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Nonparametric Predictions for Network Links and Recommendation

Systems

Jiashen Lu, PhD

University of Pittsburgh, 2022

In this thesis, we develop methodologies to make nonparametric predictions in

relational data. Prominent examples of relational data include user-user network

interactions and user-item recommendation systems. For social networks, we follow

a new latent position framework and develop prediction methods in pure cold-start

scenarios where the new nodes do not have any observed links to start with. For

recommendation systems, we first develop a Zero-imputation method to address the

challenges of heterogeneous missing and then make predictions for missing values and

for new users or items. We explore some applications of this Zero-imputation method

in the context of social network with missing edges. In particular, we are interested

in inferences in network regression models. We compare our approach with existing

methods through simulations and apply our method to one real Friends and Lifestyle

data that study the influence of social network on alcohol and drug use behaviors

among teenagers.

Keywords: Link predictions, Graph Root Distribution, Bipartite Graph, Cold-

Start, Missing Imputation, Network AutoRegressive Model.
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1.0 Introduction

The study of relational data has attracted lots of attentions recently since it has

many real world applications. In practice, relational data can be expressed as user-

user interactions and user-item evaluations. In social networks, for example, one

often observes friendship relations between users (Newman, 2018) and are interested

in predicting new potential links between users. In user-item relational data such

as the Netflix data (Bennett et al., 2007), customers have already viewed and rated

multiple movies (Koren et al., 2009), and the task is to predict the unobserved scores

for existing users and movies. A more challenging task is to predict ratings for new

users and new movies.

We mainly focus on exchangeable relational data in this thesis. The exchangeable

requirement means that the distribution of the data is unaffected by row or column

permutations. Heuristically, it means the order of the nodes does not matter. Rela-

tional data can be naturally viewed as a two dimensional array of random variables

{Ai,j}, in which i indexes row nodes and j indexes column nodes. In social networks,

node means users and Ai,j = 1 if person i and person j are friends and 0 otherwise.

In score predictions, row means users and column means items and each entry Ai,j

is a rating from user i to item j.

Link prediction aims to predict unobserved links between node pairs in the data

set. Latent space approach is popular in the literature (Hoff et al., 2002; Airoldi

et al., 2008) to solve the network link prediction problem. The general idea of these

approaches is to first find a vector embedding of each node based on observed data,

denoted as Z, and then find a bivariate mapping function φ such that φ(Zi, Zj)

determines the link probability between two nodes (Lü and Zhou, 2011). In the case
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that additional node covariates X are available, the mapping function may take X as

input as well. This framework gives large flexibility in terms of modeling but how to

determine the latent positions and the mapping function in a sensible way remains

challenging and application specific. Recently, Lei (2021) proposed the concept of

Graph Root Distribution (GRD) to study the exchangeable network data. It proves

that there exists a one-to-one correspondence between GRD and graphon under mild

conditions. The GRD framework naturally leads to a canonical form of the latent

positions and explicitly characterizes the mapping function φ.

In Chapter 2, we first review the framework of GRD and then use it to solve the

cold-start link prediction problem in network data. The cold-start problem refers to

predict links for new users who do not have any observed interactions with existing

users. Due to the heuristic and complex form of the latent positions and the link

function, most of the existing work do not work for the pure cold-start problems.

We build node covariates, and the latent positions from the GRD framework into a

regression model with simplex constrains, and illustrate its good performance using

numerical experiments as well as data examples.

In Chapter 3, we try to extend this new prediction approach to rating predic-

tions in recommendation systems. The problem is more challenging than the one in

Chapter 2 in two perspectives. First, we have two sets of nodes: users and items.

Therefore the data we study is in fact a bipartite graph. We will extend the work

of Lei (2021) and establish the framework of Bipartite Graph Root Distribution

(BGRD). Second, there are many missing entries in the recommendation systems

since most people only interact with a few items. For example, the famous Net-

flix data (Bennett et al., 2007) only has 1% observations and 99% of the entries

are missing. Most of the existing work focus on the within-sample predictions for

unobserved entries and train on observed entries only (Koren et al., 2009; Paterek,

2



2007; Webb, 2006). If missingness is heterogeneous, i.e., the missing probability is

different for each entry, approaches that target at the observed risk function will be

biased (Ma and Chen, 2019). We first propose a Zero-imputation method to solve

the prediction problem under heterogenous missing and extended it to the cold-start

prediction problems. We provide theoretical guarantees of the proposed method, and

demonstrate its good performance in data analysis as well as simulations.

In Chapter 4, we explore how the proposed Zero-imputation method can help

improve the inferences in network regression models when the observed social network

is incomplete. In Chapter 5, we summarize our thesis work and discuss some possible

future extensions.

3



2.0 Feature-based Network Link Predictions under Graph Root

Distribution

2.1 Introduction

Network data is common nowadays since it can represent the pairwise relations

between a group of people (nodes). Based on the observation of all existing links

between nodes, data often take the form of a square matrix, which is often called

the adjacency matrix, with binary elements. Link prediction problems are one of

the key problems in network analysis. It aims to predict unobserved links between

node pairs in the data set. The problem of link prediction in networks has attracted

lots of attentions in recent years (Lü and Zhou, 2011; Clauset et al., 2008; Al Hasan

and Zaki, 2011; Wu et al., 2018). It has broad applications in many fields, such as

predicting friendship connections in social relations (Lazega et al., 2001; Leskovec

and Mcauley, 2012), recommending co-purchase items on shopping websites, finding

scientific relations within protein-protein interactions (Barzel and Barabási, 2013),

and predict links in terrorist network (Anil et al., 2015). There exist different meth-

ods for predicting unobserved links, where one often assume that the training data

set is completely observed, i.e., the network is completely observed between a set

of training nodes, and for a set of testing nodes, one has only partially observed

links and the task is to predict the unobserved links. The pure cold-start problem

is known to be more challenging because the new nodes do not easily fit into the

training framework.

The latent position view (Hoff et al., 2002; Handcock et al., 2007; Airoldi et al.,

2008) provides an intuitive way to solve the link prediction problem and may be

4



extended to cold-start problems. The general framework for the latent approach is to

first find a representation of each person from observed data and then consider a link

function to predict link probabilities between node pairs (Lü and Zhou, 2011; Zhao

et al., 2017). Different embedding ways include heuristic random walk (Perozzi et al.,

2014; Grover and Leskovec, 2016), spectral decomposition (Lei and Rinaldo, 2015;

Rohe et al., 2011), Bayesian method (Durante et al., 2017) and so on. Additional

node features may help to improve the accuracy of predictions, especially in cold-start

problems. How to combine the node features and the latent positions in prediction

problems is an interesting research topic. One idea is to model the link probability

as a function of the covariates as well as latent positions (Baldin and Berthet, 2018;

Liu, 2019), and another idea is to model the latent positions as a function of the

covariates (Wei et al., 2017). There exist many different methods whose performance

is usually very good in the training data, acceptable in the testing data with partial

link observations, and deteriorates fast in pure cold-start problems.

In this chapter, building upon a newly developed GRD framework (Lei, 2021), we

develop a more streamlined method for the network link prediction, which does not

make parametric or heuristic assumptions. Its simple form is particularly suitable

for predictions in the cold-start problems.

2.2 Brief review of Graph Root Distribution (GRD)

In the framework of GRD Lei (2021), each binary matrix, if viewed as an ex-

changeable random graph, can be generated by first generating independent user

latent positions Z from a distribution F on a Krein space (defined below) and then

generating the (i, j)-th entry from a Bernoulli distribution with the link probability

5



as the Krein inner product between two latent positions.

Definition 2.2.1. A Krein space K = H+ 	 H−, is the direct sum of two Hilbert

space H+ and H−, called positive and negative part respectively, for each element

(x; y), (x′; y′) ∈ K, the inner product is defined as

〈(x; y), (x′; y′)〉K = xx′ − yy′. (1)

Remark 2.2.2. We see from the definition of the Krein space that each latent posi-

tion has one positive and one negative part. The inner product on a Krein space is

different from the usual inner product in an Euclidean space.

A graph root distribution is a probability distribution living on the Krein space.

Definition 2.2.3. A graph root distribution is a probability measure on a Krein space

K, so that if z1, z2 ∈ K

P (〈z1, z2〉K ∈ [0, 1]) = 1. (2)

Lei (2021) proved the existence and identifiability of the GRD, and derived a

canonical form of the latent position vector, which motivates the estimation of latent

position as follows.

2.3 Latent position estimation

In Lei (2021), the author considered estimating latent positions by truncating

the weighted eigen vectors decomposed from A. Rewrite A in its eigen-value decom-

position form

A =

n1∑
j=1

λ̂j âj â
T
j −

n−n1∑
j=1

γ̂j b̂j b̂
T
j , (3)

6



where {λ̂j} are the positive eigen values in decreasing order, {γ̂j} are the absolute

value of the negative eigen values in decreasing order, {âj}, {b̂j} are the corresponding

eigen vectors and n1 is the number of all positive singular values in matrix A. When

truncated at dimensions p1 and p2, the latent positions takes the form

ẑi = [λ̂
1/2
1 â1,i, . . . , λ̂

1/2
p1
âp1,i; γ̂

1/2
1 b̂1,i, . . . , γ̂

1/2
p2
b̂p2,i]

T .

In practice, we find that soft singular-value thresholding approach (Koltchinskii et al.,

2011; Cai et al., 2010) performs better than this type of hard-threshold approach,

although the theoretical convergence rate are the same (more details in Section 3.2).

The soft thresholding estimation is a modification of matrix SVD, where we replace

the original singular values with the soft-thresholded values. Let {·}+ = max{0, ·}

be the positive part function, then for some threshold λ, the estimated position for

person i is

ẑi = [(λ̂1 − λ)
1/2
+ â1,i, . . . , (λ̂n1 − λ)

1/2
+ ân1,i;

(γ̂1 − λ)
1/2
+ b̂1,i, . . . , (γ̂n−n1 − λ)

1/2
+ b̂n−n1,i]

T .

Here λ is a tuning parameter. In the following simulations and real data analysis,

we first split dataset into training and testing, then separate the training set into

training-training and the tuning set. We search over a grid of λ, fitting over the

training-training set and predict on the tuning test set and choose the best λ that

minimize the mean squared error on the tuning set.

7



2.4 Constrained regression prediction

This step differs from the classical regression method because we require the

resulting prediction value to satisfy the GRD requirement. Suppose in Section 2.3,

our estimated positions are {ẑi}ni=1 ∈ Rp1+p2 , in which p1 and p2 are the positive

and negative truncation dimension respectively. The best estimation z̃, in terms

of the mean prediction error, for a new user’s latent position that associated with

covariate X is E[z|X]. According to the definition of conditional expectation, this

can be approximated by a weighted version of empirical data, i.e.
∑n

i=1wizi, where

the weights {wi} depend on the joint distribution of z and X as well as the marginal

distribution of X. One observation here is that as long as the estimated latent

positions take this weighted summation form, all the resulting inner products 〈z, z̃〉K
will be between 0 and 1, and satisfy the GRD requirement. This motivates us

to consider the following two-step approach. First, use a nonparametric statistical

learning method to estimate z given X, denoting the learned position as z∗. In a

second step, we project z∗ to the set of weighted estimates. Specifically, we try to

find the weighted version that is closest to the learning-based prediction in terms of

the link probability.

Suppose z∗ ∈ R(p1+p2)×1 is the estimated position for the new node using some

learning method. Let Q denote the signature matrix, that is, a p1 + p2 diagonal

matrix with first p1 elements equal to 1 and last p2 elements equal to −1. Then the

estimated position z̃ = ẐTw ∈ R(p1+p2)×1 could be obtained by solving the following

8



optimization problem,

min
z̃

1

2
‖ẐQz̃ − ẐQz∗||2 (4)

s.t.


z̃ = ẐTw∑
wi = 1

wi ≥ 0 (i = 1, 2, 3, · · · , n).

