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Maintaining Communication at Scale

with OpenSHMEM

Collin Abidi, M.S.

University of Pittsburgh, 2022

As the dawn of the exascale era arrives, high-performance computing (HPC) researchers

continue to seek parallel-communication models that perform well on increasingly large dis-

tributed systems. The SHMEM (Shared Hierarchical Memory) family of parallel program-

ming libraries has been under development over the last three decades by a community

of researchers, government organizations, and corporations. SHMEM has a variety of im-

plementations that have recently been expanded to distributed-memory parallel-computing

clusters. The OpenSHMEM project is one of these efforts and has emerged as a standardized

application-programming interface that is designed for portability and support of the parti-

tioned global address space (PGAS) model. To investigate the performance characteristics of

SHMEM, this research focuses on developing, deploying, and collecting metrics of two vari-

ants of the 2D fast Fourier transform algorithm, as well a modified version of the Horovod

framework for distributed machine learning. A comparison to OpenMPI’s message-passing

interface (MPI) methods will be conducted as a point of reference. We show that in a 2D

FFT application that is communication-bound by a transpose stage, OpenSHMEM’s collec-

tive operations outperform that of MPI RMA. On this 2D FFT application, we demonstrate

efficiencies of 0.81, 0.80, and 0.93 at largest node counts on PSC Regular Memory, PSC

Extreme Memory, and NERSC Perlmutter, respectively.
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1.0 Introduction

As the size of a distributed-memory parallel-computing cluster increases, the challenge

of communicating between processing elements (PEs) becomes a major performance bot-

tleneck. To address this, the HPC community has devoted significant effort to exploring

the performance characteristics of parallel communication libraries. As communication com-

plexity increases as a function of the number of nodes in a distributed system, the ability

for a communication library to maintain scalability is critical to ensure reasonable appli-

cation runtime on large problems. A fully connected system of N nodes, for example, has

N(N−1)
2

connections, which becomes cost-ineffective when considering thousands of nodes.

Along with minimizing application execution time, optimizing communication costs enables

a higher performance-per-watt ratio. Performance-per-watt is a critical metric when consid-

ering exascale systems that utilize power on the order of megawatts [2]. The new Frontier

HPE Cray exascale system, for example, has a peak performance of 1.6 FP64 exaflops and

attains 52.23 gigaflops-per-watt [2]. One-sided communication libraries enable application

programmers to fully leverage the parallelism offered by such systems by enabling finer-

grained communication between PEs.

Since shared clusters have become a popular way to perform large-scale experiments

in a cost-effective manner, hardware-agnostic one-sided communication methods have been

demonstrated to reduce application runtimes and effectively utilize system resources by em-

ploying a remote memory access (RMA) model [13, 28, 18, 40]. The SHMEM family of pro-

gramming libraries supports RMA with PGAS-style programming on distributed-computing

systems. As an alternative to the popular message-passing interface (MPI) communica-

tion paradigm, SHMEM aims to simplify one-sided communication from the programmer’s

perspective while retaining performance benefits of techniques such as latency-hiding. To

evaluate the performance of the OpenSHMEM library, this research performs runtime-scaling

analyses of several applications across multiple distributed-computing clusters.

This study is organized as follows: Section 2 introduces the reader to crucial concepts

in distributed computing and the OpenSHMEM framework, including an overview of the
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PGAS model and the types of operations supported by OpenSHMEM. Section 3 details

the applications under study. Section 4 provides insight into related research. Section 5

outlines the experiments performed, platforms evaluated, and metrics collected. Section

6 presents the results of the experiments conducted. Section 7 analyzes the results and

discusses performance implications.
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2.0 Background

In this section, we discuss the distributed-computing model and how parallel-computing

clusters perform communication. We then explore details specific to the OpenSHMEM li-

brary, such as communication primitives, one-sided communication, and types of application-

programming interface (API) calls.

2.1 Distributed Computing
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Figure 1: Two distributed-computing models with different processor (P), memory (M), and

cache (C) configurations [14].

In this section we discuss parallel computing terms relevant to this research. A distributed-

memory parallel-computing system can be defined as a set of p processors with some memory

configuration, all of which are connected over a network interconnect. By coordinating with

an agreed-upon set of interactions as defined by an API, p processors perform a total of

N work. Examples of distributed-computing systems can be seen in Figure 1 [14]. We

are interested in studying distributed-memory parallel applications on non-uniform memory
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access (NUMA) systems with local cache and memory on each PE rather than the unified

memory access model that reaches memory through an interconnect, such as a system bus.

This model can be seen in the right side of Figure 1.

When running an application on a parallel system, extra time is added to the total execu-

tion time due to the overhead of communication. This amount, known as the total overhead,

measures any extra work done by the parallel program, and is denoted as To. Amdahl’s Law,

as outlined in Equation 2–1, provides insight into how a parallelized application performs

when compared to the optimal serial version of the same application. In Amdahl’s Law,

Ts is the amount of time spent on serial execution, Tp is the amount of time spent on the

parallelized version, and p is the number of processors. FE is the fraction of an applica-

tion that can be parallelized, and SE is how much faster the application would run if the

enhanced runtime could be used for the entire application. For a fixed problem size, the

upper limit of speedup is bounded by the fraction of code that remains serialized [23]. Weak

scaling, in contrast, follows the observation from Gustafson’s Law that, as the amount of

system resources increases, the problem size can also be increased. We define cost, or work,

as the product of the parallelized application runtime and the number of parallel processors,

as seen in Equation 2–4. A cost-optimal system is also called a pTp-optimal system. As

such, the upper limit on scaled speedup is not bound by the amount of overhead, as can be

seen in Equation 2–2. Efficiency is computed as the amount of speedup divided by the total

number of processors. Efficiency is a critical measurement when determining application

performance on distributed systems, as maintaining scalability is preferred.

Speedup = Ts/Tp =
1

(1− FE) +
FE

SE

(2–1)

Scaled Speedup = Ts + (p× Tp) (2–2)

Efficiency = E =
Speedup

p
(2–3)

Cost = Work = p× Tp (2–4)
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When considering the upper bound of speedup and efficiency, an application that per-

fectly utilizes system resources would achieve a speedup exactly equal to the number of PEs,

Speedup = N , and efficiency would be exactly one:

Ideal Efficiency = Speedup/N = N/N = 1

The speedup curve produced by such an application would follow a linear trend, and any real-

world application that does not perfectly utilize resources would fall below this limit. How-

ever, since theory often does not conform to reality, we typically observe sublinear speedup.

