
RANDOM FORESTS AND REGULARIZATION

by

Siyu Zhou

B.S. in Mathematics, The Hong Kong University of Science and

Technology, 2014

M.Phil. in Mathematics, The Hong Kong University of Science and

Technology, 2016

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Siyu Zhou

It was defended on

June 16, 2022

and approved by

Lucas K. Mentch, Ph.D., Department of Statistics

Yu Cheng, Ph.D., Department of Statistics

Satish Iyengar, Ph.D., Department of Statistics

Larry Wasserman, Ph.D., Department of Statistics and Data Science, Carnegie Mellon

University

Dissertation Director: Lucas K. Mentch, Ph.D., Department of Statistics

ii



Copyright c© by Siyu Zhou

2022

iii



RANDOM FORESTS AND REGULARIZATION

Siyu Zhou, PhD

University of Pittsburgh, 2022

Random forests have a long-standing reputation as excellent off-the-shelf statistical learning

methods. Despite their empirical success and numerous studies on their statistical properties,

a full and satisfying explanation for their success has yet to be put forth. This work takes a

step in this direction by demonstrating that random-feature-subsetting provides an implicit

form of regularization, making random forests more advantageous in low signal-to-noise

ratio (SNR) settings. Moreover, this is not a tree-specific finding but can be extended

to ensembles of base learners constructed in a greedy fashion. Inspired by this, we find

inclusion of additional noise features can serve as another implicit form of regularization

and thereby lead to substantially more accurate models. As a result, intuitive notions of

variable importance based on improved model accuracy may be deeply flawed, as even purely

random noise can routinely register as statistically significant. Along these lines, we further

investigate the effect of pruning trees in random forests. Despite the fact that full depth

trees are recommended in many textbooks, we show that tree depth should be seen as a

natural form of regularization across the entire procedure with shallow trees preferred in low

SNR settings.

Keywords: Random Forests, Bagging, Regularization, Interpolation, Ridge Regression,

Model Selection.
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1.0 INTRODUCTION

Since their inception in 2001, random forests (RFs) [Breiman, 2001] have remained among

most popular and successful off-the-shelf statistical machine learning methods with a well-

established record in numerous scientific fields. To name a few, in the area of bioinformatics,

Dı́az-Uriarte and De Andres [2006] recommended RFs should be part of the standard tool-

box for gene selections for diagnostic purposes in clinical trials and Mehrmohamadi et al.

[2016] established links between tumour metabolism and epigenetics with RFs. Svetnik

et al. [2003] demonstrated RFs’ capability of delivering accurate performance, handling high-

dimensional data and maintaining ease of training and computational efficiency, making

them suited for for a QSAR modeling and compound classification in modern drug discovery

and development process. In ecology, RFs’ high accuracy was established once more for both

regression and classification tasks by Prasad et al. [2006] and Cutler et al. [2007] respectively.

Furthermore, RFs were also beneficial to modern technology advancements such as image

recognition [Bernard et al., 2007, Huang et al., 2010, Guo et al., 2011, Fanelli et al., 2013],

3D object recognition [Shotton et al., 2011] and so on. In a recent large-scale empirical study

[Fernández-Delgado et al., 2014], RFs were found to be the top classifiers against hundreds

of alternatives compared on 121 datasets, which represented the whole UCI [Dua and Graff,

2017] database at that time.

Such consistent successes of RFs across various domains naturally lead to the study of

its mathematical and statistical properties, the first of which was an upper bound on the

generalization error of RFs given by Breiman [2001]. Despite the simplicity of the algorithm

itself, difficulty in developing rigorous mathematical analysis of the original algorithm in

Breiman [2001] originates from two essential ingredients of the procedure, the Classification

and Regression Trees (CART) [Breiman et al., 1984]-splitting scheme and the bagging process
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[Breiman, 1996].

The CART splitting scheme came from the CART algorithm for tree construction by

choosing the best cut perpendicular to the axes. This criterion depends on both the features

and response, and thus is difficult to analyze. Instead, many studies focused on nonadaptive

forests, where the splitting criterion either is completely random or depends on features

only. Lin and Jeon [2006] provided a lower bound to the rate of convergence of the MSE

of random forests with nonadaptive splitting schemes by introducing a potential nearest

neighbourhood framework, the consistency of which was later studied in Biau and Devroye

[2010]. Biau et al. [2008] established consistency of the purely random forest considered

in Breiman [2000b] where each internal node is split along a randomly chosen feature at a

random location. The consistency of the centered random forest studied in Breiman [2004]

where the split was at the midpoint (random) along a strong (weak) feature was proved by

Biau [2012] and generalized to cases when the best splits were chosen based on a second

independent sample. Scornet [2016] further generalized the results in Biau et al. [2008]

and Biau [2012] by proving the respective consistency of nonadaptive forests and q quantile

forests where internal nodes are split around quantiles while Klusowski [2019] improved the

rate of convergence in Biau [2012].

Another difficulty results from the bagging procedure, which stabilizes estimates by ag-

gregating outputs of trees built on bootstrapped samples that contain duplicated observa-

tions. Breiman [2004] and Lin and Jeon [2006] omitted the bagging procedure while many

later work concentrating on RFs constructed with subsamples (where observations are re-

sampled without replacement) rather than bootstrap samples have established important

statistical properties of RFs. The first consistency for Breiman’s original random forests

on an additive true underlying model was given by Scornet et al. [2015] while Mentch and

Hooker [2016] provided the first result on the asymptotic normality of RFs’ predictions in

the framework of infinite-order generalized U-statistics, accompanied by a testing procedure

for variable importance which was extended in Mentch and Hooker [2017] for testing addi-

tivity of underlying models. Coleman et al. [2019] proposed a more computationally efficient

permutation-based procedure for testing variable importance, which scales easily to big data

setting and is more feasible for pratical scientific use. Wager and Athey [2018] established

2



the consistency and asymptotic normality for honesty and causal forests. Assumptions to

achieve asymptotic normal predictions were weakened by Peng et al. [2019] who also provided

Berry-Essen bounds to quantify the rate of convergence.

Apart from these, Sexton and Laake [2009] and Wager et al. [2014] provided estimations

for the variance of RFs predictions. Lopes et al. [2019b] and Lopes et al. [2019a] developed a

bootstrap method for measuring the algorithm convergence in the classification and regres-

sion setting respectively. The RF methodology has also been extended to other areas such

as clustering [Yan et al., 2013], survival analysis [Hothorn et al., 2005, Ishwaran et al., 2008,

Cui et al., 2017], quantile regression [Meinshausen, 2006], online learning [Yi et al., 2012,

Lakshminarayanan et al., 2014]and reinforcement learning [Zhu et al., 2015], to name a few.

Biau and Scornet [2016] gives a more detailed and comprehensive guide.

Despite RFs’ well established records and numerous studies on their mathematical and

statistical properties, as mentioned in a recent review paper Biau and Scornet [2016], “present

results are insufficient to explain in full generality the remarkable behaviour of random

forests”. Although many studies [Genuer et al., 2008, Bernard et al., 2009, Genuer et al.,

2010, Duroux, Roxane and Scornet, Erwan, 2018, Scornet, 2017, Probst and Boulesteix, 2017,

Probst et al., 2019b] experimented with tuning the RF procedure, the main takeaways from

these works have been high-level and heuristic and the main conclusion is that including more

trees in the forest helps stabilize predictions while tuning other parameters can sometimes

provide an improvement in accuracy. There have been efforts as well connecting RFs with

other frameworks such as kernel estimates [Arlot and Genuer, 2014, Scornet, 2016, Olson

and Wyner, 2018] and neural network [Welbl, 2014, Biau et al., 2019]. Wyner et al. [2017]

considered RFs as “self-averaging interpolators” and hypothesized that such behaviour led

to the success of RFs. In the same manner, Belkin et al. [2019] put forth the more general

and now very popular idea of “double descent” risk curve which suggests improved model

performance be gained once the complexity goes beyond interpolation threshold and pro-

vided empirical evidences with several different models including neural networks and RFs.

However, as discussed in later chapters, these idea have significant issues.

In Chapter 2, we seek to provide an explanation for the success of RFs from the degrees-

of-freedom point of view by isolating the extra randomness of RFs at tree splits and demon-

3



strating that such randomness provides an implicit regularization effect similar to ridge

regression [Hoerl and Kennard, 1970] and lasso [Tibshirani, 1996]. In Chapter 3, we further

investigate that other forms of regularization on ensembles of trees can result in improved

performance, just as in RFs. Surprisingly, the inclusion of noise features (conditionally) in-

dependent of responses is indeed one option and can produce dramatical improvement, even

more than that given by optimally tuned RFs in some settings. This has a crucial impact on

how we consider and measure variable importance. Chapter 4 is devoted to the inherent but

often neglected regularization effect from tree depth and argues that the noticeable jumps

in random forest accuracy are the result of simple averaging rather than interpolation. We

conclude with a discussion in Chapter 5.
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2.0 RANDOMIZATION AS REGULARIZATION: AN EXPLANATION

FOR THE SUCCESS OF RANDOM FORESTS

The work in this chapter argues that the RF’s success is due to an implicit regularization

effect of the additional randomness. The following sections pull heavily from Mentch and

Zhou [2020b].

2.1 INTRODUCTION

The work presented in this chapter offers a concrete explanation for the role played by the

extra randomness most commonly injected into the base learners in RF procedures. Instead

of assuming that RFs simply do “work well”, we take a more principled approach in trying

to isolate the effects of that additional randomness and determine when its inclusion results

in improved accuracy over a baseline approach like bagging that uses non-randomized base

learners. In particular, we argue that the additional randomness serves to regularize the

procedure, making it highly advantageous in low signal-to-noise ratio settings. Speculation

along these lines was hypothesized informally in Hastie et al. [2009] who observe that RFs

sometimes behave similarly to ridge regression.

To drive home this point, we further demonstrate that incorporating similar randomness

into alternative (non tree-based) model selection procedures can result in improved predic-

tive accuracy over existing methods in exactly the settings where such improvements would

be expected. In particular, inspired by recent work on degrees of freedom for model selection

by Tibshirani [2015] and Hastie et al. [2020], we consider two randomized forward selection

procedures for linear models designed as analogues to classical bagging and RFs and demon-
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strate the same kind of regularization properties. Our findings in this setting are thus similar

in spirit to those produced by Wager et al. [2013] who demonstrate a regularization effect

arising from dropout training applied to generalized linear models.

The remainder of this paper is laid out as follows. In Section 2.2 we formalize the RF

procedure and continue the above discussion, providing something of a literature review

of recent RF analyses as well as a more detailed overview of the shortcomings of existing

explanations for their success. In Section 2.3 we discuss degrees of freedom for model selection

procedures and demonstrate that within a traditional RF context, more randomness results

in procedures with fewer degrees of freedom. We emphasize and build upon this finding in

Section 2.4 by demonstrating in numerous settings using both real and synthetic data that

the relative improvement in accuracy offered by RFs appears directly related to the relative

amount of signal contained within the data. Finally, in Section 2.5 we introduce the linear

model forward-selection-style analogues for bagging and RFs and produce near identical

results, finding in particular that in noisy low-dimensional settings, injecting randomness

into the selection procedure can outperform even highly competitive explicit regularization

methods such as the lasso. Example code for the simulations and experiments presented is

available at https://github.com/syzhou5/randomness-as-regularization.

2.2 RANDOM FORESTS AND EXISTING EXPLANATIONS

We begin by formalizing the RF framework in which we will work in the following sections.

Unless otherwise noted, throughout the remainder of this chapter we will consider a general

regression framework in which we observe (training) data of the form Dn = {Z1, ...,Zn}

where each Zi = (Xi, Yi), Xi = (X1,i, ..., Xp,i) denotes a vector of p features, Y ∈ R denotes

the response, and the variables have a general relationship of the form

Y = f(X) + ε (2.1)

where ε is often assumed to be independent noise with mean 0 and variance σ2.

6
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To construct a tree, we begin by resampling an ≤ n observations from Dn with or without

replacement. The original RF formulation utilized bootstrapping so that an = n and the

sampling is done with replacement, though a number of recent theoretical advances have been

made by instead considering subsampling (without replacement) with an = o(n). At each

step, mtry ≤ p eligible features are selected uniformly at random, among which the optimal

split is obtained by maximizing the CART criterion [Breiman et al., 1984]. Specifically, an

internal node t is split in an axis-aligned fashion into left and right daughter nodes of the

form tL = {x ∈ t : xj ≤ s} and tR = {x ∈ t : xj > s} whenever the decision is made

to split the feature Xj at s. The particular variable and split location are chosen from

among those available as that pair which minimizes the resulting within-node variance of

the offspring in regression settings or maximizes the empirical reduction in Gini impurity in

classification settings. The tree continues to split until the number of observations in each

cell is less than the pre-specified nodesize or whenever the number of terminal nodes (leaves)

reaches maxnodes. In the case of regression, which will be the main focus of this dissertation,

to obtain the prediction at any given point x, the response values are averaged across all

observations that fall into the same leaf as x. To form a RF, the procedure is repeated B

times and the final prediction is simply the average across all B tree-level predictions. In

classification settings, the standard approach is to form final estimates via a majority vote at

both the tree and forest level. Algorithm 1 provides a more detailed summary of this process,

which follows closely to Algorithm 1 in Biau and Scornet [2016]. Readers less familiar with

trees and forests are invited to see Biau and Scornet [2016] for a more detailed discussion.

Mathematically, for a given point z = (x, y), a RF prediction at x takes the form

ŷ = RF(x;Dn,Θ) =
1

B

B∑
b=1

T (x;Dn,Θb) (2.2)

where the base-learners T are typically tree-based models constructed on some resample of

the original data Dn and the randomness involved in the procedure is indexed by Θb.

Throughout the literature on RFs, it is common to succinctly contain all randomness in

the single term Θb as in equation (2.2) above. We note however that for our purposes below,

it may be convenient to consider this more explicitly as Θb = (ΘD,b,Θmtry,b). Written in this

form, ΘD,b serves to select the resample of the original data utilized in the bth tree. While

7



Algorithm 1 Breiman’s (regression) random forest

Input: Training set Dn, number of trees B > 0, an ∈ {1, . . . , n}, mtry∈ {1, . . . , p},

nodesize∈ {1, . . . , an}, and x ∈ X

Output: Prediction of the random forest at x

for b = 1, . . . , B do

Select an points, with (or without) replacement, uniformly in Dn. In the following

steps, only these an observations are used.

Set P = (X ) the list containing the cell associated with the root of the tree.

Set Pfinal = ∅ an empty list.

while P 6= ∅ do

Let A be the first element of P .

if A contains less than nodesize points or if all Xi ∈ A are equal then

Remove the cell A from the list P .

Pfinal ← Concatenate(Pfinal, A).

else

Select uniformly, without replacement, a subsetMtry ⊂ {1, . . . , p} of cardinality

mtry.

Select the best split in A by optimizing the CART-split criterion along the

coordinates in Mtry.

Cut the cell A according to the best split. Call AL and AR the two resulting

cells.

Remove the cell A from the list P .

P ← Concatenate(P , AL, AR).

Compute the predicted value of the bth tree at x equal to the average of the Yi falling

in the cell of x in the partition Pfinal.

Compute the random forest estimate at the query point x.

much recent work has focused on subsampled RFs, here we consider the B resamples to

be bootstrap samples as originally put forth in Breiman [2001]. The second randomization

8



component Θmtry,b then determines the mtry ≤ p candidate features to be split at each node

in the bth tree. When mtry = p, the procedure reduces to bagging [Breiman, 1996].

2.2.1 Explanations for Random Forest Success

The original reasoning behind RFs provided by Breiman [2001] was based on an extension

of the randomized tree analysis given in Amit and Geman [1997]. Breiman showed that the

accuracy of any randomized ensemble depends on two components: the strength (accuracy)

of the individual base-learners and the amount of dependence between them. Thus, the

original motivation for a procedure like RFs might be seen from a statistical perspective

as akin to the classic bias-variance tradeoff. In the same way that some procedures (e.g.

the lasso [Tibshirani, 1996, Chen et al., 2001]) consider trading a small amount of bias in

exchange for a large reduction in variance, RF ensembles might be seen as trading a small

amount of accuracy at the base-learner level (by injecting the extra randomness) for a large

reduction in between-tree correlation. Hastie et al. [2009] provide a thorough, high-level

discussion of this effect in showing that the mtry parameter serves to reduce the variance of

the ensemble.

However, this discussion from Breiman [2001] might be better seen as motivation for why

a randomized ensemble could potentially improve accuracy rather than an explanation as to

why RFs in particular do seem to work well. Breiman himself experiments with different

kinds of randomness in the original manuscript and suggests that in practice users can also

experiment with different forms to try and determine what works best in particular settings.

Furthermore, in his concluding remarks, Breiman notes that while the additional randomness

at the base learner level helps to reduce the variance of the ensemble, the magnitude of

improvement often seen with RFs suggested to him that perhaps it somehow also “act[s] to

reduce bias” but that ultimately “the mechanism for this [was] not obvious.” In the years

since, it has been shown quite clearly that the benefits sometimes seen with RFs are the

result of variance reduction alone; see Hastie et al. [2009] for a more complete discussion.

In recent work, Wyner et al. [2017] take a more definitive stance, conjecturing that

both RFs and AdaBoost [Freund et al., 1996] work well because both procedures are “self-

9



averaging interpolators” that fit the training data perfectly while retaining some degree of

smoothness due to the averaging. The key to their success, they argue, is that in practice,

datasets often contain only small amounts of noise and these algorithms are able to mitigate

the effects of noisy data points by localizing their effect so as to not disturb the larger

regions where the data consists mostly of signal. Indeed, the authors acknowledge that the

procedures “do in fact overfit the noise – but only the noise. They do not allow the overfit

to metastasize to modestly larger neighborhoods around the errors.”

2.2.2 Random Forests and Interpolation

As the central claim of Wyner et al. [2017] is that RFs “work not in spite, but because of

interpolation” we now make this notion and argument explicit.

Definition 1 (Interpolation). A classifier (or regressor) f̂ is said to be an interpolating

classifier (regressor) if for every training point (xj, yj) ∈ Dn, f̂(xj) = yj.

This definition of an interpolating classifier is taken directly from Wyner et al. [2017]; for

completeness and because it will be directly relevant to the immediate conversation, we

expand the definition so as to apply in the same fashion to regression contexts.

Consider first the classification setting wherein the response Y ∈ {a1, ..., ak} and we seek

to utilize the training data Dn to construct a classifier f̂n : X 7→ {a1, ..., ak}. Consider a

particular observation z = (x, y) ∈ Dn. In order to be more explicit and without loss of

generality, suppose that y = a1. Given B resamples of the original data D∗1, ...,D∗B, whenever

trees are fully grown so that each terminal node contains only a single observation, it must

necessarily be the case that T (x;D∗i ,Θi) = a1 (i.e. the tree predicts the correct class a1 for

x) whenever (x, y) ∈ D∗i . Thus, in order for the RF classifier to select the correct class

for x, (i.e. RF(x) = a1) it suffices to ensure that (x, y) is selected in a plurality (or simple

majority in the case of binary classification) of the resamples. When bootstrap samples are

used, it is well known that the probability of each observation appearing is approximately

0.632. Thus, given B bootstrap samples, the probability that the observation (x, y) appears

in at least half of these resamples is approximately

pint(B) = 1−Bin(B/2; n = B, p = 0.632)
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Figure 2.1: (Left): Interpolation probability vs. number of trees (B) for a single observation.

(Right): Approximate interpolation probabilities vs. sample sizes for RF classifiers built with

different numbers of trees. Both plots pertain to the binary classification setting.

where Bin(z;n, p) denotes the binomial cdf evaluated at the point z with parameters n (the

number of trials) and p (the probability of success in each trial). For even moderately large

B, this probability is quite large; see the left plot in Figure 2.1. Thus, for binary classification

problems, the probability of interpolating any given training observation is large whenever

B is also moderately large.

Note however that according to the definition above, a classifier is only designated as an

interpolator if it interpolates all training observations. While an exact calculation for the

probability of all n points appearing in at least half of the bootstrap samples is somewhat

involved, we can approximate it with (pint(B))n, the calculation that would result if the

interpolation probabilities were independent for each observation. Plots of this quantity are

shown in the right plot in Figure 2.1 across a range of sample sizes for B = 100, 150, and 200.

In each case, for fixed B, the (approximate) probability that the classifier is an interpolator

tends to 0 as n → ∞, suggesting that in order for RF classifiers to necessarily interpolate,
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the number of bootstrap replicates B must be treated as an increasing function of n. Though

perhaps obvious, we stress that this is not generally the manner in which such estimators are

constructed. In all software with which we are familiar, default values of B are set to a fixed

moderate size, independent of the size of the training set. The bagging function in the ipred

package in R [Peters et al.], for example, takes 25 bootstrap replicates by default. Recent

work from Lopes et al. [2019b] has also provided a means of estimating the algorithmic

variance of RF classifiers and shown that it sometimes vanishes quite quickly after relatively

few bootstrap samples. Thus, while it’s possible to construct RFs in such a way that they

necessarily interpolate with high probability in classification settings, it is not clear that RFs

would generally be constructed in this fashion in practice and thus it is also not clear that

the interpolation-based explanation offered by Wyner et al. [2017] is sufficient to explain

the strong performance of RFs, even in specific contexts. It is also worth noting that on

certain datasets where RFs happen to produce good models with low generalization error,

they may likely also fit quite well on the training data, perhaps even nearly interpolating.

This, however, is certainly possible for any modeling procedure and thus in no way would

aid in explaining the particular success of RFs.

2.2.3 Shortcomings of Current Explanations

Before continuing with our critique, it’s worth pausing to note where the existing explana-

tions are in agreement. Both Breiman [2001] and Wyner et al. [2017] seem to largely agree

on the following points:

1. Random forests and boosting behave in a very similar fashion and thus their success

should be able to be explained in a very similar fashion [Breiman [2001] pages 6, 20,

Section 7; Wyner et al. [2017] entire paper].