The above optimization problem is convex and has a unique solution in terms of z̃,

but the constrain set is complex to deal with. Solving (4) is equivalent to minimizing

1
2
‖ẐQẐTw− ẐQz∗‖2 +λIC{w} in terms of w, where IC is the set indicator function

and C stands for the probability simplex. This is a convex optimization problem, and

we can apply the Projected Gradient Descent algorithm to solve the above problem by

updating weights from iteration t to t+1 as wt+1 = ΠC(wt−η∇g(wt)), where ΠC is the

projection to simplex operator that can be computed using the algorithm discussed

in Wang and Carreira-Perpinán (2013), η is the learning rate and ∇g is the gradient

of the quadratic function that appeared in the objective function. Condat (2017)

discussed a few more algorithms to solve this type of constrained regression problem

and finding the most efficient algorithm is still an open problem. While the solution

may not be unique in terms of w but they still correspond to the unique solution z̃.

In our numerical studies, we used the Random Forest method (Breiman, 2001) to

predict each dimension in z∗. The resulting z∗ takes a weighted summation form for

each dimension, but is not a weighted summation of the multivariate response. If

some learning methods directly produce a z∗ in the form of a weighted summation

ẐTw, the projection step is not needed.

9



2.5 Classifications

Once we obtained all the predicted positions z̃ for all the new nodes, the link

prediction probability could be easily computed following the Krein inner product.

However, we still need to classify the probability into 0 and 1 as the task here is to

predict the possible friends for the new person. As we’re interested in the top-N rec-

ommendations as well as maintaining sensible overall classification performance, we

use the following classification rule. Let p̂1, . . . , p̂n be the estimated link probability,

then

(1) Estimate the total link numbers N by the estimator
∑n

i=1 p̂i.

(2) All the top-N links are determined to be 1.

(3) For all the others, generate a Bernoulli variable with parameter that equals to

the estimated probability.

2.6 Simulations

2.6.1 Evaluation Criterion

The performance of the proposed method is measured by Area Under the Receiver

Operating Characteristic (ROC) Curve (AUC), Precision, Sensitivity and Specificity.

In the link classification problem, for any binary classifier C, we can construct

the two-by-two confusion matrix the way as Table 1. Then the True Positive rate

(TPR) and False Negative rate (FPR) associated with C are defined as,

TPR =
TP

P
,FPR =

FP

N

10



where P and N are the total Positive and Negative cases in the set. ROC graphs are

two-dimensional graphs in which TPR is plotted on the Y axis and FPR is plotted

on the X axis. Let {(Ŷi, Yi)}ni=1 be the (Predicted probability,True-label) pairs with

sample size n. For every threshold c, we can define a classifier C according to the

rule: I{Ŷi > c}. Therefore such classifier C can be related to one point in ROC space

using the confusion matrix. If we vary all thresholds, we can obtain a curve. AUC

is the area under this curve.

Table 1: Confusion matrix for the binary classifier, “1” is classified as Positive and

“0” as Negative.

True class

1 0

Classification

Class

1 True Positive (TP) False Positive (FP)

0 False Negative (FN) True Negative (TN)

Column totals P N

AUC has widely been used to evaluate the performance of binary classifiers

(Bradley, 1997). The AUC of a classifier can be explained as the probability that

the classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative instance (Fawcett, 2006). A random guess will give a 0.5 AUC value.

For any classifier C, Precision, Sensitivity (also called Recall) and Specificity are

another three measures of the classification quality that can be computed using the

confusion matrix.

Precision =
TP

TP + FP
(5)
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Sensitivity =
TP

P
(6)

Specificity =
TN

N
(7)

Heuristically, Precision means, among all those who predicted to be 1, how many

are in truth to be 1 and Sensitivity means, among all those indeed 1, how many

are predicted to be 1. The finite version of Precision (P@N) is defined when the

top-N are classified as 1. Therefore, if we’re interested in top-N recommendations,

we may look at P@N, and if we’re interested the overall recommendation quality,

AUC, Sensitivity and Specificity should be used.

2.6.2 Simulation Settings

We generate experimental data sets that are close to the Blog data and Facebook

data (These data are analyzed in Section 2.7). For all the simulation part, the sample

size is 1000. We always divide the data into 70% as old users in the training and

30% as new users in the testing. And we report the performance on the test set. All

results are based on 100 replications.

We consider one lower dimension case and one higher dimension case. For the

lower dimension case, we first decompose the observed adjacency matrix from the

data using SVD and obtain users’ latent positions, then truncate the positive and

negative part using p1 = 5 and p2 = 3. For the higher dimension case, we truncate

into p1 = 25 and p2 = 10. Then we generate the simulated network according to the

inner product between positive and negative parts (inner product on Kerin Space).

For the regression step in the prediction, we take the original covariates from the

Blog data and Facebook data. Here we do not know any specific form of relationship
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between the latent positions and the covariates. To evaluate the performance of the

proposed method under different types of node covariate information, we tried three

variations.

1. Randomly replace half of the original covariates with independent Normal ran-

dom variables N (0, 1).

2. Randomly replace half of the original covariates with independent Bernoulli ran-

dom variables B(0.5).

3. Replace all the original covariates with independent Normal random variables

N (0, 1).

For Blog data, the original covariates includes the blog category each user belongs

to. There are overall 60 categories and one user may belongs to multiple categories.

Table 2 shows the classification results of the proposed method under four different

settings of covariates. We also include an original result where the true latent posi-

tions were used to calculate the link probability and make the classification. We see

that these predictions are intrinsically difficult and the proposed method is not bad

comparing to the oracle method. The original covariates provide some information

on the link probability. When we only have nuisance covariates, the estimated latent

positions are basically the sample mean of the training data.

For Facebook data simulations, the side information is the one-hot encoding of

some categorical variables. As to protect privacy, the exact meaning is unknown in

the original data. There are 576 binary covariates in total. Table 3 displays the

results in both lower and higher dimension settings. Similar to the observations in

the Blog data, our method performs reasonably well and the original side information

is useful for making predictions in cold-start problems.
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Table 2: Performance of the proposed method in lower dimension and higher dimen-

sion Blog-simulation data sets, compared with the results using oracle link probability

and the results replacing with three nuisance covariate variations.

AUC P@5 P@10 Sensitivity Specificity

Low

Dimension

Oracle 65.9 31.2 28.2 20.1 91.0

Proposed method (original covariates) 60.4 23.0 21.3 24.4 85.9

With half Normal covariates 57.6 17.9 17.2 19.5 87.2

With half Binomial covariates 57.7 18.8 17.7 18.6 88.4

With complete random covariates 57.6 17.3 17.1 19.0 87.9

High

Dimension

Oracle 64.2 43.7 38.6 24.1 88.8

Proposed method (original covariates) 59.3 27.9 25.7 25.4 84.8

With half Normal covariates 57.1 23.4 22.0 20.8 86.1

With half Binomial covariates 57.1 22.9 21.9 21.1 86.0

With complete random covariates 57.1 23.0 21.6 21.2 85.7
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Table 3: Performance of the proposed method in lower dimension and higher di-

mension Facebook-simulation data sets, compared with the results using oracle link

probability and the results replacing with three nuisance covariate variations.

AUC P@5 P@10 Sensitivity Specificity

Low

Dimension

Oracle 78.7 43.2 42.2 47.5 91.2

Proposed method (original covariates) 72.9 34.2 34.0 31.1 89.9

With half Normal covariates 69.7 31.3 30.7 27.4 87.9

With half Binomial covariates 70.0 30.5 30.2 28.0 87.6

With complete random covariates 66.4 22.7 22.6 25.9 85.6

High

Dimension

Oracle 64.8 63.4 61.7 49.5 91.2

Proposed method (original covariates) 69.5 41.1 39.4 32.2 88.4

With half Normal covariates 64.8 33.2 31.5 26.8 86.3

With half Binomial covariates 64.3 30.8 29.1 26.9 85.5

With complete random covariates 59.9 22.5 21.9 23.4 83.9

2.7 Real Data Analysis

We consider four real data sets in this section, namely, Disney, Facebook, Blog

and Enron. Disney data set consists of 124 nodes and 28 features. Each node rep-

resents a product in category Disney sold on Amazon. Two nodes are connected if

two products are usually being co-purchased. Attributes for each product include

Amazon price, Rating ratios, Avg Ratings, Number of reviews, Sales Rank and so

on. Facebook data set consists of 1045 nodes and 576 binary covariates. The average

link number for each node is 56.8. The average link probability is 5.5%. Blog data
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set consists of 88784 bloggers with friendship relations. Two nodes are connected

if there is a link between two blogs. We first cluster the nodes by first fitting to a

Stochastic Block Model and choose the second largest community as the data set.

The selected data set has size 5282. The average link number is 171.5 and the link

probability is 3.2%. There are 60 user-category node features. Enron data set is

a CMU email address network set with 13533 nodes and 18 attributes. Each node

represents an email address. The attributes include Average number CCed, Aver-

age number replied, Average content length and so on. The average link number

for each node is 26.2. The average link probability is 0.2%. We compare our pro-

posed method with two other methods, Probabilistic NoiseResilient Representation

Consensus Learning (PNRCL) and Max Margin NoiseResilient Representation Con-

sensus Learning (MMNRCL) that are proposed in Wei et al. (2017). Probabilistic

and Max Margin are two different ways to estimate the node latent positions given

observed data and NRCL is a regression method for learning the linear relations

between the estimated positions and the covariates. Table 4 reports the performance

of our methods and the other two methods. We see that in large data sets such as

Blog and Enron, our method out-performs the other two in AUC. While in small

sets, our method performs similarly to the other two methods.
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Table 4: Performance of the proposed method, compared with PNRCL (Wei et al.,

2017) and MMNRCL (Wei et al., 2017) in Disney, Facebook, Blog, and Enron data

sets.

AUC Precision@5 Sensitivity@5

Disney

Proposed Method 73.4 26.2 24.9

PNRCL 79.2 35.2 35.2

MMNRCL 75.2 28.3 29.2

Facebook

Proposed Method 80.8 50.7 5.1

PNRCL 83.2 40.8 3.8

MMNRCL 83.0 41.2 3.7

Blog

Proposed Method 68.0 20.6 0.8

PNRCL 61.8 17.5 0.6

MMNRCL 60.9 18.3 0.6

Enron

Proposed Method 85.1 8.7 4.4

PNRCL 72.7 5.9 3.1

MMNRCL 75.9 5.3 2.4
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3.0 A Zero-Imputation Approach in Recommendation Systems with

Data Missing Heterogeneously

3.1 Introduction

A recommendation system is often represented by a rating matrix S ∈ Rn×m

where rows index users and columns index items, and the entries of the matrix

correspond to users’ ratings for items. Missing is very common in these types of

data, i.e., only the ratings to a small portion of items are observed. One of the main

goals of recommendation systems is to predict these unobserved missing scores.

Two types of predicting approaches exist in the literature, content-based filtering

and collaborative filtering. Content-based filtering recommends items by comparing

“key” features of items with users’ profile (Lops et al., 2011), which often requires

domain knowledge. Collaborative filtering makes use of the observed “collaborative”

interaction data to make the predictions. Feuerverger et al. (2012) provides a nice

review of some popular approaches. The majority of existing methods and theory in

collaborative filtering approach assume or implicitly utilize the setting that missing is

at random and homogeneous, i.e., entries are revealed with the same probability, and

therefore the main part of the loss function is the average loss over observed entries

(Webb, 2006; Paterek, 2007; Koren et al., 2009). Some other methods try to recover

the missing ratings under the uniform missing probability assumption in an exact

sense, meaning that they treat the observed entries are fixed without measurement

errors (Candès and Recht, 2009; Keshavan et al., 2009, 2010; Recht, 2011; Mazumder

et al., 2010). However, the probability of missing in recommendation systems are

often heterogeneous. For example, those entries with higher underlying ratings may
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be more likely to be observed (Harper and Konstan, 2015; Marlin and Zemel, 2009).

