.5 More RL & Control: Results and Discussions

In this section, we briefly discuss some additional results of leveraging our method for RL

and control.

For better comparison, we present a table (Table 14) with the percentages of all actions

across the whole cohort under the 3 reward schemes. The results presented here are derived

from the averaged value distributions, using bootstrapped ensembles.

Table 14: Percentage of recommended actions under different schemes and the clinician

Action Terminal Rewards. Int. Rewards 1 (r1). Int. Rewards 2 (r2) Clinician
Vaso 0 Fluids 0 65 26.4 32.2 27.8
Vaso 0 Fluids 1 19 11.7 0.03 23.7
Vaso 0 Fluids 2 9 18.3 58.2 31.8
Vaso 1 Fluids 0 2.8 7.6 0.9 1.2
Vaso 1 Fluids 1 3.3 23.5 1.1 3.2
Vaso 1 Fluids 2 0 0.2 0.1 4.0
Vaso 1 Fluids 0 0.04 12 7 1.2
Vaso 2 Fluids 1 0.02 0.03 0.2 2.5
Vaso 2 Fluids 2 0.02 0 0.01 4.4

We note that there is a considerable difference between recommendations among the

reward schemes. Evaluating between different policies using historical data is one of the

hardest challenges faced by any application of RL or control to medicine. Therefore, we don’t

claim any specific scheme is necessarily better at this point.

However as we have mentioned previously the first formulation does have a natural

meaning for critically ill patients, and its increased vasopressor recommendation is consistent

with previous RL work for sepsis [90], and recent medical research [112]. We suspect the

reasons for the second reward choice to recommend less vasopressors could be that the

clinicians usually prescribe vasopressors for high risk patients, thus there are less high risk

patient states with no vasopressors administered in our observed data. (r1 penalizes staying

at a high risk state by −0.25d(s′)) This could potentially be addressed by using offline RL

methods for minimizing the effects of distribution shift, but such efforts are differed for future

work.

Now, we will compare the optimal values under different formulations.
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We will present our results using three different formulations: (i) using only terminal

rewards, (ii) using only terminal rewards but augmenting the state with the embedded vector,

(iii) using intermediate rewards (No embedded state augmentation). Each was trained using

the same hyper-parameters for 8 epochs.

Since the value itself is defined in terms of the reward choice, we scaled all the values

using a minimum, maximum scaling scheme, so that for each formulation the values fall

in the interval [0, 1]. We then, explored the differences of values amongst survivors and

non-survivors, expecting a noticeable difference at least when the states are close (in time) to

their eventual final outcome.

Due to the more pronounced difference, we will present results which use r2, first.

Fig. 21: Box plots of optimal values: The results are shown for different reward schemes and
representations.

Figure 21 presents box plots of scaled optimal values of patient states. In this figure the

intermediate rewards use the formulation r2. An analogous figure, with r2 can be found in

the supplementary material. For each, we present the box plots for all survivor states, all
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non-survivor states, survivors states within 24 hours of release, and non-survivor states within

24 hours of death. It is interesting to note that, the differences in values are most perceptible

when intermediate rewards are used. This makes more sense clinically, than results when

only terminal rewards were used, where the median non-survivor values are high even when

they are 24 hours from death. Moreover, there seem to be a slight increase in difference

between survivor and non-survivor quartiles, when the representation learning is used. This

is especially noticeable in the last 24 hours of each set of patients.

Figure 22 presents box plots for optimal values for all 3 reward choices. We can notice

that when r1 is used instead of r2 the differences between survivor and non-survivor values are

less pronounced. However, there are still interesting differences when compared with terminal

rewards. For example, variance and interquartile range of survivors are much higher. (Recall

that the values are scaled using a min-max scheme) In addition, the values of survivors are

no longer concentrated near 1.

Fig. 22: Box plots of optimal values: The results are shown for different reward schemes
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8.0 Prologue to Article 3

The next article proposes a clinically motivated control objective for critically ill patients,

for which the value functions have a simple medical interpretation. Further, we present

theoretical results and adapt our method to a practical Deep RL algorithm, which can be

used alongside any value based Deep RL method.

We call this method RL4S: Reinforcement Learning for Survival. The motivation for this

work follows from the ambiguity of quantifying the control objective and rewards for RL.

As we discussed in Article 0, rewards are fundamental to RL, and the only way to guide

the desired behavior, but it’s unclear how they should be defined, in such a way that i) the

objective of maximizing discounted cumulative rewards is a reasonable clinical goal and ii)

its sample complexity is low.

The abstract control problem motivated us to look at the problem differently. Thus, we

approach the problem in a different way starting from a straightforward objective: How to

maximize the probability of survival?. We then refine this objective to a practical Deep RL

method. We show that there are also alternate interpretations of our methods, including a

method that penalizes unlikely survivors.

The similarity to DQN type algorithms, allows us to trivially incorporate a range of

modifications including : Distributional RL, Risk Sensitive RL, Offline RL and Actor critic

methods.

We also perform empirical experiments and show that this method produces clinically

intuitive values and seem to discriminate between survivors and non-survivors.

