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Deep Learning for Medical Imaging

From Diagnosis Prediction to its Explanation
Sumedha Singla, PhD

University of Pittsburgh, 2022

Deep neural networks (DNN) have achieved unprecedented performance in computer-
vision tasks almost ubiquitously in business, technology, and science. While substantial
efforts are made to engineer highly accurate architectures and provide usable model ex-
planations, most state-of-the-art approaches are first designed for natural vision and then
translated to the medical domain. This dissertation seeks to address this gap by proposing
novel architectures that integrate the domain-specific constraints of medical imaging into
the DNN model and explanation design.

Prior work on DNN design commonly performs lossy data manipulation to make volu-
metric data compatible with 2D or low-resolution 3D architectures. To this end, we proposed
a novel DNN architecture that transforms volumetric medical imaging data of any resolution
into a robust representation that is highly predictive of disease. For DNN model explanation,
current explanation methods primarily focus on highlighting the essential regions (where)
for the classification decisions. The location information alone is insufficient for applications
in medical imaging. We designed counterfactual explanations to visually demonstrate how
adding or removing image-features changes the DNN decision to be positive or negative for
a diagnosis.

Further, we reinforced the explanations by quantifying the causal relationship between
neurons in DNN and relevant clinical concepts. These clinical concepts are derived from radi-
ology reports and are corroborated by the clinicians to be useful in identifying the underlying
diagnosis. In the medical domain, multiple conditions may have a similar visual appearance,
and it’s common to have images with conditions that are novel for the pre-trained DNN.
DNN should refrain from making over-confident predictions on such data and mark them for
a second reading. Our final work proposed a novel strategy to make any off-the-shelf DNN

classifier adhere to this clinical requirement.

v



Table of Contents

Preface . . . . . . . xiv
1.0 Overview . . . . . . . . 1
1.1 DNN model design . . . . . . .. . . ... . ... 2
1.2 DNN model explanation . . . . . . .. .. ... ... 0. 2
1.3 DNN model uncertainty quantification . . . . . . ... ... ... .. ... 4
1.4  Explanation Framework . . . . . . .. ... ... ... ... ... . .... 4
1.5 Dissertation structure . . . . . . . ... Lo 6
1.6 Contributions . . . . . . . . .. 8
1.7 List of publications . . . . . . . . ... ... 8
2.0 Literature Review . . . . . . . . . . . 10
2.1 Deep learning for medical imaging . . . . . . .. ... ... .. 10
2.2 Interpretable deep learning . . . . . . .. ... oL 11
2.3 Post-hoc deep learning model explanation . . . . . .. ... .. ... ... 13
2.3.1 Feature attribution-based explanation . . . . . . . ... .. ... .. 13
2.3.2 Counterfactual explanation . . . . . . .. ... ... ... ... ... 15
2.3.3 Concept-based explanation . . . . . ... ... ... .. ....... 16
2.4 DNN model uncertainty quantification . . . . . . .. .. .. ... ... .. 17
2.4.1 Uncertainty quantification in pre-trained DNN models . . . . . . . . 18
2.4.2 DNN designs for improved uncertainty estimation . . . . .. .. .. 19
2.4.3 Uncertainty estimation using GAN . . . . . ... ... .. ... ... 20
2.4.4 Data augmentation for improving uncertainty estimation . . . . . . 21
3.0 Improving Clinical Disease Sub-typing and Future Events Prediction
through a Chest CT based Deep Learning Approach . . .. ... .. .. 22
3.1 Imtroduction . . . . ... 22
3.2 Method . . . . . . 24
3.2.1 Generative Network . . . . . . . .. ... oL 25



3.2.2 Attention Network . . . . . . . . . .. 26

3.2.3 Discriminative Network . . . . .. . . .. ... o000 27

3.2.4 Architecture Details . . . . . . . . ... oo 28

3.3  Experiments and Results . . . . . . .. ... ... ... L. 28
3.3.1 Study cohort . . . . . ... 28

3.3.2 Experimental setup . . . . .. ..o 29

3.3.3 Predicting COPD outcomes . . . . . . ... ... ... ... ..... 30
3.3.3.1 Spirometry Measures . . . . . . . .. ... ... ... .. .. 30

3.3.3.2 Visual Emphysema Score . . . . . . .. ... .. ... .. .. 32

3.3.3.3 Acute Exacerbations . . . . ... .. ... L. 34

3.3.3.4 mMRC Dyspnea Scale . . . ... .. ... ... ... ... 37

3.3.3.5 Mortality . . . . .. .. 38

3.3.4 Generative regularizer . . . . . .. ... 40

3.3.5 Visualization . . . . . . .. ... oo 42

3.4 Discussion and Conclusion . . . . . . ... ... ... 42
4.0 Progressive Counterfactual Explainer . . . . . . .. .. ... ... ... .. 44
4.1 Introduction . . . . . .. 44
4.2 Method . . . . . . A7
4.2.1 Data consistency . . . . . . . . ... 50

4.2.2 Classification model consistency . . . . . . ... .. ... ... ... 53

4.2.3 Context-aware self consistency . . . . . . ... ... ... ... ... 53

4.3  Experiments and Results. . . . . . . ... ... 0oL 5%)
4.3.1 Study cohort and imaging dataset . . . . . . ... .. ... .. ... 55

4.3.2 Experimental setup . . . . . . . ... Lo 56

4.3.3 Desiderata of explanation function . . . . . . . . ... ... ... .. 59
4.3.3.1 Data consistency . . . . . . ... ... oo 59

4.3.3.2 Classification model consistency . . . . . . . ... ... ... 62

4.3.3.3 Identity preservation . . . . . .. .. ... L. 63

4.3.4 Comparison with saliency-maps . . . . . . ... .. ... ... ... 64

4.3.5 Clinical evaluation . . . . . . . . . ... ... 67

vi



5.0

6.0

4.3.5.1 Cardio Thoracic Ratio (CTR) . . ... ... ... ... ... 67

4.3.5.2 Costophrenic recess . . . . . . . . . . . . ... ... 68

4.3.6 Human Evaluation . . . . . . .. ... .. ... ... ... ... .. 70

4.3.6.1 CelebA dataset . . . . .. ... ... ... ... ... .. 70

4.3.6.2 MIMIC CXR Dataset . . . . . . ... ... ... ... .... 72

4.3.7 Bias detection . . . . . . ... Lo 79

4.3.8 Evaluating class discrimination . . . . . . . . .. ... ... ... 81

4.4 Discussion and Conclusion . . . . . . . .. .. ..o 82

Concept-based Counterfactual Explanation . . . ... ... ... .. ... 87

5.1 Introduction . . . . . . ... 87

5.2 Method . . . .. 88

5.2.1 Concept associations. . . . . . . . . ... oL 90

5.2.2 Causal concept ranking . . . . . . ... ... oL 90

5.2.3 Surrogate explanation function . . . . . . ... ... L 92

5.3 Experiments and Results. . . . . .. .. ... ... 93

5.3.1 Study cohort and imaging dataset . . . . . ... ... ... ... .. 93

5.3.2 Experimental setup . . . . .. ..o 93

5.3.3 Evaluation of concept classifiers . . . . .. .. ... ... .. ... 94

5.3.4 Evaluating causal concepts using decision tree as surrogate function 95

5.4 Discussion and Conclusion . . . . . . .. ... ... 97
Augmentation by Counterfactual Explanation - Fixing an Overconfi-

dent Classifier . . . . . . . . . . . .. 99
6.1 Introduction . . . . . . . .. 99
6.2 Method . . . . . . . 103
6.2.1 Progressive Counterfactual Explainer (PCE) v2.0 . ... .. .. .. 105
6.2.2 Augmentation by Counterfactual Explanation . . . . . . . ... . .. 107
6.2.3 Discriminator as a Selection Function . . . . . . . ... .. ... .. 109
6.3 Experiments and Results . . . . . . . . ... .. ... oL 109
6.3.1 Imaging dataset . . . . . . . .. ... Lo 110
6.3.2 Experimental setup . . . . . . ..o 111

vii



6.3.3 Identifying AiD samples . . . . . . . . . . ... 113

6.3.4 Detecting OOD samples . . . . . . . . ... ... 115

6.3.5 Toy-Setup - Two Moons . . . . . . . .. ... ... ... ... .... 119

6.3.6 Robustness to Adversarial Attacks . . . . . ... .. ... ... ... 120

6.3.7 Ablation Study . . . . . . ... 121

6.4 Discussion and Conclusion . . . . . . .. ... ... 124

7.0 Conclusions and Future Directions . . . . . . . .. ... ... ... ..... 125
7.1 Conclusion . . . . . .. 125

7.2 Future directions . . . . . . . ... 127
Appendix. Progressive Counterfactual Explanation . . . . . . . ... ... .. 129
A.1 Human evaluation . . . .. ... . ... ... 129

A.2  Summarizing the notation . . . . . . . ... ... L 133

A3 MIMC-CXR Dataset . . . . . . . . . . . 134

A4 Classification Model . . . . . . . ... . o 134

A.5 Progressive Counterfactual Explainer . . . . . . . .. ... ... ... ... 135

A.6  Semantic Segmentation . . . . . . ... ..o 136

A.7 Object Detection . . . . . . . . . . . . 137

A8 xGEM . . . . . 139

A9 cycleGAN . . . 139
A.10 Extended results on the three desiderata of explanation function . . . . . . 140
A.11 Extended results on clinical evaluation . . . . . . ... ... ... .. ... 145
A.12 Ablation Study . . . . . ... 149
A.13 Ablation study over pacemaker . . . . . ... ... 150
Bibliography . . . . . . . 153

viil



10
11

12
13

14

15
16

List of Tables

Summarization of the clinical outcomes considered in the experiments
and their numerical type and values. . . . . . . .. .. ... .00 31

Results for predicting spirometry measurements and using them to diag-

nose and stage COPD. . . . . .. ... ... .. .. ... ... ..... 32
Results classifying subjects based on their emphysema visual score. . . . 34
Results for identifying subjects with exacerbation risk and dyspnea. . . 36

Results of Cox Proportional-Hazard (PH) model for survival analysis.

The probability of death, learned from binary classification of mortality,

is used as covariate in Cox regression. . . . . . . .. ... ... ... 39
The FID score quantifies the visual appearance of the explanations. . . 61
Results on face-verification task to demonstrate that the identity of a
person is preserved across counterfactual explanations. . . . . . . . . .. 63
The foreign object preservation (FOP) score with and without the context-

aware reconstruction loss (CARL). FOP score depends on the perfor-

mance of FO detector. . . . . . . . ... .o 64
Quantity comparison of our method against gradient-based methods. . . 66
Summarizing the results of human evaluation. . . . . . .. .. .. ... 72

Results for one-way ANOVA for understandability metric, followed by
Tukey’s HSD post-hoc test between different levels of agreement. . . . . 79
Confounding metric for biased detection. . . . . . . .. ... ... ... 81

Performance of different methods on identifying ambiguous in-distribution

(AiD) samples. . . . . ..o 114
Performance of different methods on identifying ambiguous in-distribution

(AiD) samples. . . . . . .. 116
OOD detection performance for different baselines. . . . . . . . ... .. 117
OOD detection performance for different baselines. . . . . . . . . . . .. 118

1X



17
18
19
20
21

22

Summarizing the notation. . . . . . . ... ..o 133

Explanation Model (cGAN) Architecture . . . . . ... ... ... ... 136
Results for six prediction tasks on CelebA dataset. . . . . . . . ... .. 140
Results of independent t-test. . . . . . . ... .. ... ... ... ... 146

Our model with ablation on prediction task of young vs old on CelebA
dataset. . . . . . . L 149

Evaluation metrics for ablation study. . . . . . . . ... ... ... ... 151



10

11
12

13
14
15
16
17
18

19

List of Figures

The schematic of our model. . . . . . . . . ... ... L.
Comparing different methods in predicting spirometry measurements,

and COPD diagnosis and staging. . . . . ... ... ... ... .....
Comparing our method against traditionally used CT quantification mea-

sures (LAA-950). . . . . . ...
Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR)
CUTVES. « « v v o vt e e e e e e e
Kaplan Meier plot for visualizing the results of survival analysis. . . . .
Evaluating generative regularizer. . . . . . . . . . ... ... ... ...
An axial view of the attention map on a subject. Red color indicate

higher relevance to the disease severity. . . . . . . . .. ... ... ...
The schematic of the method. . . . . . . . .. ... ... ... .....
PCE function Zy(x, c) for classifier f. . . . ... ... ...,
Progressive counterfactual explainer (PCE) as a conditional-GAN with

an encoder. . . ... ..
Context-aware self consistency . . . . . . ... ... ... L.

Progressive counterfactual explanations generated for different prediction

Classifier consistency . . . . . . . .. ... . oo
Fidelity of generated images with respect to preserving FO. . . . . . ..
Comparison of our method against different gradient-based methods. . .

Evaluation using deletion metric. . . . . . . . .. ... ...

Box plots to show distributions of pairwise differences in clinical-metrics.

The interface for the human evaluation done using Amazon Mechanical
Turk (AMT). . ..o o

Comparing the different metrics in human evaluation study. . . . . . . .

x1

25

33

35

37
40
41

42
48
49

o1
95

60
62
65
66
67
68



20

21
22
23
24
25

26
27

28

29
30

31

32

33

34
35

36
37

38

39

Explanations for two classifiers, both trained to classify “Smiling” at-
tribute on CelebA dataset. . . . . . . ... ... ... ...
Evaluating class discrimination. . . . . . . . .. ... ... ... ...
Method overview for concept-based counterfactual explanations.
[lustration of direct and indirect effects in causal mediation analysis.
AUC-ROC and recall metric for different concept classifiers. . . . . . . .
A qualitative demonstration of the activation maps of the hidden units
that act as visual concept detectors. . . . . . . ... ... .. ... ...
Evaluating concept vectors and their causal effect. . . . . . . .. .. ..
The decision tree for the three diagnosis with best performance on recall
metric. . . . ..o
Comparison of the uncertainty estimates from the baseline, before and
after fine-tuning with ACE. . . . . .. ... ... ... ..
Overview of the method. . . . . . ... ... ... ... ... ......
PCE: The encoder-decoder architecture to create counterfactual augmen-
tation for a given query image. . . . . . .. .. ...
Augmentation by counterfactual explanation. . . . . . . . . .. ... ..
Uncertainty results on the Two Moons dataset. . . . . . .. .. .. ...
Plots comparing baseline model before and after fine-tuning (ACE) for
different magnitudes of adversarial attack. . . . . . ... ... ... ..
Examples of data augmentation while ablating different loss terms. . . .
Comparison of the uncertainty estimates from the baseline, before and
after the fine-tuning with ACE. . . . . . ... .. .. ... .. ... ..
Question 2-3 showing the query CXR and the classifier’s decision.
Question 4-5 showing the query CXR, the classifier’s decision and the
saliency map explanation. . . . . . . . .. ..o
Question 6-9 showing the query CXR, the classifier’s decision and the
cycleGAN explanation. . . . . . .. ... oL L
Question 10-14 showing the query CXR, the classifier’s decision and our

counterfactual explanation. . . . . . . . ... ... ... ... ... ...

xii



40
41
42

43

44
45

46

47

48
49

Architecture of the ResBlocks used in all experiments. . . . . . . . .. 137
The costophrenic angle (CPA) ona CXR . . . ... ... ... ... .. 138
Plot of the expected outcome from the classifier, c, against the actual
response of the classifier on generated explanations, f(xc). . . . . . . . 141
Visual explanations generated for “smiling” and “young” attribute clas-
sification on CelebA dataset. . . . . . . . . .. ... ... ... ... 142
Example of counterfactual explanations. . . . . . . .. . ... ... ... 143
Visual explanations generated for different prediction tasks on CelebA
dataset. . . . . . L 144
The plot of desired prediction, ¢, against actual response of the classifier

on generated explanations, f(Xc). . . . . . . ..o L. 145
Extended results for explanation produced by our model for Cardiomegaly.147
Ablation study to show the effect of KL loss term. . . . . . . .. .. .. 148

An example of input image before and after removing the pacemaker. . 152

xiil



Preface

First and foremost, I would like to thank my advisor Dr. Kayhan Batmanghelich. My
research has been guided by his leadership, persistence, and encouragement and I thank
him for all the time and energy that he has invested in me. Thank you for your trust in
my capacities and your guidance. No matter how busy his schedule was, he was the most
available person to me, just a message away. Dr. Kayhan has always given me the best of his
mentorship, and I will be forever grateful to have benefited from his abundance of experience
and knowledge. I would also like to thank his postdocs and my close collaborators, Brian
Pollock, Junxiang Chen and Mingming Gong. I had a great experience in learning and
working with them.

The final part of this dissertation is the outcome of collaboration with Dr. Sofia Tri-
antafillou. Sofia has been an awesome person to work with. I really enjoyed working and
collaborating with her during the last few years, especially discussing research problems
through our long meetings. Thank you so much for all your time. I am also grateful to
Forough Arabshahi who has been a great industrial collaborator.

I could not thank enough Dr. Stephen Wallace for his time and patience. As my clinical
collaborator he has given me his precious time, have patiently answers all my questions,
and have helped me develop research from a clinical prospective. A special thanks to Dr.
Frank Sciurba for his interesting discussions and his passion for small things. I will always
remember our meetings and your joyful nature.

[ am grateful to Dr. Motahhare Eslami who have rescued me at my time of need by
providing her expertise in human computer interaction. Her smiling face and words of en-
couragement have made our interactions so much more than academic collaboration. Thank
you so much for making my research human-relevant.

I am also thankful to former and current members of Batman Lab who have been a great
source of support during my PhD years. I am grateful to all of them, particularly Yanwu
Xu, Rohit Jena, Ke Yu, Li Sun, Matthew Ragoza, Maxwell Reynolds, Nihal Murali, Sead
Niksi¢, Shantanu Ghosh and Payman Yadollahpour.

Xiv



[ am also thankful to the staff members in DBMI and Computer Science department who
have been always extremely helpful during the last 6 years. Special thanks goes to Keena
Walker and Genine Bartolotta for all their help.

Finally and most importantly, I would like to thank my family, Vasu Gangrade and my
beloved Vanya. You both have been the pillars of my strength. Your support has given me
courage and determination over this long journey. With all my heart and soul, thanks to my
mother, father and sister Suruchi. You three have been there for me all this time, despite
the distance. Thank you mom for sharing your experiences and making sure that I keep

making progress. I undoubtedly could not have achieved this without them.

XV



1.0 Overview

Decision-making pipelines are inclining towards using deep neural networks (DNN) for
high-stake applications especially medical diagnostics [57, 74, 53, 82]. DNNs are sophisti-
cated and complex machine learning (ML) models trained using large datasets and compu-
tational resources [98, 116]. Many advancements have been proposed to use different sources
of medical data such as imaging, electronic health records [168, 206, 158], patient discharge
summaries [88], diagnosistic tests, and others to build deep learning (DL) systems for diag-
nostic applications. The primary focus of this thesis is on using medical imaging information
for diagnosis prediction. Further, in medical image analysis, DL models are used for solv-
ing different computer vision-related problems such as classification [288], detection [286],
segmentation [77], and registration [55]. Among them, we primarily focus on classification
methods that classify an input image or a series of images with diagnostic labels of some
predefined diseases.

Over the last few years, convolutional neural networks (CNNs) have become the de-facto
backbone of numerous models using medical-imaging data for diagnostic classification [53,
208, 281, 170]. CNNs superior predictive performance compared to simpler counterparts
makes them a lucrative option for real-world deployment. But this improvement comes at
the cost of decreased model interpretability [176]. They are essentially Black box predictive
models that often predict the correct answer for the wrong reasons [64, 188] and are over-
confident on out-of-domain data [85, 65]. These challenges remain a primary reason for lack
of trust and a barrier to broader acceptance of such algorithms in practice.

The clinical deployment of DNN models is contingent on satisfying three essential re-
quirements. First, DNN model design should integrate domain-specific constraints of med-
ical imaging into its architectural design while providing sufficiently high predictive per-
formance [240, 110, 251]. Second, the decision-making process of these models should be
explainable to clinicians to obtain their trust in the model [73, 67, 111]. Third, the model
should communicate the uncertainty in its prediction and raise a flag when it doesn’t have

sufficient information to make a confident prediction [64, 92]. This dissertation proposes



models to account for subtleties of medical imaging and add support for these clinical needs.
At the same time, our foundation is a general approach and applies to different model and

dataset domains. Next, we will discuss each requirement in more detail.

1.1 DNN model design

Researchers have proposed numerous DNN models that use medical imaging data for
autonomous diagnostics [153]. In this thesis, we primarily focus on lung imaging and associ-
ated diseases such as Chronic obstructive pulmonary disease (COPD), pleural effusion, and
others. However, our proposed models apply to a wide range of heterogeneous disorders.
Having an objective way to characterize local patterns of disease is essential in diagnosis,
risk prediction, and sub-typing [56, 89, 182, 233]. Previously, researchers have proposed
intensity and texture-based feature descriptors to represent the visual appearance of a dis-
ease. However, most image features are generic and not necessarily optimized for a given
diagnosis [29, 248, 289]. Recent advances in deep learning (DL) have enabled researchers
to use raw images directly for predicting clinical outcomes without specifying radiological
features [74]. These clinical outcomes may include diagnosis identification, symptom score,
and mortality. The classical DL methods, which operate on entire volumes or slices, are
challenging to interpret and require resizing the input images to a fixed dimension [74]. My
first project proposes an attention-based method that aggregates local image features to a
subject-level representation for predicting disease severity. Our proposed method operates
on a set of image patches; hence it can accommodate variable-length input volumes without

image resizing.

1.2 DNN model explanation

Explainability is essential for auditing DNNs [281]; identifying various failure modes [52,
193] or hidden biases in the data [39] or the model [135]; evaluating the model’s fairness [51];



and obtaining new insights from large-scale studies [218]. There are two general approaches
to model explanation: (1) developing interpretable models and (2) posthoc explaining a
pre-trained model. Interpretable predictive models are constrained to make their reasoning
processes more understandable to humans, making them much easier to troubleshoot and use
in practice [220]. However, such models may impose simplifications to ensure interpretability
and thus achieve a lower predictive accuracy [9, 263]. Other times, they have a complicated
design, making them difficult to train [25]. Another popular line of work builds attention-
based interpretability into the DNN. These methods use attention weights to highlight parts
of an input that the network focuses on while making its decision [284, 63].

Post-hoc explanation aims to improve human understanding of a pre-trained model [51,
84, 120, 175, 297]. Hence, the performance of the model is not compromised. Post-hoc
explanation comprises several broad approaches, such as example-based explanations [123,
121]; approximating DNN models with simpler models [212, 213]; understanding feature
attribution [255, 151] or importance [231, 125, 10, 61]. These methods provide a local (image-
level) or a global (target label-level) explanation. They explain by highlighting the critical
regions (where) for the classification decisions. However, the location information alone is
insufficient for applications in medical imaging. My second project focuses on providing
posthoc model explanations in the form of counterfactual images. Counterfactual images
show what image features are important for the classification decision and how to modify
the critical features to change the classifier’s decision.

Recently, researchers have focused on providing explanations that resemble a domain
expert’s decision-making process. Very often, such explanations are expressed using human-
understandable concepts or terminology [291, 81, 34]. Existing approaches for concept-based
explanation depend on explicit concept annotations. The concept annotations are provided
either as a representative set of images [121] or as semantic segmentation [12]. Such annota-
tions are expensive to acquire, especially in the medical domain. Furthermore, these methods
measure correlations between concept perturbations and classification predictions to quan-
tify the concept’s relevance [121, 12, 304]. However, NN may not use the information from
learned concepts to arrive at its decision. My third project focuses on using counterfactual

images to quantify the causal effect of a concept on the classification decision.



1.3 DNN model uncertainty quantification

Most DNN models are deterministic functions that provide point estimates of parameters
and predictions. In the absence of probabilistic distribution, it is essential to convey the
uncertainty in the DNN model’s decision to the end-user [188, 85]. For example, consider a
DNN model trained on adult face images, predicting whether the person is young or old. Such
a model should refrain from making an overconfident decision on ambiguous images from
middle-aged people or out-of-distribution (OOD) images of children and animals [179, 267].
Uncertainty in prediction may arise from noisy data or data in high class-overlap regions,
leading to aleatoric uncertainty [2]. The other kind of uncertainty is related to the model,
epistemic uncertainty, that arises from the model’s limited information on unseen data or
due to a mismatch between training and testing data distributions [104]. Communicating
predictive uncertainty can help the end-user understand the predictions better, anticipate
when uncertainty is irreducible, prioritize gathering more data to reduce model uncertainty,
and decide when to discard the model prediction and rely on expert knowledge [69].

Much of the prior work focused on deriving uncertainty measurements from a pre-trained
DNN output [92, 85, 142, 148], feature representations [144, 139], or gradients [100]. Such
methods use a threshold-based scoring function to identify OOD samples. The scoring
function is derived from softmax confidence scores [92], scaled logit [85, 144], energy-based
scores [148, 277], or gradient-based scores [100]. These methods help in identifying OOD
samples but did not address the over-confidence problem of DNN, which made identifying
OOD non-trivial in the first place [91, 188]. My final project focuses on mitigating the over-
confidence issue in a pre-trained classifier by efficiently capturing both epistemic or aleatoric

uncertainty.

1.4 Explanation Framework

This dissertation propose an explanation framework to explain the DNN classification

model’s decision. The explanation framework has two primary models. The first is an inter-



pretable model that uses a carefully designed attention mechanism to provide interpretabil-
ity while achieving high predictive performance. The second is a progressive counterfactual
explainer (PCE) that provides a posthoc explanation for a pre-trained classifier. A counter-
factual image is a perturbation of the input image with an opposite classification decision
compared to an input image. It shows what imaging features are present in salient locations
and how changing such features modify the classification decision. The generative explainer is
constrained to create natural-looking images as explanations that resemble medical-imaging
data, thus ensuring the clinical usability of our explanations. My work presents a thorough
human-grounded experiment with diagnostic radiology residents to compare different styles
of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfac-
tual explanation) by evaluating different aspects of explanations. The results show that
the counterfactual explanations from my proposed method, were the only explanations that
significantly improved the users’ understanding of the classifier’s decision compared to the
no-explanation baseline.

Further, in my next project, I extended the explanation framework to support two appli-
cations. The first application focuses on enriching the explanation with conceptual informa-
tion. Specifically, I integrated counterfactual explanations with tools from Causal Inference
literature [106] to quantify the causal relationship between the building units of a DNN,
neurons, and clinically relevant concepts [273]. The weak annotations from radiology re-
ports were used to derive concept annotations. The second application focuses on fixing an
over-confident pre-trained classifier. The counterfactual images derived from PCE were used
to fine-tune the classifier. The empirical results show that fine-tuning helps in smoothing
the decision boundary and helps in preventing the classifier from being over-confident on
samples near the decision boundary. Further, the discriminator of the GAN-generator was

used to provide a density score to identify OOD samples.



1.5 Dissertation structure

Chapter 2 provides a detail literature review on different deep learning models in medical
imaging. It also provides a thorough background on different paradigms of deep learning
model explanation.

Chapter 3 proposes an attention-based DNN model aggregating local image features
from volumetric medical images into a compact latent representation. This representation
is then used to predict multiple patient-relevant outcomes such as symptom scores and
disease severity. The model provides interpretability by learning an attention weight for
each anatomical feature that reflects its contribution to the final prediction decision. We
evaluated our proposed model in a large clinical study of over 10K participants with chronic
obstructive pulmonary disease (COPD). Our results show that our model independently
predicted spirometric obstruction, emphysema severity, exacerbation risk, and mortality from
CT imaging alone.

Chapter 4 proposes a Progressive Counterfactual Explainer (PCE) to explain the decision
of a pre-trained image classifier. The explainer generates a progressive set of perturbations
to a query image, such that the classification decision changes from its original class to
its negation. We used counterfactual explanations derived from our framework to audit a
classifier. We conducted experiments on a natural image dataset of face images and a medical
chest x-ray (CXR) dataset. To quantitatively evaluate our explanations, we proposed new
metrics that consider the clinical definition of a target disease while comparing counterfactual
changes between normal and abnormal populations, as identified by the classifier.

We conducted a human-grounded experiment with diagnostic radiology residents to com-
pare different styles of explanations (no explanation, saliency map, cycleGAN explanation,
and our counterfactual explanation) by evaluating different aspects of explanations: (1)
understandability, (2) classifier’s decision justification, (3) visual quality, (d) identity preser-
vation, and (5) overall helpfulness of an explanation to the users. Our results show that
our counterfactual explanation was the only explanation method that significantly improved
the users’ understanding of the classifier’s decision compared to the no-explanation baseline.

Our metrics established a benchmark for evaluating model explanation methods in medical



images. Our explanations revealed that the classifier relied on clinically relevant radiographic
features for its diagnostic decisions, thus making its decision-making process transparent to
the end-user.

Chapter 5 shows an application of PCE to provide concept-based explanations. In this
project, we aim to quantify causal associations between the hidden units of the DNN and
human-understandable concepts [121, 273]. We take advantage of radiology reports accom-
panying the chest X-ray images to define concepts. First, we solve sparse linear logistic
regression to identify hidden units that are positively correlated with the presence of a con-
cept. Next, we viewed these concept units as a mediator in the treatment-mediator-outcome
framework [106] from mediation analysis. Using PCE to define counterfactual interventions,
we measure the in-direct causal effect of a concept on the network’s prediction. Finally, we
present our findings as a low-depth decision tree over causally relevant concepts, providing
the global explanation for the model in the form of clinically relevant decision rules.

Chapter 6 demonstrates an application of PCE in improving the uncertainty quantifi-
cation of an existing pre-trained DNN. Ideally, the DNN model’s output should reflect its
confidence in its decision. This project proposes fine-tuning an existing pre-trained classifier
on counterfactually augmented data (CAD) generated using PCE to improve its uncertainty
estimates. Further, the GAN-PCE discriminator helps identify and reject far-OOD samples.
In our experiments, we out-performed state-of-the-art methods for uncertainty quantifica-
tion on multiple datasets with varying difficulty levels. Chapter 7 summarizes this thesis
and suggests future extensions.

All chapters in this dissertation address unique DNN challenges motivated by specific
clinical requirements. We investigated and explored efficient DNN architectural, explanation
and training paradigms while keeping our end-users “clinicians” in focus. At the same time,
the methods developed in this research have broad applicability and have been used by many
researchers in different domains [293]. We have released open-source implementations of all

these methods.



1.6 Contributions

The most notable contributions of this dissertation are the development of:

An interpretable, attention-based DNN architecture that processes an entire 3D vol-
umetric image without any resizing and predicts multiple disease outcomes with high
predictive accuracy (summarized in Chapter 3).

A new posthoc explainability method that provides visual counterfactual explanations.
These explanations not only highlight the important regions but also shows how the
image features should be transformed to flip the classification decision (summarized in
Chapter 4).

A concept-based explanation method that explains the classification decision in terms of
clinically relevant concepts. This method uses the explanations from the technique de-
scribed in Chapter 2 to quantify the causal effect of a concept on the network’s prediction
(summarized in Chapter 5).

A methodology to fine-tune the existing DNN on counterfactually augmented data to
improve its estimates for aleatoric uncertainty. Further, using the discriminator of the
GAN-counterfactual explainer as a selection function to identify and reject samples with

high epistemic uncertainty (summarized in Chapter 6).
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2.0 Literature Review

2.1 Deep learning for medical imaging

With the expanding development of deep learning (DL) techniques, utilizing advanced
deep neural networks (DNNs) for medical image analysis has become an active field of re-
search. DNNs have shown superior performance over clinicians in many tasks, primarily
due to the availability of large training datasets and increased computational power. Appli-
cations of DL in medical image analysis involve different computer vision-related problems
such as classification [288], detection [286], segmentation [77], and registration [55]. Among
them, we primarily focus on classification methods that classify an input image or a series
of images with diagnostic labels of some predefined diseases [74, 200]. Traditional computer
algorithms for image classification use feature extractors and statistical models that translate
human intuition into handcrafted features [47, 8, 105]. These features were then used in a
supervised setting to train specialized image classifiers. In contrast, DNN models follow a
data-driven approach and learn to optimally represent the data for the given classification
task with minimum human intervention. The resulting models are complex functions with
millions of parameters but are much more accurate, efficient, generalizable, and easier to
scale.

