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Nonlinear waves in lattices and metamaterials

Henry Duran, PhD

University of Pittsburgh, 2022

The combination of dispersion and nonlinearity often leads to the formation of nonlinear waves

with complex bifurcation structure. This thesis focuses on the existence, stability and dynamic evolu-

tion of several different types of these waveforms in spatially discrete nonlinear systems.

In the first part of the thesis, we consider traveling solitary waves in a lattice where the competition

between nonlinear short-range interactions and all-to-all harmonic long-range interactions yields two

parameter regimes. We compute exact traveling waves for both cases and investigate their stability.

Perturbing the unstable solution along the corresponding eigenvector, we identify two scenarios of

the dynamics of their transition to stable branches. In the first case, the perturbed wave slows down

after expelling a dispersive shock wave, and in the second case, it speeds up and is accompanied by

the formation of a slower small-amplitude traveling solitary wave.

In the second part, we explore the existence, stability and dynamical properties of moving discrete

breathers in a nonlinear lattice. We propose a numerical procedure that allows us to systematically

construct breathers traveling more than one lattice site per period. We explore their stability spectrum

and connect it to the energy-frequency bifurcation diagrams. We illustrate in this context examples

of the energy being a multivalued function of the frequency. Finally, we probe the moving breather

dynamics and observe how the associated instabilities change their speed, typically slowing them

down over long-time simulations.

In the third part, we turn to stationary discrete breathers. We seek such solutions in a discrete

model that describes an engineered structure consisting of a chain of pairs of rigid cross-like units

connected by flexible hinges. Upon analyzing the linear band structure of the model, we identify

parameter regimes in which this system may possess discrete breather solutions. We then compute

numerically exact solutions and investigate their properties and stability. Our findings demonstrate

that the system exhibits a plethora of discrete breathers, with multiple branches of solutions that

feature period-doubling, symmetry-breaking and other types of bifurcations. The relevant stability

analysis is corroborated by direct numerical computations examining the dynamical properties of the

system.
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1.0 Introduction

Solitary traveling waves and discrete breathers are coherent structures that describe fundamen-

tal mechanisms of signal transmission and energy transport in many nonlinear dispersive systems.

This dissertation investigates existence, stability and dynamical properties of these waveforms in the

context of spatially discrete settings that include lattices and mechanical metamaterials.

This chapter provides background information and an overview of the main results of the thesis,

which consists of three parts. In the first part, introduced in Sec. 1.1, we discuss stability and dynamics

of solitary traveling waves in a nonlinear lattice with long-range harmonic interactions. Sec. 1.2

introduces the second part, which focuses on moving discrete breathers. The overview of the last part

of the thesis, devoted to discrete breathers in a mechanical metamaterial, can be found in Sec. 1.3.

1.1 Stability and dynamics of lattice solitary traveling waves

Since the groundbreaking work [1, 2] on nonlinear Fermi-Pasta-Ulam (FPU) lattices, among the

principal objects of investigation have been the solitary traveling waves (STWs), spatially localized

nontopological excitations that emerge in such systems and propagate with amplitude-dependent

constant velocity, and their connection to soliton solutions of the Korteweg-de Vries (KdV) equa-

tion. Consequently, many studies have been devoted to understanding the properties of these waves

in discrete systems [3–7], including experimental investigations in electrical networks [8, 9], gran-

ular chains [10–12] and mechanical metamaterials [13]. Significant theoretical developments in-

clude the discovery of the integrable Toda lattice and the study of its STWs [14], existence proofs

for non-integrable systems [15–18] and rigorous investigations of the low-energy [19–25] and high-

energy [26–28] limits.

Despite all this progress, stability of lattice STWs remains an issue that is far from being fully

understood, with rigorous results only known for some special cases such as the integrable Toda

lattice [29, 30], near-integrable sonic limit [19–22] and the hard-sphere high-energy limit [28]. A

sufficient condition for change in the spectral stability of a STW was established in [21] for the

FPU problem. In the recent work [31, 32] this result was extended to a general class of Hamiltonian
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systems and connected to stability criteria in the realm of discrete breathers [33]. This energy-based

criterion involves the monotonicity of the Hamiltonian H as a function of the wave’s velocity c. The

corresponding criterion for breathers, time-periodic localized solutions, concerns the monotonicity

of H with respect to the frequency ω of the breather. The intimate connection between the criteria

stems from the fact that traveling waves are periodic modulo lattice shifts, resulting in the direct

proportionality of ω and c. The relevant stability criterion states that as c is varied, passing through

a critical point of H(c) is sufficient (but not necessary) for a change in stability. As shown in [31,

32], a pair of eigenvalues associated with the STW collides at zero at the critical velocity value and

reemerges on the real axis when the wave becomes unstable.

The combination of the criterion stated in [31, 32] and the fact that STWs in the FPU prob-

lem are stable near the sonic limit, where H ′(c) > 0 [22], suggests that waves become unstable

when H ′(c) < 0. Interestingly, in most known cases H(c) is a monotonically increasing function

and numerical (or, in the case of Toda lattice, analytical [29, 30]) results indicate stability of STWs.

Examples of lattices with nonmonotone H(c) include systems with piecewise quadratic interaction

potentials [34–37] and their smooth approximations [32]. Another remarkable example was revealed

in a series of papers [38–41] that investigated a lattice with nonlinear nearest-neighbor interactions

and harmonic Kac-Baker [42, 43] longer-range interactions. Accounting for such effects is important

in modeling real physical systems, such as chains of uncharged molecular units with non-negligible

dipole-dipole interactions. The exponential decay of the Kac-Baker interactions has been used to

obtain closed-form expressions for various thermodynamic quantities in Ising [42, 43], Potts [44]

and Klein-Gordon [45] models. In [38–41], the authors showed that depending on the parameters

of the long-range interactions and due to an interplay of two different length scales, H(c) can be

monotonically increasing, nonmonotone or fold on itself (Z-shaped), becoming multivalued in a cer-

tain velocity interval, where three STWs with the same velocity coexist [41]. Numerical simulations

in [41] suggest stability of the low-energy and high-energy solutions where H ′(c) > 0 and instability

of the solutions with the intermediate energy values. For the nonmonotone single-valued case, this

conjecture is supported by the stability analysis of the associated quasicontinuum model in [40] and

linear stability analysis of the discrete system in [31,32] which reveals the above mentioned instability

picture associated with real eigenvalues at the spectral analysis level.

In Chapter 2, which is based on the recent work [46] in collaboration with Panayotis G. Kevrekidis,

Haitao Xu and Anna Vainchtein, we revisit this problem and extend the analysis in [31,32] to the case
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when H(c) is no longer single-valued. Specifically, we consider a chain of particles with nearest-

neighbor interactions governed by the α-FPU potential V (w) = w2/2 − w3/3 and harmonic Kac-

Baker all-to-all long-range interactions with exponentially decaying moduli Λ(m). The dimensionless

equations of motion are given by

ẅn + 2V ′(wn)− V ′(wn+1)− V ′(wn−1) +
∞∑

m=1

Λ(m)(2wn − wn+m − wn−m) = 0,

where wn is the strain variable measuring the relative displacement between (n + 1)th and nth par-

ticles. We seek STW solutions of this system that propagate with velocity c. Such solutions have

the form wn(t) = ϕ(ξ), ξ = n − ct, where ϕ(ξ) → 0 as ξ → ±∞. To compute the STWs with

velocities above the sound speed cs of the lattice, we use the collocation method developed in [31,32]

combined with the pseudo-arclength parameter continuation [47]. To study the linear stability of

these waveforms, we take advantage of the fact that STWs are periodic modulo a shift by one lattice

spacing [21, 31, 32], wn+1(t + T ) = wn(t), with period T = 1/c, and employ the Floquet analysis

of the problem linearized about a STW solution. Our analysis shows that the change of stability is

now associated with the change of the sign of H ′(s), where s is the parameter that c and H depend

on. More precisely, in the parameter regime where H(c) is Z-shaped the instability is associated with

H ′(s) < 0. In the case of a nonmonotone single-valued H(c) function this reduces to H ′(c) < 0.

We then proceed to investigate in detail the dynamical consequences of instability in both of these

regimes. This is done by perturbing the unstable waves along the eigenmode corresponding to a real

Floquet multiplier associated with the instability and tracking the velocity and energy of the evolving

wave. Our results show that depending on the sign of perturbation, there are two generic scenarios.

In the first case, the wave slows down after expelling a dispersive shock wave. In the second scenario,

the wave’s velocity increases following the formation and expulsion of a small-amplitude STW. In

both cases, the waves stabilize when their velocity reaches a value along the energy-velocity curve

where H ′(c) > 0.

1.2 Moving discrete breathers

Discrete breathers are time-periodic nonlinear modes that arise in lattices due to the interplay

of dispersion and nonlinearity [48–50]. The most common form of such excitations are stationary
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bright breathers, originally called intrinsic localized modes [51–53] due to their spatial localization.

Breathers were found to exist in Hamiltonian and damped-driven lattices and were experimentally

observed in a variety of nonlinear discrete systems, including Josephson junction arrays [54, 55],

forced-damped arrays of coupled pendula [56], electrical lattices [57–59], micromechanical systems

[60–62], the denaturation of the DNA double strand [63] and granular chains [64–67].

In the years since breathers were first discovered [68], there has been much progress in under-

standing their existence, spectral stability and dynamical properties [5, 49, 50]. For instance, explicit

criteria for linear [69] and nonlinear [70] stability of stationary breathers have been put forth. Addi-

tionally, it was observed that instability of stationary (in the laboratory frame, i.e., immobile) breathers

sets them in motion, and long-lived traveling breathers have been found numerically in various non-

linear lattices [53, 71–74]. Breather mobility is of considerable interest because it is associated with

energy transport in the lattice; indeed, such coherent structures have been proposed as a prototypical

means for achieving targeted energy transfer in discrete nonlinear systems [75]. An exact moving

breather is time-periodic modulo a shift by one or more lattice spaces. The period is an integer mul-

tiple of the period of internal vibrations. Such solutions have been constructed using the Newton

iterative method, e.g., for Klein-Gordon [74, 76, 77] and β-FPU [74, 78] lattices. For generic inter-

action potentials that do not possess a certain symmetry [79, 80], moving breathers are no longer

spatially localized: instead, they possess oscillatory wings whose amplitude depends on the internal

breather frequency and its propagation velocity.

The first detailed analysis of this dependence for a β-FPU lattice was performed in [78]. The

authors constructed numerically exact moving breathers for several different rational values of the

period-wise velocity V1 = r/s, where r is the number of lattice sites the breather travels over s

periods of the internal vibration. Performing a continuation in internal frequency ω at fixed V1, they

investigated how the wing energy (or, equivalently, amplitude) of these breathers depends on their

internal frequency. In particular, they studied the mechanism for resonances in the wing amplitude

and derived an approximate formula for the resonant frequencies. They also briefly summarized the

results of their linear stability investigation (without providing a systematic analysis thereof) for the

computed solutions.