This article will be presented at Workshop on Interpretable ML in Healthcare

at International Conference on Machine Learning (ICML). We aim to publish an

extended follow up article in the future.
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9.0 Article 3: Reinforcement Learning For Survival: A Clinically Motivated

Method For Critically Ill Patients

Recently, there has been an increased volume of research which try to learn optimal

treatment strategies for critically ill and in particular for septic patients [63, 28, 99, 74, 92, 39,

90], using Reinforcement Learning (RL) methods. Given the enormous mortality, morbidity

and economic burden [78, 102, 91], the ambiguity regarding optimal treatment strategies and

lack of accepted guidelines for treatment [84, 53], such attempts are certainly justified.

In this work, we will focus on applications where reduced mortality is the primary clinical

goal. For such problems, there has been debate on optimal reward choices for the RL

formulation. Indeed, some work have used exclusively terminal rewards (for example, +/−1

depending on death or release or just a negative reward for death) [63, 74, 61], whilst others

have used clinically motivated intermediate rewards [99, 92, 90]. Whilst just using terminal

rewards does make sense as a clinical objective, such sparse reward choices induce high

sample complexity, and all RL applications to medicine are performed in an offline manner,

using a fixed dataset of observed trajectories. In particular, for complex syndromes such as

sepsis, given the enormous heterogeneity and complexities amongst patient trajectories, it is

very unlikely that the extent and the variety of the currently available data will cover the

feasible range of physiologic states in any case. Further, it is well known that even survivors

face a significant readmission risk and a reduced life expectancy [32, 47]. Therefore, not

all survivors are the same, and we may have to consider the physiologic health or even a

physiologic expected life time of the survivors when they are released.

The current intermediate reward choices are mostly adhoc, and typically it is not verified

whether maximizing cumulative discounted rewards is a reasonable clinical goal. Further, there

is enough evidence in RL where reasonable looking reward choices have caused undesirable or

even dangerous behavior [3, 37]. In either case, the use of discount factors (which is necessary

for mathematical guarantees) makes the interpretation of value functions opaque.

Thus, we propose a simple clinically motivated control objective for this problem :

Maximizing the probability of surviving the ICU stay. We show how this objective could
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then be interpreted as a Q learning based RL problem with patient state, and action specific

discount terms. Thereby, allowing us to use any Deep Q learning based algorithm with a

one line modification. The Survival Q functions also has a simple interpretation which can

help in improving the trustworthiness of an RL agent, and provide some explainability of

recommended actions.

Further, the same theoretical properties as Q learning hold under mild assumptions. We

then experiment with this method using a large sepsis cohort and show qualitative differences

between values and policies, compared with standard RL methods. We show that the scaled

values are in particular, more consistent with clinical knowledge under our method.

In summary, in this article :

• We introduce a new, survival focused objective for critically-ill patients.

• We present theoretical results and then adapt this objective to a practical Deep RL

algorithm.

• We experiment using a large sepsis cohort, and present how values are more consistent

with clinical intuition under our scheme.

9.1 Related Work

As mentioned previously, there are a large volume of research which attempt to use RL

or control for critical care applications [77, 63, 99, 133].

However, for the best of our knowledge there is limited prior work which explore alternate

control objectives 1 or systematic criteria for defining RL rewards. [96] define a class of

reward functions for which high-confidence policy improvement is possible. The authors,

identity a space of reward functions that yield policies that are consistent in performance

with the observed data. [89] learns a mortality risk score using semi supervised contrastive

learning, and then use their risk score to define intermediate rewards as the decrease in risk

between successive time steps.
1There have been risk sensitive RL methods, which optimize a different functional of the return rather

than the expected value. However, these methods are also subject to a proper definition of rewards.
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Arguably, the closest to our work is Q learning approaches for censored data such as

[43]. However, their problem is fundamentally different to ours. They consider censored data,

and define an objective which maximizes the survival time, taking the possible censoring

into account. However, they focus on longer term problems and in contrast we focus on

the shorter term, acute illnesses. We also have access to the end state of the patients, thus

censoring isn’t a major issue here.

Outside of medicine, [130] proposed a method, which aims to optimize the cumulative

rewards in a constrained MDP, with a negative avoidance constraint. Their method uses

a Negative Avoidance Function (NAF), which plays a role similar to a hazard function.

However, apart from the higher level goal of prioritizing survival, the method proposed here

is significantly different.

9.2 Background

We will start by briefly discussing the familiar RL framework and additive control objective.

RL can be formalized by a Markov Decision Process (MDP) framework. This include state

and action spaces S,A, a (typically unknown) Markov probability kernel p(|s, a), which gives

the dynamics of the next state, given the current state and the action and a reward process

with a kernel r(|s, a).

Given a discount factor γ, the return is defined as the cumulative discounted rewards :∑∞
t=1 γ

trt, which is a random variable. In RL, the agent’s performance is measured in terms

of the return, and most of the attention has been focused on the expected return.

Therefore, the value of a policy π (V π(s)) at state s is defined as the expected future

rewards starting from state s, and following the policy π. That is :

V π(s) = Ep,π[Σtγ
trt|s0 = s, π], ∀s ∈ S (37)

The Bellman equation for the value function can be written as:

V π(s) = Ep,π[r + γV π(s′)], (38)
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If V ∗ is the optimal value function, V ∗ satisfies the following Bellman optimality equation:

V ∗(s) = sup
π∈Π
{Ep,π[r + γV ∗(s′)} (39)

Similarly, the state action value function or Q function can be defined as

Qπ(s, a) = Ep,π[Σtγ
trt|s0 = s, π, a0 = a], ∀s ∈ S, a ∈ A (40)

The Q function can be interpreted as the expected return of starting at state s, taking the

action a and then following the policy π.