Sometimes we observe superlinear speedup, which occurs when the observed speedup is

greater than the number of available processors, a situation that is theoretically impossible,

indicating an issue with the serial baseline. Figure 2 demonstrates the relationship between

parallel execution time, speedup, and efficiency. An application is run several times at two

different processor counts, p = N and p = M , and the average parallel execution time is

calculated as the mean of values at each of these processor counts. These values are indicated

as blue and red crosses in the left chart of Figure 2. Both of these values are mapped to the

center chart (speedup) by dividing the Ts of the corresponding problem size by the Tp value

indicated by the crosses. These points are mapped to the chart on the right (efficiency) by

dividing the each value in the center chart by the number of processors at their respective

locations, p = N and p = M .

2.2 One- and Two-Sided Communication

When performing computations in parallel using message passing, one-sided and two-

sided communication patterns are two commonly used paradigms with critical differences.

The two-sided communication pattern is a synchronized operation performed between two

processes. A process that requests data from the private address space of another process is

called the receiver, whereas the process that holds the requested data is called the sender. To

complete a two-sided communication between two processes, both processes must explicitly

be involved by using a handshake procedure. Until the sender is available to communicate
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with the receiver, the receiver must wait. This wasted time that could be spent performing

useful computation is called “idle time”, as the receiver is idle until the sender can fulfill

its request. In contrast, the one-sided communication model allows for the receiver to ac-

cess data from the remote process without interruption. This ability to access data without

interruption is valuable when performing distributed computations that require small- to

medium-sized amounts of data sharing and do not require large amounts of synchroniza-

tion [19]. A downside of the one-sided communication model is that data being shared via

one-sided operations may not be entirely complete. If one process is finished with the com-

putation stage of a calculation and requires the results from a corresponding process that is

not complete, the finished process will not be able to access the correct data until the com-

putations are finished. Applications that require such a synchronization step are restricted

to pseudo-two-sided behavior.
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2.3 OpenSHMEM for Multi-Node CPU Systems

OpenSHMEM is message-passing protocol that takes inspiration from the widely used

MPI. However, instead of relying on the programmer to implement highly complicated code,

potentially leading to undefined behavior, SHMEM provides an interface that reduces pro-

gramming overhead while retaining the performance benefits of one-sided MPI. OpenSH-

MEM uses the PGAS model [19] to enable single-program, multiple-data (SPMD) program-

ming. PEs can be single- or multithreaded and can reside on a single node or multiple nodes.

PEs communicate using OpenSHMEM routines and can proceed asynchronously. Each PE

in an OpenSHMEM program has two types of data objects: private and shared. Private

data objects are allocated in local memory using malloc(). These private data objects are

only accessible by the PE which originally allocated the object. Symmetric data objects are

allocated in the specially designated symmetric heap using the shmem malloc() function.

These symmetric data objects are remotely accessible by other PEs without interrupting

the computations on the source PE. Communication of data between PEs can only occur

using data allocated on the symmetric heap, which can be both a benefit and a drawback

Figure 3: PGAS Model
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from the programmers perspective. This can be a benefit if the parallel computing cluster

has enough memory, but can be a drawback if the problem size is large enough to exceed

memory capacity. The reader is referred to [19] for a full explanation of the OpenSHMEM

specification. Table 1 outlines a set of basic SHMEM operations that are commonly used to

pass messages between PEs.

The usage of symmetric data objects is crucial in reducing communication and compu-

tation overhead. Where one-sided MPI programs would require significant memory man-

agement and potentially complex memory offset calculations, OpenSHMEM simply requires

the allocation of identical symmetric variables on each PE. After the symmetric data objects

are allocated, each PE is free to communicate with others at will. The reader is referred to

[22, 21, 10, 32] for further information on collective operations and their performance.

8



Table 1: A Subset of SHMEM Routines

Category Routine Operation

Library Setup and

Query

Initialization void shmem init(...)

Query int shmem my pe(...)

Accessibility shmem pe accessible(...)

Symmetric Data Object

Management

Allocation void shmem malloc(...)

Deallocation void shmem free(...)

Reallocation void *shmem realloc(...)

Remote Memory

Access

Nonblocking Put void shmem put nbi(...)

Nonblocking Get void shmem get nbi(...)

Atomic Memory

Operations

Increment TYPE shmem atomic inc(...)

Bitwise Operations TYPE shmem atomic xor(...)

Synchronization and

Ordering

Fence void shmem fence(...)

Quiet void shmem quiet(...)

Collective

Communication

Broadcast int shmem broadcast(...)

Collection int shmem collect(...)

Reduction int shmem TYPE OP reduce(...)

All-to-all int shmem TYPE alltoall(...)

Barrier void shmem barrier all(...)

Mutual Exclusion
Set Lock void shmem set lock(...)

Test Lock int shmem test lock(...)

9



3.0 Applications

This research examines the performance of two applications: distributed 2D fast Fourier

transform (2D FFT) and one-sided, multi-node CPU CNN training for high-energy physics

with Horovod (HEP-CNN). The 2D FFT application has two implementations. The first

uses standard collective operations to reduce program runtime, whereas the second uses

communication-computation overlap. The applications were selected due to their widespread

use in the research community and usefulness as an indicator for system scalability.

3.1 Distributed 2D Fast-Fourier Transform

The discrete Fourier transform (DFT), used in a variety of scientific applications, is

efficiently computed using the FFT. Equation 3–1 outlines the general form of a 1D real-to-

complex DFT. In Equation 3–1, k = 0, ..., N − 1 is the number of elements in the 1D input

vector, ωn = e2πn/N is a “twiddle factor”, X[k] is a 1D complex vector of N − 1 complex

numbers in the frequency domain, and x[n] is a 1D real vector of N − 1 real numbers in the

time/space domain.