Motivated by these earlier studies, we revisit the problem in Chapter 3, based on the recent work

[81] in collaboration with Jesús Cuevas–Maraver, Panayotis G. Kevrekidis, and Anna Vainchtein, and

conduct a more detailed investigation of the breather existence, stability, dynamics and resonance
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features. A scaling argument shows that for a β-FPU problem with the interaction potential V (w) =

w2/2 + βw4/4 and β > 0, it suffices to consider the governing equations

q̈n = qn+1 + qn−1 − 2qn + (qn+1 − qn)
3 − (qn − qn−1)

3,

where qn is the displacement of the nth particle. To compute the moving breathers, we use the Newton

iterative method in conjunction with a symplectic and fourth-order Runge-Kutta-Nyström integration

algorithm [82] and parameter continuation. As in Chapter 2, linear stability of the obtained solutions

is investigated via the computation of Floquet multipliers.

Our analysis extends the results of the earlier work in several ways. Importantly, we consider

moving breathers propagating by more than one lattice spacing (r > 1) over its period, extending the

earlier work that had focused chiefly on the r = 1 case. To compute such solutions, we developed

a numerical procedure based on a continuation along a sequence of rational values of V1. We show

that the total breather energy (the Hamiltonian) and the wing energy are in fact multivalued functions

of the internal frequency ω, so that there are several moving breathers with the same ω and different

energies. Moreover, our results reveal the truly nonlinear form of the resonances: a rapid increase in

wing energy is followed by a more gradual one. Subsequently, we provide a detailed analysis of the

linear stability of the obtained solutions and consider the consequences of the instability associated

with real Floquet multipliers µ > 1. In particular, we investigate the dynamics of the breathers

perturbed along the corresponding unstable eigenmodes and show that after repeated interactions

with the wing oscillations due to the periodic boundary conditions the breather gradually decelerates

and eventually becomes nearly stationary, with its velocity oscillating around zero.

1.3 Discrete breathers in a mechanical metamaterial

Mechanical metamaterials are engineered structures [83–88] whose macroscopic properties are

primarily controlled by their geometry and may differ considerably from those of their building

blocks [89–93]. In recent years, there has been a lot of interest in nonlinear dynamic response of

flexible mechanical metamaterials, a new class of engineered materials that exploit large deforma-

tion and mechanical instabilities of their components to yield a desired collective response [83, 94].

Examples include metamaterials consisting of rotating rigid elements that are connected by flexible

5



hinges [95,96], multistable kirigami sheets [97], chains of bistable shells [98] and beams [99], as well

as origami-inspired [13,100] and linkage-based [101] deployable structures. These metamaterials can

be designed to enable potential applications that include morphing surfaces, soft robotics, reconfig-

urable devices, mechanical logic and controlled energy absorption [102–108]. Recent studies have

demonstrated that metamaterials of this type can be designed to control propagation of a variety of

nonlinear waves [94, 96, 99–101, 109, 110].

In Chapter 4, based on the work [111] in collaboration with Jesús Cuevas–Maraver, Panayotis

G. Kevrekidis, and Anna Vainchtein, we consider the flexible mechanical metamaterial that was re-

cently studied experimentally and theoretically in [94, 96, 112]. The experimentally realized system,

schematically shown in Fig. 1, consists of a chain of pairs of cross-type rigid units made of LEGO

bricks and connected by thin flexible polyester or plastic hinges [96,112]. Under certain assumptions,

the system can be described by a discrete model that assigns two degrees of freedom to each pair

of rigid units: horizontal displacement and rotation. The dimensionless equations of motion for this

system are given by

ün = un+1 − 2un + un−1 −
cos(θn+1 + ϕ0)− cos(θn−1 + ϕ0)

2 cos(ϕ0)

1

α2
θ̈n = −Kθ(θn+1 + 4θn + θn−1) +Ks cos(θn + ϕ0)

(
sin(θn+1 + ϕ0) + sin(θn−1 + ϕ0)

− 2 sin(θn + ϕ0)

)
− sin(θn + ϕ0)

(
2 cos(ϕ0)(un+1 − un−1) + 4 cos(ϕ0)− cos(θn+1 + ϕ0)

− 2 cos(θn + ϕ0)− cos(θn−1 + ϕ0)

)
,

where un is the displacement component of the nth cross unit, θn is the angular component of the

nth cross unit, α is a dimensionless inertia parameter, ϕ0 measures the vertical offset between the

neighboring horizontal hinges, andKs andKθ are dimensionless parameters modeling the vertical and

horizontal hinges. This system, in turn, can be approximated at the continuum level by a Klein-Gordon

equation with cubic nonlinearity, a nonlinear wave-bearing system that possesses both soliton and

cnoidal wave solutions [94]. In [96], the authors use a combination of experiments, direct numerical

simulations of the discrete system and analysis of the continuum model to investigate traveling waves

in this system that correspond to elastic vector solitons on the continuum level. They demonstrate

that the metamaterial lattice may be designed to exhibit amplitude gaps where soliton propagation is

forbidden, which, in turn, enables the design of soliton splitters and diodes. In [112] the anomalous
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Figure 1: Top panel: discrete chain of cross-shaped rigid units. Bottom panel: kinematic variables and parameters.
Adapted from Supplementary Figure 6 in [96].

nature of the soliton collisions in this system is explored. These developments clearly illustrate the

promise of this type of nonlinear lattice in regards to the wave dynamics and interactions.

In Chapter 4 we demonstrate that in certain parameter regimes the discrete system derived in [96]

also exhibits a plethora of spatially localized, time-periodic patterns in the form of discrete breathers.

These structures arise in terms of the angle and strain (relative displacement) variables and appear

to be generic in the gaps of the linear excitation spectrum. To construct such solutions for the meta-

material system, we start by analyzing the dispersion relation, which features optical and acoustic

branches. We show that when the angle ϕ0 takes values in certain parameter-dependent intervals,
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there is a frequency gap between the optical and acoustic branches that enables existence of discrete

breathers. We then use the iterations of Newton’s method with a suitable initial guess and (once

converged to a member of a solution family) parameter continuation to compute branches of discrete

breather solutions that have frequency inside the gap. Stability of the obtained solutions is investigated

using the Floquet analysis.

As our first example, we consider the system parameters from [96] and show that in this case

a branch of discrete breather solutions bifurcates from the edge of the optical band provided that

the offset angle ϕ0 is above a certain threshold. Floquet analysis reveals that this branch eventually

undergoes period-doubling bifurcations, and we compute the corresponding double-period solutions

and investigate their stability.

As a second example, we consider a different set of parameters that enables existence of breathers

for small offset angles ϕ0 in a certain interval. Choosing two different values in this interval, we com-

pute branches of solutions bifurcating from the edges of optical and acoustic bands as well as some

additional branches that bifurcate from the primary ones. Here, our computation reveals a complex

bifurcation diagram in the energy-frequency plane involving branches of symmetric and asymmetric

discrete breather solutions and emergence of instability modes associated with real and complex Flo-

quet multipliers. In particular, we find that the onset of real instability can take place via collisions of

complex multipliers, as well as symmetry-breaking and period-doubling bifurcations. Another mech-

anism involves critical points of the breather’s energy as a function of its frequency (effectively, a

saddle-center bifurcation), in line with the stability criterion established in [113] for discrete breathers

in Fermi-Pasta-Ulam and Klein-Gordon lattices. We investigate the fate of some of the unstable solu-

tions by perturbing them along the corresponding eigenmodes and show that in each case the ensuing

dynamic evolution leads to a discrete breather that is effectively stable if one neglects the presence of

small-magnitude complex eigenvalues. The computed primary branches have a snake-like form with

multiple turning points, and the solution profiles often evolve in a nontrivial way along a branch, e.g.,

via the emergence of additional peaks or troughs in the strain and angle variables describing a discrete

breather with even symmetry. Some features of the obtained bifurcation diagrams are reminiscent of

the “snake-and-ladder” patterns observed in other nonlinear systems [114–116], although a detailed

exploration of such a phenomenology is outside the scope of this thesis.
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2.0 Unstable dynamics of solitary traveling waves in a lattice with long-range interactions

In this chapter, we investigate stability of STW solutions in an α-FPU lattice with harmonic all-to-

all long-range interactions of Kac-Baker type and explore the dynamic consequences of the instability.

As described in Sec. 1.1, the system features two parameter regimes where the dependence of the en-

ergy H of the traveling waves on their velocity c is nonmonotone and multivalued, respectively. We

compute STWs for representative parameter values in both regimes and investigate the stability of the

obtained solutions using the Floquet analysis. Extending the earlier results in [31,32] to the more gen-

eral multivalued case, we show that the waves are unstable when H ′(s) < 0, where s is the parameter

along the energy-velocity curve. Perturbing the unstable solutions along the corresponding eigen-

modes, we identify two different scenarios of the ensuing dynamic transition to a stable waveform. In

the first case, the perturbed wave slows down following an expulsion of a dispersive shock wave. In

the second case, the wave speeds up in a process involving the formation of a slower small-amplitude

STW.

The chapter is organized as follows. In Sec. 2.1 we formulate the problem and review prior results.

In Sec. 2.2 we describe the numerical methods we used. Results for the single-valued nonmonotone

H(c) are presented in Sec. 2.3, while Sec. 2.4 is devoted to the multivalued case. Concluding remarks

can be found in Sec. 2.5. A more technical stability analysis for multivalued H(c) is presented in

Appendix A.

2.1 Problem formulation and prior results

We consider Hamiltonian dynamics of a one-dimensional lattice with nonlinear nearest-neighbor

interactions and all-to-all harmonic longer-range interactions, with moduli that decay exponentially

with distance. The Hamiltonian of this system is given by

H =
∞∑

n=−∞

{
1

2
u̇2n + V (un+1 − un) +

1

4

∞∑
m=−∞

Λ(m)(un − un+m)
2

}
, (1)
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where un(t) denotes the displacement of nth particle at time t, u̇n = u′n(t), and V (w) = w2/2−w3/3

is the potential governing the nonlinear nearest-neighbor interactions. The last term represents Kac-

Baker interactions that have moduli Λ(m) = J(eα − 1)e−α|m|(1 − δm,0). Here J > 0 measures the

intensity of the longer-range interactions, and α > 0 determines their inverse radius. In terms of the

strain (relative displacement) variable wn = un+1 − un, the equations of motion are

ẅn + 2V ′(wn)− V ′(wn+1)− V ′(wn−1) +
∞∑

m=1

Λ(m)(2wn − wn+m − wn−m) = 0. (2)

The energy H and the total momentum

P =
∞∑

n=−∞

u̇n (3)

of the system are conserved in time.