The following can then be verified.

The Bellman equation for the Q function :

Qπ(s, a) = Ep[r] + γEp,π[Q
π(s′, a′)], (41)

and the Bellman optimality equation for the Q function:

Q∗(s, a) = Ep[r] + γEp[max
a′∈A

Q∗(s′, a′)] (42)

(where Q∗(s, a) is the optimal Q function, and s′ denotes the random next state)

Here, we have also implicitly assumed that the maximum exists for some a ∈ A. If it

doesn’t, one can replace max with sup.

Indeed, it can be shown that under some regularity conditions all four Bellman operators

are contractions in L∞. So an iterative algorithm would converge to either the optimal value

function or the policy induced value function.
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9.3 Reinforcement Learning for Survival

An Idealized Objective for Critically Ill Patients

Now, we will present an idealized, clinically motivated control objective for critically ill

patients. Our presentation will follow our intuition in developing the method. In particular,

we will start by defining the objective without any consideration of its usefulness as a

computational method, and then refine it so that it can be adapted to a RL algorithm, with

convergence guarantees.

We will assume the knowledge of a true discrete time conditional hazard (or survival)

process. That is : suppose a patient’s death is a (Markov) stochastic process, based on the

patient state, and a given action. Thus, for each patient state, at each time t there is a

probability (discrete hazard) ht(st, at) = p(Dt+1 = 1|st, at, Dt = 0) (where Dt=1 if the patient

is dead at the end of the t th time step and 0 otherwise) of the patient dying within the next

time step. We will further assume the hazard process is independent of the time t. Thus, we

drop the subscript t from ht(s, a) from now on, assuming the hazard process is stationary,

but of course state and action dependent.

Now, for a given policy π, it is straightforward to compute the expected probability of a

patient surviving their ICU stay as :

Ep,π[
Hs∏
t=0

(1− h(s, a))|π] (43)

Where, the expectation is taken with respect to the environment dynamics and the

policy, the actions are at ∼ π(st) and Hs is a state dependent random time, representing the

remaining time at the ICU.

Then, our control objective can be written as :

Maximize, Ep,π[
Hs∏
t=0

(1− h(st, at))] such that π ∈ Π (44)

Where Π, is the class of policies considered.

Notice that the functional represented by Equation 43 is multiplicative, but we will not

be using it in the same form any further. However, we note that traditional stochastic control
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literature have discussed multiplicative cost functionals [15]. That work discusses DP-like

algorithms and guarantees of optimal policies which hold for our survival objective Equation

43 (under known dynamics and an uniform finite horizon).

However, we will take a different approach motivated by Q functions.

Let’s define the survival Q function : Qπ
S(s, a) to be the probability of a patient with state

s will survive their ICU stay, given that the first action is a, and the policy π is continued

afterwards.

Definition 1.

Qπ
S(s, a) := Ep,π[

Hs∏
t=0

(1− h(st, at))|π, so = s, ao = a] (45)

Now analogous to Equation 42, we define the optimal survival Q functions as Q∗
S(s, a):

Definition 2.

Q∗
S(s, a) := sup

π∈π
Qπ

S(s, a) (46)

Now conditioning on the the event at t = 0, the following two results follow immediately:

Qπ
S(s, a) = (1− h(s, a))Ep,π[Q

π
S(s

′, a′)] (47)

Q∗
S(s, a) = (1− h(s, a))Ep[max

a′∈A
Q∗

S(s
′, a′)] (48)

With, for all a ∈ A :

Qπ
S(s, a), Q

∗
S(s, a) = 1, when s is a release state and,

Qπ
S(s, a), Q

∗
S(s, a) = 0 when s is a death state.

Now, let R be an indicator variable such that R(s) = 1 if s is a release state, and 0

otherwise. We can interpret R as a known, deterministic binary function from S → {0, 1}. 2

Then, Q∗ satisfies the following relationship :

Q∗
S(s, a) = I{R(s)=1} + I{R(s)=0}(1− h(s, a))Ep[max

a′∈A
Q∗

S(s
′, a′)] (49)

Implicit in Equation 49 is that for death states h(s, a) = 1, so we don’t have to explicitly

consider that case. Equation 49 allows us to develop simple RL and Deep RL algorithms for
2Alternatively, we can think of R as a known property or an annotation of the state
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our problem. Before we describe the Deep RL algorithm we will present some theoretical

results. For this, let’s denote F to be the set of real valued functions from S ×A to R, and

define the operators Tπ, T : F → F as :

Tπ(J)(s, a) = I{R(s)=1} + I{R(s)=0}(1− h(s, a))Ep,π[J(s
′, a′)], (50)

T (J)(s, a) = I{R(s)=1} + (1− h(s, a))I{R(s)=0}Ep[max
a′∈A

J(s′, a′)], (51)

Theorem 3. Assume, the conditional hazard (at non-release states) is uniformly bounded

below by a positive number. Then, the operators Tπ and T are contractions in the Banach

space B of bounded functions of F under the sup norm. Thus, they have unique fixed points.