X[k] =
N−1∑
n=0

ωnk
n x[n] (3–1)

The FFT has a wide variety of implementations, the most common of which is derived

from the Cooley-Tukey FFT algorithm [8]. The Cooley-Tukey FFT, as outlined in Equation

3–1, calculates the DFT as a recursive decomposition into smaller DFTs. Asymptotically,

the runtime is reduced from DFT’s O(N2) to FFT’s O(Nlog(N)), with the assumption that

N = rm where r = 2 or 4 and m is a real, positive-valued integer [8]. A 2D DFT can be

decomposed into a series of 1D DFTs along the row dimension, a 2D transpose, a series of

1D DFTs along the new row dimension, and finally another 2D transpose. Psuedocode of

this procedure is described by Algorithm 1. In this work, we focus on the industry-standard

Fastest Fourier Transform in the West (FFTW) implementation, which efficiently computes

10



DFTs on arbitrarily-sized input data by tuning three features of the FFT. First, FFTW

searches amongst a variety of FFT implementations to discover the optimal algorithm for

the machine that it runs on. Secondly, FFTW uses a code generator for generating small

transforms in an optimized manner. Finally, FFTW uses a divide-and-conquer strategy

to optimally distribute subtasks among the system’s memory hierarchy [29]. Algorithm 2

outlines the steps that a generic implementation uses to transform an image from real space

to complex space.

Algorithm 1: Serial 2D FFT

Data: N × N real data matrix

Output: 2 × N × N complex data matrix

Allocate 2D input matrix, X0

for row i in X0 do
Perform 1D FFTW on row i

end

2D transpose among X0

for row i in X0 do
Perform 1D FFTW on row i

end

2D transpose among X0

Algorithm 2: Distributed 2D FFT

Data: N × N real data matrix

Output: 2 × N × N complex data matrix

send data chunk i from PE0 to PEi

for row i in sub-matrix do
Perform 1D FFT on row i

end

Distributed 2D transpose

for row i in sub-matrix do
Perform 1D FFT on row i

end

Distributed 2D transpose

11



3.2 HEP-CNN: High-Energy Physics Convolutional Neural Networks

The computational complexity and model size of deep neural networks (DNNs) has in-

creased as they demonstrate success on high-level reasoning tasks [36]. With much evidence

that larger networks tend to perform better on their respective tasks [37], training DNNs

in a distributed fashion has become a popular method. Distributed deep learning makes

the process of training large DNNs viable, potentially reducing training time from weeks

to hours. The amount of speedup depends mainly upon the size of the network, amount

of data, algorithm complexity, memory usage, hyperparameters, and chosen hardware plat-

form. During DNN training, we aim to achieve speedup by overlapping communication with

computation while avoiding techniques that do so at the cost of reduced data and parameter

sizes [37] [38]. In other words, we wish to preserve the benefits of large, complex DNNs while

exploiting HPC techniques to achieve faster training times.

Uber’s distributed deep-learning framework, Horovod [34], is a popular tool for re-

searchers in industry and academia due to its ease of use. Instead of having to implement

an app-specific data-parallel model, it enables researchers to simply insert several lines of

code into already-existing TensorFlow, PyTorch, Keras, MXNET, or Spark scripts. When

performing gradient descent across multiple nodes, Horovod implements a special Tensor

Fusion Buffer to average tensors on PEs that are idle. A modified Ring Allreduce, intro-

duced by Baidu [33], is used to more efficiently compute gradient updates when compared

to standard implementations of Allreduce. Ring Allreduce works by exchanging data

chunks to neighboring nodes in a circular fashion to achieve optimal bandwidth usage [30].

We further optimize this step by taking advantage of OpenSHMEM’s one-sided communi-

cation patterns. Algorithm 3 outlines the training procedure. The HEP-CNN application

uses DNNs to classify events in a massive supersymmetric particle dataset as already-seen or

novel events. This dataset, collected at the Large Hadron Collider at CERN, consists of data

from proton-proton collisions observed using the ATLAS detector [5, 1]. We implemented

a modified version of the Horovod framework for distributed deep learning on CPUs to run

the HEP-CNN framework to compare application runtimes using a real-world use-case. We

compare the default Horovod configuration, implemented with one-sided MPI, to our new

12



OpenSHMEM implementation of Horovod on the NERSC KNL and NERSC Haswell clusters

using the dataset provided by NERSC and the methodology outlined by the authors of [5].

Algorithm 3: Asynchronous Stochastic Gradient Descent

initialize node, η

Broadcast initial parameters, Θ0

for epoch, t, in epochs do

for iteration, τ , in epoch length do

for data chunk, x, in local data do
pass x through model

end

compute gradient update, θτ+1,η = θτ,η −∇θτ,ηJ(x)

end

Allreduce computed gradient updates θη

Broadcast updated model, Θt

end

13



4.0 Related Research

A wide variety of research on variants of the distributed FFT algorithm exist in the liter-

ature. Gerstenberget et al. develop a one-sided implementation of the MPI 3.0 specification

that leverages remote direct memory access (RDMA) networks [12]. They demonstrate that

by overlapping communication and computation of the NAS 3D FFT benchmark on the

Blue Waters system with a Cray Gemini interconnect, performance of a 2D-decomposed 3D

FFT can be improved. In their evaluation of the distributed memory application (DMAPP)

networking API, they demonstrate the effect of protocol on the inter-node overlap ratio.

They test the MPI-3.0, Cray Unified Parallel C (UPC), and Cray MPI-2.2 libraries [12].

Bell et al. demonstrate that PGAS languages which leverage one-sided communications,

such as Chapel UPC, have significant performance benefits on bandwidth-limited applica-

tions [4]. The NAS Fourier transform benchmarks are used as a study to evaluate the

benefits of overlapping communication with computation while spreading communication

events throughout the computation events. Compared to two-sided versions, their one-sided

versions offer an average improvement of 15%.

Song et al. describe an implementation of a parallel 3D FFT application with 2D decom-

position that achieves a 1.83× performance improvement over FFTW [35]. The performance

improvement comes from several optimizations, including the usage of MPI Ialltoallv

with non-uniform data decomposition, determining whether or not to reorder elements in

a 1D FFT, and removing the transpose step when the matrix is square. Additionally, 24

tunable parameters are introduced that balance computation and communication time to

maximize overlap.

Chapman et al. present the OpenSHMEM communications library as a community

project [7] that includes one-sided point-to-point and collective communication operations,

leveraging modern networking interconnects such as InfiniBand. The authors discuss their

OpenSHMEM interface and its goal of unifying the diverse set of SHMEM libraries into a

single standard. The OpenSHMEM library that we use in this research comes directly from

this effort.
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Jose et al. conduct a performance evaluation of hybrid MPI and OpenSHMEM over

InfiniBand. The authors developed a hybrid library that supports both MPI and OpenSH-

MEM with the goal of improving scalability on InfiniBand networks, evaluating performance

on Graph500 and 2D-Head modeling benchmarks. On a 144-node Intel Westmere system,

they demonstrate that their implementation reduces network consumption, lowers collective

communication time, and improves atomic memory operation routine latencies [20].