2. Random forests and boosting generally outperform most other competing methods (e.g.

Dietterich [2000] and Breiman [2000a]) in terms of minimizing generalization error and

substantially outperform bagging [Breiman [2001] page 10; Wyner et al. [2017] page 3].

3. Random forests generally seem to be robust to outliers and noise [Breiman [2001] pages

10, 21; Wyner et al. [2017] pages 4, 12, 17, 20, 32, 35].
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4. Boosting tends to perform well and not overfit even when the ensemble consists of many

deep trees [Breiman [2001] page 21; Wyner et al. [2017] page 8].

Points 1 and 4 are largely irrelevant to the discussion in the remainder of this chapter

as we focus exclusively on random forests; we include these points here only in the interest

of completeness. Point 3 has been alluded to in numerous papers throughout the years and

has likely been key to the sustained popularity of the random forest procedure.

We take slight issue with the now popular wisdom in the second point, that random

forests simply “are better” than bagging or other similar randomized approaches. While

this does seem to be the case surprisingly often in practice on real-world datasets (see, for

example, the recent large-scale comparison from Fernández-Delgado et al. [2014] discussed

in the introduction) it is certainly not a universal truth and, in our view, is a potentially

naive foundation on which to build a theory for explaining their success. As discussed above,

Breiman [2001] does provide some motivation for why a randomized ensemble might some-

times outperform its nonrandomized counterpart in showing that the generalization error of

a classifier can be bounded above by a function of base-learner accuracy and correlation.

Breiman stops short, however, of providing any more explicit explanation for the role played

by the randomness or in what situations that randomness might be expected to help the

most. Wyner et al. [2017], on the other hand, seem to largely ignore the role of randomness

altogether. The explanation the authors provide for random forest success would seem to

apply equally well to bagging. In the sections below, we focus our attention heavily on de-

termining when the inclusion of such randomness provides the greatest benefit and provide

an explicit characterization of the role it plays.

It is also important to stress that the theories offered by Breiman [2001] and Wyner et al.

[2017] pertain only to the classification setting, whereas our focus is primarily on regression.

The interpolation hypothesis put forth by Wyner et al. depends on an even stricter setup

whereby trees are built to full depth, bootstrapping (or at least subsampling without re-

placement at a rate of at least 0.5n) is used to generate resamples, and the number of trees

B grows with n at a sufficiently fast rate. Previous work, however, has repeatedly shown

that random forests can still achieve a high degree of predictive accuracy when trees are not

built to full depth [Duroux, Roxane and Scornet, Erwan, 2018], and/or are constructed via
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Figure 2.2: Left: Two interpolating regressors on toy data. Right: An interpolating regressor

and the predicted regression function resulting from bagging with 100 fully-grown trees.

subsampling [Zaman and Hirose, 2009, Mentch and Hooker, 2016, Wager and Athey, 2018],

and/or when relatively few trees are built [Lopes et al., 2019b].

To see why random forests cannot be considered interpolators in a regression setting,

even when individual trees are built to full depth, note that the final regression estimate

is taken as the average of predictions across all trees rather than the majority vote. While

it’s certainly clear that an average of interpolators is itself an interpolator since for every

training point (x, y)

1

B

B∑
i=1

f̂i(x) =
1

B

B∑
i=1

y = y ,

the bootstrapping mechanism in play with random forests precludes the possibility of inter-

polating on Dn with exceedingly high probability. As noted above, each bootstrap sample

will omit, on average, 36.8% of the original observations and thus individual trees, even if

fully grown, will not, in general, fit perfectly on that out-of-sample (out-of-bag) data. In

other words, while a fully-grown tree will necessarily interpolate the observations selected

within its corresponding bootstrap sample, it will generally not fit perfectly to all training
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observations. For a given point (x, y) in the training data, random forest regression esti-

mates at x are therefore a weighted average of y and the other response values observed, and

hence with exceedingly high probability, the random forest will not interpolate.

Figure 2.2 demonstrates this effect clearly. The left panel shows two hand-crafted inter-

polating functions – Interpolator A and Interpolator B – on a simple toy dataset while the

right panel shows one of the same interpolators along with the predicted regression function

resulting from bagging with 100 regression trees, each grown to full depth. In this toy ex-

ample motivated by the examples shown in Section 3.2 of Wyner et al. [2017], our training

data consists of 11 points each of the form (i, 0) for i = 1, ..., 11 except for i = 6 where we

instead have the observation (6, 1). Denote the location of this point by x∗. Wyner et al.

[2017] contend that if the observed response is considered “unusually noisy” at x∗, then

interpolating estimators can perform well by “localizing” the effect of this noise as is seen

in the left panel of Figure 2.2. Indeed, we can see from this plot that both interpolators

still fit the remaining data perfectly despite the presence of the noisy observation. However,

as can be seen in the right-hand panel, whenever we treat this as a regression problem and

build trees to full depth, the random forest (in this case, simple bagging since we have only

1 feature) does not interpolate, but instead looks to be attempting to smooth-out the effect

of the outlying observation.

This, however, stands in opposition to the reasoning provided in Wyner et al. [2017].

Here the authors are highly critical of the traditional statistical notion of signal and noise

and seem to take some issue with the general regression setup given in (2.1). To computer

scientists, they claim, in many problems “there is no noise in the classical sense. Instead

there are only complex signals. There are residuals, but these do not represent irreducible

random errors.” But if the widespread empirical success of random forests is really “not in

spite, but because of interpolation” as claimed, then one must believe that real-world data

is generally low-noise, a claim argued against firmly by, for example, Hastie et al. [2020].

Crucially, this means that not only are data largely free of what scientists may think of

as classical kinds of noise like measurement error, but also that all sources of variation in

the response Y can be explained almost entirely by the available set of predictor variables

X1, ..., Xp.
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Perhaps most importantly, if the success of random forests is the result of interpolation

and interpolation is beneficial because most real-world datasets have a high signal-to-noise

ratio (SNR), then random forests ought not perform well at all on datasets with low SNRs.

Consider again the plot on the left-hand-side of Figure 2.2. If the outlying point x∗ at (6, 1)

is actually the only “good signal” while the rest of the data are noisy, then the interpolators

shown would be isolating signal rather than noise and hence be performing quite poorly.

But this is exactly the opposite of what we see with random forests in practice. In

the following sections, we show repeatedly on both real and synthetic data that relative

to procedures like bagging that utilize non-randomized base learners, the benefit of the

additional randomness is most apparent in low SNR settings. In Section 2.3 we show that

the mtry parameter has a direct effect on the degrees of freedom (dof) associated with

the procedure, with low values of mtry (i.e. more randomness) corresponding to the least

flexible model forms with the fewest dof. Given this, in Section 2.4 we go on to show that as

expected, the advantage offered by random forests is most dramatic at low SNRs, and that

this advantage is eventually lost to bagging at high SNRs. We also consider the problem from

a slightly different perspective and show that the optimal value of mtry is almost perfectly

(positively) correlated with the SNR. We posit that this behavior is due to a regularizing

effect caused by the randomness and bolster this claim by demonstrating the same relatively

surprising results hold in simpler linear model setups where randomness is injected into a

forward selection process.

2.3 RANDOM FORESTS AND DEGREES OF FREEDOM

Recall from the previous section that we assume data of the form Dn = {Z1, ..., Zn} where

each Zi = (Xi, Yi), Xi = (X1,i, ..., Xp,i) denotes a vector of p features, Y ∈ R denotes the

response, and the variables have a general relationship of the form Y = f(X) + ε. Assume

further that the errors ε1, ..., εn are uncorrelated with mean 0 and (common) variance σ2.

Given a particular regression estimate f̂ that produces fitted values ŷ1, ..., ŷn, the degrees of
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freedom [Efron, 1986, Efron and Tibshirani, 1990, Tibshirani, 2015] of f̂ is defined as

df(f̂) =
1

σ2

n∑
i=1

Cov(ŷi, yi). (2.3)

The degrees of freedom (dof) of a particular estimator is generally understood as a mea-

sure of its flexibility; estimators with high dof depend more heavily on the particular values

observed in the original data and hence are higher variance. Understanding the dof asso-

ciated with various estimation procedures can provide valuable insights into their behavior

as well as the situations when they might be expected to perform better or worse relative

to a set of alternative methods. Tibshirani [2015] took an important step in this regard,

showing that adaptive procedures like best subset selection (BSS) and forward stepwise se-

lection (FS), even when selecting a model with k terms, had more than k dof because of the

increased dependence on the data incurred through the selection aspect. These additional

dof were coined the search degrees of freedom. More recently, Hastie et al. [2020] provided

a thorough collection of simulations to demonstrate the predictive advantages of regularized

procedures like the lasso and relaxed lasso over BSS and FS, especially in low signal-to-noise

ratio (SNR) settings where the SNR is defined as

SNR =
Var(f(x))

Var(ε)
.

Much of the work in the following sections was inspired by the approach taken in Hastie

et al. [2020] and various portions of the work below follow closely to the setups considered

there.

We begin our work by estimating the dof of random forests under various values of mtry.

In linear model contexts, the dof for different estimators is generally shown by plotting the

estimated dof against the average number of nonzero coefficients in the selected models. In

our context with tree-based estimators, we use maxnodes – the maximum number of terminal

nodes that any tree within the forest can have – as an analogue. For any given forest with

fixed value of mtry, we should expect that as trees are allowed to grow deeper (i.e. maxnodes

takes larger values), the estimators should become more sensitive to the data and hence

incur higher dof.
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We consider two general model forms: a linear model

Y = Xβ + ε = X1β1 + · · ·+Xpβp + ε

and the model

Y = 0.1e4X1 +
4

1 + e−20(X2−0.5)
+ 3X3 + 2X4 +X5 + ε ,

which we refer to as ‘MARSadd’ as it is additive and first appeared in the work on Multi-

variate Adaptive Regression Splines (MARS) by Friedman [1991]. Features in the MARSadd

model are sampled independently from Unif(0, 1). For the linear model, in line with Hastie

et al. [2020], we consider three different settings:

• Low: n = 100, p = 10, s = 5

• Medium: n = 500, p = 100, s = 5

• High-10: n = 100, p = 1000, s = 10

where n is the total (training) sample size, p denotes the total number of features generated,

and s ≤ p is the number of features with a nonzero coefficient thus considered signal. Rows

of X ∈ Rn×p are independently drawn from N(0,Σ), where Σ ∈ Rp×p has entry (i, j) =

ρ|i−j|. We take ρ = 0.35 and set the first s components of β equal to 1 with the rest set to 0.

This setup corresponds to the general sampling scheme and ‘beta-type 2’ setting from Hastie

et al. [2020]. For both models here as well as throughout the majority of the remainder of

this chapter, we consider sampling the noise as ε ∼ N(0, σ2I) where σ2 is chosen to produce

a corresponding SNR level ν, so that, for example, in the linear model case, we take

σ2 =
βTΣβ

ν
.

Finally, in most previous literature, mtry ≤ p ∈ Z+ denotes the number of features eligible

for splitting at each node. Here and throughout the remainder of the chapter, we adopt a

slightly different (but equivalent) convention by defining mtry as the proportion of eligible

features so that mtry ∈ (0, 1]. This is purely for readability and ease of interpretation so

that readers may more immediately see whether the number of available features is large or

small (relative to p) regardless of the particular model setup being considered.
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Figure 2.3: Degrees of freedom for random forests at different levels of mtry.

Results are shown in Figure 2.3. In each of the four model setups we take the SNR

to be equal to 3.52 and estimate the dof for random forests with mtry equal to 0.1, 0.33,

0.67, and 1. Note that when mtry = 1 the model reduces to bagging [Breiman, 1996] and

mtry = 0.33 corresponds to the standard choice of p/3 eligible features at each node in

regression settings, as is the default in most software. The forests are constructed using the

randomForest package in R [Liaw et al., 2002] with the default settings for all arguments

except for mtry and maxnodes. Each point in each plot in Figure 2.3 corresponds to a Monte

Carlo estimate of the dof formula given in (2.3) evaluated over 500 trials.
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Several clear patterns are apparent in Figure 2.3. First and perhaps most obviously, as

conjectured above, in each case we see that the dof increases as maxnodes increases and trees

can be grown to a greater depth. Each plot also shows the same general concave increasing

shape for each forest. Furthermore, the estimated dof function for each forest lies above the

diagonal (shown as a dotted line in each plot), supporting the general notion formalized in

Tibshirani [2015] that adaptive procedures like the tree-based models employed here incur

additional dof as a result of this search.

More importantly for our purposes, in each plot in Figure 2.3 we see that at every fixed

level of maxnodes, the dof increases with mtry. In particular, bagging (mtry = 1) always

contains more dof than the default implementation for random forest regression (mtry =

0.33). Finally, we note that the patterns seen in these plots also hold for numerous other

regression functions and SNRs that were experimented with; Figure A1 in Appendix A shows

the results of the same experiments above carried out at a much lower SNR of 0.09 and the

findings are nearly identical.

2.4 RANDOM FOREST PERFORMANCE VS SIGNAL-TO-NOISE RATIO

The empirical results in the preceding section suggest that the mtry parameter in random

forests is directly tied to its dof with larger values resulting in estimators with higher dof

and more flexibility. Based on this intuition and the results for linear estimators provided in

Hastie et al. [2020], we should therefore expect that random forests with smaller values of

mtry to perform well in noisy settings while bagging should perform best – potentially even

better than random forests – at high SNRs. We now investigate this more formally.

2.4.1 Relative Performance on Synthetic Data

We begin by comparing the relative performance of random forests and bagging on simulated

data across a range of plausible SNRs. In addition to the linear model setup described in
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the previous section, we now include the additional regression function

Y = 10 sin(πX1X2) + 20(X3 − 0.05)2 + 10X4 + 5X5 + ε

which we refer to as ‘MARS’ because like the additive model used previously, it first appeared

in the MARS paper [Friedman, 1991], though note that unlike the previous model, it contains

explicit interactions between the features. This particular MARS model has proven popular

in random forest publications in recent years, appearing, for example, in Biau [2012] and

Mentch and Hooker [2016]. In the simulation setups described below, we consider the medium

setting for the linear model (n = 500, p = 100, s = 5) and for the MARS model, we take

p = s = 5 and consider sample sizes of n = 200, 500, and 10000. Features for the linear

model are generated in the same fashion as above and those in the MARS model are sampled

independently from Unif(0, 1).

As in the previous section, the variance σ2 of the noise term is chosen so as to induce

particular SNRs. Here, following Hastie et al. [2020], we consider 10 SNR values ν =

0.05, 0.09, 0.14, ..., 6.00 equally spaced between 0.05 and 6 on the log scale. Forests are

again constructed using the randomForest package with the default settings except in the

case of bagging where the default value of mtry is changed so that all features are available

at each split.

Here, in comparing the performance of “random forests” against “bagging”, we stress that

we are merely assessing the difference in predictive accuracies between forests constructed

with mtry = 0.33 (traditional random forests) versus those built with mtry = 1 (bagging). To

compare the relative performance for a fixed model setup with fixed SNR, we first generate

a training dataset and then evaluate the mean squared error (MSE) for both bagging and

random forests on an independently generated test dataset consisting of 1000 observations.

This entire process is then repeated 500 times for each setting and we record the average

difference in accuracy (Error(Bagg)− Error(RF)) across these repetitions.

Results are shown in Figure 2.4. Each plot shows the average difference in test errors

versus the SNR; note that positive differences indicate that random forests (mtry = 0.33)

are outperforming bagging (mtry = 1). In each of the four regression setups shown in

Figure 2.4, the improvement in accuracy seen with random forests decreases as the SNR
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Figure 2.4: Differences in test errors between bagging and random forests. Positive values

indicate better performance by random forests.

increases. For large SNR values, bagging eventually begins to outperform the traditional

random forests. Note also that for the MARS function, random forests seem to retain their

relative improvement longer (i.e. for larger SNRs) with larger training samples. Given these

results, the conventional wisdom that random forests simply “are better” than bagging seems

largely unfounded; rather, the optimal value of mtry seems to be a function of the SNR.
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Figure 2.5: Optimal value of mtry vs SNR for the MARS and linear model.

2.4.2 Optimal mtry vs SNR

The results above indicate that random forests (mtry = 0.33) generally seem to outperform

bagging (mtry = 1) unless the SNR is large. We now reverse the direction of this investigation

and estimate the optimal value of mtry across various SNR levels.

Here, as above, we consider both the MARS model and a linear model. In the same

fashion as in previous simulations, the errors are sampled from a N(0, σ2) where σ2 is chosen

to produce a particular SNR and we consider the same 10 SNR values as above. For the

MARS model, we take p = s = 5 and generate features independently from Unif(0, 1) and

for the linear model, we take p = 20 and s = 10 with features drawn from Np(0,Σ) where

the (i, j) entry of Σ is given by ρ|i−j| with ρ = 0.35. The first s = 10 coefficients in the linear

model are set equal to 1 with the rest set equal to 0.

For both models, we consider (training) sample sizes of both n = 50 and n = 500 and

generate an independent test set of the same size. We construct forests using all possible

values of mtry with the remaining options at the default settings in randomForest. The
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entire process is repeated 500 times and the mtry value corresponding to the forest with the

lowest average test error for each setting is selected. The results are shown in Figure 2.5.

As expected, corroborating the findings above, the optimal value of mtry increases with the

SNR and the same general pattern emerges for both models and sample sizes. Figure A2 in

Appendix A shows a slightly different calculation where the optimal mtry value on each of

the 500 iterations is determined and the overall mean is then calculated. Here too we see

exactly the same general pattern in that as the SNR increases, so does the optimal value of

mtry.

2.4.3 Relative Performance on Real Data

The work above presents strong empirical evidence that the relative improvement in predic-

tive accuracy seen with random forests is largest at low SNRs and more generally, that the

optimal value of mtry appears to be a direct (increasing) function of the SNR. These re-

sults, however, pertain only to those particular simulation settings that some may argue are

highly idealized. Real-world data may contain far more complex relationships and thus we

now explore whether the same general findings above also appear in more natural contexts.

To investigate this, we utilize 10 datasets intended for regression from the UCI Ma-

chine Learning Repository [Dua and Graff, 2017]. Because most of these datasets are low-

dimensional, five additional high-dimensional datasets were also included, four of which were

downloaded from openml.org [Vanschoren et al., 2013] with the other (AquaticTox) taken

from the R package QSARdata. Summaries of these datasets are provided in Table 2.1. For

datasets containing missing values (csm and fb), the corresponding rows of data were re-

moved. Here we do not know the true SNR and thus to compare the relative performance

of bagging and random forests, we inject additional random noise ε into the response, where

each ε ∼ N(0, σ2) and σ2 is chosen as some proportion α of the variance of the original

response variable. We consider α = 0, 0.01, 0.05, 0.1, 0.25 and 0.5 where α = 0 corresponds

to the case where no additional noise is added and performance is thus compared on the

original data. To compare performance, we measure the relative test error (RTE)

RTE =
Êrr(Bagg)− Êrr(RF)

σ̂2
y

× 100% (2.4)
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Table 2.1: Summary of real-world data utilized. For datasets where no reference was speci-

fied, a reference to early work utilizing the data is given.

Dataset p n
Abalone Age [abalone] [Waugh, 1995] 8 4177
Bike Sharing [bike] [Fanaee-T and Gama, 2014] 11 731
Bioston Housing [boston] [Harrison Jr and Rubinfeld, 1978] 13 506
Concrete Compressive Strength [concrete] [Yeh, 1998] 8 1030
CPU Performance [cpu] [Ein-Dor and Feldmesser, 1987] 7 209
Conventional and Social Movie [csm] [Ahmed et al., 2015] 10 187
Facebook Metrics [fb] [Moro et al., 2016] 7 499
Parkinsons Telemonitoring [parkinsons] [Tsanas et al., 2009] 20 5875
Servo System [servo] [Quinlan, 1993] 4 167
Solar Flare [solar] [Li et al., 2000] 10 1066
Aquatic Toxicity [AquaticTox] [He and Jurs, 2005] 468 322
Molecular Descriptor Influencing Melting Point [mtp2] [Bergström et al., 2003] 1142 274
Weighted Holistic Invariant Molecular Descriptor [pah] [Todeschini et al., 1995] 112 80
Adrenergic Blocking Potencies [phen] [Cammarata, 1972] 110 22
PDGFR Inhibitor [pdgfr] [Guha and Jurs, 2004] 320 79

where Êrr(Bagg) and Êrr(RF) denote the 10-fold cross-validation error on bagging and ran-

dom forests, respectively, and σ̂2
y is the empirical variance of the original response. For each

setting on each dataset, the process of adding additional random noise is replicated 500 times

and the results are averaged. Once again, forests are constructed using the randomForest

package with the default settings except for fixing mtry = 1 for bagging and mtry = 0.33 for

random forests.

Results are shown in Figure 2.6 with low-dimensional datasets shown in the left plot

and high-dimensional datasets shown on the right. Note that to aid in presentation, these

display the shifted RTE rather than the raw calculation in (2.4). For a given proportion of

additional noise α, let RTE(α) denote the corresponding relative test error. The shifted RTE

at noise level α is then defined as RTE(α) - RTE(0). This ensures that the relative error

for each dataset begins at the origin thereby allowing us to present all results in a single

easy-to-interpret plot. Error bars correspond to ±1 standard deviation across 500 trials.

