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Abstract 

Computational Design and Analysis of MOF-based Electronic Noses 

for Disease Detection by Breath 

 

Brian A. Day, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Despite the existence of sophisticated analytical gas sensing technologies like gas 

chromatography – mass spectrometry (GCMS), there are many applications for which sufficient 

gas sensors are lacking, such as environmental monitoring and disease detection by breath, where 

there is a need for low-cost, portable devices with high sensitivities and fast response times. A 

promising strategy for achieving these features is the development of gas sensor arrays, better 

known as electronic noses, in which multiple sensing elements are used cooperatively to improve 

detection capabilities. 

This dissertation describes my research on the use of metal-organic frameworks (MOFs) 

as the sensing materials for electronic noses. MOFs are a novel class of nanoporous crystalline 

materials with high internal surface areas and a large degree of chemical and structural diversity, 

resulting in similarly impressive and diverse gas adsorption properties. Prior to the work of this 

lab, there had been few investigations into MOF-based sensor arrays, and they were limited to 

experimental trial-and-error approaches. In response, our lab pioneered the use computational 

approaches for high-throughput screening of MOFs and rational design of sensor arrays, resulting 

in significant improvements to sensing performance.  

The focus of this dissertation is on strategies for further improving the design and analysis 

of MOF-based electronic noses, specifically for the detection of trace gas species in complex gas 

mixtures for disease detection by breath. We first examined the ternary gas mixtures of carbon 
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dioxide, nitrogen, and oxygen, the majority species of breath, which provided a valuable starting 

point for breath analysis and highlighted limitations of our existing method. In order to address the 

scalability challenges related to the combinatorics of multicomponent mixtures, we developed a 

novel coefficient-based method for evaluating the adsorption of trace gas species in complex 

mixtures, as well as a corresponding algorithm for signal analysis, which we used to study five-

component gas mixtures relating to the detection of chronic kidney disease by breath. Finally, we 

developed a strategy for improving the sensitivity and selectivity of arrays, and increasing overall 

information content, by sampling the gas mixture at various pressures, with low pressures enabling 

the desaturation of sensors by strongly adsorbing gases, and high pressures enabling us to increase 

mass uptake for weakly adsorbing gases.  
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1.0 A Brief Introduction to Gas Sensing Technologies 

1.1 Existing Technologies & Limitations 

There are numerous gas sensing technologies in existence today including sophisticated 

analytical instruments like gas chromatography - mass spectrometry (GCMS) and flame ionization 

detectors; simple mass-based sensors, like surface-acoustic wave (SAW) devices and quartz-

crystal microbalances (QCM); and chemiresistive sensors such as metal-oxide semiconducting 

field-effect transistors (MOSFET), to name just a few.[1,2] However, despite this breadth of 

technologies, there are many applications for which all of these sensors fall short, as no single 

technology yet encompasses portability, sensitivity, selectivity, and rapid response times.  

Furthermore, many of these technologies require special operating conditions, such as elevated 

temperatures, vacuum chambers, complex calibration procedures, or long recovery periods.[1,3] 

One such application is the non-invasive screening and detection of diseases by breath or 

body odor.[4–8] There are numerous diseases for which the breath biomarkers are well 

documented (e.g., kidney disease, liver disease, lung cancer), however, because of the limitations 

of the existing technologies, in particular cost and portability, health systems still rely on other 

sample types (e.g., blood and urine) and diagnostic techniques.[4,9–17] Hence, there is a need for 

next generation gas sensors for breath-based diagnostics. 

There are also numerous safety applications where a next generation gas sensor would be 

useful, such as the detection of methane leaks in the natural gas industry, the detection of toxic 

chemicals in industrial applications, and the detection of chemical warfare agents for defense 

applications.[1,18,19] Portability is again one the primary barriers to employing existing 
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technologies, however rapid sensor response times are also critical in the above applications to 

alert those endangered by the conditions as quickly as possible.  

Additional application areas include the food and beverage industry, the pharmaceutical 

industry, and environmental monitoring. Across all these industries, there is a common desire for 

the next generation of gas sensors to encompass the following features: low cost, high portability, 

high sensitivity/selectivity, rapid response, and simple operating conditions. Presently, the most 

promising strategy for achieving these features in a single device is to build a gas sensor array, 

commonly referred to as an electronic nose.  

1.2 Exhaled Breath Analysis 

One of the most exciting application areas for new gas sensing technologies is exhaled 

breath analysis.[4,20,21] Human breath is a complex and information rich gas mixture. Although 

breath is composed mostly of nitrogen, oxygen, carbon dioxide, and water, over the past few 

decades, more than 1,000 different volatile organic compounds (VOCs) have been identified in 

human breath, ranging in concentration from several parts per million (ppm) down to a few parts 

per trillion (ppt). Some of these gases originate from processes in the body (endogenic), whereas 

others originate from surrounding air (exogenic).[21] Notably, the composition of VOCs in breath 

can vary widely from person to person in both which gases are present and their concentration. 

Only a subset of VOCs is actually common to all humans, including gases like isoprene, acetone, 

ethane, and methanol, which are all products of core metabolic processes.  

The detection of VOCs in breath for disease detection actually has a long history, stretching 

back to the times of Hippocrates. Doctors in ancient Greece knew to be on alert for the sweet and 
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fruity odor of acetone for patients with diabetes, fishy scents for liver disease, urine odors for 

failing kidneys, and a putrid stench for a lung abscess (though perhaps without these modern 

diagnoses).  

Modern breath analysis started in the 1970s when researchers using gas chromatography 

identified more that 200 compounds in human breath. Then, along with advances in analytical 

techniques for gas sensing, researchers began to focus on the correlation between compounds in 

exhaled breath and human health, resulting in an extensive body of literature of exhaled breath 

analysis for clinical applications. Examples of known biomarkers include alkanes for oxidative 

stress; nitric oxide and hydrogen peroxide for lung diseases such as asthma, chronic obstructive 

pulmonary disease, and cystic fibrosis; isoprene for lung cancer; acetone for diabetes; and 

hydrogen, methane, and hydrogen sulfide for gastrointestinal diseases.[10,22,11,12] 

But despite the ancient and modern history of breath analysis, breath is seldom used in 

medicine, largely due to a technology gap. There are only a few breath tests on the market today, 

including a three-compound test for small intestinal bacterial overload (SIBO), a fractional exhaled 

nitric oxide (FeNO) test for airway inflammation, and most famously, breathalyzer tests for the 

indirect assessment of blood alcohol content (BAC).[11] For many other diseases, multiple 

compounds need to be measured simultaneously, and while GCMS is impressive technology 

capable of such an analysis, it is normally too expensive and low throughput for large patient 

populations, and no other gas sensors yet exist which can cheaply and quickly analyze gas mixtures 

as complex as breath.  

Instead, most clinical tests use biological samples, such as tissues, fluids (blood, urine, 

sputum), feces, or alternatively, imaging tests such as x-rays and CT scans. Even so, because breath 
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testing is completely non-invasive, there is a strong desire to develop breath tests for disease 

screening, detection, and monitoring applications.  

One of the most promising uses for exhaled breath analysis is lung cancer screening. Lung 

cancer is the second most common and single deadliest cancer in the United States, responsible 

for around 150,000 deaths per year, more deaths than breast, colon, and prostate cancer combined. 

This is due, in part, to the fact that lung cancer is most often caught in its late stages, when survival 

rates are at their lowest.[9,23] Currently, the United States Preventative Services Task Force 

(USPSTF) recommends lung cancer screening for those over the age of 50 with 20 pack-year 

smoking histories, which amounts to about 14.5 million people in the United States. However, 

screening rates for lung cancer are exceptionally low, at around only 5%, contributing to the lack 

of early diagnosis.[24] Furthermore, the only recommended screening test for lung cancer at 

present in low dose computed Tomography (LDCT), but this test has an incredibly high false 

positive rate of 94.5%, causing undo strain on downstream resources. A simple point-of-care 

breath test for lung cancer could dramatically increase screening rates and consequently, increase 

the likelihood that lung cancer is caught early, when survival rates are better, and treatment is 

cheaper.   

1.3 Electronic Noses 

It is widely known that dogs have an incredible sense of smell. Their noses contain around 

1,300 unique olfactory receptor types, each of which is tuned to the detection of different types of 

molecules.[25] In total, their noses contain well over 100 million olfactory receptor cells, enabling 

them to detect molecules at parts per trillion concentrations.[26–28] By comparison, a human nose 
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contains around 900 unique olfactory receptor types, and only 5 million olfactory receptor 

cells.[25,29] Because of their superior sense of smell, dogs have been employed for numerous 

tasks, first as hunting dogs, and more recently, for bomb-sniffing, drug-sniffing, disease detection, 

and disease management.[26,28,30] While dogs have excelled in these areas, the training and 

management of a team of dogs is difficult and expensive, leading to both practical and economic 

barriers to their use. For example, a diabetic alert dog costs around $20,000 dollars.[28] And often, 

when teams of dogs are needed, such as in threat management or disaster response, there are simply 

not enough trained dogs for the task.[26,27,31] Instead, what if we had the ability to fabricate a 

device mimicking a dog’s nose? Such a device, often called an electronic nose, would be an 

incredible technological advancement.  

Just like a biological nose, an electronic nose can be thought of as an array of inorganic 

‘olfactory receptors’ (i.e., sensing elements), each of which complements the others. In principle, 

one single sensing element could be used to detect several different gases simultaneously, so long 

as it has a statistically unique response to all possible combinations of those gases. However, in 

practice, this is nearly impossible, hence the motivation for building a sensing array. Moreover, 

for many applications, one may only need to detect a small number of gases, but an electronic nose 

must be able to discriminate the gases of interest from other interfering compounds in the sample. 

Consider again exhaled breath analysis for disease detection; a single disease may have anywhere 

from one to a dozen known biomarkers, but a single breath sample can contain over 700 different 

VOCs. Detecting even a small set of biomarkers becomes very complicated, as the device must 

avoid mistaking any of the hundreds of other gases for the clinically relevant compounds. Thus, 

an electronic nose for such an application may actually need many more sensors than the number 

of biomarkers in order to minimize the influence of the other compounds. 
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This leads to into the challenge of materials selection. There are many different types of 

materials which could be employed in an electronic nose. Metal-organic frameworks (MOFs), for 

example, which are the focus of this dissertation, are an incredibly large class of materials. To 

date, there have been over 90,000 MOFs synthesized and over 500,000 which have been 

proposed.[32] Clearly, selecting the optimal combination of sensing materials for a 700-

component gas mixture from hundreds of thousands of materials in non-trivial.[33–37] Going a 

step further, if one desires to build a truly universal gas sensor, it is likely that hundreds of different 

sensing materials will be necessary, underscoring the fact that the design of an electronic nose is 

as much a big data problem benefiting from computational approaches as it is an engineering 

challenge. 

Nevertheless, multi-sensor arrays have existed for decades. The first known multi-sensor 

array was developed in 1982, with the term ‘electronic nose’ later being coined by Gardner and 

Bartlett in 1988, defined as “an instrument which comprises an array of electronic chemical sensors 

with partial specificity and appropriate pattern recognition system, capable of recognizing simple 

or complex odors”.[19,38–41] Since then, several more electronic noses have been developed, 

with some having even been commercialized.[19] Even so, these electronic noses have not been 

widely employed in the previously named application areas, raising the question, why? Generally 

speaking, the materials and their response to different gases were too similar, and thus there was a 

diminishing benefit to additional sensing elements such that the desired sensitivity and selectivity 

could not be achieved. In order to alleviate this problem of diminishing returns, electronic noses 

must employ sensing mechanisms and materials with a large diversity of responses.[19,42] 

Accordingly, electronic nose research can be sectioned as follows: sensing mechanisms, 

sensing materials, array design, and data analysis. 
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1.3.1 Sensing Mechanisms 

As previously mentioned, for many applications for which electronic noses are being 

developed, the resulting device must be cheap and portable with high sensitivity/selectivity, and 

rapid response times. These features, however, limit the sensing mechanisms which one can use. 

In our opinion, the most promising sensing mechanism is a simple mass-based sensor. Mass-based 

sensing devices can use a wide variety of sensing materials and because of the simplicity of the 

transduction mechanism, are sensitive to most gases. Furthermore, they are cheap and portable, 

require low power input, can be operated at room temperature, and have good mass sensitivity, but 

can be limited by temperature sensitivity and a poor signal-to-noise ratio.[43–45] Fortunately, 

these limitations can be mitigated by a well-designed array. In our work, we envision an electronic 

nose using technologies such as QCMs and SAW devices, as is shown in Figure 1.  

 

 

Figure 1. Sample four-element array of surface acoustic wave devices with MOFs the sensing materials. 

 

The transduction mechanism for these two sensors are frequency shifts in a mechanical 

wave which results from a change in mass of the sensing layer. This frequency shift is then 

converted into an electrical signal, enabling digital reading of the sensors. The relationship 
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between the change in mass, frequency shift, and electrical signal is governed by the Sauerbrey 

Equation (Equation 1), where  
∆𝑚

𝐴
 is the mass change per area, 𝑐𝑚 is a mechanical coefficient, 𝑓𝑜 

is a resonant frequency used as a reference state, and 𝑓 is the output frequency.[46] 

∆𝑚

𝐴
=  

𝑐𝑚(𝑓 − 𝑓𝑜)

2𝑓2
 (1-1) 

Thus, for initial computational exploration of these device, one can consider the signal from these 

devices as effectively a mass measurement.[43–45] 

The change in mass is which results in the above signal change is due to the adsorption of 

gas molecules onto and into the sensing layer upon exposure to a gas mixture. This change in mass 

is a function of both the sensing material and the composition of the surrounding gas. These 

devices exhibit very impressive sensitivity, in general yielding nanogram precision, however the 

sensitivity can be affected by various features of the specific device, as well as the sensing material. 

Although we will be focusing only on mass-based sensors, it should be noted that electronic 

noses can, in principle, use multiple sensing mechanisms concurrently, and there may even be 

advantages to doing so.[19] However, it is often convenient to limit oneself to a single sensing 

mechanism, mainly to limit the complexity of screening materials and data analysis. 

1.3.2 Sensing Materials 

Much research has been done in trying to develop materials with the correct properties for 

the detection of specific molecules, whether it be through the functionalization of carbon 

nanotubes, polymer engineering, etc.[47–50] However, as highlighted by the limited use of 

previous electronic nose devices, precisely engineered materials provide diminishing returns, and 

so our belief is that improved detection is better addressed by intelligently selecting from a set of 
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diverse materials, especially when the goal is to detect many different types of molecules with a 

single device. This belief assumes two things, however; firstly, that there exists a large enough set 

of materials to choose from, and secondly, that the properties of that materials set are diverse 

enough to complement for each other. Fortunately, there are several classes of materials to choose 

from for mass-based sensing, including polymers, zeolites, and metal-organic frameworks 

(MOFs).[51] 

Polymers have been an attractive material for electronic noses for some time, specifically 

conductive polymers for chemiresistive gas sensors.[52] The exhibit high sensitives, short 

response times, good mechanical properties, and are able to operate at room temperature. They 

also have the added bonus of being easily synthesizable. Unfortunately, they have a serious 

drawback in that they are highly susceptible to humidity, and that humidity can dramatically alter 

their gas adsorption properties. Furthermore, they are typically less sensitive than metal-oxide 

films, the other leading chemiresistive sensing material.[52,53] 

As for mass-based sensing, molecularly imprinted polymers have been gaining attention 

for use in aqueous environments, and polymers-carbon nanotube composites have been gaining 

attention for use in gas sensing. However, the lack of diversity of polymer-CNT composites is 

potentially limiting for larger arrays, and the non-crystalline nature of these materials makes them 

hard to study computationally.  

Zeolites are a class of microporous crystalline materials made up of interconnected 

aluminosilicate units, notable for their uniform pores/channels and high internal surface areas.[54–

56] The size of the pores/channels of zeolites are easily tuned by changing the number of bonded 

units.[57] This feature of zeolites makes them useful as molecular sieves, materials which filter 

molecules according to their size. Their chemical properties can also be tuned to some degree using 
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various post-synthetic modification techniques.[58] Collectively, these properties of zeolites lead 

to impressive gas adsorption properties, hence their appeal for gas sensing applications.[56,59] 

However, even with these tunable parameters and a large number of known hypothetical zeolites 

(>250,000), they tend to be relatively similar, and it is uncertain whether or not they are diverse 

enough for use in an electronic nose.[57]  

MOFs, on the other hand, combine the best features of polymers and zeolites. Like 

polymers, MOFs are made by combining structural building units (SBUs), but instead of 

monomers, the SBUs for MOFs are metal nodes and organic linkers. The resulting structures, like 

zeolites, are nanoporous crystalline materials with high internal surface areas and again, 

impressive gas adsorption properties. MOFs also exhibit incredible chemical diversity, owing the 

sheer variety of metal nodes and organic linkers which can be used. In fact, over 90,000 different 

MOFs have been synthesized, and there are more than 500,000 known hypothetical MOFs.[32,60] 

MOFs (and zeolites) also have another convenient feature in that, because of their crystalline 

nature, their gas adsorption properties are easily examined with well-established computational 

techniques, enabling large-scale screening. We have chosen to focus on MOFs as the primary 

sensing material for the electronic nose, believing them to be sufficient for most, if not all, 

applications.  

1.3.3 Array Design & Data Analysis 

Finally, there is array design and data analysis. As previously mentioned, a good electronic 

nose requires that the sensing materials complement each other, and in order to choose 

complementary materials, one needs to know the behavior of all possible sensing elements. To 

evaluate the behavior of these materials, one could run experiments, but considering the seemingly 
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infinite combinations of gases and the sheer number of MOFs to choose from, using experiments 

alone is combinatorically prohibitive. Likewise, data analysis requires a working knowledge of the 

behavior of the sensing elements, resulting in the same combinatoric issues. These problems 

instead require a computational pipeline, which is where the previously mentioned computational 

techniques become relevant. 

The research presented herein assumes arrays of mass-based sensors using MOFs as the 

sensing materials, and thus the work focuses on the array design and data analysis of an electronic 

nose, specifically for complex gas mixtures.  