The OpenSHMEM library was extended by Potluri et al. to multi-node GPU systems

with the NVSHMEM library to address strong scaling limitations on multi-node GPU clus-

ters [31]. Whereas the mainstream approach of heterogeneous computing is to use CPUs for

communication and GPUs for computation, the NVSHMEM library implements an inter-

face over NVLink and NVSwitch that enables communication of data between GPUs. This

bypasses the mainstream usage’s requirement of using the CPU as an intermediary, which

is limited by the GPU PCIe bandwidth. As such, the NVSHMEM model aims to hide la-

tencies by enabling asynchronous, fine-grained data accesses using RDMA. On a multi-GPU

transpose application, the NVSHMEM library demonstrated simplified code and increased

bi-directional bandwidth when compared to CUDA-aware MPI, with the gap between the two

decreasing as the matrix dimension was increased [31]. Hsu et al. evaluate the NVSHMEM

library on the Summit supercomputer, benchmarking a Jacobi solver, matrix multiplication,

and two math kernels [16]. Another work that leverages NVSHMEM is NVIDIA’s recently

released cuFFTMp library, which expands their cuFFT library to multi-node GPU plat-

forms [6]. They show that weak-scaling performance on the Selene cluster maintains 75% of

peak performance as the number of GPUs and problem size increases to 4096 and 163843,

respectively.
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5.0 Methodology

In this section we describe the platforms used and steps taken during application bench-

marking. To minimize the effect of operating-system interrupts on our observations, we

perform 30 iterations of each application on each of the chosen parameters (problem size,

number of PEs, platform). We describe the reasoning behind specific design choices and

algorithmic details to ensure maximum clarity.

5.1 Platforms

To determine performance characteristics of the chosen applications, homogeneous plat-

forms with both OpenMPI and OpenSHMEM compatibility were selected. For the 2D

distributed FFT application, the NERSC KNL, NERSC Haswell, NERSC Perlmutter, PSC

Regular Memory, and PSC Extreme Memory platforms were selected [9]. For the HEP-CNN

application, the Intel-based NERSC KNL was chosen. A serial-baseline application was exe-

cuted on a single node of each platform to determine speedup and efficiency as the number of

nodes increases. Specific details of each of these platforms can be found in Table 2 [27, 39].

The first three testbeds (NERSC KNL, Haswell, and Perlmutter) are hosted by the

National Energy Research Scientific Computing Center (NERSC) Cori system. NERSC

KNL consists of 9,688 nodes, each containing dual-socket Intel Xeon Phi 7250 processors

running at 1.4 GHz. Each of the processors in a node has 34 physical cores and up to 186

virtual cores. The KNL processor can perform eight double-precision operations per cycle.

Each node has 96 GB of DDR4 memory, six blades of 16 GB, running at 2400 MHz with

102 GiB/s peak bandwidth. Additionally, each node carries an extra 16 GB of MCDRAM

high-bandwidth memory with 450 GB/s memory bandwidth. KNL cores have L1 caches

with 32 KiB of instruction cache and 32 KB of data cache. Each tile, consisting of two cores,

shares 1.0 MB cache-coherent L2 cache. KNL cores are connected via 2D mesh network with

two vector-processing units per core. Each node has two AVX-512 vector pipelines dedicated
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for special vectorized processing on double-precision elements. The Haswell cluster consists

of 2,388 nodes, each with dual-socket Intel Xeon E5-2698 v3 processors running at 2.3 GHz.

Each processor on a node has 16 cores and can support 2 hyper-threads. Additionally, each

core has two 256-bit wide vector units that lend themselves to vectorized operations. Each

node has four blades of 16 GB DIMM for a total of 128 GB DDR4 memory per node running

at 2133 MHz. The slightly higher amount of memory on Haswell nodes lends itself to larger

allocations in symmetric memory, which allows slightly larger input-data matrix sizes in the

2D FFT application.

Table 2: Platform specifications of [27] [39] [26] are listed. Entries with a dash (-) are absent

due to a lack of public information.

Platform Processor Nodes Cores per Frequency
CPU (GHz)

NERSC KNL Dual Intel Xeon Phi 7250 9688 34 1.4
NERSC Haswell Dual Intel Xeon E5-2698 v3 2388 16 2.3
NERSC Perlmutter Quad AMD EPYC 7763 3072 64 2.45
PSC RM Dual AMD EPYC 7742 488 64 2.25-3.40
PSC EM Quad Intel Xeon Platinum 8260M 4 24 2.40-3.90

Memory L1 Cache L2 Cache L3 Cache
(GB) (KB) (KB) (MB)

NERSC KNL 96 DDR4 + 16 MCDRAM 64 1024 -
NERSC Haswell 128 DDR4 64 256 40
NERSC Perlmutter 256 DDR4 32 512 32
PSC RM 256 DDR4 - - 256
PSC EM 4096 DDR4 - - 37.75

Global Peak
Bisection

Interconnect Topology Speed Bandwidth
(Gb/s) (TB/s)

NERSC KNL Cray Aries Dragonfly - 45
NERSC Haswell Cray Aries Dragonfly - 45
NERSC Perlmutter HPE Cray Slingshot Arbitrary - -
PSC RM Mellanox InfiniBand HDR Fat Tree 200 -
PSC EM Mellanox InfiniBand HDR Fat Tree 200 -

Of significant note is the usage of the newly-accessible NERSC Perlmutter cluster. Perl-

mutter ranks as the fifth most powerful computer of the Top500 HPC list, as of May 2022,

and has become available for open science use through NERSC [25]. The heterogeneous,
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GPU-accelerated partition has 1,536 available nodes with one AMD EPYC 7764 “Milan”

processor running at 2.45 GHz, 256 GB RAM, and 64 cores per node. The CPU-only par-

tition has nodes consisting of dual AMD EPYC 7763 “Milan” CPUs running at 2.45 GHz,

64 cores per CPU, and 512 GiB RAM per node [26]. The nodes are connected via HPE

Cray Slingshot with Rosetta network switches and network-interface cards (NICs) [26]. All

CPUs are connected to all GPUs and NICs on a heterogeneous node using PCIe 4.0 [26]. In

this work, we restrict ourselves to the CPU-only partition and are limited by the number of

nodes (four) available per user during the open trial period.