The proof of Theorem 3 follows with the exact same reasoning as results for analogous

Bellman Q operators. However, we provide a proof in the Appendix A.

The contraction property of the optimal Survival Q function allows us to develop an

experienced based, stochastic, Survival Q learning algorithm, akin to Q learning. This

algorithm is guaranteed to converge under the same assumptions as Q learning. We relegate

this theorem (Theorem 4) to Appendix A, due to space constraints.

As we noted earlier, the Survival Q function has a more straightforward interpretation

than the regular Q functions (especially with intermediate rewards). That is : at each state s,

and potential action a, Q∗
S(s, a) represents the probability that the patient will survive their

ICU stay, given that the action a is taken at this time step and actions are taken optimally

afterwards. Therefore, the agent has some capacity to explain the reasoning of each decision

it recommends. However, we note that the quality of the interpretation depends heavily

on the quality of the function approximators, training data and the approximate hazard

model. Still, we believe compared with the existing methods, this is one of the advantages of

our method. We could also interpret our method as an uncertainty aware method, which

penalizes unlikely survival by discounting the release by the likelihood of the survival, thus

considering a form of aleatoric uncertainty. We will follow this insight and continue the

discussion and possible modifications under Discussions.
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Reinforcement Learning for Survival (RL4S)

Now, we can notice that Equation 49 can be compared with Equation 42, with zero

intermediate rewards, deterministic terminal rewards and a state action specific discount

factor. Since, we have the knowledge of the end outcome of terminal states, we can use this

relationship exactly as DQN [87] type algorithms leverage Equation 42. More specifically, we

aim to parametrize the optimal survival Q function (Q∗
S) using function approximation based

on Equation 49. At terminal states the function is regressed into 1 or 0, and for every other

state the left hand side is regressed to the the right hand side of Equation 2, with the same

convergence tricks as DQN. 3

This insight, allows us to leverage any value based Deep RL algorithm, with a reward
4 where a) a final reward of 1 is applied if and only if a patient is realised and b) 0 at all

other time points. Whilst when interpreted as a reward, this choice is still sparse, using

state, action specific survival probabilities instead of a uniform discounting term encodes

information about the patient’s condition.

9.4 Experiments

Now, we will conduct several experiments to investigate the performance of RL4S and to

empirically compare the policies and values with other RL formulations. We will focus on

the problem of administering vasopressors, and fluids for septic patients. This problem is

well suited for our objective and is a popular choice for RL approaches [99, 63, 74, 61, 90].

However, we emphasise that our focus here is to investigate our method and thus our results

are preliminary and doesn’t include many necessary steps needed before it can used for

practical clinical decision support. For example, we strongly believe that any application

of computational methods for clinical decision support should include (especially epistemic)

uncertainty quantification, however we don’t explore such results here. In particular, we do
3Note, that this depends on a known hazard function, but there are several methods to learn an approximate

hazard function, we will describe our choice in the experiments section.
4In our algorithm this is an indicator variable indicating if a patient has been released at the point or not.

however the formulation fits into usual RL algorithms by interpreting this as a reward
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not claim that the learned policies are superior to that of the clinicians or previous RL efforts.

9.4.1 Data Sources & Prepossessing

For all our analysis we used the MIMIC-III [56, 93] database and the same patient cohort

which was used by Nanayakkara et al [90], including the representation learning described

in that work. The cohort consisted of 18472 different patients out of which 1828 were

non-survivors. All of these patients were adults (≥ 17), who satisfied the Sepsis 3 criteria

[115]. The excluded patients included patients who died at the hospital, but after release

from the ICU, and patients who had more than 25% missing values (vitals and scores) after

creating hourly trajectories. This cohort resulted in 2596604 hourly transitions. The state

space was 41 dimensional.

All the features were standardized for all work, and the missing values were imputed

using a last value carried forward scheme, as long as the missingness was less than 25% after

creating hourly trajectories. We used the 9 dimensional discrete action space used in [90].

9.4.2 RL4S

Since RL4S depends on a known hazard model, we first describe the approximate hazard

model we used.

Hazard Model: We used a simple feed forward neural network (or multi-layer perceptron

(MLP)) to estimate the conditional hazard. By definition, the conditional hazard is the

probability of the event (in this case death) occurring within a time step, given that the

event hasn’t occurred previously. Therefore, using the Markov assumption, we frame this as a

classification problem of predicting whether a patient would die within t and t+ 1, given the

state st and the action at. To satisfy the iid assumption used in stochastic gradient descent,

for each batch we first sampled the patients and then randomly sampled a patient state of

that patient. To combat the heavy imbalanced nature of the problem (only 0.07% of states

were death states), we sampled non-survivors more frequently, and for a non-survivor the

patient state was taken to be the terminal state with 50% probability and a random state

with 50% probability, Our architecture had two separate bases for the state and action and
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then the two representations were combined and sent through another small MLP head.