 12 

2.0 Genetic Algorithm Design of MOF-based Gas Sensor Arrays for CO2-in-Air Sensing 

As a starting point for my research on the electronic nose project, I completed a variation 

on a study by Gustafson and Wilmer titled “Intelligent Selection of Metal-Organic Framework 

Arrays for Methane Sensing via Genetic Algorithms”, for which they developed a novel genetic 

algorithm used to design gas sensing arrays from a set of 50 MOFs for the analysis of ternary gas 

mixtures of methane, nitrogen, and oxygen. [34] 

In my variation of their work, I reimplemented and modified the genetic algorithm to 

design arrays using the same set of 50 MOFs, but for ternary gas mixtures containing carbon 

dioxide, nitrogen, and oxygen. The goals of this work were three-fold; firstly, to examine a ternary 

gas mixture relevant to breath-analysis applications; secondly, to improve the genetic algorithm; 

and finally, to examine the physical properties of the MOFs in the best and worst arrays and see if 

there were any features, or combinations of features, which should be targeted or avoided during 

array design, with the potential to inform array design in future works before running any 

adsorption simulations. The 50 MOFs used in this work, and the study it is based on, were selected 

from the CoRE MOF database with the aim of having a diverse representation of surface areas and 

void fractions.[61] A list of these MOFs and their relevant properties can be found in Appendix 

A. 
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2.1 Introduction 

There are numerous applications for sensing carbon dioxide in air, prominently 

environmental monitoring, with carbon dioxide and methane being the two most common 

greenhouse gases driving climate change. Additionally, with geologic carbon sequestration 

gaining traction as a carbon capture and storage (CCS) technology, there is a growing need to 

detect leaks from storage sites grows. [62–64]  

Other applications include indoor air quality monitoring, with CO2 acting as an indoor 

pollutant, and safety applications for the detection of rapid accumulation in confined spaces. [65] 

Exposure to elevated levels of CO2 in air poses a two-fold threat, acting as both an asphyxiant by 

displacing oxygen and as a toxicant, both with potentially deadly consequences. Adverse health 

effects have been documented at exposure to concentrations above 1000 ppm, such as headaches, 

drowsiness, and slight nausea. Exposure to concentrations above 5% can result in the development 

of hypercapnia, a build-up of CO2 in the bloodstream, and respiratory acidosis, an inability to clear 

excess CO2 the lungs.[66–68] Exposure to concentrations above 10% can result in convulsions, 

coma, and even death. And lastly, exposure to concentrations above 30% can lead to a loss of 

consciousness in a matter of seconds.[66,67] Clearly, rapid, sensitive, and portable (ideally 

wearable) CO2 sensors would benefit many people. 

Finally, along with nitrogen and oxygen, carbon dioxide is one of the primary components 

of exhaled breath, and this ternary gas mixture provides a useful starting point for the exploration 

of electronic noses for breath analysis. 
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2.2 Methods 

2.2.1 Molecular Simulations of Gas Adsorption 

In order to examine the adsorption of gases into porous crystalline materials, one can use 

a type of simulation known as Grand Canonical Monte Carlo (GCMC) simulations. In essence, 

GCMC simulations randomly place gas molecules into the framework in what is known as an 

insertion move. Then, depending on the energetics of the inserted molecule, the move is either 

accepted or rejected. GCMC moves also include deletion, translation, regrow (effectively a type 

of rotation) and identity change, which are either accepted or rejected based on the same energetic 

criteria. By doing enough of these moves, one can eventually approximate the equilibrium 

adsorption of the gases in the framework. The specific program we use is called RAPSA.[69] For 

a detailed description of GCMC simulations, please refer to Appendix A. 

For this work, we ran various GCMC simulations of ternary gas mixtures containing CO2, 

O2, and N2. The compositions of CO2 and O2 ranged from 0% to 30%, and the composition of N2 

ranged from 40% to 100%, each in increments of 1%. This resulted in 961 unique gas mixtures. 

The temperature and pressure of these simulations were 298 K and 1 bar, reflecting atmospheric 

conditions. To model electrostatic interactions, which are important for accurately predicting CO2 

and, to a lesser extent N2 adsorption, we assigned partial charges to the atoms of the MOF 

frameworks via the EQeq method.[70] Similarly, the molecule parameters of the gases also 

included partial charges, and the forcefield which we used, TrAPPE, has been shown to accurately 

simulate these effects.[71] The molecule parameters can be found in the Appendix A. The 

simulations resulted in a library of total and component adsorbed mass data as a function of MOF 

and gas composition.  
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2.2.2 Array Design via Genetic Algorithm 

The next step is the design of gas sensing arrays. Although it is intuitive that adding more 

sensing elements to an array should improve performance, to what degree the performance can be 

improved has not been widely explored. Similarly, there has been little work on systematically 

finding the best combinations of MOFs for an array, and given that with as few 50 MOFs, one 

could construct over 1.125x1015 unique arrays, determining the top performing arrays is highly 

non-trivial.  

We have developed two strategies for the design of sensing arrays: a brute force approach, 

in which we evaluate all possible arrays of a given size, and a genetic algorithm approach, in which 

we continually update a set of arrays with a mutation strategy in order to seek the best (or worst) 

performing arrays. The brute force strategy is useful only when designing small arrays from a 

relatively small set of MOFs, for which the total number of arrays is manageable. Here it is used 

primarily to evaluate the effectiveness of the genetic algorithm approach. In the interest of 

simplicity, a detailed description of the genetic algorithm approach is left to Appendix B.1. Note, 

however, that in addition to the mutation strategy used, the genetic algorithm requires evaluating 

some sample output for each array, and ranking its performance with a quality metric, each of 

which are described in the subsequent sections. 

As a test of the genetic algorithm, we calculated by brute force all 1-, 2-, 3-, 4-, and 5-

element arrays, and then screened arrays of the same size with a genetic algorithm (see Figure 2). 

We ran the algorithm three times seeking the best arrays, and another three times seeking the worst 

arrays, for a total of 6 runs per array size. Each run of the genetic algorithm included 20 arrays per 

generation and 200 generations per run. As shown in Figure 2, the genetic algorithm is clearly 

successful in finding the best and worst performing arrays of each size.  
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Figure 2. Comparison of the genetic algorithm to brute force screening for 1- to 5-element arrays. The dashed 

lines highlight only the KLD value of the best array designed by the genetic algorithm, and the solid lines are 

the KLD values of all arrays designed by brute force screening. Note, there are more arrays as array size 

increases; the results are simply stretched so that the best/median/worst arrays are vertically aligned.  

2.2.3 Analyzing Gas Mixtures Using Arrays 

As previously mentioned, the type of sensors which we envision for the array are simple 

mass-based sensors, specifically SAW devices which measure changes in mass due to gas 

adsorption. In order to predict the composition of the gas mixture which the sensor is exposed to, 

we compare the sensor output from each sensing element to our library of simulated adsorption 

data. Then, a probability is assigned to each of the possible compositions in based on how close 

the measured and simulated masses are. Effectively, the predicted composition(s) are those with 

the highest probabilities.  

Since we are not yet using real devices, we must create a placeholder for the sensor output, 

here just using values from the simulated adsorption data. We chose to use values from the 

simulations of 5% CO2, 20% O2, and 75% N2, as this is approximately the concentration found in 

human breath and it also corresponds to levels of CO2 in air which start to become especially 

concerning.[66] Note that since the sensor outputs are generated directly from the simulated data, 
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there is a composition whose predicted adsorption values perfectly match the sensor outputs. 

However, with real sensor device there is always some measurement error. We account for this by 

artificially imposing measurement error on the sensor output; this ensures that no gas mixture can 

be predicted with 100% certainty. For a complete description about this prediction methodology, 

please refer to Appendix B, as well as to the previous work which this is building upon .[34,72,73]  

In this work, each MOF showed selective binding for CO2 (over either O2 or N2), and thus 

one might guess that finding complementary combinations of the 50 MOFs screened to detect O2 

and N2 would be impossible. Fortunately, even small differences in the adsorption behavior of the 

individual MOFs have a way of improving predictions once the arrays are sufficiently large and 

given that the elements of the array are chosen carefully. Figure 3a-c shows the best, median, and 

worst performing 1-element arrays, and Figure 3d-f shows the best performing 5-, 15-, and 25- 

element arrays which illustrate this effect.  

In general, so long as the simulated adsorption data is accurate and trace gas species which 

we have not yet accounted for have a negligible effect, this method would work well for predicting 

the composition of real gas mixtures (assuming that the array used is also sufficient). What is most 

important to note is that for any composition one wishes to predict, one must run a distinct set of 

adsorption simulations, one per composition per sensing material. This aspect of the method is 

severely limiting, creating a computational bottleneck, and thus was changed dramatically for 

complex gas mixtures, as will be explained in later sections.  
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Figure 3. (a-c) Ternary discrete probability plots of (a) the best (Mg-MOF-74)[74], (b) median 

(Cu4I4(DABCO)2 MOF)[75], and (c) worst (La(PODC)1.5(H2O) MOF)[76] 1-element arrays. (d-f) Ternary 

discrete probability plots of the best (d) 5-, (e) 15-, and (f) 25-element arrays. Please take note the change in 

scale of the color bar for the plots in (a-c) versus the plots in (d-f). 

2.2.4 Ranking Arrays 

In order to quantify the array performance beyond simply looking at the probability of the 

gas mixture we are testing for, we used a metric known as the Kullbeck-Liebler Divergence (KLD), 

which in essence, tells us how much better we predict a composition over random chance.[77] The 

KLD is calculated (in units of bits) as follows: 

𝐾𝐿𝐷 = ∑ 𝑃𝑖 ∙ log2(𝑃𝑖 ∙ 𝑁)
𝑁

𝑖=1
 (2-1) 
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The range of possible KLD values is limited only by the number of possible outcomes, so 

in the case of gas sensing, the number of possible compositions. As such, it can be used to compare 

arrays independent of size, the individual sensing elements, or even the type of sensing mechanism, 

so long as the number of possible compositions is the same. Consequently, we can use the KLD 

value to show the advantage of adding more elements to a sensing array, or conversely, the 

diminishing returns of adding too many elements. Figure 4 shows the KLD values of the best and 

worst arrays used in this work as a function of array size. Arrays of size 1-5 were examined using 

the brute force method, whereas all other array sizes were screened via the genetic algorithm. 

 

Figure 4. KLD (in bits) of best-found and worst-found arrays as a function of the number of sensing elements. 

 

It is clear that for smaller arrays, the overall performance is worse. The maximum achieved 

KLD for a 1-element sensor is only 3.46 bits, while for a two-element sensor it is 3.97 bits, and 

for a three-element sensor it is 4.35 bits. By 45 elements, the maximum achieved KLD is 7.01 bits. 

It also becomes apparent from Figure 4 that the range of possible KLD values is much greater for 

small arrays than for large arrays. Although the decrease in variability of the KLD for large arrays 

moderates the need for advanced screening approaches like the genetic algorithm, it underscores 

the advantages of employing many-element sensors over 1-element sensors.  
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2.3 Results & Discussion 

Combinations of physical properties that lead to high performance sensor arrays could 

provide insights into building better sensing arrays that use MOFs beyond the 50 considered in 

this study. Thus, here we examine the combinations of physical properties of the MOFs in the best 

and worst performing arrays. Intuitively, one expects that an array made up of a diverse set of 

materials would perform better than an array of nearly identical materials, as diverse properties 

should give rise to diverse adsorption behaviors 

Although there are many different physical properties one could choose to examine, there 

are a few that are particularly likely to be important based on known trends in gas adsorption. At 

low pressures, adsorption behavior is typically governed by the heat of adsorption, a 

thermodynamic property. However, at moderate pressures, adsorption behavior has been shown to 

trend with the surface area of the material, and at high pressures, with the free volume of the 

material, both physical properties.[78,79] Furthermore, at all pressures, pore diameter limits which 

molecules can diffuse into the bulk of the framework. Thus, we examined the influence of the 

following properties on array performance: volumetric surface area, void fraction, and pore 

diameter. 

In Figure 5, the 300 best and 300 worst 5-element arrays, ranked from best to worst, are 

plotted against the physical properties of the elements in the array. We choose to examine 5-

element arrays, rather than larger arrays, since with smaller arrays it is harder to compensate for 

bad elements. Furthermore, with larger arrays, we observed a narrowing of the minimum and 

maximum KLD values. For 5-element arrays, the KLD of the 300 best-found arrays ranges from 

4.58-4.94 bits, and for the 300 worst-found arrays the KLD ranges from 1.87-2.51 bits. 
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Figure 5. Physical property vs. rank (top/bottom 300 arrays). The bottom plot shows the standard deviation of 

the corresponding physical property for each array (e.g., one array with the following five void fractions [0.79, 

0.84, 0.54, 0.37, 0.64] would have a standard deviation in its void fraction of 0.17). The appearance of horizontal 

‘lines’ corresponds to MOFs which are frequently featured in the best/worst arrays and gives us insight into 

both the (un)desirable properties as well as the (un)desirable spread of those properties. 

 

For all three properties, the elements of the best arrays span a wide range of the available 

features, whereas the worst arrays feature elements with a narrow range of those features. Here, 

however, both the best and worst arrays feature similar ranges of void fractions, and consequently 

the standard deviations are comparable. For some properties, there seems to be a limited range of 

useful features. Consider pore sizes, where the best arrays exhibit diversity over a limited range 

(ca. 4-30Å) when compared to the worst arrays (ca. 5-45 Å). This suggests that, while a diverse 

set of elements is still beneficial, there is a limit to the usefulness of excessively small (< ~4 Å) or 

large pores (> ~30 Å), as beyond those limits, they either exclude all gases (small pores) or that 

the volumetric density of chemically selective adsorption sites is too low for appreciably selective 

binding (large pores). 

In addition to examining the complementarity within an individual physical property, we 

wanted to examine whether there was complementarity between different physical properties. For 
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example, it might be desirable to have an element with a high surface area, but a narrow pore 

diameter so that it selectively adsorbs only smaller gases, but in large quantities, providing a 

uniquely good signal for detecting those components. This complementarity is examined in Figure 

6.  

No complementary effect between any two properties becomes readily apparent, so it might 

be safe to conclude that for this gas mixture at these conditions, it is enough to consider only the 

individual properties of the elements. Nevertheless, there is still a noticeable clustering of the blue 

dots (worst array elements) compared to the red dots (best array elements), underscoring the 

importance of a diverse property set.  

 

Figure 6. Physical property coupling (top/bottom 300 arrays). Dot color corresponds to elements of the 

best/worst arrays (red is for best arrays, blue for worst arrays) and dot size corresponds to the number of times 

the element is featured in the best/worst arrays (a larger dot corresponds to being present in more arrays). This 

is the same set of arrays used in Figure 5. 

 

When considering the data shown in Figures 5 and 6, it is important to remember that there 

are only 50 MOFs to choose from, and the gas mixtures feature only three gases of similar sizes 

(kinetic diameter of CO2 is 3.30 Å, of O2 is 3.46 Å, and of N2 is 3.64 Å).[80] As such, the selected 
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MOFs may not be representative of the whole material class (though, as a reminder, they were 

chosen to be relatively diverse) and the gases are clearly not representative of gases species at 

large. Thus, the conclusions from the above figures, may not be applicable for all gas sensing 

application, but rather specific to detecting CO2 in air. Moreover, with CO2 being strongly polar 

(relative to N2 and O2) and more likely to exhibit strong binding relative to these gases, it is 

plausible that other features, such as open metal sites, have a greater influence on the adsorption 

behavior, and thus are better predictors of and design criteria for the best/worst arrays than the 

features examined here.[81] Nevertheless, our study and the methodology described can help guide 

intuition with regards to the importance of these features for gas sensing. 

2.4 Conclusions 

Herein, we have described a methodology for screening gas sensing arrays of MOFs, 

specifically for the detection of CO2 in air. Additionally, we examined the physical properties of 

the MOF elements in the array to improve intuition for the design of sensing arrays.  

An interesting feature of the gas mixture studied was the high sensitivity of all MOFs 

towards CO2. Although this result gave the impression that reliably detecting the O2 and N2 would 

be difficult, we found that with even relatively small arrays, we were able to accurately resolve 

their composition. Furthermore, our analysis of the physical properties of the MOFs seems to 

confirm our intuition that diverse arrays lead to improved sensing. A noteworthy caveat to this is 

that there seems to be a practical range for certain features, namely pore size, as with excessively 

small or large pores, selectivity is diminished by the exclusion or inclusion of all the gases present 
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in the mixture, respectively. Although this limit is likely to change depending on the gases of 

interest, it seems reasonable that this concept should hold. 

In the next iteration of the work, we focus on studying complex gas mixtures (i.e., greater 

than 3 components). However, this required several changes to the overall procedure in order to 

keep computational times and costs within reason. 

 

 



 25 

3.0 Computational Design of MOF-based Electronic Noses for Dilute Gas Species 

Detection: Application to Kidney Disease Detection 

3.1 Introduction 

The primary limitation of the previous work was the lack of complexity of the gas mixtures 

which could be considered due to computational expense, as the prior method required 

enumerating every possible gas composition and then, for each one, simulating its adsorption in 

every MOF that might be used in an array. Thus, as the library of MOF candidates grows, and as 

more gases are included in the set of possible compositions, the prior method becomes 

combinatorically prohibitive. Although there are numerous applications for the sensing of complex 

gas mixtures, we have chosen to focus on breath analysis, specifically for disease detection 

applications.  

The disease which we chose to target in this work is chronic kidney disease (CKD), for 

which ammonia is a well-establish biomarker with known healthy and diseased concentration 

ranges.[13,22] There are several other diseases with known biomarkers in breath, but often the 

applicable concentration ranges are not well-known, or the concentration of the relevant species 

in the breath varies dramatically due to external factors. Despite these challenges, disease detection 

by breath remains a promising area of research owing to its unique and largely untapped clinical 

potential. 

Since breath contains many possible gas species at a wide range of concentrations, we 

needed to develop a method that was less computationally demanding while still maintaining 

sufficient accuracy.[82] Fortunately, the majority of the gases of interest are present only in trace 
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quantities, and so their adsorption in MOFs obeys Henry’s law (a linear function of the 

concentration in the bulk mixture outside of the MOF). Thus, it is sufficient to determine only the 

corresponding Henry’s coefficients to be able to predict the amount of each trace gas absorbed by 

the MOFs, drastically reducing computational demand. In this next phase of the work, we 

evaluated a modified form of Henry’s coefficients, which we call Combined Linear Adsorption 

Coefficients (CLACs), where these coefficients quantify not only the amount of trace gas species 

adsorbed, but also quantify changes in the adsorption of the non-trace gases, all as a function of 

the trace gas concentration. 

CLACs were evaluated for three trace gases (carbon dioxide, argon, and ammonia) in 50 

air-filled (nitrogen and oxygen) MOFs, the same 50 previously used. We then designed various a 

gas sensing arrays which were used to classify a set of artificial breath samples as either healthy 

or diseased for CKD via a newly developed predication algorithm.  

A similar strategy was first developed by Sturluson et al.[36] In their work, they 

computationally evaluated Henry’s coefficients for a set of gases (carbon dioxide and sulfur 

dioxide) and designed sensing arrays of MOFs. However, the key difference between their work 

and ours is our simultaneous consideration of both trace and non-trace gas species (i.e., gases for 

which Henry’s law would not apply). Hence where Sturluson et al. used traditional Henry’s 

coefficients, we employ our CLACs. Consequently, the resulting arrays are geared towards 

different applications, and the subsequent analysis procedures also differ. Their work has 

nevertheless been influential on ours and we have adapted their methods liberally, as will be 

discussed later. 
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The methods employed in this work can be broken into four distinct parts: combined linear 

adsorption coefficient evaluation, array design, breath sample generation, and breath sample 

analysis. 

3.2 Methods 

3.2.1 Combined Linear Adsorption Coefficients (CLACs) 

CLACs are most simply described as a modification of a traditional Henry’s coefficient. 