On NERSC, the Cray-OpenSHMEMX libraries was used for 2D FFT and HEP-CNN. The

2D FFT application was compiled with Cray clang 13.0.1 targeting the x86 64 platform. KNL

and Haswell both used Cray-OpenSHMEMX 9.1.2, whereas Perlmutter used 11.5.3. The

Horovod build used for the HEP-CNN application was compiled with Cray-OpenSHMEMX

9.1.2, Python 3.7, Intel Tensorflow 1.15.0, and Horovod 0.21.3. On PSC, the OpenMPI 4.0.5

library compiled with GCC 10.2.0 and FFTW 3.3.8 is used for the 2D FFT application.

OpenMPI 4.0.5 includes an implementation of the OpenSHMEM 1.4 specification. The

three platforms all have identical interconnect and topology, but vary in their processor

configuration.

5.2 Distributed 2D FFT with OpenSHMEM

Our distributed 2D FFT implementation using SHMEM was implemented in an iden-

tical fashion across platforms to ensure that differences in runtime behavior do not result

from design choices. This implementation is described in Algorithm 4. The application is

divided into seven stages: allocation, data distribution, local computation, global transpose,

local computation, global transpose, and deallocation. During the first stage, a full N ×N

matrix, X0, and a N×N
p

sub-matrix, X1, of double-precision values (eight bytes per value)

are allocated in the symmetric memory region. We assume that N is a real, positive integer

chosen such that the matrix is evenly divisible among all p PEs. Allocating both X0 and X1

is a design choice, as one could instead allocate only X1 in symmetric memory to save N2
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memory. However, since we later perform a 2D transpose operation on the entire matrix, we

chose to use the pre-optimized collective operation rather than designing one from a series

of one-sided put operations. Since each PE is required to allocate symmetric variables in its

own memory address space, this design choice limits the size of the input data matrix that

we can operate on.

Once the values in X0 are initialized on PE0, each PE performs a one-sided get operation

from X0 on PE0 into its own X1 memory region. Once this step is complete, each PE is

free to proceed to the first local computation stage. In this stage, each PE iterates through

the rows in X1, copying the values into a special N -length buffer allocated by FFTW. This

buffer executes the FFTW plan, which is optimized to take advantage of cache sizes and

chip architecture to quickly compute the 1D FFT. After this occurs, the resulting 1D row is

copied back into the original space in X1.

After each PE is finished with this stage, the Alltoall distributed-transpose operation

is called by each PE, providing X1 as the local data buffer to be transposed into the each PEs

X0. Without this optimized collective communication operation, we would have to design a

sub-optimal implementation of one-sided communication operations. The next stage of the

algorithm is identical to the first computational stage, except this stage operates on complex

values. Following this, another distributed 2D transpose occurs, and the final output matrix

of complex numbers is present on each PE residing in X0.

Table 3: 2D FFT configuration parameters

Platform PE PE Input Matrix Input Matrix
Count Count Size (GB) Size (GB)
(Low) (High) (Low) (High)

NERSC KNL 2 256 0.1 3.2
NERSC Haswell 2 256 0.8 20
NERSC Perlmutter 2 4 0.8 20
PSC RM 2 16 0.1 7.2
PSC EM 2 16 0.1 80

When running the 2D FFT application, runtime was recorded as the difference between

the end and start times of each function call as to exclude time spent on operating system

interaction. On each cluster, the number of nodes and size of the input data matrix are

scaled according to Table 3. Each application is executed 30 times per configuration. Best-
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case serial execution time for each configuration, collected using a single node running the

2D FFTW algorithm, is divided by the average execution time over the 30 runs to calculate

speedup. To calculate efficiency, the speedup is then divided by the number of PEs in the

configuration.

Algorithm 4: 2D Distributed FFT

Data: N × N real data matrix

Output: 2 × N × N complex data matrix

Initialize SHMEM environment

Allocate 2D symmetric input matrix, X0

Allocate 2D symmetric sub-matrix, X1

shmem get() data chunk i from X0 on PE0 to X1 on PEi

for row i in X1 do
Copy row i to fftw complex buffer

Perform 1D FFTW on row i

Copy buffer to X1

end

Alltoall distributed 2D transpose from X1 to X0

for row i in sub-matrix of X0 do
Copy row i to fftw complex buffer

Perform 1D FFTW on row i

Copy buffer to X1

end

Alltoall distributed 2D transpose from X1 to X0

Finalize SHMEM environment

5.3 Comm-Comp Overlap Distributed 2D FFT with OpenSHMEM

To compare OpenSHMEM against alternative libraries, we implement a different version

of the 2D FFT using communication-computation overlap and benchmark on the NERSC

KNL and Haswell clusters. We compare our comm-comp overlapped SHMEM application
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against the distributed FFTW and one-sided MPI Remote Memory Access (RMA) applica-

tions. The distributed FFTW implementation is provided by NERSC, and the MPI RMA

implementation was built following the methodology of [12]. A serial-baseline implemen-

tation of the 2D FFT was collected for each of the problem sizes. Our SHMEM 2D FFT

application leverages direct overlapping of communication and computation by dynamically

retrieving rows of data from PE0 rather than requesting one large chunk at a time. We com-

pare this implementation to the distributed 2D FFTW-MPI and distributed 2D one-sided

MPI RMA applications on only the NERSC KNL and NERSC Haswell clusters. When

compared with the FFTW-MPI application, our app differs in that it lacks the parameter

tuning behavior. Whereas FFTW-MPI focuses on optimal computation by automatically

decomposing the FFT into sizes that can fit easily into cache, our implementation focuses

on optimizing the collective communication with one-sided behavior. The one-sided MPI-

RMA implementation similarly focuses on optimizing the collective communication stage,

although it requires the use of “memory windows” for synchronization purposes [15]. Algo-

rithm 5 provides psuedocode of this process. Table 4 describes the parameters used in this

experiment.