The commonly used image modalities for diagnostic analysis in clinic include projection
imaging such as X-ray imaging and computed tomography (CT). As a working example, we
focus on DNN models that are developed for chest imaging. Chest CT imaging comprises a
continuous sequence of 2D slices that vary in depth and resolution with changes in patient
and scanner settings. Many DL architectural designs have been applied to applications
in CT analysis to solve specific clinical tasks such as nodule detection [269], fibrosis [31],
emphysema [103], COPD [258], and cancer diagnosis [252]. The most common setting is
to sub-sample 2D slices from volumetric images and concatenate, join, or crop them in
different ways to create a 2D image [252, 74, 247, 6]. The primary motivation behind this re-

scaling is to make the input images compatible with the classical DNN architectures, which
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were originally designed for natural images [90, 239]. Extensive pre-processing pipelines are
proposed which include sub-sampling spatially aligned CT volumes into three slices in either
axial, sagittal or coronal directions, to accommodate for the RGB input [258]. Distortion
of CT imaging may lead to undesired artefacts and information loss, leading to sub-optimal
performance.

Further, researchers have explored variants of recurrent neural networks (RNN) [296] to
process consecutive slices from sub-sampled 3D volumes [103, 59]. These methods include
using long short-term memory (LSTM) networks capable of learning dependencies between
a sequence of images [50]. Such algorithms can take multiple slices as input and provide
better global features for downstream use-cases, such as classification. More recently, efforts
are being made to integrate various designs, such as 3D CNN with RNN [290]; multiple
resolution CNNs with two, two-and-a-half, and three-dimensional architectures [15, 202, 32];
and 3D multi-scale capsule networks [4]. These methods aim to better capture information
from 3D imaging at different spatial resolutions with minimum information loss. Their pri-
mary motivation is high discriminative performance, while little attention is paid to models’
interpretability.

Although deep learning models have achieved great success in medical image analysis,
minimum interpretability is still the main bottleneck in the clinical deployment of these
methods [222]. The key benefit of DNN is that it identifies essential features without human
intervention. However, this makes the model opaque as the end-user has no intuition on how
the decision was being made. The legal ramifications of black-box functionality could have

severe consequences; hence, healthcare professionals may decline to work with such systems.

2.2 Interpretable deep learning

The overarching goal of any deep learning method for medical imaging is to aid clini-
cians in their workflow by increasing their efficiency by removing redundancies [145]. This
requires a partnership between the clinical experts and the Al system, which in turn re-

quires the clinical experts’ trust. Interpretability, or the ability of a DNN model to explain
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its outcomes and assist clinicians in rationalizing the model prediction, is critical to estab-
lishing trust [261]. Interpretable DL models aim to incorporate interpretability during the
design process of the DNN and, thus, alter the network structure to encourage interpretabil-
ity. They learn to provide both prediction, and explanation are gaining the interest of the
medical research community.For example, DNN have been designed to perform case-based
reasoning [25], to incorporate logical structures [282], to incorporate hard attention to do
classification [54], and to learn a disentangled latent space [28]. One of the early methods
modified the CNN architecture to extract prototypical examples [25]. In another attempt,
Song et al.proposed a student-teacher network, where one network is optimized for superior
interpretability while the other network is trained to achieve high discriminative perfor-
mance [41]. Some methods provide interpretability by performing multi-modality learning
by integrating radiology reports [300] or electronic health record data [101, 136]. This data
provides additional information for assisting clinical decision-making.

Furthermore, many variants of the attention-based model have been proposed that learn
an attention mechanism to highlight the most relevant part of the input for the prediction
decision [228]. For instant, Choi et al.proposed a multi-level attention model on time series
data for detecting influential past visits, and clinical variables while predicting diagnosis.
Another example is interpretable R-CNN [282], which is an object detection-based DNN
that provides a classification score and a bounding box on the region of interest. Recently,
a concept whitening approach was proposed that learns a DNN where the latent space of
each layer is aligned with a known set of concepts [28]. Creating an interpretable model is
much more complicated than a black-box model, as it involves solving a complex optimization
problem while satisfying the interpretability constraints. Nevertheless, the benefits of having
an explanation built into the model have far better deployment prospects than a highly

accurate but opaque model.
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2.3 Post-hoc deep learning model explanation

Post-hoc explanation methods provide explanations for the predictions after the DL
model has been trained. Such methods can provide local or global explanations. Local
explanations provide explanation for individual data point. It identifies attributes or features
in a particular image that are important for the DNN model’s prediction. On the other hand,
global explanations aim at providing an overall summarization of the model behaviour for a
particular class. Post-hoc explanation methods can be model-specific i.e., they are applicable
to only certain types of models and require access to model-specific information. On the other
hand, they can be model-agnostic methods, that is they are applicable to any DNN model

in general.

2.3.1 Feature attribution-based explanation

Feature attribution methods provides an explanation as a saliency map that reflects the
importance of each input component (e.g., pixel) to the classification decision. Saliency-
based methods are the most common form of post hoc explanations for neural networks.
Gradient-based methods for obtaining saliency maps is mostly DNN-specific and provides
local explanation [236, 255, 151]. Some earlier work in this direction [237, 249, 10] focuses
on computing the gradient of the target class with respect to input image and considers the
image regions with large gradients as most informative. Building on this work, the class
activation map (CAM) [303] and its generalized version Grad-CAM [231] uses the gradients
of the target class, flowing into the final convolutional layer to produce a saliency map. The
Layer-Wise Relevance Propagation (LRP) [10] method back-propagates a class specific error
signal through the DNN and considered its product with each convolutional layer’s activation
to derive the saliency map. DeepLift [236] is a version of LRP method that back-propagates
the contribution back to every feature of the input. The above gradient-based methods
are not model-agnostic and require access to intermediate layers. Recently, [3] have showed
that some saliency methods are independent both of the model and of the data generating

process. The saliency maps are also prone to adversarial attacks as shown by [71] and [125].
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In another line of work, perturbation-based methods provide interpretation by showing
what minimal changes are required in input image to induce a desirable classification output.
Some methods employed image manipulation via the removal of image patches [302, 297],
masking with constant values [42, 204] or the occlusion of image regions [302] to change
the classification score. Recently, the use of influence function, as proposed by [129] are
applied as a form of data perturbation to modify a classifier’s response. The authors in [61]
proposed the use of optimal perturbation, defined as removing the smallest possible image
region that results in the maximum drop in classification score. In another approach, [24]
proposed a generative process to find and fill the image regions that correspond to the
largest change in the decision output of a classifier. To switch the decision of a classifier, [79]
suggested generating counterfactuals by replacing the image regions with patches from images
with a different class label. All of the aforementioned works perform pixel- or patch-level
manipulation to input image, which may not result in natural-looking images. Especially
for medical images, such perturbations may introduce anatomically implausible features or
textures.

Another interesting approach is to use game theory to compute the Shapley value of
each pixel as its marginal contribution to the final prediction decision [151, 254]. The idea
of Shapely values is that all features cooperate to produce model prediction. This is a local
interpretation method that can be either model agnostic or model specific depending on the
formulation. Classical SHAP method required repeated predictions from the model, as it
exhaustively try all possible configuration of the features. This is computationally expensive
and hence, multiple approximations are been proposed [26].

Saliency map-based methods are frequently applied to the medical imaging studies, e.g.,
chest x-rays [208], skin imaging [294], brain MRI [53] and retinopathy [226]. Saliency maps
lack a clear interpretation and provide incomplete explanation especially when different
diagnoses affect the same regions of the anatomy. Although objects in natural images have a
distinct appearance and are easier to identify and isolate by humans, the visual variations in
different diagnoses, in medical images, are very subtle and require expert observation. Thus,
very similar explanations are given for multiple diagnosis, and often none of them are useful

explanations [219].
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2.3.2 Counterfactual explanation

Recently, researchers have explored generative models that provides explanation by mod-
ifying existing examples [79] or generating new examples [224, 114]. A popular direction is
to generate counterfactual explanations. Counterfactual explanations are a type of con-
trastive [46] explanation that are generated by perturbing the real data such that the clas-
sifier’s prediction is flipped. Similar to our method, generative models like GANs and varia-
tional autoencoders (VAE) are used to compute interventions that generate realistic counter-
factual explanations [224, 114, 147, 157, 270, 199, 5]. Much of this work is limited to simpler
image datasets like MNIST, celebA [147, 157, 270] or simulated data[199]. An extension
of these methods on large datasets will actually show their scalability and generalizability
strengths. This work is yet to be explored by the community in general and provides a great
venue for future exploration.

For more complex natural images, previous studies [24, 5] focused on finding and in-filling
salient regions, in order to generate counterfactual images. In contrast, at inference time,
our explanation model doesn’t require any re-training for generating explanations for a new
image. In another line of work [278, 79] provide counterfactual explanations that explains
both the predicted and the counter class. Recently [185, 44] used a cycle-GAN [305] to
perform image-to-image translation between normal and abnormal images. While images
generated by such independently trained GANs may look realistic, these generative models
are not explicitly coupled to the classifier that they are aiming to explain. Hence, cycle-
GAN may end up learning features that do not reflect the true behaviour of the classifier.
In contrast, our model uses the classifier’s predicted probabilities and gradients during the
training of the GAN-generator, and hence the generated images are tied to the classifier.

Since the inception of our work, various extensions to our counterfactual generation
process have been proposed. These include adding support for creating diverse and multiple
counterfactual explanations [214, 70], enhancing compatibility with smaller datasets [117]

and inducing a bijective transformation through normalizing flow [49].
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2.3.3 Concept-based explanation

Concept learning was used in traditional machine learning to identify and classify sam-
ples based on a list of concepts. A concept, in this case is a feature that is discriminative
and whose presence is highly associated with the presence of a class label. To summarize, a
concept is semantically meaningful attribute that is visually coherent across images and is
important for the prediction of a given class i.e., its presence is a necessary condition for the
classification decision to be true for a given class [72]. Another benefit of concept-based ex-
planation is, usually concepts are high level attributes that are mentioned in human-friendly
manner. Recent studies have thus focused on bringing such concept-based explainability to
DNNs.

Concept-based explanation methods aim to recover concept information from the inter-
mediate DNN activations and then relate them to the classification decision and the data.
The essential first step towards deriving concept-based explanations is defining concepts.
Some methods used human-labelled supervised data to mark the salient concepts [122, 304,
while others used purely unsupervised approaches such as clustering of the DNN activa-
tions [72]. TCAV [122] learns a concept classifier by training a linear classification model
on the activations of an arbitrary intermediate layer, using the ground truth labels for each
concept. Gohorbani et al.extended TCAV to used self-supervised labels obtained from auto-
matically super-pixel segmentation followed by k-means clustering. Zhou et al. [304] decom-
poses the prediction of one image into multiple human-interpretable conceptual components.
Concept activation vectors (CAV) are used in medical imaging analysis for solving particu-
lar tasks such as retina disease diagnosis [259], skin lesion classification [150], breast tumor
detection [215], cardiac MRI classification [34], tumor segmentation in liver CT [37] and
radiomics [291].

In another line of work, researchers explore training both a classification model and a
concept classifier to obtain an inherently explainable model [17]. Similar to this, concept
bottleneck method [130] first learns to predict the concepts, then uses only those predicted
concepts to make a final prediction [221]. Such approach are popular in medical domain,

with applications in lung nodule malignancy classification [234]. Goyal et al.measures the
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causal effect of concepts by using a conditional VAE model [78]. Measuring the causal effect
is essential, as presence of concept information in the latent space of the DNN doesn’t nec-
essarily means the network is using that information to make its decision. To provide causal
explanation, Harradon et al.build a bayesian causal model using these extracted concepts as

variables in order to explain image classification [87].

2.4 DNN model uncertainty quantification

To facilitate the real-world deployment of a DNN model, it is essentially important to
understand what a DNN model does not know. State-of-the-art classification models are
mostly DNN such as DenseNet, ResNet and more. These models are deterministic, in the
sense they only provide point estimates for the posterior. The gold standard for UQ is
Bayesian Neural Network (BNN) [186]. BNN are an alternative to DNN| as they provide a
distribution over the model parameters which helps in quantifying model uncertainty. How-
ever, computing this information comes at an extra computational cost while also increasing
the inference complexity [37, 151]. Moreover, training a BNN is often intractable, and they
arguably result in sub-optimal accuracy as compared to deterministic approaches. This is
perhaps due to the difficulty in tuning their hyper-parameters [280].

Alternatively, approaches such as Deep Ensembles [133] and MC Dropout [65] has been
introduced as an approximation of BNN that are compatible with the deterministic DNN
architecture with minimal changes at the inference time. Deep ensembles require training
multiple copies of the DNN with either random initialization of the weights or the training
data or both. In MC-dropout, weights are randomly dropped at training as well as inference
time. Deep ensembles, however, require multiple DNN models to be trained using differ-
ent initialization seeds, making them computationally expensive to train. MC Dropout is
computationally less expensive, but cannot be used for UQ in pre-trained models that are
trained without dropout.

The recent interest in single forward pass UQ techniques [267, 266] has led to less expen-

sive alternatives for MC Dropout. However, they require a DNN to be trained from scratch
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using specific constraints or loss functions, and hence cannot be used to fix pre-trained
DNNs with poor uncertainty estimates. Further, [118] proposed a novel method that learns
the observation noise parameter, which enables it to model both epistemic and aleatoric un-
certainty in a single forward pass. Model uncertainty or epistemic uncertainty [64], measure
the uncertainty in estimating the DNN model parameters given the training data. Epistemic
uncertainty measures how well the model learns the data. It is reducible as the size of the
training data increases. Data uncertainty, or aleatoric uncertainty [64], is irreducible uncer-
tainty that arises from the natural complexity of the data, such as class overlap or label noise.
Data uncertainty is also considered as a ‘known-unknown’ i.e., the DNN model understands
(knows) the data distribution and can confidently predict whether a given input is difficult
to classify 1.e an unknown [159]. However, epistemic uncertainty may also arise when there is
a mis-match between the training and testing data distribution. This is ‘unknown-unknown’

as the model is unfamiliar with the test data and hence, cannot confidently make predictions.

2.4.1 Uncertainty quantification in pre-trained DNN models

Much of the prior work focused on deriving uncertainty measurements from a pre-trained
DNN output [92, 85, 142, 148], feature representations [144, 139] or gradients [100]. Such
methods use a threshold-based scoring function to identify OOD samples. A baseline method
for OOD detection was introduced by Hendrycks et al.. They showed that simple statistics
derived from softmax distributions provide an effective way to identify out of distribution
(OOD) data [92]. Guoet al.extended this work by demonstrating that a single-parameter
variant of Platt scaling, also known as temperature scaling is an effective method to obtain
calibrated probabilities, which in turn helps in better OOD detection [85]. Very recently,
researchers have proposed energy-based scores for OOD detection [148, 277]. The energy
score helps in mitigating a critical problem with softmax confidence that assigns arbitrarily
high values for OOD examples. Further, several works are been proposed that attempts to
improve the OOD uncertainty quantification by using ODIN score [142] and its variant [96].
Specifically, ODIN proposed adding small perturbations to the input and gradually increasing

the softmax score of any input by reinforcing the model’s belief in the predicted label.
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Further, proposed to use Mahalanobis distance-based confidence score to identify and reject
OOD samples [139].

In another attempt, Huang et al.proposed to use GradNorm, a simple and for detecting
OOD inputs by utilizing information extracted from the gradient space. Gradient norm uses
the vector norm of gradients, backpropogated from the KL divergence between the softmax
output and uniform probability distribution. All these methods help in identifying OOD
samples but did not address the over-confidence problem of DNN, that made identifying
OOD non-trivial in the first place [91, 188]. Our work focuses on mitigating the over-
confidence issue by fine-tuning a pre-trained classifier on counterfactually augmented data
(CAD). Further, we used the discriminator of the GAN-generator to provide a density score
to identify OOD samples.

2.4.2 DNN designs for improved uncertainty estimation

Designing generalized DNN that provides robust uncertainty estimates has gained sig-
nificant research attention. The Bayesian neural networks are the gold standard for reliable
uncertainty quantification [186]. Multiple approximate Bayesian approaches have been pro-
posed to achieve tractable inference and to reduce computational complexity [80, 16, 127, 65].
Popular non-Bayesian methods include deep ensembles [133] and their variant [97, 66]. How-
ever, most of these methods are computationally expensive and requires multiple passes
during inference. An alternative approach is to modify DNN training [256, 299, 271], loss
function [181], architecture [253, 146, 68] or end-layers [267, 96] to support improved un-
certainty estimates in a single forward-pass. Further, methods such as DUQ [267] and
DDU [179] proposed modifications to enable the separation between aleatoric and epistemic
uncertainty. Unlike these methods, our approach improves the uncertainty estimates of any
existing pre-trained classifier, without changing its architecture or training procedure. We
used the discriminative head of the fine-tuned classifier to capture aleatoric uncertainty and

the density estimation from the GAN-generator to capture epistemic uncertainty.
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2.4.3 Uncertainty estimation using GAN

A popular technique to fix an over-confident classifier is to regularize the model with
an auxiliary OOD data which is either realistic [93, 174, 198, 27, 142] or is generated us-
ing GAN [210, 138, 160, 285, 232]. Such regularization helps the classifier to assign lower
confidence to anomalous samples, which usually lies in the low-density regions. On of the
earlier methods proposed outlier exposure (OE) that leverages diverse, realistic datasets for
exposing the model training to OOD distribution [93]. Chen et al.showed that randomly
selecting outlier samples for training may yield uninformative samples. They proposed an
adversarial training with informative outlier mining (ATOM) technique to selectively collect
auxiliary outlier data for estimating a tight decision boundary between ID and OOD data,
which leads to robust OOD detection performance [27].

Another line of researchers investigate deep generative model based approaches for OOD
detection. Such methods use generative modeling to detect OOD samples by setting a
threshold on the likelihood. An application of generative model such as GAN in OOD
detection is the use of entropy loss in the construction of an OD detector for generalized zero-
shot action recognition [160]. They learn an OOD detector using real and GAN-generated
features from seen and unseen categories, respectively. In another attempt, Ren et al.propose
the use of a likelihood-ratio test by taking the ratio between the likelihood obtained from
the model and from a background model which is trained on random perturbations of input
data [210]. Further, [232] proposed to offset the bias of the generative models by a factor
that measures the input complexity, such as the length of lossless compression of the image.
Further, [210, 232, 223] obtain high OOD detection performances with Glow, VAE and
Pixel-CNN generative models.

Defining the scope of OOD a-priori is generally hard and can potentially cause a selection
bias in the learning. Alternative approaches resort to estimating in-distribution density [250].
Our work fixed the scope of GAN-generation to CAD [242]. Rather than merging the classi-
fier and the GAN training, we train the GAN in a post-hoc manner to explain the decision
of an existing classifier. This strategy defines OOD in the context of pre-trained classifier’s

decision boundary. Previously, training with CAD have shown to improved generalization
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performance on OOD samples [119]. However, much of this work is limited to Natural Lan-
guage Processing, and requires human intervention while curating CAD [118]. In contrast,

we train a GAN-based counterfactual explainer [243, 134] to derive CAD.

2.4.4 Data augmentation for improving uncertainty estimation

There is a rich literature on data augmentation (DA) for improving the classification
performance of DNNs [45, 40, 301, 235]. However, most of the classical DA literature is
task agnostic and focused on improving accuracy. While GAN-based DA is popular, they
are mainly used to generate samples that are consistent with the underlying distribution
without taking the DNN into account. In contrast, our GAN-based augmentation network is
closely coupled with the pre-trained DNN, and generates samples in ambiguous regions of the
distribution to enhance the uncertainty characteristics of the pre-trained model. We take
inspiration from recent works [242, 243, 134] on counterfactual explanations which focus
on explaining a DNN. However, they do not explore whether the generated samples can
improve a downstream task. Additionally, there is research showing that models trained
on counterfactually augmented data have improved generalization performance on out-of-
domain samples [119]. However, much of this work is limited to Natural Language Processing,
and our work differs in terms of both the application and the architecture we use for our

proposed method.
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3.0 Improving Clinical Disease Sub-typing and Future Events Prediction
through a Chest CT based Deep Learning Approach

3.1 Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by persistent respira-
tory symptoms and irreversible airflow obstruction [274]. The measurement of spirometric
obstruction, while traditionally used to define COPD severity, is not sufficient to explain the
many critical dimensions required to characterize and manage COPD [38]. Airflow obstruc-
tion can result from varying combinations of emphysematous parenchymal destruction [194],
chronic airway remodelling [83], and other poorly characterized imaging patterns, including
fibrotic changes common in smokers [279]. Hence, clinicians must adopt a comprehensive ap-
proach while assessing patients with COPD, including identifying risk factors, standardized
assessment of symptoms and comorbidities, estimating exacerbation risk [246], and prognos-
tication of survival. Other established tools for assessing COPD symptoms are the modified
Medical Research Council (mMRC) dyspnea scale and prognostication of survival using
the body mass index, obstruction, dyspnea and exercise capacity (BODE) index [21, 162].
Though radiography has not been historically utilized in routine diagnosis or management
of COPD [196], the growing use of CT imaging for pulmonary nodule assessment and cancer
screening [257, 197], provides a novel opportunity to leverage imaging data to investigate
patients with COPD.

Despite much interest in using CT imaging in subtyping COPD [153], stratification of
patients as obstructed or non-obstructed is currently based on spirometric pulmonary func-
tion testing findings according to the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) guidelines [274]. Much of the clinical workflows rely heavily on qualitative visual
assessment for characterizing COPD. Visual assessment includes identifying image features
highlighting air trapping in small airways [164], characterizing local patterns for emphy-
sema [89, 182], bronchial wall thickening, or endobronchial mucus [124], and calculating

the percentage of low attenuation area (LAA) [192], blood vessel volume[56], or airway
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counts[47]. Also, various intensity and texture-based feature descriptors are proposed to
characterize the visual appearance of COPD [29, 248, 289]. But most of these image features
are generic and are not necessarily optimized for characterizing COPD. Furthermore, some
of these methods rely on manual segmentation methods and are thus both labour-intensive
and prone to operator error[153, 154, 173, 182].

While visual CT analysis remains the mainstay of clinical imaging interpretation, there
has been growing research interest in quantitative image analysis techniques to quantify ab-
normalities on CT and characterize disease subtypes [103]. Recent advances in deep learning
(DL) enable researchers to go directly from raw images to clinical outcomes without spec-
ifying radiological features [74]. However, most of the existing work concentrate on some
aspect of COPD disease like only spirometry or only emphysema or COPD sub-typing [258].
There is room for improvement to bring the prediction of multiple patient-centred outcomes
to quantify COPD. Further, much impact can be made by predicting patients’ future exac-
erbation or survival, thus providing helpful input to construct personalized treatment plans.

This paper proposes a novel DL model that takes an entire 3D volumetric image as input
and provides a holistic view of a patient’s health in terms of multiple COPD outcomes. Our
novel DL model followed a data-driven approach and directly analyzed raw HRCT data with-
out manually segmenting or specifying radiological features. Previous, DL approaches [74]
processed slices (three orthogonal slices) of CT images and hence may not be able to char-
acterize the volumetric impact of the disease. In contrast, our proposed method views each
subject as a set of image patches from the lung region. It can analyze the entire 3D CT scan
and requires no image distortion due to resizing or cropping. Previously, [29, 227] also viewed
CT images as a set and extracted handcrafted image features from each input element. In
contrast, the discriminative part of our model uses a deep learning approach and directly
extracts features from the volumetric patches. Further, we use an attention mechanism [287]
to adaptively weigh local features and build the subject level representation, which is pre-
dictive of the disease severity. Our model is inspired by the Deep Set [295]. We extend it by
adapting generative regularization, which prevents the redundancy of the hidden features.
Furthermore, the attention mechanism provides interpretability by quantifying the relevance

of a region to the disease.
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We predict multiple patient-relevant outcomes such as symptom scores, emphysema
severity and pattern, exacerbation risk, and mortality. When compared to other DL model [74],
our method improved the prediction of important clinical variables, such as COPD disease
severity and exacerbation risk. Furthermore, it can distinguish between centrilobular and
paraseptal emphysema and quantify the future risk of exacerbation based on the current CT
image. Estimating these clinically relevant features using only CT images has a potential

application both to clinical care and research.

3.2 Method

We represent each subject as a set (bag) of volumetric image patches extracted from the
lung region &; = {a:ij}j.v:il, where N; is the number of patches for subject i, which varies
with subject.The model learned to extract informative regional features from these patches
x;;, and then adaptively weight these features to form a fix-length representation for each
patient. This patient-representation is then used to predict disease severity (y;). The general
idea of our approach is shown in Figure.1.

The method consists of three networks that are trained jointly: (1) a discriminative net-
work, that aggregates the local information from patches in the set &; to predict the disease
severity y;, (2) an attention mechanism, that helps discriminative network to selectively focus
on patch-features by assigning weights to the patches in X;, and (3) a generative network,
that regularizes the discriminative network to avoid redundant representation of patches in
the latent space. The model is trained end to end, by minimizing the below objective func-

tion:

Mgggea Z La (Yi, 9:(Xi); 0, w) + M Ly (/Yi, X;; 6, 9d> + AR (X5 0, 6,) (1)

where L,4(-,-) and L,(-,-) are the discriminative and generative loss functions respectively
and R(-) is a regularization over the attention. The 0., 64, 6, and w are the parameters

of each term. M\, \y controls the balance between the terms. The sum is over number of
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subjects. Next, we discuss each term in more detail.

FEV1 %l
[ Orect FEV1/FVC \

— @) — F—r=
Emphysema Visual

(c.1) Aggregate Patient () Predlctmn Score
Function Representation Function Exacerbation
E] — mmms = MR
Attenti ) Mortality
ention
Function (b) Attention Network (c) Discriminative Network Disease Severity

© Cconv 3D, BN, ELU
I O Down-sampling

@ PP ﬁ . De-convolution 3D, BN, ELU
. O Up-sampling
. 7 Patch Bepresentatlon > N . Equivariance Layer
= = One Batch
i - -- Sample within one batch
‘ @ be(i5) P
o g N
IFame - rm
e fﬁ
Encoder Qb(, Decoder ¢d =
. N .
Chest CT scan X N (a) Generative Network Xz

3D image patches Reconstructed Patches

Figure 1: The schematic of our model. A. The input to our model is a 3D CT scan of the
lung. The lung is divided into a set of equally sized, overlapping 3D image patches. (a)
The Generative Network is a convolutional auto-encoder (CAE). The encoder function
projects the raw image patch to a latent space and the decoder function reconstructs the
image patch from the extracted latent features. B. The Attention Network provides in-
terpretability by weighting the patches based on their importance in predicting the disease
severity. C. The Discriminative Network (c.1) aggregates the local patch-level informa-
tion information, based on their attention weights, to create a patient-level representation,

and (c.2) uses it to predict disease severity.

3.2.1 Generative Network

The Generative Network is a convolutional auto-encoder (CAE)[163]. CAE consists of
an encoder ¢.(-), that extracts local image features from each patch (i.e., Pe(5:6.) € Rd).
These features are a summarization of the information in the raw image patch (or region)

in a low dimensional “feature space”. To regularize the feature extraction process, CAE
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have a decoder ¢4(-). The decoder recovers the input patch back from the low dimensional
feature space as Z;; = @a(¢e(2ij;6.); 04). In the absence of the decoder function, the feature
extractor ¢, will be forced to retain only information that is sufficient for the underlying
task of predicting y. If y is low dimensional as compared to d, ¢. learns a highly redundant

latent space representation for each patch. To prevent this information loss, we regularize

the auto-encoder using a distance loss defined as, L£4( A}, ?&; 0c,04) = ﬁ Zzijexi Tij— T2

3.2.2 Attention Network

The goal of our proposed model is twofold: first to provide a prediction of the disease
severity and secondly, to provide a qualitative assessment of our prediction. Here, it is
reasonable to assume that different regions in the lung contribute differently to the disease
severity. We model this contribution by adaptively weighting the patches. The weight
indicates the importance of a patch in predicting the overall disease severity of the lung.
This idea is similar to attention mechanism in Computer Vision [287] and Natural Language
Processing [152] communities.

The goal of the attention network is to learn a weight for each of the input image patches,
such that the weight indicates the importance of a patch in predicting the overall disease
severity of the lung. We used another neural network to learn these weights for i** subject as
(o; = {1, -, N, }) where a; = A (¢ (X3 60.);6,). We formulated the attention network
A(-) as a feed-forward network, consisting of multiple equivariant layers (EL)[295]. Assum-

ing H; € RYi? where k' row is ¢(x4;0.) € R, an equivariant layer is defined as

[Hil, = W ([Hy], — max(H;, 1)) + b, (2)

where [H;], denotes k' row of H; and max(H;, 1) is the max over rows. W € R4 b € RF
are the parameters of the EL. Such formulation ensures that the weight of any patch depends
not only on the corresponding patch feature but also on the features of all the other patches
in a patient. Next, we pass the output of the EL layers to a softmax function, to obtain a

distribution of weights over the patches. This ensures that the weights («;) are non-negative
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numbers that sums to one.

To enable interpretability, the weight vector, a;, should follow a sparse distribution.
Increased sparsity pushes some weights terms, o;;, to zero, and hence, it increases the in-
terpretation by focusing on only the patches relevant for the prediction task. In our formu-
lation, the weights a;;, have non-negative values that sum to 1 d.e., ([lag|| = >_; a5 = 1).
Hence, its derivative is zero, and using an ¢; norm over the weight vector will not result
in a sparse solution. To ensure high sparsity, we use a log-sum function as a regularizer.
Minimizing ; log a;j is equivalent of maximizing KL-divergence from the uniform distribu-
tion. The uniform distribution assigns the same weight to all the patches within one subject,
i, maxe, KL([3, - 5], ) = maxg, 3, 5 log 3 =2 3 log ayy = miny, 3, log ;. We
defined the regularization term as, R (X;;6.,6,) = Z;VZI log(cv; + €) and add it to the loss

function in Equation. 1.

3.2.3 Discriminative Network

The discriminative network predicts the disease severity as

5:() = f (p(¢e (X, 0e)) ,w) .- (3)

The discriminative network takes the patch-level features (i.e., ¢.(z;;0.)) extracted by
the encoder as input. It transforms the patch-level features using composition of two func-
tions: (1) The aggregate function p(-). It is a permutation invariant function that aggregates
the patch-level features to form a fixed length patient-representation. (2) A prediction func-
tion f(-;w), parameterized by w. It takes the patient representation extracted by p(-) as
input, and estimates the disease severity. Finally, L4 (v;, 9;(X;); 0e,w) is a regression or clas-
sification loss function between predicted and true value.

Conceptually, the aggregate function makes the prediction of disease severity less sensitive
to the precise location within an image. It does so by aggregating the information from the
local patches. One possible formulation of aggregate function is an average function, defined
as p(-) = Ni Z;VZI ¢e(xij). It considers all the feature values and hence, spread out the

volume of the latent space evenly. The average function assumes an equal contribution of all
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the local patches towards final disease severity. However, COPD disease is often attributed
to the diffuse air-sacks obstruction spread unevenly throughout the lung. To incorporate the

disease’s diffused effect, we adaptively weight the patch-level features to create the patient-

N;

representation as, p(-) = > ;) qijde(i;). An attention network, described in Section 3.2.2,

learns the weights («;;).

3.2.4 Architecture Details

The architecture of the encoder function consists of stacked convolutional layers which
down-sampled the patches while doubling the number of channels. The decoder function
consists of transposed convolutional layer (or deconvolutional layer) which up-sample the
features while cutting the number of channels to half. Each convolutional layer employs
batch-normalization for regularization, followed by an exponential linear unit (ELU) [33]
for non-linearity. The attention network has 2 equivalence layers with sigmoid activation
function, followed by a softmax layer. The model is trained using Adam optimizer [126] with
hyper-parameters $; = 0 and [ = 0.999 and a fixed learning rate of 0.001. The dimension
of the feature vector is 128. The trade-off hyper-parameters are A\; = 10 and Ay = 1. The
experiments are performed on two NVIDIA p100 GPUs, each with 16GB GPU memory. The
source code is available at https://github.com/batmanlab/Subject2Vec.

3.3 Experiments and Results

3.3.1 Study cohort

We evaluated our method on a dataset from the COPDGene study; an NIH funded
multi-center clinical trial focused on the genetic epidemiology of COPD [209]. COPDGene
includes 10,300 baseline participants, all of which were either current or former smokers.
Each participant performed spirometry and had a high resolution inspiratory and expiratory
CT scan, using a standardized protocol [209]. The acquired CT scan images were assessed

by trained experts to provide a visual quantification of the centrilobular and paraseptal
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emphysema severity. Survival information was collected using the Social Security Death

Index (SSDI) search and the COPDGene longitudinal follow-up (LFU) program.