Consider exposing a MOF to a simple gas mixture which contains trace quantities of CO2 dispersed 

in non-trace quantities of N2 and O2. Henry’s Law tells us that the amount of CO2 adsorbed by the 

MOF is proportional to its partial pressure, assuming low partial pressures of CO2. However, what 

the Henry’s coefficient does not quantify is how the adsorption of CO2 impacts the adsorption of 

N2 and O2. CLACs address exactly this, quantifying both how much CO2 is adsorbed, and how 

much N2 and O2 is (presumably) desorbed, all as a function of the partial pressure of CO2. Thus, a 

CLAC can be thought of as the sum of a traditional Henry’s coefficient for the trace gas and a 

desorption correction for the non-trace gases. This also requires introducing a constant into the 

model for total adsorbed mass, that constant being the total adsorbed mass of the non-trace gases 

in the absence of any trace gases and at the total pressure and temperature of interest. The resulting 

model looks as follows: 

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑛𝑜𝑛−𝑡𝑟𝑎𝑐𝑒 𝑔𝑎𝑠𝑒𝑠 + ∑ 𝐾𝑖
∗ ∙ 𝑦𝑖

𝑁

𝑖=1
 (3-1) 
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where 𝑚𝑡𝑜𝑡𝑎𝑙  is the total adsorbed mass, 𝑚𝑛𝑜𝑛−𝑡𝑟𝑎𝑐𝑒 𝑔𝑎𝑠𝑒𝑠 is the constant mentioned above, and 

𝐾𝑖
∗ and 𝑦𝑖 are the CLAC and mole fraction of trace gas species, 𝑖, respectively. Note that unlike a 

Henry’s coefficient, which can never have a value less than 0, a CLAC can in principle take of any 

real value since it is possible that a MOF desorbs more of the non-trace gases that it adsorbs of the 

trace-gas, resulting in a net decrease in mass. For further discussion of this value, please refer to 

Appendix D. 

Changes in the concentration of the trace gases within the mixture do not impact their 

CLACs, however, changes in the concentrations of the majority gas species could strongly impact 

them. In general, one needs a separate set of CLACs for every gas mixture whose majority species’ 

concentrations are different. To address this, we ran a set of GCMC simulations in RASPA for 

each trace gas species in which the mole fraction was varied from 0-0.05. The remaining non-trace 

gases were limited to N2 and O2 in either a 3:1, 4:1, or 5:1 ratio. A pressure of 1 bar and a 

temperature at 298 K were used to replicate ambient conditions. The TraPPE forcefield was used 

for all gases.[71,83] For further details, please refer to Appendix A. 

Conveniently, for almost all of the gases and MOFs, the adsorbed mass of the trace gas 

species was independent of the composition of the background gases as evidenced by the R2 cutoff 

used when fitting (described below). The evaluated CLACs could thus be used for a wide variety 

of air mixture compositions. Moreover, the total mass of air adsorbed seemed to be independent 

of the composition of air, suggesting that for the remainder of the work, air could be treated as a 

single gas component, rather than separately as N2 and O2. Note that when referring to air in this 

context, we mean only the nitrogen/oxygen mixture, and not any of the other compounds. This 

greatly simplified the problem at hand, as these were the only two gases which were present in 
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greater than trace amounts for the current application, and thus we only needed to determine the 

constant, 𝑚𝑛𝑜𝑛−𝑡𝑟𝑎𝑐𝑒 𝑔𝑎𝑠𝑒𝑠, once for each MOF.  

In order to extract the CLACs from the simulation data, we fit a line to the adsorbed masses 

of the trace gas species for all ratios of air with the intercept forced to 0. We defined the linear 

region as the largest portion of the data where the R-squared value of the fit was greater than 0.95. 

Then, using the same set of compositions, a line was fit to the adsorbed mass of air for all ratios 

of air, except now with no R-squared cutoff employed, and with the intercept no longer forced to 

0 since there is still adsorbed air in the absence of any trace gas species. By adding the slopes of 

these fits together, we get the CLACs for the system. Although a similar result could have been 

obtained by fitting to the total adsorbed mass directly, it was more convenient to use the method 

outlined above. A detailed description of this method, and the reason for using it over the total 

adsorbed mass data or other methods such as Widom insertion, is given in the Appendix 3.1. An 

example of the resulting fits is shown in Figure 7, along with the raw adsorption data.  

 

 

Figure 7. Evaluation of adsorption coefficients from adsorption data (a) Adsorption data in HKUST-1 with a 

background gas of 3:1, 4:1, and 5:1 N2:O2 (i.e., three points for each mole fraction). (b) Linear fit for CO2 

adsorption. (c) Linear fit for air displacement. All fits have an R2 of at least 0.95. The CLAC which would be 

used for array design and prediction is 958 - 164 = 794 mg/g/mole fraction. 
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Figure 8 shows the resulting CLACs for all gas/MOF combinations as a function of the 

width of their Henry’s regime. Please note that a Henry’s regime ending at 0.05 mole fraction may 

extend beyond that point, but additional simulations would need to be done to determine this. 

 

 

Figure 8. (a-c) CLAC versus maximum concentration for which adsorption of the trace gas species is linear 

(i.e., end of Henry’s regime) for (a) carbon dioxide, (b) argon, and (c) ammonia. A fit was not obtained for all 

gases/MOFs either because adsorption was highly non-linear or because there was uncertainty in the adsorbed 

masses from simulations which prevented fitting with the desired R2 cutoff. The number of non-fit MOFs is 

printed on each plot. (d) CLAC for each gas/MOF combination, sorted by decreasing carbon dioxide CLAC. If 

a given gas/MOF combination does not have a CLAC, a grey symbol of the same shape is plotted below the 

horizontal line. 
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3.2.2 Array Design via Singular Value Decomposition 

After calculating CLACs for each gas-MOF pair, the next step in the process is array 

design. However, we first needed to eliminate MOFs which did not have appropriately wide 

Henry’s regimes for our application, in this case corresponding to a minimum mole fraction of 

0.05 for all gases. The concept behind this cutoff is that, if all gases are simultaneously in the 

Henry’s regime, then they will not interact with themselves or with the other trace gases, and thus 

the linear adsorption assumption should still be valid. Although this value of 0.05 is a restrictive 

cutoff, it was necessary since we treat carbon dioxide as a trace gas. Fortunately, of the 50 MOFs 

screened, 23 MOFs met this requirement. With this subset of MOFs, we could start designing 

arrays. Our approach for this was borrowed from Sturluson et al., who showed that the array with 

the best sensitivity could be determined by performing a singular value decomposition on the 

matrix of Henry’s coefficients for each array, with the best array having the largest smallest 

singular value.[36] In our work, we used CLACs rather than Henry’s coefficients, but otherwise 

this method is identical. It should be noted that using CLACs here is preferable to Henry’s 

coefficients, since a MOF could in theory exhibit large Henry’s coefficients for certain gases but 

have very low corresponding CLACs if they desorb non-trace gases in similar amounts. The net 

result would thus be very little change in the total adsorbed mass as a function of trace gas species 

concentration, meaning little sensitivity towards that gas.  

We opted to design arrays of multiple different sizes (best and worst of each 1-, 2-, 3, 4-, 

5-, 10-, and 23-element arrays) so that we could examine how prediction quality changed with size 

and similarly see how the best and worst arrays of a given size compare. Throughout the paper we 

refer to the best 5-element array as our baseline array, for which results are presented. A brief 
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overview of the array design method is given in Appendix C, however for a detailed description, 

we refer the reader to the original paper by Sturluson et al.[36] 

3.2.3 Breath Sample Generation 

Breath is primarily composed of nitrogen, oxygen, carbon dioxide, water, and other inert 

gases, such as argon. However, it has been shown that thousands of other trace compounds (ppm- 

and ppb-levels) are frequently found in breath, some of which are the byproduct of metabolic 

processes, while others are simply found in the air we breathe.[84–89] In this work, however, we 

computationally generated our own simplified breath samples, 50 healthy and 50 diseased, to avoid 

the complications of handling thousands of compounds. The simplified breath samples include 

only the gases for which we determined CLACs, and notably exclude water vapor, as it is not only 

a common interferant, but also destabilizes many MOFs and is notoriously difficult to 

simulate.[90–96] Fortunately, several breath collection methods involve some form of a 

dehumidification step.[87,97,98] 

We identified relevant concentrations ranges of ammonia for CKD based on the report of 

Bevc et al., who showed that concentrations of 0.49 ± 0.08 ppm and 3.32 ± 2.19 ppm 

corresponded to healthy and diseased individuals, respectively.[13] We chose the other gas 

components in the simplified breath samples to be as follows: carbon dioxide mole fraction 

between 2-5% (uniform distribution), argon mole fraction between 0.6-1.2% (uniform 

distribution), and the remainder of the mixture being nitrogen and oxygen in a random ratio 

between 3:1 and 5:1 (uniform distribution) respectively.[13] The exact compositions of all the 

healthy and diseased breath samples are given in Appendix D in Tables 10 and 11, respectively.  
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Next, we created a set of corresponding sensor outputs for each breath sample, again 

envisioning the sensor array to be comprised of SAW devices, each using a different MOF as the 

sensing material, such the corresponding sensor output is a change in mass. The detected masses 

for each MOF for each breath sample were calculated using CLACs in the same fashion as in the 

prediction algorithm. With no instrument error yet introduced, the mass ‘detected’ by the sensor 

is exactly on what would be calculated by the algorithm for that composition. But note that this 

does not necessarily translate into perfect prediction of the breath sample by the algorithm. It does, 

however, guarantee that there is a composition within the bounds of the initial composition space 

which uniquely has the highest probability, thus if the algorithm fails to predict close to this 

composition, it is poorly behaved.  

3.2.4 Breath Sample Analysis 

The final step in the process is to predict the composition of a breath sample given a set of 

sensor outputs. In our case, each MOF sensing element in the array outputs a measured change in 

mass, within a certainty governed by a fixed instrument error (i.e., independent of the gases being 

measured) normally distributed about the detected mass. Under certain assumptions the 

composition can be determined analytically, as outlined in the paper by Sturluson et al.[36] 

However, we decided to develop and employ a more general numerical approach that could be re-

used in future work where analytical solutions are no longer possible, such as when the CLACs 

and baseline adsorption values vary more significantly with the composition of the majority gas 

species. An outline of this numerical approach is depicted schematically in Figure 9. 
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Figure 9. Simplified overview of the algorithm used to predict compositions from a set of sensor data and 

CLACs. Detailed descriptions of the prediction algorithm are given both below and in Appendix D. 

3.2.4.1 Create Compositions 

The first step in the numerical prediction method is to generate the initial set of gas mixture 

compositions; there are three aspects to this step. The first is choosing which gas species should 

be present in the composition space. Real breath samples can contain hundreds of different 

compounds, so knowing which compounds must be included, which compounds can be safely 

excluded, and which compounds can be grouped together is non-trivial. Fortunately, since we 

consider simplified breath samples, we know exactly which gases are present. The second aspect 

is deciding what the minimum and maximum value should be for each of the gas species. This is 

relatively easy since, for most applications, reasonable concentration ranges are already known, or 

at the very least would need to be determined with more extensive methods prior to designing an 
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array for that application. Finally, the third aspect is to determine the spacing between points in 

the initial composition space. This choice can significantly impact the speed of the algorithm and 

quality of the predicted composition. Generally, the more finely-grained the initial set of 

compositions is, the better the prediction will be. This point is discussed in more detail in Appendix 

3.5.2, but for now all three aspects of creating the initial composition space (i.e., gas species, 

concentration limits, and spacing) are optimized and standardized for a given array and application 

prior to use. The specific gases, gas ranges, and gas spacing used in our work are specified in Table 

1A in the Results & Discussion section. 

3.2.4.2 Evaluate Predicted Masses 

The next step in the prediction algorithm is to assign masses to all compositions for all 

MOF sensing elements. In previous iterations of this work, this step was a bottleneck, as for any 

combination of MOF and composition, a distinct GCMC simulation was required.[34,35,72,73] 

As a result, considering a finely spaced multi-component gas mixture for several MOFs would 

have required significant computing time. Now, masses are determined from equation 2. 

Calculating masses in this way enables one to consider all gases individually when using 

GCMC simulations, dramatically reducing computational time. Consequently, not only can one 

evaluate more gases, but one can assign a mass to any composition for any MOF so long as the 

CLACs are known, and the total mole fraction of all trace gas species is within the Henry’s regime 

(i.e., no competitive adsorption).  

To illustrate the computational time saved by this change, consider the first phase of this 

work; we examined a ternary gas mixture of carbon dioxide, oxygen, and nitrogen for a set of 50 

MOFs, with the concentration of carbon dioxide and oxygen ranging from 0-30%, and the 

concentration of nitrogen ranging from 40-100%, all in 1% increments.[35] The result was 48,050 



 36 

distinct combinations of MOFs and compositions, which of course required 48,050 distinct 

simulations. In this study, by considering the trace gas species separately, we evaluated the CLACs 

for 3 gases and 50 different MOFs using only 9,450 distinct simulations. Subsequently, we can 

examine millions of different five-component compositions in a matter of minutes, all while using 

less than 20% of the number of simulations. Because of this advantage, designing an array which 

can handle the thousands of gas species in breath, while still enormously difficult, begins to 

actually seem plausible. 

3.2.4.3 Evaluate Probabilities 

Once masses have been assigned, the next step is to compare the calculated masses to the 

masses detected by the sensor and subsequently assign a probability to each composition for each 

MOF. This is done by creating a truncated Gaussian normal distribution centered about the 

detected mass with some known standard deviation, typically chosen to emulate the measurement 

error for the device (standard deviation = 10mg/g-framework). Array probabilities are calculated 

by multiplying all of the element probabilities for each composition which are then normalized 

themselves. 

3.2.4.4 Filtering & Convergence Criteria 

Finally, the last step is to filter composition space down to the points which have the highest 

array probability and check for convergence. Assuming the algorithm has not converged, we take 

the remaining highest probability compositions and subdivide the grid in composition space 

around those points. This requires choosing both how many points are to be retained and how 

finely spaced the next grid is. For choosing how many points to retain, we kept only a small fraction 

such that the number of points in the next cycle was less than or equal to the number of points in 
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the previous cycle. This guarantees that the number of points does not grow and cause unintended 

memory or time issues. We set the composition spacing equal to half that which was used in the 

previous iteration. The net result is an increasingly narrow and fine-grained set of compositions. 

As for convergence criteria, after each cycle we check whether the range of concentrations 

for each gas is within its respective limit. For example, when analyzing the breath samples in this 

work, we considered the prediction for carbon dioxide and argon converged when the difference 

between the minimum and maximum concentration values for each gas was less than 1000 ppm, 

and ammonia converged once the difference was less than 0.1 ppm. Note that, depending on which 

gas species converged last, the final predicted ranges for the other gases may be far narrower than 

their specified convergence criteria. Additionally, we do set a limit on the maximum number of 

iterations so that the algorithm will stop if struggling to converge. For now, each of these 

parameters (fraction of points retained, convergence criteria, and maximum number of iterations) 

is optimized for a given array and application prior to use. Figure 10 shows the evolution of the 

predicted concentration range for a typical breath sample in this work.  

 

 

Figure 10. Predicted concentration range for a single breath sample as a function of cycle number for (a) carbon 

dioxide, (b) argon, and (c) ammonia. The dashed line represents the true concentration of the gas in the breath 

sample. 
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Table 1. Initial compostion space for prediction algorithm. 

 Initial Range Initial Spacing Convergence Limits 

Carbon Dioxide 20000-50000 ppm  12.5 ppm 1000 ppm 

Argon 0-12000 ppm 2000 ppm 1000 ppm 

Ammonia 0-10 ppm 0.25 ppm 0.1 ppm 

 

Table 2. Parameter set for prediction algorithm 

Parameter Value 

Maximum Number of Iterations 20 cycles 

Fraction to Keep 0.04 

Standard Deviation 0.10mg/g-framework 

3.3 Results & Discussion 

The best 5-element array, shown in Figure 11, includes the following MOFs: ZIF-8[99], 

XUKYEI, two-fold interpenetrated MOF-5 (HIFTOG)[100], CMOF-4b (XAHQAA)[101], and 

MOF-399 (BAZGAM)[101]. 

The prediction results are given in Figure 12, with samples numbered from lowest to 

greatest ammonia concentration. Clearly, we can reliably predict the composition of the gases, of 

particular importance being the concentration of ammonia, which is the biomarker for CKD. 
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Figure 11. All MOFs which make up the best 5-element sensing array, each displaced as a 2x2x2 unit cell down 

the crystallographic a-axis. The MOFs are: (a) ZIF-8[99], (b) XUKYEI, (c) 2-fold interpenetrated MOF-5 

(HIFTOG)[100], (d) CMOF-4b (XAHQAA)[101], and (e) MOF-399 (BAZGAM)[101]. Note that the common 

names and first report of MOF given when known, followed by CoRe MOF reference code in parenthesis. 

 

 

Figure 12. Final predicted concentration ranges for the best 5-element array for (a) 50 healthy and (b) 50 

diseased samples, ordered by increasing ammonia concentration. The upper and lower bounds on each plot 

correspond to the initial concentration range used for prediction. 
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Although these results were exciting, we did also want to re-examine how both array size 

and array quality impacted prediction. To this end, we determined the best 1-, 2-, 3-, and 4-element 

arrays, as well as the worst, median, and best 5- and 10-element arrays, and again predicted the 

compositions of all 100 samples using the same algorithm parameters, as shown in Figure 13.  

It should also be noted that, although there are 5 gases in each breath sample, only 3-

elements are required to have a determined system, as the desorption of the two-component air is 

baked into the CLACs of the other gases. A 5-element array is thus considered over-determined, 

nevertheless, we use the array shown in Fig. 5 as a baseline for various comparisons, as it is able 

to reliably differentiate between healthy and diseased samples. 

Unsurprisingly, 1- and 2- element arrays struggle to reliably predict the concentration of 

ammonia, with all the 1-element arrays stopping due to reaching the maximum number of cycles. 

The 2-element arrays do converge on a concentration, but with a very poor prediction. The best 3-

element array substantially improves the overall quality of prediction, but even still, with the 

chosen parameter set, there would be several false positive/negatives. The 4-, 5-, 10- and 23- 

element arrays resolve this problem. The 23-element array is a particularly interesting result, as 

the prediction quality is noticeably poorer than the best 5- or 10-element arrays, which are both 

subsets of the best 23-element array. Since this analysis uses computer-generated sensor outputs 

for the breath samples, the algorithm should be able to perfectly predict the composition. An 

additional consequence of using computer-generated sensor outputs is that we can confidently say 

that none of the sensors offer contradictory information. Consequently, the reduction in prediction 

quality of the 23-element array must be an artifact of the algorithm, and further motivates 

determining a unique set of parameters for each array/application, not just for each application. 
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Figure 13. Comparison of the best and worst arrays of various sizes.   Note that only the prediction for the 

concentration of ammonia is shown, as the arrays can reliably predict the concentration of carbon dioxide and 

argon. Also note that there is only one 23-element array. 