In both plots in Figure 2.6, the same general pattern appears as has been seen in the

subsections above: as we increase the amount of additional noise inserted into the models,

the relative improvement in predictive accuracy seen with random forests becomes more
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Figure 2.6: Shifted RTE on real data where additional noise is added. The left plot shows

results on low-dimensional datasets taken from the UCI repository; the right plot shows

results on high-dimensional datasets.

pronounced. The only slight exceptions are seen on the low-dimensional csm dataset and the

high-dimensional pah dataset were the relative error appears to decrease by a small amount

before eventually coming back up when large amounts of noise are added. It is not clear

why the initial temporary drops occur in these two datasets, though it is worth noting that

even the largest magnitudes of drops are quite small at approximately 0.2% and 0.13% in

the csm and pah datasets, respectively.

2.5 RANDOMIZED FORWARD SELECTION

The results from the previous sections suggest that the optimal value of mtry for random

forests is highly data-dependent, with smaller values preferred in noisy settings and bagging

(mtry = 1) being preferred when very little noise is present. These findings are much in line
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with the classic understanding of random forests as a means by which the variance of the

ensemble is reduced as a by-product of reducing the correlation between trees. The benefits

of this variance reduction are most apparent at low SNRs.

In our view, however, this remains only a partial explanation. While randomizing the

collection of features eligible for splitting at each node is one way to reduce between-tree cor-

relation, it is certainly not the only means by which this can be accomplished. Breiman [2001]

experimented with alternative implementations finding that even very naive approaches like

adding random noise to the outputs of each tree could sometimes be beneficial. But as

discussed in the opening sections, Breiman [2001], like many others after, also noted that

the particular approach where features are randomly precluded from splitting at each node

seemed to produce substantially more accurate predictions than other strategies for reducing

between-tree correlation. Why this was the case, however, was not clear and has remained

a subject of speculation in the nearly two decades following the inception of the procedure.

As already briefly mentioned above, Hastie et al. [2020] recently provided an extended

comparison of several variable selection procedures including the lasso [Tibshirani, 1996,

Chen et al., 2001], relaxed lasso [Meinshausen, 2007], forward stepwise selection (FS), and

best subset selection (BSS). The relaxed lasso estimator utilized in Hastie et al. [2020] takes

the form

β̂relax(λ, γ) = γβ̂lasso(λ) + (1− γ)β̂LS|lasso(λ)

where β̂LS|lasso(λ) denotes the vector of coefficient estimates obtained via least squares (LS)

when computed on only those variables selected via the lasso and filled in with 0 for variables

not selected. Perhaps the most striking takeaway from their study is that in low-dimensional

settings where n > p, the more aggressive procedures (FS and BSS) with higher dof are gen-

erally not competitive with a regularized approach like the lasso at low SNRs but eventually

produce more accurate predictions when the SNR becomes large. Relaxed lasso, taking the

weighted average of lasso and LS-after-lasso estimates, possesses the ability to effectively

trade-off the amount of regularization needed depending on the SNR and always seems to

perform well.

For these kinds of estimators whose inner-workings are better understood, the reasoning

behind the results observed is relatively straightforward. In low SNR settings, procedures
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like the lasso and relaxed lasso that explicitly regularize the problem can prevent overfitting

to the noise by applying shrinkage to the coefficient estimates of the selected features. Given

that we see the same general pattern here – random forests (mtry = 0.33) outperforming

bagging (mtry = 1) except at high SNRs – it is reasonable to suspect that the additional

randomness in random forests is playing a similar regularization role. Indeed, by randomly

not allowing certain features to be split, random forests may be seen as effectively shrink-

ing the potential influence of features, with the amount of shrinking being proportional to

the amount of additional randomness added (with smaller values of mtry inducing more

randomness). Speculation to this effect is described in Hastie et al. [2009].

Importantly however, if this is the kind of underlying effect that allows random forests

to perform well in practice, such an effect should not be limited to tree-based ensembles.

Indeed, if regression trees are seen as merely a complex form of forward selection, then if we

were to create bagged and randomized versions of a standard forward selection procedure –

analogues to the traditional tree-based versions of bagging and random forests – we should

expect to see the same general patterns of relative improvement. In the following sections,

we propose two such ensemble-ized extensions of forward selection and confirm that not

only do similar patterns emerge, but that these new procedures exhibit surprisingly strong

performance relative to alternative procedures.

2.5.1 Degrees of Freedom for Randomized Forward Selection

We begin by formalizing the notion of randomized forward selection (RandFS), which can

be seen as a random forest analogue to traditional forward stepwise selection (FS). For any

subset of the feature indices S, define XS as the matrix of feature values whose index is in

S and PS as the projection matrix onto the column span of XS . To carry out randomized

forward selection (RandFS), we begin by drawing B bootstrap samples from the original

data and performing forward selection on each. However, like random forests, at each step,

only a random subset of remaining features are eligible to be included in the model. The

process continues until the desired model size (depth) d is obtained and the final predictions

are taken as an average over the predictions generated by each individual model. When
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Algorithm 2 Randomized Forward Selection (RandFS)

procedure RandFS(Dn, B, d, mtry)

for b = 1, . . . , B do

Draw bootstrap sample D(b) = {(X(b)
i , Y

(b)
i )}ni=1 from original data Dn

Initialize empty active set A0 = {0}

for k ∈ 1 . . . d do

Select subset of mtry× p features uniformly at random, denoted Fk

Select jk = argminj∈Fk
∥∥Y (b) − PAk−1∪{j}Y

(b)
∥∥2

2

Update active set Ak = Ak−1 ∪ {jk}

Update coefficient estimates β̂(b) as

β̂
(b)
Ak

= argminβ

∥∥∥Y (b) −X(b)
Ak
β
∥∥∥2

, β̂
(b)
Ack

= 0

Compute final coefficient estimates β̂ = 1
B

∑B
b=1 β̂

(b)

Compute predictions Ŷ = Xβ̂

mtry = 1 so that all features are eligible at each step, we refer to the procedure as bagged

forward selection (BaggFS). A summary of the procedure is given in Algorithm 2.

We begin by estimating the dof for RandFS as well as for FS, lasso, and relaxed lasso.

Here we follow the same initial setup utilized in Hastie et al. [2020] where we assume a linear

model Y = Xβ + ε with n = 70, p = 30, and s = 5. Rows of X are sampled independently

from Np(0,Σ), where the (i, j)th entry of Σ takes the form ρ|i−j| with ρ = 0.35 and errors

are sampled independently from N(0, σ2) with σ2 chosen to satisfy a particular SNR, in this

case 0.7. The first s components of β are set equal to 1 with the rest equal to 0.

The plots in Figure 2.7 show the estimated dof for the various methods against the

number of nonzero coefficient estimates produced. Each point in each plot corresponds to

a Monte Carlo estimate of the dof formula given in (2.3) evaluated over 500 iterations.

As expected, the plot on the right shows quite clearly that as with random forests, larger

values of mtry produce RandFS procedures with more dof. More surprising is the relative

relationship of the RandFS models to the more classical procedures. The plot on the left
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Figure 2.7: Estimated dof for forward selection (FS), bagged forward selection (BaggFS),

randomized forward selection (RandFS), lasso, and relaxed lasso.

shows that the dof for BaggFS is almost identical to that of standard FS. The standard mtry

value of 0.33 produces a RandFS model with dof very similar to that of the relaxed lasso

with γ = 0, corresponding to least squares after lasso. Smaller values of mtry appear to

offer even more regularization, producing dof similar to relaxed lasso with larger γ values,

corresponding to an estimate where more weight is put on the original lasso coefficient

estimates.

2.5.2 Relative Performance of Randomized Forward Selection

Building on the intuition from previous sections as well as that provided in Hastie et al.

[2020], the dof results in Figure 2.7 suggest that we should expect to see RandFS models

with small values of mtry have a potential advantage in predictive accuracy relative to FS

and BaggFS at low SNRs. We now compare the performance of RandFS relative to BaggFS

and the more classical procedures.

30



Here we consider several linear model setups taken directly from Hastie et al. [2020] and

similar to those considered in Section 2.3. We consider four settings:

• Low: n = 100, p = 10, s = 5

• Medium: n = 500, p = 100, s = 5

• High-5: n = 50, p = 1000, s = 5

• High-10: n = 100, p = 1000, s = 10.

As above, rows of X are independently drawn from N(0,Σ), where Σ ∈ Rp×p has entry (i, j)

= ρ|i−j| with ρ = 0.35 and where we set the first s components of β equal to 1 with the rest

set to 0, corresponding to the beta-type 2 setting in Hastie et al. [2020]. Noise is once again

sampled from N(0, σ2I) where σ2 is chosen to produce a corresponding SNR level ν and we

consider the same 10 values ν = 0.05, 0.09, 0.14, ..., 6.00 utilized above.

Tuning of the FS, lasso, and relaxed lasso procedures is done in exactly the same fashion

as in Hastie et al. [2020]. In all cases, tuning parameters are optimized on an independent

validation set of size n. For the low setting, the lasso shrinkage parameter λ follows the

default glmnet settings being tuned across 50 values ranging from small to large fractions

of λmax =‖ XTY ‖∞. For relaxed lasso, λ is tuned across the same 50 values and the γ

parameter that weights the average of the lasso and LS-after-lasso estimates is chosen from

10 equally spaced values between 0 and 1. The depth of the models in FS, BaggFS, and

RandFS are tuned across d = 0, 1, 2, ..., 10. Note that for BaggFS and RandFS, a selected

depth of d means that each individual model is built to a depth of d and the final average is

then taken; since different individual models will generally select different features, the final

averaged model will generally contain more than d features. In addition to considering the

default RandFS (mtry = 0.33) and BaggFS (mtry = 1), we also consider tuning the mtry

in RandFS across 10 equally spaced values between 0.1 and 1. In the medium, high-5, and

high-10 settings, the λ parameter in lasso and relaxed lasso is tuned across 100 values rather

than 50 and model depths for FS, BaggFS, and RandFS are tuned across d = 0, 1, 2, ..., 50;

all other setups remain the same.

To measure performance, we again follow the lead of Hastie et al. [2020] and calculate

the test error relative to the Bayes error rate. Specifically, given a test point z0 = (x0, y0)
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Figure 2.8: Performance of FS, BaggFS, RandFS, lasso and relaxed lasso across SNR levels

for linear models in the low, medium, high-5, and high-10 settings.

with y0 = xT0 β + ε0 and ε0 ∼ N(0, σ2), the relative test error (RTE) to Bayes of a regression

estimate β̂ is given by

RTE(β̂) =
E(y0 − xT0 β̂)2

σ2
=

(β̂ − β)TΣ(β̂ − β) + σ2

σ2
.

Results are shown in Figure 2.8; the same plots with error bars corresponding to ±1

standard deviation are shown in Appendix A. Each point in each plot corresponds to an

average over 100 replications. As expected, the explicit regularizers (lasso and relaxed lasso)
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perform well in the high-dimensional settings and at low SNRs. In the high-dimensional

settings in particular, most methods perform similarly at low SNRs but for larger SNRs,

relaxed lasso begins to perform substantially better.

In the low and medium settings, BaggFS largely performs as expected with respect

to classical FS. At low SNRs, the variance stabilization offered by BaggFS allows it to

outperform FS but that advantage dies out at medium SNRs and both procedures appear

similarly optimal relative to the others at high SNRs. It can also be seen in these settings

that as originally hypothesized above, RandFS with fixed mtry = 0.33 outperforms BaggFS

at low SNRs but loses the advantage at high SNRs.

The performance of RandFS in these settings with respect to the other procedures,

however, is what is perhaps most surprising. Note that in the low setting, the RandFS

procedure with tuned mtry outperforms all other methods – including lasso and relaxed lasso

– until the mid-range SNR values. In the medium setting, RandFS exhibits a similar property

to that of relaxed lasso, performing very well at low SNRs but adapting (likely selecting

larger values of mtry) to also perform very well at large SNRs. Even more remarkable is the

performance of RandFS when mtry = 0.33 and is not tuned – in both the low and medium

settings, even this default RandFS outperforms the lasso across all SNRs.

2.5.3 Randomization as Implicit Shrinkage

Before concluding our work, we provide some additional intuition into the implicit regular-

ization that appears to be taking place with the randomized ensembles (random forests and

RandFS) studied in previous sections. This is more apparent and easily described in the

more classical linear model forward selection setting with RandFS, though the same kind of

effect is likely present with random forests, which might be seen as simply a more complex

form of randomized forward selection.

As above, suppose we have data of the form Dn = {Z1, ..., Zn} where each Zi = (Xi, Yi),

Xi = (X1,i, ..., Xp,i) denotes a vector of p features, Y ∈ R denotes the response, and the

variables have a general relationship of the form Y = f(X) + ε. Now suppose that we obtain

a regression estimate f̂RFS = Xβ̂RFS by averaging over B models, each built via randomized
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forward selection on Dn to a depth of d. Note that this is identical to the RandFS procedure

described above except that for technical reasons, models are built on the original data

each time rather than on bootstrap samples. Each of the B individual models produces an

estimate of the form

β̂
(b)
RFS = β̂

(b)
0 +X

(b)
(1)β̂

(b)
(1) + · · ·+X

(b)
(d)β̂

(b)
(d)

where X
(b)
(j) is the feature selected at the jth step in the bth model and β̂

(b)
(j) is the corresponding

coefficient estimate. Now consider a particular feature, say X1, and suppose that the ordinary

least squares (OLS) estimator exists and that the OLS coefficient estimate for X1 is given

by β̂1,OLS. More generally, given an active set A ⊂ {1, ..., p} containing a subset of feature

indices, let β̂1,OLS|A denote the OLS estimate of the coefficient for X1 when calculated over

only the features with indices in A.

Given an orthogonal design matrix, for any indexing set A, β̂1,OLS|A is equal to β̂1,OLS

whenever 1 ∈ A and equal to 0 otherwise. Thus, if Ab denotes the indices of those features

selected for inclusion in the bth model, then β̂
(b)
1 = β̂1,OLS if X1 is selected (i.e. 1 ∈ Ab) and

β̂
(b)
1 = 0 otherwise. The final coefficient estimate produced by RandFS is thus of the form

β̂1,RFS =
1

B

B∑
i=1

β
(b)
1 = α1 · β̂1,OLS + (1− α1) · 0 = α1 · β̂1,OLS

where 0 ≤ α1 ≤ 1 denotes the proportion of models in which X1 appears. In practice, for

each feature Xk, the selection proportion αk will depend on the particular data observed,

the value of mtry, the depth d of each model, and the importance of Xk relative to the other

features. In particular though, so long as d is relatively large, αk should still be expected

to be somewhat large even for moderately small values of mtry whenever Xk is a relatively

important feature because it will have a very good chance of being included in the model if

it is made eligible at any step. Thus, in this sense, not only does RandFS have a shrinkage

effect on each variable, but variables that appear more important by virtue of being included

in many models will be shrunken by less than those included only occasionally.

In the RandFS setup, this varying amount of shrinkage is a by-product of the adaptive,

forward-selection nature in which the models are fit. We now show that when the adaptivity

is removed and the linear sub-models are instead fit via standard OLS, the resulting shrinkage

34



becomes more uniform. In a very recent study released almost simultaneously to this work,

LeJeune et al. [2020] demonstrate similar results for these kinds of OLS ensembles; we

encourage interested readers to see this work for further results.

Assuming i.i.d. data of the form above, suppose that the true relationship between the

features and response is given by

Yi = X ′iβ + εi (2.5)

where ε = (ε1, ..., εn) are i.i.d. and independent of the original data and each noise term εi

has mean 0 and variance σ2
ε . Denote Y = [Yi]

n
i=1 ∈ Rn and X = [X1, . . . ,Xn]′ ∈ Rn×p.

Assume p < n so that the OLS estimator on the original data exists. Now suppose that we

form a regression estimate β̂ens by averaging across B different OLS models, each built using

only a subset of m < p features selected uniformly at random. The following result gives

that this average of OLS estimators is equivalent to ridge regression with shrinkage penalty

λ = p−m
m

.

Theorem 1. Under the data setup given above, assume that n > p and the design matrix

X is orthogonal. Then

β̂ens
B→∞−−−→ m

p
β̂OLS

where β̂ens denotes the estimate formed by averaging across B different OLS models, each

built using only a subset of m < p features selected uniformly at random, and β̂OLS denotes

the standard OLS estimate on the original data.

Proof: For b = 1 . . . B, let Sb ⊆ {1, . . . , p} = [p] denote the set of indices of the m features

selected in the bth model. Let Sb be the p×m subsampling matrix obtained by selecting the

columns from Ip corresponding to the indices in Sb. The bth model estimate is given by

β̂(b) = Sb (S′bX
′XSb)

−1
S′bX

′Y

which, by orthogonality of X, can be written as

β̂(b) = SbS
′
bX
′Y = SbS

′
b(X

′X)−1X ′Y = SbS
′
bβ̂

OLS.
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Averaging across the B individual models gives

β̂ens =
1

B

B∑
b=1

β̂(b) =
1

B

B∑
b=1

SbS
′
bβ̂

OLS. (2.6)

Finally, let C denote the p × p diagonal matrix where Cjj is the number of times that the

jth feature is selected in the B base models. Then we have

β̂ens =
1

B
Cβ̂OLS

B→∞−−−→ m

p
β̂OLS.

�

The above result explicitly shows the shrinkage that occurs when an ensemble estimate

is formed by averaging across B models, each of which uses only a randomly selected subset

of the available features. We now demonstrate that when base models are constructed by

subsampling both features and observations, a similar result holds in expectation. LeJeune

et al. [2020] showed that the optimal risk of such estimators is equivalent to that of the

optimal ridge estimator. Here we follow the same setup to explicitly examine the expectation

of this kind of estimator.

Assume that the rows of X are i.i.d. with mean 0 and variance Ip and consider an ensem-

ble of B total OLS base models constructed as follows. For b = 1 . . . B, subsample m features

uniformly at random and let Sb ⊆ {1, . . . , p} = [p] denote the set of indices corresponding to

the features selected in the bth model. Let Sb denote the p×m subsampling matrix obtained

by selecting the columns from Ip corresponding to the indices in Sb. Similarly, subsample t

observations and let Tb ⊆ [n] denote the set of the indices of observations selected in the bth

model and let Tb denote the n × t subsampling matrix obtained by selecting the columns

from In corresponding to the indices in Tb. Let S and T denote the collections of all possible

Sb and Tb, respectively. Finally, assume that all subsampling is carried out independently

and define β̂ens,ss as the ensemble estimate formed by averaging across the B subsampled

OLS models. The following result gives that on average, β̂ens,ss produces an estimate equal

to the true coefficient β shrunk by a factor of m
p

.
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Theorem 2. Under the setup given above, assume that m < t− 1 and Yi = X ′iβ+ εi as in

(2.5). Then

E
(
β̂ens,ss

)
=
m

p
β =

1

1 + p−m
m

β.

Proof: For b = 1 . . . B, LeJeune et al. [2020] showed that each individual model estimate can

be written as

β̂(b) = Sb (T ′bXSb)
+
T ′bY

where (·)+ denotes the Moore-Penrose pseudoinverse. The ensemble estimate is thus given

by

β̂ens,ss =
1

B

B∑
b=1

β̂(b) =
1

B

B∑
b=1

Sb (T ′bXSb)
+
T ′bY . (2.7)

Now, given the assumed linear relationship between Yi and Xi, the expectation of β̂ens,ss

with respect to ε but conditional on X, S, and T , is given by

Eε
(
β̂ens,ss

)
=

1

B

B∑
b=1

Sb (T ′bXSb)
+
T ′bXβ.

Applying a further result from LeJeune et al. [2020] showing that SbS
′
b + ScbS

c′
b = Ip, we

have

Eε
(
β̂ens,ss

)
=

1

B

B∑
b=1

Sb (T ′bXSb)
+
T ′bX (SbS

′
b + ScbS

c′
b )β

=
1

B

B∑
b=1

(
Sb (T ′bXSb)

+
T ′bXSbS

′
bβ + Sb (T ′bXSb)

+
T ′bXS

c
bS

c′
b β
)

=
1

B

B∑
b=1

(
SbS

′
bβ + Sb (T ′bXSb)

+
T ′bXS

c
bS

c′
b β
)
.

By the assumption that E(Xi) = 0 and Var(Xi) = Ip, XSb and XScb are independent with

mean 0. Thus, the expectation of β̂ens,ss with respect to the training data ε and X and

conditional on S and T is given by

Eε,X
(
β̂ens,ss

)
=

1

B

B∑
b=1

SbS
′
bβ =

1

B
Cβ (2.8)
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where C is a diagonal matrix with Cjj equaling the number of times that the jth feature is

selected for j = 1, ..., p. Since both the features and observations are subsampled uniformly

at random, we have

Eε,X,S,T

(
β̂ens,ss

)
=
m

p
β =

1

1 + p−m
m

β

as desired. �

Note that in both theorems above, the ensemble estimates are shrunk by a factor of m/p

and since features are selected uniformly at random (u.a.r.) for each model, this corresponds

simply to the probability of each feature being chosen in each model. As discussed initially,

in the RandFS framework where each base model is constructed in an adaptive fashion,

the amount of shrinkage applied to each feature will be affected by its relative importance

in predicting the response. Indeed, notice from the proofs of both theorems above that if

features were selected in any non-u.a.r. so that some features were more likely to be selected

than others, then so long as those selection probabilities were independent of the original

data, only the final lines in the proofs would need changed. In particular, for features more

likely to be selected, the expected corresponding diagonal entry of the C matrix would be

larger, resulting in less shrinkage on the corresponding coefficient.

2.6 DISCUSSION

The results in the previous sections provide substantial evidence that the mtry parameter

– the distinguishing feature of random forests – has an implicit regularization effect on the

procedure. Much like the tuning parameter λ in explicit regularization procedures like lasso

and ridge regression, mtry serves to mitigate overfitting to particular features. Thus, contrary

to conventional wisdom, random forests are not simply “better” than bagging, but rather,

the relative success of random forests depends heavily on the amount of noise present in the

problem at hand. At low to moderate SNRs, random forests are seen to perform substantially

better than bagging whereas bagging becomes far more competitive in high SNR regimes.