3.3.2 Experimental setup

In our analysis, we used full-inspiration CT images, which were re-sampled to isotropic
1 mm?. We worked on the fixed range of intensity values between -1024 HU and 240 HU,
as suggested by Bhalla et al. [7]. We represented each subject as a set of equally sized
3-dimensional patches. To extract these patches, we first segmented the chest using Chest
Imaging Platform (CIP) [225], open-source software for quantitative CT imaging assessment.
Next, we extracted 3D overlapping patches from parenchyma region of the chest. The number
of patches in a subject (N;) may vary between subjects. A large patch size or a high overlap
between the patches increases the N; for a subject. All the patches of a subject must be
processed in the same batch, as they are required to learn the patient-representation, which is
then used to predict the disease severity. The available GPU memory restricts the maximum
number of patches that can be processed in a single batch. We experimented with different
values and finally used a patch-size of 32x32x32 with a 40% overlap and an upper limit of
1000 patches per batch in our experiments. The average N+ for this setting is 700 patches
per subject.

We presented an analysis of the performance of our model for predicting patient-centered
outcomes related to COPD. We trained two versions; 1) Direct: the model was trained to
predict forced expiratory volume in 1 second (FEV1) and the FEV1/forced vital capacity
(FVC) ratio, along with a clinical outcome of interest to represent disease severity. We
separately trained one such model for each of the target outcomes. 2) Indirect: the model
was trained only once, to predict FEV1 and FEV1/FVC as disease severity. The patient-
representations from such model were then used in a separate regression analysis to predict
other clinical outcomes of interest. The idea is to learn generalized patient-representations
by training the model for one clinical variable (spirometry) and testing on another clinical
output (emphysema score) which the models haven’t seen previously. If two clinical variables

are correlated, we should be able to capture much variance. Ofcourse, training directly for the
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clinical variable, as in direct version, will achieve better results. For all results, we reported
average test performance in five-fold cross-validation. We compared the performance of our

method against

1. Baseline: The low attenuation area (LAA) features. LAA-950 is defined as the total
percentage of both lungs with attenuation values less than -950 Hounsfield units on
inspiratory images. LAA-950 signifies radiographic emphysema [192].

2. The non-parametric method proposed by Schabdac et al. [227]. In this method, hand-
crafted image features were extracted for each patient, and non-parametric density esti-
mation was performed to assign a characteristic vector to each patient.

3. The classical k-means algorithm applied to image features extracted from local lung
regions [227]. A similar approach was suggested by Ash et al. [7].

4. The previous state-of-the-art method based on CNN also, applied to the COPDGene [74].

We perform three experiments: (1) Predicting COPD outcomes: we compare the per-
formance of our method against the sate-of-art for different prediction tasks, (2) Generative
reqularizer (A\1): we study the effect of the generative regularizer (i.e., A;) in terms of pre-
diction accuracy and information preserved in latent space, (3) Visualization: we visualize

the interpretation of the model on the subject and population level.

3.3.3 Predicting COPD outcomes

We evaluated our proposed model over multiple COPD outcomes. These outcomes are
summarized in Table 1. Next, we discuss each COPD outcome in more details and summarize

our results.

3.3.3.1 Spirometry Measures

As part of the pulmonary function test, following spirometry values were evaluated for
all the participants in COPDGene: forced expiratory volume in 1 second (FEV1) and the
FEV1/forced vital capacity (FVC) ratio. All spirometric values were expressed as percentage

of predicted values. Participants were classified as obstructed or non-obstructed under the
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Table 1: Summarization of the clinical outcomes considered in the experiments and their

numerical type and values

Clinical Outcomes

Description

Sp

Section 3.3.3.1

FEV1

FEV1/FVC

COPD
GOLD stages

Type Values
irometry Measures -
Continuous
Continuous
Binary Oorl
Categorical | 0-4

Percentage predicted forced expiratory
volume in 1 sec.

FEV1 ratio with forced vital capacity
(FVC)

True if FEV1/FVC > 0.7

GOLD stages 0 (non-obstructed)
through 4 (severely obstructed).

Visual Emphyse

ma Score - Section 3.3.3.2

Centrilobular
Emphysema (CLE)
Paraseptal Emphysema

Categorical | 0-5

Categorical

CLE emphysema severity score:
none (0) to advanced destruction (6).
Three severity scores: none, mild

and substantial.

Acute Exacerbation -

Section 3.3.3.3

Historic Exacerbation Binary 0 or 1 | True if patient have experienced
exacerbation in the last 1 year.

Future Exacerbation Binary 0 or 1 | True if patient reported an
exacerbation by the 5th year followup.

Others - Section 3.3.3.4

mMRC Dyspnea Scale | Categorical | 0-4 | Dyspnea with strenuous exertion (0)

to dyspnea in daily activities (4)
Mortality Binary 0 or 1 | Vital status
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2019 Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines using a
fixed FEV1/FVC ratio of 0.7 [274]. We defined the disease severity as the GOLD stages of
0 (non-obstructed) through 4 (very severely obstructed). Following the GOLD guidelines,
in our experiments, we first train the model to predicted FEV1 and FEV1/FVC ratio, and

then use these values to diagnose and stage COPD.

Table 2: Results for predicting spirometry measurements and using them to diagnose and

stage COPD.

Method FEV1 FEV1/FVC COPD Diagnosis GOLD
R-Square R-Square | AUC AUC Recall % % Accuracy

ROC PR Accuracy one-off
Ours (direct) 0.67£0.03 | 0.74:0.01 | 0.82 0.72 0.80 | 65.44 89.14
CNNI74] 0.53 - 0.86 - - 51.10 74.90
Non-Parametric [227] | 0.584+0.03 | 0.70+0.02 | 0.79 0.70  0.80 58.85 84.15
K-Mean 0.5640.01 0.684+0.02 0.77  0.68 0.81 57.27 82.28
LAA-950 0.45+0.02 0.6040.01 0.75 0.64 0.70 55.75 75.69

Results: Our model attained an r? of 0.67 & 0.03 for the FEV1 and 0.74 & 0.01 for
the FEV1/FVC ratio, which is significantly better than previously reported approaches (see
Table 2, Figure. 2). Next, we used the model-predicted FEV1/FVC ratio to diagnose COPD
which achieved an AUC-ROC of 0.82. For the GOLD stage severity classification, our model
achieved 65.4% and 89.1% exact and one-off accuracy’s, respectively. Figure. 2 shows the

confusion matrix for the COPD-GOLD stage classification.

3.3.3.2 Visual Emphysema Score

In the COPDGene cohort, radiographic centrilobular (CLE) and paraseptal emphysema
were scored on inspiratory scans by a trained research analysts using the Fleischner Society
classification system. Detailed methods for emphysema visual quantification are provided
by Lynch et al. [154]. They grade the severity of CLE parenchymal emphysema on a scale of
zero to five using labels: none, trace, mild, moderate, confluent, and advanced destructive
emphysema. While paraseptal emphysema was scored using three labels: none, mild and

substantial.
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Figure 2: A. Bar graph comparing the r-square, coefficient of determination, for regression anal-
ysis of FEV1 and FEV1/FVC. B. Receiver Operating Characteristic (ROC) curve for prediction
of COPD. Higher AUC-ROC suggests better classification. C. Confusion matrix plot for staging
subjects using the GOLD stage. Following the GOLD guidelines [274], we used the model predicted
FEV1 and FEV1/FVC ratio to diagnose and stage COPD. D. Visualizing the population by pro-
jecting the patient-level representations to 2D space using a dimensionality reduction method called
UMAP [165]. Each dot represents one subject colored by percentage predicted FEV1. The relative
position of a subject can be used to monitor the progression. We use two dimensions for the sake of
visualization; it is straightforward to use a higher dimension and improve patient characterization.
Figure is best viewed in color.
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Results: Our model can identify subjects with different degrees of visual emphysema
severity. The model correctly identified CLE visual emphysema score in 40.6% of the sub-
jects in the COPDGene cohort and was within + one score 74.8% of the time. Figure. 3
compares the confusion matrices of our method and LAA-950 features. In staging Parasep-
tal emphysema, the proposed model has an exact and on-off accuracy of 52.8% and 82.99%
respectively. Results are summarized in Table 3, and the confusion matrix for Paraseptal
emphysema prediction is shown in Figure. 3. Application of the Hosmer-Lemeshow [141]

test did not suggest evidence of poor calibration (p-value 0.079).

Table 3: Results classifying subjects based on their emphysema visual score.

Method CLE Para-septal
% Acc. | % Acc. one-off | % Acc. | % Acc. one-off
Ours (direct) 40.61 74.68 52.82 82.99
Ours (in-direct) 36.30 61.33 46.87 75.97
Spirometry (FEV1) | 33.52 63.96 44.64 72,77
LAA-950 31.89 77.74 33.32 87.64

3.3.3.3 Acute Exacerbations

In the COPDGene study, the exacerbations of COPD were self-reported and were quan-
tified by the subject recall on questionnaires. A participant recorded a positive experience
of an acute exacerbation if, in the last year, they had experienced at least one episode of
increased dyspnea, cough or sputum production, resulting in admission to the hospital or
changing of their treatment plan. Approximately 20% of the subjects reported experiencing
at least one exacerbation before enrolling in the study. We used the HRCT acquired at
the baseline visit to predict both historical and future exacerbations. The future exacerba-
tion prediction used exacerbations reported by the longitudinal follow-up participants at the
subsequent 5-year follow-up visit.

Results: Our model achieved an AUC-ROC of 0.70 in identifying the subjects who

reported experiencing at least one exacerbation before enrolling in the study. We compared
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our performance against the intensity-based LAA feature in Figure. 4 (see Table 4).
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Figure 3: Comparing our method against traditionally used CT quantification measures
(LAA-950). We stratify the population based on centrilobular and paraseptal emphysema
severity score. Ours (direct) model is trained to predict spirometry measures and emphy-
sema visual score together in a single loss function. The emphysema visual score is predicted
in ordinal multi-class classification analysis. A. Confusion matrix plot for grouping the
COPDGene population-based on centrilobular emphysema and B. paraseptal emphy-
sema. Our proposed method performed better than LAA features and created a more
significant separation between little and substantial emphysema. Figure is best viewed in

color.

We also evaluated the performance of our model in identifying the population who re-
ported subsequent exacerbations at the time of the 5-year follow-up. Our model achieved an
AUC-ROC of 0.68. Our experiments show that the previous exacerbation history, together
with imaging features from our method performs better (AUC-ROC 0.73), in predicting fu-
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ture exacerbation events than using exacerbation history alone (AUC-ROC 0.67). A quanti-
tative comparison between different methods is shown in Table 4. Figure. 4 shows the ROC
curve and the PR curve for binary classification. The p-value of the null hypothesis, using

the Hosmer-Lemeshow test, is 0.08, suggesting no evidence of poor calibration.

Table 4: Results for identifying subjects with exacerbation risk and dyspnea.

Method Exacerbation History (EH)
ROC-AUC | PR-AUC Recall % Accuracy
Ours (direct) 0.68+£0.02 | 0.38+0.03 | 0.2740.14 76.93
Ours (in-direct) 0.734+0.01 | 0.43+0.03 | 0.59+0.03 74.75
CNN [74] 0.643 : 0.18 60.40
LAA-950 0.65+0.01 | 0.35£0.02 | 0.43£0.02 73.78

Future Exacerbation in longitudinal followup

ROC-AUC | PR-AUC Recall % Accuracy

Ours (direct) 0.65+0.01 | 0.324+0.02 | 0.434+0.01 68.30

Ours (in-direct) 0.70£0.02 | 0.35%+0.02 | 0.57+0.02 73.87

LAA-950 0.64+0.01 | 0.314+0.02 | 0.43£0.04 73.80

EH 0.67£0.02 | 0.37£0.02 | 0.47£0.04 80.60

Ours (in-direct) + EH | 0.73+£0.01 | 0.42+0.02 | 0.47£0.04 80.83

mMRC Dyspnea Score

% Accuracy % Accuracy one-off
Ours (direct) 46.40 67.04
Ours (in-direct) 38.94 59.86
Spirometry (FEV1) 42.63 69.07
LAA-950 41.52 63.45
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3.3.3.4 mMRC Dyspnea Scale

Subjects completed the modified Medical Research Council (mMRC) dyspnea scale dur-
ing their baseline visit. The scale ranges from zero (dyspnea only with strenuous exertion)

to four (dyspnea with daily activities)
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Figure 4: Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR) curves.
Identifying subjects with A. exacerbation history and B. future exacerbation as given
in longitudinal follow up. The ROC curve shows how the true positive vs. false positive
relationship changes as we vary the threshold of the positive class. In the top row, the positive
class represents those subjects in COPD Cohort who reported experiencing at least one
exacerbation before enrolling in the study. In the bottom row, the positive class represents
those subjects who reported experiencing at least one exacerbation at the 5-year longitudinal
follow up. Higher AUC-ROC number indicates better classification performance. Higher
average precision (AP) in the PR curve means the better ability of the model in identifying
subjects in a positive class. The plot shows that combining the history of past exacerbation
with deep learning features from our model improves the prediction of future exacerbation.

Figure is best viewed in color.
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Results: Our proposed model was successful in classifying subjects in the COPDGene
cohort based on their mMRC dyspnea scale with an accuracy of 43.5% and was within one
score, 64.3% of the time (Table 4). Dyspnea scale is used to guide therapeutic strategies in
patients with COPD [205, 203].

3.3.3.5 Mortality

We used the vital status and censoring time information provided in the mortality dataset
to perform survival analysis. In the COPDGene cohort, the mean time between phase 1 data
and the censoring time is approximately five years. Nearly 13% of subjects were reported
deceased either in the SSDI search or in the COPDGene LFU. We used Cox proportional
hazards (PH) model [143] to predict survival utilizing the probability of death predicted by
patient-representation against age, gender, smoking status and center of enrollment as fixed
covariates. Next, we used Kaplan-Meier plots stratified by quantile of predicted probabilities
of death to visualize the results. Kaplan-Meier plot shows the probability of survival plotted
against time.

We tested the PH assumption by performing a correlation between each of the covariates
and their corresponding set of scaled Schoenfeld residuals with time [229]. A non-significant
p-value for this test supported the PH assumption. In another test, we checked the global
statistical significance of the Cox model. The test validated the null hypothesis that the
variables have no association with survival. If the test failed to reject the null hypothesis, this
would suggest that removing the variables from the model will not substantially harm the fit
of that model. This global test is performed using three alternative tests: the likelihood-ratio
test, the Wald test, and the score log-rank statistic. The survival analysis was performed
using the lifelines library in Python[43] and the survival package in R[260]. We also compared
the performance of our survival model against the uni-variate Cox regression model using
intensity features (LAA-950) and the BODE index. The multidimensional BODE index has
been shown to predict survival in cohort studies of COPD [162]. For the Cox PH model, we
reported the results in terms of concordance, similar to AUC-ROC in binary classification.

Results: Our proposed method achieved a concordance of 0.61 in Cox regression|[143]
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Table 5: Results of Cox Proportional-Hazard (PH) model for survival analysis. The prob-

ability of death, learned from binary classification of mortality, is used as covariate in Cox

regression.
Method Hazard Quantile | Concor- Global PH-
Ratio” p-value® | dance? statistical Assumption
significance® (Global
Max p-value (LR, p-value)f
Wald, log Rank)
Ours (direct) 1.04 <2e-16 0.590 p=<2e-16 0.514
[CI: 0.09, 1.87]
Ours (in-direct) 1.54 <2e-16 0.615 p=<2e-16 0.598
[CL: 1.09, 2.17]
CNN [74] 2.69 0.017 0.72 - -
[CI: 1.19, 6.05]
Spirometry (FEV1) 1.20 6.91e-07 | 0.525 p=4e-06 -
[CI: 0.94, 1.54]
BODE Index [21]* 1.68 <2e-16 0.568 p=<2e-16 0.462
[CI: 1.21, 2.31]
LAA-950 1.13 6.35e-07 | 0.537 p=4e-06 0.391
[CI: 0.93, 1.37]

PH: proportional hazards; BODE = Body-mass index, airflow Obstruction, Dyspnea and Exercise index;
CI = Confidence interval;
All the models have age, gender, smoking pack-years, and center of enrollment as covariates.

2 BODE index is the clinical index used to predict the mortality rate from COPD [162].

> The Hazard ratio is the exponential coefficient (exp(f3)) of the covariate. A covariate is positively asso-
ciated with the event probability when the hazard ratio is above one and, thus, is negatively associated
with the length of survival. We also report 95% confidence intervals for the hazard ratio.

¢ A significant p-value with > 1 hazard ratio indicates a strong relationship between the covariate and
increased risk of death.

4 The concordance shows the fraction of pairs, where the observations with higher survival time have a
higher probability of survival predicted by the model. It is analog to the area under the ROC curve in
classification analysis.

¢ The Global statistical significance of the model is tested using three alternative tests namely the
likelihood-ratio (LR) test, the Wald test, and the score log-rank statistics. p <0.001 indicates that
the model fits significantly better than the null hypothesis. The null hypothesis states that all the betas
(B) are 0.

f'We used scaled Schoenfeld residuals to check the proportional hazards assumption. A non-significant
p-value shows no evidence of violation of PH assumption by survival model.

analysis compared to 0.56 for the BODE index and 0.53 for LAA-950 features (Table 5).
In testing the proportional hazard (PH) assumption of our model using scaled Schoenfeld

residues, we achieved a p-value > 0.3 for all the covariates and a global p-value of 0.59 for
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the model. A significant p-value for this test provided no evidence for the violation of the

PH assumption made by the Cox model.
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Figure 5: Kaplan Meier plot for visualizing the results of survival analysis. The plot is
obtained by performing Cox regression analysis stratified on the quantile of predicted prob-
ability of mortality in binary classification. A good Kaplan Meier plot has large separations
between the groups. BODE index is the Body-mass index, airflow Obstruction, Dyspnea
and Exercise index which is highly correlated with mortality [162]. Our model performed
better than the conventional emphysema quantification, the BODE index, and spirometry

measures for mortality assessment.

Next, we tested the global statistical significance of the Cox model using three alternative
tests: the likelihood-ratio test, the Wald test, and the score log-rank statistic. We achieved
a p-value of < 0.001 in all three tests. Hence, we can reject the null hypothesis that all the
coefficients are 0, with high confidence. Figure. 5 shows the Kaplan Meier (KM) plots to
visualize the subjects grouped by quantile of predicted probability of 5-year survival. The
KM plot for our method has a large separation between different quantile groups. Thus, our

model can divide the population into distinct groups based on their survival risk.

3.3.4 Generative regularizer

Hyper-parameter \; in our overall loss function in Eq. 1 balances between the discrimi-
native and the generative setting. A\; = 0 represents a fully discriminative setting, in which

the decoder of the auto-encoder is not trainer. Hence, there is no reconstruction of the input
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patch back from the low dimensional embedding learned by the encoder. In the absence

of the decoder function, the feature extractor (encoder) is forced to retain only information

that is sufficient for the underlying discriminative task. The Figure. 6(a) reports the spectral

behaviors of the latent features (i.e., ¢.(AX;)) for varying A;. For fully discriminative setting

with A\; = 0, we observe a highly redundant latent space, with almost similar patch-level
1

features ¢.(z;;), with attention weights a;; converging to A
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Figure 6: Evaluating generative regularizer (a) Spectral properties of patch-level features for
different values of A\;. (b) The trade-off between rank of latent space (red, y-axis on left)
and predictive power (blue, y-axis on right) for different values of A;. Left represents fully

discriminative and right represents fully generative models.

As \; — oo, the network mostly focuses on the generative task of reconstructing the
patch back from patch-level features. In such fully generative setting, the encoder features
are not optimized for the downstream prediction task. Hence, though the patch-level features
are much diverse, as seen in Figure. 6(a), there is a significant drop in R? for predicting FEV1,
as shown in the Figure. 6(b).

We demonstrate the effect of regularization through Figure. 6(b). It shows the trade-off
between effective rank of the latent feature and R? for predicting FEV1. Although, the
R? drops a little, the rank, which represents the diversity of the latent features, improves
drastically. The gap between accuracy’s of Ay = 0 and A\; > 0 is the price we pay for the
interpretability.
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3.3.5 Visualization

Figure. 7(b) visualizes the attention weights on a subject. The dark area on the left
lung (tope-row), which is severely damaged, received high attention, while same regions in

a different lung (bottom-row) have minimum attention.

Figure 7: An axial view of the attention map on a subject. Red color indicate higher

relevance to the disease severity.

3.4 Discussion and Conclusion

Our proposed Deep Learning-based method demonstrates the ability to predict multiple
aspects of COPD disease pattern, severity, and future events. It does so by extracting the
most relevant information from volumetric HRCT images of the subject. Unlike previous
Deep Learning methods that process a collection of 2D slices, our method works on the
entire 3D inspiratory scan of the subject. Deep Learning enables us to go beyond standard
radiographic features such as LAA and construct data-driven radiological features that are
optimal for a specific task. Our results show that large cohorts such as COPDGene enable
DL methods to learn meaningful patterns and converge to reliable predictions. Another
advantage of our method lies in its generalizability and flexibility to incorporate different
aspects of COPD. Using the same DL model and architecture, we were not only able to

predict spirometric obstruction but were also successful in predicting all-cause mortality and
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future exacerbations, quantifying emphysema burden and disease pattern, and evaluating
symptom scores.

In the direct approach, our model achieved high predictive strength by explicitly training
to predict a target outcome. Our cross-validation experiments showed that the model was
well-calibrated and achieved consistent performance over all folds. While in the in-direct
approach, the model was trained only once, to predict respiratory measurements, this model
performed well in predicting COPD outcomes including, acute exacerbations, and mortality.

Our predictions of spirometry measurements outperformed previously reported methods,
including the previous DL method. Our method has a potential translational impact if it is
utilized as a clinical screening tool, e.g., when obtained during routine cancer screening, to
identify subjects with a high likelihood of COPD for further assessment. Our visualization
of the COPDGene population colored by the FEV1 value shows subjects with high FEV1
clustered together and a progression of disease severity from low to high (Figure. 2(d)).
This population-level analysis may be helpful in prospectively identifying unique clinical
subgroups or in quantifying disease severity across research cohorts.

This is the first study to use DL-based method to predicted various clinical outcomes
associated with COPD like spirometric obstruction, emphysema severity, current and future
exacerbation risk and mortality, using C'T imaging alone. The results of our study conclude
that DL-based method can provide a holistic view of disease severity and progression from a
single set of CT images. Further work toward developing interpretable DL models is essential
for the development of standardized CT-based assessment of COPD.

High-resolution CT evaluation by a deep learning algorithm might provide low-cost,
reproducible, near-instantaneous classification of fibrotic lung disease with human-level ac-
curacy. These methods could be of benefit to centres at which thoracic imaging expertise is

scarce, as well as for stratification of patients in clinical trials.
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4.0 Progressive Counterfactual Explainer

4.1 Introduction

With the explosive adoption of deep learning for real-world applications, explanation and
model interpretability have received substantial attention from the research community [51,
84,120, 175]. Primarily, DL is used for Computer-Aided Diagnosis [95] and other tasks in the
medical imaging domain [207, 215]. However, for real-world deployment [276], the decision-
making process of these models should be explainable to humans to obtain their trust in the
model [67, 111]. Explainability is essential for auditing the model [281], identifying failure
modes [52, 193] or hidden biases in the data or the model [135], and obtaining new insights
from large-scale studies [218]. For example, consider evaluating a computer-aided diagnosis
of Alzheimer’s disease from medical images. The physician should be able to assess whether
or not the model pays attention to age-related or disease-related variations in an image to
trust the system.

With the advancement of DL methods for medical imaging analysis, deep neural net-
works (DNNs) have achieved near-radiologist performance in multiple image classification
tasks [230, 208]. However, DNNs are criticized for their “black-box” nature, i.e., they fail
to provide a simple explanation as to why a given input image produces a corresponding
output [261]. To address this concern, multiple model explanation techniques have been
proposed that aim to explain the decision-making process of DNNs [231, 35]. The most
common form of explanation in medical imaging is a class-specific heatmap overlaid on
the input image. It highlights the most relevant regions (where) for the classification de-
cisions [10, 151, 231, 236, 237, 249, 255]. The location information alone is insufficient for
applications in medical imaging. Different diagnoses may affect the same anatomical regions,
resulting in similar explanations for multiple diagnosis, resulting in inconclusive explanations.
A thorough explanation should explain what imaging features are present in those important
locations, and how changing such features modifies the classification decision.

Although not always clear, there are subtle differences between interpretability and expla-

44



nation [264]. While the former mainly focuses on building or approximating models that are
locally or globally interpretable [212], the latter aims at explaining a predictor a-posteriori.
The explanation approach does not compromise the prediction performance. However, a
rigorous definition for what is a good explanation is elusive. Some researchers focused on
providing feature importance (e.g., in the form of a heatmap [231]) that influence the out-
come of the predictor. In some applications (e.g., diagnosis with medical images) the causal
changes are spread out across a large number of features (i.e., large portions of the image are
impacted by a disease). Therefore, a heatmap may not be informative or useful, as almost
all image features are highlighted. Furthermore, those methods do not explain why a pre-
dictor returns an outcome. Others have introduced local occlusion or perturbations to the
input [302, 61] by assessing which manipulations have the largest impact on the predictors.
There is also recent interest in generating counterfactual inputs that would change the black
box classification decision with respect to the query inputs [79, 147]. Local perturbations
of a query are not guaranteed to generate realistic or plausible inputs, which diminishes the
usefulness of the explanation, especially for end users (e.g., physicians). We argue that the
explanation should depend not only on the predictor function but also on the data. There-
fore, it is reasonable to train a model that learns from data as well as the black-box classifier
(e.g., [24, 42, 61]).

To address these gaps, we propose a novel explanation method to provide a counterfactual
explanation. A counterfactual explanation is a perturbation of the input image such that
the classification decision is flipped [114, 147, 157, 224]. By comparing, the input image
and its corresponding counterfactual image, the end-users can visualize the difference in
important image features that leads to a change in classification decision. Our proposed
method falls into the local explanation paradigm. Our approach is model agnostic and only
requires access to the predictor values and its gradient with respect to the input. Given a
query input to a black-box, we aim at explaining the outcome by providing plausible and
progressive variations to the query that can result in a change to the output. The plausibility
property ensures that perturbation is natural-looking. A user can employ our method as a
“tuning knob” to progressively transform inputs, traverse the decision boundary from one

side to the other, and gain understanding about how the predictor makes a decision.
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We adopted a conditional Generative Adversarial Network (¢cGAN) as our explanation
framework. However, using cGAN is challenging, as GANs with an encoder may ignore
small or uncommon details during image generation [14]. This is particularly important in
our application, as the missing information includes foreign objects such as a pacemaker
that influence human users’ perception. To address this issue, we stipulate when the input
image has reconstructed the shape of the anatomy and that foreign objects are preserved.
We achieve this by incorporating semantic segmentation and object detection into our loss
function.

We introduce three principles for an explanation function that can be used beyond our
application of interest. We evaluate our method on a set of benchmarks as well as real
medical imaging data. Our experiments show that the counterfactually generated samples
are realistic-looking and in the real medical application, satisfy the external evaluation. We
also show that the method can be used to detect bias in training of the predictor. Our

contributions are summarized as follows:

1. We developed a progressive counterfactual explainer (PCE) that generates visual ex-
planations for a black-box classifier. PCE explains the decision for a query image by
gradually changing the image such that the classification decision is flipped.

2. Our method accounts for subtleties of medical imaging by preserving the anatomical
shape and foreign objects such as support devices across generated images. The special-
ized reconstruction loss is proposed to incorporate context from semantic segmentation
and foreign object detection networks.

3. We evaluated our method extensively on both natural and medical datasets.

4. We proposed quantitative metrics based on clinical definition of two diseases (cardiomegaly
and PE). We are one of the first methods to use such metrics for quantifying DNN model
explanation. Specifically, we used these metrics to quantify statistical differences between
counterfactual and query images.

5. We are one of the first methods to conduct a thorough human-grounded study to evaluate
different counterfactual explanations for medical imaging task. Specifically, we collected

and compared feedback from diagnostic radiology residents, on different aspects of ex-
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planations: (1) understandability, (2) classifier’s decision justification, (3) visual quality,
(d) identity preservation, and (5) overall helpfulness of an explanation to the users.
6. On the face images dataset, we show that our method successfully detects confounding

bias in the classifier.

4.2 Method

Consider a black box classifier that maps an input space X (e.g., images) to an output
space Y (e.g., labels). In this paper, we consider binary classification problems where ) =
{0,1}. However, the proposed method is general and can be used for multi-class or multi-
label settings. We use f(x) = P(y|x) € [0,1] to denote the posterior probability of the
classifier. We assume that f is a differentiable function and we have access to its value as
well as its gradient with respect to the input Vi f(x).

We view the (visual) explanation of the black-box as a generative process that produces
a plausible and realistic perturbation of the query image such that the classification decision
is changed to a desired value c. By gradually changing the desired output c in range [0, 1],
we can traverse the prediction space while visualizing the gradual exaggeration of the target
class in generated images. We conceptualize this traversal from one side of the decision
boundary to the other as walking across a data manifold, M,. Directly manipulating the
high dimensional image space is very challenging. Hence, we assume that there is a low-
dimensional embedding space (M) that encodes the walk. An encoder, £ : M, — M.,
maps an input, x, from the data manifold, M, to the embedding space. The desired output
c represents the step size of the walk. We gradually increase or decrease c to generate a
new image to represent each step of this walk. A generator, G : M, — M, takes both the
embedding coordinate and the desired output ¢ (current step-size) and maps it back to the
data manifold (see Figure. 8).

The PCE is denoted as Zy(-, ). Formally, Z;(x,c) : (X,R) — X is a function that takes
two arguments: a query image x and the desired posterior probability c for some target class

y. This function generates a perturbed image x. such that f(x.)[y] ~ c¢. This formulation
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allows us to view c as a “knob” that gradually perturb the input image to achieve visually
perceptible differences in x while crossing the decision boundary given by function f. PCE

function Z; should satisfy the following properties:

Figure 8: The schematic of the method. f is the black-box function producing the posterior
probability f(x). c is the desired probability. Z¢(x,c) is an explainer function for f, which
creates a perturbation of x that produce a classifier’s prediction of ¢. The E(-) is an encoder
that maps the data manifold M, to the embedding manifold M. Explanation function is

generator that conditionally maps embedding back to the data manifold.

A.) Data consistency: The perturbed image, x. should resemble data instance from
input space X i.e., if input space comprises chest x-rays, X, should look like a chest x-ray
with minimum artifacts or blurring.

B.) Classification model consistency: The perturbed image, x. should produce the
desired output from the classifier f, i.e., f(Z;(x,c)) =~ c.

C.) Context-aware self-consistency: To be self-consistent, the PCE should satisfy
three criteria (1) Reconstructing the input image by setting ¢ = f(x) should return the

input image, i.e., Zp(x, f(x)) = x. (2) Applying a reverse perturbation on the explanation
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image X should recover x, i.e., Z¢(Xc, f(x)) = x. (3) Achieving the aforementioned recon-
structions while preserving anatomical shape and foreign objects (e.g., pacemaker) in the

input image.
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Figure 9: PCE function Zy(x,c) for classifier f. Given an input image x, we generates a
perturbation of the input, x. as explanation, such that the posterior probability, f, changes
from its original value, f(x), to a desired value ¢ while satisfying the three consistency

constraints.

We designed PCE as a novel deep learning (DL) framework, which is trained end to end

to satisfy the three properties. It minimizing the following objective function:
%llél mgX ACGAN‘CCGAN(D7 G) + Afﬁf(Da G) + )\TEC‘CI“BC(Ea G) (4)

where L.gan is a conditional GAN-based loss function that enforces data-consistency, £
enforces classification model consistency through a KullbackLeibler (KL) divergence loss and
L.ec is a reconstruction loss that enforces self-consistency. The loss function is defined over
three networks, an image encoder E(-), a conditional GAN generator G(-) and a discriminator
D(-). Aecgan, Af and A, controls the balance between the terms. In the following sections,

we will discuss each property and the associated loss term in detail.
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4.2.1 Data consistency

We formulated PCE, Z;(x, c), as an image encoder E(-) followed by a conditional GAN
(cGAN) [172], with c as the condition. The encoder enables transformation of a given image,
while the GAN framework allows to generate realistic looking transformations as explanation
image. The Generative Adversarial Network (GANs) [75] are implicitly models, that learn
the underlying data distribution pgae.(x) by setting up a min-max game between generative
(G) and discriminative (D) networks. The G(-) network learns to transform samples drawn
from a canonical distribution such that D(-) network fails to distinguish the generated data

from the real data. GANs optimizes the following objective function:

£GAN(D7 G) = IE:’x,ch(x) [1Og (D(X>)} + EZNPZ [log (1 - D(G(Z»)} )

where z and P, are the noise distribution and the corresponding canonical distribution.
There has been significant progress toward improving GANs stability as well as sample
quality [18, 116]. The advantage of GANs is that they produce realistic-looking samples
without an explicit likelihood assumption about the underlying probability distribution.
This property is appealing for our application.