Previous work [31, 32, 38–41] on this model has focused on solitary traveling wave (STW) solu-

tions of (2), which have the form

wn(t) = ϕ(ξ), ξ = n− ct, (4)

where c is the wave’s velocity, and vanish at infinity. These solutions satisfy the advance-delay differ-

ential equation

c2ϕ′′(ξ)+2V ′(ϕ(ξ))−V ′(ϕ(ξ+1))−V ′(ϕ(ξ−1))+
∞∑

m=1

Λ(m)(2ϕ(ξ)−ϕ(ξ+m)−ϕ(ξ−m)) = 0. (5)

Numerical computations in [31,32,40,41] suggest the existence of even (ϕ(−ξ) = ϕ(ξ)), compressive

(ϕ(ξ) < 0) solutions of this type with c > cs, where

cs =

√
1 + J

1 + e−α

(1− e−α)2
(6)

is the sound speed [41]. Due to the translational invariance of (5), these waves can be shifted arbitrarily

along the ξ axis. Note also that the traveling wave solutions (4) are periodic modulo one lattice shift,

wn+1(t+ T ) = wn(t), with period T = 1/c, and thus can be viewed as fixed points of the map {wn+1(T )}

{ẇn+1(T )}

→

 {wn(0)}

{ẇn(0)}

 . (7)
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In [40, 41] the lattice equations (2) are approximated by a quasicontinuum model, which yields

the traveling wave equation

(∂2ξ − s2+)(∂
2
ξ − s2−)ϕ(ξ) =

12

c2
(∂2ξ − κ2)ϕ2(ξ), (8)

where κ = 2 sinh(α/2) and

s2± =
1

2

κ2 + 12
c2 − 1

c2
±

√(
κ2 − 12

c2 − 1

c2

)2

+ 48κ2
c2s − 1

c2

 . (9)

Detailed analysis of the quasicontinuum approximation (8) in [40] (see also [39]) has shown that

the interplay of short-range and long-range interactions in the problem gives rise to two competing

velocity-dependent length scales 1/s− and 1/s+, with s± given in (9). In a certain parameter regime,

this scale competition leads to the existence of two branches of STWs, associated with low and high

velocities, respectively, and the emergence of crest-like waves when the velocity reaches a critical

value.

Numerical computations in [41] of solutions of (5) for the discrete problem further showed that

the (α, J) plane can be subdivided into three regions, separated by the curves J1(α) and J2(α), where

J1 ≈


0.23

α4

α2
1 − α2

, α < α1

∞, α ≥ α1,

J2 ≈


3α4

8(α2
2 − α2)

, α < α2

∞, α ≥ α2

(10)

and α1 = 0.25, α2 = 0.16. These three regions are shown in Fig. 2. They consist of the M -

region, where the energy H of the STW monotonically increases with its velocity c, the N -region,

where the dependence is nonmonotone, with H(c) initially increasing, then decreasing for a certain

velocity interval and then increasing again, and lastly the Z-region, where the function H(c) becomes

multivalued for some velocities (“Z-shaped”). The three different regimes were also captured in [38]

using a collective-coordinate approach.

It has been conjectured in [41] that in the N and Z-regions the low-velocity and high-velocity

solutions where H ′(c) > 0 are stable, while waves along the intermediate branch are unstable. These

assertions are supported by the stability analysis in [40] for the quasicontinuum model (8), where the

stability threshold is linked to the change of monotonicity of the canonical momentum as a function of

the velocity c of the wave, which appears to coincide with the corresponding change in the monotonic-

ity of H(c). In [21] an analogous energy-based criterion, associating the change in the multiplicity of
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Figure 2: The M , Z and N -regions in the (α, J) plane together with the boundary curves J1(α) (right) and J2(α) (left)
defined in (10). Circles mark the parameter values for the examples discussed in Sec. 2.3 and Sec. 2.4.

the zero eigenvalue for the linearized problem with the change of sign of H ′(c), was proved for the

FPU problem without long-range interactions, and in [31, 32] this result was extended to a general

class of discrete systems with Hamiltonian H being a single-valued function of c. Moreover, explicit

leading-order expressions for the pertinent pair of eigenvalues that meet at the origin at the stability

threshold and emerge on the real axis at velocity values corresponding to the unstable waves were ob-

tained in [31,32]. For the problem at hand, this general result was illustrated in [31,32] by considering

STWs in the N -region and investigating linear stability in two different ways: the spectral analysis

of the linear operator associated with the traveling wave equation (5) and the Floquet analysis of the

linearization of the map (7). Both approaches corroborated the conjecture in [41] for the N -region.

In particular, the waves corresponding to H ′(c) < 0 are unstable.

In what follows we investigate in detail the consequences of this instability by perturbing the

unstable STWs along the corresponding Floquet eigenvectors. To extend these results to the Z-region,

where H is a multivalued function of c, we generalize the energy-based stability result in [31,32] and

show that in this case the instability threshold is associated with H ′(s) crossing zero, where s is a

parameter that bothH and c depend on (see Appendix A for the proof that the multiplicity of the zero

eigenvalue increases at this threshold). We verify this result and the conjecture in [41] by conducting

the Floquet analysis in the Z-region and investigate the corresponding unstable dynamics of STWs

associated with H ′(s) < 0.
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2.2 Numerical methods

To compute the STWs in the N -region for given J and α, we employ the collocation method and

continuation approach described in [31,32] to generate a one-parameter family of STWs (parametrized

by the velocity c) by numerically solving the traveling wave equation (5) for STW solutions starting

at an initial velocity just above the sound speed (6) and using the near-sonic solution of the quasicon-

tinuum equation (8) as an initial guess. These waves are computed on the finite interval (−L/2, L/2]

with mesh size ∆ξ at the collocation points ξj = j∆ξ, j = −N/2 + 1, . . . N/2, where N is even and

L = N∆ξ. The fast Fourier transform is used to approximate the second-order derivative term in (5),

while the advance and delay terms ϕ(ξ±m) are evaluated at the corresponding collocation points that

are well defined on the chosen mesh. Following [32], we used L = 800 and ∆ξ = 0.1 for a typical

computation. The resulting nonlinear system is solved numerically for each velocity value using the

Newton iteration method.

To compute the STWs in the Z-region, where the energy H is multivalued for some velocities,

we combine the numerical procedure described above with the pseudo-arclength continuation method

[47] to traverse the turning points in the energy-velocity curve. In this case the traveling wave solution

and its velocity c depend on the arclength-like parameter s. In this parameter range, we usedL = 1200

and ∆ξ = 0.1.

To investigate linear stability of the computed waves, we use Floquet analysis. To this end, we

trace the time evolution of a small perturbation ϵyn(t) of the periodic-modulo-shift traveling wave

solution ŵn(t) = ϕ(n − ct), where we recall (4). This perturbation is introduced in (2) via wn(t) =

ŵn(t) + ϵyn(t). The resulting O(ϵ) equation reads

ÿn + 2V ′′(ŵn)yn − V ′′(ŵn+1)yn+1 − V ′′(ŵn−1)yn−1 +
∞∑

m=1

Λ(m)(2yn − yn+m − yn−m) = 0. (11)

Then, in the framework of Floquet analysis, the stability properties of periodic orbits are resolved

by diagonalizing the monodromy matrix F (representation of the Floquet operator in finite systems),

which is defined as  {yn+1(T )}

{ẏn+1(T )}

 = F

 {yn(0)}

{ẏn(0)}

 , (12)

where we recall that T = 1/c. We remark that the Floquet operator can be equivalently constructed in

terms of the perturbations of strain and momenta variables, which is consistent with the formulation
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considered in Appendix A. For symplectic Hamiltonian systems we consider in this thesis, the the

monodromy eigenvalues µ (also called Floquet multipliers) come in either real pairs (µ, 1/µ) or com-

plex quartets (µ, µ̄, 1/µ, 1/µ̄), and linear stability of the solutions requires that the Floquet multipliers

lie on the unit circle. The presence of a multiplier satisfying |µ| > 1 indicates an instability. When

the relevant instability-inducing multiplier is real, we refer to the instability as exponential, given the

exponential nature of the associated growth. In the case of a complex multiplier quartet, the instabil-

ity is referred to as oscillatory, given that oscillations accompany the exponential growth due to the

imaginary part of the associated multipliers.

The Floquet multipliers µ are related to the eigenvalues λ of the operator associated with the

linearized problem via µ = eλ/c, so that the eigenvalue satisfying Re(λ) > 0 corresponds to an

instability. As we will show, the instability takes place when H ′(s) < 0, where s is the parameter

along the energy-velocity curve. In the case when H(c) is single-valued, as in the N -region, this

simplifies to H ′(c) < 0 [31,32]. To find the Floquet multipliers, we construct the monodromy matrix

using the numerical solution of (11) with periodic boundary conditions.

To investigate the unstable dynamics, we perturb the wave along the unstable eigenmode, setting

the initial conditions wn(0) = ϕ(n−n0)+ ϵyn−n0 and ẇn(0) = −cϕ′(n−n0)+ ϵzn−n0 for |n−n0| ≤

L/2, and wn(0) = ẇn(0) = 0 for 1 ≤ n < n0 − L/2 and n0 + L/2 < n ≤ N , with the typical

eigenmode profiles for yn and zn being depicted in Fig. 4 and ϵ measuring the strength of the applied

perturbation. Here we recall that L is the length of the interval on which the traveling wave ϕ(ξ) is

numerically computed, with (even) L chosen large enough for the wave to decay sufficiently at the

end; typically, we set L = 800. The computed wave is shifted by n0 and padded by zeros so that the

initial condition defined at n = 1, . . . , N has compact support. Here n0 and N are chosen so that the

ensuing waveforms can propagate for a sufficiently long time without boundary effects. Typically, we

set n0 = 701 and N = 4001. The equations of motion (2) are then solved numerically with this initial

condition and periodic boundary conditions to investigate the fate of the unstable solution.

Of particular interest is the velocity of the ensuing waveform as a function of time. Recall that an

STW solution (shifted by n0) has the form wn(t) = ϕ(n − n0 − ct), so that if t1 and t2 are such that

wn1(t1) = wn2(t2) = ϕ(0), we have c = (n2 − n1)/(t2 − t1). Here t1 and t2 correspond to the times

when the minimum value of the STW reaches the corresponding particles n1 and n2. In the case of

unstable dynamics, the wave is no longer steady, as its velocity and form change with time, but locally

these changes are small. With this in mind, we determine the times t∗i at which the minimum of the
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waveform reaches the particle with ni = n0 + i∆n, i = 1, . . . , K, and approximate c(t∗i ) by

ci =
∆n

t∗i+1 − t∗i
. (13)

Here nK is the particle number reached by the wave near the end of the simulation. To compute t∗i

more precisely, we use cubic spline interpolation of the numerical data. Experimentally, we found that

setting ∆n = 5 was optimal, since this value provided some averaging and yielded final velocities

that were the same up to O(10−5) as the computations with ∆n = 3 and ∆n = 1.

Other quantities of interest are the (local) energy and momentum of the evolving STW as functions

of time. To find these, we consider sample times τi = i∆t, where ∆t = 0.02. At each time t = τi,

we determine the particle at which the strain reached its minimal value and compute the energy and

momentum of a portion of the chain centered at this particle. The length of the portion, which is

the same for each sample time τi, is chosen so that the main body of the wave was included in it,

which we took to be when the strain was of O(10−4) at the ends. Typically, including 125 particles is

sufficient. Notice that while the total energyH and momentum P of the lattice remain conserved over

the dynamical evolution (up to the relative error of O(10−12) in the simulations), the localized energy

and momentum portions associated with the wave may vary over time, especially in the scenario of the

dynamical evolution of a spectrally unstable wave. In that light, these diagnostics are quite suitable

for detecting the potential transformations of STWs as a result of their instability.