This suggests further that at least in regression contexts, the success of random forests
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is not in fact due to any kind of potential interpolation as was recently hypothesized in

Wyner et al. [2017]. In Section 2.5 we showed that the same kinds of patterns emerged

for ensemble-ized extensions of classic forward selection. Our findings suggest that these

modified forward selection procedures intended as bagging and random forest analogues –

BaggFS and RandFS, respectively – may sometimes provide a substantial improvement over

standard forward selection, especially at low SNRs.

The obvious question is then, “Why do random forests appear to work so well in practice

on real datasets?” As discussed in the introduction, there is certainly considerable evidence

that random forests do often perform very well in a variety of settings across numerous

scientific domains. In our view, the clear answer is that in practice, many datasets simply

are quite noisy. Hastie et al. [2020] provide a thorough discussion along these lines, arguing

that although commonly employed in simulations, on real data, SNRs as large as 5 or 6 are

extremely rare. If this is indeed the case, it would explain why random forests are so often

viewed as inherently superior to bagging.

Finally, we note that our findings are very much in line both with previous findings

and with common practice. In practical applications, random forests are generally used

“off-the-shelf” without any tuning of the mtry parameter. The plots corresponding to the

low and medium settings in Figure 2.8 may shed some light on this: though not always

optimal, the procedure with a fixed mtry value of 0.33 generally performs quite well and

thus, in terms of practical guidance, this default value seems to be as good a starting place

as any. On the other hand, the results provided above do strongly support the notion

discussed in many previous studies [Dı́az-Uriarte and De Andres, 2006, Genuer et al., 2008,

Bernard et al., 2009, Genuer et al., 2010, Probst et al., 2019b] that the mtry parameter

can significantly influence performance. Just as with explicit regularization procedures,

the results above suggest that the mtry parameter in random forests can be thought of as

controlling the amount of shrinkage and regularization and thus is best tuned in practice.

For large datasets where tuning could introduce a computational burden, the recent results

in Lopes et al. [2019b] suggest that at least in some cases, the algorithmic variance may

quickly diminish after relatively few bootstrap samples and thus the tuning and validation

could potentially be done reasonably well even on relatively small ensembles.
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3.0 NOISE FEATURES AS REGULARIZATION: AUGMENTED

BAGGING AND VARIABLE IMPORTANCE

In this chapter, we explore the impact of other forms of regularization on ensembles of

trees. In particular, expanding the feature space with extra noise features leads to improved

performance of bagging. Apart from the fact that this result in and of itself is surprising and

counter-intuitive, it leads to reflections on an appropriate measure of variable importance,

which is of interest across all of sciences. The following sections are mainly pulled from

Mentch and Zhou [2020a].

3.1 INTRODUCTION

In the last chapter, we have demonstrated that the additional randomness utilized in random

forests was simply an implicit form of regularization. The mtry parameter in random forests

that dictates the number of available features at each split could therefore been seen as akin

to the λ shrinkage penalty in explicit regularization methods like ridge regression [Hoerl and

Kennard, 1970] and lasso [Tibshirani, 1996]. The random subsampling of features helped

the trees to avoid overfitting and that this was particularly beneficial in low signal-to-noise

ratio settings. LeJeune et al. [2020] demonstrated a similar effect for ensembles consisting

of linear model base learners fit via ordinary least squares (OLS).

The idea that the randomness in random forests serves as a means of regularization

not only eliminates some of the mystery of their sustained success but also suggests that

alternative modifications to the standard bagging procedure that also induce some means of

regularization may produce similar gains in accuracy. In this work, we introduce one such

40



alternative idea we refer to as augmented bagging (AugBagg) wherein the original feature

space is augmented with additional noise features generated conditionally independent of

the response, after which the standard bagging procedure is carried out. Very recent work

by Kobak et al. [2020] showed that under certain conditions, including particular forms of

additional random noise features in the regression can also improve the performance of linear

models. As a result, performing minimum-norm least squares on an augmented design with

increasingly many features each with increasingly small variance can be seen as equivalent

to ridge regression on the original design.

The work in this chapter in the context of bagging and random forests uncovers findings

that are arguably even more surprising and troubling. First, unlike the somewhat strict

requirements in Kobak et al. [2020], the presence of additional noise features seems to often

help regularize the model regardless of their individual variance or dependence on each other.

Most alarmingly, in many instances, we show that this simple act of adding extra random

noise features to the model can greatly improve its out-of-sample predictive accuracy over

even the most optimally tuned model on the original design. Rather than making a bad

model worse as most would presume, the addition of otherwise useless random noise features

can have precisely the opposite effect.

This finding has crucial implications for the ways in which we measure and test fea-

ture importance. In black-box contexts where traditional measures like p-values may be

unavailable or difficult to obtain, numerous recent studies have formally proposed meth-

ods to evaluate feature importance by measuring the change in accuracy when the features

of interest are dropped from the model [Mentch and Hooker, 2016, 2017, Lei et al., 2018,

Coleman et al., 2019, Williamson et al., 2021]. The implicit logic in such procedures feels

intuitive and obvious: if the response can be more accurately predicted when a supplemental

collection of features are included in the model, then those additional features must hold

some information about the response beyond whatever is offered by the original collection

of features. This work, however, demonstrates that this need not be the case. Rather, in

some instances, particularly when the data itself are quite noisy, independent random noise

features can improve predictions when added to a model. This can thus lead to situations

that feel almost paradoxical in which, depending on the assumptions made and the type of
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test deployed, noise features that are completely independent of the response may routinely

register as statistically significant. Much further discussion on the implications of this finding

is included in the latter sections of this work along with a proposed solution.

The remainder of this chapter is laid out as follows. In Section 3.2 we formally introduce

the AugBagg procedure and in Section 3.3 we provide numerous simulations and real-data

experiments to demonstrate its surprisingly competitive predictive performance. In Section

3.4 we provide theoretical motivation for the AugBagg procedure, building upon very recent

results established for other learning procedures. Implications for measuring and testing

variable importance are discussed in Section 3.5, where we also suggest a more robust alter-

native testing framework in which tests for feature importance maintain the nominal level

for noise features, even when such features are capable of producing non-trivial gains in

accuracy.

3.2 AUGMENTED BAGGING

Throughout the remainder of this chapter, we assume data of the form Dn = {Z1, ...,Zn}

where each ordered pair Zi = (Xi, Yi) consists of a feature vector Xi = (X1,i, ..., Xp,i) and

response Yi ∈ R. Given B bootstrap samples of the data, the bagging procedure [Breiman,

1996] generates a prediction at x of the form

ŷBagg =
1

B

B∑
b=1

T (x; ωb,Dn) (3.1)

where the randomness ωb serves only to select the bootstrap sample on which the bth model

T is trained. Whenever the randomness is assumed to select both the bootstrap sample as

well as the mtry < p eligible features at each internal node, it leads to the same equation for

the random forest prediction ŷRF as in Section 2.2.

The augmented bagging (AugBagg) procedure we introduce here represents a straight-

forward extension of classical bagging. Beginning with the original dataset Dn, we create an

augmented dataset D∗n consisting of additional noise features generated conditionally inde-

pendent of Y . This augmented dataset thus takes the form D∗n = {Z∗1 , ...,Z∗n} where each
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Z∗i now denotes an ordered triplet (Xi,Ni, Yi) consisting of the original features Xi and

response Yi, but also an additional set of noise features Ni = (N1,i, ..., Nq,i). The original

bagging procedure is then performed on this augmented feature space so that the AugBagg

output produces predictions of the form

ŷAugBagg =
1

B

B∑
b=1

T ((x,n); ωb,D∗n) (3.2)

where n can be filled in with random draws from the additional noise features.

Importantly, we insist only thatN be generated conditionally independent of Y givenX.

This thus allows for additional noise features to be correlated with the original features. The

noise features, however, are still sampled at random so that even if duplicate observations

xi = xj appear in the original data, it need not be the case that (xi,ni) = (xj,nj). As

demonstrated in the following sections, the manner in which noise features are generated

can greatly impact performance.

Many of the simulations and experiments carried out below follow the classical definitions

and settings of bagging and random forests in which base learners are assumed to be full-

depth CART-style trees, as these are the kinds of models most frequently employed in

practice and available by default in software. Note that whenever the randomness ω is

assumed to select both the bootstrap sample as well as the mtry < p eligible features at each

internal node as in the case of random forests, the resulting prediction ŷRF can be written

in the same general form as (3.1). The invariance of CART-style trees to feature scaling

presents an additional benefit here, as somewhat less precision is needed in generating the

additional noise features for the augmented bagging procedure. We stress, however, that our

findings to come are not tree-based and in particular, that the regularization effect offered via

augmenting with noise features should be seen ultimately as a by-product of model averaging

rather than the specific kinds of base learners that are utilized.

43



3.3 SIMULATIONS AND REAL DATA EXAMPLES

We now present a number of simulation studies to demonstrate the effectiveness of the

AugBagg procedure in practice. To begin, we consider a standard linear model of the form

Y = Xβ + ε with n × p design matrix, the rows of which are i.i.d. multivariate normal

Np(0,Σ) where Σ ∈ Rn×p has entry (i, j) = ρ|i−j| with ρ = 0.35. The form of this covariance

corresponds to that utilized frequently in Chapter 2 and to the ‘beta-type 2’ setup utilized

in Hastie et al. [2020]. The original data includes n = 100 observations, p = 5 original signal

features with β1 = · · · = β5 = 1, and q additional i.i.d. noise features sampled from N (0, 1)

independent of X are then added with q ranging from 1 to 250. As in Chapter 2 and Hastie

et al. [2020], the noise term ε is sampled from N (0, σ2
ε ) with σ2

ε chosen to satisfy a particular

signal-to-noise ratio (SNR), given in this context by βTΣβ/σ2
ε .

Figure 3.1 shows the performance of the AugBagg procedure where bagging is performed

with unpruned trees utilizing both the original p signal features as well as the q additional

noise features. Horizontal lines in the background of each plot correspond to random forests

at different levels of mtry built using only the original p = 5 features. Each plot corresponds

to a different SNR (0.01, 0.05, 0.09, or 0.14) and shows the relative test error, defined as the

test MSE calculated on an independent, randomly generated test set of 1000 observations,

scaled by σ2
ε . Each point in each plot corresponds to the error averaged over 500 iterations

with error bars showing ±1 standard deviation. Note that in each case, the random forest

error grows as mtry increases and so in particular, bagging on only the original 5 features

(i.e. a random forest with mtry = 5) is the worst-performing model. At the lowest SNR of

0.01, however, augmented bagging appears to continually improve with q, easily surpassing

even the best random forest once approximately q = 25 additional noise features are added

into the model. Thus, the act of simply adding additional noise features into the model

transforms the least accurate model (bagging, or, a random forest with mtry = 5) into one

better than the best model built on the original data (a random forest with mtry = 1). The

results are similar, though less dramatic, when the SNR is increased to 0.05. When the SNR

is increased to 0.09, the performance of AugBagg appears to level-off around q = 50, never

achieving that of the optimal random forest with mtry = 1. Finally, when the SNR is 0.14,
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Figure 3.1: Performance of Augmented Bagging as q additional independent noise features

are added to the model as compared with random forests and traditional bagging (mtry = 5)

built on the original data. Each point in each plot corresponds to the average error after

repeating the experiment 500 times with error bars showing ±1 standard deviation.

the additional noise features appear to help until approximately q = 50, after which point

the performance begins to deteriorate.

The results in Figure 3.2 expand these simulations. The data and model setup remain

the same but the results are explored over a wider range of 8 SNRs, starting at 0.01 and

then ranging from 0.05 to 2.07, equally spaced on the log scale. With the exception of the
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Figure 3.2: Performance of AugBagg compared against random forests as additional noise

variables are added to the model. Different colored lines in each plot correspond to different

correlation strengths between the original and noisy additional features. Each black hori-

zontal dashed line in each plot corresponds to the performance of random forests at a fixed

value of mtry.
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lowest SNR of 0.01, the remaining sequence of SNRs is the same as was recently employed by

Hastie et al. [2020] and correspond to a proportion of variance explained (PVE), defined as

SNR/(1 + SNR), of 0.01 on the low end (SNR=0.01) and 0.67 on the high end (SNR=2.07).

In addition to the additional noise features sampled independently of X, here we consider

the addition of noisy features that are correlated with one of the first 5 signal features. In

a similar fashion to knockoffs [Barber et al., 2015, Candes et al., 2018], such noise features

are thus independent of the response Y given X. To generate such features, we first select

an original feature X at random and generate a standard normal Z ∼ N (0, 1). For a given

level of correlation r, each of the additional q features then take the form

N = rX +
√

(1− r2)Z. (3.3)

In each of the plots in Figure 3.2 we consider correlations of r = 0, 0.2, 0.7, and 0.99 for

batches of additional features ranging in size from 1 to 250. Performance is measured in the

same fashion and estimates are averaged over 500 replications for each point in each plot. In

the following discussion, we will use the shorthand AB(q, r) to denote an AugBagg model

with q additional noise features, each of which has correlation r with one of the features in

the original dataset.

Figure 3.2 presents a very interesting and telling story in terms of how the additional

noise features are influencing performance and how that influence changes across different

SNR levels. Looking only at Figure 3.1 where the noise features are independent of both

the response and the original features, one might suspect that this phenomenon occurs only

at very low SNRs. Looking at Figure 3.2 however, we see that when the noise features

are correlated with the original features, improvements in model accuracy are seen even at

relatively high SNRs.

At the lowest SNRs of 0.01 and 0.05, we see that in every case, the AugBagg models are

improving with the number of extra noise features q. Once q > 50, all AugBagg models begin

to outperform even the best random forest, with the exception of AB(q, 0.99) where very

highly correlated noise features are added. At SNR = 0.09, much the same story is present

but now only AB(q, 0.7) outperforms the optimal random forest and again this transition

happens around q = 50. At SNR = 0.14 we begin to see an interesting shift where the
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performance of the independent noise model AB(q, 0) begins to deteriorate with q. When

the SNR grows to 0.42 and 0.71, this effect is much more pronounced with AB(q, 0) and

AB(q, 0.2) both deteriorating with q. At the largest SNRs of 1.22 and 2.07, AB(q, 0.99) is

now the only model not deteriorating substantially with q.

3.3.1 Experiments on Real World Data

The previous simulations demonstrate that the AugBagg procedure can lead to substantial

gains in accuracy over the baseline bagging procedure on synthetic datasets. Following a

very similar setup to Chapter 2, we now investigate its performance on a variety of real-world

datasets. The same datasets in 2.1 are used, except parkinsons due to high computation

cost; a total of nine low-dimensional (p < n) and five high-dimensional (p > n) datasets are

included.

In implementing the AugBagg procedure, we consider tuning both the number of ad-

ditional noise features q as well as the level of correlation r. Since different datasets have

different numbers of original features, q is tuned over p/2, p, 3p/2 and 2p. The correlation

strength r is tuned over 0, 0.1, 0.4, 0.7 and 0.9. In datasets with mixed feature types, each

additional noise feature is chosen to be correlated with one randomly selected continuous

feature from the original data. As in 2, because the true SNR of real-world data is unknown,

we inject further noise of the form ε ∼ N(0, σ2
ε ) into the response in order to observe trends

in changes in model performance when the amount of noise grows larger relative to that

in the original data. The variance of the noise σ2
ε is chosen as some proportion of σ̂2

y, the

estimated variance of the original response Y . Performance is measured in terms of relative

test error (RTE), defined as

RTE =
Êrr(bagging)− Êrr(AugBag)

σ̂2
y

× 100% (3.4)

with positive values indicating superior performance by AugBagg. Here Êrr is obtained via

10-fold cross validation.

Results are shown in Figure 3.3. In every case, the performance of the tuned AugBagg

procedure increases as more noise is added to the response, as demonstrated by the positive
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Figure 3.3: Relative test error (RTE) on real datasets with additional noise added onto the

response. Left: low-dimensional datasets. Right: high-dimensional datasets.

slope displayed for each dataset. In 12 of the 14 datasets, AugBagg quickly begins to

outperform bagging on the original data with substantial improvements occurring as more

noise is injected. Furthermore, it is interesting to note that in the two cases where traditional

bagging remains superior, both datasets (AquaticTox and mtp2) are high-dimensional and,

in fact, contain the largest number of original features out of all datasets considered (p = 468

and 1142, respectively). In these cases, it is quite possible that many of the original features

are themselves noisy and thus the additions we make are of no further benefit. Indeed,

an optimally tuned lasso model built on the AquaticTox and mtp2 datasets selects only

(approximately) 17% and 4% of the features, respectively.

3.4 THEORETICAL MOTIVATION AND ANALOGOUS RESULTS

In the following three subsections, we draw upon recent results on interpolation and implicit

regularization in order to provide some theoretical motivation for the practical success of the

AugBagg procedure.
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3.4.1 Randomization as Regularization

In Chapter 2, we argue that the success of random forests is due in large part to a kind

of implicit regularization offered by the mtry parameter governing the number of features

available for splitting at each node. Moreover, this behavior is not tree-specific, but holds

for any ensemble consisting of forward-selection-style base learners in which the available

features are randomly restricted at each step. Specifically, we consider RandFS in which the

base model proceeds in the same fashion as a standard linear model forward selection process

but only a randomly selected subset of the remaining features are eligible to be added to the

model at each step.

Given an orthogonal design, discussions in Section 2.5.3 suggest that for any given feature

Xj, the coefficient estimate given by RandFS is in the form of αj · β̂j,OLS where β̂j,OLS is the

ordinary least squares (OLS) coefficient estimate for Xj and αj corresponds to the proportion

of individual RandFS models in which Xj was included.

In this sense, the RandFS procedure can be seen as producing shrinkage and the amount

of shrinkage αj on each feature depends on both the probability that the feature is made

eligible and the probability that the feature is actually selected if made available. While the

latter probability depends on the particular modeling technique and loss function employed,

the probability of being made eligible is a direct function of only mtry.

But the previous statement is only valid under the typical “fixed p” setup where the

dimensionality of the feature space is assumed fixed. Suppose instead that mtry is held

fixed and that the procedure is repeated on an augmented feature space where more noise

variables are added. Then under the same setup as above, it’s clear that αj decreases as a

function of the number of extra noise features q since each original feature will thus have a

lower probability of being made eligible. However, even for large values of mtry, we argue

further that the probability of being selected once eligible also decreases as q increases and

that such a decrease can be particularly dramatic for features only weakly related to the

response. Indeed, given an original feature Xj not perfectly correlated with the response Y

in this linear model setting, if we generate additional independent random noise features,

eventually some will appear more correlated with Y just by random chance and the weaker
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the correlation between Xj and Y , the fewer the number of noise features we would expect

to need to generate in order to see this. Put simply, as more noise features are added to

the model, the probability that some of those new features will appear at least as important

as Xj grows with q. Thus, even for large values of mtry where the procedure begins to

resemble that of bagging, the augmented version of the procedure may produce a similar

kind of regularization and shrinkage to that offered by traditional random forests.

3.4.2 AugBagg and OLS Ensembles

While our work in Chapter 2 utilizes linear model forward selection settings in order to better

illustrate the regularization effect of random forests, in work appearing around the same time,

LeJeune et al. [2020] provided an in-depth analysis focused on ensembles where each base

learner is simply a linear model constructed on a subsample of features and observations with

coefficients estimated via ordinary least squares. As in Chapter 2, the authors observe that

feature subsampling at the base-learner stage produces a regularization effect, concluding

that for optimally-tuned subsampling rates, the asymptotic risk of the OLS ensemble is

equal to the asymptotic risk of ridge regression, an explicit regularization procedure. Here

we review the setup utilized in LeJeune et al. [2020] and demonstrate that the same procedure

applied to an augmented design is equivalent to one in which more shrinkage is applied to

the original data.

Assume now that we have data of the form Z1, ...,Zn where each Zi = (Xi, Yi) and

Yi = X ′iβ + εi

where Yi ∈ R denotes the response, the features Xi ∈ Rp are drawn i.i.d. from Np(0p×1,Σ),

and the εi are i.i.d. with mean 0 and variance σ2
ε and are independent of X.

To build OLS ensembles, we draw B submatrices by applying row subsampling to the

observations and column subsampling on X = [X1, . . . ,Xn]′. Let Sb and Tb denote the sets

of column and row indices, respectively, selected in the bth model, while Sb and Tb denote the

subsampling matrices obtained by selecting the the columns from Ip and In corresponding
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to the indices in Sb and Tb. Let S and T denote the entire collections of all possible Sb and

Tb, respectively. For each base learner, the OLS minimum-norm estimator is given by

β̂(b) = Sb (T ′bXSb)
+
TbY

where (·)+ denotes the Moore-Penrose pseudoinverse, so that the estimated coefficients of

the ensemble are thus given by

β̂ens =
1

B

B∑
b=1

Sb (T ′bXSb)
+
TbY.

The risk of β̂ens

R(β̂ens)
∆
= Ex

[〈
x, β − β̂ens

〉2
]

=
〈
β − β̂ens,Σ(β − β̂ens)

〉
is defined as the expected squared error at an independent point x, where the 〈·, ·〉 nota-

tion denotes the Frobenius inner product. LeJeune et al. [2020] then employ the following

assumptions to allow for a more precise evaluation of the risk.

Assumption 1. (Finite Subsampling) The subsets in the collections S and T are selected

at random such that |Sb| < |Tb| − 1 and that the following hold:

1. Pr(j ∈ Sb) = |Sb|
p

for all j ∈ [p] = {1, 2, . . . , p}

2. Pr(m ∈ Tb) = |Tb|
n

for all m ∈ [n]

3. The subsets S1, S2, . . . , SB, T1, . . . , TB are conditionally independent given the row sub-

sample sizes (|Tb|)Bb=1.