Furthermore, we use a Conditional GAN (cGAN) that allows the incorporation of a con-
text as a condition to the GAN [169, 172]. We use the desired classification outcome as our

condition ¢ € [0,1]. The cGAN optimizes the following loss function:

Locan(D, G) = Ex cop(xe) [10g (D(x,€))] + Esup, cor. [log (1 — D(G(z,¢),c))], (5)

where ¢ denotes a condition. In our formulation, z is the latent representation of the input

image x, learned by the encoder E(-). Finally, the PCE is defined as,

If(x7 C) = G(E(X)7 C). (6)

Our architecture is based on Projection GAN [172], a modification of cGAN. An advantage
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of the Projection GAN is that it scales well with the number of classes allowing to use very
small bin size while discretizing c. The Projection GAN imposes the following structure on

the discriminator loss function:

Pdata(C|X) + log pdata(x)

Leaan(D,G)(x,¢) = log q(c|x) q(x)

= r(clx) + ¥ (¢(G(2)), (7)
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Figure 10: Progressive counterfactual explainer (PCE) as a conditional-GAN with an en-

coder.

For the discriminator in cGAN, we adapted the loss function from Projection GAN [172]
based on our application, as shown in Figure. 10. We can view c as a one-hot vector over
N classes. The loss function of projection cGAN has two terms. The first term is the
distribution ratio between marginals i.e., the real data distribution pgae.(x) and the learned
distribution of the generated data g(x). The second term is the distribution ratio between
conditionals. It evaluates the correspondence between the generated image and the condition.
This formulation allows us to skip calculating ¢ as we are only interested in the ratio. The

overall loss function is as follows,
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pdata(x) o pdata(c‘x)
) % gl )

= 7(x) + r(c|x)

Lecan(D, G)(x,¢) = log

where Legan(D, G) indicates the loss function in Eq. 5 when G is fixed. Further, r(x)
is the discriminator logit that evaluates the visual quality of the generated image. It is
the discriminator’s attempt to separate real images from the fakes images created by the
generator. The second term evaluates the correspondence between the generated image x.
and the condition c.

To represent the condition, the discriminator learns an embedding matrix V with N rows,
where N is the number of conditions. The condition is encoded as an N-dimensional one-
hot vector which is multiplied by the embedding-matrix to extract the condition-embedding.
When ¢ = n, the conditional embedding is given as the n-th row of the embedding-matrix
(vn). The projection is computed as the dot product of the condition-embedding and the

features extracted from the fake image,

~

Leaan(D, G)(x,¢) = r(x) + v©¢(x), 9)

where, n is the current class for the conditional generation and ¢ is the feature extractor.
In our use-case, the condition c is the desired posterior probability from the classification
function f. c is a continuous variable with values in range [0, 1]. Projection-cGAN requires
the condition to be a discrete variable, to be mapped to the embedding matrix V. Hence,
we discretize the range [0,1] into N bins, where each bin is one condition. One can view
change from f(x) to ¢ as changing the bin index from the current value C(f(x)) to C(c)

where C/(+) returns the bin index.
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4.2.2 Classification model consistency

Ideally, cGAN should generate a series of smoothly transformed images as we change
condition ¢ in range [0,1]. These images, when processed by the classifier f should also
smoothly change the classification prediction between [0,1]. To enforce this, rather than
considering bin-index C(c) as a scalar, we consider it as an ordinal-categorical variable, i.e.,
C(c1) < C(cy) when ¢; < cgp. Specifically, rather than checking one condition that desired
bin-index is equal to some value n, C(c) = n, we check n—1 conditions that desired bin-index
is greater than all bin-index which are less than n i.e., C(c) > iVi € [1,n) [62].

We adapted Eq. 9 to account for a categorical variable as the condition, by modifying
the second term to support ordinal multi-class regression. The modified loss function is as

follows:

r(c =nlx) = ZV?(ﬁ(X), (10)

<n

Along with conditional loss for the discriminator, we need additional regularization for the
generator to ensure that the actual classifier’s outcome, i.e., f(x.), is very similar to the
condition c. To ensure this compatibility with f, we further constrain the generator to min-
imize the KullbackLeibler (KL) divergence that encourages the classifier’s score for x. to be

similar to ¢ (see Figure. 10(b). Our final condition-aware loss is as follows,

Li(D,G) = r(clx) + Dxu(f(xe)l|c), (11)

Here, the first term is a function of both G and D, the second term influences only the G.

4.2.3 Context-aware self consistency

A valid explanation image is a small modification of the input image, and should preserve
the inputs’ identity ¢.e., patient-specific information such as the shape of the anatomy. While

images generated by a GAN is shown to be realistic looking [116], GAN with an encoder
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may ignore small or uncommon details in the input image [14]. To preserve these features,
we propose a context-aware reconstruction loss (CARL) that exploits extra information from
the input domain to refine the reconstruction results. This extra information comes in the

form of semantic segmentation and detection of any foreign object present in the input im-

age. The CARL is defined as,

Lree(x,x) =Y 5 (X)ZQ 5'{’;;) XM, pe 0106, (12)

J
Here, S(-) is a pre-trained semantic segmentation network that produces a label map for
different regions in the input domain. Rather than minimizing a distance such as ¢; over
the entire image, we minimize the reconstruction loss for each segmentation label (j). Such
a loss heavily penalizes differences in small regions to enforce local consistency.
O(x) is a pre-trained object detector that, given an input image x, outputs a number
of bounding boxes called region of interests (ROIs). For each bounding box, it outputs 2-d
coordinates in the image where the box is located and an associated probability of presence
of an object. Using the input image x, we obtain the ROIs and associated O(x), which is
a probability vector, stating probability of finding an object in each ROI. For reconstructed
image x’, we reuse the ROIs obtained from image x and computed the associated probabilities
for the reconstructed image as O(x’). Next, we used KL divergence to quantify the difference
between probability vectors as Dk, (O(x)||O(x')), in Eq. 12. Finally, we used the CAR loss

to enforce two important properties of the explanation function:

1. If ¢ = f(x), the self-reconstructed image should resemble the input image.
2. For c # f(x), applying a reverse perturbation on the explanation image x. should recover

the initial image i.e., x &~ Z;(Zs(x, ¢), f(x)).

We enforce these two properties by the following loss,

»Crec<E7 G) - ‘CreC(X7If(X7 f(X))) + ‘CreC(X7If(If(X7 C)? f(X))) (13)

We minimize this loss only for reconstruction of the input image. Please note, the

classifier f and support networks S(-) and O(+) remained fixed during training.
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Figure 11: (a) A context-aware self-reconstruction loss with pre-trained semantic segmenta-
tion S(x) and object detection O(x) networks. (b) The self and cyclic reconstruction should
retain maximum information from x. Note, explanation image x. may differ from input

image, X.

4.3 Experiments and Results

4.3.1 Study cohort and imaging dataset

Our experiments are conducted on the CelebA [149] and MIMIC-CXR [112] datasets.
CelebA contains 200K celebrity face images, each with forty attribute labels. MIMIC-CXR,
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is a multi-modal dataset consisting of 473K chest X-ray images and 206K reports from 63K
patients. The dataset provides binarized labels over fourteen radio-graphic observations,
namely, enlarged cardiomediastinum, cardiomegaly, lung-lesion, lung-opacity, edema, con-
solidation, pneumonia, atelectasis, pneumothorax, pleural effusion, pleural other, fracture,
support devices and no-finding. The images are preprocessed using a standard pipeline in-
volving cropping, re-scaling and intensity normalization. We consider a multi-label classifier
that takes a frontal view chest x-ray image as input and outputs a posterior probability for

the fourteen radio-graphic observations.

4.3.2 Experimental setup

Classification model: CelebA - We considered two independently trained binary classifiers
trained on the “smiling” and “age” attributes. The classifiers are deep learning models with
a ResNet [90] backbone. For training the classifier, we used the default test and train split
as provided by the dataset. The classifiers are very accurate with a test AUC-ROC greater
than 0.90. We also experimented with other attributes.

MIMIC-CXR - Following the prior work on diagnosis classification [108], we used DenseNet-
121 [98] architecture as the baseline classification model. The model is trained on 198K
(~80%) frontal view CXR from 51K patients and is test on a held-out set of 50K images
from 12K non-overlapping patients. We use the Adam optimizer with default S-parameters
of B1 = 0.9, B = 0.999 and learning rate 1x 10~* which is fixed for the duration of the
training. We used a batch size of 16 images and train for 3 epochs, saving checkpoints every
4800 iterations. The classifier have a mean AUC-ROC of 0.75. It is highly discriminative for
three diagnosis: cardiomegaly (AUC-ROC = 0.87), pleural effusion (AUC-ROC = 0.95) and
edema (AUC-ROC = 0.91). These results are comparable to performance of the published
model [108].

Ezplanation function: Our explanation function is implemented using TensorFlow ver-
sion 2.0 and is trained on NVIDID P100 GPU. Before training the explanation function, we
assume access to the pre-trained classification function, that we aim to explain. We also

assume access to pre-trained segmentation and object detection networks, that are used to
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enforce CARL loss.

The explanation function is a cGAN with an encoder E(-) and generator G(-) network,
that follows ResNet [90] architecture. G(-) uses conditional batch normalization (¢cBN) to
incorporate condition information. For discriminator D(-) network, we adapted the archi-
tecture from SNGAN [171]. We optimized the adversarial hinge loss for the cGAN training.
We set the loss hyper-parameters as Ay = 1.0, Ay = 1.0 and A3 = 0.5. We used the Adam
optimizer [126], with default hyper-parameters set to o = 0.0002, f; = 0, S = 0.9.

Using PCE, we can derive qualitative explanations for any target class. However, for
chest imaging dataset currently we support quantitative metrics only for cardiomegaly and
PE. Deriving such metrics for other diagnosis requires understanding of the clinical definition
of the disease and is challenging. Previously, researcher have shown qualitative results on
other diagnosis [35], but quantitative evaluation is still missing. We train three independent
c¢GANSs to explain target classes: cardiomegaly, PE, and edema.

To train PCE, we used 30K images from held-out set, which was not used in training
the classifier. We divide f(x)[y] € [0,1] into N = 10 equally size bins. Here, y is a target
class. Each input image is mapped to a bin-index depending on the prediction f(x)[y]. We
randomly sample images such that each bin has 2500 to 3000 images. After training the
cGAN, we audited the classifier by deriving explanations on a held-out set of 20K images.
Please refer appendix A.5 for further details.

Semantic segmentation network function: Semantic segmentation network S(-) is a 2D
U-Net [216]. It marks the lung and the heart contour in a chest x-ray. The network is
trained on 385 chest x-rays and masks from Japanese Society of Radiological Technology
(JSRT) [268] and Montgomery [109] datasets.

Object detector: We trained a faster regional CNN [211] network, for detecting FO such
as pacemaker and hardware in a chest x-ray. The network learns to detect FO by placing
a bounding box over them. To create the training dataset, we extracted 300 x-rays with
a positive mention of these objects in the corresponding radiology reports, and collected
bounding box annotations to mark the ground truth. We further trained two more detectors
to evaluate our explanations. Specifically, we trained detectors for identifying normal and

abnormal costophrenic (CP) recess region in the chest x-ray. We associated an abnormal
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CP recess with the radiological finding of a blunt CP angle as identified by the positive
mention for “blunting of the costophrenic angle” in the corresponding radiology report. For
the normal-CP recess, we considered images with a positive mention for “lungs are clear” in
the reports.

We compared our counterfactual explanations with closest existing methods such as
xGEM]113] and CycleGAN [185, 44]. For proper comparison, we used the open-source
implementation of these models and trained them on the MIMIC-CXR dataset, using the
same training-set as our model. Please refer SM-Sec A.8 for more details. We also compared
against the saliency-based methods to provide post-hoc model explanation. We performed

following experiments:

1. Desiderata of explanation function: We compared our model with existing methods on
the three desiderata of valid explanations and evaluated the following metrics: Fréchet
Inception Distance (FID) score to assess visual quality, counterfactual validity (CV) score
to quantify compatibility with the classifier, and face verification accuracy and foreign
object preservation (FOP) score to evaluate the identity preservation in the explanations.

2. Comparison with saliency-maps: We compared the localization ability of our counterfac-
tual explanations against the saliency maps generated by gradient-based methods.

3. Clinical evaluation: We used two clinical metrics, namely, cardiothoracic ratio (CTR)
and the Score for detecting a normal Costophrenic recess (SCP) to demonstrate the
clinical relevance of our explanations.

4. Bias detection: We trained two classifiers on biased and unbiased data and examined
the performance of our method in identifying the bias.

5. Fvaluating class discrimination: We trained a multi-label classifier and demonstrate the
sensitivity of PCE to the task being explained.

6. Human evaluation: We evaluate the strength of PCE in explaining the classifier’s decision

to the end-user.
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4.3.3 Desiderata of explanation function

We evaluated our method on three desiderata of a valid counterfactual [178]. First, Data
consistency: A counterfactual should be realistic-looking i.e., it should be very similar to the
input image. Second, Classifier consistency: A counterfactual should flip the classification
decision for the input image. Third, Identify preservation: A counterfactual should preserve

patient-specific details such as FOs.

4.3.3.1 Data consistency

Given an input image, our model generates a series of images X. as explanations by
gradually changing c in range [0,1]. Figure. 12 shows the qualitative results on CelebA
dataset. We show results for two prediction tasks: smiling or not-smiling and young or old.
Bottom two rows of Figure. 12 shows our result on MIMIC-CXR dataset. The left-most
image is the input CXR. For cardiomegaly, we highlight the heart contour (yellow). Its
helps in visualizing enlargement of the cardiac silhouette. For PE, we showed the results
of an object detector as bounding-box (BB) over the normal (blue) and abnormal (red) CP
recess regions. The number on the top-right of the blue-BB is the Score for detecting a
normal CP recess (SCP). The number on red-BB is 1-SCP. The CP recess is the potential
area to be analyzed for PE [195]. From left to right, the normal CP recess changed into an
abnormal CP recess with a high detection score. We observed a gradual increase in posterior
probability f(x.) (bottom label) as we go from left to right.

Quantitatively evaluation: We evaluated the visual quality of our explanations by com-
puting Fréchet Inception Distance (FID) score [94]. FID quantifies the visual similarity
between the real images x and the synthetic counterfactuals x. by computing distance be-

tween their activation distributions as follow,

NI

FID(x, Xe) = [[tix — fe| 3 + Tr(Ex + Bx, — 2(5xBx)?), (14)

where p’s and ¥’s are mean and covariance of the activation vectors derived from the penul-

timate layer of a pre-trained Inception v3 network [94]. The pre-trained network is trained
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Query Image Generated Visual Explanations
Desired f(x.) [0,0.3) [0.3,0.5) [0.5,0.7) [0.7,1.0]
Not Smiling Smiling

f(xc) 0.0 0.47 063 1.0
Not Young Young
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Figure 12: Progressive counterfactual explanations generated for different prediction tasks.
The figure shows smiling/not-smiling (first row), young/old face (second row), diagnosis of
cardiomegaly (third row) and diagnosis of pleural effusion (last row). The first column shows
the query image, followed by the corresponding generated explanations. The bottom label
is the output of the classifier f. For Cardiomegaly, we show the segmentation of the heart
(yellow edge). For PE, we show the bounding box (BB) for normal (blue) and abnormal
(red) costophrenic (CP) recess. Extended results in SM-Figure. 45.
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on same dataset as the PCE. We examined real and synthetic (i.e., generated explanations)
images on the two extreme of the decision boundary, i.e., a normal group (f(x) < 0.2) and
an abnormal group (f(x) > 0.8). In Table. 6, we compared three counterfactual-generating
algorithms: ours, xGEM, and cycleGAN, and reported the FID for each group. Our model
creates natural-looking counterfactuals compared to xGEM. The cycleGAN model generates
the most visually appealing images with the lowest FID score across the classification tasks.
However, a visually good image doesn’t necessarily means a good counterfactual. It is also

equally important to flip the classification decision as explained in next section.

Table 6: The FID score quantifies the visual appearance of the explanations. The counter-
factual validity (CV) score is the fraction of explanations that have an opposite prediction
compared to the input image. An ideal counterfactual explanation have low FID score and

a high CV score.

Negative (f(x), f(xc) < 0.2) | Positive (f(x), f(xc) > 0.8)

Target class Ours xGEM  CycleGAN | Ours xGEM  CycleGAN
Fréchet Inception Distance (FID)
CelebA:Smiling 56.3 112.9 30 46.9 111.0 37
CelebA:Young 4.4 170.3 56 67.6  115.2 35
CXR:Cardiomegaly 166 138 30 137 316 56
CXR:Pleural Effusion | 146 347 37 122 355 35
CXR:Edema 149 376 72 102 274 77

Counterfactual Validity Score

CXR:Cardiomegaly | 0.91 0.91 0.43
CXR:Pleural Effusion | 0.97 0.97 0.49
CXR:Edema 0.98 0.66 0.57
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4.3.3.2 Classification model consistency

By definition, a counterfactual image have an opposite classification decision as compared
to the query image. A counterfactual provides explanation by showing how image-features
should be modified to flip the classification decision. If the decision doesn’t flip then the
explanation is inconclusive. Counterfactual validity (CV) score is the fraction of counterfac-
tual explanations that successfully flipped the classification decision i.e., if the input image is
negative (normal) then the generated explanation is predicted as positive (abnormal) for the
target class. We compared different counterfactual-generating algorithms on CV score [178]
metric. The last rows of Table. 6, summarizes our result. For all tasks, our model consis-
tently achieved the highest CV score. CycleGAN achieved a low CV score, thus creating

explanations that are frequently inconsistent with the classifier.

CelebA: Smiling CelebA: Young Cardiomegaly Pleural Effusion Edema

f)

—e— 0.0-0.2
—=— 0.2-0.4
—— 0.4-0.6
0.6-0.8
0.8-1.0

f(xc)

Counterfactual prediction

0.8

Condition used in PCE (Desired prediction)

Figure 13: Plot of the desired outcome from the classifier, c, against the actual response of
the classifier on generated explanations, f(x.). The monotonically increasing trend shows a
positive correlation between ¢ and f(x.), and thus the generated explanations are consistent
with the expected condition. Each line represents a set of input images with prediction f(x)

in a given range.

Next, we quantify this consistency at every step of the transformation. We divided
the prediction range [0,1] into N = 10 equally sized bins. For each bin, we generated an
explanation image by choosing an appropriate, c. We further divided the input image space
into five groups based on their initial prediction i.e., f(x). In Figure. 13, we represented each

group as a line and plotted the average response of the classifier i.e., f(x.) for explanations
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in each bin against the expected outcome i.e., c. The positive slope of the line-plot, parallel
to y = x line confirms that starting from images with low f(x), our model creates fake

images such that f(x.) is high and vice-versa.

4.3.3.3 Identity preservation

The counterfactual explanations should differ only in semantic features associated with
the target class while retaining the identity of the query image. For example, in CelebA,
if the classifier is using image features near the lips to decide smiling or not, the other
features such as hair and the person in the image should remain the same. Similarly, in
CXR, any foreign objects (FOs) such as pacemaker should be preserved. Furthermore, FO
provides critical information to identify the patient in an x-ray. The disappearance of FO in
explanation images may create confusion that explanation images show a different patient.

For PCE trained on CelebA dataset, we evaluate the identify preservation in counterfac-
tual explanations through face verification. In face verification, we quantify the similarity
between the faces in query image and corresponding fake counterfactual explanation image.
We used state-of-the-art face recognition model trained on VGGFace2 dataset [19] as feature
extractor for both real images and their corresponding fake explanations. For face verifica-
tion, we calculated the closeness between real and fake image as cosine distance between
their feature vectors. The faces were considered as verified i.e., fake explanation have same
identity as real image, if the distance is below 0.5. In Table 7, we report face verification
accuracy as percentage of the verified query image and fake counterfactual image pairs. We

evaluated this metric over a randomly sampled test set of 500 images.

Table 7: Results on face-verification task to demonstrate that the identity of a person is

preserved across counterfactual explanations.

Target Class | Face Verification Accuracy
CelebA: Smiling 85.3%
CelebA:Young 72.2%
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Table 8: The foreign object preservation (FOP) score with and without the context-aware

reconstruction loss (CARL). FOP score depends on the performance of FO detector.

Foreign FOP score

Objects | Ours with CARL Ours with ¢,
Pacemaker 0.52 0.40
Hardware 0.63 0.32

For PCE trained on CXR dataset, we quantify the strength of our revised CARL loss in
preserving FO in explanation images compared to an image-level ¢; reconstruction loss. We
reported results on the FO preservation (FOP) score metric. FOP score is the fraction of real
images, with successful detection of FO, in which FO was also detected in the corresponding
explanation image x.. Our model with CARL obtained a higher FOP score, as shown in
Table 8. The FO detector network has an accuracy of 80%.

Figure. 14 presents examples of counterfactual explanations generated by our model
with and without the CARL. Our results confirm that CARL is an improvement over /;
reconstruction loss. We further provide a detailed ablation study over different components

of our loss in appendix A.12.

4.3.4 Comparison with saliency-maps

Popular existing approaches for model explanation consist of gradient-based methods
that provide a qualitative explanation in the form of saliency maps [200, 108]. Saliency
maps show the importance of each pixel of an image in the context of classification. Our
method is not designed to produce saliency maps as a continuous score for every feature
of the input. To compare against such methods, we approximated a saliency map as an
absolute difference map between the explanations generated for the two extremes; negative
decision with f(x.) < 0.2 and positive decision with f(x.) > 0.8. For proper comparison,

we considered the absolute values of the saliency maps and normalized them in the range
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Figure 14: Fidelity of generated images with respect to preserving FO.

Figure. 15 shows the saliency map obtain from our method and its comparison with
popular gradient based methods. For CelebA, we compare the explanations derived for the
“smiling” classifier. For CXR dataset, we show an example of an input image, where the
gradient-based saliency maps highlight almost the same region for two different target tasks.
In contrast, our difference map localized disease to specific regions in the chest. Figure. 15.C
shows the two extreme explanation images and the corresponding difference map, derived
for input images shown in Figure. 15.A.

For quantitative evaluation, we used the deletion evaluation metric to compare our dif-
ference map with saliency maps produced by different gradient-based methods [204]. The
deletion metric quantifies how the probability of the target-class changes as important pixels
are removed from an image. A sharp drop in in prediction accuracy, resulting in a low area
under the probability curve (AUC) (as a function of the percentage of the salient pixels
removed), represents a good explanation. To remove salient pixels from an image, in CXR
images, we selectively impaint the removing regions based on its surrounding.

For CXR dataset, in Table 9, we report the mean AUC over a sample of 500 images. The
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Figure 15: Comparison of our method against different gradient-based methods. A: Input

image; B: Saliency maps from existing works; C: Our simulation of saliency map as difference

map between the normal and abnormal explanation images. More examples are shown in

SM-Figure. 47.

Table 9: Quantity comparison of our method against gradient-based methods. Mean area

under the probability curve (AUC), plotted as a function of the fraction of removed pixels. A

low AUC shows a sharp drop in prediction accuracy as fraction of removed pixels increases.

Method Cardiomegaly Pleural Effusion Edema
Ours 0.040+0.04 0.023+0.02 0.083£0.05
eLRP 0.07140.05 0.033+0.02 0.055+0.03
Grad-CAM 0.04540.04 0.05840.05 0.035+0.02
Integrated Gradients 0.058+0.06 0.046+0.05 0.077+0.04

images were selected such that the f(x) > 0.9 for the target-disease. Our model achieved the

lowest AUC in deletion-by-impainting for cardiomegaly and pleural effusion. In Figure. 16,
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we show an example of deletion-by-impainting. The results show that the regions modified

by our explanation model are important for the classification decision.

1% 3% 5% 9% 11% 13% >
o P 507  ours (0.03
Input Image 3 S e oo
20_5 — 1G (0.05)
f(x) 007 003 0.02 0.02 0.02 0.03 0.06 p —— Grad-CAM (0.05)
o
'=0.2
(1]
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f(x) 026 027 O iy °

Percentage of salient pixels removed

Figure 16: Evaluation using deletion metric. The plot shows the drop in classification
probability for pleural effusion as important pixels are removed from the input image. Top
label shows the percentage of removed pixels. The bottom label shows the classification

prediction.

4.3.5 Clinical evaluation

In this experiment, we demonstrate the clinical relevance of our explanations. First,
we translate the clinical definition of two diseases (cardiomegaly and pleural effusion) into
quantitative metrics. Next, we used these clinical metrics to quantify the counterfactual
changes between normal and abnormal populations, as identified by the given classifier. If
the change in classification decision is associated with the corresponding change in clinical-
metric, we can conclude that the classifier considers clinically relevant information in its

diagnosis prediction. We considered the following two metrics:

4.3.5.1 Cardio Thoracic Ratio (CTR)

The CTR is the ratio of the cardiac diameter to the maximum internal diameter of the
thoracic cavity. A CTR ratio greater than 0.5 indicates cardiomegaly [166, 22, 48]. We
followed the approach in [23] to calculate CTR from a CXR. In the absence of ground truth

lung and heart segmentation on the MIMIC-CXR dataset, we used a segmentation network
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trained on open-sourced supervised datasets [155, 109]. We calculated heart diameter as the
distance between the leftmost and rightmost points from the lung centerline on the heart
segmentation. The thoracic diameter is calculated as the horizontal distance between the
widest points on the lung mask. Please refer appendix A.6 for details on segmentation net-

work.

Cardiomegaly Pleural Effusion
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Figure 17: Box plots to show distributions of pairwise differences in clinical-metrics. We
consider clinical metrics such as CTR for cardiomegaly and the Score of normal CP recess
(SCP) for pleural effusion, before (real) and after (counterfactual) our generative counter-
factual creation process. The mean value corresponds to the average causal effect of the
clinical-metric on the target disease. The low p-values for the dependent t-test statistics
confirms the statistically significant difference in the distributions of metrics for real and

counterfactual images. Further numbers are summarized in SM-Table 20.

4.3.5.2 Costophrenic recess

The fluid accumulation in costophrenic (CP) recess may lead to the diaphragm’s flatten-
ing and the associated blunting of the angle between the chest wall and the diaphragm arc,
called costophrenic angle (CPA). The blunt CPA is an indication of pleural effusion [156].

Marking the CPA angle on a CXR requires expert supervision, while annotating the CP
region with a bounding box is a much simpler task (see SM-Figure. 41). We learned an

object detector to identify normal or abnormal CP recess in the CXRs and used the Score
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for detecting a normal CP recess (SCP) as our evaluation metric. Further details on the
training of the object detector are provided in appendix A.7.

We performed a statistical test to quantify the differences in real images and their cor-
responding counterfactuals based on the above two metrics. We randomly sample two
groups of real images (1) a real-normal group defined as X" = {x; f(x) < 0.2}. It con-
sists of real CXR that are predicted as normal by the classifier f. (2) A real-abnormal
group defined as X* = {x; f(x) > 0.8}. For X" we generated a counterfactual group as,
X = {Zs(x,c);x € X c > 0.8}. Similarly for ¢, we derived a counterfactual group as
X% = {Zr(x,c);x € X% c < 0.2}

In Figure. 17, we showed the distribution of differences in CTR for cardiomegaly and
SCP for PE in a pair-wise comparison between real (normal/abnormal) images and their
respective counterfactuals. Patients with cardiomegaly have higher CTR as compared to
normal subjects. Hence, one should expect CTR(&X™) < CTR(XY;) and likewise CTR(X?)
> CTR(AX]}). Consistent with clinical knowledge, in Figure. 17, we observe a negative mean
difference for CTR(X™) — CTR(X}) (a p-value of < 0.0001) and a positive mean difference
for CTR(X?) — CTR(A}) (with a p-value of < 0.0001). The low p-value in the dependent
t-test statistics supports the alternate hypothesis that the difference in the two groups is
statistically significant, and this difference is unlikely to be caused by sampling error or by
chance.

By design, the object detector assigns a low SCP to any indication of blunting CPA
or abnormal CP recess. Hence, SCP(X™") > SCP(X;) and likewise SCP(X?) < SCP(X).
Consistent with our expectation, we observe a positive mean difference for SCP(X™) —
SCP(X) (with a p-value of < 0.0001) and a negative mean difference for SCP(X*) —
SCP(X7) (with a p-value of < 0.0001). A low p-value confirmed the statistically significant
difference in SCP for real images and their corresponding counterfactuals. For further details

and visual examples of samples in normal and abnormal groups, please refer appendix A.11.
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4.3.6 Human Evaluation
4.3.6.1 CelebA dataset

We used Amazon Mechanical Turk (AMT) to conduct human experiments to demon-
strate that the progressive exaggeration produced by our model is visually perceivable to
humans. We presented AMT workers with three tasks. In the first task, we evaluated if
humans can detect the relative order between two explanations produced for a given image.
We ask the AMT workers, “Given two images of the same person, in which image is the per-
son younger (or smiling more)?” (see Figure 18). We experimented with 200 query images
and generated two pairs of explanations for each query image (i.e., 400 hits). The first pair
(easy) imposed the two images are samples from opposite ends of the explanation spectrum

(counterfactuals), while the second pair (hard) makes no such assumption.

Task-1 (Age) Task-2 (Identify Target Class)

In which image the person is looking young? What is changing in the images?

Select an option
A
8

Select an option

Age 1

Same age Smile N
Not sure

Beard 3

4

Hair-style (Bangs)

Task-1 (Smile) Task-3 (Bias Detection)

In which image the person is smiling more? What is Changing in the images
Select an option
A
B

Same smile 3

Select an option
Smile 1
Gender 2

Not Sure

Smile and Gender 3

Not sure 4

Figure 18: The interface for the human evaluation done using Amazon Mechanical Turk
(AMT). Task-1 evaluated if humans can detect the relative order between two explanations.
Task-2 evaluated if humans can identify the target class for which our model has provided
the explanations. Task-3 demonstrated that our model can help the user to identify problems

like possible bias in the black-box training.

In the second task, we evaluated if humans can identify the target class for which our
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model has provided the explanations. We ask the AMT workers, “What is changing in the
images? (age, smile, hair-style or beard)”. We experimented with 100 query images from
each of the four attributes (i.e., 400 hits). In the third task, we demonstrate that our model
can help the user to identify problems like possible bias in the black-box training. Here,
we used the same setting as in the second task but also showed explanations generated for
a biased classifier. We ask the AMT workers, “What is changing in the images? (smile
or smile and gender)” (see Figure 18). We generated explanations for 200 query images
each, from a biased-classifier (fpiased) €xplainer from Section 4.3.7 and an unbiased classifier
(fNo-biasea) €xplainer (i.e., 400 hits). In all the three tasks, we collected eight votes for each
task, evaluated against the ground truth, and used the majority vote for calculating accuracy.

We summarize our results in Table 10. In the first task, the annotators achieved high
accuracy for the easy pair when there was a significant difference among the two explanation
images, as compared to the hard pair when the two explanations can have very subtle
differences. Overall, the annotators were successful in identifying the relative order between
the two explanation images.