2.3 Unstable dynamics in the N -region

We start by investigating the unstable dynamics of STWs in the N -region. While multiple sim-

ulations in different regimes have been conducted, we present below only the results for α = 0.165,

J = 0.1 that are representative of the instability patterns observed in this parameter region. The

corresponding H and maximal real Floquet multiplier µ as functions of c are shown in Fig. 3.

Due to translational invariance, the system always has a pair of unit Floquet multipliers, which

are the maximal real multipliers in the velocity intervals corresponding to increasing energy (H ′(c) >

0). These velocity intervals apparently correspond to linearly stable STWs, although mild spurious

oscillatory instabilities associated with complex Floquet multipliers slightly outside the unit circle

may be present in this regime due to numerical artifacts that diminish as L is increased [32]. As the
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Figure 3: (a) Energy H and (b) maximal real Floquet multiplier µ as functions of velocity c of the STWs at (α, J) =
(0.165, 0.1). Unstable waves where µ > 1 correspond to the decreasing dashed portion of the energy curve (H ′(c) < 0).
Points A, B, C, and D correspond to the velocities of the tested unstable waves, and points A1, A2, B1, B2, C1, C2, D1,
and D2 mark the corresponding final velocities of the stable waves that the perturbed unstable STWs have evolved into,
depending on the sign of the perturbation. Inset in (b) shows the enlarged view around the maximum.

first stability threshold is crossed, a symmetric pair of imaginary eigenvalues λ collides at zero and

reemerges on the real axis. Equivalently, a pair of multipliers sliding along the unit circle results in

a collision at the point (1, 0) of the unit circle and reemerges on the real axis as a symmetric pair,

with maximal real multiplier µ now exceeding unity (and the second multiplier of the pair now being

inside the circle with a value of 1/µ), so that the corresponding STWs are unstable. The magnitude

of µ increases, reaches a maximum value and then decreases again to unity when the second stability

threshold is crossed. It should be noted that in the numerical computations H ′(c) is slightly below

zero at the two stability thresholds. As discussed in [32], this is an artifact of the finite length L of the

chain, and H ′(c) approaches zero at the threshold when L is increased.

To investigate the consequences of the instability associated with µ > 1, we selected STWs

with four different velocities inside the unstable interval and perturbed them along the corresponding

eigenmodes, as described in Sec. 2.2. The simulations were run until a stable propagation pattern

emerged. In all simulations, the perturbed unstable wave eventually evolves into a stable STW with

lower energy and either smaller or higher velocity, as shown in Fig. 3. We found that the size of the

perturbation only affected the time it takes for the stable waveform to emerge but not the resulting
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wave itself. We also found that adding small random noise (of amplitude 10−4) to the initial perturba-

tion did not significantly affect the results; i.e., for a given unstable initial waveform, the dynamical

evolution would apparently select a unique end state on the corresponding stable branches. A typical

eigenmode used to initiate the instability is shown in Fig. 4. We note that each normalized eigenmode

is determined up to a plus or minus sign, so to change a wave from speeding up to slowing down or

vice versa it suffices to reverse the sign of ϵ.
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y n

680 685 690 695 700 705 710 715 720 725
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z
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Figure 4: Eigenmode of an unstable STW with c = 3.458, (α, J) = (0.165, 0.1) corresponding to the Floquet multiplier
µ = 1.0048 that leads to the speeding up of the perturbed wave. Here yn corresponds to strain and zn to its time derivative.
Reversing the sign of the perturbation results in slowing down of the perturbed wave. The red curve connecting the discrete
points is included as a guide to the eye.

A representative example of velocity, energy and momentum evolution in the slow-down case is

shown in Fig. 5. We observed that when the velocity of the perturbed unstable wave eventually de-

creases, the wave expels a small-amplitude dispersive shock wave, as can be seen in Fig. 6. As shown

in Fig. 5(a), the velocity evolution in this case is nonmonotone: after initially decreasing, it briefly in-

creases then decreases again to the final value. These velocity oscillations take place right around the

time the dispersive wave formation becomes visible in the space-time plot shown in Fig. 6(a). Once

this trailing dispersive wave detaches from the primary supersonic STW, the latter settles towards its

final velocity. Note that while the energy of the wave decreases during this evolution, its momentum

increases, with the total momentum of the system kept constant due to the negative contribution of

the dispersive wave.
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Figure 5: (a) Time evolution of the velocity of wave resulting from initial perturbation with ϵ = −0.25 of the unstable
STW with velocity 3.459 (point B in Fig. 3) at (α, J) = (0.165, 0.1). The velocity evolution is non-monotone: it initially
decreases, then increases over a small time interval and then decreases again to the value 3.3932 (point B1 in Fig. 3)
towards the end of the simulation. (b) Time evolution of the energy of the STW. (c) Time evolution of the momentum of
the STW. The red dashed lines show the evolution with small-amplitude random noise added to the initial perturbation,
while the solid blue lines correspond to the simulations without the additional noise.
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Figure 6: (a) Space-time and (b) time evolution of wn(t) at fixed n during the transition from B to B1 shown in
Fig. 5. A primarily tensile dispersive shock wave is expelled by the main waveform as it slows down. Here n0 = 701,
and the selected values of n are spaced 300 units apart in (b). In (a) and other space-time plots shown below, we plot
sinh−1(70wn) instead of wn so that the structure of the expelled secondary waves is more pronounced.

The dynamics is quite different when the velocity of the perturbed unstable wave increases (see

Fig. 7). In this case, a small-amplitude STW, trailed by small-amplitude oscillations, forms behind

the main waveform and eventually separates from it since it travels with a smaller velocity; see Fig. 8.
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The momentum of the primary wave decreases during the evolution due to the positive momentum of

the slower wave.
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Figure 7: (a) Time evolution of the velocity of wave resulting from initial perturbation with ϵ = 0.25 of the unstable
STW with velocity 3.458 (point A in Fig. 3) at (α, J) = (0.165, 0.1). The velocity increases, approaching the value
3.6462 (point A2 in Fig. 3) towards the end of the simulation. (b) Time evolution of the energy of the STW. (c) Time
evolution of the momentum of the STW. The red dashed lines show the evolution with small-amplitude random noise
added to the initial perturbation, while the solid blue lines correspond to the simulations without the additional noise.
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Figure 8: (a) Space-time and (b) time evolution of wn(t) at fixed n during the transition from A to A2 shown in Fig. 7.
A compressive small-amplitude STW, trailed by small amplitude oscillations, forms behind the main nonlinear waveform
and eventually separates from it as the main wave increases its velocity. Here n0 = 701, and the selected values of n are
spaced 300 units apart in (b).
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2.4 Results for the Z-region

We now consider the Z-region. Recall that in this parameter region the function H(c) becomes

multivalued in a certain velocity interval. Using the pseudo-arclength algorithm, as described in

Sec. 2.2, we computed such curves and analyzed the linear stability of the corresponding STWs for

various parameter values in the region. Below we just describe the representative case α = 0.1,

J = 0.012. The energy-velocity plot for these parameter values is shown in Fig. 9(a). Along the
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Figure 9: (a) Energy H versus velocity c of STWs at (α, J) = (0.1, 0.012). Points A and B correspond to the energy
and velocity of the tested waves, and points A1, A2, B1, and B2 mark the corresponding final velocities and energies of
the stable waves the perturbed unstable STWs have evolved into. The dashed line corresponds to the portion of the curve
where H ′(s) < 0, and insets zoom in around the points where H ′(s) = 0. (b) Maximal real Floquet multiplier µ as a
function of the parameter s. The solid vertical lines indicate the values of s where H ′(s) = 0. The dashed horizontal
line marks the value µ = 1.0042. In both figures, point A corresponds to the STW with velocity 2.0984 and point B
corresponds to the STW with velocity 2.0785.

curve c = c(s) and H = H(s), and each of these is a nonmonotone up-down-up function, so that both

H ′(s) and c′(s) change sign twice; i.e., H(c) is triple-valued within a relevant interval of Fig. 9(a).

However, the changes in monotonicity of H(s) and c(s) do not take place simultaneously, as can be

seen in the insets of Fig. 9(a). Specifically, the first sign change for H ′(s), from positive to negative,

occurs slightly before c(s) starts decreasing, and c′(s) changes its sign back to positive prior to H ′(s).

Thus we have c′(s) > 0 at both values of s where H ′(s) crosses zero.

As discussed in Appendix A, each threshold value of s where H ′(s) = 0 corresponds to an

increase in multiplicity of the zero eigenvalue of the operator associated with the linearized problem,
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which suggests a change in stability. The Hamiltonian nature of the problem implies that at the

threshold value two symmetric imaginary eigenvalues meet at the origin and emerge on the real axis

as ±λ, λ > 0, as the wave becomes unstable, so that a real Floquet multiplier µ = exp(λ/c) > 1

appears in the unstable regime. To verify this for our numerically computed STWs, we plot in Fig. 9(b)

the maximal real Floquet multiplier µ as the function of s for the obtained solutions. One can see that

µ > 1 in the interval of s that nearly coincides with the interval where H ′(s) < 0 (similarly to the

observations in the previous section, H ′(s) is slightly below zero at the threshold values due to the

finite length of the computational domain, though this numerical artifact is not visible in Fig. 9(b)).

Thus, three STWs coexist for each c in the velocity interval where c′(s) < 0. Among these, the waves

where H ′(s) < 0 are unstable. This always includes the intermediate-energy wave, in agreement with

the numerical observations in [41], but low-energy and high-energy waves also become unstable near

the left and right ends of the velocity interval, respectively.

The splitting of the zero eigenvalue and transition to instability near the maximum and minimum

of H(s) are illustrated in Fig. 10. The plots show ν2(s), where ν(s) = λ(s)/c(s) is a rescaled near-
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Figure 10: Squared rescaled near-zero eigenvalues ν(s) = λ(s)/c(s) = ln(µ(s)) near (a) the maximum and (b) the
minimum of H(s) at (α, J) = (0.1, 0.012). The straight lines show the best linear fit in each case. The black horizontal
lines mark ν = 0.

zero eigenvalue (note that ν = ln(µ), where µ is the corresponding Floquet multiplier near 1). As

the stability threshold is crossed into the unstable region in each case, a symmetric pair of purely

imaginary eigenvalues (ν2 < 0) becomes a symmetric pair of real eigenvalues (ν2 > 0). We note
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that ν2 ∼ s − s0 near each threshold s0 is in agreement with the approximation derived in [31, 32]

(however, see Appendix A for the discussion of the effect of a weighted-space strain formulation that

destroys the Hamiltonian structure of the problem on the multiplicity of the zero eigenvalue at the

stability threshold).

We now examine the dynamical fate of unstable solutions. We consider two cases with veloc-

ities 2.0785 and 2.0984 that have the same Floquet multiplier µ = 1.0042, which corresponds to

eigenvalues λ = 0.0087 and 0.0088, respectively. Similar to the previously discussed cases for the

N -region, the waves either slow down after expelling a dispersive wave or speed up after expelling a

small-amplitude solitary wave, depending on the sign of the perturbation ϵ.