 

Regardless, the overall difference in prediction quality between the best and worst arrays 

of various sizes underscores that intelligent selection of sensing elements for arrays is still a critical 

aspect of this electronic nose work, especially considering almost all real arrays will be 

underdetermined to some degree given that breath can contain thousands of different components.  

Finally, as hinted at by the performance of the 23-element array, the algorithm parameters 

impact the prediction quality at least as much as the array. Thus, even if an array which is capable 

of making accurate predictions is used, in the absence of a sufficient parameter set for the 

algorithm, predictions will be unreliable. The effect of specific parameters (i.e., initial composition 

set and fraction to keep) are examined and discussed in Appendix D. The parameters used within 
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this work were determined in a guess-and-check fashion, but as the project evolves, a more 

systematic way of determining algorithm parameters will likely be necessary. 

3.4 Conclusions 

In conclusion, we determined the CLACs for a set of gases commonly found in breath for 

50 MOFs, with the goal of designing a sensor array which can be used to detect kidney disease by 

breath, for which ammonia is a well-established biomarker. Using the method presented by 

Sturluson et al., we screened and ranked all arrays of various sizes, and selected the best 5-element 

array for testing.[36] Then, using our newly designed prediction algorithm, we analyzed a series 

of 50 healthy and 50 diseased breath samples, successfully quantifying the amount of ammonia 

for all samples in each set. Although there is still much work which needs to be done, primarily in 

increasing the number of gases and MOFs considered, accounting for the effects of humidity, and 

accounting for measurement error, the methods presented here are a marked improvement on our 

previous work. 
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4.0 Multi-Pressure Sampling for Improving the Performance of MOF-based Electronic 

Noses 

4.1 Introduction 

Throughout most of this project, we have explored a set of only 50 MOFs, far from the 

over 90,00 synthesized MOFS and further still from the over 500,000 known hypothetical MOFs. 

Although the 50 MOFs were chosen with the intention of having a diverse set of features, they 

cannot capture the full extent of the diversity exemplified by a much larger materials set. Even so, 

from an experimental perspective, synthesizing 50 unique MOFs is quite a challenge, and while 

the intention of the computational aspect of this project is to inform which MOFs experimentalists 

should synthesize, there is a strong desire to maximize the amount of information that can be 

extracted from a single MOF. In a related challenge, for many weakly adsorbing gases such as 

hydrogen or methane, the total adsorbed mass at low concentrations is often so small that it is hard 

to extract any information about their concentrations from adsorbed masses alone. Similarly, for 

strongly adsorbing gases such as acetone, many MOFs can quickly become saturated, again such 

that it is hard to extract information about their concentrations from adsorbed masses. 

Inspired by these challenges, we wanted to explore if sampling gas mixtures at multiple 

pressures could improve the performance of the arrays. We know from pure adsorption isotherms 

that adsorption behavior changes as a function of pressure, and thus our hope was that the 

adsorption of complex gas mixtures would also change sufficiently as a function of pressure, such 

that sampling a gas mixture with the same MOF at different pressures would be comparable to 

adding an entirely new MOF to the array. This would help to limit the number of MOFs which 
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need to be synthesized for device fabrication and could help to find MOFs for detecting particularly 

strong or weakly adsorbing gases, better than MOFs with atmospheric pressure sampling. 

4.2 Methods 

In this work, we examine a set of 9 MOFs (HKUST-1, IRMOF-1, MgMOF-74, MOF-177, 

MOF-801, NU-100, NU-125, UiO-66, ZIF-8), which we had used in previous studies on the design 

of electronic noses. The molecular modeling software RASPA was used to run GCMC simulations 

of gas adsorption in these MOFs at a temperature of 298K and various pressures (0.1, 0.5, 1.0, 5.0, 

and 10 bar).[69] We simulated 4 different sets of 4-component gas mixtures: benzene in 

N2/O2/CO2, methane in N2/O2/CO2, hydrogen in N2/O2/CO2, and hydrogen sulfide in N2/O2/CO2. 

These 4 gases, along with CO2, were varied from 0-1% in 0.05% increments. No mixtures 

contained more than one of benzene, methane, hydrogen, or hydrogen sulfide. N2/O2 made up the 

remainder of the gas mixture, always in a 4:1 ratio (to represent ambient air), for a total of 441 

unique compositions per gas mixture. The MOFs are simulated using a combination of universal 

force field (UFF) and Dreiding parameters, along with partial charges generated by the EQeq 

method.[70,102,103] Adsorbates are simulated using TraPPE forcefield parameters, which also 

includes partial charges.[71,104] A detailed description of the simulations, including full 

parameter sets, is given in the Appendix A. 

After generating a complete set of adsorption data for all gas mixtures, MOFs, and 

pressures, we designed and evaluated various arrays. We created two different types of arrays in 

this work: single-pressure arrays, in which we sample the gas mixture at only one of the simulated 

pressures, and all-pressure arrays, in which we sample the gas mixture at all simulated pressures. 
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With 9 MOFs, there are only 511 possible unique arrays, so both single- and all-pressure were 

designed via brute force. 

The method of predicting gas compositions and quantifying array performance used in this 

work has been outlined in section 2. A brief overview is given below, and more detailed 

information can be found in the Supporting Information and relevant papers. To begin analysis, 

we must first generate a set of detected masses for each of the arrays, here simply using the 

simulated adsorption data for each sensing element at a known composition, in this case 79% N2, 

19.75% O2, 0.5% CO2, and 0.75% of the other gas of interest. Since our goal is to predict the 

composition given the set of detected masses, we then ‘forget’ the composition which was used to 

generate the detected masses. Next, using a truncated normal distribution with a standard deviation 

of 1 mg/g-framework for hydrogen, methane, and hydrogen sulfide, and 10 mg/g-framework for 

benzene (because of higher simulation error), we generate a set of probabilities for all compositions 

based on how close the detected and predicted masses are to each other. Lastly, the array 

performance is quantified using the KLD (Equation 2) which effectively scores the quality of the 

predicted composition when compared to random chance, with a higher score corresponding to a 

more certain prediction.[105,106] The maximum possible KLD is limited by the total number of 

possible compositions. For 441 unique compositions, the maximum possible value is 6.089 bits. 
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4.3 Results & Discussion 

4.3.1 Benefit of High Pressures (Hydrogen/Methane) 

Methane and hydrogen are both small non-polar molecules and, as a result, are normally 

weakly adsorbing gases. In many MOFs they will make up a very small fraction of the total 

adsorbed mass, and this effect is exaggerated when they are present in low concentrations. 

Generally, in order to reliably detect and quantify these gases with mass-based sensing, it helps to 

increase the amount in which they adsorb relative to the other gas species. We know from many 

studies that high pressures typically increase the total adsorption in MOFs, especially for small 

molecules which pack more efficiently than large molecules. With this in mind, we hoped that by 

increasing the system pressure, we could improve our ability to detect gases like methane and 

hydrogen. That said, the size difference between nitrogen (3.64 Å) and oxygen (3.46 Å) versus 

hydrogen (2.89 Å) and methane (3.80 Å) is not very significant, compared to a molecule like 

benzene (5.85 Å), so it is not obvious what impact pressure would have on the selectivity of 

adsorbed gases, especially in the presence of more strongly adsorbing gases like CO2. Fortunately, 

even if the selectivity does not change, increasing the total adsorbed mass generally improves the 

performance of mass-based sensors.  

One of the MOFs which demonstrates the benefit of high-pressure sensing well is  

MgMOF-74, shown in FIGURE 14.[74] As we increase the pressure of the system, the total 

adsorbed mass of hydrogen increases, with the amount of hydrogen adsorbed increasing sixty 

seven-fold from 0.1 bar (0.0008 mg/g-framework) to 10.0 bar (0.0534 mg/g-framework). Methane, 

as shown in FIGURE 15, benefits even more with a seventy-seven-fold increase in mass from 0.1 

bar (0.02 mg/g-framework) to 10.0 bar (1.54 mg/g-framework). Please note that, because these 
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gases are still a small fraction of the total adsorbed mass, we are opting to show only the 

contribution of the adsorbed hydrogen/methane to demonstrate this effect, rather than the total 

adsorbed masses. 

With such low total adsorbed masses, the mass detection limits of the device become 

significant, so the significant increases in the adsorbed mass from 0.1 to 10 bar is greatly 

appreciated for sensing applications. Additionally, high pressures have the added benefit of 

decreasing the error of our simulations, especially for weakly adsorbing gases, as evidenced by the 

smoothness of the high-pressure plots. Although this problem can be addressed, to an extent, by 

increasing the number of cycles or replicating the unit cell during simulations, it is certainly a 

welcome bonus. In fact, it could be argued that for gases like hydrogen, the challenge in sensing 

is not in detecting very small changes in mass, as SAW devices and QCMs have impressive mass 

sensitivities, but rather mapping these changes in mass to a corresponding change in composition 

with a high degree of certainty. 
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Figure 14. Ternary plots of the adsorbed mass of hydrogen in MgMOF-74 as a function of composition and at 

the following pressures: a) 0.1 bar, b) 0.5 bar, c) 1 bar, d) 5 bar, and e) 10 bar. f) shows a 2x2x2 unit cell of the 

MOF projected down the c-axis. 

 

 

Figure 15. Ternary plots of the adsorbed mass of methane in MgMOF-74 as a function of composition and at 

the following pressures: a) 0.1 bar, b) 0.5 bar, c) 1 bar, d) 5 bar, and e) 10 bar. f) shows a 2x2x2 unit cell of the 

MOF projected down the c-axis. 
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4.3.2 Benefit of Low Pressures (Benzene) 

Although it is non-polar, benzene is generally a strongly adsorbing gas due to its large size. 

Even at low concentrations, it makes up a significant fraction of the total adsorbed mass in most 

MOFs and can rapidly saturate the sensor response (i.e., a change in the concentration does not 

result in a change in adsorbed mass). This not only makes benzene difficult to detect, but also the 

detection of non-benzene gases, since the MOFs lose sensitivity towards those gases in the 

presence of benzene. Unlike with hydrogen or methane, high pressure sensing largely exaggerates 

this effect. Instead, in order to improve the detection of benzene, it is actually beneficial to decrease 

the amount of gas adsorbed, so that the sensor is no longer saturated, and changes in concentration 

would again result in a change of mass. This is demonstrated well by MOF-177 in FIGURE 

16.[107] Note that, since benzene is a significant portion of the total adsorbed mass, we are 

showing that here, rather than just the benzene contribution to adsorption. 

Note that the maximum observed total adsorbed mass at 0.1 bar is significantly lower than 

that observed at 0.5 bar and above. Even so, this decrease in total adsorbed mass is coupled with 

the necessary desaturation of the sensor, enabling us to reliably predict benzene over this 

concentration range. Improving benzene sensing by shifting to low pressures highlights an 

important concept of the sensing elements of electronic noses; the best elements are those in which 

the change in total adsorbed mass from one composition to another is greatest. It is easy to think 

that highly selective, highly adsorbing MOFs are best, and subsequently, that high mass loadings 

are universally desired. But as benzene demonstrates, this is not inherently true. At lower 

pressures, both the selectivity towards benzene and total adsorbed mass decreases, but sensing is 

still improved because the change in mass as a function of change in composition is improved. 
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It should, however, be mentioned that for applications where benzene is present in 

extremely low concentrations (ppm and below), high pressures may not result in saturation of the 

sensor and may actually benefit from high pressures due to a concentrating effect similar to 

hydrogen and methane. In fact, one of the MOFs we screened, NU-100, is more useful at high 

pressures for this reason, as shown in Appendix E.[108] Nevertheless, all other MOFs screened 

perform best at low pressures, and Figure 16 demonstrates the potential benefits of low-pressure 

sensing. 

 

 

Figure 16. Ternary plots of the adsorbed mass of benzene in MOF-177 as a function of composition and at the 

following pressures: a) 0.1 bar, b) 0.5 bar, c) 1 bar, d) 5 bar, and e) 10 bar. f) shows a 2x2x2 unit cell of the 

MOF projected down the c-axis. 
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4.3.3 Benefit of Multiple Pressure (Hydrogen Sulfide) 

Hydrogen Sulfide, like methane and hydrogen, is a fairly small molecule, but it also 

contains a strong dipole moment, making it a somewhat strongly adsorbing gas. Although there 

are many MOFs which adsorb hydrogen sulfide appropriately for sensing at ambient pressure, the 

adsorption behavior can still be beneficially modified by changing system pressure. This is 

demonstrated well by UiO-66, as shown in Figure 17.[109] 

For all pressures, there is an appreciable change in mass in response to a change in 

composition. That said, at high pressures and high concentrations of hydrogen sulfide, the response 

appears to flatten out, that is to say, the percent change in mass relative to the total adsorbed mass 

decreases. However, in this MOF, the apparent flattening of the response is sufficiently 

compensated by an overall increase in the total adsorbed mass such that the measured change in 

mass is greater at high pressures, thus offering better performance. Nevertheless, it is highly likely 

that other MOFs would benefit more from low pressure sampling when the change in mass as a 

function of concentration is less at high pressure. At low pressures and low concentrations of 

hydrogen sulfide, the change in mass in response to a change in concentration is smaller, such that 

arrays using this MOF would benefit more from high pressures. Essentially, for the 9 MOFs 

screened in this work, hydrogen sulfide, like hydrogen and methane, benefits specifically from 

high pressures. But unlike hydrogen or methane, it is easy to envision a MOF for which the 

optimum pressure is actually lower, especially if higher concentrations are expected in the 

application. Ultimately, the impact of pressure is not as significant for hydrogen sulfide and for 

gases such as this, it is preferable to focus on screening more MOFs at a single pressure, rather 

than fewer MOFs at more pressures. Even so, UiO-66 demonstrates that there is some utility to 

exploring pressures beyond ambient conditions.  
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Figure 17. Ternary plots showing the adsorbed mass of hydrogen sulfide in UiO-66 as a function of composition 

and at the following pressures: a) 0.1 bar, b) 0.5 bar, c) 1 bar, d) 5 bar, and e) 10 bar. f) shows a 2x2x2 unit cell 

of the MOF projected down the c-axis. 

 

4.3.4 Effect of Pressure & Array Size 

Every possible array of each size and pressure was analyzed and its performance quantified 

with a KLD score. Figure 18 plots the best and worst array performance as a function of array size 

and operating pressure, including all-pressure arrays (black line). 

In general, array performance always improves with array size, however the change in the 

performance of the best arrays as a function of array size is minimal, suggesting that these arrays 

rely on only a few high-performing MOFs to make their predictions. Instead, pressure has a much 

more significant impact. For hydrogen, methane, and hydrogen sulfide, array performance 

improves specifically with high pressure operation. In fact, of these three gases, hydrogen sulfide 
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is the only one which exhibits a significant increase in performance beyond size 1 arrays. The jump 

in performance from size 1 to size 2 arrays for hydrogen sulfide, especially at high pressures, 

suggests that increasing pressure results in improvement to not just the individual adsorption 

behaviors, but also the cross-sensitivity of the elements. Even then, beyond size 2 arrays, the 

improvement in performance is again minimal, consistent with the idea that the best arrays rely on 

only a few elements.  

 

 

Figure 18. KLD vs. pressure and array size for a) hydrogen arrays, b) methane arrays, c) benzene arrays, and 

d) hydrogen sulfide arrays. Solid lines are the best performing arrays, and dashed lines are the worst 

performing arrays. 
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Conversely, the worst arrays generally improve with both pressure and array size. For 

example, the KLD scores of the worst arrays at 5 and 10 bar for hydrogen, methane, and hydrogen 

sulfide all increase steadily with array size. This is because more of the MOFs exhibit useful 

adsorption behavior at these pressures, even if they are noticeably outperformed by the best MOFs. 

However, at low pressures, the increase in performance as a function of array size is again limited. 

For example, with hydrogen sensing at 0.1 bar, the KLD score for the worst arrays is almost 0.0 

until all 9 MOFs are used, suggesting that only one of the MOFs has any useful adsorption 

characteristics for detecting hydrogen. We observe similar behavior for this and other gases at low 

pressures, suggesting that, under certain conditions, some the screened MOFs are effectively 

useless as sensors. 

Together, these results highlight how varying pressure can change our approach to both the 

search problem (i.e., screening MOFs) and array design problem (i.e., choosing the correct 

combination of MOFs and pressures) central to the building an electronic nose. In terms of the 

search problem, for some gases it will be easier to find materials with useful adsorption behaviors 

by examining fewer MOFs at more pressures, rather than more MOFs at a single pressure. 

Similarly, in terms of array performance, using small arrays at an optimized pressure or set of 

pressures is more beneficial than using large arrays at a single unoptimized pressure. On this note, 

since methane, hydrogen, and hydrogen sulfide benefit specifically from high pressures, there is 

only a marginal improvement in the performance of the all-pressure arrays when compared to the 

single-pressure arrays operating at high pressures. However, this does not mean that there is never 

any benefit to operating at multiple pressures. 

With benzene sensing, most of the MOFs at atmospheric and high pressures saturate at 

very low concentrations, making detection of benzene beyond these concentrations practically 
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impossible. By shifting to lower pressures, however, saturation occurs at higher benzene 

concentrations thus enabling detection. Given this, one might expect benzene to benefit 

specifically from low pressure sensing, just as hydrogen and methane benefited specifically from 

high pressures, but NU-100 exhibits unique behavior (Figure S#). It does not saturate at low 

benzene concentrations until operating at a pressure of 10 bar. At 5 bar, the change in mass as a 

function of benzene concentration is sharpest, making sensing at this pressure better than either 

low or atmospheric pressures. In fact, the only single element that outperforms NU-100 at 5 bar is 

IRMOF-1 at 0.1 bar.[110] As a result, there is a noticeable improvement in the performance of all-

pressure arrays, with the all of the best all-pressure arrays of size 2 or more contain NU-100 and 

IRMOF-1.  Figure 19a and Figure 20a-c shows the ternary probability plot and component 

probability plots of the best 3-element array at ambient pressure (1 bar) sensing conditions, 

respectively. Figure 19b and Figure 20d-f shows the ternary probability plot and component 

probability plots of the best 3-element array using multiplex sensing conditions, respectively.  

 

 

Figure 19. Probability vs. composition for a) the best 3-element array at 1 bar (NU-100, MOF-177, HKUST-1) 

and b) the best 3-element array at all pressures (NU-100, IRMOF-1, HKUST-1). 
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Figure 20. Probability vs. component mole fraction for the best 3-element array at 1 bar (NU-100, MOF-177, 

HKUST-1) for a) nitrogen/oxygen, b) carbon dioxide, and c) benzene and for the best 3-element array at all 

pressures (NU-100, MOF-177, HKUST-1) for d) nitrogen/oxygen, e) carbon dioxide, and f) benzene. Blue dots 

are the probability of individual compositions, and the red line is the total probability for a component 

concentration. 

 

It is clear from these figures that, just by sampling a few additional pressures, we can 

dramatically improve the ability to detect gases. Although the 1 bar array does a decent job of 

detecting benzene, there is still a wide margin of error and the prediction for air and carbon dioxide 

is very poor. With multiplex sensing, we can narrow down the prediction to almost a single 

composition. 