Table 4: Comm-comp overlap 2D FFT configuration parameters

Platform PE PE Input Matrix
Count Count Size (GB)
(Low) (High)

NERSC KNL 2 16 7.2
NERSC Haswell 2 16 7.2
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Algorithm 5: Comm-comp Overlap Distributed 2D FFT

Data: N × N real data matrix

Output: 2 × N × N complex data matrix

Initialize SHMEM environment

Allocate 2D symmetric input matrix, X0

Allocate 1D symmetric sub-matrix, X1

Allocate symmetric integer, i

while i < N

shmem get nbi() row i from X0 on PE0 to X1

Copy to fftw complex buffer

Perform 1D FFTW

Copy buffer to X1

shmem put nbi() from X1 to X0[i] on PE0

shmem atomic increment(i)

Local 2D transpose of X0 on PE0

while i < N

shmem get nbi() row i from X0 on PE0 to X1

Copy to fftw complex buffer

Perform 1D FFTW

Copy buffer to X1

shmem put nbi() from X1 to X0[i] on PE0

shmem atomic increment(i)

Local 2D transpose of X0 on PE0

Finalize SHMEM environment

5.4 HEP-CNN with SHMEM-based Horovod

For our HEP-CNN application, a serial baseline does not exist, as the Horovod frame-

work is inherently parallel. As such, we do not evaluate HEP-CNN in terms of speedup and
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efficiency, but only by execution time of epochs. When running the 2D FFT application on

the PSC EM cluster, only one node is allocated per-job due to resource limitations. As a

result, we run our scaling test by instantiating multiple PEs on a single EM node rather

than the typical method of requesting multiple nodes and allocating one PE per node. As

described in Section 3.2, we perform a one-to-one substitution of MPI communication opera-

tions with SHMEM operations. Due to the limitations imposed by Horovod’s Tensor Fusion

Buffer, we are required to copy the gradient buffer between the symmetric address space and

an identically-sized buffer in private address space in order to perform the Allreduce op-

eration when averaging gradients [34]. Algorithm 6 describes the modified procedure, which

consists of calls to shmem fcollect(), shmem sum to all(), shmem collect(), and

shmem broadcast(). The architecture of HEP-CNN consists of three convolution and

pooling units with ReLU activation functions [5]. These three convolutional layers are then

output into two fully-connected layers and trained using a cross-entropy loss function, op-

timized by ADAM [5]. The dataset used for training is 1.8 GB when compressed into H5

format and consists of 224 × 224 grayscale imagery with output labels binned into 64 × 64

binary images. The configuration parameters for the HEP-CNN experiments are shown in

Table 5. We limit ourselves to two nodes of NERSC KNL due to compatibility requirements

between Horovod and those of KNL.

Table 5: HEP-CNN configuration parameters

Platform PE Image Resolution
Count (pixels)

NERSC KNL 2 224× 224
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Algorithm 6: SHMEM Asynchronous Stochastic Gradient Descent

initialize node, η

shmem broadcast() initial parameters, Θ0

copy from symmetric memory to for epoch, t, in epochs do

for iteration, τ , in epoch length do

for data chunk, x, in local data do
pass x through model

end

compute gradient update, θτ+1,η = θτ,η −∇θτ,ηJ(x)

end

shmem sum to all() computed gradient updates θη

shmem broadcast() updated model, Θt

end
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6.0 Results

This section presents the data collected over the course of this research. First, the

OpenSHMEM distributed 2D FFT application is examined across the platforms previously

outlined. We also show results for the alternative version of 2D FFT SHMEM to FFTW-MPI

and MPI RMA. Finally, data collected for the HEP-CNN application is shown.

6.1 Distributed 2D FFT with OpenSHMEM

The results of the first 2D FFT implementation on the NERSC and PSC platforms

are shown in Figure 4. The chart displays execution time, speedup, and efficiency metrics

collected with parameters specified in Section 5. The line color in each figure indicates the

input data matrix size, which scales according to each figure’s colorbar. It is important to

note that platforms do not share identical ranges. As such, the color in one chart may not

correspond with the same color on another platform if the scales are different. In all cases,

we use double-precision values with eight bytes per element. It should be noted that the

maximum number of PEs differs between platforms due to node availability. Execution time

is recorded by the OpenMP timing mechanism that is called before and after each function.

SHMEM setup and finalize API calls are ignored for the sake of simplicity, which is consistent

with our methods when recording MPI runtimes. Memory allocation is analyzed to more

accurately model typical application performance.
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Figure 4: 2D FFT performance on PSC and NERSC
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6.2 Comm-Comp Overlap Distributed 2D FFT with OpenSHMEM

The results of the comm-comp overlap 2D FFT algorithm on NERSC Haswell and

NERSC KNL are shown in Figure 5. Again, Figure 5 follows execution parameters specified

in Section 5. The line colors in these charts do not indicate input data matrix size, but

instead denote implementation library. The markers on each line indicate whether the line

belongs to Haswell or KNL. Execution time is recorded using the same method as our first

2D FFT application. Serial runtimes are collected using the 2D FFTW app on a single node

with 16 OpenMP threads with processors bound in ”spread” mode. Our results demonstrate

the superiority of the FFTW-MPI application at low-node counts across both platforms. On

both Haswell and KNL, FFTW-MPI outperforms our SHMEM and MPI RMA implementa-

tions as a result of not taking advantage of the distributed divide-and-conquer optimizations,

discussed in Section 5. Our SHMEM implementation, however, outperforms MPI RMA on

both Haswell and KNL at the cost of double the memory consumption due to the use of

symmetric-memory buffers that copy memory into and out of private address spaces. The

poor scalability of the MPI RMA app could potentially be attributed to limimted optimiza-

tion opportunities, as the code implementations of SHMEM and MPI RMA are identical

aside from the use of “memory windows” in the MPI RMA app.

Figure 5: Comm-comp overlap performance on KNL and Haswell
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6.3 HEP-CNN with OpenSHMEM and MPI

Metrics collected for our HEP-CNN application on NERSC KNL are shown as a density

plot in Figure 6. Both before and after a Mann-Whitney U Test to reject statistical outliers,

our SHMEM implementation demonstrates epoch times that are clustered lower than the

MPI equivalent. However, this difference is only on the order of seconds at a low node count,

as we collected metrics using two nodes. Figure 6 compares the distribution of Horovod

collective epoch times when using the SHMEM or MPI backends are shown. Outlier values

were rejected using a Mann-Whitney U Test to account for burn-in iterations and anomalous

behavior.

Epoch Time (minutes)

D
en

si
ty

MPI

SHMEM
maxSHMEM

maxMPI

Figure 6: HEP-CNN density plot for SHMEM and MPI
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7.0 Discussion

This section reviews the charts in Section 6 and discusses the reasons behind application

performance. The contribution of different stages to 2D FFT app performance is examined

to verify the contribution of computation versus communication when scaling. Additionally,

it highlights performance differences between NERSC and PSC platforms.

7.1 Application Performance

Application performance depends upon the degree to which the programmer has taken

advantage of interconnect optimizations (RDMA), size of caches per processor, amount of

work available, and communication message size, among other parameters. This section

discusses the impact of these specific parameters on the performance observed in Section 6.

We also discuss the observation of superlinear behavior at specific input data matrix sizes.