We then adapted the existing Deep RL algorithms (We used the distributional C51

algorithm [9], but it is trivial to use any value based algorithm). The only change in

implementation and design required is that instead of a uniform discount factor, we have

to use a state and action specific survival probability, analogous to a discount factor (and

defining a form of rewards as described previously).

In addition to RL4S, we also experimented with standard RL with terminal rewards of

+/−1 depending of release or death and no intermediate rewards.

All the methods were trained using [9] for 7 epochs with the same hyper-parameters

except the lower and upper limits of the approximating discrete distribution 5. However, all

methods displayed variation amongst recommended policies across weights saved after each

epoch. Therefore for the value and policy results we present in the next section, we first

averaged the value distributions of neural networks trained for 5,6 and 7 epochs.

9.5 Results

We will now discuss some results of the previously discussed experiments. We will start

by investigating the Q values (Survival Q values for RL4S) of both methods.

First, we consider the averaged Q values (across actions and relevant states). Since the Q

values are defined and scaled differently in each case, we used a max-min scaling scheme -so

the scaled Q values are in between 0 and 1. We then stratified, these values by a) survivor,

and non survivor states b) Last 24 hour states (before death or release) of each case. Figure

23 presents these results using box plots. Here the green boxes denotes the Survival Q values

of RL4S, the yellow : Q values for standard RL with terminal-only rewards. Intuitively, we

expect the Q values to capture the patient condition, and indicate the impending death or

release at least when a patient is close to each.

We can notice that there is a significant separation between survivor and non-survivor Q

values in RL4S. However, for RL with terminal-only rewards, even the median of the last
5These were taken to be 0 and 1 for Survival RL, -1.5 and 1.5 for terminal only RL

114



Fig. 23: Box plots of averaged Q values: For RL4S and standard RL and stratified by patient
outcome

24 hr non -survivor scaled Q values is above 0.75. Considering the definition of the usual Q

function (For terminal rewards: Ignoring the discounting, the Q value can be identified as

a linear combination between expected release probability and expected death probability)

this does not meet clinical intuition, as the models seem to be predicting survival even when

the patients are close to death. In contrast RL4S in particular, seem to identify the higher

mortality risk in advance.

We note that the main quantities of interest in RL algorithms, are not the values

themselves but the difference between values of different actions. Therefore, it is possible

for a method to overestimate Q values, and yet correctly identify the correct ordering of Q

values (i.e. identify the optimal action order). However, explainability and trustworthiness

are essential components of any automated medical decision making system. Value based

algorithms attempt to learn optimal polices by estimating the values of states, and thus if
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the values themselves are inconsistent with clinical knowledge and observed outcomes, such a

system is unlikely to be trusted. Therefore the results of RL4S seem to be more promising in

this aspect. It is also important to note that our patient cohort was heavily dominated by

survivors. A more balanced cohort could result in more realistic Q values. Another possibility

is to bias the sampling scheme as explained in [90], by sampling death and near death states

with higher probability.

Next, we will discuss selected interesting properties of recommended actions. Note

that for each state s, we select the action a, which maximizes the Q values. (i.e a =

argmaxa′∈AQ(s, a′)). We will present the full global action distribution in the appendices.

Fig. 24: Percentage of states with vasopressors: Recommended by RL and RL4S and administered
by the clinicians

A striking observation is illustrated in figure 24. Here, we plot the percentages of states,

with vasopressors recommended by each RL method, for non-survivors for different times

to eventual death. Also, shown are the percentage of states for which the clinicians have

used vasopressor therapy. The plots of RL4S and clinicians are remarkably similar, both

even decrease as time to death decreases. However, for regular RL more vasopressors are

recommended as patients approach death, which is consistent with the results presented in

[90] for RL with intermediate rewards. They hypothesize that the decrease of states with
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vasopressors given by clinicians may be due to decisions that were made by the patient’s

family to cease extraordinary measures. However, such information was not given to RL4S so

it doesn’t explain the behavior of RL4S. We plan to investigate the possible reasons in future

work.

Unfortunately, evaluating policies in offline RL is an open problem with no satisfactory

answers suited for critical care medicine [46]. Even, the current Off Policy Evaluation (OPE)

methods are ill suited for intensive care medicine. Further, they are defined for a fixed reward

choice making comparing policies under two different objectives even more complicated. Thus,

we don’t make any claims that policies under one schemes is necessarily better at this point.

9.6 Discussions & Conclusions

In this work, we introduced a control objective for RL applications in critical care medicine,

which was motivated by the ambiguity of defining rewards. Indeed, the reward hypothesis is

arguably the most fundamental component of RL and the only way to guide desired behavior

of an agent. However, it is not immediate how rewards should be defined for most clinical

decision making applications. Thus, we started from quantifying a reasonable clinical goal

(i.e. maximizing the probability of survival) and developed a framework and an algorithm

which can formalize this goal. We believe this objective is naturally suited to formalize the

goal of reducing mortality. 6

One limitation of our method, is that it depends on an approximate hazard model. For

our experiments, we used a simple MLP in a supervised learning setting to estimate the

conditional hazard. Also evaluation of survival models is more complicated than standard

supervised learning methods. However, given that survival analysis is a well researched area,

there are several alternatives, including methods where medical knowledge can be encoded.