While it is interesting that benzene had MOFs which performed best at both low and high 

pressures, and consequently benefits most noticeably from multiplex sensing, this is not a 

necessary feature of an individual component for multiplex sensing to be beneficial; It is simply 
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important that the mixture benefits from multiple pressures. With most real gas mixtures being 

more complex than these, there will certainly be applications where gases benefiting from low 

pressures and gases benefiting from high pressures are present simultaneously, such as a system 

containing benzene and methane in air, which is relevant in natural gas processing. 

4.4 Conclusions 

For all gas mixtures, designing and operating electronic noses at non-atmospheric pressures 

modified the adsorption behaviors of the MOFs and resulted in better overall performance. 

Hydrogen, methane, and hydrogen sulfide benefitted specifically from high pressures for the 9 

MOFs screened, whereas benzene benefitted mostly from low pressures. However, NU-100, 

performed best at 5 bar for benzene sensing, and the corresponding arrays performed best when 

sampling multiple pressures. Most real gas mixtures will contain gases benefiting from both low 

and high pressures, and it is not necessary that an individual component benefits from multiple 

pressures for multiplex sensing to be useful. Rather, it is just important that the mixture benefits.  

In general, low-pressure operation seems to benefit strongly adsorbing gases which easily 

saturate sensors, and high-pressure operation seems to benefit dilute or weakly adsorbing gases. 

By exploring and operating at multiple pressures, it is easier to find useful MOFs candidates and 

to design cross-sensitive arrays. We have demonstrated an improvement in the sensing capabilities 

of the electronic noses while limiting the number materials, making device fabrication cheaper and 

easier. Looking forward, we plan to combine our coefficient-based method for dilute gas 

adsorption with the multiple pressure sampling introduced here. 
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5.0 Updated Approaches to Dilute Gas Species Detection for Breath Analysis 

5.1 Introduction 

Although the coefficient-based approach to evaluating the adsorption of complex gas 

mixtures was a notable improvement in our ability to analyze such systems, there were two critical 

limitations to the approach. The first limitation was the inclusion of CO2 as a trace gas species, 

despite its presence in breath of concentrations close to 5%. The second limitation was in what 

was considered a dilute or non-competitive adsorption system. We required that the total 

concentration of all trace gas species was below a certain mole fraction, and that all MOFs were 

in the linear non-competitive adsorption regime for all trace gases on an individual basis up to that 

same mole fraction. As an example, by our method, we could not use a MOF which saturated with 

ammonia at concentrations of 3% since CO2 was present in concentrations greater than 3%, despite 

the fact that in that previous work, ammonia was only present in ppm quantities. Although this 

was a good assumption in so far as ensuring that all the trace gas species in the mixture were in 

the dilute adsorption regime, it was unnecessarily restrictive, especially for strongly adsorbing but 

highly dilute gases.  

In order to evaluate more complex gas mixtures such as breath, we wanted to redesign this 

adsorption coefficient approach and see if we could generate a model with less restrictive 

assumptions. Again, we decided to split gas mixtures into majority gas species and trace gas 

species, but this time included CO2 in the majority gas species group so that the total concentration 

of the new trace gas species group would almost always be at or below 1%. Already this would 

help in finding useful MOFs since they would now only need to be in the dilute adsorption regime 
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for all gases up to concentrations of 1%. However, extra simulations would be required to examine 

the impact that CO2 concentrations have on the adsorption coefficients.  

Despite the potential improvement of shifting CO2 to the majority gas species group, we 

wanted to modify how we determined if a gas mixture was acceptably dilute for a given MOF. 

Rather than use a universal concentration cutoff, we thought to evaluate mixtures based on the 

amount of volume the gases would occupy in a MOF after adsorption with respect on their bulk 

gas concentrations. For example, it is neither practical nor realistic to use the same cutoff for 

acetone and argon, as they are not only present in very different concentrations in breath, but also 

exhibit very different adsorption behaviors. A detailed explanation will be given in the methods 

section below, but to put it generally, we can evaluate how much space there must be per molecule 

for it to be considered dilute for each molecule type, and then but summing the occupied space for 

all molecules of a given gas mixture, determine if a MOF has enough volume satisfy the dilute 

assumption.  

5.2 Methods 

As an early demonstration of the viability of this method, we examined the adsorption of 

six trace gas species (acetone, ammonia, argon, hydrogen, isoprene, and methane) in a majority 

gas species composed of nitrogen and oxygen in a ratio of 4:1, and CO2 at 0%, 1%, 2%, 3%, 4%, 

and 5% (six unique majority gas mixtures) in HKUST-1 and ZIF-8. We tested this method at 

pressures of 1 bar, 5 bar, and 10 bar.  

As before, in order to evaluate the combined linear adsorption coefficients (CLACs) for 

the trace gas species, we ran individual sets of GCMC simulations for the trace gas species in each 
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of the majority gas mixtures, with the trace gas species ranging in concentration for 0 to 1%. We 

then fit a line to the adsorbed mass of the trace gas only to determine the change in adsorbed mass 

of that gas as a function of its concentration and the maximum concentration for which that species 

is considered to be dilute. This same process was done for the adsorbed mass of all the majority 

gas species to similarly determine the change in adsorbed mass of those species as a function of 

the trace gas concentration, as well as the baseline adsorption value. 

We then ran simulations in which the 6 trace gas species and the 3 majority gas species 

were present simultaneously. Based on the idea of space filling, we can determine if a mixture 

satisfies the dilute assumption if the sum of the trace gas mole fraction divided by its maximum 

allowable mole fraction for all species if less than 1.  

∑  
𝑦𝑖

𝑦𝑖,𝑚𝑎𝑥

𝑁

𝑖=1
≤ 1 (4-1) 

At the maximum allowed mole fraction, all molecules of a given trace gas species are 

considered to have exactly enough space to non-competitively adsorb within the framework, or to 

put it from a different perspective, the framework has exactly enough volume to non-competitively 

accommodate the trace gas. By extension, at concentrations less than the maximum allowable mole 

fraction, the framework has additional volume to accommodate other trace gases. Specifically, 

since adsorption the non-competitive regime is linear, we can thus view the ratio between the 

concentration of a given trace gas species and its maximum allowable mole fraction as a measure 

of the percent of the volume it occupies in the framework. Now, as long as all the trace gas species 

occupy less than 100% of the available volume, we can consider the gas mixture to satisfy the 

dilute assumption. For strongly adsorbing gases which saturate MOFs at relatively low 

concentrations, as long as the concentration of that species in the bulk gas is sufficiently low, which 
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for compounds in breath it often is, the MOF will still be considered useable whereas before it 

would be excluded from further analysis. 

 

 

Figure 21. Demonstration of the concept of space filling by trace gases in a framework as a function of (a) trace 

gas concentration. In (b) the MOF is underfilled and the trace gases adsorb non-competitively, in (c) the MOF 

is exactly filled, however the gases still adsorb non-competitively, and in (d) the MOF is over filled, and the 

gases adsorb competitively and non-linearly. The smaller grey boxes represent equal volumes of framework 

containing majority gas species.  

 

Figure 21 demonstrates this concept for a single gas species. Assuming the grey boxes represent 

equal volumes of the framework, at concentrations below the maximum allowable concentration, 

a MOF is considered under filled, at the maximum allowable concentration it is exactly filled, and 

beyond that over filled and no longer adsorbing linearly. This concept is extended to gas mixtures, 

with the individual molecules occupying as much volume as needed. Note that since the maximum 

allowable concentration is defined as the bulk gas concentration which we are trying to measure, 

this method implicitly accounts for the selectivity of the MOFs. 
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5.3 Results & Discussion 

Figure 22 shows the simulated versus predicted adsorption values for a multicomponent 

gas mixture in ZIF-8, ordered from lowest to highest CO2 mole fraction, and then secondly by the 

concentration of the trace gas species for that subplot (thus, the ordering for each subplot is 

different). The vertical grey lines highlight gas mixtures in which the dilute assumption is not 

satisfied. For gases such as acetone or isoprene, note that the predicted and simulated values only 

start to diverge at high concentrations, when the dilute assumption is broken. For weakly adsorbing 

gases such as argon, hydrogen, or methane, the model seems to predict well, but interestingly, 

simulations fail to capture dilute adsorption at very low concentration, at least within the number 

of cycles used in this work, due to a very low likelihood of trying an insertion move for these 

gases, evidenced by the lack of simulated data. On the other hand, the coefficient-based method is 

able to readily predict the adsorbed mass of those species, without suffering from a sampling issue. 

Longer GCMC simulation should be run to validate the predicted adsorption at these very dilute 

concentrations, but assuming they are accurate, these gases represent another advantage of 

coefficient-based approaches overcoming sampling issues which can otherwise only be addresses 

by running much longer simulations. Finally, the large error bars present in the simulated data for 

some of these gases, in particular ammonia, highlights a similar advantage. Coefficient-based 

approaches enable prediction of the adsorption of complex gas mixtures with less error, again a 

problem that is normally overcome by running longer simulations.  



 63 

 

Figure 22. Predicted (red) versus simulated (blue with errorbars) component adsorbed masses for 

multicomponent gas mixtures in ZIF-8 at 1 bar. Vertical lines are gas mixtures which do not satisfy the dilute 

assumption. The samples are ordered firstly by the concentration of CO2 in the sample (0%, 1%, 2%, 3%, 4%, 

and 5%), and secondly by the respective trace gas, that is by (a) acetone, (b) ammonia, (c) argon, (d) hydrogen, 

(e) isoprene, and (f) methane. Note the logarithmic scale on the y-axis. 

 

Figures 23 and 24 show the total adsorbed mass of the same gas mixtures in both ZIF-8 

and HKUST-1 at 1 bar, 5 bar, and 10 bar. Again, the coefficient-based model only seems to deviate 

from the simulated values for mixtures in which the dilute assumption is not satisfied. Furthermore, 

these plots suggest that the method holds for different MOFs and at various pressures, so long as 

specific adsorption coefficients have been calculated.  
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Figure 23. Predicted (red) versus simulated (blue with errorbars) total adsorbed masses for multicomponent 

gas mixtures in ZIF-8 at (a) 1 bar, (b) 5 bar, and (c) 10 bar. Vertical lines are gas mixtures which do not satisfy 

the dilute assumption. 

 

 

Figure 24. Predicted (red) versus simulated (blue with errorbars) total adsorbed masses for multicomponent 

gas mixtures in HKUST-1 at (a) 1 bar, (b) 5 bar, and (c) 10 bar. Vertical lines are gas mixtures which do not 

satisfy the dilute assumption. 

5.4 Conclusions 

Although this is only preliminary data for two MOFs, these early results suggest a 

remarkable improvement in our ability to predict the adsorption of multicomponent dilute gas 
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mixture and address related combinatoric challenges. While it is possible that some gas mixtures 

of interest will exhibit competitive adsorption in certain MOFs, the space-filling approach to 

evaluating dilute conditions enables us to consider more MOFs for arrays than we would have 

previously. Next steps using this approach could include designing arrays in which certain MOFs 

in arrays are ‘turned off’ (the output is ignored) for gas mixtures in which they do not satisfy the 

dilute assumption.  

Additionally, since we now fit CLACs that are a function of the majority gas species 

composition, specifically CO2 concentration, we cannot solve for the composition analytically, and 

the algorithm outlined in section 3 will be necessary to evaluate gas mixtures. Array design using 

the singular value decomposition may also need to change, but if the coefficients do not change 

significantly as a function of the majority gas species, we could use the same approach and simply 

use a subset of the adsorption coefficients to design array. Regardless of the change to methods 

and analyses stemming from this modification to the adsorption coefficient approach, this updated 

strategy brings us another step closer to building electronic noses for very complex gas mixtures. 
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6.0 Future Development of MOF-Based Electronic Noses 

6.1 Strategies for Accelerating Device Design & Signal Analysis 

6.1.1 Machine Learning for High Throughput Screening of MOFs 

Despite advances in computing, screening thousands of MOF materials for thousands of 

gases across many pressures using GCMC is still prohibitively time consuming. However, already 

throughout the course of this work, we have generated large volumes of simulated adsorption data. 

As an accelerated approach for high-throughput screening of MOFs, we envision leveraging this 

data to train a machine learning (ML) model which can approximate the adsorption behavior of 

MOFs for the purpose selecting materials for further analysis using molecular simulations.  

Since the primary goal of this ML model is to act as an initial filter for large libraries of 

MOFs, it is necessary to use chemical and structural features of the MOFs for analysis. Features 

which have been used in other ML studies of MOFs include density, void fraction, pore size (pore 

limiting diameter, largest cavity diameter, and pore size distribution), surface area, topology, 

structural building units, and bag-of-atoms approaches, to name a few. Practically all of these 

features can be rapidly calculated from a crystallographic information file of the MOF, and while 

all of these features may not be necessary, and some may even be redundant, there is clearly a 

large number of qualitative and quantitative features to use for predicting the adsorption behavior 

with ML models. Similar feature sets can be generated for the adsorbed gases if necessary.  

How to use the output of such a ML model to actually select materials for further analysis 

is a different question; perhaps we look for MOFs that are especially selective towards only one 
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gas, or maybe we just select MOFs with the highest predicted adsorption values for a given gas, 

independent of its response to other gases. Alternatively, consistent with the idea that the best 

electronic noses should have sensing elements which complement each other, one could also 

envision using such an ML model not to select single MOFs, but rather small sets of MOFs for 

detailed analysis based on predicted complementarity.  

Regardless of the strategy used, this machine learning approach has the advantage that the 

adsorption data generated by subsequent analysis can be used to further train the ML model, 

resulting in a steady improvement over time.  
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6.1.2 Machine Learning to Predict Adsorbed Masses 

 

Figure 25. (a) MOF specific Machine learning model used to predict total and component adsorbed mass values 

from a composition input. (b) Universal gas adsorption machine learning model which uses MOF features, gas 

features, and composition information to determine total adsorbed mass values.  
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Another promising area for the employment of ML models is in the analysis of gas mixtures 

using electronic noses. Although this dissertation included research on simplifying the prediction 

of the adsorption of complex gas mixtures, this is still an incredibly difficult task requiring a lot of 

computational time. Furthermore, the method outlined in this dissertation only holds in the absence 

of competitive adsorption, but this assumption is difficult to guarantee, especially as more MOFs 

are added to the arrays. Instead, we could keep the concept of dividing complex gas mixtures into 

majority and trace gas species and generate distinct sets of adsorption data to train ML models for 

predicting adsorbed mass given only the bulk gas composition, even in instances of competitive 

adsorption. The model could be further improved with a limited number of simulations containing 

several trace gases to improve the understanding of competitive adsorption. We may even be able 

to pull concepts from ideal adsorbed solution theory and use isotherm data and heats of adsorption 

data to further train the model. 

A key advantage of this approach is that the ML models can be built on a per MOF basis, 

eliminating the need to provide detailed information about the structure. This may also result in a 

reduction in the amount of training data needed, as well as improved results. Similarly, it would 

be easy to use just a limited amount of feature data, such as void fraction and pore size, to impose 

physical constraints to improve the model. Of course, there is also a strong motivation to build a 

very generalized ML model in which MOF and gas features, bulk gas concentrations, and system 

parameters like temperature and pressure, can be used as inputs to generate adsorption data, even 

for gases and MOFs which the model has not yet been trained on, acting as a sort of ‘magic box’ 

for predicting gas adsorption. Building and training this would likely be a monumental 

undertaking, but it is certainly a worthy long-term goal with untold benefits. However, regardless 

of the model type used, what is most important is that by using gas compositions to predict 
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adsorbed mass values, the generated models are neither array nor application specific, but instead 

transferable to practically any array for gas sensing application. 

Lastly, one could envision developing ML models which tackle the inverse problem: 

predicting gas compositions from a set of adsorbed masses. However, even though computational 

data could be used to train such a model, the resulting ML model would almost certainly need to 

be array specific, meaning that any change in the underlying array would require both new training 

data and retraining the model. Finally, in a similar train of thought, for applications like disease 

detection by breath, one could imagine building a model which uses adsorbed mass data to predict 

disease states, bypassing compositions entirely and effectively fingerprinting the disease state. 

However, this model would again need to be array specific, and moreover, the training data would 

need to be clinical in nature. As a result, it would be very expensive and time-consuming, if not 

outright impossible, to generate enough data to actually train. Furthermore, physicians tend to 

resist black box diagnostic techniques. For these reasons, I would strongly encourage building 

some variation of a model which predicts adsorbed masses from composition, and solving the 

inverse problem with intelligent algorithms, comparable to the one outlined in this dissertation. 

The resulting compositions could then be used to predict disease states and give a more 

comprehensive understanding of patient health. 
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6.2 Strategies for Improving Sensitivity & Selectivity 

 

Figure 26. (a) Visual abstract for multiple signal transduction mechanisms in a single electronic nose. (b) Visual 

abstrat for the sensing elements in an electronic nose, inspired by core-shell MOFs. 

 

While mass-based sensors such as SAW devices and QCMs have impressive sensitivities 

of nanogram detection limits, there are a number of impressive portable sensing technologies such 

as chemiresistive and optical sensors which can be used to detect trace gases. Although it is 

generally harder to predict the response in silico for these types of sensors, they present a great 

opportunity to improve electronic noses. One can imagine adding these high-sensitivity sensors to 

arrays for difficult to detect trace gases, or similarly, using them as redundant sensors for gases 

such as CO2 to help calibrate the device during operation. 

There exist a select few known MOFs with electrical conductivity, but it is certainly a rare 

phenomenon. Nevertheless, the opportunity to take advantage of the porous nature of MOFs and 

sensitivity of conductive sensors is a huge opportunity.  
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6.2.1 Separation & Sensing  

Inspired by the use of MOFs in gas separations, in particular core-shell MOFs, a promising 

approach to improving the selectivity of individual sensing elements would be using MOFs to both 

separate and sense gases. One could envision a layered structure, in which a thin top layer filters 

out large gas molecules, and a thicker bottom layer is used to measure the adsorption of the 

remaining smaller gases, acting as a size-selective filter. Similarly, one could envision a chemical 

filtering in which the top layer filters out molecules with certain chemistries, eliminating common 

interferents such as water. While this approach could introduce new challenges, such as accounting 

for the adsorbed mass of the filter layer, as well as possible time-dependent concerns relating to 

the diffusion of molecules, it is certainly an interesting approach that could provide useful in 

detecting particularly hard to detect gases. 



 73 

6.3 Strategies for Improving Breath Analysis 

 

Figure 27. (a) Example approaches to broad gas classification of a furan-type molecules with either a single 

real molecule representing the set, as shown by 2,5-dimethylfuran on the lower left, or a pseudomolecule with 

adjusted parameters, as shown by the damped pseudo-2,3,4,5-tetramethylfuran on the lower right. (b) Visual 

abstract for simulating a dehumidification step for breath samples to limit the impact of humidity on sensing. 

(c) Visual abstract for an iterative approach to finite volume grand Ccnonical Monte Carlo simulations of gas 

adsorption in MOFs. 

6.3.1 Broad Classification of Gases 

As previously mentioned, a single breath sample can contain well over 700 different gases, 

many of which are exogenous to the body, and thus not biologically relevant. For disease detection 

applications, it is not imperative to precisely know these compounds or their concentrations, 
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however it is important that we can minimize their impact on our quantification of biomarkers. 