Assumption 2. (Asymptotic Subsampling) For some α, η ∈ [0, 1], the subsets in the col-

lections S and T are selected randomly such |Sb|/p
a.s.−→ α as p → ∞ and |Tb|/n

a.s.−→ η as

n→∞ for all b ∈ [B].

52



Furthermore, it is assumed that Σ = Ip, that ‖β‖2 = 1, and that p/n→ γ with η > αγ

as n, p→∞.

Under these assumptions, conditional on the subset sizes, the expected risk of the bias

and variance over X, S and T converge almost surely as follows:

EX,S,T

[
bias(β̂ens)

]
p,n→∞−−−−→
a.s.

B − 1

B

(
(1− α)2

1− α2γ

)
+

1

B

(
η(1− α)

η − αγ

)
B→∞−−−→ Bias(α, γ) :=

(1− α)2

1− α2γ

EX,S,T

[
var(β̂ens)

]
p,n→∞−−−−→
a.s.

B − 1

B

(
σ2α2γ

1− α2γ

)
+

1

B

(
σ2αγ

η − αγ

)
B→∞−−−→ V ar(α, γ) :=

σ2α2γ

1− α2γ

Thus, for an OLS ensemble built with subsamples drawn such that |Sb| = bαpc and |Tb| =

bηnc with p/n → γ and ensemble size B → ∞, EX,S,T

[
bias(β̂ens)

]
and EX,S,T

[
var(β̂ens)

]
will converge almost surely to Bias(α, γ) and V ar(α, γ) respectively. Notice that for fixed

γ, Bias(α, γ) is decreasing in α while V ar(α, γ) is increasing in α.

Now suppose that the same kind of subsampled OLS ensemble is constructed on an

augmented feature space where X is augmented with N = [N1, . . . ,Nn]′ ∈ Rn×q, and

where the Ni are drawn i.i.d. from Nq(0q×1, Iq). Let S?b and T ?b denote the subsampling

indices on the bth model constructed on this augmented design [X N ] and suppose that the

subsampling sizes remain the same as in the OLS ensemble constructed on the original data

so that |S?b | = |Sb| and |T ?b | = |Tb|. Furthermore, suppose that the number of additional

features q → ∞ as p → ∞ such that q
p
→ θ for some constant θ > 0. Under these

assumptions,

|Sb|
p+ q

→ α

1 + θ
= α?

p+ q

n
→ (1 + θ)γ = γ?,

and so EX,S,T

[
bias(β̂ens)

]
and EX,S,T

[
var(β̂ens)

]
converge to Bias(α?, γ?) and V ar(α?, γ?),

respectively. More specifically,

V ar(α?, γ?) =
σ2α?2γ?

1− α?2γ?
=

σ2α2γ

1 + θ − α2γ
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is decreasing with θ ≥ 0, so V ar(α?, γ?) ≤ V ar(α, γ). Similarly, under the assumption that

η > αγ,

Bias(α?, γ?) =
(1− α?)2

1− α?2γ?
=

(1 + θ − α)2

(1 + θ)2 − (1 + θ)α2γ

is increasing with θ ≥ 0, so Bias(α?, γ?) ≥ Bias(α, γ). Thus, constructing an OLS ensemble

on an augmented design leads to a more regularized estimator with increased bias and

decreased variance – the same effect as would be found by constructing the ensemble on the

original design with the same η but a smaller subsampling rate.

3.4.3 Implicit Regularization and Ridge Regression

In addition to the work described above, an intriguing collection of work has emerged in

recent years on the so-called “double-descent” phenomenon coined by Belkin et al. [2019],

whereby the generalizability error of models may sometimes continue to improve beyond

the point of interpolation where training error vanishes. Hastie et al. [2019] followed up

this work with an impressive and thorough analysis on the behavior of minimum norm

interpolation for high-dimensional least squares estimators. While this work focused on the

“ridgeless” setting, interesting related results have also been established for ridge and kernel

ridge regression. Kobak et al. [2020] showed that for a standard ridge estimator of the form

β̂λ = (X ′X + λI)−1X ′Y

the optimal penalty λ can be 0 or negative even when p � n. In particular, this may

happen when the majority of signal comes from a small subset of high-variance features due

to an implicit regularization effect offered by a larger collection of relatively low-variance

noise features. In very recent work, Jacot et al. [2020] consider ridge estimators acting on a

(possibly larger) transformed feature space consisting of Gaussian random features and show

that such an estimator with ridge penalty λ is close to a kernel ridge regression estimator

with effective penalty λ̃ where λ̃ > λ. d’Ascoli et al. [2020] consider a similar random feature

setup in investigating the double descent behavior of neural networks and provide a thorough

review of much of the recent work on interpolation where we would refer interested readers.
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In motivating the AugBagg procedure proposed above, we turn to a key result from

Kobak et al. [2020]. As above, assume we have (original) training data of the form (X, Y )

where y = x′β + ε and let β̂λ denote the ridge estimator of β ∈ Rp. Now consider a

new estimator β̂q formed by performing minimum norm least squares and taking only the

first p elements after augmenting X with q additional i.i.d. noise features, each with mean

0 and variance λ/q. The theorem below shows that augmenting the original design with

low-variance noise features produces an equivalent regularization effect to ridge regression.

Theorem 3. [Kobak et al. [2020]] Under the setup described above,

β̂q
a.s.−−−→
q→∞

β̂λ.

Furthermore, for any x, let ŷλ = x′β̂λ denote the ridge prediction and let ŷAug be the pre-

diction generated by the augmented model that includes the additional q parameters using x

extended with q random elements generated in the same fashion. Then

ŷAug
a.s.−−−→
q→∞

ŷλ.

Kobak et al. [2020] go on to note that a direct but surprising consequence of this result

is that “adding random predictors with some fixed small variance could in principle be used

as an arguably bizarre but viable regularization strategy similar to ridge regression.” Further-

more, the final statement in Theorem 3 implies that the expected MSE of the augmented

model (i.e. the non-truncated model that includes the q additional noise features) converges

to the MSE of the ridge estimator as q → ∞. In particular, note that when the optimal λ

is non-zero, the augmented model with noise features generated according to the procedure

outlined above will outperform the model that utilizes only the original data.

Figure 3.4 gives a demonstration of this surprising result. Here we utilize the same linear

model setup described in previous sections with n = 100 observations, p = 75 features,

the first s = 5 of which are signal with a coefficient equal to 1. For each SNR, we begin

by generating 100 independent datasets and perform cross-validation on each to obtain 100

estimates of the optimal value of λ; the final estimate λ̂opt is taken as the median across

these. Then, for each combination of SNR and q, we generate an independent training set
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Figure 3.4: Performance of augmented linear model across different SNRs as increasingly

many noise features are added to the model.

where the q additional noise features are sampled i.i.d. from N (0, λ̂opt/q). The minimum-

norm OLS estimator is then calculated via the singular value decomposition and the relative

test error is recorded on an independent test set with 100 observations. The entire process

is repeated 100 times and the average relative test error is shown in Figure 3.4. In each

case, we see clearly that the model error decreases as more noise features are added into the

model.

Suppose now that we build ensembles of estimators of the kind in Theorem 3 by drawing

B subsamples, constructing the estimators on each subsample, and averaging. Similar to

the setup used above in LeJeune et al. [2020], let Tb ⊆ [n] be the set of indices of selected

observations in the bth subsample and let Tb be the n × |Tb| matrix obtained by selecting

columns from In corresponding to the indices in Tb. Construct β̂
(b)
q as above based on T ′bX

and T ′bY , which denote the design matrix and response, respectively, corresponding to the

observations selected in bth subsample. The final ensemble coefficient estimate formed by
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averaging the augmented minimum norm estimators is given by

β̂ens =
1

B

B∑
b=1

β̂(b)
q

where, by Theorem 3,

β̂ens =
1

B

B∑
b=1

β̂(b)
q

a.s.−−−→
q→∞

1

B

B∑
b=1

β̂
(b)
λ

with

β̂
(b)
λ = (X ′TbT

′
bX + λIp)

−1X ′TbT
′
bY.

Now consider an orthogonal setting where XX ′ = In and let η denote the subsampling

rate so that |Tb|/n→ η ∈ (0, 1]. Let C be a n×n diagonal matrix where Cii is the number of

times that the ith observation appears in the B subsamples and let λq = 1+λ−η
η
≥ λ. Using

the Woodbury matrix identity, a ridge estimator with penalty λ can be rewritten as

β̂λ =
1

1 + λ
X ′Y,

and

β̂ens
a.s.−−−→
q→∞

1

B

B∑
b=1

β̂
(b)
λ =

1

B

B∑
b=1

(X ′TbT
′
bX + λIp)

−1X ′TbT
′
bY

=
1

B

B∑
b=1

(λ−1Ip − (λ(λ+ 1))−1X ′TbT
′
bX)X ′TbT

′
bY

=
1

B

B∑
b=1

1

1 + λ
X ′TbT

′
bY

=
1

1 + λ

1

B
X ′CY

B→∞−→ η

1 + λ
X ′Y

=
1

1 + λq
X ′Y

= β̂λq .

Thus, in this simple case, an ensemble of minimum-norm least squares estimators con-

structed on an augmented design produces an estimate equivalent to one produced via ridge
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regression on the original design. Furthermore, the shrinkage produced by the ensemble is

stronger than that of each individual base model.

On a final note, we stress that the purpose of producing this result is not to advocate

for this kind of augmented bagging over ridge regression. Indeed, given the equivalence just

described paired with the fact that ridge regression is both well-established and naturally

motivated, it’s difficult to imagine practical settings in which augmented bagging would offer

any distinct advantage. Rather, we offer the above results primarily to make explicit the

shrinkage that is produced by augmented bagging – a fact that has crucial implications for

measuring and testing variable importance.

3.5 IMPLICATIONS FOR VARIABLE IMPORTANCE

Within any kind of black-box supervised learning framework, establishing a valid means

of measuring the importance of features is of utmost importance. Indeed, in such non-

parametric regimes where model fit and behavior remain largely hidden from view, under-

standing how features contribute information to the prediction is paramount for scientists and

practitioners. In the context of bagging and random forests specifically, Breiman’s original

out-of-bagg (oob) [Breiman, 2001] importance scores are one such popular measure, though

many issues such as a preference for correlated features and those with many categories have

been noted in the years following their introduction [Strobl et al., 2007, Nicodemus et al.,

2010, Toloşi and Lengauer, 2011]. As a result, various formal hypothesis testing procedures

have recently been developed to more accurately assess the importance of features in such

ensembles. Unfortunately, as demonstrated in the following subsection, even these more

rigorous tests are sometimes vulnerable to highly misleading results due to the potentially

beneficial effects of noisy features described in the previous sections.
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Algorithm 3 Random Forest Permutation Test [Coleman et al., 2019]

Input: Original training set Dn, test set Dtest, number of permutations P

Create alternative data D∗n
Build ensemble RF with Dn and predict at Dtest

Build ensemble RF ∗ with D∗n and predict at Dtest

Compute difference in errors d0 = MSE(RF ∗)−MSE(RF )

for i in 1 : P do

Randomly shuffle base models between ensembles to form RFi and RF ∗i

Compute permuted difference in errors di = MSE(RF ∗i )−MSE(RFi)

Calculate p-value p = 1
P+1

[
1 +

∑P
i=1 I(d0 > di)

]

3.5.1 Hypothesis Tests for Importance

Recently, Mentch and Hooker [2016] proposed a formal hypothesis testing procedure for

measuring feature importance in random forests. Given a generic relationship of the form

y = f(x) + ε, the authors consider partitioning the original set of features X into two

groups, X0 and Xtest, where the latter group contains the features of interest so that a null

hypothesis of the form

H0 : f(X0,Xtest) = f0(X0) (3.5)

may be rejected whenever the features in Xtest make a significant contribution to predicting

the response. The authors propose to evaluate the hypothesis in (3.5) by constructing two

separate random forest models: one constructed on the original data and one constructed

on an altered dataset where the features in Xtest are either substituted for randomized

replacements independent of the response or dropped from the model entirely. Predictions

from each forest are then computed at a number of test points and the differences are

combined to form an appropriate test statistic. Coleman et al. [2019] recently proposed a

permutation-based alternative to this test. Here again, two forests are constructed in the

same fashion as just described, but trees are then randomly permuted across forests and the

new difference in accuracy between forests is recorded. That process is then repeated many

times to form the null distribution of accuracy differences to which the original difference
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in accuracy can be compared. An outline of this test is given in Algorithm 3. Note that

this nonparametric test avoids the need for explicit variance calculation and as a result is

far more computationally efficient and scalable. Also note that these tests are carried out

below in the context of subsampled bagging (i.e. with non-random trees), though this can

be seen as merely a special case of random forests with the mtry value set equal to the total

number of features available.

Crucially, these tests ultimately rely on measuring the difference between either raw

predictions or predictive accuracy between two tree-based ensembles constructed on different

training sets. Both papers advocate for replacing the features under investigation with

randomized alternatives, noting that the tests can potentially produce spurious results when

features are instead dropped from the second model, though neither provides a detailed

explanation as to why this occurs. Elsewhere in the literature, alternative tests specifically

propose to evaluate feature importance by measuring the drop in performance when the

features in question are removed from the model. Such is the case, for example, with the

Leave-Out-Covariates (LOCO) measure proposed by Lei et al. [2018] in the context of

conformal inference and most recently in the tests proposed by Williamson et al. [2021].

Furthermore, though often done informally, it remains common throughout the broader

scientific literature for authors to argue for the importance of particular variables based on

decreases in model performance when such variables are excluded.

The results presented in the sections above present a substantial concern with such mea-

sures. In particular, if model performance can be improved simply by adding randomly

generated features that are (at least conditionally) independent of the response, then ob-

serving a significant improvement in accuracy when a particular set of features is included

does not imply that any relationship to the response or even the other covariates need exist.

To emphasize this point, we implement the test for variable importance recently devel-

oped in Coleman et al. [2019] and investigate its behavior under simulated settings. We

utilize the same linear model setup as in previous sections with p = 5 original signal features

sampled from Np(0,Σ) with Σij = ρ|i−j| and ρ = 0.35 and consider adding q additional noise

features to test for importance. These noise features are either independent of the origi-

nal five features or are correlated with a randomly selected signal feature with correlation

60



strength r. Thus, relative to the sort of generic null hypothesis specified in (3.5), our default

set of features consist of the original signals so that X0 = (X1, ..., X5) and the features under

investigation are those additional noise features being added, Xtest = (N1, ..., Nq). As done

previously, the error in the model is adjusted to produce a pre-specified SNR.

To carry out the procedure in Coleman et al. [2019], for each test, we create a training set

Dn with n = 500 observations and a test set DTest with 1000 observations. Let X denote the

original n×(p+q) design matrix and X∗ denote the design matrix where the q noise features

of interest are either dropped or replaced with a random substitute. Thus, for “drop tests”,

X∗ will be of dimension n × p whereas for “replacement tests”, X∗ will be of dimension

n × (p + q). We construct two decision tree ensembles, each with 100 trees. Each tree in

the first ensemble is built on a subsample of size 100 from the original training data (Y,X);

each tree in the second ensemble is built on a subsample of size 100 from the modified data

(Y,X∗). Each ensemble here is thus constructed via subbagging, though trees are still non-

random built to full depth. After recording the original error difference between the two

ensembles, trees are randomly shuffled between ensembles a total of 1000 times and each

time this new permuted error difference is recorded to form the null distribution. The null

hypothesis that the q noise features are not important is rejected whenever the original error

difference lies in the upper quantile of the null distribution of permuted error differences.

This entire procedure is then repeated 500 times to form empirical rejection probabilities.

Figure 3.5 shows the probability of rejecting H0 and concluding the additional noise

features are important across various SNRs and numbers of additional features when those

features are either dropped or replaced by null substitutes. For these as well as each of

the tests deployed below, we set the nominal level to the standard α = 0.05 so that if the

tests are performing as intuitively expected, we should only see the null hypothesis to be

rejected (indicating that the noise features are significant) about 5% of the time. However,

it is readily apparent that for the drop tests (Figure 3.5 Left Column), rejections routinely

happen well over 5% of the time. This is particularly evident at low SNRs when many

additional noise features correlated with the original five features are added where we see

(Figure 3.5 Bottom Left) rejection rates surpassing even 50%.

In previous work both in Mentch and Hooker [2016] and Coleman et al. [2019], the
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Figure 3.5: Probability of rejecting the null hypothesis and concluding an additional indepen-

dent set of noise features are important when dropping the features in question (left column)

vs replacing the features in question (right column) when those features are independent

(top row) vs correlated (bottom row).

authors claim that the testing procedures developed within are more robust whenever the

features under investigation are replaced by randomly generated substitutes rather than

being dropped from the model entirely. And indeed, from the right column of Figure 3.5
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Figure 3.6: Probability of rejecting the null hypothesis using replacement tests where corre-

lated features are replaced with independent features (left) and where independent features

are replaced with correlated features (right).

it is readily observed that regardless of the SNR or the dependence structure of the noise

features on the original features, these replacement tests appear to be far better behaved.

Note that these rejection rates do lie very slightly above the nominal rate of 5%, however.

This is because the tests developed in Coleman et al. [2019] are valid only asymptotically

and in particular, rely on a notion of asymptotic independence between the base models (in

this case, trees), which can be achieved asymptotically by subsampling at sufficiently slow

rates.

Unfortunately, carrying out accurate replacement-style tests in practice is easier said

than done. In the plots shown in the right-hand column of Figure 3.5, the replacement noise

features are sampled from exactly the same distribution as the original noise features being

tested for importance. In practice, of course, the distribution of the features in question

is unknown. Figure 3.6 compares the performance of these replacement tests whenever

noise features of one kind are replaced by noise features of another kind. On the left, the

original noise features are randomly correlated with an original signal feature at r = 0.7 and
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these features are replaced with independent noise features. Here we again notice quite a

troubling trend: the test has a very high probability of rejecting across all but the lowest

SNRs and this probability appears to increase with q. Perhaps even worse is the fact that the

rejection probabilities appear to be increasing at a faster rate at higher SNRs. Thus, even

in “good data” settings, it appears that such tests are very likely to cause correlated noise

features to appear important whenever testing against the performance of a model using only

independent noise (or, for example, permutations of the original features) as a substitute.

While this setting is likely most representative of what might often happen in practice, for

completeness, we also consider the opposite setting in the plot on the right of Figure 3.6

where independent noise features are replaced with ones correlated with a randomly selected

feature in X0. Here again we see the same kind of troubling results. These results highlight

the potential issues with replacing features by randomized replacements from a different

distribution and thus might suggest some promise for procedures involving knockoff variables

[Barber et al., 2015, Candes et al., 2018] that explicitly attempt to generate randomized

replacements from the same distribution as the original copies. Indeed, recent work by

Hooker et al. [2021] suggests such approaches can sometimes offer a drastic improvement,

even in low SNR settings.

3.5.2 Intrinsic vs Extrinsic Testing

Though troubling, these results above should not be at all surprising given the empirical

results in Section 3.3 that showed strong evidence of improved performance when additional

noise features are added to the model. These tests simply make clear that such improve-

ments are routinely large enough to register statistical significance. We caution readers from

drawing too much from the particular rejection probabilities shown in the left column of

Figure 3.5. These empirical results should in no way be seen as guidelines for how often

or under what settings such tests will produce inflated rejection proportions. Rather, the

amount by which these kinds of tests inflate the anticipated rejection proportion will depend

entirely on the relationships within the data as well as the power of the particular testing

procedure employed. Indeed, similar testing procedures with higher power could potentially
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reject even more often than shown in Figure 3.5 for the same datasets. By the same rea-

soning, ensembles consisting of base learners other than trees may also reject more or less

often.

The tests carried out above from Coleman et al. [2019] are what a recent work by

Williamson et al. [2021] referred to as extrinsic tests in that the results are model-specific.

Formally, when MSE is the measure of error employed, the hypotheses in Coleman et al.

[2019] can be written as

H0 : E(MSERF (Dtest)) = E(MSERF ∗(Dtest))

H1 : E(MSERF (Dtest)) < E(MSERF ∗(Dtest))
(3.6)

where the test set Dtest is assumed fixed and the expectation is taken across the training

data and any additional randomness involved with the construction of the base learners. By

contrast, Williamson et al. [2021] recently put worth a framework for testing intrinsic or

population-level (model-agnostic) notions of variable importance. In particular, the authors

consider defining the importance of a collection of features S as the amount of oracle predic-

tiveness lost when those features are excluded. While the framework is flexible enough so

as to allow for various forms of importance measures, in our context here, the most natural

corresponding hypotheses for this kind of intrinsic test can be written as

H0 : E(Y − E(Y |X))2 = E(Y − E(Y |X−S))2

H1 : E(Y − E(Y |X))2 < E(Y − E(Y |X−S))2.
(3.7)

Comparing the hypotheses in (3.6) to those in (3.7), one may wonder why we applied

the extrinsic tests in Coleman et al. [2019] rather than the intrinsic tests in Williamson et al.

[2021]. Indeed, given that the extrinsic tests reject so often, the intrinsic alternative may

appear to be the natural solution and even the more direct way of addressing the question

really of interest in most practical settings. Unfortunately, while this may be true in theory,

valid application of such intrinsic testing procedures requires several strong assumptions,

including, for example, that the estimators converge to the true conditional expectations at

a rate of n−1/4. This is, of course, difficult to guarantee for flexible learning procedures like

the bagging and random forest procedures that we employ here consisting of CART-style

trees as base learners.
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Appendix B contains more detail on the mechanics of how intrinsic tests in Williamson

et al. [2021] can be carried out. We also demonstrate that in this case, nearly identical

steps can be taken to produce an analogous extrinsic test. Note from the plots in Appendix

B that this extrinsic analogue of the test in Williamson et al. [2021] produces results very

qualitatively similar to those in Section 3.5.1 that utilize the extrinsic test in Coleman et al.