In the second task, the annotators were generally successful in correctly identifying the
target class. The target class “bangs” proved to be the most difficult to identify, which was
expected. The generated images for “bangs” were qualitatively, the most subtle. For the
third task, the correct answer was always the target class 7.e., “smile”. In the case of biased
classifier explainer, the annotators selected “Smile and Gender” 12.5% of the times. The
gradual progression made by the explainer for a biased classifier was very subtle and was
changing large regions of the face as compared to the unbiased explainer. The difference is
much more visible when we compare the explanation generated for the same query image for
a biased and no-biased classifier, as in Figure 20. But in a realistic scenario, the no-biased
classifier would not be available to compare against. Nevertheless, the annotators detected
bias at roughly the same level of accuracy as our classifier (Table 12). Future work could

improve upon bias detection.
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Table 10: Summarizing the results of human evaluation. The x -statistics measure inter-rater
agreement for qualitative classification of items into some mutually exclusive categories. One
possible interpretation of k as given in [272] is < 0.0: Poor, 0.01 — 0.2: Slight, 0.21 — 0.40:
Fair, 0.41 — 0.60: Moderate, 0.61 — 0.80: Substantial and 0.81 — 1.00: Almost perfect

agreement.
Annotation Task Overall Sub categories
Accuracy k-statistic Category Accuracy k-statistic
Task-1 (Age) 83.5%  0.41 (Moderate) | Hard 73% 0.31 (Fair)
Easy 94% 0.51 (Moderate)
Task-1 (Smile) 77.5% 0.28 (Fair) Hard 66% 0.23 (Fair)
Easy 89.5% 0.32 (Fair)
Task-2 7% 0.35 (Fair) Age 2% -
(Identify Smile 99% -
Target Class) Bangs 50% -
Beard 87% -
Task-3 (Bias 93.75% 0.14 (Slight) [Biased 87.5% 0.09 (Slight)
Detection) FNo-biased 100% 0.02 (Slight)

4.3.6.2 MIMIC CXR Dataset

We conducted a human-grounded experiment with diagnostic radiology residents to com-
pare different styles of explanations (no explanation, saliency map, cycleGAN explanation,
and our counterfactual explanation) by evaluating different aspects of explanations: (1)
understandability, (2) classifier’s decision justification, (3) visual quality, (d) identity preser-
vation, and (5) overall helpfulness of an explanation to the users.

Our results show that our counterfactual explanation was the only explanation method
that significantly improved the users’ understanding of the classifier’s decision compared

to the no-explanation baseline. In addition, our counterfactual explanation had a signif-
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icantly higher classifier’s decision justification than the cycleGAN explanation, indicating
that the participants found a good evidence for the classifier’s decision more frequently in
our counterfactual explanation as compared to cycleGAN explanation.

Further, cycleGan explanation performed better in terms of visual quality and identity
preservation. However, at times the cycleGAN explanations were identical to the query
image, thus providing inconclusive explanations. Overall the participants found our expla-
nation method the most helpful method in understanding the assessment made by the Al
system in comparison to other explanation methods. Below, we describe the design of the
study, the data analysis methods, along with the results of the experiment in detail.

Experiment Design: We conducted an online survey experiment with 12 diagnostic
radiology residents. Participants first reviewed an instruction script, which described the Al
system developed to provide an autonomous diagnosis for CXR findings such as cardiomegaly.
The study comprised of the radiologists evaluating six CXR images which were presented
in random order to them. For selecting these siz CXR, we first, divided the test-set of the
explanation function for cardiomegaly into three groups, positive (f(x) € [0.8,1.0]), mild
(f(x) € [0.4,0.6]) and negative (f(x) € [0.0,0.2]). Next, we randomly selected two CXR
images from each group. The six CXR images were anonymized as part of the MIMIC-CXR
dataset protocol.

For each image, we had the same procedure consisted of a diagnosis tasks, followed by four
explanation conditions, and ended by a final evaluation question between the explanation
conditions. Further details of the study design are includes in appendix A.l.

Diagnosis: For each CXR image, we first asked a participant to provide their diagnosis
for cardiomegaly. This question ensures that the participants carefully consider the imaging
features that helped them diagnose. Subsequently, the participants were presented with the
classifier’s decision and were asked to provide feedback on whether they agreed.

Explanation Conditions: Next, the study provides the classifier’s decision with the fol-

lowing explanation conditions:

1. No explanation (Baseline): This condition simply provides the classifier decision
without any explanation, and is used as the control condition.

2. Saliency map: A heat map overlaid on the query CXR, highlighting essential regions
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for the classifier’s decision.

3. CycleGAN explanation: A video loop over two CXR images, corresponding to the
query CXR transformation with a negative and a positive decision for cardiomegaly.

4. Our counterfactual explanation: A video showing a series of CXR images gradually

changing the classifier’s decision from negative to positive.

Please note that after showing the baseline condition, we provided the other explanation
conditions in random order to avoid any learning or biasing effects.
FEvaluation metrics: Given the classifier’s decision and corresponding explanation, we

consider the following metrics to compare different explanation conditions:

1. Understandability: For each explanation condition, the study included a question to
measure whether the end-user understood the classifier’s decision, when explanation was
provided. The participants were asked to rate agreement with “I understand how the Al
system made the above assessment for Cardiomegaly”.

2. Classifier’s decision justification: Human user’s may perceive explanations as the
reason for the classifier’s decision. For the cycleGAN and our counterfactual explanation
conditions, we quantify whether the provided explanation were actually related to the
classification task by measuring the participants’ agreement with “The changes in the
video are related to Cardiomegaly”.

3. Visual quality: The study quantifies the proximity between the explanation images
and the query CXR by measuring the participants’ agreement with ” Images in the video
look like a chest z-ray.”.

4. ldentity preservation: The study also measures the extent to which participants think
the explanation images correspond to the same subject as the query CXR by measuring
the participants’ agreement with “Images in the video look like the chest z-ray from a
given subject”.

5. Helpfulness: For each CXR image, we asked the participants to select the most help-
ful explanation condition in understanding the classifier’s decision, “Which explanation
helped you the most in understanding the assessment made by the Al system?”. This

evaluation metric directly compares the different explanation conditions.
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All metrics, but the helpfulness metric were evaluated for agreement on a 5-point Likert
scale, where one means “strongly disagree” and five means “strongly agree”.

Free-form Response: After each question, we also asked the participants a free-form
question: “Please explain your selection in a few words.” We used answers to these questions
to triangulate our findings and complement our quantitative metrics by understanding our
participants’ thought-processes and reasoning.

Participants. Our participants include 12 diagnostic radiology residents who have com-
pleted medical school and have been in the residency program for one or more years. On
average, the participants finished the survey in 40 minutes and were paid $100 for their
participation in the study.

Data analysis: For each evaluation metric, the study asked the same question to the
participants while showing them different explanations. For each question, we gather 72
responses (6 - number of CXR images x 12 - number of participants).

For the understandability and helpfulness metrics, we conducted a one-way ANOVA test
to determine if there is a statistically significant difference between the mean metric scores
for the four explanation conditions. Specifically, we built a one-way ANOVA with the metric
as our dependent variable and analyzed agreement rating as the independent variable. If
we found a significant difference in the ANOVA method, we ran Tukey’s Honestly Signif-
icant Difference (HSD) posthoc test to perform a pair-wise comparison between different
explanation conditions.

We measured the classifier’s decision justification, visual quality and identity preservation
metrics only for the cycleGAN and our counterfactual explanations. We conducted paired
t-tests to compare these evaluation metrics between these two explanation conditions. We
also qualitatively analyzed the participants’ free-form responses to find themes and patterns
in their responses.

Results: Fig. 19 shows the mean score for the evaluation metrics of understandability,
classifier’s decision justification, visual quality, and identity preservation among the different
explanation conditions. Below, we report the statistical analysis for these results, followed
by analysis of the participants’ free-form responses to understand the reasons behind these

results.
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Figure 19: Comparing the different metrics in human evaluation study.

Understandability: The results show that our counterfactual explanation was the most
understandable explanation to the participants. A one-way ANOVA revealed that there was
a statistically significant difference in the understandability metric between at least two ex-
planation conditions (F(3, 284) = [3.39], p=0.019). The Tukey post-hoc test showed that the
understandability metric for our counterfactual explanation was significantly higher than the
no-explanation baseline (p = 0.018). However, there was no statistically significant difference
in mean scores between other pairs of explanations (refer to Table 11, “Understandability”
column). This finding indicates that providing our counterfactual explanations along with
the classifier’s decision made the algorithm most understandable to our clinical participants,
while other explanation conditions, saliency map and cycleGAN failed to achieve signifi-
cant difference from no-explanation baseline on the understandability metric. Next, we use
responses from free-text question to supplement our findings.

For the no-explanation baseline, the primary reason for poor understanding was the
absence of explanation (n=30), (e.g., they stated that “there is no indication as to how
the AI made this decision”). Interestingly, many responses (n=23) either associated their
high understanding with the correct classification decision 1i.e., participants understood the

decision as the decision is correct ( “I agree, it is small and normal”) or they assumed the
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Al-system is using similar reasoning as them to arrive at its decision ( “I assume the Al is
just measuring the width of the heart compared to the thoraz”, “Assume the AI measured the
CT ratio and diagnosed accordingly.”).

Participants’ mostly found saliency maps to be correct but incomplete (n=23), ( “Un-
clear how assessment can be made without including additional regions”). Specifically, for
cardiomegaly, the saliency maps were highlighting parts of the heart and not its border ( “Not
sure how it gauges not looking at the border”) or thoracic diameter ( “thoracic diameter can-
not be assessed using highlighted regions of heat map”). We observe a similar result in Fig. 15,
where the heatmap focuses on the heart but not its border. Further, some participants ex-
pressed a concern that they didn’t understand how relevant regions were used to derive the
decision ( “i understand where it examined but not how that means definite cardiomegaly”).

For cycleGAN explanation, the primary reason for poor understanding was the minimal
perceptible changes between the negative and positive images (n=3), ( “There is no change in
the video.”). In contrast, many participant’s explicitly reported an improved understanding
of the classifier’s decision in the presence of our counterfactual explanations (n=33), (“/
think the Al looking at the borders makes sense.”, “i can better understand what the Al is
picking up on with the progression video”).

Classifier’s decision justification: Our counterfactual explanation (M=3.46; SD=1.12)
achieved a positive mean difference of 0.63 on this metric as compared to cycleGAN (M=2.83;
SD=1.33), with t(71)=3.55 and p < 0.001. This result indicates that the participants found
a good evidence for the predicted class (cardiomegaly), much frequently in our counterfactual
explanations as compared to cycleGAN.

Most responses (n=25) explicitly mentioned visualizing changes related to cardiomegaly
such as an enlarged heart in our explanation video as compared to cycleGAN (n=17). In
cycleGAN, many reported that changes in the explanation video was not perceptible (n=23).
Further, the participants reported changes in density, windowing level or other attributes
which were not related to cardiomegaly ( “Decreasing the density does not impact how I

)

assess for cardiomegaly.”, “they could be or just secondary to windowing the radiograph™).
Such responses were observed in both cycleGAN (n=17) and our explanation (n=17). This

indicates that the classifier may have associated such secondary information (short-cuts)
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with cardiomegaly diagnosis. A more in-depth analysis is required to quantify the classifiers’
behaviour.

Visual quality and identity preservation: We observe a negative mean difference of 0.31
and 0.37 between our and cycleGAN explanation methods in visual quality and identity
preservation metrics, respectively. The mean score for visual quality was higher for cycleGAN
(M=4.55; SD=0.71) as compared to our method (M=4.24; SD=0.80) with t(71)=3.49 and
p < 0.001. Similarly, the mean score for identity preservation was also higher for cycleGAN
(M=4.51; SD=0.56) as compared to our method (M=4.14; SD=0.78) with t(71)=3.96 and
p < 0.001.

Most of the responses (n=69) agreed that the CycleGAN explanation were marked as
highly similar to the query CXR image. These results are consistent with our earlier results,
that cycleGAN has better visual quality with a lower FID score (see Table. 6). However,
in some responses, the participants pointed out that the explanation images were almost
identical to the query image ( “There’s virtually no differences. This is within the spectrum
of a repeat chest z-ray for instance.”). An explanation image identical to the query image
provides no information about the classifier’s decision. Further, similar looking CXR will also
result in similar classification decision, and hence will fail to flip the classification decision.
As a result, we also observed a lower agreement in the classifier consistency metric and a
lower counterfactual validity score in Table. 6 for cycleGAN.

Helpfulness: In our concluding question, “Which explanation helped you the most in
understanding the assessment made by the Al system?”, 57% of the responses selected
our counterfactual explanation as the most helpful method. A one-way ANOVA revealed
that there was a statistically significant difference in the helpfulness metric between at least
two explanation conditions (F(3, 284) = [21.5], p < 0.0001). In pair-wise Tukey’s HSD
posthoc test, we found that the mean usefulness metric for our counterfactual explanations
was significantly different from all the rest explanation conditions(p < 0.0001). Table 11 (
“Helpfulness” column) summarizes these results.

These results indicates that the participant’s selected our counterfactual explanations as

the most helpful form of explanation for understanding the classifier’s decision.
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Table 11: Results for one-way ANOVA for understandability metric, followed by Tukey’s
HSD post-hoc test between different levels of agreement. Note that the mean value for E4
(our counterfactual explanation) is the highest, indicating that our explanations helped users

the most in understanding the classifier’s decision. *p < 0.05; ***p < 0.0001.

Understandability Helpfulness
F(3, 284) = 3.39 F(3, 284) = 21.5
p < 0.05 p < 0.001
Explanation method p | Explanation method | p
E1 (No explanation) | E2 E1l E2
M=3.14 E3 M=0.05 E3
SD=1.39 E4 | * | SD=0.23 E4 ok
E2 (Saliency Map) El E2 El
M=3.31 E3 M=0.18 E3
SD=1.13 E4 SD=0.39 E4 otk
E3 (CycleGAN) E1l E3 E1l
M=3.24 E2 M=0.16 E2
SD=1.19 E4 SD=0.37 E4 ok
E4 (Our counterfactual | E1 | * E4 El otk
explanation) M=3.72 | E2 M=0.24 E2 otk
SD=0.97 E3 SD=0.42 E3 otk

4.3.7 Bias detection

Our model can discover confounding bias in the data used for training the black-box
classifier. Confounding bias provides an alternative explanation for an association between
the data and the target label. For example, a classifier trained to predict the presence of
a disease may make decisions based on hidden attributes like gender, race, or age. In a

simulated experiment, we trained two classifiers to identify smiling vs not-smiling images in
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the CelebA dataset. The first classifier fg;aseq is trained on a biased dataset, confounded with
gender such that all smiling images are of male faces. We train a second classifier fyo-piased
on an unbiased dataset, with data uniformly distributed with respect to gender. Note that
we evaluate both the classifiers on the same validation set. Additionally, we assume access

to a proxy Oracle classifier fagendger that perfectly classifies the confounding attribute i.e.,

gender.
Query Image Generated Visual Explanations
Desired f{x): [0.0-0.1) [0.2-0.3) [0.3-0.4) [0.5-0.6) [0.6-0.7) [0.7-0.8) [0.9-01.0]

Not-smiling/Female Smiling/Male
f(x):0.0 f(x5):0.0 i ] . 3 A 0.94
rnrr ~ .rf .rw rw ” . ﬁ r' r'!?

k]
O
v

=

o

:
o}
b=

Figure 20: Explanations for two classifiers, both trained to classify “Smiling” attribute on
CelebA dataset. For each example, the top row shows results from “Biased” classifier whose
data distribution is confounded with “Gender”. The bottom row shows explanations from
“No-Biased” classifier with uniform data distribution w.r.t gender. The top label indicates
output of the classifier and the bottom label is the output of an oracle classifier for the
con-founding attribute gender. The visual explanations for the “Biased” classifier changes

the gender as it adds smile on the face.

As shown in [36], if the training data for the GAN is biased, then the inference would
reflect that bias. In Figure 20, we compare the explanations generated for the two classifiers.
The visual explanations for the biased classifier change gender as it increases the amount
of smile. We adapted the confounding metric proposed in [113] to summarize our results in
Table 12. Given the data D = {(x;,y;, a;),%; € X, y;,a; € YV}, we quantify that a classifier

is confounded by an attribute a if the generated explanation x. has a different attribute a,
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as compared to query image x, when processed through the Oracle classifier f,. The metric
is formally defined as Ep[1(fa(xe) # fa(x))]/|D|. For a biased classifier, the Oracle function
predicted the female class for the majority of the images, while the unbiased classifier is
consistent with the true distribution of the validation set for gender. Thus, the fraction of
generated explanations that changed the confounding attribute “gender” was found to be

high for the biased classifier.

Table 12: Confounding metric for biased detection. For target label “Smiling” and “Not-
Smiling”, the explanations are generated using condition ¢ > 0.9 and ¢ < 0.1 respectively.
The Male and Female values quantifies the fraction of the generated explanations classifier
as male or female, respectively by oracle classifier fgenger- The overall value quantifies the
fraction of the generated explanations who have different gender as compared to the query

image. A small overall value shows least bias.

Target Label
Black-box classifier Smiling Not-Smiling
[Biased Male: 0.52 Male: 0.18
Female: 0.48 Female: 0.82
Overall: 0.12 Overall: 0.35
fNo-biased Male: 0.48 Male: 0.47
Female: 0.52  Female: 0.53
Overall: 0.07  Overall: 0.08

4.3.8 Evaluating class discrimination

In multi-label settings, multiple labels can be true for a given image. A multi-label
setting is common in CXR diagnosis. For example, cardiomegaly and pleural effusion are
associated with cardiogenic edema and frequently co-occur in a CXR. Please note that our
classification model is also trained in a multi-label setting where the fourteen radiological

findings may co-occur in a CXR. In this evaluation, we demonstrate the sensitivity of our
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generated explanations to the task being explained. Ideally, an explanation model trained
to explain a given task should produce explanations consistent with the query image on
all the other classes besides the given task. Specifically, if we are training a model to ex-
plain “cardiomegaly” then the counterfactual image should flip classification decision only

for “cardiomegaly” class and not for any other class.

ITRCTALT 39.7% 49.7% 30.6% 21.6% OB
ﬁ% 75
= c ©
VI 44.8% [EERIN 43.3% 66.9% 34.2% 57.8% 60
of &

e Sox> 45
By 35.9% 37.6% 62.5% 15.2% 30.0%

PE Edema Cardio- PE Edema Cardio- PE Edema Cardio-
megaly megaly megaly

Figure 21: Evaluating class discrimination. Each cell is the fraction of the generated expla-
nations, that have flipped in a class as compared to the query image. The x-axis shows the
classes in a multi-label setting, and the y-axis shows the target class for which an explanation

is generated. Note: This is not a confusion matrix.

We considered three diagnosis tasks, cardiomegaly, pleural effusion, and edema. For each
task, we trained one explanation model. Figure. 21 plots the fraction of the generated ex-
planations, that have flipped in other classes as compared to the query image. In Figure. 21,
each column represents one task, and each row is one run of our method to explain a given
task. The diagonal values also represent the counterfactual validity (CV) score reported in

Table. 6.

4.4 Discussion and Conclusion

We provided a BlackBox a Progressive Counterfactual Ezplainer designed to explain

image classification models for medical applications. Our framework explains the decision
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by gradually transforming the input image to its counterfactual, such that the classifier’s
prediction is flipped. We have formulated and evaluated our framework on three properties
of a valid counterfactual transformation: data consistency, classifier consistency, and self-
consistency. Our results showed that our framework adheres to all three properties.

Comparison with xGEM and cycleGAN: Our model satisfy all three essential proper-
ties of a valid counterfactual explanation. Our model creates natural-looking explanations
that produce a desired outcome from the classification model while retaining maximum
patient-specific information. In comparison, both xGEM and cycleGAN failed on at least
one essential property. xGEM model fails to create realistic images with a high FID score
(> 300). Furthermore, the cycleGAN model fails to flip the classifier’s decision with a low
CV score (< 60%).

xGEM: The visual quality of images generated by xGEM, is limited by the expressiveness
of its generator. xGEM adopted a variational autoencoder (VAE) as the generator. VAE
uses a Gaussian likelihood (¢y reconstruction), an unrealistic assumption for image data,
and is known to produce over-smoothed images [99]. In contrast, our model uses an implicit
likelihood assumption of GAN [172], resulting in realistic explanation images.

CycleGAN: The cycleGAN model learns two generator networks to transform an input
image into a positive or a negative sample for a given target class. However, during training,
cycleGAN loss function does not incorporate the external black-box classifier. It primarily
follows a data-driven approach to learn all the differences between positive and negative sam-
ples. Hence, the cycleGAN model learns to explain the data and not the classification model.
As a result, the counterfactual explanations derived from cycleGAN model frequently fails
to flip the classification decision, despite their high visual quality, resulting in inconclusive
images that are not counterfactual.

Further, we present a thorough comparison between cycleGAN and our explanation in
a human evaluation study. The clinical experts’ expressed high agreement that explanation
images from cycleGAN were of high quality and they resembles the query CXR. But at the
same time, users found the explanation images to be too similar to query CXR, and the
cycleGAN explanations failed to provide the counterfactual reasoning for the decision. In

comparison, our explanation were most helpful in understanding the classification decision.
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Though the users reported inconsistencies in the visual appearance, but the overall senti-
ment looks positive and they selected our method as their preferred explanation method for
improved understandability.

Comparison with saliency maps: As compared to saliency maps, counterfactual explana-
tions provide extra information to the end-user to understand the classification decision. Our
quantitative experiments show that the region modified by the PCE to create counterfactual
image, frequently matches the salient regions highlighted by the saliency-map based explana-
tions models. Also, saliency-map-based explanations may highlight almost the same region
for different tasks, resulting in misleading and inconclusive explanations (see Figure. 15).
In contrast, our counterfactual explanations provide additional information to clarify how
input features in the important regions could be modified to change the prediction decision.
Our difference map localizes disease to specific regions in the chest, and these regions align
with the clinical knowledge of the disease. In Figure. 15, our difference map focused on the
heart region for cardiomegaly and the CP recess region for PE.

Clinical relevance of the explanations: From a clinical perspective, we demonstrated
that the counterfactual changes associated with normal (negative) or abnormal (positive)
classification decisions are also associated with corresponding changes in disease-specific
metrics such as CTR and SCP. For example, changes associated with an increased posterior
probability for cardiomegaly also resulted in an increased CTR. Similarly, for PE, a healthy
CP recess with a high SCP score transformed into an abnormal CP recess with blunt CPA,
as the posterior probability for PE increases (see Figure. 12 and Figure. 17).

To the best of our knowledge, ours is the first attempt to quantify model explanations
using clinical metrics. At the same time, our evaluation has certain limitations. Our auto-
matic pipeline to compute CTR and SCP suffers from inaccuracies. This contributed to the
large variance in difference plots in Figure. 17. These inaccuracies are due to the sub-optimal
performance of the segmentation and object detector networks. In the absence of ground
truth annotations for lung and heart segmentation and limited annotations for the CP re-
cess region, these networks have sub-optimal performance. Nevertheless, our goal is not to
compute these metrics correctly for each image but to perform a population-level analysis.

In our experiments, CTR and SCP successfully captured the difference between normal and
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abnormal CXR for cardiomegaly and PE, respectively. One may argue using CTR and SCP
to perform disease classification. However, models based on these features will also suffer
from similar inaccuracies, resulting in poor performance and generalization compared to the
DL methods.

Defining clinical metrics for different diseases is a challenging task. For example, consider
edema. It may appear as different radiographic concepts (e.g., cephalization, peribronchial
cuffing, perihilar batwing appearance, and opacities etc.) in different patients [167]. Trans-
forming a healthy CXR to a counterfactual image for edema introduce changes in multiple
such concepts. Future research should determine appropriate metrics to quantify and un-
derstand these concepts. Manual annotation is one solution for obtaining ground truth to
train models that can identify concepts. Efforts should be made to reduce the dependency
on manual labelling as it is expensive and not scalable.

Usability of explanations: Counterfactual explanations can help in model auditing and
recovering hidden bias in the classifier’s training. In our experiments, we visualize coun-
terfactual explanations from a biased classifier and contrast it with a classifier without any
data bias. Further, using human evaluation we demonstrate the prospective use-case for
counterfactual explanations.

We acknowledge that our GAN-generated counterfactual explanations may have missing
details such as small wires. In our extended experiments, we found that the foreign objects
such as pacemaker have minimal importance in the classification decision (see appendix
A.13). We attempted to improve the preservation of such information through our revised
context-aware reconstruction loss (CARL). However, even with CARL, the FO preservation
score is not perfect. A possible reason for this gap is the limited capacity of the object
detector used to calculate the FOP score. Training a highly accurate FO detector is outside
the scope of this study.

Further, a resolution of 256 x 256 for counterfactually generated images is smaller than a
standard CXR. Small resolution limits the evaluation for fine details by both the algorithm
and the interpreter. Our formulation of cGAN uses conditional-batch normalization (cBN)
to encapsulate condition information while generating images. For efficient ¢cBN, the mini-

batches should be class-balanced. To accommodate high-resolution images with smaller
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batch sizes, we must decrease the number of conditions to ensure class-balanced batches.
Fewer conditions resulted in a coarse transformation with abrupt changes across explanation
images. In our experiments, we selected the smallest bin width, which created a class-
balanced batch that fits in GPU memory and resulted in stable cGAN training. However,
with the advent of larger-memory GPUs, we intend to apply our methods to higher resolution
images in future work; and assess how that impacts interpretation by clinicians.

To conclude, this study uses counterfactual explanations as a way to audit a given black-
box classifier and evaluate whether the radio-graphic features used by that classifier have any
clinical relevance. In particular, the proposed model did well in explaining the decision for
cardiomegaly and pleural effusions and was corroborated by an experienced radiology resident
physician. By providing visual explanations for deep learning decisions, radiologists better
understand the causes of its decision-making. This is essential to lessen physicians’ concerns
regarding the “BlackBox” nature by an algorithm and build needed trust for incorporation
into everyday clinical workflow. As an increasing amount of artificial intelligence algorithms
offer the promise of everyday utility, counterfactually generated images are a promising
conduit to building trust among diagnostic radiologists.

By providing counterfactual explanations, our work opens up many ideas for future work.
Our framework showed that valid counterfactual can be learned using an adversarial gen-
erative process, that is regularized by the classification model. However, counterfactual
reasoning is incomplete without a causal structure and explicitly modeling of the interven-
tions. An interesting next step should explore incorporating or discovering plausible causal

structures and creating explanations that are grounded with them.
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5.0 Concept-based Counterfactual Explanation

5.1 Introduction

Machine Learning, specifically, Deep Learning (DL) methods are increasingly adopted
in healthcare applications. Model explainability is essential to build trust in the AI sys-
tem [73] and to receive clinicians’ feedback. Standard explanation methods for image clas-
sification delineates regions in the input image that significantly contribute to the model’s
outcome [231, 151, 212]. However, it is challenging to explain how and why variations in
identified regions are relevant to the model’s decision. Ideally, an explanation should resem-
ble the decision-making process of a domain expert. This paper aims to map a DL model’s
neuron activation patterns to the radiographic features and constructs a simple rule-based
model that partially explains the Black-box.

Methods based on feature attribution have been commonly used for explaining DL models
for medical imaging [11]. However, an alignment between feature attribution and radiology
concepts is difficult to achieve, especially when a single region may correspond to several
radiographic concepts. Recently, researchers have focused on providing explanations in the
form of human-defined concepts [122, 12, 304]. In medical imaging, such methods have been
adopted to derive an explanation for breast mammograms [291], breast histopathology [81]
and cardiac MRIs [34]. A major drawback of the current approach is their dependence
on explicit concept-annotations, either in the form of a representative set of images [122] or
semantic segmentation [12], to learn explanations. Such annotations are expensive to acquire,
especially in the medical domain. We use weak annotations from radiology reports to derive
concept annotations. Furthermore, these methods measure correlations between concept
perturbations and classification predictions to quantify the concept’s relevance. However,
the neural network may not use the discovered concepts to arrive at its decision. We borrow
tools from causal analysis literature to address that drawback [273].

In this work, we used radiographic features mentioned in radiology reports to define con-

cepts. Using a National Language Processing (NLP) pipeline, we extract weak annotations
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from text and classify them based on their positive or negative mention [107]. Next, we use
sparse logistic regression to identify sets of hidden-units correlated with the presence of a
concept. To quantify the causal influence of the discovered concept-units on the model’s
outcome, we view concept-units as a mediator in the treatment-mediator-outcome frame-
work [106]. Using measures from mediation analysis, we provide an effective ranking of the
concepts based on their causal relevance to the model’s outcome. Finally, we construct a
low-depth decision tree to express discovered concepts in simple decision rules, providing the
global explanation for the model. The rule-based nature of the decision tree resembles many

decision-making procedures by clinicians.

5.2 Method

We consider a pre-trained black-box classifier f : x — y that takes an image x as
input and process it using a sequence of hidden layers to produce a final output y € RP.
Without loss of generality, we decompose function f as ®; o ®;(x), where ®;(x) € RE is
the output of the initial few layers of the network and ®, denotes the rest of the network.
We assume access to a dataset X = {(Xn,¥n,Cn)}?", where x,, is input image, y, is a
d-dimensional one-hot encoding of the class labels and c,, € R¥ is a k-dimensional concept-
label vector. We define concepts as the radiographic observations mentioned in radiology
reports to describe and provide reasoning for a diagnosis. We used a NLP pipeline [107]
to extract concept annotations. The NLP pipeline follows a rule-based approach to extract
and classify observations from the free-text radiology report. The extracted k' concept-label
c,[k] is either 0 (negative-mention), 1(positive-mention) or -1 (uncertain or missing-mention).

An overview of our method is shown in Fig. 22. Our method consists of three sequential
steps:

(1) Concept associations: We seek to discover sparse associations between concepts and
the hidden-units of f(-). We express k' concept as a sparse vector v, € R” that represents
a linear direction in the intermediate space ®(-).

(2) Causal concept ranking: Using tools from causal inference, we find an effective
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ranking of the concepts based on their relevance to the classification decision. Specifically,
we consider each concept as a mediator in the causal path between the input and the outcome.
We measure concept relevance as the effect of a counterfactual intervention on the outcome
that passes indirectly through the concept-mediator.

(3) Surrogate explanation function: We learn an easy-to-interpret function g¢(-) that
mimics function f(-) in its decision. Using g(-), we seek to learn a global explanation for

f() in terms of the concepts.
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Figure 22: Method overview for concept-based counterfactual explanations. We provide
explanation for the black-box function f(x) in-terms of concepts, that are radiographic
observations mentioned in radiology reports. 1) The intermediate representation ®;(x) is
used to learn a sparse logistic regression hy, () to classify k" concept. 2) The non-zero
coefficients of v, represents a set of concept units V), that serves as a mediator in the causal
path connecting input x and outcome y. 3) A decision tree function is learned to map

concepts to class labels.
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5.2.1 Concept associations

We discover concept associations with intermediate representation ®,(-) by learning a
binary classifier that maps ®;(x) to the concept-labels [122]. We treat each concept as a
separate binary classification problem and extract a representative set of images X*, in which
concept ¢,[k| is present and a random negative set. We define concept vector (vi) as the
solution to the logistic regression model ¢, [k] = o(v] vec(®1(x,))) + €, where o(-) is the sig-
moid function. For a convolutional neural network, ®;(x) € R**"* is the output activation
of a convolutional layer with width w, height h and number of channels I. We experimented
with two vectorization for ®;. In first, we flatten ®;(x) to be a whi-dimensional vector.
In second, we applied a spatial aggregation by max-pooling along the width and height to
obtain [-dimensional vector. Unlike TCAV [122] that uses linear regression, we used lasso

regression to enable sparse feature selection and minimize the following loss function,
min Y £(hy, (), ealk]) + Al|vill (15)
Vi

where £(-, -) is the cross entropy loss, hy, (x) = o(v{ vec(®;(x,))) and A is the regularization
parameter. We performed 10-fold nested-cross validation to find A\ with least error. The
non-zero elements in the concept vector vy forms the set of hidden units (V) that are most

relevant to the & concept.

5.2.2 Causal concept ranking

Concept associations identified hidden units that are strongly correlated with a concept.
However, the neural network may or may not use the discovered concepts to arrive at its
decision. We use tools from causal inference, to quantify what fraction of the outcome is
mediated through the discovered concepts.

To enable causal inference, we first define counterfactual X' as a perturbation of the input
image x such that the decision of the classifier is flipped. Following the approach proposed in
Chapter 3, we used the Progressive Counterfactual Explainer (PCE), a conditional generative

adversarial network (cGAN) to learn the counterfactual perturbation. We conditioned on
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the output of the classifier, to ensure that cGAN learns a classifier-specific perturbation for
the given image x. Next, we used theory from causal mediation analysis to causally relate
a concept with the classification outcome. Specifically, we consider concept as a mediator
in the causal pathway from the input x to the outcome y. We specify following effects to
quantify the causal effect of the counterfactual perturbation and the role of a mediator in

transferring such effect,

1. Average treatment effect (ATE): ATE is the total change in the classification outcome y
as a result of the counterfactual perturbation.

2. Direct effect (DE): DE is the effect of the counterfactual perturbation that comprises of
any causal mechanism that do not pass through a given mediator. It captures how the
perturbation of input image changes classification decision directly, without considering
a given concept.

3. Indirect effect (IE): IE is the effect of the counterfactual perturbation which is medi-
ated by a set of mediators. It captures how the perturbation of input image changes

classification decision indirectly through a given concept.