Rather than painstakingly enumerating all possible compounds, one strategy for minimizing their 

influence is broadly classifying similar compounds on the basis of size (e.g., chain length) or 

chemical features (e.g., functional groups).  While the intent of such an approach is to limit the 

minimum viable array size and streamline analysis, developing such an approach may be difficult. 

Some MOFs with large pores, for example, may be highly sensitive to functional groups but adsorb 

gases independently of size. Conversely, one could imagine a MOF with small pores that is very 

size selective, but minimally effected by chemical features. How to group gas molecules may thus 

need to be approached on a per MOF basis, complicating analysis.  

The best approach may be to go a step beyond grouping similar compounds in the analysis 

procedure, but actually using a single molecule or pseudomolecule as a placeholder for a small set 

of molecules when predicting adsorption and analyzing gas mixtures. Obviously, different 

molecules can and will have different adsorption behaviors, but if the grouping and choice of 

representative molecule is done carefully, it is possible to dramatically reduce the number of 

molecules which need to be considered, reining in the combinatorics of the electronic nose 

problem. 

6.3.2 Simulating Dehumidification 

In high humidity applications, such as breath analysis, a dehumidification step is likely 

necessary as many MOFs are susceptible to humidity. However, many dehumidification 

techniques, such as exposure to silica gel, will also alter the concentrations of the biologically 

relevant compounds in breath. Thus, it is imperative to understand quantitatively how 

dehumidification affects the composition such that the initial untreated gas composition can be 
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correctly calculated, limiting missed or false diagnoses. Fortunately, silica gel is a porous solid 

material, just like a MOF, and can be simulated using the same techniques, such as GCMC, but 

special consideration will need to be given since it is non-crystalline. Though complicating the 

analysis procedure, computational work focused on the pretreatment of a breath sample has 

enormous potential to improve device performance.  

6.3.3 Finite Volume Monte Carlo 

When simulating gas adsorption in the grand canonical ensemble, we assume that there is 

an infinite reservoir of the bulk gas, such that its composition remains constant even when exposed 

to an adsorbing material (i.e., MOF or silica gel). Given that SAW and QCM devices require very 

little active material, this is likely a good assumption if a large breath sample is used for direct 

sampling. However, problems arise if the breath sample is small (Can we guarantee that 

appreciable volumes of trace gases are not removed from the bulk even small masses of 

adsorbate?), if the breath samples is stored and then removed from another adsorbent (Do we fully 

recover the sample without altering the composition?),  or if the breath sample if first dehumidified 

(By definition, we want to alter the composition of the sample to remove water).  

There are ensembles for Monte Carlo simulations in which the molecules of the bulk gas 

are explicitly simulated (i.e., NPT or NVT), however, to accurately simulate trace gas mixtures, 

one must simulate many more molecules than is computationally practical. That is, at least one 

million molecules for gases in ppm concentrations, and as many as one trillion molecules for ppt 

concentrations. GCMC simulations avoid this problem but using equations of state for the bulk 

gas, returning us to the infinite bulk gas reservoir. To approximate the behavior of finite volumes 

of bulk gas and adsorbate, one can employ GCMC simulations in an iterative fashion, updating 
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the composition of the bulk gas species based on the predicted adsorption. The only additional 

parameters which would need to be specified to do this are the volume of bulk gas and mass of the 

adsorbent. Then we can perform a simple mass balance to determine the starting concentrations of 

the bulk gas for the next GCMC simulation. This process can be repeated until convergence is 

achieved. With this strategy, we can perform accurate simulations for the above limiting cases and 

improve our analysis using electronic noses.  
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Appendix A RASPA Simulation Details 

All of the adsorption data used throughout this dissertation was generated using RASPA, 

a grand canonical Monte Carlo simulation software designed by Duddledam et al.[69]  

For ternary CO2-in-air mixtures, simulations were conducted using 1000 initialization cycles 

and 2000 production cycles. For CLAC gas mixtures and the multiplex sensing work, simulations 

were conducted using 2000 initialization cycles and 8000 production cycles to improve sampling 

of low concentration gases. A single cycle consists of n Monte Carlo steps, where n is equivalent 

to the number of molecules in the simulation. Note that this value fluctuates during a GCMC 

simulation. The simulations include the following moves: insertion, deletion, translation, regrowth 

(configuration is changed), and swapping.  

To model electrostatic interactions, we assigned partial charges to the atoms of the MOF 

frameworks via the EQeq method.[70] Similarly, the molecule parameters of the gases also 

included partial charges, and the forcefield which we used, TrAPPE[71], has been shown to 

accurately simulate these effects. 

Rigid MOF structures, as well as rigid molecule structures, were assumed, and Lennard-Jones 

(LJ) potentials with a cutoff of 12 Å were used along with Ewald charge interactions to determine 

the overall energy of the structure and adsorbed gases. The equations for LJ potential are given 

below, where 𝜀 is potential well-depth and 𝜎 is radius of interaction. 

𝑉𝑖𝑗 = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (A-1) 

The equation for Ewald coulombic potential in a periodic system is given as: 
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𝑈𝑠𝑦𝑠 = 𝑈𝑟𝑒𝑎𝑙 + 𝑈𝑟𝑒𝑐 (A-2) 

𝑈𝑟𝑒𝑎𝑙 = ∑ 𝑞𝑖𝑞𝑗

 

𝑖<𝑗

𝑒𝑟𝑓𝑐(𝛼𝑟𝑖𝑗)

𝑟𝑖𝑗
   (A-3) 

𝑈𝑟𝑒𝑐 =
2𝜋

𝑉
∑

1

𝑘2
𝑒

−
𝑘2

4𝛼2

 

𝑘

(|∑ 𝑞𝑖

𝑁

𝑖=1

cos(𝒌 ∙ 𝒓𝑖)|

2

+ |∑ 𝑞𝑖

𝑁

𝑖=1

sin(𝒌 ∙ 𝒓𝑖)|

2

) − ∑
𝛼

√𝜋
𝑞𝑖

2

 

𝑖

 (A-4) 

where 𝑞𝑖 and 𝑞𝑗 are the charges of particle 𝑖 and 𝑗, respectively, 𝒓𝒊 is the position of atom 𝑖, 𝑉 is 

the volume of the cell, 𝛼 is a damping factor, 𝑘 is the wavelength, and erfc is the error function 

complement. 

The information about each framework, including minimum number of unit cells, density, 

volumetric surface area, void fraction, and pore size (largest cavity diameter) are listed below in 

Table 3. Forcefield parameters (excluding partial charges, which are framework specific and can 

be found in the CIF) for each framework atom are given in Table 4. 
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Table 3. Physical properties of MOF structures. 

MOF Min. # of Unit 

Cells for 

RASPA 

[a, b, c] 

Density 

[g/cm3] 

Surface Area 

[m2/cm3] 

Void Fraction 

[---] 

Pore Size 

[Å] 

IRMOF-1 1, 1, 1 0.590375 2198.21 0.8108 15.08377 

HKUST-1 1, 1, 1 0.879099 2114.54 0.7206 13.18983 

NU-125 1, 1, 1 0.57834 2196.18 0.79 19.37323 

UIO-66 2, 2, 2 1.22494 1762.62 0.6128 8.88 

ZIF-8 2, 2, 2 0.924676 1442.14 0.6416 11.51766 

MgMOF-74 1, 1, 4 0.91487 1549.21 0.6396 11.63962 

MOF-177 1, 1, 1 0.426775 2035.73 0.8318 11.67849 

NU-100 2, 2, 2 0.2843005 1620.675 0.8777 27.190265 

MOF-801 1, 1. 1 1.74184 1303.21 0.5322 7.65165 

ALUKIC 2, 2, 1 0.56692 2883.21 0.7934 8.54387 

AMIMAL 2, 1, 1 0.988926 1269.07 0.6132 11.07211 

AXUHEH 2, 2, 1 1.06453 1024.66 0.4958 7.21454 

BAZGAM 1, 1, 1 0.126526 810.47 0.9392 42.79818 

BIWSEG 1, 1, 1 0.466941 1434.98 0.843 29.73511 

EDUVOO 2, 2, 2 0.373403 1788.47 0.862 20.93415 

FIDRIV 2, 2, 2 0.698397 1517.46 0.7102 15.99327 

GAGZEV 1, 1, 1 0.279149 1594.77 0.8816 28.66522 

GUPBEZ 2, 2, 2 2.5399 489.614 0.4518 7.29165 

HABQUY 1, 1, 1 0.289452 1646.58 0.8738 25.71531 

HIFTOG 2, 2, 2 1.16582 1897.92 0.6126 7.95891 

JEWCAP 2, 2. 1 1.11472 880.16 0.5446 6.52252 

KICXAX 2, 2, 2 3.58491 368.423 0.3658 5.16268 

KIFJUF 3, 2. 2 0.821526 2412.21 0.648 5.86033 

KINKAV 3, 2, 2 1.21016 462.625 0.4526 4.49986 

LODPUQ 2, 2, 2 1.07351 1496.3 0.5402 6.04771 

LOFVUY 2, 1, 1 1.07811 1889.15 0.626 8.04365 

MUDTEL 1, 1, 1 0.559282 2154.91 0.789 19.09514 

NAYZOE 2, 2, 2 0.498918 2302.42 0.813 15.82314 

NIBHOW 1, 1, 1 0.279595 1425.71 0.8844 27.51057 

NIBJAK 1, 1, 1 0.223433 1188.94 0.9102 32.00355 

OFEREX 3, 3, 2 1.56791 1544.85 0.5694 6.99117 

RAVXET 4, 1, 1 0.326773 945.437 0.8304 38.22812 

RAVXIX 4, 1, 1 0.23463 734.576 0.8668 53.57674 

RAVXOD 4, 1, 1 0.179103 619.991 0.8986 71.64119 

RUTNOK 1, 1, 1 0.240823 1468.58 0.9018 24.61263 

SADLEQ 3, 3, 2 1.50504 1508.7 0.5702 7.11187 

SAPBIW 1, 1, 1 0.305675 915.118 0.889 28.19349 

SICZOV 2, 2, 2 0.419881 1773.06 0.8408 18.76086 

TOHSAL 2, 2, 1 0.576207 2737.54 0.7668 9.79069 

UKUPUL 2, 2, 2 1.43379 1465.65 0.5222 6.90717 

VETTIZ 1, 1, 1 0.537597 1117.38 0.7638 21.62456 
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Table 3 (Continued) 

MOF 

Min. # of Unit 

Cells for 

RASPA 

[a, b, c] 

Density 

[g/cm3] 

Surface Area 

[m2/cm3] 

Void Fraction 

[---] 

Pore Size 

[Å] 

WIYMOG 2, 2, 1 0.408102 2874.44 0.8306 12.0545 

WUNSEE01 2, 2, 2 1.20903 749.985 0.4842 5.00556 

XAFFAN 2, 2, 2 0.365184 1896.05 0.8544 14.91316 

XAFXOT 6, 3, 2 1.88819 647.785 0.3646 5.91185 

XAHQAA 1, 1, 1 0.170429 1040.62 0.9292 23.03533 

XALTIP 2, 2, 2 0.551216 1809.24 0.7988 18.68299 

XUKYEI 2, 2, 2 0.287208 1805.38 0.8682 13.17229 

XUWVUG 7, 2, 2 3.19434 197.336 0.287 3.95338 

YEQRIV 3, 2, 2 0.74227 3172.25 0.734 5.99633 
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Table 4. Parameters of framework atoms. 

Atom Type 𝜀/kB [K] 𝜎 [Å] 

H 22.1417 2.886 

Be 42.7736 2.44552 

B 47.8058 3.58141 

C 52.8381 3.851 

N 34.7222 3.66 

O 30.1932 3.5 

F 36.4834 3.092 

Na 15.09 2.66 

Mg 55.8574 2.69141 

Al 155.998 3.91105 

Si 155.998 3.80414 

P 161.03 3.69723 

S 173.107 3.59032 

Cl 142.562 3.51932 

K 17.61 3.4 

Sc 9.56117 2.93551 

Ti 8.55473 2.8286 

V 8.05151 2.80099 

Cr 7.54829 2.69319 

Mn 6.54185 2.63795 

Fe 6.54185 2.5943 

   

 

Atom Type 𝜀/kB [K] 𝜎 [Å] 

Co 7.04507 2.55866 

Ni 7.54829 2.52481 

Cu 2.5161 3.495 

Zn 62.3992 2.46155 

Ga 208.836 3.90481 

As 155.47 3.77 

Br 186.191 3.51905 

Zr 34.7221 3.124 

Ag 18.1159 2.80455 

Cd 114.734 2.53728 

In 301.428 3.97608 

Sb 225.946 3.93777 

Te 200.281 3.98232 

I 170.57 4.01 

La 8.55 3.14 

Ce 6.54 3.17 

Nd 5.03 3.18 

Eu 4.03 3.11 

Tb 3.52 3.07 

Dy 3.52 3.05 

W 33.71 2.73 
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Table 5. Simultation parameters of molecular structures. 

 
Molecule / 

Atom Type 
X [Å] Y [Å] Z [Å] 𝜀/kB [K] 𝜎 [Å] Charge [e] 

 Acetone 

(0) CH3_sp3 *Positions defined by flexible bonds 98.0 3.75 0.0 

(1) CH3_sp3    98.0 3.75 0.0 

(2) C_ketone    40.0 3.82 0.424 

(3) O_ketone    79.0 3.05 -0.424 

 Ammonia 

(0) N_NH3 0.0 0.0 0.0757 182.9     3.376 -0.9993 

(1)  H_NH3 0.9347 0.0 -0.3164 --- --- 0.3331 

(2)  H_NH3 -0.4763 0.8095 -0.3164 --- --- 0.3331 

(3)  H_NH3 -0.4673 -0.8095 -0.3164 --- --- 0.3331 

 Benzene 

(0) C_benz 0.0 0.0 0.0 30.70 3.60 -0.095 

(1) C_benz 1.392 0.0 0.0 30.70 3.60 -0.095 

(2) C_benz 2.088 1.2055 0.0 30.70 3.60 -0.095 

(3) C_benz 1.392 2.411 -0.0012 30.70 3.60 -0.095 

(4) C_benz 0.0 2.411 -0.0017 30.70 3.60 -0.095 

(5) C_benz -0.696 1.2055 -0.0007 30.70 3.60 -0.095 

(6) H_benz -0.54 -0.9353 0.0004 25.45 2.36 0.095 

(7) H_benz 1.932 0.9353 0.0013 25.45 2.36 0.095 

(8) H_benz 3.1680 1.2055 0.0006 25.45 2.36 0.095 

(9) H_benz 1.932 3.3463 -0.0013 25.45 2.36 0.095 

(10) H_benz -0.540 3.3463 -0.0026 25.45 2.36 0.095 

(11) H_benz -1.776 1.2055 -0.0009 25.45 2.36 0.095 

 Carbon Dioxide 

(0) O_CO2 0.0 0.0 1.16 79.0 3.05 -0.35 

(1) C_CO2 0.0 0.0 0.0 27.0 2.80 0.70 

(2) O_CO2 0.0 0.0 -1.16 79.0 3.05 -0.35 

 Hydrogen 

(0) H_H2 0.0 0.0  0.37 36.7 2.958 0.468 

(1) H_e* 0.0 0.0  0.0 --- --- -0.936 

(2) H_H2 0.0 0.0 -0.37 36.7 2.958 0.468 

 Hydrogen Sulfide 

(0) S_H2S -0.3541  0.2743 -0.4189 122.0 3.60 0.0 

(1) H_H2S  0.9737  0.1714 -0.2619 50.0 2.5 0.21 

(2) H_H2S -0.6197 -0.4457  0.6808 50.0 2.5 0.21 

(3) H2S_e* -0.2465  0.1909 -0.2917 --- --- -0.42 

  



 83 

 
Table 5 (Continued) 

 

Molecule / 

Atom Type 
X [Å] Y [Å] Z [Å] 𝜀/kB [K] 𝜎 [Å] Charge [e] 

 Isoprene 

(0) CH2_sp2_isop *Positions defined by flexible bonds 85.0 3.675 0.0 

(1) C_sp2_isop    22.0 3.85 0.0 

(2) CH_sp2_isop    52.0 3.71 0.0 

(3) CH2_sp2_isop    85.0 3.675 0.0 

(4) CH3_sp3_isop    98.0 3.75 0.0 

 Methane 

(0) CH4_sp3 0.0 0.0 0.0 148.0 3.73 0.0 

 Nitrogen 

(0) N_N2 0.0 0.0 0.55 36.0 3.31 -0.482 

(1) N_e* 0.0 0.0 0.0 --- --- 0.964 

(2) N_N2 0.0 0.0 -0.55 36.0 3.31 -0.482 

 Oxygen 

(0) O_O2 0.0 0.0 0.605 49.000 3.02 -0.113 

(1) O_e* 0.0 0.0 0.0 --- --- 0.226 

(2) O_O2 0.0 0.0 -0.605 49.000 3.02 -0.113 

*X_e = mass-free region of charge  

N.B. Lennard-Jones parameters for ammonia are from a paper by Eckl et al.[111] 

 

 

The Peng-Robinson equation of state, shown below, was used to calculate the fugacities 

necessary to run the GCMC simulation. The critical parameters for each molecule type are listed 

below in Table S4. 

𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎𝛼

𝑉𝑚
2 + 2𝑏𝑉𝑚 − 𝑏2

 

where  𝑎 =
0.457235𝑅2𝑇𝑐

2

𝑝𝑐
   &  𝑏 =

0.077796𝑅𝑇𝑐

𝑝𝑐
 

(A-5) 

𝛼 = (1 + 𝑘(1 − 𝑇𝑟
0.5)) 

where 𝑘 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2  &  𝑇𝑟 = 𝑇/𝑇𝑐 

(A-6) 
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Table 6. Critical parameters of gas molecules. 

Molecule Type TC [K] PC [MPa] 𝜔 Bond Stretch 

Acetone 508.000  5.5300  0.304 Flexible 

Ammonia 402.210 10.5200  0.253 Rigid 

Argon 154.580  5.0430  0.0 --- 

Benzene 562.050  4.8940  0.2092 Rigid 

Carbon Dioxide 304.128  7.3773  0.22394 Rigid 

Hydrogen  33.190  1.3150 -0.214 Rigid 

Hydrogen Sulfide 373.400  8.9630  0.09000 Rigid 

Isoprene 484.300  3.7896  0.1586 Flexible 

Methane 190.564  4.5992  0.01142 --- 

Nitrogen 126.192  3.3958  0.0372 Rigid 

Oxygen 154.581  5.0430  0.0222 Rigid 

 

N.B. The critical constants and the acentric factor for ammonia are from Perry’s Chemical 

Engineering Handbook.  
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Appendix B Simulating Sensor Measurements & Gas Mixture Analysis 

Appendix B.1 Evaluate Element Probabilities 

The following section is intended to give an overview of the of the calculations involved in 

designing arrays and predicting compositions. Specific information about formatting the results 

and controlling certain parameters of the code is available on the GitHub which hosts this project 

(https://github.com/WilmerLab/sensor_array_mof_adsorption).  