[2019].

The fact that extrinsic tests exist that can be carried out in nearly identical fashion to

those of analogous intrinsic tests highlights the slipperiness of this issue. Indeed, put simply,

it would seem that the primary difference between intrinsic and extrinsic tests largely boils

down to the assumptions one is willing to make. Practitioners should thus take extreme care

in considering the necessary assumptions before claiming to have conducted a valid intrinsic

test. Likewise, readers should always regard claims that a valid intrinsic test was carried out

with guarded skepticism and an eye toward whether the necessary assumptions are truly met

in the context at hand. Suppose, for example, that one carries out a particular test and finds

a significant result; that is, the test rejects the null hypothesis and therefore suggests that

a particular collection of features is important. If the test was a valid intrinsic test where

all necessary assumptions are met, then one can conclude that there is evidence that those

features really do hold unique predictive power for the response not contained in the other

features. On the other hand, if those assumptions are not met, the test should therefore

be seen as only an extrinsic test and thus, just as we have seen throughout this paper, it is

possible that those features may be improving the predictive accuracy of the model and yet

may be totally or at least conditionally independent of the response.

Finally, we close this section with a brief discussion on the role of model selection and

tuning. In developing their framework for intrinsic testing, Williamson et al. [2021] note

the importance of considering a sufficiently rich class of predictive models and carefully

tuning across that model class in order to find the optimal predictive model before one

should consider moving forward with formal inference. On this point we certainly agree.

Indeed, our overarching point in this paper was to show that the predictive accuracy of some

supervised learning models could be improved by merely including additional irrelevant noise

features. While we focused primarily on bagging to demonstrate this point, it is likely that
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these troubling effects would have been less severe had we, for example, considered an entire

class of random forests and tuned across the mtry parameter and depth of trees. Indeed,

as noted in the sections above, the additional noise features here are simply serving as a

means of implicit regularization. If sufficient regularization can be accomplished via other

means, the additional noise features may no longer be of additional benefit and may in fact

start to degrade performance as one would expect. This highlights the crucial importance

of carefully tuning a random forest via some form of external or cross validation before

undertaking any kind of inference. On the other hand, we also want to stress that tuning

across a large class is not necessarily sufficient to guarantee the kind of fast convergence

needed for intrinsic testing. In recent work by Hastie et al. [2020], for example, the authors

repeatedly demonstrate that at low SNRs, best subset selection (in which every possible

linear model is constructed) performs quite poorly even when tuned on a large external

validation set.

3.5.3 Bad Tests or Bad Interpretations?

Given the results in Section 3.5.1, one may be tempted to conclude that procedures of this

style that assign relevance to features based on the improvement in predictive accuracy seen

when they are included are simply “bad” because the outcomes are “wrong” far too often.

Indeed, if rejecting the null hypothesis in a test of this sort is taken to mean that the features

in question are “important” and “important” is taken to mean that those features possess

some unique explanatory power for the response not captured by the other features available,

then certainly such tests would appear to be highly problematic as the rejection rates in the

above settings very often lie far above the nominal level of α = 0.05.

In our view, however, such an understanding is too naive. The demonstrations above

do not necessarily imply that anything is wrong with the tests themselves. Rejecting the

null hypotheses in such tests means only that there is evidence that the features in question

improve model performance when included. The simulations in Section 3.3, however, suggest

that even the inclusion of additional noise features can improve model performance, some-

times to a dramatic degree. As discussed in the previous subsection, while intrinsic tests can
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theoretically overcome these model-specific defects, it’s difficult to say in general when the

necessary assumptions would be met in practical settings when flexible learning models are

being employed.

This situation highlights the crucial need for precise language in discussions of feature

importance. While “predictive improvement” intuitively feels like a natural proxy, it seems

quite unlikely that features independent of the response (at least conditionally) ought to ever

be considered “important” for most practical purposes. Certainly this is the case whenever

scientists argue that particular features must be collected in order to construct the optimal

predictive model or when arguing that features generated by a new piece of technology can

lead to further improved model performance over those that were previously available.

In situations such as these, it seems that what is really being sought is not a measure of

how “important” certain features may be, but rather how “essential” they are. Even when

additional variables improve model performance, we really seek to determine whether they

do so meaningfully or significantly more than randomized alternatives. Interested readers are

also invited to see a similar discussion on model class reliance appearing recently in Fisher

et al. [2019]. Finally, as alluded to also in Williamson et al. [2021], practitioners should

always have in mind a notion of relevant effect size when conducting tests for importance

such as these. While small upticks in predictive accuracy may sometimes be sufficient to

achieve statistical significance for certain features, in practice those improvements may still

not justify the cost of their collection and inclusion in the model.

3.6 DISCUSSION

The work in the preceding sections introduced the idea of augmented bagging (AugBagg),

a simple procedure identical to traditional bagging except that additional noise features,

conditionally independent of the response, are first added to the feature space. Surpris-

ingly, we showed that this simple modification to bagging can lead to drastic improvements

in model performance, sometimes even outperforming well-established alternatives like an

optimally-tuned random forest. Performance gains appear most dramatic at low SNRs,
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though the introduction of correlated noise features can continue to improve performance

even at higher SNRs. The fact that performance can sometimes be dramatically improved

by simply adding conditionally-independent features into the model has important implica-

tions for variable importance measures and especially in interpreting the results from tests

of variable importance.

On one hand, this work fits well within the rapidly expanding collection of work that

explores the potential benefits of excess noisy features. While some earlier papers experi-

mented with the presence of additional noise either added to or multiplied across the original

features prior to training [Bishop, 1995, Srivastava et al., 2014], a more popular recent trend

has been to analyze models built with random features generated from transforms of the

original predictors obtained, for example, via Gaussian Processes or the Random Fourier

Features model (see, e.g., Rahimi and Recht [2007], Rudi and Rosasco [2017], Belkin et al.

[2019], Mei and Montanari [2019], Hastie et al. [2019], Jacot et al. [2020]). Much of this

recent work has focused on the idea of the “double descent”, demonstrating both empirically

and mathematically that purposeful over-parameterization – building models that contain

more (random) features than observations – can sometimes be beneficial.

On the other hand, we are not aware of other work specifically defining a procedure

by simply augmenting the original data with additional pure noise features to potentially

achieve superior predictive accuracy. The fact that models constructed on larger and noisier

feature collections are sometimes preferable would seem to run counter to much of traditional

statistical thinking. Countless procedures have been proposed in recent decades that assume

X = (XSignal,XNoise) and attempt to uncover the subset of signal features XSignal with a

minimal ‘false positive’ rate. Indeed, many may intuitively believe that the setting where all

available features are signal is something of a ‘gold standard’ for regression. While there may

be good inferential reasons why separating signal and noise is important, this work suggests

that such a task is unnecessary and perhaps even detrimental (at least for some models)

whenever predictive accuracy is the primary objective.

Along those lines, though AugBagg may sometimes produce predictions substantially

more accurate than an alternative baseline like random forests, we stress that the proce-

dure should not be seen as replacing or superseding more efficient procedures like random
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forests. As detailed in the introduction, random forests have a long documented history

of off-the-shelf success and depending on the size of the data at hand, may be much more

computationally feasible to implement in practice. Indeed, while random forests reduce the

number of features considered at each node, AugBagg, by construction, explicitly increases

this computational burden. Furthermore, while our work in Chapter 2 suggests tuning a

random forests can sometimes improve performance, at least moderate success can often be

found at default values. In contrast, a generic implementation of AugBagg involves tuning

both the number of additional features and their correlation with the original features and

we are not able to offer default values of these likely to be successful across a broad range of

data settings.

Finally, we end by noting that all of the work above was considered within the context

of regression. In tree-based contexts, this simply means that predictions at both the tree

and ensemble level are formed by averaging. If one were to consider, for example, a classical

0-1 binary response setting in which these kinds of regression trees were still employed (so

as to produce estimates generally interpreted as probabilities), we expect the same kinds of

potential benefits of random noise features to be present. If, however, those probabilities are

then used to perform classification or one employs a majority vote rather than an average, it

is unclear to what extent those noise features may remain beneficial. We suspect that such

benefits may depend heavily upon the class imbalance in the original data as well as the

decision threshold(s) employed. We leave an in-depth study of these issues in classification

settings as an open area for potential future work.
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4.0 DEPTH AS REGULARIZATION: TREES, FORESTS, CHICKENS,

AND EGGS

This chapter focuses on another inherent but often neglected source of regularization in

random forests, namely tree depth, and reexamine the decades-old question of whether indi-

vidual trees in an ensemble ought to be pruned. Despite the fact that default constructions of

random forests use near full depth trees in most popular software packages, here we provide

strong evidence that tree depth should be seen as a natural form of regularization across the

entire procedure. In particular, our work suggests that random forests with shallow trees are

advantageous when the signal-to-noise ratio in the data is low. In building up this argument,

we also critique the newly popular notion of “double descent” in random forests by drawing

parallels to U-statistics and arguing that the noticeable jumps in random forest accuracy are

the result of simple averaging rather than interpolation. The following sections are mainly

pulled from Zhou and Mentch [2021].

4.1 INTRODUCTION

Recently, Belkin et al. [2019] put forth the more general and now very popular idea of the

“double descent” risk curve in which model error, when plotted against model complexity,

exhibits the classical U-shaped curve followed by a second descent beyond the interpolation

threshold, indicating that once the model becomes over-parameterized, performance can

sometimes be further improved. The authors provide empirical evidence for this kind of

effect with several different models including both neural networks and random forests. Since

then, much effort has been made to provide the theoretical underpinnings for this kind of
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effect with more tractable models such as “ridgeless” least squares regression [Hastie et al.,

2019] and random features regression [Mei and Montanari, 2019] to name just a few.

An explanation along these lines, however, begs a number of interesting questions. First,

how is model “complexity” best understood? Is an average over multiple models really

more “complex” than the individual models themselves? Second, the idea of relating RF

performance to interpolation creates a kind of chicken-and-egg problem: are RFs accurate

because they interpolate, or is the (near) interpolation sometimes seen in RFs an innocuous

side effect of accurate models constructed in this greedy manner?

In this chapter, we adopt the regularization framework in the last few chapters to inves-

tigate the impact of pruning trees in a random forest. Studies of this sort date back to more

than two decades ago when Breiman [1996] first proposed the bagging procedure and showed

that aggregating unstable trees built on bootstrap samples can lead to substantial gains in

accuracy. Since then, two separate schools of thought seem to have emerged with one group

arguing that trees in an ensemble should be grown full-depth and the other maintaining that

tree-depth itself should be seen as a tuning parameter with the potential to greatly impact

overall performance. Indeed, in the original RF proposal by Breiman [2001] as well as in the

more recent investigative articles [Wyner et al., 2017, Belkin et al., 2019, Mentch and Zhou,

2020b], the trees in RFs are deep (at least near-full depth) and unpruned. This also remains

the standard recommendation in many textbooks (e.g. James et al. [2013], Izenman [2008])

and is the default setting in many standard packages such as Scikit-learn [Pedregosa et al.,

2011] in python and randomForest [Liaw et al., 2002] in R [R Core Team, 2017]. On the

other hand, there is a wide body of existing work [Segal, 2004, Lin and Jeon, 2006, Duroux,

Roxane and Scornet, Erwan, 2018, Probst et al., 2019b] offering strong empirical evidence

that proper tuning can sometimes significantly improve performance; a more detailed review

is given in Section 4.2.

Rather than merely adding yet another piece to the growing stack of literature on the

topic, we try and characterize both why and when pruning trees within a RF has a significant

impact on model fit. In particular, we argue that in addition to the bagging (resampling and

averaging) and random-feature-subsetting aspects of RFs, tree depth can best be viewed as

merely an additional form of regularization, making RFs with shallow trees preferable in low
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signal-to-noise ratio (SNR) settings. Ironically, this characterization actually lends support

to both schools of thought described above: at medium to high SNR settings, practitioners

are unlikely to notice any meaningful gains in accuracy as a result of pruning individual trees

because the bagging and random-feature-subsetting components of the model have already

regularized the procedure to a sufficient degree. On the other hand, when the SNR is very

low, pruning trees can offer a third additional form of regularization that can indeed result

in improved performance.

The remainder of the chapter is laid out as follows. In Section 4.2, we offer a more

thorough discussion on the previous work in the tree-pruning literature. A case study on the

MNIST dataset designed to replicate the experiments in Belkin et al. [2019] and highlight the

shortcomings of the double descent argument is given in Section 4.3. In Section 4.4 we provide

both a theoretical motivation and a number of wide-ranging simulations to demonstrate the

effect of tree depth on RF performance, properly characterize the settings in which pruning

is advantageous, and provide suggestions for practical tuning strategies. We conclude with a

discussion in Section 4.5. Throughout this chapter, we use the same notations as formalized

in Section 2.2.

4.2 LITERATURE ON TREE DEPTH

When constructing stand-alone decision trees, it has long been understood that the depth

of the tree must be carefully chosen to avoid under- or over-fitting. This is typically ac-

complished via a cost-complexity parameter that serves to trade off bias and variance by

successively pruning away splits in a fully-grown tree whenever the gain in accuracy realized

by including them fails to exceed some predefined threshold. In the case of tree-based en-

sembles, however, best practices are far less clear and the issue of whether tree depth should

be tuned has been the subject of some debate for the past two decades.

Interestingly, Leo Breiman himself – who proposed both bagging [Breiman, 1996] and

random forests [Breiman, 2001] – seemed to flip-flop on this issue. In the original paper

on bagging Breiman [1996], Breiman proposed the idea of best pruned classification and
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regression trees to be used in the ensemble. In proposing random forests, however, his

advice switched: “Grow the tree using CART methodology to maximum size and do not

prune” [Breiman, 2001].

Many textbooks agree with Breiman’s latter advice of constructing RFs with full-depth

trees. For example, Izenman [2008] states “there are only two tuning parameters for a random

forest: the number of variables randomly chosen as a subset at each node and the number

of bootstrap samples. ... grow the tree to a maximum depth with no pruning”. Similarly,

James et al. [2013] say that “To apply bagging to regression trees ... These trees are grown

deep, and are not pruned”. Likewise, the default settings of many widely used statistical

computing packages also follow this suggestion of constructing trees to (at least near) full

depth. The randomForest package in R constructs trees to the maximum possible depth

subject to the constraint of nodesize = 5 for regression and nodesize = 1 for classification

trees. Similarly, with Scikit-learn in python, cells are split until all leaves are pure or

contain fewer observations than min sample split, which is set equal to 2 by default.

Despite the fact that building trees in RFs to full-depth has largely become the standard

advice offered, the fact remains that numerous studies have provided strong empirical evi-

dence that tuning tree depth can substantially impact performance. Segal [2004] performed

a number of experiments on both synthetic and real-world data utilizing various tree depths

and feature subsampling rates and found significant changes in accuracy, but no clear trends

in terms of which settings were optimal in which settings. Lin and Jeon [2006] put forth the

idea of adaptive nearest neighbors to better characterize the class of models to which RFs

belong and, as related to the idea of tree depth, argued that “growing the largest tree was

not optimal in general”. Duroux, Roxane and Scornet, Erwan [2018] carried out simulations

directly comparing the performance of Breiman’s original RFs to RFs constructed with shal-

low trees and reached much the same conclusion. The popular graduate-level textbook “The

Elements of Statistical Learning” [Hastie et al., 2009] takes more of a neutral, measured

approach, saying only that “the average of fully grown trees can result in too rich a model”

but that “Our experience is that using full-grown trees seldom costs much, and results in one

less tuning parameter”.

Despite the substantial amount of previous literature on the topic, to the best of our
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Model Complexity

Risk

Interpolation Threshold

High Bias, Low Variance (Under-fitting)

Low Bias; High Variance (Overfitting)

Best bias-variance tradeoff

Over-parameterized model

Figure 4.1: Graphical visualization of the “double descent” proposed in Belkin et al. [2019].

Before the interpolation threshold we see the classical U-shaped bias-variance tradeoff, fol-

lowed by a second descent when considering over-parameterized models. Note that if the

model complexity of a tree is measured by the number of terminal nodes, then a tree cannot

be over-parameterized.

knowledge, none of this work has offered a principled explanation as to why limiting tree-

depth in RFs could be helpful or when such an alternative construction might be expected

to outperform Breiman’s original proposal. In the following sections, we aim to take a step

forward in this direction by building upon the regularization framework in the last chapters.

To begin, we first revisit the double descent argument put forth in Belkin et al. [2019] and

demonstrate that in the context of random forests, this second drop in risk is not only

achievable, but expected, even when shallow decision trees are employed and interpolation

is exceedingly unlikely.
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4.3 RANDOM FORESTS AND DOUBLE DESCENT

In work that has since gained a lot of attention, Belkin et al. [2019] studied the the re-

lationship between performance (risk) and complexity for a variety of supervised learning

models. Classical statistical theory suggests that such a curve should exhibit a natural U

shape: models with complexity too low will have too much bias and under-fit, models with

too much complexity will have too much variance and over-fit, and thus the optimal model

that minimizes this curve should be that which optimally trades off bias and variance. Much

to the surprise of many in the statistics community, however, Belkin et al. [2019] noticed that

for a variety of such models, the risk curve can begin a second descent once the complexity

crosses beyond the interpolation threshold and becomes over-parameterized – see Figure 4.1.

In some cases, this second descent achieves minimum values that exceed even those obtained

by the model believed to be optimal by classical theory – that which minimizes the first

descent. Put simply, the work suggested that the poor performance often seen in parameter-

rich, highly-complex models could be mitigated not only by removing parameters, but also

by adding them. Belkin et al. [2019] attributed this second descent to the argument that

despite the large model complexity of interpolating functions, their function space norm is

smaller and thus they can be seen as “simpler” through an alternative lens.

Before continuing, it is worth pausing to more carefully define the notions of interpolation

and model complexity as these are clearly of fundamental importance to the argument put

forth in Belkin et al. [2019]. Interpolating functions are simply those whose training error is

zero, as defined in Definition 1. The notion of interpolation is straightforward, easily defined,

and can pertain to both classification and regression problems. The interpolation threshold

is then identified as the minimum complexity at which the model begins to interpolate.

This notion of model complexity, on the other hand, is far more nuanced. Belkin et al.

[2019] define the complexity of a model as “the number of parameters needed to specify a

function within the class”. Such a definition is natural and intuitive for simple models like

ordinary least squares (OLS) linear regression or individual decision trees and is consistent

with notion of the effective number of parameters discussed in Hastie et al. [2009]. Note that

if “model complexity” of tree-based models is taken as the number of leaves, then by con-
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struction this cannot exceed the training size and thus a tree cannot be over-parameterized.

Indeed, this notion of complexity becomes less straightforward for black-box models. With

random forests, for example, Belkin et al. [2019] applies this definition in something of a

hybrid fashion: for random forests containing only a single tree, complexity is taken as the

number of leaves so that the original (training) sample size n serves as an upper bound.

Beyond this point, however, the complexity of ensembles of full-depth trees seems to be

measured as (at least proportional to) the number of trees in the ensemble. This is where

the natural intuition behind such a definition begins to break down. While averaging B trees

can potentially partition the feature space in a finer way (and thus utilize more “parame-

ters”) relative to a forest with B − 1 trees, it seems a bit unorthodox to assume that the

former estimator is inherently more “complex”.

A natural analogy can be drawn here to classical U-statistics [Hoeffding, 1948]. Recall

that the standard motivation for such estimators is as follows. Given a sample Z1, ..., Zn

of size n and a parameter of interest θ, we assume there exists some unbiased estimator

h(Z1, ..., Zk) utilizing only k ≤ n arguments and that h is permutation symmetric in those

k arguments. This base estimator h is generally referred to as a kernel of rank k. While any

subsample of size k from the original sample will suffice to produce an unbiased estimate of

θ, not surprisingly, a better estimator, and indeed, that which has the minimum variance, is

the U-statistic

Un =
1(
n
k

) ∑
(n,k)

h(Z∗1 , ..., Z
∗
k)

formed by evaluating h over all
(
n
k

)
possible subsamples and averaging. When B <

(
n
k

)
subsamples are utilized, the resulting estimator is referred to as an incomplete U-statistic.

Note that when the individual kernels h are seen as (possibly randomized) decision trees,

there is an immediate connection between U-statistics and random forests. In fact, it was

this connection that was exploited by Mentch and Hooker [2016] to demonstrate that RF

predictions are asymptotically normal when trees are constructed via subsampling instead

of traditional bootstrap samples.

This connection also helps make clear the shortcomings of the interpolation-based argu-

ment for why a second descent is observed when random forests begin consisting of more
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than one tree. Decades-old statistical theory tells us that U-statistic-style estimators have

the same bias (zero) as the original estimator h but with smaller variance and would thus

be preferred according to the classic bias-variance tradeoff. By near-identical reasoning, RFs

containing many trees built with resamples of the original data ought to be preferred to

individual decision trees. Seen in this fashion, it makes little intuitive sense to define such

an estimator as more “complex” merely because it takes an average over a larger collection.

Even more importantly for our purposes here though, estimators constructed by taking

a larger average should be preferred regardless of the subsample size (rank) k. Just as a

U-statistic formulation would be expected to result in an improved estimator regardless of

the rank of the kernel, random forests with many trees should be preferable to individual

decision trees regardless of the subsample size on which they’re built. That is, even when

relatively shallow trees are constructed so that complexity falls well short of the interpolation

threshold, a second drop in random forest risk should be expected as trees are added to the

ensemble. In some classification settings or in settings where trees are each constructed on

the same original sample it may be possible to interpolate (at least nearly), but interpolation

is not the cause of this.

In the following subsection, we elaborate on this point by replicating the analysis in

Belkin et al. [2019] before arguing that this kind of shallow-tree construction is actually

preferable in noisy data settings in Section 4.4.