The slowing-down case for the unstable STW with velocity 2.0785 (point B in Fig. 9) is shown

in Fig. 11 and Fig. 12. Note that the wave’s velocity experiences a highly nonmonotone evolution
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Figure 11: (a) Time evolution of the velocity of wave resulting from initial perturbation with ϵ = −0.25 of the unstable
STW with velocity 2.0785 (point B in Fig. 9(a)) at (α, J) = (0.1, 0.012). The final velocity is 2.0439 (point B1 in
Fig. 9(a)). (b) Time evolution of the energy of the STW.

in this case but eventually settles down to a lower value than the speed of the perturbed wave (point

B1 in Fig. 9(a)), as can be seen in Fig. 11(a). Fig. 13 zooms in the space-time plot of wn(t) in the

time interval that includes times when the propagation velocity in Fig. 11(a) reaches its minimum and

maximum. One can see that expulsion of the dispersive wave starts shortly after the velocity reaches

its peak value.

When the sign of the perturbation is reversed, the wave speeds up after expelling a small-amplitude
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Figure 12: (a) Space-time and (b) time evolution of wn(t) at fixed n during the transition from B to B1 shown in
Fig. 11. A dispersive shock wave is expelled by the main waveform as it slows down. Here n0 = 901, and the selected
values of n are spaced 1000 units apart in (b).

Figure 13: An enlarged view of the space-time plot Fig. 12(a). The arrows mark the points corresponding to the minimal
and maximal values of the wave’s velocity in Fig. 11(a).

STW, and the ensuing dynamics is similar to the one shown in Fig. 7 and Fig. 8 for theN -region. Sim-

ilar slowing-down and speeding-up scenarios are observed for simulations perturbing the unstable

wave that corresponds to point A in Fig. 9(a).
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2.5 Concluding remarks

In this chapter we have revisited the existence, stability and dynamical features of lattice traveling

waves in models where the competition between short-range nonlinear interactions and longer-range

linear interactions may give rise to stability changes. To this end, we considered the model where

the nearest neighbors feature an α-FPU interaction, while interactions beyond nearest neighbors are

harmonic with exponentially decaying strength, and investigated different parameter regimes. The

regime where the strength and rate of decay of the longer-range interactions were such that the energy

H of solitary traveling waves was a nonmonotone function of their velocity c (N -region) was observed

to yield instability when H ′(c) < 0, in line with earlier work. A more detailed study was also

performed in Z-region of the parameter space where H(c) was not even single-valued. There, it was

revealed that instability corresponds to H ′(s) < 0, where s is a parameter along the energy-velocity

curve. In Appendix A we proved that the change in the sign of H ′(s) is associated with the increase

of the multiplicity of the zero eigenvalue.

A focal point of the present study concerned the dynamics of unstable solutions in the regions

where Floquet multipliers µ of the associated spectral stability analysis were found to satisfy µ > 1.

There, it was seen that it is possible to “kick” the unstable waveforms through suitable multiples of

the eigenvector associated with the instability to induce them to acquire a higher velocity, or recede

to a lower speed. In each of the cases, the velocity modification was accompanied by the concurrent

emission of a suitable coherent structure, typically represented by a slower pulse in the speeding-up

case and a dispersive shock wave when slowing-down. Such possibilities were explored in both N

and Z parameter regions.

Numerous questions arise as possible extensions of the present work towards future study. In par-

ticular, it is important to understand on a more general level what fundamental ingredients a physical

setting must have in order to induce the kind of competition that leads toH ′(c) < 0 and the associated

instability as is the case herein. An interesting and highly nontrivial extension of the present study in a

one-dimensional lattice setting would involve going beyond traveling waves and examining breathers

that bear a further internal frequency (in addition to the traveling one). Finally, studies of solitary

traveling waves in lattices have been mostly limited to one-dimensional setting, and little is known

about existence and stability of such structures in higher dimensions. A systematic investigation of

this issue in a suitably chosen model would be a topic of interest in its own right.
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3.0 Moving discrete breathers in a β-FPU lattice

In this chapter, we consider moving discrete breathers in a β-FPU lattice. In particular, we develop

a numerical procedure that allows a systematic construction of breathers traveling more than one

lattice site per period. The procedure involves a Newton iterative method and a continuation along a

sequence of velocities. We use Floquet analysis to investigate the stability spectrum of the obtained

solutions. Our results show that the energy of the moving breathers is in general a multivalued function

of their internal frequency and reveal a genuinely nonlinear nature of the resonances identified in the

earlier work [78]. We also investigate the fate of unstable moving breathers perturbed along the

corresponding eigenmode and show that the ensuing dynamics typically slows them down over a

large simulation time.

The chapter is organized as follows. We formulate the problem in Sec. 3.1 and describe our

numerical procedures in Sec. 3.2. In Sec. 3.3, we examine the dependence of the moving breather

with different period-wise velocities on the internal frequency and discuss the multivalued nature of

the obtained energies, resonances and stability. Consequences of the observed exponential instabilities

in the breather dynamics are explored in Sec. 3.4. Concluding remarks can be found in Sec. 2.5, along

with some suggestions for future work. In Appendix B.1, we discuss additional solutions that coexist

with the ones described in Chapter 3 but have different linear spectra. The effect of the lattice size is

discussed in Appendix B.2.

3.1 Problem formulation

We consider a lattice of N particles with nearest-neighbor interactions governed by a β-FPU

potential. In dimensionless variables the Hamiltonian of the system is given by

H =
1

2

N∑
n=1

p2n +
N∑

n=1

(
1

2
(qn+1 − qn)

2 +
β

4
(qn+1 − qn)

4

)
=

N∑
n=1

en, (14)
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where qn denotes the displacement of the nth particle, pn = q̇n = dqn/dt is its momentum (the mass

is rescaled to unity), β measures the strength of the nonlinear coupling, and

en =
1

2
p2n +

1

4

[
(qn+1 − qn)

2 + (qn − qn−1)
2
]
+
β

8

[
(qn+1 − qn)

4 + (qn − qn−1)
4
]

(15)

is the site energy density. The equations of motion are

q̈n = qn+1 + qn−1 − 2qn + β
[
(qn+1 − qn)

3 − (qn − qn−1)
3
]
. (16)

In what follows, we assume that N is even and prescribe periodic boundary conditions: qn+N = qn,

pn+N = pn. We also assume β > 0 and note that in this case the rescaled variables q̃n = qn
√
β satisfy

(16) with β = 1. Thus, it suffices to consider β = 1 in the numerical results presented in this work.

The β-FPU problem (16) is known to have two types of stationary discrete breather solutions

qn(t) = xn(t) that are time-periodic, xn(T ) = xn(0), and spatially localized in terms of the relative

displacements xn − xn−1. Here, T = 2π/ω is the period of internal oscillations with frequency ω.

The first type is the site-centered Sievers-Takeno (ST) mode [51], with displacement that has even

symmetry about the center, and the second type is the bond-centered Page (P) mode [52], with odd

displacement. The P mode is linearly stable, while the ST mode is unstable [53]. Perturbing an ST

mode along an eigenmode corresponding to the instability sets the breather in motion.

Our focus here is on moving discrete breathers that propagate r lattice sites over s periods T =

2π/ω of internal oscillations and satisfy [78] {qn(sT )}Nn=1

{pn(sT )}Nn=1

− (−1)r

 {qn−r(0)}Nn=1

{pn−r(0)}Nn=1

 = 0, (17)

where the indices are mod N due to periodic boundary conditions. Here s and r are integers, and

V1 =
r

s
(18)

denotes the period-wise velocity of the breather (the number of lattice sites transversed over the period

of one internal oscillation), while its translational velocity is given by

V2 =
V1
T

=
r

sT
. (19)
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3.2 Numerical Methods

To obtain moving breathers, we must find fixed points of the map defined by (17) using the Newton

iterative method, with an appropriately perturbed unstable ST stationary breather, whose instability

induces the breather mobility, as an initial seed. Here and in what follows, we use a symplectic and

explicit fourth-order Runge-Kutta-Nyström algorithm [82] to integrate the equations of motion. We

found that over the course of the simulations, the total energy is conserved up to the relative error of

the order of 10−10. We start by constructing an ST breather xn(t) with a given internal frequency ω,

using the Newton iterative method and numerical continuation from the anticontinuous limit [117].

Linearizing (16) around the ST breather by setting qn(t) = xn(t)+ϵyn(t) and consideringO(ϵ) terms,

we obtain

ÿn − (yn+1 + yn−1 − 2yn)− 3
(
(xn+1 − xn)

2(yn+1 − yn)− (xn − xn−1)
2(yn − yn−1)

)
= 0,

which is used to compute the monodromy matrix F defined byy(T )
ẏ(T )

 = F

y(0)
ẏ(0)

 , (20)

where the vector functions y(t) and ẏ(t) have components yn(t) and ẏn(t), respectively. The Floquet

multipliers µ are obtained by finding the eigenvalues of F , once the iterative procedure has converged.

Recall that a Floquet multiplier satisfying |µ| > 1 indicates instability. An ST mode has an unstable

eigenmode corresponding to a real Floquet multiplier µ > 1; naturally, due to the Hamiltonian nature

of the problem, there exists a complementary (inverse) one with µ < 1. Following [73], we obtain the

initial seed for a moving breather by applying a kinetic perturbation to the ST breather. Specifically,

we use the momentum part δp of the eigenvector associated with the instability, so that our initial

guess for the moving breather is given byq
p

 =

x(0)
0

+ λ

 0

δp

 , (21)

where λ is the strength of the perturbation.

To construct moving breathers with V1 = 1/s for some integer s ≥ 1, we use the Newton iterative

method to find fixed points of (17) with initial guess (21) as the values of λ are being incremented
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within some interval. We typically start with λ = −1 and increase it by 10−2 up to λ = 1. Once

this has been completed, we look at the solutions for which the square of the ℓ2 norm of the objective

function of the Newton iteration, defined by the left hand side of (17), is below some threshold. Doing

this allows us to obtain moving breathers on different branches in the (ω, H) plane near the resonance

values of ω, as described below. Solutions with other frequency values are then found using parameter

continuation along each branch. Typically, this continuation was done in ω, but near the turning points

for ω we used H as a continuation parameter. We found that this method successfully generates

moving breathers with r = 1 but has not worked in the examples we considered for velocities with

r > 1.

To compute moving breathers with period-wise velocity V1 = r/s, where r > 1, we have devel-

oped the following numerical procedure. We use one of the moving breathers with V1 = 1/s0 for

some integer s0 as an initial guess and construct a monotone sequence v1, v2, ..., vk of rational values

of the period-wise velocity that are close enough together and satisfy v1 = 1/s0 and vk = r/s. These

values are chosen in a way that minimizes s while staying within a prescribed step difference, em-

pirically selected to be between 0.018 and 0.022. Depending on the value of ω chosen, it is possible

that for one of the chosen vi, the moving breather solution will be close to a resonance; in this case, a

larger step in vi is needed to bypass the resonance. For example, to compute a moving breather with

V1 = 5/7 we used the sequence

{vi} = {1/2, 12/23, 13/24, 9/16, 7/12, 23/38, 5/8, 20/31, 2/3, 11/16, 5/7}.

We then perform a continuation procedure that involves obtaining the moving breather with velocity vi

using Newton’s iterative method and the breather with velocity vi−1 as the initial guess. An example of

a moving breather with V1 = 14/23 and ω = 2.5 obtained using this method is shown in Fig. 14(a,b).