Once these calculations are complete, we create two distinct sets of data; the library of 

simulated masses, which included the adsorbed mass values for all MOFs and all compositions, 

and the experimental mass values, which is just a subset of the simulated mass for only a sinlge 

composition. For work using adsorption coefficients, the simulated mass can actually be calculated 

as needed. This is outlined further in Appendix D. 

The first step in the analysis procedure is to calculate the probability of each composition for 

each MOF. One MOF at a time, we take the experimental value associated with that MOF and 

create a truncated normal probability curve centered about the experimental mass, with a standard 

deviation as either a fixed value or some percent of the experimental mass. The intention of using 

a truncated probability distribution rather than a true normal distribution is to account for the fact 

that adsorption will always result in an increase in mass. Consequently, the lower bound is set at 

0, and the upper bound is set far beyond the highest simulated mass present in the data set.  

The equations which govern the truncated normal distribution are as follows: 

https://github.com/WilmerLab/sensor_array_mof_adsorption
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𝜓(�̅�, 𝜎, 𝑎, 𝑏; 𝑥) = {

0
𝜙(�̅�, 𝜎2; 𝑥)

Φ(�̅�, 𝜎2; 𝑏) − Φ(�̅�, 𝜎2; 𝑎)
0

     

𝑖𝑓 𝑥 ≤ 𝑎
𝑖𝑓 𝑎 < 𝑥 < 𝑏
𝑖𝑓 𝑏 ≤ 𝑥

 (B-1) 

𝜙(�̅�, 𝜎2; 𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  (B-2) 

Φ(�̅�, 𝜎2; 𝑥) = ∫
1

𝜎√2𝜋
𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑥

−∞

 (B-3) 

 

where 𝜙(�̅�, 𝜎2) is the standard normal distribution over the interval (−∞, +∞), and Φ(�̅�, 𝜎2) is 

the cumulative distribution function over the interval (−∞, +∞). The variables �̅� and 𝜎 is the 

mean and variance of the parent normal distribution, and the variables 𝑎 and 𝑏 are the truncation 

interval.[113]  

For each composition, we assign a probability based on where simulated mass sits on the 

truncated probability curve, as given by: 

𝑃𝑠𝑖𝑚,𝑖 =  𝜓(�̅�, 𝜎, 𝑎, 𝑏; 𝑚𝑠𝑖𝑚,𝑖) (B-4) 

where �̅� = 𝑚𝑒𝑥𝑝 , 𝜎 = 0.05 ∙ 𝑚𝑒𝑥𝑝, 𝑎 = 0, and 𝑏 = 1.05 ∙ 𝑚𝑠𝑖𝑚,𝑚𝑎𝑥. The values used for the 

standard deviation and upper truncation can be adjusted as needed. Since each mass is assigned a 

probability independently of each other, the sum of all probabilities does not necessarily equal 1. 

However, since the intention of this process is to determine which of the simulated compositions 

the array has been exposed to, we normalize the assigned probabilities so that now their sum equals 

1. 

𝐹 = ∑ 𝑃𝑠𝑖𝑚,𝑖

𝑁

𝑖=1

 (B-5) 
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𝑃𝑠𝑖𝑚,𝑖
𝑛𝑜𝑟𝑚 =  

1

𝐹
∙ 𝑃𝑠𝑖𝑚,𝑖 (B-6) 

 

This process is repeated for each MOF until we have one normalized probability value for 

each composition for each MOF.  

 

Figure 28. Mapping of Mass uptake to probability as a 1-element sensor of Mg-MOF-74, the top performing 1-

element sensor. 

Appendix B.2 Evaluate Array Probabilities 

Now that we have the probabilities for each MOF, we need to determine the probabilities for 

arrays. Fortunately, this process is very straightforward. For each composition, we simply multiply 

all of the normalized probabilities for each MOF with each other, resulting in a non-normalized 

array probability for each composition. As before, we normalize these probabilities so that they 

sum to 1. With this information, we can now say which of the simulates gases the array is most 

likely exposed to.  
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Appendix B.3 Evaluate Component Probabilities 

In addition to calculating the probability for each of the simulated compositions, it is often 

convenient to be able to predict the mole fraction of each component individually. To this end, we 

developed a simple approach leveraging the previously calculated probabilities. For whichever 

component we are trying to predict, we establish a set of bins, typically with the same spacing as 

the simulated compositions, though this stipulation is not required. Then, for each of the simulated 

compositions, we assign it to its corresponding component bin. For example, if our bin boundaries 

for a given CO2 bin were 29.5 and 30.5, all compositions where the mole fraction of CO2 was 30% 

would be placed in that bin. Next, we sum all of the probabilities in that bin to determine the total 

probability for that bin. Note that since this method uses the already normalized probabilities, the 

sum of the probabilities for each bin already equals one, and thus no additional normalization is 

needed.  

We can repeat this process for each component in the mixture, until the mole fraction for each 

component has been predicted individually, though this is not necessary, and may often be 

undesirable. Nevertheless, it is important to note that if we were to use this approach to individually 

predict the mole fraction of all components, we are not guaranteed to predict the same composition 

as we had predicted when considering the mixture as a whole. Furthermore, the sum of each of the 

mole fractions is not guaranteed to equal one, however both of these scenarios become less likely 

as the quality of the array improves.  

It seems worthwhile to mention the advantages of this approach, as the previously mentioned 

scenarios would seem to demotivate using it. Notably, one could conceive developing an array 

which is uniquely sensitive to one primary component (or a set of primary components), and less 

sensitive to the remaining gases of a typical mixture. It is then conceivable that the array would 
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continue to predict the primary (set of) component(s) reliably, regardless of how the mole fractions 

of the remaining components fluctuate. It is additionally possible that the array would continue 

predicting reliably in the presence of other gases which were not accounted for in the simulations. 

Conversely, by trying to predict the mixture as a whole, it is foreseeable that in either of these 

cases, the prediction of the component(s) of interested in negatively impacted by the less important 

components. Although none of the above situations are guaranteed to hold for all mixtures or 

arrays, hopefully they demonstrate at least the advantage of having this method available.  

 

Figure 29. Component-wise probability for MgMOF-74, the top-performing single-element sensor. 

Appendix B.4 Ranking Array Performance 

Although the set of probabilities for an array enables us to predict the composition of the 

mixture, it does not lend itself conveniently to comparing the quality of different arrays. 

Consequently, we wanted a way of quantifying the prediction capabilities of an array, and for this 

purpose we introduced the Kullbeck-Liebler divergence (KLD).  
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Rigorously, the KLD quantifies the difference between two probabilities of any form and can 

be represented mathematically as follows: 

𝐾𝐿𝐷(𝑃||𝑄) = ∑ 𝑃𝑖 ∙ log2 (
𝑃𝑖

𝑄𝑖
)

𝑁

𝑖=1

 (B-7) 

where P and Q are the system and reference probability respectively. When the reference 

probability is simply a uniform distribution (i.e., random chance), 𝑄𝑖 =
1

𝑁
 for all I, so this simplifies 

to: 

𝐾𝐿𝐷 = ∑ 𝑃𝑖 ∙ log2(𝑃𝑖 ∙ 𝑁)

𝑁

𝑖=1

 (B-8) 

Note that we also drop the (𝑃||𝑄) notation, since our reference probability is never 

anything other than a uniform distribution. This form of the equation can be used both when trying 

to predict the mixture as a whole and when trying to predict the mixture component-wise, the only 

difference is that the number of points, N, changes. We have taken to calling the these the absolute 

KLD and component KLD respectively. We also calculate what we have been calling the joint 

KLD, which is simply the product of all of the component KLDs, though there does not seem to 

be any advantage to using this in place of the absolute KLD.  
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Appendix C Array Design 

Appendix C.1 Brute Force  

In order to determine all possible arrays of a given size, we simply iterate overall available 

MOFs, repeating this up to the number of elements in the array, and add a MOF only when it has 

not previously appeared in the array. Once all arrays have been determined, the compound 

probability, and subsequently the KLD, is evaluated as described above. We can then rank all 

arrays on the basis of KLD (or component KLD, or any other numerical property of interest), to 

find the best and/or worst arrays.  

Appendix C.2 Genetic Algorithm  

With 50 MOFs to choose from, there are over 2.1x106 possible 5-element arrays. With an array 

size of 25 elements, there are over 1.25x1014 possible arrays, thus motivating the need for an 

intelligent screening approach to study these larger arrays. To this end, we developed a genetic 

algorithm which works in the following way. 

Before explaining the details of our genetic algorithm approach, let us first cover some basic 

terminology. The ‘genetic’ in genetic algorithm refers to the fact that we are using distinct pieces 

of information about an array to modify it. Here the ‘genes’ correspond to the individual elements 

in the array. A generation refers to a distinct set of arrays, with a subset of each generation, the 

parents, being used in creating the following one. In our particular approach, all of the selected 
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parents are also part of the next generation which they are used to create. This strategy, known as 

elitism, guarantees that quality of the solution does not decrease between generations. Finally, the 

individual arrays of the following generation, created from the parent arrays, are known as 

children. 

To begin the algorithmic search, an initial generation of arrays is first created at random 

(checking to make sure there are no duplicate elements in a single array, and no duplicate arrays 

in a single generation). Once created, their compound probability, and subsequently KLD, is 

evaluated as described above. The arrays are then ranked based on the property of interest, 

typically the KLD or one of the component-KLDs.  

In order to create the next generation of arrays, we take a fixed number of the top performing 

arrays (or bottom two, if seeking the worst performing arrays), along with a fixed number of the 

remaining arrays at random. These arrays are both part of and parents for the next generation. 

There are two approaches which we can use in creating children: crossover and mutation. With 

crossover, we choose two parents and generate a child from the elements contained in each. With 

mutation, we choose a single parent and go through each element one at a time. For each element, 

we generate a random number between 0 and 1. If the number we generate is less than our chosen 

mutation rate (another number between 0 and 1), than we replace that element with one of the 

MOFs not currently in the array. If the number we generate is greater than the mutation rate, the 

element remains in the array. Either one or both of these strategies can be used in creating children 

for the next generation, however we found that mutation strategies worked best for this application, 

and thus all of the results presented in the paper use only mutation. 
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Figure 30. Example decision process for the mutation strategy employed in the genetic algorithm. 

 

This entire process is repeated for the desired number of generations, and typically the genetic 

algorithm is run multiple times. For the results presented in this paper, the parameters were as 

follows: 20 arrays per generation, top 2 arrays were used as parents, along with 2 at random, and 

200 generations per run. We used a variable mutation rate throughout the process. For the first 25 

generations, the mutation rate was 50%, for the next 25 generations it was 25%, the next 50 

generations used 10%, followed by another 50 generation at 5%, and lastly 50 generations at 2%. 

For each array size, the genetic algorithm was run no less than 3 times for seeking both the best 

and worst arrays, for a minimum of 6 runs.  
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A flowchart overviewing this process is given below: 

 

Figure 31. Flowchart overview of the genetic algorithm. 

Appendix C.3 Singular Value Decomposition 

In past works, array performance was quantified with the KLD score, which examines the 

difference between any two discrete sets of probabilities. The goal was to ask the question, “How 

much better are we predicting over random chance?”, hence as a reference probability we used a 

simple uniform distribution. 

Although this method worked reasonably well, it had two major limitations: the first is that the 

system probability was defined with respect to a set of sensor outputs, and thus a different set of 

sensor outputs would likely result in a different KLD and overall rank; the second is that the sensor 
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output analysis procedure needed to be run in order to generate the system probabilities, which 

becomes very time consuming when trying to screen tens of thousands of arrays (and hence the 

genetic algorithm developed in previous works). 

Fortunately, by introducing CLACs, we can screen and rank arrays without the need for a test 

case and corresponding analysis. In a recent (2019) paper, Sturluson et al. also examined Henry’s 

coefficients of gas adsorption by MOFs with the aim of developing gas sensor arrays, however the 

key differences being that that their coefficients and arrays were designed for dilute conditions 

(i.e., low pressures and no air background), and that their analysis procedure is deterministic rather 

than probabilistic (each of which has its advantages). In their paper, they showed that by 

performing a singular value decomposition (SVD) on the matrix of Henry’s coefficients for each 

array, one can rank the set of all possible arrays, with the best arrays being those which have the 

largest minimum sigma value, and the worst being those with the smallest minimum sigma value. 

Our CLACs are no exception. A brief discussion of the SVD is given below, but for further 

information, we refer the reader to their paper. 

The SVD of the Henry’s coefficient matrix, 𝐻, can be written as follows: 

𝐻 = 𝑈𝛴𝑉𝑇 (C-1) 

where 𝐻 is, again, the Henry’s coefficient matrix (or in our case, the CLAC matrix), 𝑈 is the set 

of orthogonal unit vectors of sensor response (i.e., mass) space, 𝑉 is the set of orthogonal unit 

vectors in gas composition space, and 𝛴 is the matrix of singular values, sigma, which relates 

sensor response space and composition space. Two key advantages of the SVD are that any matrix 

can be decomposed without exception, and that the unit vectors of both systems are uniquely 

determined, which, for the purpose of this work, essentially means that given any set of MOFs and 

corresponding Henry’s coefficients, we can always determine the best array(s).  
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It is also worth noting that they showed that, with the exception of adding MOFs for which 

adsorption is no longer in the Henry’s regime, adding an additional sensor will always improve 

the prediction (i.e., increase the value of the smallest singular value, sigma). Thus, for the analyses 

presented in this work, we chose to limit the array size, since, by their proof, the best array would 

be the array which uses all applicable MOFs. However, we followed their method exactly for 

ranking arrays of a given size. 
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Appendix D Complex Gas Mixture Analysis 

Appendix D.1 Combined Linear Adsorption Coefficients (CLACs) 

Determining the Henry’s coefficients for each of the MOFs/gases is a relatively 

straightforward procedure. Again, we should note that the CLACS which we evaluate and employ 

here differ from traditional Henry’s coefficients in that they are not for the adsorption of a pure 

gas species as a function of total pressure, but rather for the adsorption of a trace gas species with 

a background gas of nitrogen and oxygen as a function of the partial pressure of the trace gas 

species at a fixed system pressure. This change again begs the question: how does the composition 

of the background gas impact the predicted CLAC? 

To address this, we ran a set of grand canonical Monte Carlo (GCMC) simulations in RASPA 

in which the mole fraction of the trace gas species was varied from 0-0.05, and the remaining gas 

was nitrogen and oxygen in each a 3:1, 4:1, and 5:1 ratio. Fortunately, we found that the 

composition of air (ratio of N2:O2) had no impact on the calculated CLAC and thus could be treated 

as a single component. Knowing this, we then extracted the CLACs from the adsorption data, 

fitting to all three sets of adsorption data (3:1, 4:1, and 5:1 simultaneously). As mentioned in the 

paper, we simply fit a line to the adsorbed masses of the trace gas species with the intercept forced 

to 0, as there is obviously no adsorption of a species not found in the bulk. We then adjusted the 

width of the dataset, specifically by excluding higher composition data points, until the R-squared 

value of the fit was greater than 0.95. Then, using the same set of compositions, a line was fit to 

the adsorbed mass of air, except now with no R-squared cutoff employed, and with the intercept 
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no longer forced to 0 since there is still adsorbed air in the absence of any trace gas species. By 

adding the slopes of these fits together, we get the CLACs for the system. 

An alternative to the above approach would have been to simply fit a line to the total adsorbed 

mass and allow for a non-zero intercept. However, there was substantially more nose in the 

adsorbed massed of nitrogen and oxygen, and thus by fitting to the trace gas species separately, 

we got a better fit and better result for the pure air mass of each MOF. We did use a weighting 

scheme to handle the varying amount of error in each of the adsorbed masses. Specifically, weights 

were assigned inversely proportional to the amount of error. Schemes for non-weighted fitting 

weighting inversely proportional to squared error were also coded, but not used in this work. 

The code which we used is available on GitHub. The table below also provides the CLACs for 

all MOFs/gases, as well as the pure air mass for each framework.  
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Table 7. Combined Linear Adsorption Coefficients for all MOFs and Gases. 

MOF 

K*, CO2 

[mg / g-framework / 

mole fraction] 

K*, Argon 

[mg / g-framework / 

mole fraction] 

K*, Ammonia 

[mg/ g-framework / 

mole fraction] 

Pure Air Mass 

[mg / g-framework] 

IRMOF-1 65.764 0.873 33.911 7.882 

HKUST-1 756.255 8.189 398.082 16.633 

NU-125 235.615 3.571 32.201 14.588 

UIO-66 689.234 3.705 17439.557 10.474 

ZIF-8 179.071 6.651 155.632 11.019 

MgMOF-74 791.004 1.328 2792.297 13.141 

MOF-177 77.265 5.239 -13060.475 10.815 

NU-100 104.434 7.221 12.689 12.905 

MOF-801 58547.931 1.934 None 15.717 

ALUKIC 19114.785 7.642 None 14.435 

AMIMAL 5878.447 6.746 12208.404 20.13 

AXUHEH 1774.947 9.219 148.335 20.482 

BAZGAM 56.9 8.326 -0.069 17.355 

BIWSEG 1081.739 2.462 None 12.724 

EDUVOO 98.813 2.669 38.94 11.95 

FIDRIV 2149397.968 6.498 None 21.975 

GAGZEV 155.167 6.044 16.623 14.007 

GUPBEZ 315.551 5.251 61.999 6.402 

HABQUY 132.858 4.624 8.711 13.695 

HIFTOG 904.02 8.705 195.056 13.262 

JEWCAP 956.107 3.016 214211.898 8.215 

KICXAX 167.176 0.398 545.598 1.195 

KIFJUF 9640.372 -1.646 None 19.611 

KINKAV 1292.102 8.548 142.62 10.15 

LODPUQ 1960.705 24.879 99.412 39.135 

LOFVUY 2808.085 4.124 None 14.589 

MUDTEL 211.765 3.772 39.324 13.773 

NAYZOE 102.886 7.502 15.641 12.92 

NIBHOW 59.069 2.808 8.07 11.666 

NIBJAK 46.734 7.078 3.878 12.214 

OFEREX 5091.388 -0.181 None 18.506 

RAVXET 550.959 4.414 34011.707 10.935 

RAVXIX 199.727 7.671 24.695 15.362 

RAVXOD 471.641 7.156 37955.556 14.789 

RUTNOK 71.27 3.699 11.804 11.723 

SADLEQ 23634.241 -2.752 None 19.7 
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Table 7 (Continued) 

 

MOF 

K*, CO2 

[mg / g-framework / 

mole fraction] 

K*, Argon 

[mg / g-framework / 

mole fraction] 

K*, Ammonia 

[mg/ g-framework / 

mole fraction] 

Pure Air Mass 

[mg / g-framework] 

SAPBIW 65.705 3.039 6.274 9.375 

SICZOV 254.233 5.34 89899.971 13.549 

TOHSAL 401.049 9.461 39.155 21.288 

UKUPUL 948237.869 -16.903 None 23.897 

VETTIZ 681.192 5.37 151.249 25.703 

WIYMOG 62.98 4.175 11.228 9.242 

WUNSEE01 2187.015 43.162 177.116 37.272 

XAFFAN 114.24 4.641 12453.978 13.083 

XAFXOT 55405.68 0.808 None 12.845 

XAHQAA 64.245 10.391 7.667 15.282 

XALTIP 77.848 4.784 39.476 9.073 

XUKYEI 55.169 7.627 9.887 11.779 

XUWVUG 28.967 0.411 1.378 0.347 

YEQRIV 13991.941 -3.341 None 5.321 

 

*The highlighted MOFs are those which have the necessary Henry’s regime (>= 0.05) to be used 

for the analysis of breath samples. 
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A more traditional method of calculating Henry’s coefficients in GCMC is via Widom 

insertion, which is an energetic method that returns Henry’s coefficients for the adsorption of a 

pure gas species as a function of system pressure. The primary advantage of the Widom insertion 

method is speed, however it falls short in other ways. Namely, the Henry’s coefficients it returns 

are not of the type needed for this work. Additionally, it gives us no insight into the width of the 

Henry’s regime, another key metric. Nevertheless, as a test case, we decided to calculate the 

traditional Henry’s coefficients for CO2, Argon, and Ammonia for NU-100 via Widom insertion 

and compare them to our CLACs determined via an indirect fitting method.[108] The results 

comparing the two methods are given in the table below. 