With heterogeneous missing data, averaging over only observed ratings may lead to

a bias in approximating the loss function for the complete data (Ma and Chen, 2019;

Dai et al., 2019; Schnabel et al., 2016; Wang et al., 2018, 2019; Mao et al., 2021).

Let R denote the missing matrix where Ri,j = 1 if element Si,j is observed

and 0 otherwise, and let Ω be the set of entries that are observed. Homogeneous

missing means that Ri,j follows a Bernoulli distribution with a constant observation

rate. We here assume that Ri,j ∼ Ber(Oi,j) and is independent of others given

Oi,j. The complete loss function for a recommendation system takes the form of∑n
i=1

∑m
j=1 L(Si,j, Ŝi,j). In practice, regularization methods and modeling assump-

tions may be applied to modify the observed loss function
∑

(i,j)∈Ω L(Si,j, Ŝi,j) so

that it may be close to the full loss function even in the case of heterogeneous miss-

ing. For example, Bi et al. (2017) cluster items and users into sub-groups based on

their missing patterns and covariate patterns. There are two existing approaches

target directly at the full loss function. One is the inverse propensity scoring (IPS)

approach (Schnabel et al., 2016; Wang et al., 2019; Imbens and Rubin, 2015). The

IPS loss function takes the form of
∑

(i,j)∈Ω
1
Oi,j
L(Si,j, Ŝi,j), and is proved to be an

unbiased estimate of the full loss function assuming Oi,js are known. One known

challenge of the IPS approach is that it is not stable when small observation proba-

bilities occur (Rubin, 2001; Schafer and Kang, 2008). Existing works have therefore

utilized parametric models, low-rank models or other regularization methods for the

estimation of the weighting matrix (Negahban and Wainwright, 2012; Klopp, 2014;

Cai et al., 2016; Ma and Chen, 2019; Mao et al., 2021). Another approach is an

error-imputation-based (EIB) method, where one estimates the loss L(Si,j, Ŝi,j) for

unobserved entries (i, j) (Steck, 2010; Wang et al., 2019; Dai et al., 2019). For ex-

ample, Dai et al. (2019) propose to leveraging information from observed neighbors
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to impute the errors for missing entries, where the neighborhoods are constructed

using user and item networks as well as relevant covariates. All of these methods

need to first construct the loss function and iteratively solve optimization problems

depending on the specific loss function.

In this chapter, we propose a different approach, which we call Zero-imputation.

For illustration, let us assume that S is a binary matrix with 1 representing “like”,

and 0 representing “dislike”. We assume that E(Si,j) = Pi,j and the entries are

independently formed given Pi,j. The goal is to estimate Pi,j and use that as

the prediction for the non-observed entries. Given Oi,j, Pi,j can be estimated by

E(Si,jRi,j)

E(Si,jRi,j)+E((1−Si,j)Ri,j) . Although the matrix S is not entirely observable (contains

many “NA” values), the matrix S ◦ R is available by imputing missing values with

0, and the matrix (1−S) ◦R can be obtained by first flipping the binary values and

then imputing the missing values with 0. Here “◦” denotes the matrix element-wise

product (Hadamard product). We then use a soft-thresholding SVD to recover the

mean matrix from the binary outcome matrices S ◦ R and (1 − S) ◦ R. Predicting

ordered scale ratings can be decomposed into several parallel tasks using this binary

model. Comparing to existing approaches, the merits of the proposed approach are

three-fold. First the proposed approach utilized the “flip” relation of the paired S◦R

and (1−S)◦R and estimate the inverse weighting matrix as E(S◦R)+E((1−S)◦R).

This provides a self-stabilization and guarantees that the resulting estimate of the

probability is between 0 and 1. Second, while most of the IPS methods apply the in-

verse weighting to the loss function and need an iterative optimization approach, we

impute missingness with zero and directly estimate the mean of two fully-observed

binary matrix, which can be achieved using a soft-thresholding SVD approach with

simple tuning, and end up with a closed form solution. With minimal assumptions,

we are able to obtain its rate of convergence for heterogeneous missing cases. Third,
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the simple form of the Zero-imputation approach naturally extends to the cold start

problems, where one needs to predict for a new user or a new item that does not

have any prior ratings. Details can be found in Section 3.3.

In Section 3.4, Section 3.5, and Section 3.6, we illustrate the proposed approach

for predicting unobserved values with heterogeneous missing and new users’/items’

ratings using the Movie-lens data sets, the Hotel recommendation data sets and sim-

ulated data sets. Theoretical proofs can be found in Section 3.7. Further sensitivity

analysis results can be found in Section 3.8.

3.2 Zero-imputation approach in predicting order-scaled ratings

Let S ∈ Rn×m be the score rating matrix, in which n represents the total number

of people and m total number of items. We assume that each entry takes an order-

scaled rating in {1, 2, . . . , K}. The data contains an incomplete matrix S with a large

proportion of missing values. Let R denote the data recording matrix where Ri,j = 1

if element (i, j) is observed and 0 otherwise. We assume that Ri,j ∼ Ber(Oi,j) and

is independent of others given Oi,j.

For each 2 ≤ k ≤ K, we construct two binary matrices, A(k) and A(k), where

the upper matrix A
(k)
i,j = 1 if and only if Si,j is observed and Si,j ≥ k, and the

lower matrix A(k);i,j = 1 if and only if Si,j is observed and Si,j < k. By definition,

A
(k)
i,j + A(k);i,j = Ri,j, and in both matrices, the missing values are always imputed

with zero. The two matrices have the “flip” relation on observed ratings such that

if one matrix is dichotomized as 0 and 1, then the other is dichotomized as 1 and 0.
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Given missing parameters Oi,j, for 2 ≤ k ≤ K,

P (Si,j ≥ k) = P (A
(k)
i,j = 1)/Oi,j =

E(A
(k)
i,j )

E(Ri,j)
=

E(A
(k)
i,j )

E(A
(k)
i,j ) + E(A(k);i,j)

, (8)

and then we predict the rating using E(Si,j) = 1 +
∑K

k=2 P (Si,j ≥ k). We call the

estimation approach based on (8) the Zero-imputation method. We note that the sum

of E(A
(k)
i,j ) and E(A(k);i,j) equals Oi,j. We use Equation (8) approach since it provides

a self-stabilization and guarantees that the resulting estimate of the probability is

between 0 and 1.

Discussion of the missing heterogeneous assumption. Equation (8) holds

under the assumption that given Oi,j, {Ri,j} is independent of {Si,j}. This is satisfied

since Ri,j is independently generated from Ber(Oi,j). Although we require that Ri,j is

independent of the ratings Si,j given Oi,j, we allow the underlying missing probability

Oi,j to freely change over different entries, and may change with E(Si,j) or other

parameters. This is much more flexible than the conventional Missing Completely

At Random (MCAR) notion. The conventional missing terminologies are mainly

developed for parametric settings where one has i.i.d. samples and a set of low

dimensional parameters. MCAR will then correspond to a homogeneous missing case

where all the data are revealed with the same probability. Here we have relational

data with n × m entries and allow each entry to have its own missing parameter

Oi,j. This kind of completely heterogeneous missing is impossible to estimate in

the conventional non-relational data. In the traditional framework of missing data,

Missing At Random (MAR) setting is used to relax the MCAR assumption so that the

missing probability can vary. In the recommendation systems, researchers found that

those entries with higher underlying ratings may be more likely to be observed. Some

authors (Marlin and Zemel, 2009; Chi and Li, 2019) tried to use MAR to model this
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phenomenon where the missing probability is allowed to be different among entries

but can only through a function of the observed ratings. Heterogeneous missing

is more flexible to accommodate these features in data sets. For example, in our

simulations, missing probability Oi,j is a decreasing function of the expectation of

the observed or unobserved ratings.

At this end, we only need to estimate the mean of a fully-observed binary matrix,

i.e., E(A(k)) or E(A(k)). There are well developed methods for this task, which enjoy

computational advantages with theoretical guarantee. We choose to apply the soft

singular value thresholding approach (Cai et al., 2010; Xu, 2018). The estimation

is a modification of matrix SVD, where we replace the original singular values with

the soft-thresholded values. Let {·}+ = max{0, ·} be the positive part function. Let

A(k) =
∑

1≤i≤(m∧n) σ̂
k
i Û

k
i (V̂ k

i )T be the Singular Value Decomposition (SVD) of matrix

A(k) where σ̂ki is the i-th singular value, Ûk
i is the corresponding left singular vector,

and V̂ k
i is the right singular vector. Similarly let A(k) =

∑
1≤i≤(m∧n) σ̂k,iÛk,iV̂

T
k,i be

the SVD of matrix A(k). We summarize our Zero-imputation method in Algorithm 1.
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Algorithm 1 Zero-imputation method for predicting unobserved ratings

Input: Observed S; a dimension p; minimum observation probability εn,m.

Output: Complete rating matrix Ŝ.

1: Parallel for k in 2,. . . , K do

2: Obtain A(k), A(k) by truncation and Zero-imputation.

3: A(k) =
∑

1≤i≤(m∧n) σ̂
k
i Û

k
i (V̂ k

i )T . . SVD of upper-truncation matrix

4: Â(k) =
∑

1≤i≤(m∧n){σ̂ki − λk}+Û
k
i (V̂ k

i )T . . Soft-thresholding using λk = σ̂kp+1

5: A(k) =
∑

1≤i≤(m∧n) σ̂k,iÛk,iV̂
T
k,i. . SVD of lower-truncation matrix

6: Â(k) =
∑

1≤i≤(m∧n){σ̂k,i − λk}+Ûk,iV̂
T
k,i. . Soft-thresholding using

λk = σ̂k,p+1

7: end Parallel

8: Ŝk = Â(k)

max{Â(k)+Â(k),εn,m}
. . Scale back

9: Ŝ = 1 +
∑K

k=2 Ŝ
k. . Prediction

Remark 3.2.1. Instead of soft-thresholding, one may also use a hard-thresholding

method, where one directly cuts off singular values at λ and do not take the differ-

ences. Our theoretical results are also valid for the hard-thresholding procedure.

Remark 3.2.2. As specified in Theorem 3.2.3, to be able to consistently estimate S,

we require that the minimum of observation probability Oi,j is lower bounded away

from zero. In the algorithm one can specify a very small number as the minimum

observation probability to stabilize the results in step 8. Also each element in Â(k) and

Â(k) should be non-negative since it is an estimation of probability. In our numerical

results, we used εn,m = 10−4, and a sensitivity analysis showed that the results are

almost identical for ε = 10−4, 10−5 and 10−6. The data is allowed to be more sparse

(higher missing rate) as n and m grow, and accordingly the choice of εn,m should

match the approximate sparsity level of the data.
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In the asymptotic theory, one can apply the universal threshold value λ =

C0

√
δn,mm ∨ n, where C0 is some positive constant greater than 2 and often cho-

sen as 2.01 (Chatterjee et al., 2015) and δn,m is the sparsity parameter. In our

algorithms, we first use 5-fold cross-validation to choose a thresholding dimension p,

and then set the soft-thresholding values to be λk = σ̂kp+1 and λk = σ̂k,p+1, where

σ̂kp+1 and σ̂k,p+1 are the (p+1)-th singular value of A(k) or A(k). We also note that the

problem is not assumed to be low-rank; therefore the selected thresholding dimension

p could be large. For example, the average value of p is 60 in our simulations with

(n,m) = (3000, 1500).

The proposed Zero-imputation algorithm can be decomposed into 2×(K−1) par-

allel tasks because of the independence of each parallel procedure. In each individual

task, sparsity matrix appears since we impute all missing values with zero. For large

sparse matrices, we can make use of existing tools to efficiently solve the truncated

SVD procedure (for example, using the “svds” function in R package RSpectra).