To determine the stability of a computed moving breather, we linearize (16) about it and construct

the monodromy matrix F defined by{yn+r̃(s̃T )}Nn=1

{ẏn+r̃(s̃T )}Nn=1

 = F

{yn(0)}Nn=1

{ẏn(0)}Nn=1

 , (22)
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Figure 14: (a) Verification of the relation described in (17) for the moving breather with period-wise velocity V1 =
14/23 and internal frequency ω = 2.5. The blue circles are the displacements at time t = 23T , while the solid red line
is the displacement at time t = 0 shifted to the right by 14 lattice sites. The inset shows the absolute difference between
the two sets of displacements. (b) Space-time evolution of the site energy en(t). (c) Floquet multipliers µ associated with
the linearization around the solution of panels (a)-(b). The absence of multipliers lying off of the unit circle suggests the
spectral stability of the relevant waveform.

where r̃ = r, s̃ = s if r is even and r̃ = 2r, s̃ = 2s if r is odd. Fig. 14(c) shows the Floquet multipliers

for the breather with V1 = 14/23 and internal frequency ω = 2.5. This breather appears to be linearly

stable.

To explore the consequences of an instability associated with a real Floquet multiplier µ > 1 for
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a moving breather, we perturb it along the corresponding eigenmode and use the following method

to approximate the translational velocity V2 of the ensuing waveform as a function of time. The

procedure involves computing the location of the center of the energy density of the moving breather.

We divide the time interval [ti, tf ], where ti is the initial and tf is the final time, into subintervals of

length ∆t, thus selecting sample times ti such that tj+1 − tj = ∆t. Typically, we set ∆t = sT , where

T is the internal period and s is the number of periods the unperturbed breather needs to advance r

sites. At each time tj , we compute the energy density en,j and use it to obtain an approximation for

the center Xj of the waveform:

Xj =

∑
n∈{core} nen,j∑
n∈{core} en,j

. (23)

In order to improve the accuracy of this approximation, we use a spline interpolation of the energy

density. We then compute (23) including the interpolated points in the core of the moving breather.

To determine the width of the core, we start from the maximum of the energy density. We then

traverse the chain until the absolute difference between the energy density and wing energy, which is

determined by averaging the ten particles that make up the wings, is on the order of 10−4. [We have

verified that using smaller tolerances, on the orders of 10−5 and 10−6, yields a negligible difference in

the results, approximately 0.04%. Hence, the selection of the cutoff is representative, while its precise

threshold value is not crucial to our observations described below.] The distance between the particle

where the maximum occurs and the cutoff particle is half of the core width. We choose as a center

point the maximum of the interpolated energy density. Once the weighted energy center has been

found, we repeat the above procedure using the weighted energy center as the center point. This has

little effect for waveforms with small-amplitude wings, but when the wings have larger amplitude, the

recalculation is necessary to compensate for the effect they have on the energy density as the center

crosses a boundary. The translational velocity V2(t) of the wave is then approximated by

V2(tj) ≈
Xj+1 −Xj

tj+1 − tj
. (24)

3.3 Frequency dependence, resonances and stability

We now investigate the dependence of the moving breather solutions on the internal frequency ω

at fixed period-wise velocity V1 and the lattice size N . The results for V1 = 1/3 and N = 60 are
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shown in Fig. 15. Panel (a) shows the total energy (Hamiltonian) H as a function of ω. One can
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Figure 15: (a) Energy H , (b) the normalized average site energy ewing/emax of the wings and (c) the maximum moduli
of the Floquet multipliers µ along different branches as functions of ω at V1 = 1/3 and N = 60 near the resonance
ω = 2.237. The Floquet multiplier with the maximum modulus has nonzero real and imaginary parts along dashed
portions the curve and is real along the solid one. Insets illustrate that this transition occurs due to the collision of a pair
of real Floquet multipliers and subsequent emergence of a quadruplet of complex-valued multipliers symmetric about
the unit circle (only the pair of such multipliers outside the unit circle is shown in the second inset). Different colors
correspond to different branches in (a). The numbers in (b) are the values of m for the corresponding resonances (see the
text for detail).

see that there is a number of resonances at certain frequency values. At these values, the amplitude

of the wing oscillations rapidly increases. Near the resonance frequencies, the breather energy is a

multivalued function of ω. Indeed, near each resonance frequency, the curve can be split into three

pieces: the top branch, the middle branch, and the bottom branch, where the middle and bottom

31



branches are connected to each other by a turning point. We distinguish between the bottom and

top branches by alternating colors between green and blue at each resonance. Note that the bottom

branch corresponding to one resonance frequency eventually merges with the top branch near another

resonance. Along the three branches near each resonance, there are distinct moving breathers with

the same internal frequency, as illustrated in Fig. 16 for ω = 2.126.
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Figure 16: The top panel shows a zoomed-in view of the resonance near ω = 2.126. The black vertical line marks
ω = 2.126 at which three different moving breathers coexist. These breathers are shown in the three bottom panels, where
colors match the respective branches depicted in the top panel. Here V1 = 1/3 and N = 60.

Panel (b) of Fig. 15 shows the corresponding average site energy in a wing portion of the breather,

normalized by the maximum site energy. One can clearly see the nonlinear character of the reso-

nances, with rapid increase in wing energy followed by a more gradual one. Both the nonlinear form

of the resonances and the multivalued nature of the frequency dependence were, apparently, missed

in the earlier computations [74, 78].

Yoshimura and Doi in [78] used a normal mode analysis to approximate resonance frequencies.

For completeness, we briefly describe the main steps of their derivation. The normal mode coordinates

Qm(t), m = −N/2− 1, . . . , N/2, are defined by [118]

qn(t) =
(−1)n√
N

N/2∑
m=−(N/2−1)

Qm(t)

[
cos

(
2π

N
mn

)
− sin

(
2π

N
mn

)]
, n = 1, 2, . . . , N

and have the natural frequency associated with the dispersion relation:

Ωm = 2 cos
(πm
N

)
. (25)
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For stationary breathers these modes are approximated in [78] using the method in [119] with fre-

quency ω, which yields Qm(t) ≈ Am cos(ωt), where

Am =
π

2
√
6βN

sech
[

π2m

N
√
ω2 − 4

]
. (26)

Complex normal modes Um(t) =
1
2
(Qm +Q−m) +

i
2
(Qm −Q−m) are then used to construct moving

breather solutions with V1 = r/s in the form

Um(t) = ψm(t)e
−imr

Ns
ωt,

where ψm(t) are complex-valued functions satisfying

d2ψm

dt2
− i

2mrω

Ns

dψm

dt
+

{
Ω2

m −
(mrω
Ns

)2}
ψm

= − β

N

Nh∑
i,j,k=−Nh

ΩmΩiΩjΩkψiψjψk · ei[{m−(i+j+k)}r/Ns]ωt∆(m− (i+ j + k)),

(27)

where ∆(m) = (−1)m if r = mN for m ∈ Z and zero otherwise, Nh = N/2− 1, and Ωm is defined

in (25). The solution of (27) is then sought in the form

ψm(t) = ψ0
m(t) + um(t), ψ0

m(t) =
∑
ℓ=±1

Ame
iℓωt, um(t) =

∞∑
n=−∞

am,ne
in(ω/s)t, (28)

where um(t) is the deviation from the stationary breather ψ0
m(t) with Am given by (26), and both

components are periodic functions with period sT that are expanded in Fourier series, with coeffi-

cients am,n for um(t). Here, only the dominant fundamental frequency components are kept in the

expansion for ψ0
m(t) = Am cos(ωt). Substituting (28) into (27) and considering the leading-order

approximation in terms of um(t) results in a linear system for am,n. Analysis of this system shows

that |am,n| becomes large when its coefficient is close to zero. Setting these coefficients to zero thus

yields an approximation for the resonance frequency values ωm, |m| < N/2, at which the mth normal

mode is excited. The approximate resonance condition [78] is given by∣∣∣n
s
− mr

Ns

∣∣∣ωm = Ωm

√
1 +

2

N

√
ω2
m − 4, (29)

where n may take values n = ±s or n = ±(s ± r), depending on the frequency interval and the

value of V1 = r/s, and we also recall (25). Using (29), we computed the values of m and ωm for all
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numer ωm approx ωm m

2.126 2.129 13

2.237 2.244 12

2.342 2.352 11

2.440 2.454 10

2.464 2.483 −15

2.352 2.364 −16

2.229 2.236 −17

Table 1: Comparison of numerical and approximate resonance values ωm for V1 = 1/3 and N = 60.

The approximate values were computed using (29). The numerical values were computed by using

the wing energy plots, such as Fig. 15(b), and estimating the frequency at the center of the gap that

separates branches corresponding to each resonance.

except one of the resonances shown in Fig. 15(b); the corresponding values of m are shown in the

plot. Table 1 compares the predicted values of resonance frequencies with the numerical ones.

Panel (c) of Fig. 15 shows the maximal moduli of the Floquet multipliers associated with the

computed breathers near the resonance ω = 2.237 as a representative example. As the top branch

nears a resonance, an exponential instability, which corresponds to a real Floquet multiplier µ > 1,

manifests itself. As ω continues to increase along the branch, and the wings of the moving breathers

become more pronounced, this exponential instability is accompanied by the emergence of oscillatory

instability modes associated with Floquet multipliers µ that have nonzero imaginary part and satisfy

|µ| > 1 (recall the definitions in Sec. 2.2). As can be seen in the insets, the largest real multiplier

is accompanied by a smaller real one that eventually collides with it. This collision results in the

formation of a symmetric quadruplet of complex-valued multipliers. Meanwhile, both the bottom

branch and the middle branch are stable near the resonance frequency. Understanding the relevant

turning point structure that connects the two is an interesting question for future work.

In the case of the middle branch, stability only persists over a short interval of ω, as oscillatory

instabilities quickly arise. In this case, the modulus of the complex multipliers is larger than that
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of any real multipliers that emerge. The exponential instabilities exist as pairs of real multipliers

that collide, separate and rejoin, shifting between complex and real, similar to what is seen in the

top branch. This behavior is demonstrated in panel (c) of Fig. 17. The lower branch only becomes

unstable as it merges with the top branch for the next resonance.

The results for V = 2/5 and N = 60 are shown in Fig. 17 and Table 2. Overall, they are
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Figure 17: (a) Energy H , (b) the normalized average site energy ewing/emax of the wings and (c) maximum moduli
of the Floquet multipliers µ along different branches as functions of ω at V1 = 2/5 and N = 60 near the resonance
ω = 2.337. The Floquet multiplier with the maximum modulus has nonzero real and imaginary parts along the dashed
portions of the curve and is real along the solid one. Insets illustrate that transitions between these regimes occur due to
the collisions of pairs of real and complex Floquet multipliers. Different colors correspond to different branches in (a).
The numbers in (b) are the values of m for the corresponding resonances (see the text for details).

similar to the case V1 = 1/3, but the number of resonances is smaller over the same interval of ω.
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numer ωm approx ωm m

2.337 2.348 19

2.494 2.510 18

2.423 2.434 −12

2.300 2.306 −13

Table 2: Comparison of approximate and numerical resonance values ωm for V1 = 2/5 and N = 60.