There are also ways to reduce the effect of the learned hazard method. For example, one

could define a hybrid method which considers survival of a short term horizon and then use a
6Again, we emphasise that there are certainly other goals in critical care medicine, however we focus on

problems where the primary goal is minimizing mortality risk. This certainly include a large class of problems.
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look-ahead value learned using standard RL methods.

The similarity to Deep Q learning type algorithms, allows us to trivially implement a

wide range of modifications and improvements to our method. For example, we can use

most algorithms developed specifically for offline RL. (For example, [42]) Informally, these

methods attempt to learn policies which are sufficiently close to the behavioral distribution.

Additionally, we can use Equation 47 to define an Actor Critic method, instead of a pure

value based method. Using distributional RL methods, we can naturally take environment

uncertainty into account and modify Equation 44 by replacing the expectation operator by a

risk sensitive measure (such as VAR or C-VAR) to define risk sensitive methods. In particular,

methods designed for offline and risk sensitive problems such as [121], can be used.

Further, as we hinted earlier our objective has another interpretation which allows us to

view it as an uncertainty aware method. To see this let’s recall by Equation 2, our objective can

be seen as a standard RL objective, with rewards given if and only if a patient is released, and

at each time, instead of using a fixed discounting term, the probability of survival 1− h(s, a)

is used for discounting. Thus for each trajectory, the terminal reward is multiplied by the

probability of surviving the ICU stay and thereby discounting unlikely releases more. This

viewpoint allows us to investigate other avenues to incorporate Uncertainty Quantification,

and possibly modify the objective.

Our initial experiments produced promising results. The Survival Q values seem to

differentiate between survivor and non-survivor states and identify mortality risk in advance.

However, as we have mentioned previously, comparing performance of different clinical RL

methods using historical data is very challenging. Thus, further experiments and research

have to be conducted before any stronger claims can be established. One possible way to

evaluate the method would be to use a simulated environment of critically ill patients 7,

and then compare the mortality rates under different methods, learned from a fixed set of

trajectories. However, it is important to verify that any such environment will be sufficiently

similar to the patient environment one is interested in, if not undesirable conclusions can

follow. Thus, we defer these attempts to future work.

Finally, we note that stochastic control research has been historically dispersed amongst
7Or a different environment with similar goals of survival
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various mathematics, computer science, operations research and artificial intelligence com-

munities. However, recently there has been an effort to unify these efforts in to a single

framework [95, 85]. We believe such an unified approach may result in methods specifically

for healthcare and critical-care medicine.

9.7 Appendix A: Proof of Fixed Point Theorems

Proof. First notice that in either case the image of B is contained in B. i.e. T, Tπ : B → B.

We will first prove that Tπ, (50) is a contraction.

For ease of notation we will introduce the following notation β(s, a) = (1− h(s, a)). Then

note that by assumption, there exist γ<1 such that β(s, a) < γ, ∀s, a with R(s) = 0.

Recall : Tπ : B → B Tπ(s, a) = I{R(s)=1} + I{R(s)=0}(β(s, a))Ep,π[J(s
′, a′)]

Thus, for J, J ′ ∈ B

||Tπ(J)− Tπ(J
′)||∞

= sups∈S,a∈A|(Tπ(J)(s, a)− Tπ(J
′)(s, a)|

≤ sups∈S,a∈A|(β(s, a))Ep,π((J)(s, a)− (J ′)(s, a))|

≤ γ sups∈S,a∈A|(J)(s, a)− (J ′)(s, a)|

= γ||J − J ′||∞
The second part regarding the unique fixed point follows directly from the Banach

contraction theorem, and the completeness of B.

Now T is defined as :

T (J)(s, a) = I{R(s)=1} + I{R(s)=0}(β(s, a))Ep[maxa′∈A J(s′, a′)]

First notice that for any two functions f1, f2 : X → R

|max
x∈X

f1(x)−max
x∈X

f2(x)|≤ max
x∈X
|f1(x)− f2(x)|

Then, for J, J ′ ∈ B and s ∈ S, a ∈ A

|T (J)(s, a)− T (J ′)(s, a)|

|(β(s, a)Ep[(maxa∈A(J)(s, a)]− Ep[(maxa∈A(J
′)(s, a))]|

= |β(s, a)Ep[maxa∈A(J)(s, a)−maxa∈A(J
′)(s, a)]|
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≤ (β(s, a))|maxa∈A(J)(s, a)−maxa∈A(J
′)(s, a))|

≤ (β(s, a))maxa∈A|(J)(s, a)− (J ′)(s, a))|

≤ ((β(s, a)) sups∈S,a∈A|(J)(s, a)− (J)(s, a)|

< γ||J − J ′||∞
Now taking the supremum over s ∈ S, a ∈ A, we get that, ||T (J)−T (J ′)||∞≤ γ||J−J ′||∞
Again, the fixed point property follows.

9.8 Appendix B: Stochastic Approximation Theorem

Theorem 4. If (sk, s′k, ak, hk(sk, ak), Rk) k ∈ N is a set of experience tuples, generated from

the underlying patient distribution. Where R is an indicator variable such that R(s) = 1 if

the patient is released at this state and 0 otherwise.