Optional one-step update. We can further improve the Zero-imputation estima-

tor using refinement methods developed for matrix completion. In recommendation

systems, common methods such as the regularized SVD (Webb, 2006; Paterek, 2007)

usually incorporate ANOVA-type mean correction; therefore we recommend to con-

sider a one-step de-bias approach following the strategy proposed in Chen et al.

(2019). Specifically, let Ŝ be the original Zero-imputation estimation, we may apply

the soft singular value thresholding again on the matrix Ŝ − 1

R̂
◦ PΩ(Ŝ − S), where

R̂ is the estimate of the missing matrix and PΩ(Bi,j) = Bi,j if (i, j) is observed and

0 otherwise. The resulting matrix is Ŝupdate.

Zero-imputation for continuous ratings. One may directly apply the Zero-

imputation approach to S ∈ [a, b]. First scale it into S
′ ∈ [0, 1] by subtracting a and
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then divided by b− a. Then (8) is modified as

E(S
′

i,j) =
E(AUi,j)

E(AUi,j) + E(AL;i,j)
,

where AUi,j = S
′
i,j if observed and 0 otherwise and AL;i,j = 1 − S ′

i,j if observed and

0 otherwise. The prediction for unobserved values are Ŝ = Ê(S ′) × (b − a) + a.

We focus on working with the binary indicator of Si,j ≥ k for two main reasons:

first Bernoulli random variables are fully characterized by their expectations, so we

can discuss the Bipartite Graph Root Distribution in the cold start problem with

minimal assumptions; second, the classification of Si,j at a cut-off value k is often

of interest. Our numerical experiments show that directly targeting at P (Si,j ≥ k)

delivers better classification results.

In the following, we derive the theoretical property of Zero-imputation estimator.

In recommendation systems, the observation probabilities Oi,j could be very small

and produce sparse bipartite graph. It is therefore of interest to set up the asymptotic

theorems that can allow sparser graph with growing sample size. To this end, we add

a “sparsity parameter” δn,m to the sampling scheme such that Oi,j = δn,mÕi,j,

E(A(k)) = δn,mP̃
(k) and E(A(k)) = δn,mP̃(k), where Õi,j, P̃

(k), P̃(k) take values between

0 and 1 and are considered to be at a constant level. In the following, we use σi(P̃
(k))

to denote the i-th singular value of P̃ (k) and use C to denote positive constant values.

Theorem 3.2.3. For results simplicity, we assume m ≤ n. Let Ŝki,j be the estimator

of P (Si,j ≥ k) using the Zero-imputation method mentioned in Algorithm 1. Assume

that the sparsity parameter satisfies δn,m ≥ C1
log(n)
n

and mδn,m →∞ and mini,jÕi,j =

C̃2 > 0. For all C1, there exist C0, C2 and C3 such that if the singular value threshold

λ in Algorithm 1 is C0

√
δn,mn and the lower truncation of observation probability
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εn,m is C2δn,m, smaller than C̃2δn,m, then with probability at least 1− n−C3, we have

for 2 ≤ k ≤ K,

1

mn

∑
i,j

(
Ŝki,j − P (Si,j ≥ k)

)2

≤ min
0≤r≤m

{ C4r

mδn,m
+
C5

mn

∑
i≥r+1

σ2
i (P̃

(k))}. (9)

Remark 3.2.4. The condition mδn,m →∞ is used in other matrix estimation work,

such as Theorem 2.1 in Chatterjee et al. (2015), and Theorem 1.1 in Keshavan

et al. (2010). Intuitively, we need the number of observations to be at least in the

order of n log n so that with high probability, each row and column have at least

one observation (Candès and Tao, 2010). Under Bernoulli sampling of the set of

observed entries, this essentially requires nmδn,m to be of order n log n, which implies

mδn,m →∞. If m and n are in the same order, the sparsity level can reach the lower

bound δm,n = Clog(n)/n and the (main term of) convergence rate is 1
log(n)

, which

matches the state-of-the-art results in sparse matrix completion.

Remark 3.2.5. Theorem 3.2.3 provides a general bound to the error. The rate of

convergence depends on the structure of the singular values. Corollary 3.2.7 and

Corollary 3.2.8 provide the convergence rates for a finite rank structure and a poly-

nomial decay structure.

Remark 3.2.6. The one-step update we mentioned earlier can be shown to have the

same general bound with smaller pre-constants. Refer to Theorem 3 in Chen et al.

(2019) for relevant discussions.

Xu (2018) and Chatterjee et al. (2015) provided asymptotic results for singular

value thresholding approaches for binary matrix completion with a homogeneous

observation probability. We modified some of their proofs to prove the above result

and the error bound is comparable to Xu (2018) and improved upon Chatterjee et al.

(2015). For example, if we assume that the singular values decay in a polynomial
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rate as σr �
√
mn
rα

for some α > 1, then the error is in the order of ( 1
mδn,m

)1− 1
2α , which

slightly improves upon the bounds in Theorem 1.1 in Chatterjee et al. (2015) and is

comparable to the bound proved in Corollary 1 in Xu (2018). If the singular values

vanish to zero after a finite number, then the error is in the order of 1
mδn,m

, which

matches the result in Xu (2018). Recall that E(Si,j) = 1 +
∑K

k=2 P (Si,j ≥ k). For

the above mentioned two singular value structures, it is straightforward to prove the

following convergence results for Ŝi,j = 1 +
∑K

k=2 Ŝ
k
i,j = 1 +

∑K
k=2 P̂ (Si,j ≥ k).

Corollary 3.2.7. Given conditions in Theorem 3.2.3, if all matrices P̃ has finite

rank, then 1
mn

∑
i,j(Ŝi,j − E(Si,j))

2 = Op(
1

mδn,m
).

Corollary 3.2.8. Given conditions in Theorem 3.2.3, if for all matrices P̃ , the

singular values decay in a polynomial rate as σr �
√
mn
rα

for some α > 1, then

1
mn

∑
i,j(Ŝi,j − E(Si,j))

2 = Op((
1

mδn,m
)1− 1

2α ).

3.3 Bipartite Graph Root Distribution (BGRD) and the Cold Start

Problem

The cold start problem refers to the problem of predicting the rating for new

users or new items where we don’t have any observed scores yet. It naturally can be

divided into three sub problems: item-cold start, user-cold start and both-cold start.

The rating matrix S is then separated into four parts: Old-Old, Old-New, New-Old
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and New-New, as seen below,

S =


Old-item New-item

Old-user S(1) S(2)

New-user S(3) S(4)

. (10)

Cold start problem asks to infer the ratings in S(2), S(3), and S(4) given the

observations in S(1) and any available covariates of users and items. To efficiently use

covariate information to solve the “cold start” problems, we utilize the bipartite graph

root distribution (BGRD) theory, which states that each binary matrix, if viewed

as an exchangeable random graph, can be generated by first generating independent

user latent positions {ui, 1 ≤ i ≤ n} from a distribution F1 and independent item

latent positions {vj, 1 ≤ j ≤ m} from a distribution F2, and then generating the

(i, j)-th entry from a Bernoulli distribution with parameter uTi vj. Our approach

first estimates {ui : 1 ≤ i ≤ n} and {vj, : 1 ≤ j ≤ m} from S(1) using the Zero-

imputation algorithm and regards these as training data for the bipartite graph root

distribution. Then we utilize a nonparametric regression framework to predict the

latent positions (u0, v0) for a new entry. The last step is to project (u0, v0) to the

set of weighted summation estimates to ensure that all the resulting inner products

uTv will be between 0 and 1, and satisfy the BGRD requirement. Before we talk

about the details of the algorithm, we first state the existence and identifiability of

the bipartite graph root distribution, and derive the canonical form of ui and vj.

These results are adapted from the graph root distribution developed in Lei (2021)

for network data analysis.

Definition 3.3.1. Let K be a separable Hilbert space and F1, F2 are two probability

measures on K. A probability measure F = F1 × F2 is called a bipartite graph root
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distribution (BGRD) if for any two points u ∼ F1 and v ∼ F2, we have

P (uTv ∈ [0, 1]) = 1.

BGRD is naturally connected to the concept of graphon for a random two-way

binary array A = (Ai,j). The Aldous-Hoover Theorem (Aldous, 1981; Hoover, 1982)

says that any separately exchangeable binary array can be generated by first i.i.d.

sampling {si} and {tj} from Uniform (0, 1), then generate Ai,j by a Bernoulli distri-

bution with probability W (si, tj) for a graph function (graphon) W : [0, 1]2 → [0, 1].

Considering square-integrable graphons W (s, t) ∈ L2([0, 1]2), we have the functional

SVD,

W (s, t) =
∑
r

λrφr(s)ψr(t). (11)

A graphon W with SVD in (11) is said to admit strong decomposition if∑
r

λrφ
2
r(s) <∞,

∑
r

λrψ
2
r(t) <∞ a.e..

Theorem 3.3.2. (Existence of BGRD) Any exchangeable bipartite random graph

generated by a graphon W that admits strong SVD can be generated by a BGRD.

To avoid ambiguity due to scaling, we restrict ourselves to equally-weighted

BGRD.

Definition 3.3.3. A BGRD is called equally-weighted if the second moments of u

and v are matched, i.e., EuuT = EvvT .

It is clear that an equally-weighted BGRD remains equally-weighted after rota-

tion. To deal with ambiguity due to rotation, we first define the following equivalence

class.
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Definition 3.3.4. We say two equally-weighted BGRDs F and G are equivalent up

to orthogonal transforms, written as F
o.t.
= G, if there is an orthogonal transform Q

such that (u, v) ∼ F ⇔ (Qu,Qv) ∼ G.

Theorem 3.3.5. (Identifiability of BGRD) Two square-integrable equally-weighted

BGRDs F and G give the same exchangeable bipartite random graph sampling dis-

tribution if and only if F
o.t.
= G.

Since all equally-weighted BGRD are identifiable up to a rotation Q, we call a

representative in the class canonical if the second moments for u and v are diagonal

matrices.

Now for a binary matrix in each parallel step, according to Algorithm 1, the

estimate of the underlying probability matrix takes the form
∑

1≤i≤p(σ̂i − λ)ÛiV̂
T
i ,

where p = max{i : σi > λ}. Assume we have n1 users and m1 items in S(1), our

canonical representation of the latent positions are as follows,

û = [û1, . . . , ûn1 ]
T = [

√
σ̂1 − λÛ1, . . . ,

√
σ̂p − λÛp] ∈ Rn1×p, (12)

and

v̂ = [v̂1, . . . , v̂n1 ]
T = [

√
σ̂1 − λV̂1, . . . ,

√
σ̂p − λV̂p] ∈ Rm1×p.

Each row represents the estimated p dimensional latent position of the user or

item. We would like to use the training points and node covariates/attributes to

predict the new user and new item’s latent positions in each parallel step 2 ≤ k ≤ K.

We take new users for illustration, and new items’ estimation is similar.

Given the estimates for old users {ûi}n1
i=1 and the user’s covariate {Xi}ni=1, where

n1 is the number of old users, the best estimation, in terms of the mean prediction
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error, for new user’s latent position is E[u|X]. According to the definition of con-

ditional expectation, this can be approximated by a weighted version of empirical

data, i.e.
∑n1

i=1wiui, where the weights {wi} depend on the joint distribution of u

and X as well as the marginal distribution of X, and may have a complex form in-

volving all the available data. One observation here is that as long as the estimated

latent positions take this weighted summation form, all the resulting inner products

uTv will be between 0 and 1, and satisfy the BGRD requirement. This motivates us

to consider the following two-step approach. First, use a nonparametric statistical

learning method to estimate u given X, denoting the learned position as u∗. In a

second step, we project u∗ to the set of weighted estimates. Specifically, we try to

find the weighted version that is closest to the learning-based prediction in terms of

the link probability.

Recall the notations that û ∈ Rn1×p, v̂ ∈ Rm1×p are the estimated latent positions,

and u∗ ∈ Rp×1 is the statistical learning based prediction for a new user. Then the

estimated position ũ = ûTw ∈ Rp×1 could be obtained by solving the following

optimization problem,

min
ũ

1

2
‖v̂ũ− v̂u∗‖2 (13)

s.t.