The approximate values were computed using (29).

In both examples, one of the resonances is not accounted by (29). As can be seen in the respective

figures, both positive and negative integer resonances manifest themselves sequentially in the context

of (29), yet one cannot be included in this sequence. This also constitutes an intriguing question for

future study. Additionally, in panel (c) of Fig. 17, the maximum moduli of Floquet multipliers along

the middle branch which satisfy |µ| > 1 are determined by two pairs of complex Floquet multipliers

that start near the point µ = 1, in contrast to the case discussed above. These complex multipliers

eventually collide to form a pair of real multipliers, which initially separate but then start moving

toward each other, as shown in the insets.

3.4 Dynamical consequences of exponential instabilities

We now consider the consequences of the instability of a moving breather with real Floquet mul-

tipliers µ > 1. To this end, we perturb the breather along the corresponding eigenmode by solving

Eq. (16) with the initial displacement vector set to q(0) + ϵδq and initial momentum to p(0) + ϵδp,

where p(t) and q(t) are the displacement and momentum vector functions, respectively, for the mov-

ing breather, δq and δp are the displacement and momentum parts of the unstable eigenmode, and ϵ

measures the strength of the applied perturbation along this unstable eigendirection.

We consider the unstable moving breather with V1 = 1/3, ω = 2.424 and N = 60, from the top

(blue) branch in Fig. 15, which has the maximum real Floquet multiplier µ = 1.0989 (see Fig. 18).

36



Note that the breather has wings of relatively small amplitude. Fig. 19 shows the evolution of the

translational velocity V2 when the breather is perturbed with ϵ = −0.01 (panel (a)) and ϵ = 0.01

(panel (b)). In both cases, after initial transients leading to substantial deceleration, the velocity of the

perturbed breather appears to stabilize and oscillate around specific values, before decreasing again

and eventually coming to oscillate around zero. As an inspection of the relative sizes of the horizontal

and vertical axes reveals, this is a particularly slow process. Interestingly, the ϵ = −0.01 perturbation

case takes much longer to reach this state.
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Figure 18: (a) Displacement profiles qn of the unperturbed moving breather with V1 = 1/3, ω = 2.424, and N = 60.
(b) Floquet multipliers µ. The largest real multiplier is µ = 1.0989.

Figure 20 shows the space-time evolution of the energy density at the lattice nodes early on in the

simulation for the case when ϵ = 0.01. As can be seen in Fig. 20(a), the core of the perturbed breather

emits a backwards traveling wave. This corresponds to a minimum in the translational velocity V2 as

can be seen in Fig. 20(b). Once this offshoot wave travels around the chain of particles and strikes

the core, a secondary wave is emitted. This additional wave travels around the chain and its collision

with the core is associated with a maximum in V2 as can be seen in Fig. 20(b). As more and more

waves are emitted, the time between successive extrema decreases due to more frequent collisions.

Consequently, the oscillation of V2 becomes more and more pronounced. Nevertheless, this phe-

nomenology reflects the instability manifestation and explains the progressive decrease of the energy

harbored within the breather and the corresponding increase of energy redistributed throughout the
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Figure 19: Time evolution of the translational velocity V2 for the moving breather with largest real Floquet multiplier
µ = 1.0989 at (a) ϵ = −0.01; (b) ϵ = 0.01. Here V1 = 1/3, ω = 2.424 and N = 60. After an initial transient resulting
from the instability manifestation, the breather can be seen to incur a very slow velocity decrease over the long time
evolution.
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Figure 20: (a) Space-time evolution of the site energy en(t) and (b) time evolution of the velocity V2 near the start of
the simulation with ϵ = 0.01. The arrows pointing left and right in (a) correspond to the arrows pointing up and down,
respectively, in (b). Here V1 = 1/3, ω = 2.424 and N = 60.
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3.5 Conclusions

In this chapter we have revisited the topic of the identification, stability classification and dynam-

ical instability manifestation of discrete breathers in the well-known β-FPU lattice. Our exploration

has enabled a number of insights into this problem. In particular, we developed a numerical proce-

dure of continuation along a sequence of rational values of the period-wise velocity that allows for

the examination of different breather families traversing r sites of the lattice over s multiples of the

breather period. The continuation of the relevant waves over the frequency of the breather revealed

an intriguing resonance structure, as well as the multivalued nature of the corresponding energy-

vs-frequency dependence, enabling the identification of multiple breather waveforms for the same

frequency. The resonance structure was elucidated quantitatively for different integer harmonics of

frequencies around the breather in comparison with ones of the continuous spectrum, following the

work of [78]. The specific harmonics leading to the observed resonances were explicitly identified.

At the stability level, the Floquet multipliers of the different branches involved in the resonances were

discussed, including also their potential collisions and bifurcations in the complex plane. We remark

that in contrast to stationary breathers [69], the emergence of a exponential instability in this case was

not associated with the change in the monotonicity of the energy as a function of frequency. Finally,

long-time simulations of the dynamical evolution were performed using a symplectic method in order

to reveal the manifestation of the relevant instabilities (via the emission of and collision with offshoot

waves) and their net result in decelerating and eventually stopping the initially moving breather state.

Naturally, while this study has provided new insights into the dynamics of moving breathers, it

has also raised some questions that require further consideration. For instance, among the interesting

technical questions that arose were the specific bifurcation structure of the associated periodic orbits

in the vicinity of the highly nonlinear resonances that we explored. Another related aspect concerned

the fact that we could enumerate all positive and negative resonances in sequence, in connection with

the analytical condition of (29) but for a single one. It is also interesting to investigate whether the

results obtained in this work extend to Klein-Gordon lattices.

In addition, there exist larger scale questions for future studies. For instance, it would be inter-

esting to explore how the resonance structure and nonlinear state continuation would manifest them-

selves in higher-dimensional models. In the latter, the issue of transverse (modulational along a stripe

or a ring) stability of the relevant waveforms would need to be considered as well. Another aspect
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of consideration that at the moment eludes a systematic mathematical formulation is the existence of

traveling waveforms with genuinely real (rather than rational) period-wise velocity. Such questions

are of substantial interest for potential future investigations.
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4.0 Discrete breathers in a mechanical metamaterial

In this chapter we consider a discrete system that models a flexible mechanical metamaterial

experimentally realized in [96]. The system consists of a chain of pairs of rigid cross-like units (made

from LEGO pieces in [96]) that are connected by flexible hinges. Using the analysis of the linear

band structure of the model, we determine the parameter regimes in which this system may possess

discrete breather solutions with frequencies inside the gap between optical and acoustic dispersion

bands. Setting the parameter values in these regimes, we compute exact (up to a prescribed numerical

tolerance) solutions of this type, explore their properties and conduct linear stability analysis. We

find that with an appropriate parameter tuning the system exhibits a complex bifurcation structure

of discrete breathers with multiple branches that include stability change via period-doubling and

symmetry-breaking bifurcations, in addition to saddle-center and Hamiltonian Hopf bifurcations. The

stability analysis is complemented by direct numerical simulations that point to effective stability of

some of the obtained solutions.

The chapter is organized as follows. In Sec. 4.1 we introduce the discrete model and formulate

the problem. Analysis of the dispersion relation for the linearized system is presented in Sec. 4.2. In

Sec. 4.3 we discuss a solution branch bifurcating from the edge of the optical mode for the parameter

values in [96] and exhibiting period-doubling bifurcations. In Sec. 4.4 we consider another set of

parameters and describe the complex bifurcation diagrams involving branches either bifurcating from

or existing near the edges of optical and acoustic bands. Concluding remarks can be found in Sec. 4.5.

4.1 Problem formulation

Motivated by experimental and theoretical investigations in [96], we consider a chain that consists

of 2×N cross-type rigid units of mass m and moment of inertia J connected by thin flexible hinges,

as shown in Fig. 1. The neighboring horizontal hinges are shifted in the vertical direction by a tanϕ0,

where a is the center-to-center horizontal distance between the neighboring units (see the bottom

panel of Fig. 1). The hinges are modeled as a combination of three linear springs, with stiffness

parameters kl, ks and kθ corresponding to longitudinal stretching, shearing and bending, respectively.
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Following [96], we describe the dynamics of the system by two degrees of freedom for n-th vertical

pair of rigid units: the longitudinal displacement un(t) and the rotation angle θn(t) at time t. Here it

is assumed [96] that the two rigid units in each vertical pair have the same displacement and rotate by

the same amount but in the opposite directions, with positive direction of rotation defined as shown in

the bottom panel of Fig. 1. Introducing dimensionless variables

ũn =
un
a
, t̃ = t

√
kl
m

and parameters

α =
a

2 cosϕ0

√
m

J
, Ks =

ks
kl
, Kθ =

4kθ cos
2 ϕ0

kla2
,

one obtains [96]

ün = un+1 − 2un + un−1 −
cos(θn+1 + ϕ0)− cos(θn−1 + ϕ0)

2 cos(ϕ0)

1

α2
θ̈n = −Kθ(θn+1 + 4θn + θn−1) +Ks cos(θn + ϕ0)

(
sin(θn+1 + ϕ0) + sin(θn−1 + ϕ0)

− 2 sin(θn + ϕ0)

)
− sin(θn + ϕ0)

(
2 cos(ϕ0)(un+1 − un−1) + 4 cos(ϕ0)− cos(θn+1 + ϕ0)

− 2 cos(θn + ϕ0)− cos(θn−1 + ϕ0)

)
,

(30)

where we dropped the tildes in the rescaled displacement and time variables, and double dot denotes

second time derivative. The total energy of the system is [96]

H =
N∑

n=1

[
(∆l

n)
2 +Ks(∆

s
n)

2 +
Kθ

8 cos2(ϕ0)
(2(δhn)

2 + (δvn)
2) + u̇2n +

1

4α2 cos2(ϕ0)
θ̇2n

]
, (31)

where

δhn = θn+1 + θn, δvn = 2θn,

∆l
n = un+1 − un +

1

2 cos(ϕ0)
[2 cos(ϕ0)− cos(ϕ0 + θn)− cos(ϕ0 + θn+1)] ,

∆s
n =

1

2 cos(ϕ0)
[sin(ϕ0 + θn+1)− sin(ϕ0 + θn)]

characterize the deformation associated with horizontal (δhn, ∆l
n, ∆s

n) and vertical (δvn) hinges.

We consider discrete breather (DB) solutions of (30). These are time-periodic nonlinear waves

with frequency ω and the corresponding period T = 2π/ω,

un(t+ T ) = un(t), θn(t+ T ) = θn(t) (32)
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that are spatially localized in terms of strain

wn(t) = un+1(t)− un(t) (33)

and angle θn(t) variables.

4.2 Dispersion Relation

To obtain conditions for existence of DB solutions bifurcating from the linear modes, we need to

study the linear spectrum of the problem first. To that effect, we linearize (30) around the undeformed

configuration. This yields

ün = un+1 − 2un + un−1 +
1

2
tanϕ0(θn+1 − θn−1)

1

α2
θ̈n = (Ks cos

2 ϕ0 − sin2 ϕ0 −Kθ)(θn+1 + θn−1)

− 2(Ks cos
2 ϕ0 + sin2 ϕ0 + 2Kθ)θn − sin(2ϕ0)(un+1 − un−1).