Following the potential outcome framework from [217, 273|, we define the ATE as the

proportional difference between the factual and the counterfactual classification outcome,

ATE = E[ff((’i; —1]. (16)

To enable causal inference through a mediator, we borrow Pearl’s definitions of natural
direct and indirect effects [201] (ref Fig. 23). We consider set of concept-units V as a
mediator, representing the k' concept. We decompose the latent representation ®;(x) as
concatenation of response of concept-units Vi (x) and rest of the hidden units Vi (x) i.e.,
D1(x) = Wi(x),Vi(x)]. We can re-write classification outcome as f(x) = ®y(®;(x)) =
Dy ([Vi(x), Ve(x)]). To disentangle the direct effect from the indirect effect, we use the con-
cept of do-operation on the unit level of the learnt network. Specifically, we use do(Vg(x)) to
denote that we set the value of the concept-units to the value obtained by using the original

image as input. By intervening on the network and setting the value of the concept units,
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we can compute the direct effect as the proportional difference between the factual and the
counterfactual classification outcome, while holding mediator i.e., V} fixed to its value before

the perturbation,

Input Image Counterfactual Image Input Image Input Image

Figure 23: Illustration of direct and indirect effects in causal mediation analysis.

We compute indirect effect as the expected change in the outcome, if we change the
mediator from its original value to its value using counterfactual, while holding everything

else fixed to its original value,

IE = E[

([ o). Velx)) (18)
(x |

0o ([Ve(x), Vi(x)])

If the perturbation has no effect on the mediator, then the causal indirect effect will be zero.
Finally, we use the indirect effect associated with a concept, as a measure of its relevance to

the classification decision.

5.2.3 Surrogate explanation function

We aim to learn a surrogate function ¢(-), such that it reproduces the outcome of the
function f(-) using an interpretable and straightforward function. We formulated ¢(-) as a

decision tree as many clinical decision-making procedures follow a rule-based pattern. We
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summarize the internal state of the function f(-) using output of k concept regression func-

tions hy, (-) as follows,
w,, = [logit(hy, (Xn)),logit(hy, (X)), - - ]. (19)
Next, we fit a decision tree function, g(-), to mimic the outcome of the function f(-) as,
g = rgmin 3 £lg(wa). f5.) (20

where L is the splitting criterion based on minimizing entropy for highest information gain

from every split.

5.3 Experiments and Results

5.3.1 Study cohort and imaging dataset

We perform experiments on the MIMIC-CXR [112] dataset, which is a multi-modal
dataset consisting of 473K chest X-ray images and 206K reports. The dataset is labeled for
14 radiographic observations, including 12 pathologies. We used state-of-the-art DenseNet-
121 [98] architecture for our classification function [107]. DenseNet-121 architecture is com-
posed of four dense blocks. We experimented with three versions of ®;(-) to represent the
network until the second, third, and fourth dense block. For concept annotations, we consid-
ered radiographic features that are frequently mentioned in radiology reports in the context
of labeled pathologies. Next, we used Stanford CheXpert [107] to extract and classify these

observations from free-text radiology reports.

5.3.2 Experimental setup

We first evaluated the concept classification performance and visualized concept-units to

demonstrate their effectiveness in localizing a concept. Next, we summarized the indirect
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effects associated with different concepts across different layers of the classifier. We evaluated
a proposing ranking of the concepts based on their causal contribution to the classification
decision. Finally, we used the top-ranked concepts to learn a surrogate explanation function

in the form of a decision tree.

5.3.3 Evaluation of concept classifiers

The intermediate representations from third dense-block consistently outperformed other
layers in concept classification. In Fig. 24, we show the testing-ROC-AUC and recall metric
for different concept classifiers. All the concept classifiers achieved high recall, demonstrating

a low false-negative (type-2) error.
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Figure 24: AUC-ROC and recall metric for different concept classifiers.

In Fig. 25, we visualize the activation map of hidden units associated with the concept
vector V. For each concept, we visualize hidden units that have large logistic regression-
coefficient (). To highlight the most activated region for a unit, we threshold activation
map by the top 1% quantile of the distribution of the selected units’ activations [12]. Con-
sistent with prior work [13], we observed that several hidden units have emerged as concept
detectors, even though concept labels were not used while training f. For cardiac-silhouette,
different hidden units highlight different regions of the heart and its boundary with the lung.
For localized concept such as blunt costophrenic angle, multiple relevant units were identified

that all focused on the lower-lobe regions. Same hidden unit can be relevant for multiple
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concepts. The top label in Fig. 25. shows the top two important concepts for each hidden

unit.
Input Image Unit-783 Unit-827 Unit-772 Unit-551 Unit-779
Cardiac Silhouette Cardiac Silhouette  Cardiac Silhouette Cardiac Silhouette Cardiac Silhouette
Pleural Fluid Heart Size Heart Size Enlarged Arteries Hilar Opacity

Unit-605 Unit-924 Unit-440 Unit-651
Blunt Blunt, Pleural Fluid Blunt Blunt

Figure 25: A qualitative demonstration of the activation maps of the hidden units that act
as visual concept detectors. Each column represents one hidden unit identified as part of
concept vector Vi. Top two rows show k = cardiac-silhouette and bottom rows have k =blunt

costophrenic angle.

5.3.4 Evaluating causal concepts using decision tree as surrogate function

We evaluate the success of the counterfactual intervention by measuring average total
effect (ATE). High values for ATE confirms that counterfactual image generated by [242]
successfully flips the classification decision. We achieved an ATE of 0.97 for cardiomegaly,
0.89 for pleural effusion and 0.96 for edema. In Fig. 26 (heat-map), we show the distribu-

tion of the indirect effect associated with concepts, across different layers. The middle layer
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demonstrates a large indirect effect across all concepts. This shows that the hidden units in

dense-block 3 played a significant role in mediating the effect of counterfactual intervention.
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Figure 26: Evaluating concept vectors and their causal effect. Indirect effects of the concepts,
calculated over different layers of the DenseNet-121 architecture (heat-map). The derived
ranking of the concepts based on their causal relevance to the diagnosis (bar-graph). A
comparative ranking based on concept sensitivity score from TCAV [122]. The trend of
recall metric for the decision tree function g(-), while training using top x% of top-ranked

concepts (trend-plot).

In Fig. 26 (bar-graph), we rank the concepts based on their indirect effect. The top-
ranked concepts recovered by our ranking are consistent with the radiographic features that
clinicians associates with the examined three diagnoses [115, 167, 184]. Further, we used
the concept sensitivity score from TCAV [122] to rank concepts for each diagnosis. The
top-10 concepts identified by our in-direct effect and TCAV are the same, while their order
is different. The top-3 concepts are also the same, with minor differences in ranking. Both

the methods have low importance score for random concept. This confirms that the trend
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in importance score is unlikely to be caused by chance. For our approach, random concept
represents an ablation of the concept-association step. Here, rather than performing lasso

regression to identify relevant units, we randomly select units.

Pleural Fluid > 0.5

Vascular Prominence > 0.5 Blunt Costophrenic Angle > 0.2

e — ~.

Normal Cardiac Silhouette > 0.4 Hilar Opacity > 0.3 No Pleural Effusion Pleural Effusion

g N

No Cardiomegaly Cardiomegaly No Edema Edema

Figure 27: The decision tree for the three diagnosis with best performance on recall metric.

To quantitatively demonstrate the effectiveness of our ranking, we iteratively consider 2%
of top-ranked concepts and retrain the explanation function g(w). In Fig. 26 (bottom-plot),
we observe the change in recall metric for the classifier g(-) as we consider more concepts.
In the beginning, as we add relevant concepts, the true positive rate increases resulting in
a high recall. However, as less relevant concepts are considered, the noise in input features
increased, resulting in a lower recall. Fig. 27 visualize the decision tree learned for the best

performing model.

5.4 Discussion and Conclusion

Model explainability is essential for the creation of trustworthy Machine Learning models
in healthcare. An ideal explanation resembles the decision-making process of a domain
expert and is expressed using concepts or terminology that is meaningful to the clinicians.
To provide such explanation, we grounded our explanation in terms of clinically relevant
concepts that are causally influencing the model’s decision. We first associate the hidden

units of the classifier to clinically relevant concepts. We take advantage of radiology reports
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accompanying the chest X-ray images to define concepts. We discover sparse associations
between concepts and hidden units using a linear sparse logistic regression. To ensure that the
identified units truly influence the classifier’s outcome, we adopt tools from Causal Inference
literature and, more specifically, mediation analysis through counterfactual interventions.
Finally, we construct a low-depth decision tree to translate all the discovered concepts into
a straightforward decision rule, expressed to the radiologist. We evaluated our approach on
a large chest x-ray dataset, where our model produces a global explanation consistent with
clinical knowledge. We successfully discovered highly discriminative neurons associated with
fine-grains concepts that clinicians uses to explain their decision.
Acknowledgement This work was partially supported by NIH Award Number 1ROTHL141813-

01, NSF 1839332 Tripod+X, SAP SE, and Pennsylvania’s Department of Health. We are
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6.0 Augmentation by Counterfactual Explanation - Fixing an Overconfident

Classifier

6.1 Introduction

A highly accurate but overconfident model is ill-suited for decision-making pipelines,
especially in critical applications such as healthcare and autonomous driving. The classifi-
cation outcome should reflect a high uncertainty on ambiguous in-distribution samples that
lie close to the decision boundary. The model should also refrain from making overconfi-
dent decisions on samples that lie far outside its training distribution, far-out-of-distribution
(far-OOD), or on unseen samples from novel classes that lie near its training distribution
(near-OOD). This paper proposes a method to fine-tune a given pre-trained classifier to fix
its uncertainty characteristics while retaining its predictive performance.

We propose using a Progressive Counterfactual Explainer (PCE) to generate counterfac-
tually augmented data (CAD) for fine-tuning the classifier. The PCE is a form of conditional
Generative Adversarial Networks (cGANs) trained to generate samples that visually traverse
the separating boundary of the classifier. The discriminator of the PCE serves as a density
estimator to identify and reject OOD samples. We perform extensive experiments with de-
tecting far-OOD, near-OOD, and ambiguous samples. Our empirical results show that our
model improves the uncertainty of the baseline, and its performance is competitive to other
methods that require a significant change or a complete re-training of the baseline model.

Deep neural networks (DNN) are increasingly being used in decision-making pipelines
for real-world high-stake applications such as medical diagnostics [57] and autonomous driv-
ing [60]. For optimal decision making, the DNN should produce accurate predictions as well
as quantify uncertainty over its predictions [64, 140]. While substantial efforts are made
to engineer highly accurate architectures [98], many existing state-of-the-art DNNs do not
capture the uncertainty correctly [65]. This hinders the re-use of openly available pre-trained
models for real-world applications. We proposed to fine-tune the given pre-trained DNN on

counterfactually augmented data, to improve its uncertainty quantification while retaining
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its original predictive accuracy.

Any classification model is essentially learning a hyperplane to separate samples from
different classes. Accuracy only captures the proportion of samples that are on the correct
side of the decision boundary. However, it ignores the relative distance of the sample from
the decision boundary [131]. Ideally, samples closer to the boundary should have high un-
certainty. The actual predicted value from the classifier should reflect this uncertainty via
a low confidence score [102]. Conventionally, DNNs are trained on hard-label datasets to
minimize a negative log-likelihood (NLL) loss. Such models tend to over-saturate on NLL
and end-up learning very sharp decision boundaries [85, 180]. The resulting classifiers ex-
trapolate over-confidently on ambiguous, near boundary samples, and the problem amplifies
as we move to OOD regions [64].

We consider two types of uncertainty: epistemic uncertainty, caused due to limited data
and knowledge of the model, and aleatoric uncertainty, caused by inherent noise or ambiguity
in the data [128]. We evaluate these uncertainties with respect to three test distributions

(see Fig 28):

e Ambiguous in-Distribution (AiD): These are the samples within the training distri-
bution that have an inherent ambiguity in their class labels. Such ambiguity represents
high aleatoric uncertainty arising from class overlap or noise [245], e.g., an image of a ‘5’
that is similar to a ‘6’.

e Near-OOD: Near-OOD represents a label shift where label space is different between
ID and OOD data. It has high epistemic uncertainty arising from the classifier’s lim-
ited information on unseen data. We use samples from unseen classes of the training
distribution as near-OOD.

° : Far-OOD represents data distribution that is significantly different from the
training distribution. It has high epistemic uncertainty arising from mismatch between

different data distributions.

Earlier work focuses on threshold-based detectors that use information from a pre-trained
DNN to identify OOD samples [85, 92, 100, 277, 96]. Such methods predominantly focus on
far-OOD detection and often do not address the over-confidence problem in DNN.
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Figure 28: Comparison of the uncertainty estimates from the baseline, before and after
fine-tuning with ACE. Each row represents a different dataset. A) Fine-tuning has little
effect on the predicted entropy (PE) of in-distribution (iD) samples. We use PE to
identify ambiguous iD (AiD) samples (B) and near-OOD samples (C). D-E) We use
the discriminator of the PCE to identify far-OOD samples (last two columns). The legend
shows the AUC-ROC for binary classification over uncertain samples and iD samples. Our

method improved the uncertainty estimates across the spectrum.

In another line of research, variants of Bayesian models [186, 65] and ensemble learn-
ing [97, 133] were explored to provide reliable uncertainty estimates. Recently, there is a shift
towards designing generalizable DNN that provide robust uncertainty estimates in a single

forward pass [266, 27, 179]. Such methods usually propose changes to the DNN architec-
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ture [253], training procedure [299] or loss functions [181] to encourage separation between
ID and OOD data. Popular methods include, training deterministic DNN with a distance-
aware feature space [267, 146] and regularizing DNN training with a generative model that
simulates OOD data [138]. However, these methods require a DNN model to be trained
from scratch and are not compatible with an existing pre-trained DNN. Also, they may use
auxiliary data to learn to distinguish OOD inputs [148].

In this work, we introduce an augmentation by counterfactual explanation (ACE) strat-
egy to fine-tune an existing pre-trained DNN. Fine-tuning improves the uncertainty estimates
without changing the network’s architecture or compromising on its predictive performance.
ACE uses a progressive counterfactual explainer (PCE) similar to Lang et al. [134] and Singla
et al. [243] to generate counterfactually augmented data (CAD). The discriminator of the
PCE is a density estimator and is used in a threshold-based selection function to identify
and reject far-OOD samples.

The PCE is a conditional-Generative Adversarial Network (cGAN)-based explanation
function that explains the decision of a DNN by gradually perturbing a query image to flip
its classification decision. We used PCE to generate augmented samples closer to the decision
boundary. We assign soft labels to these generated samples that mimic their distance from
the boundary. Fine-tuning on such augmented data helps the DNN to recover from the
over-saturation on NLL loss, thus making the decision boundary smoother. Smooth decision
boundary facilitates improved uncertainty estimates for AiD and near-OOD samples and
also makes the classifier robust to adversarial attacks.

Our contributions are as follows: (1) We propose a novel strategy to fine-tune an ex-
isting pre-trained DNN to improve its uncertainty estimates and facilitate its deployment
in real-world applications. (2) Our approach generates counterfactual augmentations near
the decision boundary, allowing the classifier to widen its boundary, to successfully capture
the uncertainty over ambiguous-iD and near-OOD samples. (3) Our GAN-based augmenter
provides a density estimator (the discriminator) to detect far-OOD samples.

We provide a comprehensive evaluation of our method on specifically defined test datasets
to capture different uncertainties. Furthermore, our fine-tuned classifier exhibits better ro-

bustness to popular adversarial attacks.
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6.2 Method

In this paper, we consider a pre-trained DNN classifier, fy, with good prediction accu-
racy but sub-optimal uncertainty estimates. We assume fy is a differentiable function and
we have access to its gradient with respect to the input, Vi fy(x), and to its final prediction
outcome fy(x). We also assume access to either the training data for fp, or an equivalent
dataset with competitive prediction accuracy. We further assume that the training dataset

for fp has hard labels {0, 1} for all the classes.
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Figure 29: Overview of the method. (a) Given a pre-trained classifier fy, we learn a c-GAN
based progressive counterfactual explainer (PCE) G(x,c), while keeping fy fixed. (b) The
trained PCE creates counterfactually augmented data. (¢) A combination of original training
data and augmented data is used to fine-tune the classifier, fy;a. (d) The discriminator from

PCE serves as a selection function to detect and reject OOD data.

Our goal is to fine-tune fy such that the revised model provides better uncertainty esti-
mates, while retaining its original predictive accuracy. More specifically, we aim to improve
uncertainty estimates for OOD and ambiguous samples. We use a progressive counterfactual
explainer (PCE) to generate counterfactually augmented data. This data is then used to
apply a few updates to fy, to gradually widen its decision boundary, resulting in improved

uncertainty estimates on ambiguous and near-OOD samples. The PCE generates realistic
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perturbations of a given query image while gradually traversing the decision boundary be-
tween the classes, as defined by fy[243, 134]. We used the PCE with a conditional-GAN
backbone that is trained with respect to fy. The discriminator of the cGAN-based PCE
models is a density estimator that provides essential information to enhance fy far-OOD
detection. More specifically, we used the discriminator as a selection function to abstain fy

from making prediction on far-OOD samples. Fig. 29 summarizes our approach.
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Figure 30: PCE: The encoder-decoder architecture to create counterfactual augmentation

for a given query image.

The remaining sections are structured as follow: we first formulate the ¢cGAN-based
PCE model in Section 6.2.1. In Section 6.2.2, we describe our novel Augmentation by
Counterfactual Explanation (ACE) strategy that uses the trained PCE to generate CDA
and fine-tune fp. Finally, in Section 6.2.3, we combine the discriminator from the PCE with
the fine-tuned fy to provide our final classifier.

Notation: The classification function is defined as fy : R — RX, where 6 represents
model parameters. The training dataset for fy is defined as D = {X, Y}, where x € X
represents an input space and y € Y = {1,2,--- , K} is a label set over K classes. The

classifier produces point estimates to approximate the posterior probability P(y|x, D).
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6.2.1 Progressive Counterfactual Explainer (PCE) v2.0

We designed the PCE network to take a query image (x € R?) and a desired classification
outcome (c € R¥) as input, and create a perturbation of a query image (x) such that fy(x) ~
c. Our formulation, x = G(x, ¢) allows us to use c to traverse through the decision boundary
of fy from the original class to a counterfactual class. Following previous work [134, 243],

we design the PCE to satisfy the following three properties:

1. Data consistency: The perturbed image, x should be realistic and should resemble
samples in X.

2. Classifier consistency: The perturbed image, x should produce the desired output
from the classifier fy i.e., fo(G(x,¢)) =~ c.

3. Self consistency: Using the original classification decision fp(x) as condition, the PCE

should produce a perturbation that is very similar to the query image, 1i.e.,

G(G(x,c¢), fo(x)) = x and G(x, fp(x)) = x.

Data Consistency: We formulate the PCE as a ¢GAN that learns the underlying data
distribution of the input space X without an explicit likelihood assumption. The GAN
model comprised of two networks — the generator G(-) and the discriminator D(-). The
G(-) learns to generate fake data, while the D(+) is trained to distinguish between the real

and fake samples. We jointly train G, D to optimize the following logistic adversarial loss [75],

Loau(D. G) = Exllog D(x) + log(1 — D(G(x,0)))] (21)

Our architecture for the cGAN is adapted from StyleGANv2 [1]. We formulate the generator
as G(x,c) = g(e(x), c), a composite of two functions, an image encoder e(-) and a conditional
decoder ¢(-) [1]. The encoder function e : X — W, learns a mapping from the input space
X to an extended latent space W*. The W™ represents a concatenation of L different latent
representations (w;), one for each layer of the decoder g(-). The conditional decoder g(-),
maps the embedding back to the input space X while respecting the condition c. We provide

condition information to the decoder by concatenating the condition ¢ to each w; € W*. The
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decoder further transforms the layer-specific latent representation into a layer-specific style-
vector as s; = A;([wy, ¢(c)]) where, A; is an affine transformation and ¢(c) is an embedding
for c. Further, we also extended the discriminator network D(-) to have auxiliary information
from the classifier fy. Specifically, we concatenate the penultimate activations from the fy(x)
with the penultimate activations from the D(x), to obtain a revised representation before
the final fully-connected layer of the discriminator. The detailed architecture is summarized
in Fig. 30.

We also borrow the concept of path-length regularization L, (G) from StyleGANv2 to

enforce smoother latent space interpolations for the generator.

Lieg(G) = Enet i (|| T[] — a)? (22)

where x denotes random images from the training data, J,, is the Jacobian matrix, and a is
a constant that is set dynamically during optimization.

Classifier consistency: By default, GAN training is independent of the classifier fjy.
We add a classifier-consistency loss to regularize the generator and ensure that the actual
classification outcome for the generated image X, is similar to the condition ¢ used for gen-
eration. We enforce classification-consistency by a KullbackLeibler (KL) divergence loss as

follow[243],

Ly(G) = Dgr(fo(%)]lc) (23)

Self consistency: We define the following reconstruction loss to regularize and constraint the
Generator to preserve maximum information between the original image x and its recon-

struction X,

L(x,%) =[x = x|} + [[e(x) — e(x)[h (24)

Here, first term is a distance loss between the input and the reconstructed image, and
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the second term is a style reconstruction loss adapted from StyleGANv2 [1]. We mini-
mize the reconstruction loss to satisfy the identify constraint on self reconstruction using
Xself = G(X, fo(x)). We further insure that the PCE learns a reversible perturbation by
recovering the original image from a given perturbed image X as Xcycic = G(X, fy(x)), where

x = (G(x, ¢) with some condition c. Our final reconstruction loss is defined as,

Ercc(G) = /:(X, isolf) + E(X, chclic) (25>

Objective function: Finally, we trained our model in an end-to-end fashion to learn param-

eters for the two networks, while fixing fy. Our overall objective function is:

m&n max Aadv (Ladv(D, G) + Lieg(G)) + A L1 (G) + AvecLrec(G), (26)

where, \’s are the hyper-parameters to balance each of the loss terms.

6.2.2 Augmentation by Counterfactual Explanation

Given a query image X, the trained PCE generates a series of perturbations of x that
gradually traverse the decision boundary of fy from the original class to a counterfactual
class, while still remaining plausible and realistic-looking. This series of perturbations is
essentially mimicking a traversal on a latent manifold, as guided by the condition c. Our
trained AN enables conditional generation of an image at any point on the manifold as G(x, c)
(see Fig.31). We modify c to represent different steps in this traversal. We start from a high
data-likelihood region for original class k (c[k] € [0.8,1.0]), walk towards the decision hyper-
plane (c[k] € [0.5,0.8)), and eventually cross the decision boundary (c[k] € [0.2,0.5)) to end
the traversal in a high data-likelihood region for the counterfactual class k. (c[k] € [0.0,0.2)).
Accordingly, we set c[k.] =1 — c[k].

Ideally, the predicted confidence from NN should be indicative of the distance from the
decision boundary. Samples that lies close to the decision boundary should have low con-

fidence, and confidence should increase as we move away from the decision boundary. We
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used c as a pseudo indicator of confidence to generate synthetic augmentation. Our augmen-
tations are essentially showing how the query image x should be modified to have low/high

confidence.

p(cat|x)=0

G(x,c=0)

e

p(cat|x)=1.0

p(cat|x)=0

\ =
\ fo p(cat|x)=1.0
p(cat|x)=0 \

Dog Images Augmented Dataset Cat Images

Figure 31: Augmentation by counterfactual explanation. Given a query image, the trained
PCE generates a series of perturbations that gradually traverse the decision boundary of fy
from the original class to a counter-factual class, while still remaining plausible and realistic-

looking.

To generate CAD, we randomly sample a subset of real training data as X, CX. Next,
for each x € X, we generate multiple augmentations (X = G(x,c)) by randomly sampling
c[k] € [0,1]. We used c as soft label for the generate sample while fine-tuning the f,. The
X, represents our pool of generated augmentation images. Finally, we create a new dataset
by randomly sampling images from X and X,.. We fine-tune the fy on this new dataset, for
only a few epochs, to obtain a revised classifier given as fy.a. In our experiments, we show
that the revised decision function f; provides improved confidence estimates for AiD and
near OOD samples and demonstrate robustness to adversarial attacks, as compared to given

classifier fy.
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6.2.3 Discriminator as a Selection Function

A selection function g : X — {0,1} is an addition head on top of a classifier that de-
cides when the classifier should abstain from making a prediction. We propose to use the
discriminator network D(x) as a selection function for fy. Upon the convergence of the PCE
training, the generated samples resemble the in-distribution training data. Far-OOD sam-
ples are previously unseen samples which are very different from the training input space.
Hence, D(-) can help in detecting such samples. Our final improved classification function

is represented as follow,

9+A X)), if D(x zh
(f; D)(x) = Jrald 0 (27)

Abstain, otherwise

where, fyia is the fine-tuned classifier and D(-) is a discriminator network from the PCE
which serves as a selection function that permits f to make prediction if D(x) exceeds a
threshold h and abstain otherwise

During inference, the discriminator first uses its density estimates to quantify the simi-
larity between the learned data distribution and the query image. These estimates provide
a pseudo signal to quantify epistemic uncertainty. Using a strict threshold, the discrimina-
tor may reject any sample that lies outside its learned data distribution as far-OOD. The
fine-tuned classifier then processes the accepted samples. We use the fine-tuned classifier’s
predictive entropy (PE) to quantify the sample’s uncertainty. This uncertainty can be epis-
temic (associated with near-OOD samples) or aleatoric (associated with AID samples). Our

model cannot differentiate between the two.

6.3 Experiments and Results

We set up three experiments to compare the baseline model before and after fine-tuning
with our proposed counterfactual augmentation: First, we assess if the models can correctly

capture aleatoric uncertainty by identifying ambiguous test samples. Second, we evaluate the
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models on OOD detection tasks. We consider a standard OOD task over separate datasets
and a challenging task to detect near-OOD samples from previously unseen classes from
the same dataset. Finally, we compare the model’s behaviour under adversarial attacks.
In SM, we show further experiments on more datasets and an ablation study over different

components of the PCE.

6.3.1 Imaging dataset

In our experiments, we consider classification models trained on following datasets:

1. AFHQ [30]: Animal face high quality (AFHQ) dataset is a high resolution dataset of
animal faces with 16K images from cat, dog and wild labels. The classifier is trained at
an image resolution of 256 x 256.

2. Dirty MNIST [179]: The dataset is a combination of original MNIST [137] and simulated
Ambiguous-MNIST dataset. Each sample in Ambiguous-MNIST is constructed by de-
coding a linear combination of latent representations of two different MNIST digits from
a pre-trained VAE [127]. The samples are generated by combining latent representation
of different digits, to simulate ambiguous samples, with multiple plausible labels [179].
The training dataset of the classifier comprises of 60K clean-MNIST and 60K Ambiguous-
MNIST samples, with one-hot labels. The original dataset consists of grayscale images
of size 28 x28 pixels. We consider a classification model trained on 64 x64 resolution.

3. CelebA [149]: Celeb Faces Attributes Dataset (CelebA) is a large-scale face attributes
dataset with more than 200K celebrity images, each with 40 binary attributes annotations
per image. Our AiD samples comprises of middle-aged people who are arguably neither
young nor old. To obtain such data, we use aleatoric uncertainty estimates from MC-
Dropout averaged across 50 runs on test-set of CelebA. The classifier is trained at an
image resolution of 256 x 256. We center-crop the images as a pre-processing step.

4. Skin lesion (HAM10K) [262]: The HAM10000 is a dataset of 100K dermatoscopic im-
ages of pigmented skin lesions. It contains seven different lesion types — Melanocytic
Nevi (nv), Melanoma (mel), Benign Keratosis (bkl), Actinic Keratoses and Intraepithe-

lial Carcinoma (akiec), Basal Cell Carcinoma (bcc), Dermatofibroma (df), Vascular skin
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lesions (vasc). In our experiments, we consider classifier trained to distinguish the major-
ity class nv from mel and bkl. We consider images from rest of the lesions as near-OOD.

The classifier is trained at an image resolution of 256 x 256.

Classification tasks: We consider four classification problems, in increasing level of diffi-

culty:

1. AFHQ [30]: We consider binary classification over well separated classes, cat vs dog. We
consider images with “wild” label as near-OOD.

2. Dirty MNIST [179]: We consider multi-class classification over seven classes of hand-
written digits ‘0’ - ‘6’. We consider images from digits ‘7’ - ‘9" as near-OOD samples.

3. CelebA [149]: we consider a two-class classifier over attributes “Young” and “Smiling”
trained on CelebA dataset. Without age labels, identifying 'young’ faces is a challenging
task.

4. Skin lesion (HAM10K) [262]: We consider a binary classification to separate Melanocytic
nevus (nv) from Melanoma (mel) and Benign Keratosis (bkl) lesions. Skin lesion classi-

fication is a challenging task as different lesions may exhibit similar features [183].

6.3.2 Experimental setup

Classification Model: ~We consider state-of-the-art DenseNet [98] architecture for the
baseline. The pre-trained DenseNet model followed the training procedures as described
in [98]. In DenseNet, each layer implements a non-linear transformation based on compos-
ite functions such as Batch Normalization (BN), rectified linear unit (ReLU), pooling, or
convolution. The resulting feature map at each layer is used as input for all the subsequent
layers, leading to a highly convoluted multi-level multi-layer non-linear convolutional neural
network. We aim to improve such a model in a post-hoc manner without accessing the pa-
rameters learned by any layer or knowing the architectural details. Our proposed approach
can be used for any DNN architecture.

Progressive Counterfactual Explainer v2.0: We formulate the progressive counterfactual
explainer (PCE) as a composite of two functions, an image encoder e(-) and a conditional de-

coder (g(-)) [1]. Our architecture for the conditional decoder is adapted from StyleGANv2 [1].
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In order to keep the architecture and training procedure of PCE simple, we consider the
default training parameters from [1] for training the StyleGANv2. This encourages repro-
ducibility as we didn’t do hyper-parameter tuning for each dataset and classification model.
Specifically, we use Adam optimizer to train StyleGANv2 at 2562 resolution for ~200K it-
erations with a batch size of 8 over 8 GPUs. For training Styel GANv2, we use a randomly
sampled subset (~ 50%) of the baseline model’s training data. For multi-class classification,
we consider all pairs of classes while creating counterfactual augmentations. Further, given
an input image, the predicted class k£ and a counterfactual class k., we initialize the condition
c with all zeros and then set c[k] ~ Uniform(0, 1) and c[k.] = 1 —c[k]. In all our experiments,
we used A\ygp = 10, Ayee = 100 and Ay = 10.

To generate CAD, we randomly sample a subset of real training data as X, CX. Next,
for each x € X, we generate four augmentations (x = G(x,c)) by randomly sampling
c[k] € [0,1]. We used c as soft label for the generate sample while fine-tuning the f,. The
X, represents our pool of generated augmentation images.

For fine-tuning the given baseline with consider a combination of the original train-
ing dataset X and the augmented data X.. We randomly selected a subset of samples
from the two distributions and fine-tune the baseline for 5 to 10 epochs. We used the ex-
pected calibration error and the test-set accuracy to choose the final checkpoint. Our model
does not require access to OOD or AiD dataset during fine-tuning. During evaluation we
compute predicted entropy (PE) for original test-set and OOD samples and measure for a
range of thresholds how well the two are separated. We report the AUC-ROC and the true
negative rate (TNR) at 95% true positive rate (TPR) (TNR@QTPR95) in our results (see
Table 1 and 2). We will release the GitHub for the project after the review process.

Comparison methods: Our baseline is a standard DNN classifier fp trained with cross-
entropy loss. For baseline and its post-hoc variant with temperature-scaling (TS) [85], we
used threshold over predictive entropy (PE) to identify OOD. PE is defined as — > [ fo(x)]x log[ fo(x)]x-
We compared against three methods that changes network training or architecture to learn

better uncertainty estimates:

1. Mixup: Baseline model with mixup training using o = 0.2 [299].

2. DUQ: Baseline model with radial basis function as the end-layer. Here, we use the
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3.

closest kernel distance to quantify uncertainties [267].
DDU: A ResNet-18 [90] model with spectral normalisation and Gaussian Mixture Model
(GMM) for density estimation [179].

We also compared against methods that obtain uncertainty estimates from a pre-trained

DNN output using threshold-based scoring functions.

4.

Energy-based scoring function: Baseline with an energy function. We experimented
with two variants, in first we compute energy score in a post-hoc manner and use it
to identify OOD samples. In the second, we fine-tune the pre-trained DNN using the
energy-score based loss and then identify OOD samples [148].

Outlier exposure: Baseline model with extra regularization from known outliers. While
training the DNN, we assume access to outlier data and we force softmax output to be
a uniform distribution for the outlier data [93].