Suppose αk, k ∈ N is a sequence of positive real numbers satisfying the Robbins Monro

conditions [106], (for state, action pairs sk, ak) :

Σ∞
k=0I{s=sk,a=ak}αk =∞ and Σ∞

k=0I{s=sk,a=ak}α
2
k <∞. with probability 1

for all s ∈ S, a ∈ A.

Then, the algorithm defined by Q0
S(s, a) = 0 and:

Qk+1(s, a) = (1−αk)Q
k
S(s, a)+(αk)I{s=sk,a=ak}[I{R(s)=1}+I{R(s)=0}β(s, a)maxa′∈AQk

S(s
′, a′)]

Converges to Q∗
S(s, a) with probability 1.

The proof of the above theorem is also analogous to the corresponding convergence results

of temporal difference methods and Q learning. However, a full proof, with the relevant

background would be too lengthy for this text. We refer to [18, 11] for a general stochastic

approximation results, and convergence proofs of Q Learning method [127].
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9.9 Appendix C: Implementation Details

We used the standard C51 training algorithm as in [9]. Q network was a multi-layer

neural network. We use a target network for all methods include RL4S, and update the target

networks using polyak target updating with τ = 0.005. (i.e. after every iteration/training

step we set the target network weights to a linear combination of it’s own weights, weighted

by (1-τ) an the Q network weights, weighted by τ). This kind of target network is common

amongst all deep Q learning, algorithms. We used the following hyper-parameters and

optimization choices for the c-51 algorithm. As we mentioned previously, the maximum and

minimum values of the approximating distribution and the discount factor for RL4S, were

the only hyper-parameters which were not shared by all the methods.

Table 15: RL algorithm hyper-parameters

Hyper-Parameter Value
Support size 51

γ 0.999
Batch size 124

Number of iterations 51932
Optimizer Adam

Learning rate 3× 10−4

τ 0.005

As mentioned previously, the hazard model was treated as a standard classification

problem. All the optimizations were conducted using Adam [62].

For both the hazard model and RL the state consisted of :

• Demographics: Age, Gender, Weight.

• Vitals: Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Arterial

Blood Pressure, Temperature, SpO2, Respiratory Rate.

• Scores: 24 hour based scores of, SOFA, Liver, Renal, CNS, Cardiovascular

• Labs: Anion Gap, Bicarbonate, Creatinine, Chloride, Glucose, Hematocrit, Hemoglobin,

Platelet, Potassium, Sodium, BUN, WBC.

• Latent States: (see [90]) Cardiovascular states and 10 dimensional lab history represen-

tation.

121



9.10 Appendix D: RL4S: Recommended Actions

Table 16: Percentages of actions (Act.) recommended by RL4S and clinicians

Act. RL4S Clinician
Flu 0 Vaso 0 59.89 27.78
Flu 1 Vaso 0 3.79 23.70
Flu 2 Vaso 0 17.97 31.78
Flu 0 Vaso 1 3.29 1.29
Flu 1 Vaso 1 2.98 3.28
Flu 2 Vaso 1 10.57 3.98
Flu 0 Vaso 2 0.55 1.26
Flu 1 Vaso 2 0.91 2.51
Flu 2 Vaso 2 0.01 4.40
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10.0 Conclusions

We have discussed opportunities and challenges in developing a computational toolbox

to assist and direct clinical decision making for sepsis. The motivation and the potential

benefits are clear and were mentioned in detail multiple times in the prequel. Thus, we will

conclude this thesis by summarizing the work we presented and then discussing some further

high level challenges and directions for future work: from both computational and medical

perspectives.

We believe the work presented here, take considerable steps towards improving the current

state of quantitative solutions to clinical sepsis decision making. We started from the control

and RL framework itself, and then focused on a) framing the problem b) problems in defining

the key components: states, objectives and c) associated uncertainties. We tried to address

each, by using inspiration from a range of related but dispersed research fields. Of course,

the problem of learning optimal treatment from data, is itself an inherently interdisciplinary

problem. However, in our approaches we went even further by a) taking an unified view

of control methods b) using first principle based mathematical modeling to encode domain

knowledge and improve patient representation c) using uncertainty quantification to quantify

parametric uncertainty d) taking a survival focused approach to the problem. We hope

this work will be of interest to a wide range of research communities and will serve as an

inspiration for more researchers from different backgrounds to work on this problem.

We also believe that we introduced new themes, perspectives, and concepts in our work,

which we hope will have an impact beyond the methods presented here. For example, in

Article 1, we introduced a neural network architecture that integrates a physiological model

with a deep neural network, unifying two main modeling paradigms : first principle based

mechanistic modeling and data driven machine learning methods. As we mentioned, there are

numerous potential benefits of such a method. Further, we used uncertainty quantification

and proposed a simple framework for decision making with humans in the loop. We note

that we expect to build upon both of these ideas in future work. Uncertainty quantification

is in particular essential for any practical clinical decision making system.
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One of the main problems we focused on, was the ambiguity of the control objective and

the lack of a clear notion of rewards. In Article 2, we used a semi-supervised learning method

to learn mortality risk score: which then leads to a simple reward formulation. In the last

article, we presented an alternate stochastic control objective for critically ill patients. At

this point, we believe that both approaches provide clinically meaningful and interpretable

objectives. However, they both share a common limitation: they depend on a learned hazard

or a risk model.