ũ = ûTw∑n1

i=1 wi = 1

wi ≥ 0 (i = 1, · · · , n1).

The above optimization problem is convex and has a unique solution in terms of ũ,

but the constrain set is complex to deal with. Solving (13) is equivalent to minimizing

1
2
‖v̂ûTw− v̂u∗‖2 + λIC{w} in terms of w, where IC is the set indicator function and

C stands for the probability simplex. This is a convex optimization problem, and
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we can apply the Projected Gradient Descent algorithm to solve the above problem

by updating weights from iteration t to t + 1 as wt+1 = ΠC(wt − η∇g(wt)), where

ΠC is the projection to simplex operator that can be computed using the algorithm

discussed in Wang and Carreira-Perpinán (2013), η is the learning rate and ∇g is the

gradient of the quadratic function that appeared in the objective function. While

the solution may not be unique in terms of w in the case that n1 > m1; they still

correspond to the unique solution ũ. In our numerical studies, we used the Random

Forest method (Breiman, 2001) to predict each dimension in u∗. We do not see a

big difference in whether or not the projection step is used, as the random forest

output often is very close to a weighted estimator. If some learning methods directly

produce a u∗ in the form of a weighted summation ûTw, the projection step is not

needed.

We summarize our method for user’s cold start rating estimation in Algorithm 2,

and the method for new item’s or both new can be analogously derived.
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Algorithm 2 Zero-imputation method for predicting new users’ ratings

Input: Observed rating matrix S(1) ∈ Rn1×m1 ; a dimension p; minimum observation

probability εn1,m1 ; covariate matrix X.

Output: Predicted rating matrix Ŝ(3) ∈ Rn2×m1 .

1: Parallel for k in 2,. . . K do

2: Obtain A(k), A(k) by truncation and Zero-imputation.

3: A(k) =
∑

1≤i≤(m1∧n1) σ̂
k
i Û

k
i (V̂ k

i )T . . SVD of upper-truncation matrix

4: Obtain the canonical form of the latent positions ûk, v̂k according to (12).

5: Obtain uk,∗ ∈ Rn2×p by multivariate learning methods such as random forests.

6: Obtain ũk ∈ Rn2×p according to (13).

7: Repeat steps 3-6 for A(k).

8: end Parallel

9: Ŝk(3) = ũk v̂kT

max{ũk v̂kT+ũk v̂
T
k ,εn,m}

. . Scale back

10: Ŝ(3) = 1 +
∑K

k=2 Ŝ
k
(3). . Prediction

3.4 Movie-Lens Data Analysis

We use the Movie-lens 100k (ML-100k) and Movie-lens 1M (ML-1M) data sets

(https://grouplens.org/datasets/movielens/) to illustrate our method. The

ML-100k data set contains 100k ratings from 943 users and 1682 movies. Each user

has rated at least 20 movies, the overall average rating is 3.53.

For the ML-1M data set, which involves over 1 million rating scores from 6040

users and 3952 movies, the average score is 3.58 and each user has at least 20 ratings.

The distributions of the ratings are shown in Figure 1.
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Figure 1: Rating frequency plot for Movie-lens data: ML-100k on the left and ML-1M

on the right.

Both data have a large number of missing values with the observation rate about

5%. The missing is suspected to be heterogeneous with higher ratings more likely to

be observed (Harper and Konstan, 2015). We heuristically check the missing pattern

by regressing the observation probabilities Oi,j on the ratings Si,j. The observation

probabilities are estimated by applying the soft-thresholding SVD method on the

binary recording matrix R. Figure 2 shows the estimated observing probability by

ratings in the ML-1M data set.

We can see from the graph that the average observation probabilities seem to be

higher in higher ratings.

There are many methods in the literature for predicting unobserved entries in

the recommendation systems under homogeneous missing schemes. Based on our

knowledge, very few of them may work for heterogeneous missing or for completely

cold start problems. As a popular comparison, we include the results of the reg-
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Figure 2: Box plot of the estimated observation probabilities by rating for the ML-1M

data.

ularized SVD method with ANOVA-type mean correction (Webb, 2006; Paterek,

2007), denoted as “rSVD” and implemented through R package rrecsys. This method

is originally developed for predicting unobserved entries with homogeneous missing

schemes and is popular due to its relatively simple objective function and competitive

performance. In view of heterogeneous missing, we include the propensity score ad-

justment approach as a comparison (Ma and Chen, 2019). In particular, the inverse

propensity scores estimated from one bit matrix completion (Davenport et al., 2014)

is used as weights for de-biasing the rSVD method, denoted as “1BITMC-rSVD” and

implemented based on the public code https://mdav.ece.gatech.edu/software/.

We also include the results from group-specific SVD (Bi et al., 2017), denoted as

“gSVD”, and implemented based on the public code https://sites.google.com/

36

https://mdav.ece.gatech.edu/software/
https://sites.google.com/site/xuanbigts/software
https://sites.google.com/site/xuanbigts/software


Table 5: Prediction error for unobserved values in the ML-100k and ML-1M data

sets. Here “Zero-imputation”, “Zero-imputation-1”, “rSVD”, “gSVD”, “1BITMC-

rSVD”, “ItemImpute” and “UserImpute” refer to the proposed method, one-step

update of Zero-imputation, regularized SVD (Paterek, 2007), group SVD (Bi et al.,

2017), propensity score de-biased rSVD (Ma and Chen, 2019), movie-based mean

imputation and user-based mean imputation, respectively.

ML-100k ML-1M

RMSE MAE RMSE MAE

Zero-imputation .9246 .7233 .8650 .6774

Zero-imputation-1 .9065 .7213 .8501 .6713

rSVD .9415 .7355 .8848 .6941

gSVD .9054 .7112 .8748 .6869

1BITMC-rSVD .9143 .7197 .8684 .6810

ItemImpute 1.023 .8159 .9799 .7831

UserImpute 1.042 .8336 1.036 .8295

site/xuanbigts/software. This method utilizes missing patterns and/or users’

and items’ covariates to create groups and provide more accurate latent positions

than rSVD for new users and items. Naive mean imputations based on observed val-

ues are also included as baseline comparisons. We denote the one-step update of the

Zero-imputation method as “Zero-imputation-1”. Methods are tuned as suggested

by the original paper to provide best results.

To evaluate the performance, we randomly split the overall observed scores into
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90% for training and 10% for testing. The performance is measured by the Root

Mean Squared Error (RMSE) and the Mean Absolute Error (MAE),

RMSE =

√∑M
i=1(ŝi − si)2

M
,

MAE =

∑M
i=1 |ŝi − si|
M

,

where {si}Mi=1 represent the ratings in the unobserved set (or the new sets in com-

pletely cold start problems) and M is the test set size.

Table 5 records the performance of different methods for the within sample un-

observed predictions. We see that the performances of different methods are gen-

erally close except for the two mean imputation methods. All of the methods have

a better accuracy in the larger data set. The proposed Zero-imputation method,

“gSVD” method and ”“1BITMC-rSVD” method produce slightly better results than

the “rSVD” method as they account for the heterogeneous missing.

For the completely cold start problem, the public movie-lens data include user

covariates named age, gender, and occupation, as well as one item covariate named

movie genre. We believe that it is easy to obtain more attributes for movie other

than movie genre, such as directors, actors and so on. These covariates contain

information of the general popularity and general quality of the movie. To better

illustrate the cold start problem, we created two movie covariates to roughly mimic

the general popularity and quality. The first is constructed as the total number

of ratings of the movie. The second is the total number of ratings above 3. Here

“rSVD”, “1BITMC-rSVD” are not designed to handle the cold start problem, we

simply use the average of the user’s/item’s sample position estimated from the Old-

Old data to predict the new user’s or new item’s latent positions, and then predict
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Table 6: Prediction error for cold start problems in the ML-100k and ML-1M data

sets. Here “Zero-imputation”, “rSVD”, “gSVD”, “1BITMC-rSVD”, “MeanImpute”

refer to the proposed method, regularized SVD (Paterek, 2007), group SVD (Bi et al.,

2017), propensity score de-biased rSVD (Ma and Chen, 2019), and the corresponding

mean imputation, respectively.

Item-Cold User-Cold Both-Cold

RMSE MAE RMSE MAE RMSE MAE

ML-100k

Zero-imputation .9836 .7724 .9640 .7716 1.038 .8280

rSVD 1.067 .8618 .9803 .7783 1.097 .9167

gSVD 1.030 .8227 .9606 .7734 1.066 .8608

1BITMC-rSVD 1.075 .8779 .9642 .7777 1.105 .9277

MeanImpute 1.043 .8322 .9645 .7765 1.097 .9165

ML-1M

Zero-imputation .9324 .7382 .9699 .7727 1.018 .8193

rSVD 1.090 .9014 .9781 .7811 1.131 .9613

gSVD .9998 .8021 .9740 .7799 1.058 .8647

1BITMC-rSVD 1.103 .9131 .9791 .7877 1.143 .9725

MeanImpute 1.036 .8313 .9742 .7791 1.117 .9366

the ratings by the inner product of latent positions. For gSVD, we use 10-means

method based on the user/items’ covariate to generate the group labels.

We randomly select 10% of users and movies for the cold start sections and use the

other 90% in the training. Table 6 summarizes the performance of different methods

on the cold start problems in the two data sets. Unsurprisingly, the proposed method
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Table 7: Classification for scores greater than or equal to 4 versus less than 4. The

AUC and overall accuracy are evaluated on the test set.

ML-100k ML-1M

AUC Accuracy AUC Accuracy

Zero-imputation .792 .725 .818 .747

rSVD .700 .703 .731 .737

gSVD .724 .728 .732 .739

1BITMC-rSVD .708 .705 .721 .728

ItemImpute .650 .654 .673 .681

UserImpute .625 .630 .636 .645

and the “gSVD” method perform better than other methods, and the proposed

method performs the best overall.

One by-product of the proposed Zero-imputation method is the binary classifi-

cation of ratings being “good” vs “bad” for any cut value k. We can classify S ≥ 4

vs S < 4 using the estimated A(4). Table 7 displays the classification results of

our method as well as the other methods. The proposed Zero-imputation method

performs better in terms of AUC and the overall accuracy. The overall accuracy is

computed at a cut-off value that the empirical proportions of ones match.
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3.5 Hotel Data Analysis

Antognini and Faltings (2020) collect 50,264,531 hotel reviews from Trip Advisor

in nineteen years all over the world. More than 21 million users and 365 thousands

hotels are involved in this data set and more than 99.9% observations are miss-

ing. This dataset provides another opportunity to explore the performance of the

proposed prediction method in a sparser setting.

In this section, we filter the original dataset so that the selected hotels are all

located in the west regions of the United States, which involves California, Wash-

ington, Nevada, and Oregon. The inclusion criteria also require that the users need

to rate at least 20 hotels and the hotels need to have at least 50 ratings. We com-

prise the data size here because methods such as gSVD and 1BITMC-rSVD have

quite heavy computational burden when the sample size grows. At the end, the

dataset has 6,273 hotels and 2,191 users, comparable to the movie-lens 1M data.

With 51,606 observations, the sparsity rate is 0.37%. The observed average rating is

3.89. Figure 3 shows the distribution of the observed scores.

To explore whether entries are missing uniformly at random, we first estimate

the observation probabilities by applying the soft-thresholding SVD method on the

binary recording matrix R. Figure 4 shows the Box plots of the estimated observation

probabilities for each of the rating category. The average observation probabilities

seem to be different in each rating and rating 4 has the highest probability to be

observed.

We then compare the performance of different methods on this sparse hotel

dataset. Table 8 shows the test set RMSE and MAE results when we partition

the dataset into 90% training and 10% testing. First, we observe that the de-bias

Zero-Imputation-1 method performs the best among all competitors, and IBITMC-
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Figure 3: Histogram of the hotel recommendation set. X-axis represents the rating.