ODIN: Baseline with TS followed by the post-hoc approach of Out-of-DIstribution de-
tector for Neural networks (ODIN). In ODIN, we added small perturbations to the input

to effectively separate OOD images from the in-distribution ones [142].
Further, we also compared against two ensemble approaches:

MC Dropout: Baseline model trained with dropout. At inference time we took 20
dropout samples [65] to compute PE.

5-Ensemble: Baseline model trained five times with different seeds using the same
dataset, shuffled using different seed [133]. We view the ensemble approaches as an

upper bound for uncertainty quantification.

6.3.3 Identifying AiD samples

AiD samples have an inherent ambiguity in their class label, arising from the overlap-

ping class definitions. Curated datasets for image classification are well-defined and provide

binarized labels as ground truth. Assigning a label to an image removes ambiguity about

its class membership. In the absence of ground truth uncertainty labels, we use the PE

estimates from an MC Dropout classifier to label AiD samples. Specifically, we sort the test

set using PE and consider the top 5 to 10% samples as AiD.
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Table 13: Performance of different methods on identifying ambiguous in-distribution
(AiD) samples. For all metrics, higher is better. The best results from the methods that
require a single forward pass at inference time are highlighted. The ensemble approaches
form an upper-bound and are for reference only and not comparison. Given a baseline

model, our results are averaged over 10 runs of fine-tuning with different augmentation by

counterfactual explanation (ACE) datasets.

Train Method/ Test-Set Identifying AiD

Dataset Model Accuracy AUC-ROC TNRQ@TPR95

Baseline 99.444-0.02 0.87+0.04 48.93+10

Baseline+TS [85] 99.45+0.00  0.85+0.07 48.77+9.8

Mixup [299] 99.02+0.10  0.80%0.05 35.66+£6.7

AFHQ DUQ [267] 94.00£1.05  0.67+0.01 26.15£4.5
DDU [179] 97.66+1.10 0.7440.02 19.6544.5
Baseline+Energy [148] 99.44+0.02  0.87+0.06 49.00+1.64

Energy w/ fine-tune [148]  99.45+0.11 0.69+1.28 30.3642.52

Outlier Exposure [93] 99.50+0.14  0.8540.01 41.07£0.75
Baseline+TS+ODIN [142]  99.45+0.00  0.85+0.06 35.72£1.26
Baseline+ACE 99.52+0.21 0.91+£0.02 50.75+3.9

MC Dropout [65] 98.83£1.12  0.87+0.04 51.56£1.2

5-Ensemble [133] 99.79£0.01  0.9840.01 51.93£2.7

Baseline 95.68+0.02  0.96+0.00 28.5%2.3

Baseline+TS [85] 95.74£0.02  0.94+0.01 27.90£1.3

Mixup [299] 94.66+0.16 0.9440.02 25.78+2.1

Dirty DUQ [267] 89.34£0.44  0.67+0.01 23.89£1.2
MNIST DDU [179] 93.524+1.12 0.65+0.12 20.78+4.0
Baseline+Energy [148] 95.68+0.02  0.80%0.03 17.60£0.55

Energy w/ fine-tune [148]  96.17£0.02  0.394+0.04 11.59+£0.25

Outlier Exposure [93] 96.30+0.07 0.63+0.07 17.6+2.88
Baseline+TS+ODIN [142]  95.74+0.02  0.79+0.03 13.25+4.88
Baseline+ACE 95.36+0.45 0.86+0.01 34.12+2.6

MC Dropout [65] 89.50+£1.90  0.75%0.07 36.10+£1.8

5-Ensemble [133] 95.90£0.12  0.98%+0.02 34.87+3.4

In Fig. 28, we qualitatively compare the PE distribution from the given baseline and
its fine-tuned version (baseline + ACE). Fine-tuning resulted in minor changes to the PE

distribution of the iD samples (Fig. 28.A). We observe a significant separation in the PE
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distribution of AiD samples and the rest of the test set (Fig. 28.B), even on the baseline.
This suggests that the PE correctly captures the aleatoric uncertainty. Fine-tuning with
counterfactual augmentation further enhanced this separation by shifting the PE distribution
of AiD samples to the right and assigning a higher PE value to the uncertain samples.

The Table 13 and Table 14 compare our model to several methods. We report the test set
accuracy, the AUC-ROC for the binary task of identifying AiD samples and the true negative
rate (TNR) at 95% true positive rate (TPR) (TNRQTPR95), which simulates an application
requirement that the recall of in-distribution data should be 95% [96]. For all metrics higher
value is better. Our model outperformed other deterministic models, in identifying AiD
samples with a high AUC-ROC and TNRQTPR95 across all datasets. Also, the fine-tuned
model retained the predictive accuracy of the baseline in AFHQ and Dirty MNIST datasets.
We observe a little drop in test accuracy in complex classification problems, where multiple
classes may look similar, e.g. medical datasets (HAM10K). Fine-tuning makes the decision
boundary broader. As a result, the samples near the decision boundary may flip their
decision, decreasing accuracy. We consider this drop more like a flag to indicate possible
label noise. Please note, in the tables, we highlighted the best results from the methods that

require a single forward pass at inference time.

6.3.4 Detecting OOD samples

We consider two tasks to evaluate the model’s OOD detection performance. First, a
standard OOD task where OOD samples are derived from a separate dataset. Second, a
difficult near-OOD detection task where OOD samples belongs to novel classes from the

same dataset, which are not seen during training. We consider the following OOD datasets:

1. AFHQ [30]: We consider “wild” class from AFHQ to define near-OOD samples. For
the far-OOD detection task, we use the CelebA dataset, and also cat/dog images from
CIFARI10 [132].

2. Dirty MNIST [179]: We consider digits 7-9 as near-OOD samples. For far-OOD detection,
we use SVHN [187] and fashion MNIST [283] datasets.

3. CelebA [149]: We consider images of kids in age-group: 0-11 from the UTKFace [298]
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Table 14: Performance of different methods on identifying ambiguous in-distribution
(AiD) samples. For all metrics, higher is better. The best results from the methods that
require a single forward pass at inference time are highlighted. The ensemble approaches
form an upper-bound and are for reference only and not comparison. Given a baseline

model, our results are averaged over 10 runs of fine-tuning with different augmentation by

counterfactual explanation (ACE) datasets.

Train Method/ Test-Set Identifying AiD
Dataset Model Accuracy AUC-ROC TNRQTPRY95

Baseline 89.36+£0.96  0.73+£0.01 17.18+1.6

Baseline+TS [85] 89.33+0.01 0.72+0.02 17.214+1.5

Mixup [299] 89.04+0.47 0.74+0.02 15.09+£1.9

CelebA DUQ [267] 71.75£0.01 0.65+0.01 14.20+1.0
DDU [179] 70.1540.02  0.67£0.06  11.39+0.4

Baseline+Energy [148] 89.36£0.96  0.57+0.28 4.87+0.32

Energy w/ fine-tune [148] 90.224+0.96  0.53+1.25 5.06£0.28

Outlier Exposure [93] 86.65+£1.22  0.53+0.46 5.06=£0.19
Baseline+TS+ODIN [142]  89.33+0.01 0.57+0.01 6.34+£0.38
Baseline+ACE 86.8+0.79 0.74+0.06 22.36+ 2.3

MC Dropout [65] 89.86+£0.33  0.73+0.03 19.7840.7

5-Ensemble [133] 90.76+0.00  0.84%0.11 17.79+0.6

Baseline 85.88+0.75  0.82+0.06 20.52+£3.7

Baseline+ TS [85] 86.27+0.40 0.84+0.03  23.3442.8

Mixup [299] 85.81+0.61 0.84+0.04 31.29+7.0

Skin-Lesion DUQ [267] 75.47£5.36  0.81+£0.02 30.12+4.4
(HAM10K) DDU [179] 75.8442.34  0.79£0.03  26.1246.6
Baseline+Energy [148] 85.88+0.75  0.77£0.12 18.40+0.51

Energy w/ fine-tune [148] 86.56+0.53 0.64+0.06 17.45£1.78

Outlier Exposure [93] 86.37+£0.46  0.73+0.02 13.214+2.70
Baseline+TS+ODIN [142]  86.27+0.40  0.78+0.01 15.87+4.33
Baseline+ACE 81.21+1.12  0.84+0.05 71.60+3.8

MC Dropout [65] 84.90+£1.17  0.85%+0.06 43.78£1.9

5-Ensemble [133] 87.89+0.13  0.86+0.02 40.4945.1

dataset to define the near-OOD samples. For far-OOD detection task, we use the AFHQ

and CIFAR10 datasets.

4. Skin lesion (HAM10K) [262]: We consider samples from lesion types: Actinic Keratoses
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and Intraepithelial Carcinoma (akiec), Basal Cell Carcinoma (bcc), Dermatofibroma (df)
and Vascular skin lesions (vasc) as near-OOD. For far-OOD, we consider CelebA and an

additional simulated dataset with different skin textures/tones.

We summarize our qualitative results in Fig. 28. We observe much overlap between the
predictive entropy (PE) distribution of the near-OOD samples and in-distribution samples in
Fig. 28.C. Fine-tuning with counterfactual augmentation helped in reducing this overlap, by
amplifying the uncertainty associated with OOD data. Further, in Fig. 28.D-E, we observe
that the PE distribution from the baseline model does not capture epistemic uncertainty
associated with far-OOD samples, but our model successfully disentangles OOD samples

from the in-distribution samples by using density estimates from the discriminator of the

PCE.

Table 15: OOD detection performance for different baselines. Near-OOD represents label
shift, with samples from the unseen classes of the same dataset. samples are from

a separate dataset. The numbers are averaged over five runs.

Train Method Near-OOD (Wild) (CIFAR10) (CelebA)
Dataset AUC-ROC TNR@TPR95 AUC-ROC TNRQTPR95 AUC-ROC TNRQTPRY95
Baseline 0.8840.04 47.40+5.2 0.9540.04 73.5949.4 0.95+0.03 70.69£8.9
Baseline+TS [85] 0.88+£0.03 45.53+9.8 0.95+0.04 71.77£8.9 0.95+0.03 65.89+8.3
Mixup [299] 0.8640.06 53.831+6.8 0.824+0.11 57.01+8.6 0.884+0.13 70.51+9.8
AFHQ DUQ [267] 0.7840.05 20.98+2.0 0.6740.59 16.23£1.5 0.66£0.55 15.34£2.6
DDU [179] 0.83£0.02 23.1942.6 0.90£0.02 32.98+10 0.75£0.02 10.32+5.6
Baseline+Energy [148] 0.8840.03 47.77£1.10 0.9440.05 72.68+2.69 0.96+0.04 74.7542.89
Energy w/ fine-tune [148]  0.93+3.06 45.97+£2.78 0.99+0.00 0.6640.01 0.94+1.86 68.38+3.03
Outlier Exposure [93] 0.92+0.01 73.99+2.62 0.99£0.20 99.54+0.79 0.96+0.01 78.69£3.02
Baseline+TS+ODIN [142] 0.8740.05 45.02+1.51 0.9540.05 69.42+2.38 0.9540.03 67.184+2.16
Baseline+ACE 0.8940.03 51.39+4.4 0.9840.02 88.71+5.7 0.97+0.03 88.87+9.8
MC-Dropout [65] 0.8440.09 30.78+2.9 0.9440.02 73.5942.1 0.9540.02 71.23+1.9
5-Ensemble [133] 0.99+£0.01 65.73+1.2 0.97£0.02 89.91+0.9 0.99+0.01 92.12+0.7
Near-OOD (Digits 7-9) (SVHN) (fMINIST)
AUC-ROC TNRQ@TPR95 AUC-ROC TNRQTPR95 AUC-ROC TNRQTPR95
Baseline 0.8640.04 28.23+2.9 0.754+0.15 51.984+0.9 0.8740.02 58.12+1.5
Baseline+TS [85] 0.86£0.01 30.1242.1 0.73£0.07 48.12+1.5 0.89+0.01 61.71+2.8
Dirty Mixup [299] 0.8640.02 35.46+1.0 0.9540.03 65.124+3.1 0.9440.05 66.001+0.8
MNIST DUQ [267] 0.7840.01 15.26+3.9 0.7340.03 45.23+1.9 0.7540.03 50.29+3.1
DDU [179] 0.67£0.07 10.23+0.9 0.68+0.04 39.31+2.2 0.85£0.02 53.76+3.7
Baseline+Energy [148] 0.8740.04 40.30£1.05 0.8640.12 43.92+2.30 0.9140.02 62.10+5.17
Energy w/ fine-tune [148] 0.6040.08 37.431+0.93 1.00+0.00 99.99+0.00 1.00+0.00 99.06+0.01
Outlier Exposure [93] 0.94+0.01 65.58+1.64 1.00+0.00 99.99+0.00 1.00+0.00 99.56+0.12
Baseline+TS+ODIN [142] 0.8340.04 34.13+12.07 0.7740.13 21.59+19.62 0.8940.02 46.43+4.31
Baseline4+ACE 0.9440.02 37.23+1.9 0.9840.02 67.88+3.1 0.9740.02 70.71+1.1
MC-Dropout [65] 0.97£0.02 40.89+1.5 0.95£0.01 62.124+5.7 0.93+£0.02 65.01+0.7
5-Ensemble [133] 0.98+0.02 42.17+1.0 0.8240.03 55.1242.1 0.94+0.01 64.194+4.2

In Table 15 and Table 16, we report the AUC-ROC and TNRQTPR95 scores on de-
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tecting the two types of OOD samples. We first use the discriminator from the PCE to
detect far-OOD samples. The discriminator achieved near-perfect AUC-ROC for detecting
far-OOD samples. It consistently outperformed the deep ensemble, MC Dropout, and other
deterministic methods across all datasets. The near-OOD samples are relatively similar
to the training distribution of the discriminator. Hence, the discriminator performed sub-
optimally on the near-OOD detection task. We used the PE estimates from the fine-tuned
model (baseline + ACE) to detect near-OOD samples. We outperformed all other deter-
ministic methods in identifying near-OOD samples. Overall our model performed better on

both near and far-OOD detection tasks with high TNRQTPR95.

Table 16: OOD detection performance for different baselines. Near-OOD represents label
shift, with samples from the unseen classes of the same dataset. samples are from

a separate dataset. The numbers are averaged over five runs.

Train Method Near-OOD (Kids) (AFHQ) (CIFAR10)
AUC-ROC TNRQTPR95 AUC-ROC TNRQTPR95 AUC-ROC TNRQTPR95
Baseline 0.8440.02 1.25+0.1 0.86+0.03 88.57+0.9 0.7940.02 29.01+5.1
Baseline+T'S [85] 0.8240.04 1.2440.1 0.8740.06 88.751+0.9 0.7840.04 29.01+5.1
Mixup [299] 0.8240.08 22.184+2.7 0.9540.02 82.96+2.5 0.7940.13 30.54+1.3
CelebA DUQ [267] 0.80+0.03 14.68+3.1 0.72+0.07 26.62+7.7 0.86+0.04 28.70+4.1
DDU [179] 0.73+0.15 7.9+0.4 0.7440.13 8.184+0.4 0.81+0.15 25.45+1.4
Baseline+Energy [148] 0.76+0.51 9.40£0.01 0.9440.08 32.08+1.70 0.8540.76 17.10£0.72
Energy w/ fine-tune [148] 0.85+1.27 32.814+1.92 0.99+0.00 99.99+0.00 0.91+0.77 84.35+1.29
Outlier Exposure [93] 0.66+0.69 8.44+0.45 0.7540.70 26.09+0.51 0.6940.53 16.63+0.90
Baseline+TS+ODIN [142] 0.65+0.01 8.75+2.21 0.5540.01 23.03+0.16 0.5440.01 5.0040.07
Baseline+ ACE 0.87+0.03 34.37+2.5 0.96+0.01 96.35+2.5 0.9240.05 63.51+1.5
MC-Dropout [65] 0.70+0.10 25.62+1.7 0.86+0.1 91.72+7.5 0.7440.12 64.79+1.8
5-Ensemble [133] 0.93+0.03 10.35+0.2 0.9940.0 98.31+1.2 0.92+0.10 61.88+1.2
Near-OOD (other lesions) (CelebA) (Skin-texture)
AUC-ROC TNRQTPR95 AUC-ROC TNRQTPR95 AUC-ROC TNRQTPR95
Baseline 0.67+0.04 8.70+2.5 0.66+0.06 10.00+£3.6 0.65+0.10 5.91+2.8
Baseline+TS [85] 0.67+0.05 8.69£2.0 0.63+£0.06 9.24+4.3 0.6840.07 5.70+3.2
Skin Mixup [299] 0.67+0.01 8.52+2.8 0.6440.08 10.21£4.0 0.7240.05 5.26+3.1
Lesion DUQ [267] 0.67+0.04 3.12+1.8 0.8940.09 11.89+2.5 0.6440.03 4.8+1.5
DDU [179] 0.65+0.03 3.45£1.9 0.75+0.04 15.45+2.9 0.7140.05 4.19+1.3
Baseline+Eenergy [148] 0.7040.04 10.8540.08 0.70+0.14 7.9040.29 0.6510.20 2.83+1.33
Energy w/ fine-tune [148] 0.6240.02 9.80+1.81 1.00-+0.00 99.77+0.33 0.76+0.13 16.04+£1.08
Outlier Exposure [93] 0.67+0.09 10.384+3.30 0.99+0.00 97.1742.37 0.8140.08 22.64+4.30
Baseline+TS+ODIN [142] 0.68+0.01 9.43+0.33 0.67£0.07 11.3244.66 0.6810.07 6.6010.29
Baseline+ACE 0.72+0.04 11.00+2.8 0.9740.02 66.77+1.4 0.96+0.03 95.83+5.0
MC-Dropout [65] 0.67+0.05 9.45+3.9 0.8040.07 30.00+3.2 0.56+0.03 10.87£2.3
5-Ensemble [133] 0.88+0.01 11.23£1.7 0.9140.03 27.89+5.9 0.76£0.02 17.89+£3.5
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6.3.5 Toy-Setup - Two Moons

This section demonstrates the over-confidence problem in a classifier trained on the two
moons dataset. Using the scikit-learn’s datasets package, we generated 2000 samples with a
noise rate of 0.1. Our baseline classification model is a 2-layer MLP. In Fig. 32.a, we visualize
the uncertainty estimates from this classifier. A classifier optimized for cross-entropy loss
learns a very sharp decision boundary with low uncertainty only near the decision boundary

and high uncertainty everywhere else.

0.00
a) Baseline b) Baseline + ACE d) Baseline + ACE +

(Predicted Entropy) (Predicted Entropy) PCE — Discriminator

0.0
c) Example of Augmentation by Counterfactual e) Final Uncertainty
Explanation (ACE) with soft labels Landscape

Figure 32: Uncertainty results on the Two Moons dataset. Yellow indicates low uncertainty;,
while blue indicates uncertainty. a) The baseline classifier is uncertain only along the decision
boundary, and certain elsewhere. b) Fine-tuning baseline model on ACE data improves
uncertainty estimates near the decision boundary. ¢) An example of augmented data and
corresponding soft labels. d) The discriminator from PCE rejects OOD samples, hence the
rejected space have no uncertainty values (white color). e) The final uncertainty landscape,

the improved classifier is certain on in-distribution regions and rejects OOD data.

In Fig. 32.b, we visualize the revised decision boundary after fine-tuning the classifier

with counterfactually augmented data (CAD). The decision boundary is much broader, and
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uncertainty is high near the decision boundary, decreasing as one moves away from it. In
Fig. 32.c, we show examples of CAD. Using the progressive counterfactual explainer (PCE),
we created samples resembling a walk from one class to the other while crossing the decision
boundary.

This simple example demonstrates that fine-tuning the classifier with augmented data
near the decision boundary with soft labels helped the classifier recover from the over-
saturation on the negative log-likelihood (NLL) loss. Hence, the fine-tuned classifier has
better uncertainty estimates near the decision boundary and is not over-confident on am-
biguous in-distribution samples in the class over-lapping regions.

Further, in Fig. 32.d, we show the hard threshold used by the discriminator of the PCE
as the selection function. We processed all the samples through the discriminator of the PCE
and used a pre-defined threshold to separate in-distribution samples from the OOD samples.
The white colour in the plot is the samples the discriminator rejects as OOD. Fig. 32.e shows
the final uncertainty landscape. The near-OOD around the in-distribution samples all have
high uncertainty. The ambiguous in-distribution samples are assigned a high uncertainty

near the decision boundary.

6.3.6 Robustness to Adversarial Attacks

In this experiment, we compared the baseline model before and after fine-tuning (base-
line + ACE) in their robustness to three adversarial attacks: Fast Gradient Sign Method
(FGSM) [76], Carlini-Wagner (CW) [20], and DeepFool [177]. For each attack setting, we
transformed the test set into an adversarial set. In Fig. 33, we report the AUC-ROC over
the adversarial set as we gradually increase the magnitude of the attack. For FGSM, we
use the maximum perturbation (€) to specify the attack’s magnitude. For CW, we grad-
ually increase the number of iterations to an achieve a higher magnitude attack. We set
box-constraint parameter as ¢ = 1, learning rate @ = 0.01 and confidence x = 0,5. For
DeepFool (n = 0.02), we show results on the best attack. Our improved model (baseline +
ACE) consistently out-performed the baseline model in test AUC-ROC.
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6.3.7 Ablation Study

We conducted an ablation study over the three-loss terms of PCE in Eq. 26. The three
terms of the loss function enforce three properties of counterfactual explanation, data con-
sistency: explanations should be realistic looking images, classifier consistency: explanations
should produce the desired outcome from the classifier and self-consistency: explanation im-
age should retain the identity of the query image. For the ablation study, we consider the
cat and dog classifier. We train three PCE; in each run, we ablate one term from the final

loss function.

AFHQ (Cat vs Dog) HAM10K (Nv vs Mel/Bkl)
].0 FGM-ours
FGM-baseline
O
) — CWO0-ours
; 0.5 == == CWO-baseline
L ° = CW5-ours
= \ - == ="' cws-baseline
00 B e pe—— * t-—-'-"-'-'--.-r..-_—_—_-.— + DF-baseline
0.0 2.5 5.0 0.0 2.5 50 ° e
Attack Magnitude Attack Magnitude

Figure 33: Plots comparing baseline model before and after fine-tuning (ACE) for different
magnitudes of adversarial attack. The figure shows three different attacks — FGSM [76],
CW [20], DeepFool [177], on three different datasets - HAM10K, AFHQ, MNIST. The x-
axis denotes maximum perturbation (¢) for FGSM, and iterations in multiples of 10 for CW
and DeepFool. Attack magnitude of 0 indicates no attack. For CW we used x = 0 and 5.

(All results are reported on the test-set of the classifier).

In Fig. 34, we show a qualitative example of the counterfactual data augmentation gen-
erated through each PCE. Without data consistency, the images are blurry and are no longer
realistic. Without classifier consistency loss, though the images are natural, the classifier’s
output is not changing with the condition. Hence such PCE won’t generate augmented
samples near the decision boundary, which is the goal of our proposed strategy. With self-

consistency, the generated images are not a gradual transformation of a given query image.
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Further, in Fig. 35 we present quantitatively compare the uncertainty estimates from the
baseline, before and after the fine-tuning with ACE. We represent a different ablation over

the three-loss terms in each row.

Query Image Counterfactually Augmented Data
Original Class Counterfactual Class
o dog: 1.0 dog: 0.8 dog: 0.6 dog: 0.4 dog: 0.2 dog: 0.0
Condition: " -.t'6'0 cat: 0.2 cat: 0.4 cat: 0.6 cat: 0.8 cat: 1.0

No Data -
Consistency
Aadv =0

f dog: 0.98 ) dog: 0.82 dog: 0.59 dog: 0.39 ] dog: 0.2
0

cat: 0.02 cat: 0.18 cat: 0.41 cat: 0.61 cat: 0.8

No Classifier -
Consistency

dog: 0.98 dog: 0.99 dog:0.99  dog: 0.92 dog: 0.82 dog: 0.89  dog: 0.86
f0 cat: 0.02 cat: 0.01 cat: 0.01 cat: 0.08

v

>‘rec =0

AN

No Self
Consistency

o ii®e s € i S0l
dog: 0.97 dog: 0.93 dog: 0.59 dog: 0.27
cat: 0.03 cat: 0.07 cat: 0.41 cat: 0.72 cat: 0.98

dog: 0.98
cat: 0.02

Figure 34: Examples of data augmentation while ablating different loss terms.

Fig. 35.A. shows the predicted entropy (PE) of in-distribution (iD) samples. Ideally,
fine-tuning should minimally affect the PE distribution over iD samples. Without classifica-
tion consistency loss (second row), the PE distribution of iD samples changed significantly.
Fig. 35.B and Fig. 35.C shows the PE distribution over ambiguous in-distribution (AiD)
samples and near-OOD samples, respectively. The data augmentation derived from PCE
without adversarial loss or reconstruction loss cannot separate AiD samples or near-OOD
from the rest of the test set. In Fig. 35.D, we use the discriminator of the PCE to iden-
tify far-OOD samples. In all three rows, we observe the sub-optimal performance of the
discriminator in identifying and rejecting far-OOD samples. The legend shows the AUC-

ROC for binary classification over uncertain and iD samples. Hence, all three loss terms are
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important to improve the uncertainty estimates of the baseline over all samples across the

uncertainty spectrum.
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Figure 35: Comparison of the uncertainty estimates from the baseline, before and after the
fine-tuning with ACE. Each row represents a different ablation over the three loss terms.
A) Predicted entropy (PE) of in-distribution (iD) samples. Ideally, fine-tuning should
minimally effect the PE distribution over iD samples. Without classification consistency loss
(second row), the PE distribution of iD samples changed significantly. B) PE distribution
over ambiguous in-distribution (AiD) samples. C) PE distribution over near-OOD
samples. The data augmentation derived from PCE without adversarial loss or reconstruc-
tion loss, is not able to separate AiD samples or near-OOD from rest of the test set. D)
We use the discriminator of the PCE to identify far-OOD samples. In all three rows, we
observe sub-optimal performance of the discriminator in identifying and rejecting far-OOD
samples. The legend shows the AUC-ROC for binary classification over uncertain samples
and iD samples. Hence, all three loss terms are important to improve the uncertainty esti-

mates of the baseline over all samples across the uncertainty spectrum.
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6.4 Discussion and Conclusion

We propose a novel method to improve the uncertainty quantification of an existing
pre-trained DNN by fine-tuning it on counterfactually augmented data. We used a ¢cGAN-
based counterfactual explainer to generate the data augmentation. Our fine-tuned model,
combined with the discriminator of the GAN, can successfully capture uncertainty over am-
biguous samples, unseen near-OOD samples with label shift and far-OOD samples from
independent datasets. Comparative post-hoc methods such as thresholding softmax out-
puts and temperature scaling cannot recover a pre-trained model from over-saturation on
log-likelihood loss. Other deterministic methods significantly change the classification model
design to enable better uncertainty quantification over OOD samples. These methods require
a network to be trained from scratch and are not compatible with a pre-trained classifier.
Our proposed strategy reuses the counterfactual explanation model for the given classifier to
fix its over-confidence problem. We out-performed state-of-the-art methods for uncertainty
quantification on four datasets with varying difficulty levels. Furthermore, our improved
model also exhibits robustness to prevalent adversarial attacks. We recognize that our pro-
posed strategy involves training a GAN and fine-tuning the classifier with augmented data,
which creates a one-time computational overhead. But, once we have a fine-tuned classifier,
it requires only a single forward pass, with fast inference. The trained GAN has the added
benefit of explaining the given classification model that can help in making it more user-
accessible. Our work opens up a new direction for improving uncertainty quantification in

existing classification models.
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7.0 Conclusions and Future Directions

7.1 Conclusion

In this thesis, we developed new deep learning architectures and post-hoc explainability
techniques that improved the application of DL methods for medical image classification.
This dissertation proposes models to account for subtleties of medical imaging and add
support for specific clinical needs. The major contribution of this work is to tackle model
explanation from different perspectives. We started with building an interpretable model,
that not only provides accurate predictions but also use an attention mechanism to show
important /relevant regions of the input. We designed the model to handle the subtleties of
medical images, by have an input processing pipeline that can process the entire 3D volume
with minimum resizing, thus reserving the spatial integrity of the imaging data (Chapter-3).

Moving on, we developed a progressive counterfactual explainer, that provides visual ex-
planation to explain the decision of a pre-trained classifier in a post-hoc manner. The design
of our explainer is highly motivated by the clinical use-cases. For instance, most of the lung
diseases are developed progressively and hardy have a sudden appearance. Out explanation,
shows a gradual transformation of the query image, where the input CXR gradually becomes
positive for a diagnosis. This aligns with the clinical expectation of how decision for a di-
agnosis should change. Further, counterfactual explanations are superior than saliency-map
based methods as they not only show where in the image the classifier is paying attention to
make its prediction, but also shows what image features in those salient regions are essential
for the positive or negative decision. We supported our methods with through experiments,
on both natural image datasets and medical image datasets. From a clinical perspective,
we demonstrated that the counterfactual changes associated with normal (negative) or ab-
normal (positive) classification decisions are also associated with corresponding changes in
disease-specific metrics such as CTR and SCP. For example, changes associated with an in-
creased posterior probability for cardiomegaly also resulted in an increased CTR. Similarly,

for PE, a healthy CP recess with a high SCP score transformed into an abnormal CP recess
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with blunt CPA, as the posterior probability for PE increase. Further, we evaluated our
methods through a human evaluation study. The results of our human evaluation study
confirms that the counterfactual explanations obtain from our method helped the clinicians
better understand the classification decision (Chapter-4).

Chapter-5 presents an application of the counterfactual explainer in obtaining concept-
based explanations. This method is also motivated by the need of the domain expert,
to receive model explanation in a terminology that is meaningful to them. To fulfill this
requirement, we provide explanation in terms of clinical concepts that are used in radiology
reports to support the presence of a diagnosis. Specifically, we associate the internal structure
of the deep neural network with clinically relevant concepts and used our counterfactual
explanations to measure the causal effect of these concepts on the model’s prediction. We
adopted tools from Causal Inference literature and, more specifically, mediation analysis
through counterfactual interventions. Using measures from mediation analysis, we provide
an effective ranking of the concepts based on their causal relevance to the model’s outcome.
Finally, we construct a low-depth decision tree to express discovered concepts in simple
decision rules, providing the global explanation for the model. We presented a through
experiment of our proposed method on a clinical dataset.

For a more comprehensive interpretation of the deep learning models by their end-users,
in Chapter-7 we demonstrate how to improve the uncertainty estimates from a pre-trained
classifier, by fine-tuning the classifier with counterfactually augmented data. Counterfactual
data lies near the decision boundary between two classes, Fine-tuning with such data helps
in making the decision boundary wider and thus preventing the classifier from making over
confident predictions on the sample near the decision boundary. Further, we show that the
discriminator from the counterfactual explanier is a good proxy to the data distribution.
The likelihood estimates from this model thus can identify and reject OOD samples. The
experiments with the natural and medical images showed that our proposed technique is
helpful in learning more reliable classifiers. We out-performed state-of-the-art methods for
uncertainty quantification on four datasets with varying difficulty levels. Furthermore, our
improved model also exhibits robustness to prevalent adversarial attacks

Overall, this thesis is a summarization of different ways to explain the deep learning

126



model decision. The methods proposed in this thesis provided a set of tools to the deep
learning model designers to better design and explain DNNs, while satisfying the clinical
needs. Making progress in this direction will ensure the path to deployment for DNN models.
For all the proposed methods we provide thorough comparisons with existing baselines and

in each case we demonstrate reliable and superior performance.

7.2 Future directions

There are also several avenues for improvement which are left for future work:

1. We lose the context information when representing a volumetric image as a set of patches.
There is no notion of spatial context when elements of a set are processed in a format
invariant to their order. Future work should explore adding a positional encoding to the
patches to incorporate spatial information. Much of this is inspired by recent advanced
DNN architectural designs. Highly complex DNN designs such as vision transformers
also take tokens as input. These patches, along with positional encoding, can become an
essential way of processing 3D volumetric data for transformer-based architectures [58].

2. Diversity is an essential aspect of counterfactual explanations. Diversity among the gen-
erated counterfactuals provides different ways of changing the outcome decision. Diverse
counterfactuals offer users multiple options to understand which input features are im-
portant for the classification decision. Diverse counterfactuals may include changes to a
particular concept or several concepts. Current work is restrictive as it creates only a sin-
gle counterfactual image. Future work should explore generating diverse counterfactual
explanations showing all possible ways of changing the classification decision [214, 178].
Further, disentangling the counterfactual changes into human-understandable concepts
can enrich the quality and usability of counterfactual explanations.