4.3.1 A Case Study on the MNIST Dataset

Some of the data employed by Belkin et al. [2019] to demonstrate the double descent curve

was from the MNIST database, which contains data (60,000 training samples and 10,000

test samples) extracted from handwritten numeric digits. In order to replicate these kinds

of experiments in a computationally efficient manner, we begin by randomly sampling a

training set DTrain from the original training set, as well as test and validation sets DTest

and DVal from the original test set, each of size n = 2000. As the response, we use a binary

indicator corresponding to whether or not the handwritten digit is a ‘1’.

In this subsection, we refer to the model complexity of RFs as tree depth/number of
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Figure 4.2: Performance of a single randomized tree (purple curves), full-depth RFs (left col-

umn, red curves), tuned RFs (middle column, blue curves) and shallow RFs (right column,

green curves) using bootstrap samples in regression (top row) and classification (bottom

row) settings. The transparent purple background curve is the raw result of a single ran-

domized tree; the bold purple line corresponds to a lowess smooth. Dashed and solid curves

correspond to the performance on training and test sets, respectively.

trees so as to be consistent with definitions and plots in Belkin et al. [2019]. Tree depth is

controlled by two parameters, maxnodes and nodesize. The maxnodes parameter can range

from 2 (a stump) to 2000 (one observation in each leaf) and we set the nodesize parameter

to 1 so that an internal node will be continue to be split until the number of leaves is equal

to maxnodes.

We consider a total of four different model setups:
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Figure 4.3: Performance of a single randomized tree (purple curves), full-depth RFs (left

column, red curves), tuned RFs (middle column, blue curves) and shallow RFs (right column,

green curves) using original samples in regression (top row) and classification (bottom row)

settings. The transparent purple background curve is the raw result of a single randomized

tree; the bold purple line corresponds to a lowess smooth. Dashed and solid curves correspond

to the performance on training and test sets, respectively.

• Individual Trees: A single randomized tree with the number of maxnodes ranging from

2 to 2000.

• Full-depth Forests: 500 trees constructed with the maxnodes set equal to 2000 so that

all trees are full depth.

• Tuned Forests: 500 trees with maxnodes set equal to the depth maxnodesopt that

minimizes the error of a single (randomized) tree on the validation set.
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• Shallow Forests: 500 trees constructed with maxnodes = 10.

Note that each setup utilizes randomized trees as in a typical random forest. For each setup,

we consider constructing trees via bootstrap samples (as traditionally done) and also by using

the same original training set each time (as was done in Belkin et al. [2019]). All remaining

parameters are set to the default values in the R package randomForest. We consider both

classification and regression setups. In the classification setup, both tree- and forest-level

predictions are made via majority vote and performance on the test set is measured by 0-1

loss. In the regression setting, we utilize regression trees so that the binary responses are

averaged at both the tree and forest level and performance is measured via the standard L2

(squared error) loss.

Results from forests constructed with bootstrap samples and original samples are shown

in Figures 4.2 and 4.3 respectively. In each figure, the top row corresponds to the regression

setup and the bottom to the classification setup. As in Belkin et al. [2019], model complexity

is shown on the horizontal axis and model performance on the vertical axis with the training

loss and test loss represented by dashed and solid lines, respectively. The four colors in the

plots represent the performance of the four setups under consideration: purple for individual

trees, red for full-depth RFs (left column), blue for tuned RFs (middle column), and green

for shallow RFs (right column). Randomization in the single tree leads to a great deal of

variation in the performance so at the level of individual trees, we also include a bolder

purple line corresponding to a lowess smooth. The bold vertical long-dashed lines in each

plot denote the transition points from a single tree to a RF with multiple trees. In the

left-most column of each figure, there are additional black vertical dotted lines in each plot

that are included to indicate that model complexity between these lines is equally spaced.

Plots in the left-most column of each figure are designed to replicate the kind of analysis

done in Belkin et al. [2019]. Here we see that once the interpolation threshold is reached

and more trees are added to the forest (red dashed vertical line), the performance of full-

depth RFs improves and eventually levels off indicating what Belkin et al. [2019] describe

as the second descent. A close inspection of the upper-left-hand plots in Figures 4.2 and

4.3 is also very revealing. Note that in Figure 4.2, where bootstrapping is employed, the

training error never reaches 0 (the RFs do not interpolate) and yet, once more trees are
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added, a near identical drop in test error is observed compared to the no-bootstrap case

(Figure 4.3) where trees are constructed on the same original data each time and 0 training

error is achieved quite quickly. Furthermore, note that tuned RFs (middle column) perform

almost identically to their full depth counterparts. That is, even though the training loss

is not 0 at the transition point from single trees to ensembles of trees, a rapid performance

improvement is still obvious once more trees added. Once again, in the right-most plots, the

shallow RFs again exhibit a dramatic drop in loss when more trees are added despite the

fact that the training error remains well above 0.

These demonstrations make clear that while we do indeed observe a dramatic drop in

loss with full-depth trees once multiple trees are considered – what Belkin et al. [2019]

refers to as the “interpolation threshold” – near identical performance improvement jumps

are seen regardless of the training error whenever averaging over many trees as opposed to

considering only a single tree. Indeed, the idea that averaging (or otherwise aggregating)

unstable estimators to reduce the variance of the procedure is not a new idea (see e.g. Breiman

[1996], Bühlmann et al. [2002]) nor is it an idea that is in any way dependent on interpolation

of the individual base models. Nonetheless, when comparing the test performance of shallow

RFs (right-most column) to their counterparts in Figures 4.2 and 4.3, it’s clear that these

ensembles of shallow learners are not performing as well as the “deeper” ensembles in the

left and middle columns. One may thus be tempted to argue, as continues to be claimed

in many textbooks, that ensembles of deeper trees are still preferable nonetheless. In the

following section, we dispel this idea and demonstrate that in noisy data settings, ensembles

of shallow trees are indeed preferable.

4.4 RANDOM FORESTS AND TREE DEPTH

Our work in Chapter 2 provides theoretical background for the regularization effect of random

feature-subsetting in ensembles of base models constructed in a greedy fashion. With the

same setup, the regularizing effect of model size (depth) for such randomized ensembles can

also be demonstrated. In particular, in the context of RandFS, given an orthogonal design
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matrix, the process of averaging across randomized linear models of depth d is equivalent

to constructing a linear model that includes all p of the original covariates, but where each

OLS coefficient estimate β̂j,OLS is shrunk by some amount αj,d. Even more importantly

for the conversation on model depth, note that the magnitude by which we shrink the

coefficient estimates is directly related to the model size (depth) d: as d becomes smaller,

each model must include fewer covariates and thus some covariates must necessarily appear in

less models, leading to more shrinkage on their corresponding coefficient estimates. Note also

that this shrinkage is not applied uniformly across all covariates; covariates more correlated

with the response will have a higher chance of being selected once made available and thus,

on average, will be shrunk less than covariates with a weaker relationship to the response. In

these ways, this kind of randomized linear model ensemble behaves similarly to procedures

like ridge regression and lasso that take an explicitly penalized approach to fitting.

Finally, note that in noisy data settings where the signal is relatively low, this kind of

shrinkage can be advantageous by preventing overfitting to noise. Since RFs are constructed

in the same kind of fashion by using trees instead of linear models, we ought to expect the

same kind of outcome: ensembles of shallow trees ought to perform better in noisier settings.

We now explore this empirically via a number of simulations and experiments.

4.4.1 Tree Depth as Regularization

Here we follow closely the simulation setups utilized in recent empirical studies, including

those in Hastie et al. [2020] and Chapter 2. We assume the standard linear model relationship

Yi = X>i β + εi where the data arrive as n i.i.d. ordered pairs (Xi, Yi) where Xi ∈ Rp is a

vector of p covariates sampled from Np(0,Σ) and Yi ∈ R is the response. Here, the (i, j)th

entry of Σ is of the form ρ|i−j| and ρ is set to 0.35. The first s terms of the coefficient vector

β are set equal to 1 and the rest to 0, corresponding to the “beta-type 2” setup in Hastie

et al. [2020]. The noise terms εi are independent of the covariates and are sampled i.i.d. from

N(0, σ2) where σ2 is chosen to create the desired signal-to-noise ratio (SNR) given by

SNR =
β>Σβ

σ2
.
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Figure 4.4: Performance of random forests (red) and bagging (blue) in the low (left column),

medium (middle column) and high-10 settings (right column) at different SNR levels. The

horizontal axis is maxnodes, the maximum number of nodes in each tree and vertical axis is

the test MSE. Vertical bars denote one standard error.

The use of linear models here allows us to easily calculate the SNR explicitly but more

importantly, previous works have shown that the relative performance of RFs with respect

to SNR is quite similar across regression relationships, even when they contain interactions
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and nonlinearities. Thus, utilizing more complex underlying relationships here is unnecessary

for investigating the desired properties.

As in previous studies, we consider 10 SNR values ranging from 0.05 to 6, equally spaced

on log scale. Under these conditions, we then consider the following four setups:

• Low: n = 100, p = 10, s = 5

• Medium: n = 500, p = 100, s = 5

• High-5: n = 50, p = 1000, s = 5

• High-10: n = 100, p = 1000, s = 10

The RFs are constructed using the randomForest package in R with the nodesize pa-

rameter set equal to 1. We use the maxnodes parameter as a proxy for tree depth and allow it

to take values {2, 4, 6, 8, 10, 15, . . . , n/2, n/2+25, n/2+50, . . . , n}. We consider both bagging

and traditional RF setups so that the mtry parameter is set to either p or p/3, respectively.

Each ensemble consists of 500 trees and all remaining parameters are set to their default

values. Model performance is measured as the mean squared error (MSE) evaluated on an

independently generated test set the same size as the training set. At each individual setting,

the entire process is repeated 100 times and the mean and standard error of the test MSEs

across these repetitions are reported.

Results for the low, medium and high-10 setups at SNR levels of 0.05, 0.14, 0.42, and

2.07 are shown in Figure 4.4 where the vertical bars represent one standard error; full results

across all setups and SNR levels are given in the Appendix C. In both sets of Figures, the

blue curve corresponds to the results from bagging and the red to RFs. If we look at the

two higher SNR levels in the low setting (Figure 4.4, left-most column, bottom two plots),

we see the pattern most would expect for both bagging and random forests – as the trees

in the ensemble grow deeper (maxnodes increases), the accuracy improves and eventually

begins to level off. Indeed, if this were the case across all settings, the conventional wisdom

of simply growing trees in an RF to full depth would seem accurate; there would be no need

to waste additional computational resources trying to optimize tree depth. As predicted

by the theory presented in the beginning of this section, however, this is not the case. At

the two lowest SNR levels in the low setting, we see the opposite pattern – shallow trees
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perform very well and as the depth of the trees increases, the error increases as well before

beginning to level off. Much the same story can be seen in the medium setup (Figure 4.4,

middle column) except that the switch to a preference for deeper trees appears to occur

at a lower SNR. In the high-10 setup (Figure 4.4, right-most column), a similar pattern is

discernible, though as would be expected in high-dimensional settings, there appears to be

a higher variance as well. Overall across all settings, we see the same general behavior in

both bagging and random forests.
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Figure 4.5: Boxplots of optimal nodesize of RFs in the Low setting (n = 100) over 100

repetitions.

The results in Figure 4.4 demonstrate how RF performance changes as a function of tree

depth across a variety of regression setups and SNR levels. We now formulate the question

in a slightly different fashion: given a particular data setup, what tree depth minimizes

the resulting error of a RF at various SNR levels? Here we use nodesize as the proxy for

tree depth and allow trees to grow to the maximal possible depth subject to the nodesize

constraint. Specifically, we consider the following three setups:
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• Low (n ≥ p): n = 100: p = 10 or 100, and s = 3, 5 or 10; nodesize takes values 1, 3,

and 10 additional values equally spaced between 5 and n/2.

• Medium (n ≥ p): n = 500, p = 10 or 100, and s = 3, 5 or 10; nodesize takes values

1, 3, and 25 additional values equally spaced between 5 and n/2.

• High (n ≤ p): n = 50 or 100, p = 1000, and s = 5, 10 or 20; nodesize takes values 1,

3, and 10 additional values equally spaced between 5 and n/2.

For each setting, we consider the same linear model setups and SNR values as above. At

each combination of settings, we obtain and record the optimal nodesize, defined as that

which minimizes the MSE on an independent test set with 1000 observations. The process

is repeated 100 times and boxplots of the optimal node sizes at each SNR level in the low,

medium, and high settings are shown in Figures 4.5, C1, and C2, respectively, with the latter

two figures appearing in the Appendix C.

The results here are very much in-line with what would be expected based on the theory

and experiments above. In particular, in the low and medium settings, regardless of the

number of signal covariates s, the same general pattern is clear. At lower SNRs, the optimal

nodesize is relatively large, meaning that terminal nodes in each tree often contain many

observations and the trees are therefore more shallow. As the SNR levels increase, there

is an obvious transition to a preference for a smaller nodesize (deeper trees). In the high

setting (Figure C2), once again we see substantially more variance in the results, though in

the larger n case (n = 100), a downward trend is still evident.

As alluded to above, this finding is quite intuitive: as the quality of the data improves

(SNR levels rise), it makes sense that we would want to extract as much information from

it as possible by growing deeper trees. On the other hand, when the data is of poor quality

(low SNR levels), this kind of overfitting can be dangerous and we might prefer to keep only

the strongest, most evident patterns seen in early splits of the tree.

4.4.2 Tunability

Much of the work above examines the relationship between tree depth and RF accuracy –

ensembles of shallow trees are generally preferred with noisy data while those with deeper
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trees tend to be more advantageous with high quality data. We now begin to more carefully

examine and quantify the potential benefits of tuning – how much improvement can result

from tuning the tree depth compared with simply growing full depth trees and how does

the benefit arising from tuning tree depth compare to that realized from tuning the mtry

parameter.

To investigate this, we apply the “tunability” framework proposed by Probst et al.

[2019a]. Let f̂(X, θ) denote the prediction of a model f̂ with a K−dimensional tuning

parameter θ = (θ1, . . . , θK) ∈ Θ at X. Let L(Y, f̂(X, θ)) denote the loss function. Given

a new test point (X0, Y0) so that the risk of the model with respect to θ is defined by

R(θ) = E(L(Y0, f̂(X0, θ)) with the expectation taken over the unknown distribution of

(X0, Y0). Finally, let θ0 = (θ0,1, . . . , θ0,K) denote default values of θ – these may corre-

spond, for example, to those specified as defaults in software packages or based on empirical

results from previous experiments.

Define

θ] = argminθ∈ΘR(θ),

as the optimal value of θ corresponding to the minimum risk. The tunability of the model

f̂ was defined in Probst et al. [2019a] as the difference in performance between the model

built with default tuning parameter values and that constructed with the optimal values

d = R(θ0)−R(θ]).

Further, for any S ⊂ {1, . . . , K}, we can define

θ?S = argminθ∈Θ,θl=θ0,l ∀l 6∈S R(θ)

as the optimal tuning parameter values whenever those parameters with indices in S are

optimally tuned and the remainder are set to their default values so that the resulting

tunability value is given by

dS = R(θ0)−R(θ?S).
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Finally, for any T ⊂ S, the additional performance gain in tuning all parameters with indices

in S instead of tuning only those with indices in either T or S − T is given by

gT,S−T = min
(
R(θ?T ), R(θ?S−T )

)
−R(θ?S).

In the following, we focus on the RF context and investigate the tunability of tree depth

(controlled by maxnodes) and the tunability of the additional randomness mtry so that the

tuning space is given by Θ = (mtry, maxnodes). Trees are grown using bootstrap samples and

the number of trees is large enough (500 in each setting) to ensure that the performance of the

ensemble has stabilized. We carry out simulations using the same linear model setup as above

with the same four size setups under consideration: low, medium, high-5 and high-10. In each

setting, we construct RFs using the R package randomForest with nodesize = 1 and the

entire procedure is repeated 100 times at each SNR level. The mtry parameter is tuned over

0.1p, 0.2p, . . . , p, and the maxnodes parameter is tuned over {2, 4, 6, 8, 10, 15, . . . , n/2, n/2 +

25, n/2 + 50, . . . , n}. At each (mtry, maxnodes) combination, we measure the mean square

error (MSE) of RF on an independent test set the same size as dataset used in training and

define the relative test error (RTE) as

RTE(mtry, maxnodes) =
1

σ2
Test MSE(mtry, maxnodes).

We set the default tuning parameter values to align with those in most softwares as

mtry0 = 0.3p and maxnodes0 = n. In keeping with the notation above, define

(mtry], maxnodes]) = argmin(mtry,maxnodes)∈Θ RTE(mtry, maxnodes)

(mtry?, maxnodes0) = argmin (mtry,maxnodes)∈Θ;
maxnodes=maxnodes0

RTE(mtry, maxnodes)

(mtry0, maxnodes
?) = argmin(mtry,maxnodes)∈Θ;

mtry=mtry0

RTE(mtry, maxnodes).

The tunability of the combination of both mtry and maxnodes at the same time, which we

refer to as the tunability of RFs, is then given by

dRF = RTE(mtry0, maxnodes0)− RTE(mtry], maxnodes])
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Figure 4.6: Average tunability of random forests dRF (purple), tunability of maxnodes

dmaxnodes (green), tunability of mtry dmtry (blue) and additional improvement of tuning both

instead of either one gmtry,maxnodes (red) at the 10 SNR levels across the 100 repetitions.

Default mtry = 0.3p and default maxnodes = n. Error bars represent one standard error.

and the (marginal) tunability of mtry and maxnodes individually is given by

dmtry = RTE(mtry0, maxnodes0)− RTE(mtry?, maxnodes0)

dmaxnodes = RTE(mtry0, maxnodes0)− RTE(mtry0, maxnodes
?),

respectively. Finally, the additional performance gain seen by tuning both maxnodes and
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Figure 4.7: Median of optimal combination of mtry (blue) and maxnodes (red) in 100 repe-

titions at different SNR levels. Error bars represent median absolute deviation.

mtry rather than only one of them is given by

gmtry,maxnodes

= min (RTE(mtry?, maxnodes0),RTE(mtry0, maxnodes
?))− RTE(mtry], maxnodes]).

Figure 4.6 shows plots of average tunability across each set of 100 repetitions with error

bars representing one standard error – corresponding boxplots are shown in Figure C7 in the

Appendix C.

Looking at the Low setting (Figure 4.6, upper left), we see a nice transition in the benefits

of tuning depth (maxnodes) vs mtry. If we were to tune only one of these parameters, tuning

maxnodes would be preferred at low SNRs and tuning mtry would yield more substantial
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gains at high SNRs. A few other trends are evident in each of the four plots in Figure 4.6.

First, the benefits to tuning mtry and maxnodes together always yields a better result than

tuning only one of them individually. Further, the increasing red line in each plot indicates

that the additional benefit to tuning both parameters together tends to increase with the

SNR.

We close out this subsection by looking at how the optimal combination of mtry (as a

proportion of p) and maxnodes (as a proportion of n) changes with SNR. For each of the 100

repetitions at each setting, we record the optimal combination of tuning parameter values

– the medians of these are shown in Figure 4.7 where error bars represent median absolute

deviation. In all settings, the optimal combination of mtry and maxnodes increases as SNR

increases, though notice that in the medium and high settings with larger p, the optimal

tree depth remains only a relatively small fraction of n even at the highest SNRs.

4.4.2.1 Real Datasets We now investigate the tunability of mtry and maxnodes on real-

world datasets, which presumably contain more complex underlying relationships between

the features. In total, we include 8 low dimensional datasets from the UCI Machine Learn-

ing Repository [Dua and Graff, 2017] and 4 high dimensional datasets, 3 from openml.org

[Vanschoren et al., 2013] and 1 (AquaticTox) from R package QSARdata. Observations with

missing values were removed. Table 4.1 provides a summary of each dataset.

Tunability is obtained based on 10-fold cross validation (CV) error scaled by the sample

variance of the corresponding response. As above, RFs are constructed using the package

randomForest with 500 trees grown on bootstrap samples with nodesize set equal to 1. For

each dataset, the mtry parameter is tuned over d0.1pe, d0.2pe, . . . , dpe whenever p ≥ 10; for

datasets with p < 10, mtry is tuned over {1, . . . , p}. Since depth (maxnodes) is related to the

available training size and 10-fold CV is applied, maxnodes is tuned over 25 values equally

spaced between b 1
25

0.9nc and b0.9nc. For the phen dataset, maxnodes is instead tuned over

{1, . . . , b0.9nc}. Default values of mtry and maxnodes are set to d0.3pe and b0.9nc. For each

dataset, the procedure is repeated for 100 times.

Figure 4.8 shows boxplots of dRF, dmtry, dmaxnodes and gmtry,maxnodes for the 12 real-world

datasets. The first two rows correspond to low dimensional datasets and the last row to
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Table 4.1: Summary of the real-world datasets utilized. The text in brackets following

each dataset name serves as an abbreviation used in future discussions and plots. Numeric

references for each dataset are given either to the work where the data first appeared, or

to early work where it was utilized. The optimal values of (maxnodes], mtry]) are given

in the final column as proportions of the number of observations and features (n and p),

respectively.