7.1.1 2D FFT with OpenSHMEM

When considering scaled speedup, we see that each platform improves as the size of the

input matrix increases. This is expected, as the amount of work available plays a significant

role in resource utilization. At lower node counts for all platforms, the application exhibits

near-linear behavior. In row one of Figure 4, the speedup of KNL becomes increasingly

linear as the work amount increases, but still remains sublinear at the largest input size,

3.2 GB. In Figure 4, color indicates input data matrix size in GB. The performance falloff

after 64 PEs may be a result of the runtime dominance of the distributed transpose stage,

as the parallel overhead of the Alltoall stage increases at large p. Excluding superlinear

behavior from a poor choice of input size, KNL efficiency peaks at 0.96 on 8 nodes. Haswell

performance in row two of Figure 4 follows expected sublinear behavior as the number of

nodes increases. One data size exhibits superlinear performance as a result of poor serial
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Figure 7: Detailed serial Haswell performance on 2D FFT

performance of FFTW at non-power of two sizes [11]. Excluding superlinear behavior from

poor input sizes, Haswell efficiency peaks at 0.86 on 16 nodes. The behavior observed on

Perlmutter in row three of Figure 4 demonstrates expected scaling behavior. Since we are

limited to four nodes on the Perlmutter cluster, we cannot analyze the interconnect at large

node counts. Perlmutter efficiency peaks at 0.93 on 4 nodes.

As can be seen in Figure 7, the execution time of serial 2D FFTW does not increase

smoothly as the problem size increases. Execution time of the serial baseline application, 2D

FFTW, on Haswell is depicted. 10 iterations of each input matrix size were performed to

reduce variance from operating system interruption. This result indicates that the FFTW

library may have issues with achieving optimal results on certain architectures. The offi-

cial FFTW benchmark across many platforms indicate similar behavior, with non-powers

of two data sizes exhibiting large fluctuations in throughput performance [11]. This corre-

sponds with our description of FFTW in Section 3.1, where FFTW optimizes runtime by

automatically breaking the problem into sub-problems.
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On both Haswell and KNL in Figure 8, the total contribution of the six main stages of

the 2D FFT algorithm are shown on a 0.8 GB input matrix. A breakdown of each stage in

the 2D FFT on NERSC KNL (red) and Haswell (blue) is shown. Each value is the fraction

that the stage contributed to the total execution time of a 2D FFT on a 0.8 GB matrix. The

stage descriptions are as follows: Stages 1 and 4: shmem get nbi(). Stages 2 and 5: 1D

Local FFT. Stages 3 and 6: Distributed Transpose. The values in these charts are calculated

as

Fraction of Stage i =
T [i]∑S
k=0 T [k]

The shmem get nbi() operation in Stage 1 and Stage 4 consistently contributes very little

to the overall runtime, remaining at nearly 0.0 as we scale the number of nodes. The row-

wise 1D FFT operations in Stage 2 and Stage 5 initially contribute most of the runtime, but

decrease as the number of PEs increases, decreasing to zero as the number of PEs increases.

The distributed transpose operation in Stage 3 and Stage 6 begins to dominate runtime as the

node count increases, converging to 0.5. These characteristics indicate that the Alltoall

operation that performs the distributed transpose acts as a communication bottleneck.

The application performs well on PSC RM, with speedup and efficiency curves follow-

ing the sublinear path that we expect. PSC EM exhibits a clear example of single-node,

multiple-PE scaling performance, as seen in Figure 4. The trends indicated show the begin-

ning of speedup and efficiency dropoff at 16 PEs, but nevertheless demonstrate acceptable

performance on large-scale datasets (up to 80 GB). This performance difference can be

partially attributed to the node configuration. Since only a single PSC EM node can be re-

quested, PEs do not communicate over the InfiniBand interconnect. Instead, they utilize the

inter-processor Ultra Path Interconnect (UPI) fabric, which uses a directory-based snoopy

protocol to achieve a transfer speed of 10.4 giga-transfers per second [24]. In these results,

we are not able to leverage RDMA for inter-node communication improvement. Accordingly,

this demonstrates the ability of OpenSHMEM to perform on scalable multiprocessors using

interprocessor communication fabric as an alternative to a multinode interconnect. At the

largest number of nodes, RM has a peak efficiency of 0.84 and EM has a peak efficiency of

0.80.
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Figure 8: Stage-by-stage breakdown of runtimes on Haswell and KNL

7.1.2 Comm-Comp Overlap 2D FFT with OpenSHMEM

Utilizing one-sided API calls without choosing amongst a variety of FFT algorithms,

as in the style of FFTW, does not appear to allow our OpenSHMEM implementation to

outperform FFTW-MPI. Figure 5 demonstrates that, at low node counts, our OpenSHMEM

implementation has higher efficiency than both FFTW-MPI and MPI RMA on both KNL

and Haswell clusters on an input size of 2.15 GB to follow FFTW preference for power of

two data input lengths. The shape of the input matrix was chosen as 214 × 214 since FFTW

performs optimally on data that is a power of 2, as noted in the FFTW benchmarking

documentation [29]. As the number of nodes increases, FFTW-MPI’s efficiency and speedup

outperform OpenSHMEM and MPI RMA on both clusters. For both KNL and Haswell,

the ranking of speedup and efficiency by implementation is FFTW-MPI, OpenSHMEM, and

MPI RMA, in decreasing order. The collective communication operations implemented in

OpenSHMEM, namely the Alltoall that performs the distributed transpose, outperforms

the MPI RMA version, MPI Ialltoallv.
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Regarding node scaling, the performance of FFTW-MPI demonstrates linear behavior,

whereas OpenSHMEM and MPI RMA are sublinear. This result implies that leveraging one-

sided communications can provide some benefit, but that the amount of overlap is crucial.

Choosing a correct message size for this step is important, as the efficiency of communication

protocols varies at different message sizes. Even by optimizing data chunk size, however, the

maximum achievable comm-comp overlap of 100% limits our runtime reduction allowance to a

factor of two. As such, one-sided comms that allow comm-comp overlap do not appear to be a

highly-attractive optimization in cases where we are limited by some stage of synchronization.

Since all PEs in our comm-comp application request rows from PE0 during the first stage of

communication, we project that the interconnect will become saturated with get requests

as the number of PEs increases. As a result, the comm-comp overlap model is further limited

by the ability of a single node to handle many requests at once. However, if network traffic

does not saturate, the single-row data chunk requests may provide a significant performance

benefit if the row size is sufficiently large.