Y-axis represents the number of observations.

rSVD method also performs well. The gSVD method is not as good, partly because

this method is hard to tune. Second, the item-impute and user-impute method are

not bad. In the movie-lens data, we see that these two straightforward imputation

method have a much larger estimation error comparing to other approaches. Each

person’s criteria for rating hotels may not be as much different as rating movies.

Therefore Recommendation Systems may be more useful in areas where people can

have more subjective evaluation criteria.
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Figure 4: Box plot of the estimated observation probabilities by rating for the hotel

data.

3.6 Simulations

In this section, we conduct a simulation study, where the data is generated to

match the features observed in the Movie-lens data. We use three different sample

sizes, namely, small (1500*800), medium (3000*1500) and large (5000*2500). The

small and large cases correspond to the ML-100k and ML-1M sample sizes respec-

tively. We first generate non-missing rating matrix S0, and a masking procedure R,

and then use S0 ◦R as the observed data.

Following the simulation setting in previous papers, we generate the rating matrix

as follows. First generate users’ latent positions {ui} from a 12-dimension normal

distribution N ((0.5 ∗ 16,−0.1 ∗ 16)T ,Σ), where Σi,j = 0.62I{i = j}. The items’
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Table 8: RMSE and MAE results from different methods on the hotel dataset

RMSE MAE

Zero-impute .9201 .6801

Zero-impute-1 .8943 .6869

rSVD .9355 .7140

1BITMC-rSVD .8999 .6928

gSVD .9275 .7121

ItemImpute .9538 .7378

UserImpute .9529 .7342

position {vj} are generated by N ((0.5 ∗ 16, 0.1 ∗ 16)T ,Σ). Here S0
i,j is generated by

first sampling from N (uTi vj, 0.6
2), then clipping it into the interval [1,5], and finally

rounding the number into the nearest integer in {1,2,3,4,5}. We consider a heteroge-

neous missing scenario where we have a higher chance to observe a higher score. The

observed probability that were used to generate R is (0.022, 0.02, 0.02, 0.05, 0.1)T for

scores 1 to 5 respectively. The RMSE and MAE are evaluated on all unobserved

entries and averaged over 50 simulations. Regarding the computational time, for

(n,m) = (5000, 2500), one single simulation for the proposed method takes 6.3 sec-

onds, the “rSVD” method takes 1.6 seconds, the “gSVD” method runs more than

20 seconds, and “1BIT-rSVD” takes more than 6 minutes. These values include the

time used for tuning parameter selections. While “rSVD” method is the fastest, it

does not have a special treatment for the heterogeneous missing scheme, and pro-

duces a larger error in both data analysis and simulations. The results are run on a
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PC with 8-core Intel Core i7-10700F processor and 32GB RAM.

For the cold start problems, we create two covariates. The first one is the average

of the first six latent dimensions of u/v and the second covariate is a normal nuisance

variable N (0, 0.62).

Table 9: Prediction error for unobserved values with heterogeneous missing in the

simulated data (the number in the parenthesis is the standard deviation).

(1500,800) (3000,1500) (5000,2500)

RMSE MAE RMSE MAE RMSE MAE

Zero-imputation .9954(.013) .8017(.011) .9421(.006) .7536(.006) .8890(.004) .7082(.003)

Zero-imputation-1 .9750(.012) .7420(.014) .9197(.005) .7048(.006) .8555(.004) .6566(.005)

rSVD 1.004(.038) .7645(.050) .9808(.032) .7444(.045) .9630(.019) .7304(.032)

gSVD .9847(.011) .7703(.010) .9649(.006) .7347(.006) .9356(.004) .7146(.004)

1BITMC-rSVD 1.002(.010) .7937(.011) .9790(.006) .7752(.015) .8748(.011) .6667(.010)

ItemImpute 1.151(.016) .9249(.015) 1.143(.009) .9220(.009) 1.141(.006) .9207(.006)

UserImpute 1.167(.017) .9331(.016) 1.151(.011) .9255(.010) 1.147(.006) .9241(.006)

Table 10: Prediction error for cold start problems in the simulated data with sample

size (n,m) = (5000, 2500) (the number in the parenthesis is the standard deviation).

Item-Cold User-Cold Both-Cold

RMSE MAE RMSE MAE RMSE MAE

Zero-imputation .9813(.023) .7582(.023) .9680(.017) .7475(.017) .9772(.026) .7646(.027)

rSVD 1.101(.020) .8927(.029) 1.089(.025) .8854(.033) 1.184(.033) .9907(.041)

gSVD 1.018 (.018) .8015(.016) 1.008(.018) .7959(.017) 1.058(.029) .8571(.028)

1BITMC-rSVD 1.082(.016) .8804(.012) 1.077(.018) .8762(.014) 1.176(.031) .9709(.023)

MeanImpute 1.151(.014) .9283(.013) 1.144(.016) .9237(.013) 1.254(.020) 1.123(.019)
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Table 9 shows the result for the unobserved entries and Table 10 shows the re-

sult for the cold start problem with sample size (n,m) = (5000, 2500). The results

for other sample sizes show similar pattern. The results are consistent to what

we see in the Movie-lens data. All of the methods have reasonable performances

for unobserved entry prediction and improve as the sample size grows. Compar-

ing to “Zero-imputation”, “Zero-imputation-1”, “gSVD” and “1BITMC-rSVD”, the

“rSVD” method does not account for the heterogeneous missing and shows larger

error and larger variation. The one-step update for the Zero-imputation method out-

performs all other methods. The proposed method and the “gSVD” method work

reasonably well for the cold start predictions. We see that the proposed method

shows a sharper improvement in larger data sets and in cold start problems.

3.7 Appendix 1: Proofs

Proof of Theorem 3.2.3. First consider

1

mn
‖Â− P‖2

F , (14)

where Â is soft-threshold estimator, P = E(A) is the population parameter matrix,

and ‖ · ‖F denotes the matrix Frobenius norm. Here A is a general notation for the

truncation matrix A(k) or A(k). The proof of this part mainly follows Lemma 1 in Xu

(2018). Let the error matrix E = A− P and let ‖E‖ denote the spectral norm of E.

With the notation that P = δn,mP̃i,j, we have Var(Ei,j) = δn,mP̃i,j − δ2
n,mP̃2

i,j ≤ δn,m.

Let σr and σr(A) be the r-th singular values of P̃ and A. By Lemma 2 in Xu (2018),
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we know that there exist some positive constants c1 and η′, such that the following

event happens with probability at least 1-n−c1 .

Event = {‖E‖ ≤ η′
√
δn,mn}. (15)

Note that to apply this lemma, we need the assumption that δn,m is lowered bounded

by c2
log(n)
n

for some positive constant c2, i.e., δn,m ≥ c2
log(n)
n

.

On (15), consider the singular value threshold for some positive constant c0,

λ = (1 + c0)η′
√
δn,mn, (16)

which means we only keep the singular values of A that are greater than λ for the

soft-threshold procedure and ‖E‖ ≤ 1
1+c0

λ. Consider

` = sup{r : δn,mσr ≥
c0

1 + c0

λ}. (17)

If ` = m, it is easy to check the result. Now assume ` < m, by Weyl’s Theorem,

σ`+1(A) ≤ δn,mσ`+1 + ‖E‖ < λ,

which implies the rank of Â is bounded by `. Let P` denote the best rank ` approx-

imation to P, then

‖Â− P‖2
F ≤ 2‖Â− P`‖2

F + 2‖P` − P‖2
F

≤ 4`‖Â− P`‖2 + 2δ2
n,m

∑
i=`+1

σ2
i

≤ 16`λ2 + 2δ2
n,m

∑
i=`+1

σ2
i

≤ 16 min
0≤r≤m

{rλ2 + (
1 + c0

c0

)2
∑
i=r+1

δ2
n,mσ

2
i }.
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The second to last inequality holds since

‖Â− P`‖ ≤ ‖Â− A‖+ ‖A− P‖+ ‖P− P`‖ ≤ 2λ. (18)

The last inequality holds since δn,mσ`+1 ≤ c0
1+c0

λ and by the definition that the last

line in inequality has minimum value at `. Therefore, on event (15), there exist some

constants C1, C2, such that

1

mn
‖Â− P‖2

F ≤

C1 min
0≤r≤m

{rλ2 + C2

∑
i=r+1

δ2
n,mσ

2
i }

mn
. (19)

Recall that for each rating k, we recover the upper probability

Ŝki,j =
Â

(k)
i,j

max{Â(k)
i,j + Â(k)i,j, εn,m}

=
E(A

(k)
i,j )

E(A
(k)
i,j ) + E(A(k);i,j)

+ fx(ξ, η)(Â
(k)
i,j − E(A

(k)
i,j ))+

fy(ξ, η)(max{Â(k)
i,j + Â(k);i,j, εn,m} − E(A

(k)
i,j )− E(A(k);i,j)),

where f(x, y) = x
y
, fx(x, y) = 1

y
, fy(x, y) = −x

y2
and (ξ, η)T is some point in the line

segment between the true value and the estimated value, i.e. there exists some value

t between 0 and 1 such that [ξ, η]T = t[E(A
(k)
i,j ),max{EA(k)

i,j +EÂ(k);i,j, εn,m}]T + (1−

t)[Â
(k)
i,j ,max{Â(k)

i,j + Â(k);i,j, εn,m}]T . The expectation element Ei,j corresponds to Pi,j

that appeared previously. The absolute value of two partial derivatives are bounded

by 1
η
, since ξ

η2
≤ 1

η
.

Note that η is a point between true observation probability and the estimated

probability. By the assumption that the true value is lower bounded by cδn,m and
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assumption that εn,m is c′δn,m (c′ < c), the partial derivatives are upper bounded by

1
c3δn,m

for some constant c3. So the overall MSE is

1

mn

∑
i,j

(Ŝki,j − P (Si,j ≥ k))2 ≤ min
0≤r≤m

{ C3r

mδm,n
+
C4

∑
i=r+1 σ

2
i

mn
}. (20)

Proof of Corollary 3.2.8. From the proof in theorem 3.2.3, we know that for the

minimum point `, we have δn,mσ` ≥ c
√
δn,mn and δn,mσ`+1 < c′

√
δn,mn. Use the

assumption that σ` �
√
mn
`α

, we have ` � (mδn,m)1/(2α). Therefore the first term

`
mδn,m

in MSE is in the order of ( 1
mδn,m

)1− 1
2α . For the singular value summation term,

using the fact that
n∧m∑
r=`+1

r−2α = O(
1

`2α−1
),

we conclude that the second term in MSE is in the order of ( 1
mδn,m

)1− 1
2α .

Proof of Theorem 3.3.2. Suppose the corresponding graphon W admits strong SVD

in the form of

W (s, t) =
∑
i

λiφi(s)ψi(t).

Let s and t be i.i.d. Unif(0, 1), and let u(s) = [u1(s), . . . , ur(s), . . . ]
T in which

ur(s) =
√
λrφr(s), and v(t) = [v1(t), . . . , vr(t), . . . ]

T in which vr(t) =
√
λrψr(t).

The norm of each random variable is finite by the strong decomposition assump-

tion. Moreover, W (s, t) = u(s)Tv(t) almost everywhere. The sampling distribution

generated by W with dimension n,m is, by Aldous-Hoover Theorem, first samples

s1, . . . , sn and t1, . . . , tm from i.i.d. Unif(0, 1), then generate Bernoulli random vari-

ables with parameters W (si, tj). This is, by the construction, the same as first

independently sampling from the BGRD distribution to get u(si) and v(tj), then
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form the exchangeable arrays by their inner-products, where F1 is the probability

measure induced by u(s) : [0, 1]→ K with s ∼ Unif(0, 1) and F2 is the probability

measure induced by v(t) : [0, 1]→ K with t ∼ Unif(0, 1).

Proof of Theorem 3.3.5. (⇐) Since orthogonal transform maintains inner product,

this direction is clear.