Dataset p n (maxnodes], mtry])
Bike Sharing [bike] [Fanaee-T and Gama, 2014] 11 731 (0.76, 0.55)
Boston Housing [boston] [Harrison Jr and Rubinfeld, 1978] 13 506 (0.76, 0.54)
Concrete Compressive Strength [concrete] [Yeh, 1998] 8 1030 (0.76, 0.88)
CPU Performance [cpu] [Ein-Dor and Feldmesser, 1987] 7 209 (0.67, 0.86)
Conventional and Social Movie [csm] [Ahmed et al., 2015] 10 187 (0.72, 0.4)
Facebook Metrics [fb] [Moro et al., 2016] 7 499 (0.72, 0.86)
Servo System [servo] [Quinlan, 1993] 4 167 (0.72, 1)
Solar Flare [solar] [Li et al., 2000] 10 1066 (0.61, 1)
Aquatic Toxicity [AquaticTox] [He and Jurs, 2005] 468 322 (0.72, 0.60)
Weighted Holistic Invariant Molecular Descriptor [pah] [Todeschini et al., 1995] 112 80 (0.73, 0.71)
Adrenergic Blocking Potencies [phen] [Cammarata, 1972] 110 22 (0.68, 0.65)
PDGFR Inhibitor [pdgfr] [Guha and Jurs, 2004] 320 79 (0.68, 0.1)

high dimensional ones. For the low dimensional datasets, the tunability of mtry (blue) is

lower than that of maxnodes (green) in only one dataset (csm), but higher in the remaining

seven. In three of these, the tunability of mtry is comparable to dRF (purple), the joint

tunability of mtry and maxnodes, suggesting that there is little more to gain by tuning

both mtry and maxnodes as opposed to tuning only mtry. With high dimensional datasets,

the tunability of mtry and maxnodes is more similar across datasets. As expected, tuning

both mtry and maxnodes together leads to improved performance in every case, though

in most cases, that additional improvement is relatively small in comparison to the gains

seen by tuning only one. What is consistent across all 12 datasets is that the additional

improvement gmtry,maxnodes is much smaller than dmtry or dmaxnodes, the respective improvement

from tuning mtry or maxnodes alone, and is a small fraction of dRF, improvement from tuning

mtry and maxnodes together. Thus, as suggested with the above simulations, in practice,

one could often tune mtry with full depth trees and tune maxnodes with mtry set to the

default value, and choose the model with minimum generalization error among these two

candidates. Such an approach will likely be far more computationally efficient than a full
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two-dimensional grid-search and yield a model with similarly small error. Finally, Table 4.1

shows the optimal combination of mtry as a proportion of p and maxnodes as a proportion of

n for each dataset. Note that the optimal depth (maxnodes) does not generally correspond

to full-depth trees.
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Figure 4.8: Boxplots of dRF, dmtry, dmaxnodes and gmtry,maxnodes in the 100 repetitions for 12 real

datasets. The first two rows correspond to low dimensional datasets and the last row to high

dimensional datasets. Default mtry = d0.3pe and default maxnodes = b0.9nc. The color

coding remains the same as in Figure 4.6.
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4.5 DISCUSSION

In this chapter, we have sought to provide a principled and in-depth study into the relation-

ship between tree depth and RF performance. We argued that the substantial performance

gains seen when transitioning from individual trees to ensembles of trees is a natural and

expected by-product of averaging high-variance base models and showed that such improve-

ments are seen even when significant training error exists and models are far from the in-

terpolation threshold. We then gave both theoretical and empirical evidence that optimal

tree depth is ultimately a function of of the level of noise in the data. In that sense, limiting

tree depth can be seen simply as a natural form of regularization obtained by limiting model

complexity.

It is important to stress, however, that bagging and random feature subsetting – both

hallmarks of classical RFs – also perform a kind of regularization. Thus, in practice, these

“built-in” RF regularizers may be sufficient to achieve optimal performance without needing

to result to the more computationally intensive task of tuning tree depth. This, we suspect,

is why performance gains are not always seen in practice and, as a result, is likely why

many textbooks continue to suggest constructing RFs with full-depth trees. Nonetheless,

this work makes clear that this is not universally the best strategy and indeed, significant

performance gains can be had by limiting tree depth, especially when the mtry parameter

is not tuned. Regardless of how tuning is ultimately performed, because it can sometimes

have a substantial impact, whenever one is interested in studying variable importance as

measured by changes in predictive accuracy when features are removed or randomized, one

must be sure to carefully tune the model first before examining any measures of feature

importance.
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5.0 CONCLUDING REMARKS

Random forests have a well-earned reputation as an excellent off-the-shelf statistical learning

method with outstanding success across almost all scientific domains. Numerous efforts and

studies have been devoted to their mathematical and statistical properties such as consis-

tency, asymptotic normality, variance of predictions and so on. Despite this, reasons for

random forests’ success remained largely mysterious.

When proposing random forests, Breiman [2001] provided an upper bound for the gener-

alization error of random forests which involves accuracy of individual trees and between-tree

correlations, the tradeoff between which is similar to the classical bias-variance tradeoff from

the statistical perspective. However, this is more a motivation for why random forests can

potentially work well than an explanation for why they do. Another informal but popular

intuition given in Biau and Scornet [2016] is that aggregating tree models is able to estimate

complex patterns beyond those specified by smoothness or sparsity conditions, but it’s not

clear when random forests are expected to perform well.

Another attention-drawing idea for explaining success of modern learning models is in-

terpolation. Wyner et al. [2017] attributed the success of random forests to their being

“self-averaging interpolators” and isolating noisy observations. Belkin et al. [2019] put forth

the more general idea of “double descent” with empirical evidence for modern models in-

cluding neural networks and random forests. Specifically, the curve of model error against

complexity is in a U shape in the under-parameterized regime, but it decreases again in

the over-parameterized regime, i.e., when model complexity goes beyond the interpolation

threshold.

However, the relationship between interpolation and success of random forests is like a

chicken-egg problem: do random forests succeed because of interpolation or is interpolation a
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side-effect of the success of random forests? If the former is true, then random forests ought

to be expected to perform poorly on noisy datasets, which, however, is the opposite to what

is observed in practice. Apart from this, in the regression setting, random forests can not

interpolate unless individual trees are all constructed using the original sample. Moreover,

by drawing parallel to U-statistics, the second descent in the random forests error curve

results from simple averaging, and is expected even with an ensemble of shallow trees which

is exceedingly unlikely to interpolate. Last but not least, arguments around interpolation

ignores the randomness in random forests and applies equally well to bagging.

What makes Breiman’s random forests special is the randomness injected in each tree

split, without which the procedure reduces to bagging that is commonly taken as inferior to

random forests. Instead of naively assuming random forests always outperform bagging, we

take a step back to try and fully characterize when the inclusion of such randomness leads

to improved performance and why. We have produced strong evidence that the amount of

randomness utilized is negatively correlated to the degrees of freedom of the model. In an-

other word, this random-feature-selection provides an implicit form of regularization, making

random forests more advantageous in noisy settings. Moreover, this is not a tree-specific phe-

nomenon, but applies equally well to ensembles with base learners constructed in a greedy

fashion, such as linear models selected by forward selection but where only a randomly

selected subset of features are available as candidates.

Along this line, we continue to explore other forms of regularization that can be intro-

duced to ensemble of trees to produce similarly competitive procedures. Surprisingly and

counterintuitively, this can be achieved by inclusion of additional noisy features condition-

ally independent of the response. Moreover, this has a crucial implication on testing variable

importance. One commonly used proxy of variable importance is to compare the perfor-

mance of model when features of interest are included v.s. excluded from the model. The

intuition is that if dropping a set of features leads to significantly decreased performance,

then those features must contain some information about the response. However, our work

clearly demonstrates that at least with some procedures, additional features – even when

purely noise and completely unrelated to the response – can lead to substantially more ac-

curate models, particularly in noisy settings, and be registered as statistically significant
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features. Thus, we advocate for alternative forms of testing that focus instead on determin-

ing whether the original features produce models that are substantially more accurate than

those produced via random substitutes that preserve the between-feature relationship.

Following the regularization framework above, we further investigate the effect of pruning

trees in random forests. Although full depth trees are recommended in many textbooks

[James et al., 2013, Izenman, 2008] and set as default settings in standard packages such as

Scikit-learn [Pedregosa et al., 2011] in python and randomForest [Liaw et al., 2002] in R, we

argue that tree depth can be viewed as an additional form of regularization on top of bagging

and random-feature-subsetting, with shallow trees more preferred in noisy settings. With

enough computational power, it is best to tune both randomness and tree depth. If we were

to tune only one of these parameters, our empirical experiments suggest tuning tree depth

would be preferred at low SNRs and tuning randomness would yield more substantial gains

at high SNRs. In practice, to avoid high computational cost, one could tune randomness with

full depth trees and tune depth with default randomness and choose the model with best

performance. Despite this, regardless of how tuning is ultimately performed, whenever one

is interested in studying variable importance as measured by changes in predictive accuracy

when features are removed or randomized, one must be sure to carefully tune the model first

before examining any measures of variable importance.
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APPENDIX A

ADDITIONAL SIMULATIONS IN CHAPTER 2

In Section 2.3, Figure 2.3 shows the estimated degrees of freedom for random forests across 

various values of mtry in four different regression setups at a fixed SNR of 3.52. In each 

case we see that the dof increases with both maxnodes and mtry and we note that the same 

relationships were seen to also emerge in alternative setups. Figure A1 below shows the same 

experiments carried out with the SNR set to the much smaller level of 0.09 and indeed the 

findings remain the same.

      In Section 2.4.2 we considered the problem of estimating the optimal value of mtry 

for random forests for both the linear and MARS models at various SNR levels. In the 

main text, Figure 2.5 shows plots of the optimal mtry measured as that which obtains the 

lowest average test error over 500 iterations. In contrast, Figure A2 here calculates the 

optimal mtry value on each of the 500 iterations and then takes the empirical mean. The 

results in Figure A2 show the same general pattern as seen in Figure 2.5. As the SNR 

increases, so does the optimal value of mtry.

      Figure A3 shows exactly the same plots as in Figure 2.8 but here we add error bars at each 

point corresponding to ±1 standard deviation across the 100 replications. These are reserved 

for the appendix only for readability as the error bars can make the plots a bit more muddled 

and difficult to make out.

99



●

●

●

●

●

●

●

●

●

0

10

20

30

40

50

5 10 15 20
maxnodes

D
eg

re
e 

of
 F

re
ed

om

● Random Forest: mtry=0.1
Random Forest: mtry=0.33
Random Forest: mtry=0.67
Random Forest: mtry=1

Linear Model Low Setting

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

0

100

200

0 25 50 75 100
maxnodes

D
eg

re
e 

of
 F

re
ed

om

Linear Model Medium Setting

●

●

●

●

●

●

●
●

●

0

20

40

60

5 10 15 20
maxnodes

D
eg

re
e 

of
 F

re
ed

om

Linear Model High−10 Setting

●

●

●

●

●

●

●

●

●

0

100

200

300

400

500

0 50 100 150 200
maxnodes

D
eg

re
e 

of
 F

re
ed

om

MARSadd Model

Figure A1: Degrees of freedom for random forests at different levels of mtry with a SNR of

0.09.

100



● ●

●

●

●

●

●

●

●
●

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.14 0.42 1.22 3.52
Signal−Noise Ratio

O
pt

im
al

 m
tr

y

● n=50
n=500

MARS Model

●

●

●

●

●

●

●

●
●

●

0.1

0.2

0.3

0.4

0.5

0.6

0.05 0.14 0.42 1.22 3.52
Signal−Noise Ratio

O
pt

im
al

 m
tr

y

● n=50
n=500

Linear Model

Figure A2: Optimal value of mtry vs SNR for the MARS and linear model.

101



1.02

1.04

1.06

1.08

0.05 0.14 0.42 1.22 3.52
Signal-to-Noise Ratio

R
el

at
iv

e 
te

st
 e

rr
or

 (
to

 B
ay

es
)

Low Setting

1.01

1.02

1.03

1.04

0.05 0.14 0.42 1.22 3.52
Signal-to-Noise Ratio

R
el

at
iv

e 
te

st
 e

rr
or

 (
to

 B
ay

es
)

Medium Setting

1.0

1.5

2.0

2.5

0.05 0.14 0.42 1.22 3.52
Signal-to-Noise Ratio

R
el

at
iv

e 
te

st
 e

rr
or

 (
to

 B
ay

es
) BaggFS

Lasso
RandFS: mtry=0.33
RandFS
Relaxed lasso
FS

High-5 Setting

1.00

1.25

1.50

1.75

2.00

0.05 0.14 0.42 1.22 3.52
Signal-to-Noise Ratio

R
el

at
iv

e 
te

st
 e

rr
or

 (
to

 B
ay

es
)

High-10 Setting

Figure A3: Performance of FS, BaggFS, RandFS, lasso and relaxed lasso across SNR levels
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APPENDIX B

INTRINSIC TESTING AND EXTRINSIC ANALOGUES IN CHAPTER 3

In this appendix, we review the testing procedure developed in Williamson et al. [2021]. For

readability, we begin by looking at the extrinsic analogue to the authors’ intrinsic test and

show that it produces test results similar to those seen in Section 3.5.1. We then go on to

discuss the updates necessary in order to consider that test intrinsic.

To being, suppose that we have 3 independent datasets: a training set Dn of size n, a

test set DTest,1 of size n1 and another test set DTest,2 of size n2, containing i.i.d. observations

as a generic random vector Z = (Y,X) where X = (X1, . . . , Xp+q) and the response Y ∈ R.

For simplicity, we further assume that n1 = n2 = n′. Let X∗ denote the modified random

vector where the last q features (Xp+1, . . . , Xp+q) in X are either dropped or replaced with

a random substitutes. Thus, as in the main text, for “drop tests”, X∗ will be of length p

whereas for “replacement tests”, X∗ will be of length p+ q.

Let f̂ and f̂ ∗ be the ensemble (bagged) estimates on the original data (Y,X) and on the

modified data (Y,X∗), respectively. Let f = E(f̂) and f ∗ = E(f̂ ∗) where the expectation is

over the training set Dn. Define

MSE(f̂) =
1

n′

∑
i∈DTest,1

(Yi − f̂(Xi))
2,

MSE(f̂ ∗) =
1

n′

∑
i∈DTest,2

(Yi − f̂ ∗(X∗i ))2,

T = MSE(f̂)−MSE(f̂ ∗)
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Figure B1: Probability of rejecting the null hypothesis and concluding an additional inde-

pendent set of noise features are important when dropping the features in question (left

column, top two rows) vs replacing the features in question (right column, top two rows)

when those features are independent (top row) vs correlated (middle row) and replacement

features are sampled from the original underlying distribution (top two rows) In the bottom

row, features are replaced by samples from a different distribution.
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where MSE(f̂) and MSE(f̂ ∗) are independent since DTest,1 and DTest,2 are independent.

By the central limit theorem,

√
n′
(
MSE(f̂)− E

[
(Y − f(X))2])→d N

(
0,Var

(
(Y − f(X))2)) ,

√
n′
(
MSE(f̂ ∗)− E

[
(Y − f ∗(X∗))2])→d N

(
0,Var

(
(Y − f ∗(X∗))2))

where the expectations are with respect to the corresponding test set. Let

∆ = E
[
(Y − f(X))2

]
− E

[
(Y − f ∗(X∗))2

]
, (B.1)

σ2 = Var
(
(Y − f(X))2)+ Var

(
(Y − f ∗(X∗))2) . (B.2)

Then by independence of MSE(f̂) and MSE(f̂ ∗),

√
n′ (T −∆)→d N

(
0, σ2

)
and σ2 can be estimated with

σ̂2 = s2
1 + s2

2 (B.3)

where s2
1 and s2

2 are the empirical variances of (Y1− f̂(Xi))
2, i ∈ DTest,1 and (Y1− f̂ ∗(X∗i ))2,

i ∈ DTest,2, respectively. Here we want to classify the features of interest as important

whenever the test MSE is larger in the second ensemble where those features are either

dropped or replaced, and thus the null and alternative hypotheses of interest are H0 : ∆ = 0

and H1 : ∆ < 0, respectively.

Figure B1 shows the results of applying this extrinsic tests under identical setups to

those described in Section 3.5.1. Note that the top two rows in Figure B1 correspond to the

plots in Figure 3.5 and the two plots in the bottom row of Figure B1 correspond to those in

Figure 3.6. As noted above, the patterns here are qualitatively quite similar. In Figure B1,

we see that these rejection rates are not quite as large in the correlated case with the drop

test (middle row, left) compared with those in Figure 3.5 (bottom left). On the other hand,

the rates here are larger across a wider range of SNRs in the independent feature setting (top

row, left) as compared with those in Figure 3.5 (top left). Rejection rates in the replacement

tests do not appear to be inflated above the nominal level of 0.05 (Figure B1 top and middle
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row, right), and as before, rejection rates are far above the nominal level when features are

replaced with those from a different distribution (Figure B1 bottom row).

We stress again that the test applied here is extrinsic, and thus it should come as no

surprise that these results are much in keeping with those seen in Section 3.5.1. To turn

this into an intrinsic test, we need to find the influence function to estimate the asymptotic

variance.

Let P0 denote the population distribution of Z = (Y,X) and for simplicity, denote

EP0 = E0. Suppose our measure of predictiveness is negative MSE so that we can define

V (f, P0) = −E0(Y − f(X))2 and we have population maximizers f0(X) = E0(Y |X) :=

µ0(X) and f0,s(X) = E0(Y |X−s) := µ0,s(X−s).

Let δz denote the degenerate distribution on {z}. Denote by V̇ (f, P0;h) the Gâteaux

derivative of P 7→ V (f, P ) at P0 in the direction of h. By definition,

V̇ (f, P0;h) = lim
τ→0

1

τ
[V (f, P0 + τh)− V (f, P0)] .

The influence function corresponding to f0 is defined to be φ0 : z 7→ V̇ (f0, P0; δz − P0)

and φ0,s(z) can be defined similarly for f0,s. Following the discussion in page 6 in Williamson

et al. [2021], with equal-size splitting, the asymptotic variance will be of the form of η2
0 +η2

0,s

where η2
0 := E0(φ0(Z))2 and η2

0,s := E0(φ0,s(Z))2 and these terms can be estimated separately

on the two test sets DTest,1 and DTest,2. Let Pτ (z) := P0 + τ(δz − P0) = τδz + (1 − τ)P0.

Then we have

V (f0, Pτ (z)) =− EPτ (z)(Y − f0(X))2 = −
[
τ Eδz(Y − f0(X))2 + (1− τ)E0(Y − f0(X))2

]
=−

[
τ(y − f0(x))2 + (1− τ)E0(Y − f0(X))2

]
and so

φ0(z) = lim
τ→0

1

τ
[V (f0, Pτ (z))− V (f0, P0)]

= lim
τ→0

1

τ

[
−
[
τ(y − f0(x))2 + (1− τ)E0(Y − f0(X))2

]
+ E0(Y − f0(X))2

]
=E0(Y − f0(X))2 − (y − f0(x))2.
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Thus, η2
0 = E0(φ0(Z))2 = Var((Y − f0(X))2) can be estimated by the empirical variance

s2
1 on the test set DTest,1. Similarly, φ0,s(z) = E0,s(Y − f0,s(X))2 − (y − f0,s(x))2, and

η2
0,s = E0(φ0,s(Z))2 = Var((Y − f0,s(X))2) can be estimated by the empirical variance s2

2

on the test set DTest,2. Thus, estimated variance of the difference in test MSE based on the

influence function is the same as equation (B.3) in the extrinsic version, thus showing the

direct correspondence between the intrinsic and extrinsic versions of these tests.
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APPENDIX C

ADDITIONAL SIMULATIONS IN CHAPTER 4

Figures C1 and C2 show the relationship between optimal nodesize and SNR in the medium

and high settings, respectively, described in Section 4.4.1. Figures C3–C6 show RF perfor-

mance vs maxnodes across the full range of all 10 SNRs under investigation in the low,

medium, high-5, and high-10 settings also described in Section 4.4.1. Note that Figure 4.4

was designed to show a representative subset of these and was included for the purpose of

preserving space in the main text. Figure C7 show boxplots of tunability.

108



●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●●●

●●

●●●

●

●

●

● ●●●●●

●

●●●●●

●

●●●

●

●●●●●●●● ●●

●

●●●●●●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●●●●● ●

●●

●

●●●●●●●●●●●

●

●●●

●

●●●● ●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●●

●●

●
●

●●

●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●● ●●●●●●

s: 3 s: 5 s: 10

p: 10
p: 100

0.05 0.14 0.42 1.22 3.52 0.05 0.14 0.42 1.22 3.52 0.05 0.14 0.42 1.22 3.52

0

50

100

150

200

250

0

50

100

150

200

250

Signal−to−Noise Ratio

O
pt

im
al

 N
od

es
iz

e

Medium Setting (n >= p): n=500

Figure C1: Boxplots of optimal nodesize of RFs in the Medium setting (n = 500) over 100

repetitions.

109



●●

s: 5 s: 10 s: 20

n: 50
n: 100

0.05 0.14 0.42 1.22 3.52 0.05 0.14 0.42 1.22 3.52 0.05 0.14 0.42 1.22 3.52

0

5

10

15

20

25

0

10

20

30

40

50

Signal−to−Noise Ratio

O
pt

im
al

 N
od

es
iz

e

High Setting (n < p): p = 1000

Figure C2: Boxplots of optimal nodesize of RFs in the High setting (p = 1000) over 100

repetitions.
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Figure C3: Performance of RFs with mtry equal to p/3 (the default value) and p (bagging)

in the low setting. Vertical bars denote one standard error.
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Figure C4: Performance of RFs with mtry equal to p/3 (the default value) and p (bagging)

in the medium setting. Vertical bars denote one standard error.
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Figure C5: Performance of RFs with mtry equal to p/3 (the default value) and p (bagging)

in the high-5 setting. Vertical bars denote one standard error.
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Figure C6: Performance of RFs with mtry equal to p/3 (the default value) and p (bagging)

in the high-10 setting. Vertical bars denote one standard error.
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Figure C7: Boxplots of the tunability of random forests dRF (purple), tunability of maxnodes

dmaxnodes (green), tunability of mtry dmtry (blue) and additional improvement of tuning both

instead of either one gmtry,maxnodes (red) at the 10 SNR levels across the 100 repetitions.

Default mtry = 0.3p and default maxnodes = n.
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