 

Table 8. Henry’s Coefficients via Widom insertion vs. CLACs for NU-100 for various gases. 

 
Widom Insertion 

(Henry’s Coefficient) 

Indirect Fitting 

Method (CLAC) 
Percent Difference 

CO2 

[mg / g-framework / Pa] 
140.2 123.74 11.69 

Argon 

[mg / g-framework / Pa] 
19.05 19.02 0.16 

Ammonia 

[mg / g-framework / Pa] 
23.21 25.54 10.04 

 

Given that we are comparing non-identical systems, we consider these differences to be 

acceptable, and further evidence of the minimal impact of air on the adsorption of trace gas species. 

It is worth noting that the Widom insertion method does provide some energetic information via 

the heat of adsorption, and thus may be useful in future applications.  
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Appendix D.2 Simulating Breath Samples 

The next thing which we needed to do was generate breath samples. In order to do this, we 

first generated a set of compositions which reflected a set of both healthy and diseased breath 

samples, with the compositions of each given as follows: 

 

Table 9. Henry’s Coefficients for NU-100 with the direct (traditional) vs. indirect (non-traditional) methods. 

Gas Healthy Range Diseased Range 

CO2 2-5% 

Argon 0.6-1.2% 

Ammonia 0.49 ± 0.08 ppm 3.32 ± 2.19 ppm 

Air 
Remainder of Sample, Random ratio 

of N2 :O2 between 3:1-5:1 

*Gases compositions given as a range are chosen at random from a uniform distribution, and gas 

compositions given as a ± are chosen at random from a truncated normal distribution. 

 

 

Initially, we used these compositions to run RASPA simulations in the hope of not making 

any assumptions about any potential interactions between the trace gas species. Unfortunately, due 

to the extremely low concentrations of ammonia, an excessively large number of cycles was 

needed to reduce the error, and even then, the error was often larger than what would be expected 

of a real device, making the simulation results impractical as a stand in for experimental 

measurements when trying to detect compounds at ppm concentrations. 

As a replacement for simulated breath sample data, we decided to simply generate the 

masses from the compositions and CLACs, such that the resulting breath sample sensor outputs 

were “perfect”. That is to say that, unless error is introduced, that point in composition space has 

the highest probability of all possible points. The primary advantage of this choice, aside from 
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eliminating the need for additional GCMC simulations, is that it allows us to gauge how well 

behaved the algorithm is. If a quality array cannot accurately predict the composition when the 

sensor outputs are primed to do so, it is likely that the algorithm (or at least the parameter set) 

needs to be updated. Additionally, once we are satisfied with the overall algorithm and parameter 

set for a given array, we can introduce error to the sensor outputs as a way of replicating both 

measurement error and any unknown trace components, and test how susceptible the system is to 

these errors and subsequently make adjusts to minimize prediction error.  

The set of all compositions for each of the 50 healthy and 50 diseased breath samples is 

given in the tables below. 
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Table 10. Healthy Breath Sample Compositions. 

Sample Number YCO2 YArgon YAmmonia YAir 

1 0.0335 0.0073 3.112 x 10-07 0.9593 

2 0.0395 0.0079 3.428 x 10-07 0.9526 

3 0.0226 0.0100 3.652 x 10-07 0.9674 

4 0.0424 0.0066 3.665 x 10-07 0.9510 

5 0.0201 0.0071 3.847 x 10-07 0.9728 

6 0.0241 0.0099 3.881 x 10-07 0.9660 

7 0.0475 0.0102 4.229 x 10-07 0.9423 

8 0.0285 0.0101 4.239 x 10-07 0.9614 

9 0.0414 0.0071 4.286 x 10-07 0.9515 

10 0.0213 0.0062 4.306 x 10-07 0.9725 

11 0.0231 0.0079 4.309 x 10-07 0.9690 

12 0.0322 0.0096 4.340 x 10-07 0.9582 

13 0.0251 0.0085 4.431 x 10-07 0.9664 

14 0.0367 0.0086 4.444 x 10-07 0.9547 

15 0.0400 0.0092 4.459 x 10-07 0.9508 

16 0.0212 0.0105 4.475 x 10-07 0.9683 

17 0.0289 0.0082 4.555 x 10-07 0.9629 

18 0.0486 0.0092 4.613 x 10-07 0.9422 

19 0.0337 0.0080 4.690 x 10-07 0.9583 

20 0.0471 0.0112 4.747 x 10-07 0.9416 

21 0.0499 0.0095 4.750 x 10-07 0.9406 

22 0.0204 0.0099 4.813 x 10-07 0.9697 

23 0.0235 0.0061 4.818 x 10-07 0.9703 

24 0.0294 0.0068 4.929 x 10-07 0.9639 

25 0.0334 0.0069 4.955 x 10-07 0.9597 

26 0.0234 0.0113 4.957 x 10-07 0.9652 

27 0.0477 0.0093 5.003 x 10-07 0.943 

28 0.0230 0.0095 5.123 x 10-07 0.9676 

29 0.0319 0.0110 5.133 x 10-07 0.9571 

30 0.0228 0.0071 5.179 x 10-07 0.9700 

31 0.0473 0.008 5.232 x 10-07 0.9447 

32 0.0471 0.0076 5.249 x 10-07 0.9453 

33 0.0454 0.0066 5.302 x 10-07 0.9480 

34 0.0216 0.0100 5.369 x 10-07 0.9684 

35 0.0403 0.0066 5.448 x 10-07 0.9531 

36 0.0316 0.0073 5.474 x 10-07 0.9611 

37 0.0388 0.0108 5.566 x 10-07 0.9503 

38 0.0268 0.0078 5.716 x 10-07 0.9654 
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Table 10 (Continued) 

 

Sample Number YCO2 YArgon YAmmonia YAir 

39 0.0479 0.0112 5.729 x 10-07 0.9410 

40 0.0397 0.0113 5.741 x 10-07 0.9491 

41 0.0464 0.0082 5.798 x 10-07 0.9454 

42 0.0458 0.0073 5.821 x 10-07 0.9469 

43 0.0466 0.0099 5.994 x 10-07 0.9435 

44 0.0235 0.0096 6.042 x 10-07 0.9669 

45 0.0322 0.0111 6.081 x 10-07 0.9568 

46 0.0308 0.0077 6.135 x 10-07 0.9615 

47 0.0224 0.0094 6.164 x 10-07 0.9681 

48 0.0472 0.0101 6.205 x 10-07 0.9427 

49 0.0331 0.0120 6.303 x 10-07 0.9550 

50 0.0352 0.0061 6.728 x 10-07 0.9587 

*The highlighted breath samples have a total mole fraction for the trace gas species greater than 

0.05. Although this means competitive adsorption may begin if these were real samples, for our 

computer-generated masses, it simply means our assumption becomes that competitive adsorption 

does not happen within the range of that specific sample. 

 

  



 106 

Table 11. Diseased Breath Sample Compositions. 

Sample Number YCO2 YArgon YAmmonia YAir 

1 0.0382 0.0098 1.454 x 10-06 0.9520 

2 0.0372 0.0118 1.626 x 10-06 0.9510 

3 0.0494 0.0079 1.706 x 10-06 0.9427 

4 0.0349 0.0076 1.785 x 10-06 0.9575 

5 0.0499 0.0102 2.025 x 10-06 0.9399 

6 0.0446 0.0111 2.057 x 10-06 0.9443 

7 0.0203 0.0095 2.186 x 10-06 0.9702 

8 0.0226 0.0079 2.237 x 10-06 0.9695 

9 0.0410 0.0066 2.285 x 10-06 0.9524 

10 0.0444 0.0109 2.492 x 10-06 0.9446 

11 0.0215 0.0069 2.496 x 10-06 0.9716 

12 0.0226 0.0069 2.526 x 10-06 0.9705 

13 0.0371 0.0091 2.565 x 10-06 0.9538 

14 0.0393 0.0091 2.931 x 10-06 0.9515 

15 0.0340 0.0078 2.932 x 10-06 0.9583 

16 0.0281 0.0102 2.990 x 10-06 0.9617 

17 0.0273 0.0088 3.101 x 10-06 0.9639 

18 0.0234 0.0065 3.120 x 10-06 0.9701 

19 0.0268 0.0076 3.382 x 10-06 0.9656 

20 0.0494 0.0111 3.398 x 10-06 0.9395 

21 0.0350 0.0074 3.682 x 10-06 0.9575 

22 0.0344 0.0068 3.862 x 10-06 0.9588 

23 0.0290 0.0086 3.908 x 10-06 0.9624 

24 0.0493 0.0063 3.918 x 10-06 0.9444 

25 0.0492 0.0080 3.959 x 10-06 0.9429 

26 0.0310 0.0091 3.967 x 10-06 0.9599 

27 0.0478 0.0092 4.126 x 10-06 0.9430 

28 0.0348 0.0086 4.135 x 10-06 0.9566 

29 0.0274 0.0107 4.172 x 10-06 0.9619 

30 0.0281 0.0073 4.245 x 10-06 0.9647 

31 0.0206 0.0087 4.279 x 10-06 0.9708 

32 0.0354 0.0067 4.321 x 10-06 0.9578 

33 0.0213 0.0092 4.487 x 10-06 0.9695 

34 0.0325 0.0109 4.530 x 10-06 0.9565 

35 0.0208 0.0078 4.571 x 10-06 0.9714 

36 0.0490 0.0090 4.658 x 10-06 0.9420 

37 0.0267 0.0062 4.731 x 10-06 0.9671 

38 0.0490 0.0065 4.873 x 10-06 0.9445 
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Table 11 (Continued) 

 

Sample Number YCO2 YArgon YAmmonia YAir 

39 0.0448 0.0080 4.946 x 10-06 0.9472 

40 0.0324 0.0097 4.950 x 10-06 0.9579 

41 0.0321 0.0082 4.977 x 10-06 0.9597 

42 0.0255 0.0067 5.324 x 10-06 0.9678 

43 0.0438 0.0099 5.383 x 10-06 0.9463 

44 0.0441 0.0073 5.599 x 10-06 0.9486 

45 0.0274 0.0062 5.713 x 10-06 0.9664 

46 0.0203 0.0079 5.879 x 10-06 0.9718 

47 0.0455 0.0103 6.342 x 10-06 0.9442 

48 0.0489 0.0102 6.377 x 10-06 0.9410 

49 0.0421 0.0118 7.177 x 10-06 0.9461 

50 0.0229 0.0068 8.477 x 10-06 0.9702 

*The highlighted breath samples have a total mole fraction for the trace gas species greater than 

0.05. Although this means competitive adsorption may begin if these were real samples, for our 

computer-generated masses, it simply means our assumption becomes that competitive adsorption 

does not happen within the range of that specific sample. 

Appendix D.3 Composition Prediction Algorithm 

Finally, we needed to design and create a process for predicting the composition of a gas 

sample from a set of sensor output data. The method which we developed in this work is heavily 

influenced from the method used in previous papers, with the most notable changes being this is 

an iterative approach and that the masses are not calculated directly from a GCMC simulation, but 

rather from the CLACs.[34,35,72,73] It is this second change which actually enables us to make 

this an iterative approach, as theoretically the work from previous papers could have been made 

iterative if we ran a new set of GCMC simulations between each cycle. Nevertheless, we elaborate 

on the algorithm presented in the paper here. 
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We provide a brief overview of the entire process, reproducing Figure 9 from the main 

body of the paper here as Figure 32.  

 

 

Figure 32. Simplified overview of the algorithm used to predict compositions from a set of sensor data and 

adsorption coefficients (Copy of Figure 9). 

 

The process begins with the creation of a set of compositions, which are then converted 

into masses using the CLACs. By comparing the calculated masses to a set of sensor outputs, we 

assign probabilities to each point, and subsequently filter out the low probability compositions. 

From there, we return to and subdivide the points in composition space and repeat the process as 

needed. The code which we used for analysis is also available on GitHub.  
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Appendix D.3.1 Create Initial Composition Set 

The point is largely discussed in the main body of the paper, however one nuance of this 

point which warrants further discussion is how the initial composition set impacts the prediction. 

As mentioned, the more finely grained the initial composition space, the better the prediction will 

be. This is because a fine-grained composition set helps from accidentally filtering out 

compositions nearest to the answer during early iterations. the A coarsely grained composition set 

would consequently benefit from keeping more compositions between cycles; however, this can 

result in an exponential growth in the number of points in the composition space, which in turn 

can slow down the algorithm and cause memory issues. Thus, a finely grained initial composition 

set with a small fraction retained is preferrable to the inverse. 

Appendix D.3.2 Evaluate Adsorbed Masses 

Please refer to main body of the paper. 

Appendix D.3.3 Evaluate Element / Array Probabilities 

In order to assign probabilities to each point in composition space, we compare the 

calculated set of masses at that point (one per sensing element) to the set of sensor outputs. This 

method is the same as is outlined in section S2.1.1, except that composition/mass/probability space 

is hyperdimensional.  
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Appendix D.3.4 Filter Low-Probability Compositions 

Please refer to main body of the paper. 

Appendix D.4 Supplemental Results 

Appendix D.4.1 Effect of Array Size and Quality 

Although the focus of this paper was on the development of a new methodology, we did 

also examine the effect of array size and quality on prediction. For this, we first determined a set 

of parameters via guess-and-check with the best 5-element array. Then using the same set of 50 

healthy and 50 diseased breath samples, repeated the analysis with each of the different arrays. All 

breath samples were “perfect” in that the sensor output masses were calculated using the CLACs 

and no error was introduced. As a point of clarification, based on the way we assign masses in this 

work, for a gas sample consisting of N2, O2, CO2, Argon, and Ammonia, a 3-element array would 

be considered fully determined. This is because N2 and O2 are treated collectively as a single 

component, air, and that the composition of air is implied by the predicted compositions for the 

other gases in the system, such that the total mole fraction at each point is 1. With this said, we 

tested the best 1-, 2-, 3-, 4-, 5-, 10-, and 23-element arrays, as well as the worst 5-, and 10-element 

arrays. Also note that, since only 23 elements met the criteria for this application, there is only one 

23-element array, and no larger arrays. For brevity, we show the results for diseased samples only 

in Figure 33 below. 
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Figure 33. Comparison of the best and worst arrays of various sizes.   Note that only the prediction for the 

concentration of ammonia is shown, as the arrays can reliably predict the concentration of argon and carbon 

dioxide.  Note also that there is only one 23-element 

 

Unsurprisingly, 1- and 2- element arrays struggle to reliably predict the composition of 

ammonia, with all the 1-element arrays stopping due to reaching the maximum number of cycles. 

The 2-element arrays converging on a composition, but with a very poor prediction. The 3-element 

arrays substantially improve prediction quality, but even still, with the chosen parameter set, can 

lead to poor prediction, such that if this were the result for a real breath sample, there would be 

several false positive/negatives. The 4-, 5-, 10- and 23- element arrays resolve this problem. The 

23-element array is a particularly interesting result, as the prediction quality is noticeably poorer 

than the best 5- or 10-element arrays, which are both subsets of the best 23-element array. 

Additionally, since this analysis still uses perfect breath samples, as described in section 4 of this 
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S.I., the algorithm should be able to predict the composition and we can say confidently that none 

of the sensors offer contradictory information. Consequently, the poor prediction must be an 

artifact of the algorithm, and further motivates determining a unique set of parameters for each 

array/application, not just for each application. 

Appendix D.4.2 Effect of Algorithm Parameters 

As mentioned, the more finely grained the initial composition space, the better the 

prediction will be. This is because a fine-grained composition set helps from accidentally filtering 

out compositions nearest to the answer during early iterations. the A coarsely grained composition 

set would consequently benefit from keeping more compositions between cycles; however, this 

can result in an exponential growth in the number of points in the composition space, which in 

turn can slow down the algorithm and cause memory issues. Thus, a finely grained initial 

composition set with a small fraction retained is preferrable to the inverse. Figure 34 highlights 

the effect of initial grid size. 
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Figure 34. Comparison of the prediction of the ammonia concentration using the best 5-element array as a 

function of the initial grid spacing. The initial grid for all points spans the following compositions: CO2: [0.02, 

0.05], Argon: [0.0, 0.012], Ammonia: [0.0, 1e-05]. The initial spacing for the coarse grid is CO2: 2.5e-05, Argon: 

0.004, Ammonia: 5e-07; for the standard grid is: CO2: 1.25e-05, Argon: 0.002, Ammonia: 2.5e-07; and for the 

fine grid: CO2: 6.25e-06, Argon: 0.001, Ammonia: 1.25e-07. 

Appendix D.4.3 Effect of ‘Fraction to Keep’ 

The fraction of points retained between cycles also impacts the quality of the prediction. 

Keeping more points improves the prediction but can lead to an explosive growth in the number 

of compositions considered each cycle, and thus increasing this value should be done carefully, as 
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it could cause memory issues for the hardware. Figure 35 highlights the effect of fraction of points 

kept. 

 

 

Figure 35. Comparison of the prediction of the ammonia concentration using the best 5-element array as a 

function of the fraction of points kept. 
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Appendix E Multiplex Sensing Arrays 

The adsorption of the benzene systems in NU-100 was an interesting result in that there 

did not seem to be a saturation level at lower pressures. Rather, at elevate pressures, there seemed 

to be a large jump in the total adsorbed mass, following an s-shape if projected down the benzene 

composition axis. As a result, NU-100 at high pressures improved benzene sensing dramatically. 

The adsorption of benzene in NU-100 is shown in Figure 36.  

 

 

Figure 36. Ternary plots of the adsorbed mass of benzene NU-100 as a function of composition and at the 

following pressures: a) 0.1 bar, b) 0.5 bar, c) 1 bar, d) 5 bar, and e) 10 bar. f) shows a 2x2x2 unit cell of the 

MOF projected down the c-axis. 
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