(⇒) By Proposition 3.5 in Lei (2021), for a distribution F1 on a separable Hilbert

space K, there exists an inverse transform sampling, i.e., a measurable function

u : [0, 1] → K such that if s ∼ Unif(0, 1) ⇒ u(s) ∼ F1. Therefore, for a sampling

point in BGRD F = F1 × F2, we can write it as (u(s), v(t)), where u and v are

inverse transform samplings, and s, t ∼ Unif(0, 1). By equally-weighted assumption

and without loss of generality, we assume that (u, v) have the same diagonal second

moment matrix Λ. Analogously, we denote a sample point from G by (ũ(s), ṽ(t)),

and their moment matrix Λ̃.

Define the graphon W corresponding to F as

W (s, t) = 〈u(s), v(t)〉

=
∑
j

λjλ
−1/2
j uj(s)λ

−1/2
j vj(t),

where λj is the jth diagonal value in Λ. Note that the above is the SVD decom-

position of W . We can define W̃ similarly for G. Since F and G lead to the same

sampling distribution of binary arrays, we have

W (s, t)
d
= W̃ (s, t).

By Theorem 4.1 in Kallenberg (1989), we have ∀ j, λj = λ̃j and there exists unitary

operator Q with Qj,j′ = 0 for λj 6= λj′ , such that for any measurable set A,

P (Λ−1/2u ∈ A) = P (QΛ−1/2ũ ∈ A),
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P (Λ−1/2v ∈ A) = P (QΛ−1/2ṽ ∈ A).

Therefore

P (u ∈ A) = P (Λ−1/2u ∈ Λ−1/2A)

= P (Qũ ∈ A).

The same result holds for v. Therefore F
o.t.
= G.

3.8 Appendix 2: Further Results on Model Tuning and the Sensitivity

Analysis of the Minimum Observation Probability

In our Algorithm 1 in Section 3.2, we only take two input parameters. One is

the thresholding dimension p, which is a tuning parameter selected by 5-fold cross-

validation, and the other is the lower bound ε on the missing probability.

The soft-thresholding values are then set to be λk = σ̂kp+1 and λk = σ̂k,p+1, where

σ̂kp+1 and σ̂k,p+1 are the (p + 1)-th singular value of A(k) or A(k). In our numerical

experiments, tuning each λk and λk individually does not significantly reduce the

error. The comparisons in our simulation settings and in the movie-lens data are

shown in Table 11 and Table 12. We also note that the problem is not assumed

to be low-rank; therefore the selected thresholding dimension p could be large. For

example, the average value of p is 60 in our simulations with (n,m) = (3000, 1500).
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Table 11: Threshold dimension tuning comparison in simulation setting.

(n,m) = (1500, 800) (n,m) = (3000, 1500) (n,m) = (5000, 2500)

RMSE MAE RMSE MAE RMSE MAE

One p for all .9747 .7422 .9127 .7039 .8566 .6558

Independently-tuned λk and λk .9707 .7404 .9094 .7148 .8536 .6555

Table 12: Threshold dimension tuning comparison in Movie-lens data set.

ML-100K ML-1M

RMSE MAE RMSE MAE

One p for all .9070 .7212 .8526 .6774

Independently-tuned λk and λk .9049 .7168 .8505 .6734

Table 13: Selection of ε sensitivity analysis in simulation setting.

(n,m) = (1500, 800) (n,m) = (3000, 1500) (n,m) = (5000, 2500)

RMSE MAE RMSE MAE RMSE MAE

ε = 10−3 .9945 .8097 .9343 .7619 .8776 .7126

ε = 10−4 .9754 .7439 .9138 .7036 .8571 .6597

ε = 10−5 .9752 .7392 .9130 .6991 .8559 .6556

ε = 10−6 .9752 .7388 .9129 .6987 .8558 .6552
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Table 14: Selection of ε sensitivity analysis in Movie-lens data set.

ML-100K ML-1M

RMSE MAE RMSE MAE

ε = 10−3 .9013 .7134 .8491 .6746

ε = 10−4 .9045 .7155 .8534 .6787

ε = 10−5 .9053 .7163 .8555 .6811

ε = 10−6 .9054 .7164 .8561 .6816

For the selection of ε, a sensitivity analysis for our simulation setting and the

movie-lens data are included in Table 13 and Table 14. We can see that the results

are very similar for ε = 10−4, 10−5 and 10−6. We used 10−4 because we regarded this

as a small enough lower bound for the observation rate in our data example and the

simulated example. The data is allowed to be more sparse (higher missing rate) as n

and m grow, and accordingly the choice of ε should match the approximate sparsity

level of the data.
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4.0 Applications in Network Regression with Missing Edges

4.1 Introduction

In this chapter, we mainly focus on the application of the Zero-imputation method

to network regression models in which the social network matrix has missing entries.

Most social network inferences rely on the assumption that all links are observed and

reliable, which may not hold true in practice (Handcock et al., 2007). In practice,

sometimes the missing entries in social networks are not differentiated from zero en-

tries, i.e., entries really with no links. In other words, all missing edges are filled in

with 0 and proceed as if the data is complete. However, this method may lead to

severe bias in network inference. In this chapter, we explore the possibility of using

Zero-imputation method to improve the inference of network regression models when

the observed network matrix is incomplete. In Section 4.2, we compare the proposed

imputation method with the naive Always-Zero method under the network autore-

gressive model (NAR), and in Section 4.3, we investigate the network autoregressive

error model (NARE).

4.2 Network Autoregressive Model

Let n be the total sample size, and A ∈ Rn×n be the complete social network

matrix. Let Y ∈ Rn be the response variable, and X ∈ Rn×p be the covariate matrix.
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The network autoregressive (NAR) model in matrix form is

Y = ρAY +Xγ + ε. (21)

In this model, individual i’s response Yi is not only affected by its own nodal effect

XT
i γ, but also impacted by other people’s responses through the network connection

(ρAY ). Here ρ is the coefficient that measures the network effect. The NAR model

has been used to study the peer pressure effect in many areas, such as financial

activities (Zhu et al., 2020) and school achievements (Bramoullé et al., 2009). In

spatial statistics, we can represent the geographical connections using an adjacency

matrix G such that if two points (i, j) are adjacent, then entry Gi,j = 1 otherwise 0.

Because of the similarity between matrix G and network matrix A, NAR model is

closely related to the Spatial Auto Regression (SAR) model in spatial econometrics

(Anselin and Bera, 1998; LeSage and Pace, 2009). Network autoregressive models

have been extended to deal with times series data in which we observe time-stamped

responses {Yt} for each node in the network (Zhu et al., 2017, 2021). One may further

impose specific structures to better characterize the data dependence. Examples

include group classified responses (Zhu and Pan, 2020) and community structured

network A (Chen et al., 2020). One can also explore the social network effect in

applications where the response is a time to event variable (Su et al., 2019). All

these methods assume that the network matrix A is fully observed.

Since the network term ρAY introduces a non-zero correlation among subjects,

ordinary least squares estimator can not be used here (Anselin, 1988). Instead one

can use Maximum Likelihood Estimator (MLE) to consistently estimate model pa-

rameters (Lee, 2004).
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In practice, social network data is often collected by sample surveys and therefore

involves non-responses and missing data. For example, in some hard-to-reach popula-

tion such as injecting drug users, network data is collected through respondent-driven

sampling techniques. As a result, one can have access to only a portion of network

entries (Gile, 2011). Ignoring missing ties may lead to severe bias in network social

network analysis (Handcock et al., 2007; Huisman, 2009).

Network matrix is usually constructed by recording the observed connection pairs.

Entry Ai,j = 0 could imply that two people have no connections. It is also possible

that this entry is in fact missing because each person only reported a limited number

of connections. For missing entries, we mainly investigate two approaches. The

first method (Always-Zero) is to fill all missing entries with zero as if the network

matrix is fully observed. This is a naive approach but often used in practice without

explicitly considering the missing issue. The second approach is to apply the Zero-

imputation method proposed in Chapter 3 to fill in all missing entries before carrying

out subsequent analysis. In the NAR model, the network effect ρ is of particular

interest. We explore the power and type I error of the inference for ρ, using the

Zero-imputation method and the Always-zero method. We also explore the power

and Type I error for other model parameters γ.

4.2.1 Simulations of the Network AutoRegressive Model

We set the sample size to be 150, comparable to the data example in Section 4.2.2,

and we include three covariates, one standard normal, one uniform on 0 and 1, and

one binary variable with Bernoulli parameter 0.7. The NAR model γ parameters

are (1.5, 0.2, 0, 0.50)T , and the error variance is 1. For each i 6= j, element Ai,j is a

Bernoulli random variable, generated independently by parameter δ
‖xi−xj‖2 . Here δ
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is a parameter that controls the network density. The quantity in the denominator

is the Euclidean distance between subject i and subject j’s covariates. If two people

are close in covariate’s Euclidean distance, then their connection probability will

be large. We fixed the overall network density at 0.3 in the simulations and our

simulation repetition number is 1000. NAR model fittings are implemented through

R package spdep.

For missing mechanism in this simulation, we let d0 ∈ {0.15, 0.25, 0.35} be the

parameter that controls the overall missing rate. The missing probability for each

entry (i, j) is chosen as d0
‖xi,1:2−xj,1:2‖2 . Here xi,1:2 means the first and the second covari-

ate for subject i. Therefore, the missing rates are related to a subset of individual’s

covariates. We mainly compare our Zero-Imputation method with the Always-Zero

method. As a reference, we also present the results of MLE using the complete

non-missing data.

We first explore the case when there is no network autoregressive effect, i.e.,

ρ = 0 in (21). Table 15 shows the Type I results of ρ. All methods can control

the Type I error pretty well under different missing rates. When there is in fact no

network effect, the estimations for model parameter γ are not affected much by the

imputation method, as shown in Table 16. This result is as expected.
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Table 15: Simulated NAR ρ estimation table for different methods when population

ρ = 0.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

ρ̂ (×10−4) TypeI ρ̂ TypeI ρ̂ TypeI ρ̂ TypeI

.199 1.4 .048 -.7 .053 -.8 .051 -.7 .049

.310 0.2 .052 -1.0 .054 .7 .055 -1.0 .055

.407 -1.2 .051 -1.7 .047 -1.9 .047 -1.9 .047

Table 16: Simulated NAR γ1 estimation table when population ρ = 0. The true

γ1 = 0.2.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

γ̂1 Power γ̂1 Power γ̂1 Power γ̂1 Power

.199 .199 .686 .199 .681 .201 .681 .199 .680

.310 .199 .672 .195 .673 .197 .662 .196 .673

.407 .199 .662 .198 .662 .200 .661 .199 .660

When population ρ = 0.01, Table 17 displays the NAR ρ estimation results under

different missing rates. The Zero-imputation-1 method has a much higher power to

detect an auto-regressive signal over the Always-Zero method, especially when the

missing rate is high.

Table 18 shows the inference results for a non-zero parameter γ1 = 0.2. Our

method outperforms the Always-Zero method with a higher power to detect the
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signal. Table 19 shows the inference results for γ2 = 0, The zero-imputation-1

method has the much smaller Type I errors than the Always-Zero method but still

shows an inflation in Type I error when the missing rate is high. This result is also

understandable. For NAR model in the matrix form listed below, the estimation of

γ is affected by an additional term (I − ρA)−1

Y = (I − ρA)−1Xγ + (I − ρA)−1ε.

Therefore, inference for parameter γ is found to be sensitive to the value of ρ̂. When

the missing rate is high, the zero-imputation method can alleviate the missing prob-

lem but not completely solve the missing problem.