7.1.3 HEP-CNN with OpenMPI and OpenSHMEM

By simply implementing one-sided OpenSHMEM functions rather than one-sided MPI

functions used by default for Horovod, we see a noticeable runtime reduction of 0.01 minutes

per epoch at two PEs. SHMEM operations leverage RDMA hardware on the Cray inter-

connect to consistently reduce epoch time, as seen in Figure 6. With one-sided SHMEM

demonstrating consistent reduced latency when compared to one-sided MPI, increasing the

amount of communication may provide an even larger performance benefit for SHMEM.

Since both SHMEM and MPI use identical API calls, with the only difference being an

additional memory copy from the Tensor Fusion Buffer to symmetric memory during com-

munication operations, we speculate that SHMEM offers a significant performance benefit

at larger node counts with high levels of inter-node communication.
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7.2 Platform Comparison

Performance differences of individual API calls are highly dependent upon implementa-

tion optimization. Execution time is determined largely by processor characteristics rather

than interconnect details, which corresponds with our intuition that newer processors tend

to run faster. In terms of scaling performance, our charts indicate that NERSC platforms

outperform their PSC counterparts at low node counts. The interconnect used by PSC bene-

fits from modern hardware improvements that are not present on NERSC systems, excluding

Perlmutter’s HPE Cray Slingshot interconnect. We were unable to fully explore Perlmutter’s

interconnect at high node counts due to resource limitations imposed by NERSC, but the

results so far are promising. The libraries used for compilation, however, play a major role

in determining scaling performance. At the largest node counts, KNL has a peak efficiency

of 0.45, Haswell has a peak efficiency of 0.86, Perlmutter has a peak efficiency of 0.93, RM

has a peak efficiency of 0.82, and EM has a peak efficiency of 0.80.
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8.0 Conclusions

This research analyzed the performance of two applications on five clusters to evaluate

the scaling characteristics of several implementations of the OpenSHMEM interface. On

NERSC, the Cray-OpenSHMEMX library was investigated on the KNL, Perlmutter, and

Haswell platforms to evaluate the 2D FFT application. On Perlmutter, Cray-OpenSHMEMX

version 11.5.3 was used. When comparing KNL and Haswell across SHMEM, MPI RMA,

and FFTW-MPI, Cray-OpenSHMEMX 9.1.2 and OpenMPI 4.1.2 were used. OpenMPI 4.1.2

was evaluated in our implementation of HEP-CNN. On PSC, the OpenMPI 4.0.3 library

was used to evaluate the 2D FFT. The first 2D FFT app that we study heavily emphasizes

communication in the form of all-to-all collective operations rather than a set of one-sided

operations. The second 2D FFT app utilizes one-sided operations to accelerate program

runtime by overlapping communication with computation. Each kernel was evaluated in

terms of execution time, speedup, and efficiency performance as the number of nodes was

increased. On NERSC, we evaluated the 2D FFT SHMEM application on up to 256 nodes

with KNL and Haswell, but were limited to four nodes on Perlmutter. The HEP-CNN

application was tested on two nodes of KNL. On PSC, the Bridges 2 RM cluster was evaluated

on up to 16 nodes, whereas the EM cluster was limited to one node with multiple PEs.

To further investigate the contribution of collective operations to the 2D FFT algorithm,

a runtime analysis of individual stages was performed on the NERSC KNL and Haswell

clusters.

This research finds that the Cray Dragonfly topology offers flexible modules to optimize

parallel performance, and performs better than the Mellanox Infiniband interconnect at low

node counts. However, we cannot examine the scaling of Infiniband at higher node counts,

as we are restricted by the amount of node allocated on PSC RM and PSC EM. Therefore,

we cannot assert that Cray Aries dragonfly topology outperforms the Mellanox Infiniband

at higher node counts.

A theoretical improvement to better leverage SHMEM’s symmetric memory region would

be to implement a personalized point-to-point function for performing the distributed 2D
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transpose stage of the FFT algorithm. Since SHMEM’s Alltoall operation requires the

entire input data matrix size to be allocated in the symmetric region, we effectively waste a

large amount of memory that is not used by each PE. A more memory-efficient implementa-

tion of the 2D transpose stage would enable analysis of communication patterns with larger

amounts of data. Additional optimization that could enable higher performance on the KNL

and Haswell clusters could come from utilizing the vector processing units, as discovered in

[3].

OpenSHMEM outperformed MPI RMA implementations on both the comm-comp over-

lap 2D FFT algorithm and HEP-CNN on two separate clusters. The authors note that

writing one-sided code with OpenSHMEM is more intuitive than MPI RMA due to the ab-

sence of memory windows. As a programming library, OpenSHMEM has been found to scale

well on multiple parallel computing systems with various memory hierarchy configurations

and interconnects. While the applications in this research had runtimes that ranged from

milliseconds to hundreds of seconds, applications that have runtimes on the order of days

to months could benefit from using OpenSHMEM, as demonstrated by the peak efficiencies

of 0.80, 0.81, 0.86, and 0.93. To conclude, we recommend the usage of OpenSHMEM for

efficient computing in HPC environments to effectively manage resource usage.
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9.0 Future Work

This study focuses on the scalability of OpenSHMEM from an application-level perspec-

tive without examining the direct impact of specific API calls. An analysis of each individual

API call that contributes to the application is an interesting avenue of research that could

further clarify the role that each plays as the number of nodes increases. Furthermore, the

HEP-CNN application could be expanded to run on a higher number of nodes to examine

the impact of SHMEM collective operations at large scales.

Our work is restricted to multinode CPU clusters, but the recently-released cuFFTMp

library with NVSHMEM integration is an entirely new direction that has seen very little

research thus far [6, 17]. Measuring the scaling behavior of cuFFTMp on heterogeneous

architectures, such as NERSC Perlmutter, would provide valuable insight into NVSHMEM

performance. The current integration of NVSHMEM into clusters like Perlmutter require

containerization, which has anecdotally proven to be a difficult barrier to use. The impact

of containerization on application performance at-scale is an additional topic of interest.

A comparison of SHMEM to these newly-emerging languages and libraries could be ex-

plored to discover further optimizations for both. Languages such as Chapel, Julia, DPC++,

ATL, and more are promising performance near or at the level of standard C programming.

As applications become more complex, these languages offer abstractions that allow pro-

grammers to develop high-level code with low-level performance. A comprehensive study

comparing a single, easily-parallelizable application such as FFT would provide insight into

language scalability.
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