3. A counterfactual explanation is incomplete without causal analysis [161]. The current
work uses neuron activations as a weak signal to capture concept information in the
network. Future work should build on it to identify concepts in counterfactual explana-

tions [78]. A possible next step is to use the concept vectors to navigate the direction in
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which counterfactual perturbation should be made to achieve the desired change in the
classification decision.

The current definition of the concept in the concept-based explanations is restrictive. It
only captures a few radiological terms and provides no intuition behind what part of
the prediction decision is not explainable using the current definition of the concepts.
Future work should explore adding the notion of completeness, which quantifies how
sufficient a particular set of concepts is in explaining a model’s prediction behavior based
on the assumption that complete concept scores are sufficient statistics of the model
predictions [292]. Researchers have already started exploring this direction. However,
there is a limited progress in terms of identifying extensive concepts for medical tasks.
Also, further research is required to quantify completeness.

Uncertainty quantification is a challenging task. Our current work focuses on improving
uncertainty estimates from a pre-trained classifier. The training of PCE is a computa-
tionally expensive and time intensive overhead. The future work should explore removing
this overhead and proposing an augmentation that can be quickly achieved. One direc-
tion would be to use a pre-trained generative model for getting augmented data.

The clinical concepts and their definitions are blurred and uncertain [189]. Another
prospective direction is to explore for learning a DNN with improved uncertainty quan-
tification is to train the DNN with soft labels instead of strict hard labels [190]. Some
preliminary work in this direction have found that the clinical annotators prefer to label
clinical data with soft labels which can come in form of probability estimates or discrete
categories defining different degrees (strength) of labels [191, 265]. Further, the soft la-
bels help to both reduce the sample size from which we can train the high quality models

and also make these methods less sensitive to highly unbalanced data.
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Appendix Progressive Counterfactual Explanation

A.1 Human evaluation
In our human evaluation study, we asked the following 15 questions for each CXR:

Q2. Subject-1
Chest X-Ray

Al system assessment

Negative Positive

Al system assessment: Chest X-ray is negative for Cardiomegaly.
Do you agree with the Al system assessment for Cardiomegaly?

@ Yes

'
() No

Figure 36: Question 2-3 showing the query CXR and the classifier’s decision.

1. Please provide your diagnosis for Cardiomegaly. Answers: Negative, mild, positive, not

sure.

2. (Only assessment) Do you agree with the Al system assessment for Cardiomegaly? An-

SWers: yes, no

3. (Only assessment) I understand how the AI system made the above assessment for Car-

diomegaly. Answers: 5-point Likert scale.

129



Chest X-Ray

Al system assessment

-

Negative Positive

Al system assessment: Chest X-ray is negative for Cardiomegaly.
To explain this assessment, the system presents a heat-map.
Heat-map: It is highlighting the important regions for the assessment of Cardiomegaly for the Al system.

The heat-map is highlighting important/relevant regions for Cardiomegaly.

)
O all

(O most

@
@ some
() afew

() none

Figure 37: Question 4-5 showing the query CXR, the classifier’s decision and the saliency

map explanation.

4. (Assessment + SM) The heat-map is highlighting <blank> important /relevant regions
for Cardiomegaly. Answers: all, most, some, a few, none.

5. (Assessment + SM) I understand how the AI system made the above assessment for
Cardiomegaly. Answers: 5-point Likert scale.

6. (Assessment + cycleGAN) The changes in the video are related to Cardiomegaly. An-
swers: b-point Likert scale.

7. (Assessment + cycleGAN) I understand how the Al system made the above assessment
for Cardiomegaly. Answers: 5-point Likert scale.

8. (Assessment + cycleGAN) Images in the video look like a chest x-ray. Answers: 5-point
Likert scale.

9. (Assessment + cycleGAN) The images in the video look like the chest x-ray from the
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Chest X-Ray

Al system assessment

l

Negative Positive

Al system assessment: Chest X-ray is negative for Cardiomegaly.

To explain this assessment, the system presents an explanation video.

Explanation video: Two hypothetical images, for the two extreme decisions (negative and positive) looped in
the video.

negative positive

The changes in the video are related to Cardiomegaly.

Figure 38: Question 6-9 showing the query CXR, the classifier’s decision and the cycleGAN

explanation.

10.

11.

12.

13.

14.

subject. Answers: 5-point Likert scale.

(Assessment + ours) The changes in the video are related to Cardiomegaly. Answers:
5-point Likert scale.

(Assessment + ours) Changes in the anatomy in the highlighted regions in the heat-map
will change the assessment of Cardiomegaly. Answers: 5-point Likert scale.
(Assessment + ours) I understand how the AI system made the above assessment for
Cardiomegaly. Answers: 5-point Likert scale.

(Assessment + ours) Images in the video look like a chest x-ray. Answers: 5-point Likert
scale.

(Assessment + ours) The images in the video look like the chest x-ray from the subject.
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Al system assessment

Il

Negative Positive

Al system assessment: Chest X-ray is positive for Cardiomegaly.

To explain this assessment, the system presents an explanation video and a heat-map.

Explanation video: It is a sequence of hypothetical images showing how anatomy/chest x-ray has to be
changed for the Al system to change its assessment from negative to positive for cardiomegaly.
Heat-map: It is highlighting the regions that changed the most in the transformation.

negative positive
The changes in the video are related to Cardiomegaly.

) Strongly agree
Somewhat agree
) Neither agree nor disagree

) Somewhat disagree

OO ®OO0

) Strongly disagree

Figure 39: Question 10-14 showing the query CXR, the classifier’s decision and our counter-

factual explanation.

15.

Answers: 5-point Likert scale.

Which explanation helped you the most in understanding the assessment made by the
AT system Answers: Explanation-1: Heat-map highlighting important regions for as-
sessment, Explanation-2: A video showing the transformation from negative to positive
decision, Explanation-3: Two images at the two extreme ends of the decision (positive

and negative), none.
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A.2 Summarizing the notation

Table. 17 summarizes the notation used in the manuscript.

Table 17: Summarizing the notation.

Notation Description

X Input image space

xeX Input image

fXx=Y Pre-trained classification function

f(x)[k] € [0,1] | Classifier’s output for k™" class

C The condition used in ¢cGAN, the desired classifier’s output
for the k*™® class

Xc Explanation image

f(xe) Classifier’s output for the explanation image

Zr(x, c) Explanation function

E() Image encoder

z Latent representation of the input image

C(c) Discretizing function that maps c to an integer

G(z,c) Generator of cGAN

D(x,c) Discriminator of cGAN

Pdata(X) Real image data distribution

q(x) Learned data distribution by cGAN

Loss term of cGAN that measures similarity between real
and learned data distribution

Loss term of ¢cGAN that evaluates correspondence between
generated images and condition

Image feature extractor; part of the discriminator function
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A.3 MIMC-CXR Dataset

We focus on explaining classification models based on deep convolution neural networks
(CNN); most state-of-the-art performance models fall in this regime. We used large, publicly
available datasets of chest x-ray (CXR) images, MIMIC-CXR [112]. MIMIC-CXR dataset
is a multi-modal dataset consisting of 473K CXR, and 206K reports from 63K patients. We
considered only frontal (posteroanterior PA or anteroposterior AP) view CXR. The datasets
provide image-level labels for fourteen radio-graphic observations. These labels are extracted
from the radiology reports associated with the x-ray exams using an automated tool called
the Stanford CheXpert labeler [108]. The labeller first defines some thoracic observations
using a radiology lexicon [86]. It extracts and classifies (positive, negative, or uncertain
mentions) these observations by processing their context in the report. Finally, it aggregates
these observations into fourteen labels for each x-ray exam. For the MIMIC-CXR dataset,

we extracted the labels ourselves, as we have access to the reports.

A.4 Classification Model

To train the classifier, we considered the uncertain mention as a positive mention. We
crop the original images to have the same height and width, then downsample them to 256
x 256 pixels. The intensities were normalized to have values between 0 and 1. Following the
approach in prior work [208, 218, 108] on diagnosis classification, we used DenseNet-121 [98]
architecture as the classification model. In DenseNet, each layer implements a non-linear
transformation based on composite functions such as Batch Normalization (BN), rectified
linear unit (ReL.U), pooling, or convolution. The resulting feature map at each layer is used
as input for all the subsequent layers, leading to a highly convoluted multi-level multi-layer
non-linear convolutional neural network. We aim to explain such a model post-hoc without
accessing the parameters learned by any layer or knowing the architectural details. Our

proposed approach can be used for explaining any DL based neural network.
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A.5 Progressive Counterfactual Explainer

The PCE function is a conditional GAN with an encoder. We used a ResNet [90] ar-
chitecture for the Encoder, Generator, and Discriminator. The details of the architecture
are given in Table 18. For the encoder network, we used five ResBlocks with the standard
batch normalization layer (BN). In encoder-ResBlock, we performed down-sampling (aver-
age pool) before the first conv of the ResBlock as shown in Figure. 40.a. For the generator
network, we follow the details in [171] and replace the BN layer in encoder-ResBlock with
conditional BN (¢BN) to encode the condition (see Figure. 40.b.). The architecture for the
generator has five ResBlocks; each ResBlock performed up-sampling through the nearest
neighbour interpolator. For the discriminator, we used spectral normalization (SN) [172]
in Discriminator-ResBlock and performed down-sampling after the second conv of the Res-
Block as shown in Figure. 40.c. For the optimization, we used Adam optimizer [126], with
hyper-parameters set to a = 0.0002, 5; = 0,8y = 0.9 and updated the discriminator five
times per one update of the generator and encoder.

For creating the training dataset, we divide the posterior distribution for the target
class, f(x) € [0,1] into N equally-sized bins. For efficient training, ¢BN requires class-
balanced batches. A large N results in more conditions for training cGAN, increasing cGAN
complexity and training time. Also, we have to increase the batch size to ensure each
condition is well represented in a batch. Hence, the GPU memory size bounds the upper value
for N. A small value of N is equivalent to fewer bins, resulting in a coarse transformation
which leads to abrupt changes across explanation images. In our experiments, we used
N = 10, with a batch size of 32. We experimented with different values of N and selected
the largest IV, which created a class-balanced batch that fits in GPU memory and resulted
in stable cGAN training.
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Table 18: Explanation Model (cGAN) Architecture

(a) Encoder

Grayscale image x € R?76%256x1

BN, ReLU, 3x3 conv 64
Encoder-ResBlock down 128
Encoder-ResBlock down 256
Encoder-ResBlock down 512
Encoder-ResBlock down 1024
Encoder-ResBlock down 1024

(b) Generator

(c) Discriminator

Latent code z € R10%
Generator-ResBlock up 1024, ¢
Generator-ResBlock up 512, ¢
Generator-ResBlock up 256, ¢
Generator-ResBlock up 128, ¢

Generator-ResBlock up 64, ¢
BN, ReLU, 3x3 conv 1
Tanh

Grayscale image x € R?°6%250x1
Discriminator-ResBlock down 64
Discriminator-ResBlock down 128
Discriminator-ResBlock down 256
Discriminator-ResBlock down 512

Discriminator-ResBlock down 1024
ReLU, Global Sum Pooling (GSP) | Embed(c)
Inner Product (GSP, Embed(c)) — R!
Add(SN-Dense(GSP) — R!, Inner Product)

A.6 Semantic Segmentation

We adopted a 2D U-Net [216] to perform semantic segmentation, to mark the lung and

the heart contour in a CXR. The network optimizes a multi-categorical cross-entropy loss

function, defined as,

Lo:= Z Z = ) log(ps(:)), (28)
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SN, Convilx1

Average Pool

Down-sample
K

Conv3x3

BN, ReLU

Conv3x3

cBN, ReLU

SN, Convi1lx1
Nearest Neighbor
Up-sample
K

A

Average Pool
Down-sample

Average Pool
SN, Conv 1x1 Down-sample

s
SN, Conv3x3

Nearest Neighbor
Up-sample

Average Pool
Down-sample

SN, Conv3x3

(a) Encoder-ResBlock (b) Generator-ResBlock (c) Discriminator-ResBlock

Figure 40: Architecture of the ResBlocks used in all experiments.

where 1 is the indicator function, y; is the ground truth label for i-th pixel. s is the seg-
mentation label with values (background, the lung or the heart). py(z;) denotes the output
probability for pixel x; and 6 are the learned parameters. The network is trained on 385
CXRs and corresponding masks from Japanese Society of Radiological Technology (JSRT)
[268] and Montgomery [109] datasets.

A.7 Object Detection

We trained an object detector network to identify medical devices in a CXR. For the
MIMIC-CXR dataset, we pre-processed the reports to extract keywords/observations that
correspond to medical devices, including pacemakers, screws, and other hardware. Such for-
eign objects are easy to identify in a CXR and do not requires expert knowledge for manual
labelling. Using the CheXpert labeller, we extracted 300 CXR images with positive mentions
for each observation. The extracted x-rays are then manually annotated with bounding box
annotations marking the presence of foreign objects using the LabelMe [275] annotation tool.

Next, we trained an object detector based on Fast Region-based CNN [211], which used
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VGG-16 model [238], trained on the MIMIC-CXR dataset as its foundation. We used this

object detector to enforce our novel context-aware reconstruction loss (CARL).

Figure 41: The costophrenic angle (CPA) on a CXR is marked as the angle formed by, (a)
costophrenic angle point, (b) hemidiaphragm point and (c) lateral chest wall point, as shown

by Maduskar et al.in [156].

We trained similar detectors for identifying normal and abnormal CP recess regions in a
CXR. We associated an abnormal CP recess with the radiological finding of a blunt CP angle
as identified by the positive mention for “blunting of costophrenic angle” in the corresponding
radiology report. For the normal-CP recess, we considered images with a positive mention
for “lungs are clear” in the reports. We extracted 300 CXR images with positive mention of
respective terms for normal and abnormal CP recess to train the object detector.

Please note that the object detector for CP recess is only used for evaluation purposes,
and they were not used during the training of the explanation function. In literature, the
blunting of CPA is an indication of pleural effusion [155, 156]. The angle between the chest
wall and the diaphragm arc is called the costophrenic angle (CPA). Marking the CPA angle
on a CXR requires an expert to mark the three points, (a) costophrenic angle point, (b)
hemidiaphragm point and (c) lateral chest wall point and then calculate the angle as shown
in Figure. 41. Learning automatic marking of CPA angle requires expert annotation and

is prone to error. Hence, rather than marking the CPA angle, we annotate the CP region
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with a bounding box which is a much simpler task. We then learned an object detector to
identify normal or abnormal CP recess in a CXR and used the Score for detecting a normal

CP recess (SCP) as our evaluation metric.

A.8 xGEM

We refer to work by Joshi et al. [114] for the implementation of xGEM. xGEM iteratively
traverses the input image’s latent space and optimizes the traversal to flip the classifier’s de-

cision to a different class. Specifically, it solves the following optimization

x = Gg(arg min L(x,Gy(z)) + M(f(Go(2)), y/)) (29)

zCR4

where the first terms is an ¢, distance loss for comparing real and generated data. The second
term ensures that the classification decision for the generated sample is in favour of class ¢/
and y # y is a class other than original decision. Unless explicitly imposed, the explanation
image does not look realistic. The explanation image is generated from an updated latent
feature, and the expressiveness of the generator limits its visual quality. xGEM adopted a
variational autoencoder (VAE) as the generator. VAE uses a Gaussian likelihood (¢5 recon-
struction), an unrealistic assumption for image data. Hence, vanilla VAE is known to produce
over-smoothed images [99]. The VAE used is available at https://github.com/LynnHo/VAE-
Tensorflow. All settings and architectures were set to default values. The original code gen-
erates an image of dimension 64x64. We extended the given network to produce an image

with dimensions 256 x256.

A9 cycleGAN

We refer to the work by Narayanaswamy et al. [185] and DeGrave et al. [44] for the

implementation details of cycleGAN. The network architecture for cycleGAN is replicated
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from the GitHub repository https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.
For training cycleGAN, we consider two sets of images. The first set comprises 2000 images
from the MIMIC-CXR dataset such that the classifier has a strong positive prediction for
the presence of a target disease i.e., f(x) > 0.9, and the second set has the same number
of images but with strong negative prediction i.e., f(x) < 0.1. We train one such model for

each target disease.

Table 19: Results for six prediction tasks on CelebA dataset. FID (Fréchet Inception Dis-
tance) score measures the quality of the generated explanations. Lower FID is better. FVA
(Face verification accuracy) measures percentage of the times the query image and generated

explanation have same face identity as per model trained on VGGFace2. Higher LSC and
FVA is better.

Prediction Task Data Consistency (FID)
Negative (f(x), f(xc) < 0.2) Positive (f(x), f(xe) > 0.8)

CelebA-Smiling 56.3 46.9
CelebA-Young 74.4 67.5
CelebA-No beard 72.3 79.2
CelebA-Heavy makeup 98.2 64.9
CelebA-Black hair 72.8 55.8
CelebA-Bangs 57.8 54.1

A.10 Extended results on the three desiderata of explanation function

Here, we provide results for four more prediction tasks on celebA dataset: no-beard or
beard, heavy makeup or light makeup, black hair or not back hair, and bangs or no-bangs.
Figure 45 shows the qualitative results, an extended version of results in Figure 12. In Ta-

ble 19, we summarize the FID scores for each PCE trained to explain a specific classification
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task. To demonstrate classifier consistency, similar to Figure 13, we plotted the average re-
sponse of the classifier i.e., f(xc) for explanations in each bin against the expected outcome
i.e., ¢ (see Figure. 42). The positive slope of the line-plot, parallel to y = z line confirms
that starting from images with low f(x), our model creates fake images such that f(x.) is
high and vice-versa. Further, in Figure. 43, we provide a qualitative comparison between
counterfactual images generated by our method and from xGEM. The explanation images
generated by xGEM are blurred and lacks the natural-looking appeal of a face or an x-ray
image. Consistent with this observation, earlier in our results Table. 6, xGEM has a high
FID score, validating that the xGEM explanation images are significantly different from the

real images.

c 10 CelebA(No-Beard) CelebA(Heavy-MakeUp) CelebA(BlackHair) CelebA(Bangs)
o S ?
2 . Y
C os /// // f(x)
s y Vi 0.0-0.2
! U\ S 06 . /’ 0.2-0.4
M T . 7 0.4-0.6
~— 3 04 7 7 . .
2 y p 0.6-0.8
>3 P 7 0.8-1.0
T o2 / /
0] P
g A )
S 0.0 b
8 00 02 04 06 08 10.0 02 04 06 08 100

Condition used in PCE (Desired prediction)

Figure 42: Plot of the expected outcome from the classifier, c, against the actual response
of the classifier on generated explanations, f(x.). The monotonically increasing trend shows
a positive correlation between ¢ and f(x.). Hence, the explanations are consistent with the

given condition.

Next, in Figure 44, we provide similar results on CXR dataset. The bottom labels are the
classifier’s prediction for specific class. We also show the corresponding difference map, ob-
tained by taking an absolute difference between explanations generated for the two extreme
ends, negative (second column) and positive (fifth column) diagnosis. For cardiomegaly the
counterfactual image obtained by cycleGAN failed to flip the classification decision. Fur-
ther, in Figure. 46 we provide the classifier consistency results. For cycleGAN, starting with

input images with f(x) € [0.0,0.2] (purple line), when we create explanation images with
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the desired predictions i.e., x-axis with ¢ € [0.8,1.0], the resulting images (x.) doesn’t sat-
isfy f(x.) € [0.8,1.0]. This shows that on-an-average the CycleGAN counterfactual images

doesn’t flip the classification decision. This finding is consistent with the low counterfactual

validity score in Table. 6.

Query Image Generated Visual Explanations

Not-smiling

CelebA: Smiling

CelebA: Young

3

Figure 43: Visual explanations generated for “smiling” and “young” attribute classification

on CelebA dataset.
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Diagnosis 4 Diagnosi Difference Map
Desiredf (x) [0, 0.3) [0.3,0.5) [0.5,0.7) [0.7,1.0] |-ve —+ve|

Cardiomegaly
(Change in heart
shape) 3l

(x) 008

Input X-Ray

XGEM

f(x)042

CycleGAN

Pleural Effusion
(Change in lung shape) | = 4l

Input X-Ray

>

| f(x)0.25

Figure 44: The transformation of an input chest x-ray into the counterfactual explanations
for two diagnosis, cardiomegaly (first row) and pleural effusion (PE) (last row). The bottom
labels are the classifier’s prediction for the specific class. The yellow color highlight the
prediction where counterfactual fails to flip the decision. The last column shows the difference
map between negative and positive explanation. For cardiomegaly, we are highlight the
heart segmentation (yellow). For PE, we show the bounding-box (BB) for normal (blue) and
abnormal (red) costophrenic (CP) recess. The number on blue-BB is the Score for detecting

a normal CP recess (SCP). The number on red-BB is 1-SCP.
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Query Image Generated Visual Explanations
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Figure 45: Visual explanations generated for different prediction tasks on CelebA dataset.
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Figure 46: The plot of desired prediction, c, against actual response of the classifier on
generated explanations, f(x.). Each line represents a set of input images with classification
prediction f(x) in a given range. Dashed line represents y = x line. A good explanation

should cover the entire range of y-axis [0, 1] for all set of images ( lines of different colors).

A.11 Extended results on clinical evaluation

For quantitative analysis, we randomly sample two groups of real images (1) a real-normal
group defined as X™ = {x; f(x) < 0.2}. It consists of real CXR images that are predicted as
normal by the classifier f. (2) A real-abnormal group defined as X* = {x; f(x) > 0.8}. For
X" we generated a counterfactual group as, X = {x € A™; f(Zy(x,¢c)) > 0.8}. Similarly

for X, we derived a counterfactual group as X7y = {x € X' f(Zy(x,c)) < 0.2}.
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Next, we quantify the differences in real and counterfactual groups by performing statis-
tical tests on the distribution of clinical metrics such as cardiothoracic ratio (CTR) and the
Score of normal Costophrenic recess (SCP). Specifically, we performed the dependent t-test
statistics on clinical metrics for paired samples (™ and X;), (X'® and X7}) and the indepen-
dent two-sample t-test statistics for normal (X", X7}) and abnormal (X, X;) groups. The
two-sample t-tests are statistical tests used to compare the means of two populations. A low
p-value < 0.0001 rejects the null hypothesis and supports the alternate hypothesis that the
difference in the two groups is statistically significant and that this difference is unlikely to
be caused by sampling error or by chance. For paired t-test, the mean difference corresponds
to the average causal effect of the intervention on the variable under examination. In our
setting, intervention is a do operator on input image (x), before intervention, resulting in a

counterfactual image (x.), after intervention.

Table 20: Results of independent t-test. We compared the difference distribution of cardio-
thoracic ratio (CTR) for cardiomegaly and the Score for normal Costophrenic recess (SCP)

for pleural effusion. CI: confidence interval; CF: counterfactual.

Target Paired Differences

Disease Real CF Mean 95% CI
Group Group | Difference Std Lower Upper t df p-value
Cardiomegaly xn" Xy -0.03 0.07 -0.03 -0.01 | -44 | 304 | < 0.0001
(CTR) Xe X% 0.14 0.12 0.13 0.15 | 24.7 | 513 | <« 0.0001
Pleural effusion X" Xc‘lf 0.13 0.22 0.06 0.13 5.9 | 217 | < 0.0001
(SCP) X X -0.19 0.27 -0.18  -0.09 | -6.7 | 216 | < 0.0001

Un-Paired Differences

Mean Real Mean CF 95% CI
Group Group Lower Upper t df p-value
Cardiomegaly xn Xy 0.46 0.42 0.02 0.06 5.2 | 817 | < 0.0001
(CTR) Xe X 0.56 0.50 0.04 0.07 9.9 | 817 | <« 0.0001
Pleural effusion xn X7y 0.69 0.61 0.18 0.27 9.3 | 433 | < 0.0001
(SCP) X Xcaf 0.42 0.56 -0.32 -0.21 -9.7 | 433 | < 0.0001

Table 20 provides the extended results for the Fig. 17. Patients with cardiomegaly
have higher CTR as compared to normal subjects. Hence, one should expect CTR(X™)
< CTR(XS) and likewise CTR(X®) > CTR(X}). Consistent with clinical knowledge, in
Table. 20, we observe a negative mean difference of -0.03 for CTR(&x™") — CTR(X) (a p-
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value of < 0.0001) and a positive mean difference of 0.14 for CTR(X?) — CTR(X}) (with a
p-value of < 0.0001). On a population-level CTR was successful in capturing the difference
between normal and abnormal CXRs. Specifically in un-paired differences, we observe a low
mean CTR values for normal subjects i.e., mean CTR(X") = 0.46 as compared to mean
CTR for abnormal patients i.e., mean CTR(X*) = 0.56. The low p-values supports the
alternate hypothesis that the difference in the two groups is statistically significant.

Further, in Fig 47.A, we show samples from input images that were predicted as negative
for cardiomegaly (X™). In their counterfactual abnormal images (third column), we observe
small changes in CTR are sufficient to flip the classification decision. This is consistent with
a small mean difference CTR(A™) - CTR(Xf;) = —0.03. In contrast, when we generate
counterfactual normal (sixth column) from real abnormal images (positive for cardiomegaly,
Fig 47.B), significant changes in CTR lead to flipping of the prediction decision. This ob-
servation is consistent with a large mean difference CTR(X®) - CTR(X7}) = 0.14.

a n
A. Input Image s of [Normal - B. inputimage Xe of

v ° |Normal —
(Negative Cardiomegaly)Normal Abnormal Abnormal| (Positive Cardiomegaly)  Normal

Abnormal Abnormal |

CTR=0.24 CTR=0.21 CTR=0.27 A=0.03 CTR =0.40 CTR‘= 0.32A= 0.0é CTR=0.42

CTR=0.25 CTR=0.20 CTR =0.25 A=0.00 CTR=0.42 CTR=0.33 A; 0.09 CTR=0.44

Figure 47: Extended results for explanation produced by our model for Cardiomegaly. For
each image, we generate a normal and an abnormal explanation image. We show pixel-wise
difference of the two generated images as the saliency map. In column A.(B.), we show
input images negatively (positively) classified for Cardiomegaly. The yellow contour shows
the heart boundary learned by a segmentation network. CTR is the cardiothoracic ratio. For
column A, we observe a relatively minor change in CTR (A) between real and counterfactual

images than in column B. .

By design, the object detector assigns a low SCP to any indication of blunting CPA
or abnormal CP recess. Hence, SCP(X™") > SCP(X) and likewise SCP(X?) < SCP(X).
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Consistent with our expectation, in Table. 20, we observe a positive mean difference of 0.13
for SCP(A™) — SCP(Xf) (with a p-value of < 0.0001) and a negative mean difference of
-0.19 for SCP(X?) — SCP(X[;) (with a p-value of < 0.0001). On a population-level SCP
was successful in capturing the difference between normal and abnormal CXR for pleural
effusion. Specifically in un-paired differences, we observe a high mean SCP values for normal
subjects i.e., mean SCP(X™) = 0.69 as compared to mean SCP for abnormal patients i.e.,

mean SCP(X®) = 0.42.
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Figure 48: Ablation study to show the effect of KL loss term. Plot of the expected outcome

from the classifier, c, against the actual response of the classifier on generated explanations,

f(xe)-
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Table 21: Our model with ablation on prediction task of young vs old on CelebA dataset.

FID (Fréchet Inception Distance) score measures the quality of the generated explanations.

Lower FID is better. FVA (Face verification accuracy) measures percentage of the times

the query image and generated explanation have same face identity as per model trained on

VGGFace2.
Configuration Data Consistency (FID) Self Consistency
AeGAN  Af Apee | Present  Absent  Overall FVA
0 1 100 | 69.7 105.7 67.2 99.8
1 1 100 67.5 74.4 53.4 72.2
10 1 100 | 894 105.2 63.0 82.7
100 1 100 | 71.6 80.6 44.26 18.0
1 0 100 66.2 66.2 44.9 99.4
1 1 100 | 675 74.4 53.4 72.2
1 10 100 | 95.5 90.4 62.4 96.8
1 100 100 | 77.4 73.1 71.2 42.23
1 1 0 116.2 118.9 72.2 0.0
1 1 1 63.0 78.6 61.6 5.5
1 1 10 87.6 83.6 65.7 88.8
1 1 100 67.5 74.4 53.4 72.2
A.12 Ablation Study

Our proposed model has three types of loss functions: adversarial loss from cGAN

Lecan(D, G), KL loss L;(D, G), and CARL reconstruction loss Lye.(E, G). The three losses

enforce the three properties of our proposed explainer function: data consistency, compat-

ibility with f, and self-consistency, respectively. In the ablation study, we quantify the

importance of each of these components by training different models, which differ in one
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hyper-parameter. For data consistency, we evaluate Fréchet Inception Distance (FID).
FID score measures the visual quality of the generated explanations by comparing them
with the real images. We show results for two groups. In the first group, we consider
real and fake images where the classifier has high confidence in presence of the target la-
bel y i.e., f(xe)[yl], f(x)[y] € [0.8,1.0]. In second group, the target label y is absent i.e.,
f(xe)[y], f(x)[y] € [0.0,0.2). For compatibility with f, we plotted the desired output of
the classifier i.e., ¢ against the actual output of the classifier f(x.) for the generated explana-
tions. For self consistency, we calculated the Face verification accuracy (FVA) for celebA
dataset and the foreign object preservation (FOP) score for CXR dataset. FVA measures
the percentage of the instances in which the query image and generated explanation have the
same face identity as per the model trained on VGGFace2. FOP score is the fraction of real
images, with successful detection of FO, in which FO was also detected in the corresponding
explanation image Xc.

For celebA, we consider the prediction task of young vs old. Figure 48 shows the results
for compatibility with f. Table 21 summarizes the results for data consistency and self-
consistency. For MIMIC-CXR, Table 22 summarizes our results. In the absence of adversarial
loss from ¢cGAN (A.gan = 0), FID score is very high as the generated images looks very
different from the real images. On removing the KL loss for classifier consistency (A; = 0),
the CV score is poor as the generated explanations are derived without considering the
classification function and hence they failed to flip the classification decision. In the absence
of reconstruction loss (A = 0), the generated explanations are no longer for the same
person as in query image. This results in a low FVA score. In CXR dataset, FO in query

CXR are absent in generated explanations, resulting in low FOP score.

A.13 Ablation study over pacemaker

We performed an ablation study to investigate if a pacemaker is influencing the classi-

fier’s prediction for cardiomegaly. We consider 300 subjects that are positively predicted for

cardiomegaly and have a pacemaker. We used our pre-trained object detector to find the
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Table 22: Evaluation metrics for ablation study. FID score quantifies the visual appearance
of the explanations. CV score is the fraction of explanations that have an opposite prediction
compared to the input image. FOP score is the fraction of real images with FO, in which FO
was also detected in the corresponding explanation image. In configuration with A.gay =0
there is no adversarial loss from cGAN, in Ay = 0 there is no KL-loss for classifier consistency

and in \,.. = 0 there is no context-aware self reconstruction loss.

Cardiomegaly Pleural Effusion

Baseline Acgan=0 A;=0 M\.(=0 | Baseline Acgan=0 =0 A\ .=0

FID score
Normal 166 200 174 160 146 210 150 149
Abnormal 137 189 138 140 122 178 120 130

Counterfactual Validity (CV) Score
Overall 0.91 0.89 0.43 0.92 0.97 0.93 0.43 0.97

Foreign Object Preservation (FOP) score

Pacemaker 0.52 0.2 0.55 0.19

bounding-box annotations for these images. Using the bounding-box, we created a pertur-
bation of the input image by masking the pacemaker and in-filling the masked region with
the surrounding context.

An example of the perturbation image is shown in Fig. 49. We passed the perturbed
image through the classifier and calculated the difference in the classifier’s prediction before
and after removing the pacemaker. The average change in prediction was negligible (0.03).
Hence, pacemaker is not influencing classification decisions for cardiomegaly.

We performed an ablation study to investigate if a pacemaker is influencing the classi-
fier’s prediction for cardiomegaly. We consider 300 subjects that are positively predicted for
cardiomegaly and have a pacemaker. We used our pre-trained object detector to find the

bounding-box annotations for these images. Using the bounding-box, we created a pertur-
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bation of the input image by masking the pacemaker and in-filling the masked region with

the surrounding context.

Perturbed image with

Input Image
P & acemaker removed

f(x)=0.94 f(x)=0.93

Figure 49: An example of input image before and after removing the pacemaker.
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