Table 17: Simulated NAR ρ estimation table for different methods when population

ρ = 0.01.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

ρ̂ Power ρ̂ Power ρ̂ Power ρ̂ Power

.199 .009 .985 .009 .968 .011 .932 .009 .961

.310 .010 .988 .008 .960 .011 .782 .008 .960

.407 .010 .982 .008 .945 .009 .527 .008 .943
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Table 18: Simulated NAR γ1 estimation table when population ρ = 0.01. The true

γ1 = 0.2.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

γ̂1 Power γ̂1 Power γ̂1 Power γ̂1 Power

.199 .202 .710 .201 .678 .210 .620 .201 .675

.310 .200 .690 .196 .660 .196 .600 .196 .654

.407 .201 .690 .197 .646 .195 .596 .196 .640

Table 19: Simulated NAR γ2 estimation table when population ρ = 0.01. The true

γ2 = 0.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

γ̂2 TypeI γ̂2 TypeI γ̂2 TypeI γ̂2 TypeI

.199 .005 .051 .061 .058 .065 .086 .061 .061

.310 .003 .053 .064 .077 .120 .158 .064 .080

.407 .009 .051 .075 .086 .143 .196 .075 .086

4.2.2 Teenage Friends and Lifestyle Study Data under Auto-Regression

Model

The teenage Friends and Lifestyle Study (Bush et al., 1997; Michell and West,

1996) aimed to study the influence of social network (peer pressure effect) on the
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alcohol and drug use behaviors among teenagers. The data were recorded during two

years period from 1995 to 1997. It contains 160 students and the friendship network

is formed by asking students to name up to six friends. The observed network density

is 2.29%. Researchers also collected several important covariates that may affect the

student’s alcohol behavior, including age, tobacco use (order scale variable from 1

to 3), drug use (order scale variable from 1 to 4), and money (pocket money per

week). Table 20 displays the basic summary of these variables and Figure 5 shows

the histogram of the students’ alcohol consumption. The whole data set is public

and is available at https://www.stats.ox.ac.uk/~snijders/siena/.

Table 20: Variable Summary of the teenage Friends and Lifestyle Study data

Variable Summary

Age
Min: 12.40 Median:13.40

Max: 14.60

Tobacco Mean:1.26

Cannabis Mean:1.49

Money
Min: 0 Mean:9.21

Max: 40

Although the original social network data is complete, it is also possible that some

entries are indeed missing since students can only name up to six friends. In this data

analysis, for illustration purpose, we remove a portion of the entries and treat them as

missing data. We can investigate how different imputation methods perform on the

incomplete synthesis dataset. For simplicity, we set the missing probability for each

entry to be p ∈ {0.10, 0.20}. To better compare the results, we include the complete
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Figure 5: Histogram of the alcohol consumption in the teenage Friends and Lifestyle

Study data.

data analysis result on the first row in Table 21 and Table 22. We have several

interesting findings here. First, we can see from Table 21 that the network effect ρ

can concluded to be significant at level α = 0.05 using the complete data set. Our

Zero-imputation method has consistent results in the network effect detection with

the complete data analysis. However, the Always-Zero method produces a different

conclusion if α = 0.05 is used. Second, from Table 22, we can see that under the

complete data analysis, Tobacco and Cannabis are found to be significant predictors

for teenager’s alcohol consumption under NAR model, and Cannabis has a very small

p-value. The results are still consistent when different missing imputation methods

are used for the missing data.
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Table 21: NAR model results for the estimation of ρ with missing teenage Friends

and Lifestyle Study data. NAR model is fitted with selected variables.

Missing Rate Method ρ̂ P-value

0 Complete Analysis .025 .040

.10

Zero-impute-1 .021 .047

Always-Zero .022 .080

Zero-impute .022 .040

.20

Zero-impute-1 .025 014

Always-Zero .022 .089

Zero-impute .026 .010

Table 22: NAR Model results for Age, Tobacco, Cannabis, and Money with missing

teenage Friends and Lifestyle Study data.

Missing Rate Method Age P-value Tobacco P-value Cannabis P-value Money P-value

0 Complete Analysis -.073 .734 .288 .042 .435 0 .016 .086

.10

Zero-impute-1 -.067 .757 .303 .033 .424 0 .016 .086

Always-Zero -.075 .731 .292 .040 .434 0 .016 .094

Zero-impute -.066 .759 .303 .033 .425 0 .017 .082

.20

Zero-impute-1 -.082 .702 .298 .034 .434 0 .016 .100

Always-Zero -.075 .731 .301 .034 .428 0 .016 .103

Zero-impute -.075 .726 .302 .032 .431 0 .016 .096
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4.3 Network Autoregressive Error Model

With the same notation in Section 4.2, we now study the following network

autoregressive error model (NARE),Y = Xβ + u

u = λAu+ ε

(22)

In the above model, β ∈ Rp is the model parameter of interests, u is the marginal

error term, assumed to have an error-autoregressive structure with coefficient λ, and

ε follows N (0, σ2). We can also write the model in the following marginal form,

Y = Xβ + u, u ∼ N (0, σ2(I − λA)−2).

Parameter λ characterizes the network autoregressive effect of the error terms. If we

observe the complete network matrix A, then we can first use Maximum Likelihood

(ML) to estimate model parameters σ and λ. We use σ̂ and λ̂ to denote the ML

estimators.

Let

Σ̂ = σ̂2(I − λ̂A)−2

be the plug-in estimator for marginal variance-covariance of u. Parameter β then

can be estimated by the Generalized Least Squares (GLS) estimator,

β̂ = (XT Σ̂−1X)−1XT Σ̂−1Y.

Theoretically speaking, estimator β̂ is always unbiased even if the variance-covariance

structure is not correctly identified, but the inference of β may be affected if the

network effect is not correctly estimated. If there is no autoregressive effect in errors,
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i.e., λ = 0, then model (22) will reduce to the linear regression model. If we treat

A as the spatial connection, it then becomes the Spatial Error Model, see Anselin

et al. (2001) for detailed discussions.

Following the notations in Chapter 3, we will explore the Zero-imputation method

and the Always-zero method to fill in missing entries if the network is incomplete.

Let Â be the imputed network matrix. We will then conduct the subsequent analysis

as if this is the observed complete network A, and then compare the results with the

complete data analysis.

4.3.1 Simulations of the Network Autoregressive Error Model

Let the sample size be 150 and we include three covariates, one standard normal,

one uniform on 0 and 1, and one binary variable with Bernoulli parameter 0.7. The

model parameters are (β, σ)T = (1.5, 0.05, 0, 0.50, 0.2)T . For each i 6= j, element Ai,j

is a Bernoulli random variable, generated independently by parameter δ
‖xi−xj‖2 . Here

δ is the parameter that controls the network density. The quantity in the denomi-

nator is the Euclidean distance between subject i and subject j’s covariates. If two

people are close in covariate’s Euclidean distance, then their connection probability

will be large. We fixed the overall network density at 0.12 in the simulations. All

simulations are repeated 1000 times. NARE model fittings are implemented through

R package sna.

For missing mechanism in this simulation, we let d0 ∈ {0.10, 0.15, 0.20} be the

parameter that controls the overall missing rate. The missing probability for each

entry (i, j) is chosen as d0
‖xi,1:2−xj,1:2‖2 . To better understand the estimation impact of

missingness, we first explore the case when there is no error-autoregressive effect, i.e.,

λ = 0. Table 23 and Table 24 display the estimation and the inference results under
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this case. Type I errors are inflated a little bit for all methods. This may be due

to the small sample size. It is known that restricted maximum likelihood (REML)

may provide better results than MLE in autoregressive structure estimations, but it

is not implemented in the package we use. All methods are similar in the inference

of β when λ = 0, which is expected since the model then has nothing to do with

network matrix A.

Table 23: Simulated NARE λ estimation table for different methods when population

λ = 0.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

λ̂ TypeI λ̂ TypeI λ̂ TypeI λ̂ TypeI

.128 -.006 .066 -.006 .062 -.008 .064 -.006 .062

.187 -.007 .066 -.006 .069 -.008 .070 -.006 .067

.242 -.007 .065 -.007 .066 -.009 .064 -.007 .068

Table 24: Simulated NARE β1 estimation table when population λ = 0. The true

β1 = 0.05.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

β̂1 Power β̂1 Power β̂1 Power β̂1 Power

.128 .049 .938 .049 .937 .049 .936 .049 .937

.187 .050 .939 .050 .939 .050 .940 .050 .939

.242 .049 .940 .049 .933 .049 .932 .049 .933

66



When λ = 0.07, Table 25 displays results of λ estimation. In general, the Zero-

impute method higher power over the Always-Zero method. However, we still see

some bias in the estimation of λ even the Zero-imputationis used. Table 26 shows

the results for the non-zero β1. Although point estimations for β1 are all unbiased

for different methods, our method has a higher power. Table 27 shows the results for

β2 = 0, the zero-imputation-1 method has smaller Type I errors than the Always-

Zero method, although it shows a Type I error inflation when the missing rate is

high. Overall, the estimation and inference of λ in NARE is not as good as the

parameter ρ in the NAR model. NAR is more popular and more commonly studied

in the literature.

Table 25: Simulated NARE λ estimation table for different methods when population

λ = 0.07.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

λ̂ Power λ̂ Power λ̂ Power λ̂ Power

.128 .067 .866 .056 .716 .047 .672 .057 .712

.187 .067 .866 .052 .672 .042 .592 .052 .678

.242 .067 .874 .045 .612 .051 .550 .045 .612
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Table 26: Simulated NARE β1 estimation table when population λ = 0.07. The true

β1 = 0.05.

Missing Rate Complete Zero-impute-1 Always-Zero Zero-impute

β̂1 Power β̂1 Power β̂1 Power β̂1 Power

.128 .049 .826 .049 .798 .050 .792 .049 .794

.187 .049 .828 .049 .788 .051 .778 .049 .781

.242 .051 .836 .051 .776 .051 .762 .051 .778

Table 27: Simulated NARE β2 estimation table when population λ = 0.07. The true

β2 = 0.

Missing Probability Complete Zero-impute-1 Always-Zero Zero-impute

β̂2 TypeI β̂2 TypeI β̂2 TypeI β̂2 TypeI

.128 .005 .062 .005 .088 .005 .116 .005 .090

.187 .004 .066 .004 .098 .004 .150 .004 .102

.242 .003 .062 .001 .112 -.002 .194 .002 .114
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5.0 Summary and Discussion

Prediction of unobserved links is one of the main goals in relational data analysis.

In Chapter 2, we develop a nonparametric prediction method for pure cold start

users following a latent position approach. Simulations and the real data analysis

show that our proposed method outperforms the existing methods in classification

characteristics such as AUC. In Chapter 3, we develop a Zero-imputation method

under heterogeneous missing situations in Recommendation Systems to predict all

missing ratings. Our algorithm has a closed form solution, scalable to large data sets

and can be extended to work for the cold start prediction problems. Simulations

and the real data analysis show that our Zero-imputation method has a sharper

improvement in larger data sets and in cold-start problems. Most work on network

regression analysis assume that the network matrix is fully observed. However, this

assumption is often violated in practice. In Chapter 4, we utilize the Zero-imputation

method to impute all network missing values in the context of network Autoregressive

(NAR) model. Numerical experiments show that our method has a higher power than

other approaches to detect the network effect.

We now discuss a possible extension of this thesis. In classic Recommendation

Systems, data set can be seen as an user-item rating matrix with large portion of

missing values. In Chapter 3, we discussed the Zero-imputation method for learning

ratings S,

S : Users× Items→ S0

where S0 is some ordered score set such as {1,2,3,4,5}. In some applications, multiple

ratings and aspects are of interest. For example, in the restaurant domain users can
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rate food taste, location, service as well as the overall score for the restaurant, and in

hotel recommendations (Jannach et al., 2012), one can rate cleanliness, sleep quality,

front-desk and so on. Therefore it is possible to explore the multi-dimensional ratings

S ′,

S ′ : Users× Items→ S1 × · · · × ST .

Here T is the total number of aspects. The heterogeneous missing problem also

appears in the multi-criteria ratings since people can choose to rate one or more

particular aspect scores. It may be of interest to extend the Zero-imputation method

to this multi-dimensional problem, where we need to estimate a sparse binary tensor.
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