We note that this work and all other related work is only a start. As we have mentioned

previously there are a large number of obstacles that have to be addressed before the full

potential of computational approaches can be realized. Despite, this we believe that the RL

methods are close to being used in real time to support clinicians at the ICU. We make no

claims of outperforming human clinicians in any foreseeable future. However, there is little

doubt that using RL based support schemes can provide a number of strong benefits. If

nothing else, a sufficiently large and representative dataset encodes experiences of a large

number human clinicians. Of course, human clinicians’ knowledge is certainly not limited to

the experiences at the ICU. Therefore, it is up to the computational research communities to

develop and validate methods to extract the most insight out of this data. Therefore, we

believe that a highly useful area of work is to explore ways of encoding medical knowledge to

RL based systems. One way of doing this is to use mathematical physiological models as

we have done in this work, as these models embody decades of medical knowledge. From a

machine learning perspective, concepts from continual learning, graph reasoning methods,

self-supervised learning, multi-task and meta learning could be fruitful avenues to explore.

Further, care to should be made to make the methods as interpretable, transparent and

uncertainty aware as possible.

One significant challenge that we haven’t proposed a solution is the problem of evaluation.

Whilst the prospect of evaluating a learned policy exclusively using past data is appealing,

for a problem as challenging as treating sepsis this is unlikely to suffice. Therefore we believe

some form of clinical trails would be necessary. However, it is up to the medical community

to decide when what and how this is done [105].

Whilst, the application of mathematical methods and computational tools to medicine
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is hardly new, the modern AI based applications are still at an early phase. Over the past

few years there has been an explosion of research that develop new methods or leverage

existing methods for different clinical applications. Further, even when they focus on the

same application (treating sepsis for example), there are non-trivial differences in the set up,

methods, assumptions and the data (In RL for example: discrete vs continuous action spaces,

state definitions, patient cohorts). Navigating such a large volume of work and potentially

extracting the best out of them all in a consistent framework, is undoubtedly challenging.

but is necessary.

This thesis was heavily quantitatively focused: both in questions and solutions. However,

we re-emphasize that there are numerous ethical and social questions which have to be

answered. It is extremely important that these problems are sufficiently addressed, and that

a worldwide view is taken when these issues are considered. It is promising that there has

been considerable interest in these aspects of AI, and we hope progress will be made in the

near future to fully realize the potential of computational medicine, to the benefit of the

whole world.

We now conclude this thesis, with an optimistic note. Improving the state of healthcare and

medicine is one of the most virtuous goals of human and artificial intelligence. Computational

and mathematical tools and current advances of technology make contributions to medicine

more accessible to different academic communities. Humans in the loop medical AI has the

potential to be an interface that could positively impact billions of lives and reshape medicine.

We hope the work presented here, takes some small steps towards that ultimate goal in the

context of clinical sepsis.
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Appendix A Towards a Simulated Environment Using a Deep Probabilistic

Mixture of Gaussians and a Survival Model

We have mentioned frequently the benefit of a simulated environment for septic patients

with interventions. In this chapter, we will briefly our experiments on learning a deep genera-

tive model of septic dynamics. Although this model was successful in terms of quantitative

evaluation (log likelihood and generating reasonable trajectories), some action induced results

did not meet clinician intuition (for example the relationship between vasopressors and blood

pressure). Therefore we want to verify and improve the model further before using it as a

simulator.

We use the processed data described in Article 1. Then the model assumptions are simple

to state :

We assume that given the state st (This state can potentially include a history represen-

tation), and action at, the next observation ot
1is distribution according to a mixture of two

Gaussian densities. We parameterize the mixture probabilities and the Gaussian parameters

by a neural network. Therefore it is then straightforward to leverage stochastic gradient

based optimization methods and maximize the log likelihood of the data.

Formally:

ot+1 ∼ p(O|st, at) where p(O|st, at) = π1
θN (µ1

θ,Σ
1
θ) + π2

θN (µ2
θ,Σ

2
θ)

There is sufficient freedom to choose a neural network architecture. The simplest method

would be to use a Markov assumption, and define the state to be the same as observables.

To simulate a septic patient we also need a mortality process. For this we use the survival

model which we described in Article 3. Briefly, use a Markov assumption and parameterize

the conditional hazard (the probability of dying within the next time step) by a MLP. Then

the problem is reduced to a classification problem. The trained model predicts a patient

would die within the next hour, given the current state and the action taken.

Given the probabilistic model for the environment and the survival model, it’s easy to
1We make the state, and observations distinct so we could use the same notation for different ways of

framing the problem. For example, when we use a recurrent neural network (RNN), the state includes the
hidden representation produced by the RNN but of course this is not predicted by the model.
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simulate patients. However, the challenge is of course to verify the accuracy of the model

beyond the log-likelihood. Therefore, given that the work is incomplete we keep our discussion

brief, however we will share our implementation (see next appendix), so the model may be

improved independently.
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Appendix B Code Repository

Research level code for all the experiments described are publicly available in the following

repositories.

• https://github.com/thxsxth/POMDP_RLSepsis

• https://github.com/thxsxth/normed_constrastive_metric

• https://github.com/thxsxth/survRL

• https://github.com/thxsxth/DMG
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