(34)

Considering plane-wave solutions un(t) = Uei(kn−ωt), θj(t) = Θei(kn−ωt) of (34) in the limit of an

infinite chain (N → ∞), we obtain the following solvability condition:(
ω2 − 4 sin2 k

2

)[
ω2

α2
− 2(Kθ −Ks cos

2 ϕ0 + sin2 ϕ0) cos(k)− 2(2Kθ +Ks cos
2 ϕ0 + sin2 ϕ0)

]
− 2 tan(ϕ0) sin(2ϕ0) sin

2(k) = 0,

which yields explicit (but cumbersome) expressions for the acoustic, ω−(k), and optical, ω+(k),

branches of the dispersion relation between the wave number k and the frequency ω. The two branches

satisfy

ω−(0) = 0, ω+(0) = α
√
2(3Kθ + 2 sin2 ϕ0) > 0. (35)

We now examine the evolution of the dispersion relation when the parameters α, Ks and Kθ are

fixed, while ϕ0 is varied. Due to 2π-periodicity and even symmetry about k = π, it suffices to consider

wave numbers k in [0, π]. In what follows, we consider two sets of parameters α, Ks and Kθ. In the

first representative example, we set α = 1.8, Ks = 0.02, and Kθ = 1.5 × 10−4 from [96]. In the

second case we keep the same value of Ks and set α = 5 and Kθ = 0.01. In both cases

α2(Kθ + 2Ks cos
2 ϕ0) < 2 (36)
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is satisfied for all ϕ0, and we thus have

ω−(π) = α
√
2(Kθ + 2Ks cos2 ϕ0) < ω+(π) = 2. (37)

Furthermore, one can show that for these parameter values the acoustic branch ω−(k) has the maxi-

mum value at k = π given in (37) for all ϕ0. Meanwhile, as shown in Fig. 21(a), the optical branch

ω+(k) has a maximum at k = π and a minimum at k = 0 for 0 ≤ ϕ0 < ϕ′
0, where

ϕ′
0 = arccos

√1 + Kθ

2
− 1

α2

1−Ks

 (38)

is obtained by setting ω′′
+(π) = 0 at ϕ0 = ϕ′

0 and using (36). The corresponding inflection point at

k = π is shown in Fig. 21(b). For ϕ′
0 < ϕ0 < ϕ′′

0, where

ϕ′′
0 = arcsin

(√
1

α2
− 3

2
Kθ

)
, (39)

k = π becomes a local minimum, and ω+(k) reaches its maximum at k = kmax in (0, π) and a

global minimum at k = 0 (see Fig. 21(c)). At ϕ0 = ϕ′′
0, the case shown in Fig. 21(d), we have

ω+(0) = ω+(π) = 2, which together with the second expression in (35) yields (39). For ϕ0 > ϕ′′
0,

the optical branch has a global minimum ω+(π) = 2 at k = π. As shown in Fig. 21(e), it has a local

minimum at k = 0 and the maximum at k = kmax in (0, π) until ϕ0 reaches the value

ϕ′′′
0 = arccos

(
1

2α

[(
− 2 + α2(Ks(3Kθ + 2) + 5Kθ + 4)

−
√
α4(Ks(3Kθ + 2) +Kθ)2 − 4α2(Ks(3Kθ − 2) + 5Kθ) + 4

)
/(Ks + 1)

]1/2)
,

(40)

where k = 0 becomes an inflection point (ω′′
+(0) = 0); see Fig. 21(f). For ϕ0 > ϕ′′′

0 the optical

branch is inverted and has the maximum value at k = 0 and the minimum value at k = π, as shown

in Fig. 21(g). We obtain ϕ′
0 = 0.5736, ϕ′′

0 = 0.5888 and ϕ′′′
0 = 0.6032 for the parameters α = 1.8,

Ks = 0.02, Kθ = 1.5× 10−4. In the case α = 5, Ks = 0.02, Kθ = 0.01, the evolution of the optical

branch is similar to Fig. 21 but the critical values are ϕ′
0 = 0.1240, ϕ′′

0 = 0.1588 and ϕ′′′
0 = 0.1959.

Let kmin denote the wave number where the optical branch ω+(k) reaches its minimum value.

From the above discussion it follows that kmin = 0 for 0 ≤ ϕ0 ≤ ϕ′′
0, with the minimum value
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Figure 21: Optical branch of the dispersion relation at different values of ϕ0. For each panel the corresponding value of
ϕ0 is given; see also the discussion in the text. Here α = 1.8, Ks = 0.02, Kθ = 1.5× 10−4.

ω+(0) = α(6Kθ + 4 sin2 ϕ0)
1/2, and kmin = π for ϕ0 > ϕ′′

0, with the minimum value ω+(π) = 2.

Recalling that the acoustic branch has a maximum at k = π, we find that when

G = ω+(kmin)− ω−(π) > 0, (41)

there is a band gap between the two branches. See Fig. 22 for examples of such a gap. A DB solution

with frequency ω inside the gap, i.e., ω−(π) < ω < ω+(kmin), may exist provided that

S = ω+(kmin)−
1

2
ω+(kmax) > 0 (42)
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Figure 22: Optical (blue) and acoustic (orange) branches for (a) ϕ0 = 26π/180 ≈ 0.4538, α = 1.8, Ks = 0.02,
Kθ = 1.5 × 10−4; (b) ϕ0 = 8π/180 ≈ 0.1396, α = 5, Ks = 0.02, Kθ = 0.01; (c) ϕ0 = 10π/180 ≈ 0.1745, α = 5,
Ks = 0.02, Kθ = 0.01. The horizontal lines indicate the maximum ω−(π) of the acoustic branch and ω+(kmax)/2,
half of the maximum of the optical branch. When the optical branch is above ω−(π), (41) holds, and when it is above
ω+(kmax)/2, (42) holds.

holds in addition to (41) and ω > ω+(kmax)/2. Here kmax is the wavenumber where the optical branch

ω+(k) reaches its maximum value. The fact that ω does not coincide with either optical or acoustic

values for any wave number means that the breather is not in resonance with any linear modes, while

the condition (42) eliminates the second harmonic resonances by ensuring that 2ω > ω+(k) for all

wave numbers. This enables both the spatial localization (due to its presence in the bandgap) and the

non-resonance of the breather, as discussed, e.g., in [120].

Fig. 23 shows G and S defined in (41) and (42), respectively, as functions of ϕ0 for the first

parameter set. Both functions have a corner at ϕ0 = ϕ′′
0 where kmin changes from 0 to π. Noting that

G changes sign from negative to positive for ϕ0 < ϕ′′
0, when kmin = 0, we set

G = ω+(0)− ω−(π) = α

(√
6Kθ + 4 sin2(ϕ0)−

√
2Kθ + 4Ks cos2(ϕ0)

)
= 0

to find the critical angle

ϕ∗
0 = arccos

√
1 +Kθ

1 +Ks

(43)

above which (41) holds. The function S in Fig. 23(b) also changes sign for ϕ0 < ϕ′
0, where kmin = 0

and kmax = π, so that

S = ω+(0)−
1

2
ω+(π) = α

√
6Kθ + 4 sin2(ϕ0)− 1 = 0
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Figure 23: (a) G defined in (41) as a function of ϕ0. The horizontal line is G = 0, and the two vertical lines indicate
ϕ0 = ϕ∗

0 = 0.1400 and ϕ0 = ϕ
′′

0 = 0.5888. (b) S defined in (42) as a function of ϕ0. The horizontal line is S = 0 and the
two vertical lines indicate ϕ0 = ϕ∗∗

0 = 0.2811 and ϕ0 = ϕ
′′

0 = 0.5888. Here α = 1.8, Ks = 0.02, Kθ = 1.5× 10−4.

at

ϕ∗∗
0 = arcsin

(√
1

4α2
− 3

2
Kθ

)
, (44)

and hence (42) holds for ϕ0 > ϕ∗∗
0 . We find that ϕ∗

0 = 0.1400 and ϕ∗∗
0 = 0.2811 in this case.

Thus for ϕ0 > 0.2811, both (41) and (42) hold, and DB solutions may exist with frequencies ω in

the interval (ω+(kmax)/2, ω+(kmin)); otherwise, first or second resonances set in. The example at

ϕ0 = 26π/180 ≈ 0.4538, where (41) and (42) hold for 1 < ω < 1.57906, is shown in Fig. 22(a). As

shown in Fig. 23(b), the frequency gap increases until ϕ′′
0 = 0.5888 and then starts decreasing. Note

that for ϕ0 < ϕ′′
0, DB solutions bifurcating from the optical band emerge from k = 0 mode, while for

ϕ0 above this threshold the breathers bifurcate from the k = π mode.

The functions G(ϕ0) and S(ϕ0) for the second parameter set are shown in Fig. 24. Recall that in

this case (38), (39) and (40) yield ϕ′
0 = 0.1240, ϕ′′

0 = 0.1588 and ϕ′′′
0 = 0.1959. One can see that (41)

holds (F (ϕ0) > 0) for ϕ0 > ϕ∗
0, where ϕ∗

0 = 0.0992 is found from (43). Meanwhile, S(ϕ0) is positive

for 0 ≤ ϕ0 < ϕ∗∗∗
0 . To find this value, we observe that it is above ϕ′′′

0 , which means that kmin = π and

kmax = 0 in (42). Thus,

S = 2− 1

2
α
√

6Kθ + 4 sin2(ϕ0) = 0
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must hold at ϕ0 = ϕ∗∗∗
0 , which yields

ϕ∗∗∗
0 = arcsin

(√
4

α2
− 3

2
Kθ

)
. (45)

We obtain ϕ∗∗∗
0 = 0.3906 for the second parameter set. Thus, in this case (41) and (42) both hold when

0.0992 < ϕ0 < 0.3906. Examples of dispersion relations with band gaps for this parameter regime are

shown in panels (b) and (c) of Fig. 22. Note that in both cases the maximum of the acoustic branch lies

above the half of the maximum of the optical one, and hence the frequency range where DB solutions

may exist includes the entire gap between the two bands. This is in contrast to the example shown in

Fig. 22(a) for the first parameter set, where the breather frequency must exceed ω+(π)/2 = 1.
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Figure 24: (a) G defined in (41) as a function of ϕ0. The horizontal line is G = 0 and the two vertical lines indicate
ϕ0 = ϕ∗

0 = 0.0992 and ϕ0 = ϕ
′′

0 = 0.1588. (b) S defined in (42) as a function of ϕ0. The horizontal line is S = 0 and the
two vertical lines indicate ϕ0 = ϕ

′′

0 = 0.1588 and ϕ0 = ϕ∗∗∗
0 = 0.3906. Here α = 5, Ks = 0.02, Kθ = 0.01.

4.3 Period-doubling bifurcation

We first discuss DB solutions bifurcating from the optical k = 0 mode for ϕ0 < ϕ′′
0 for the param-

eters considered in [96] and associated with the experimental implementation of the metamaterial in

that work: α = 1.8, Ks = 0.02, Kθ = 1.5 × 10−4. We set ϕ0 = 26π/180 ≈ 0.4538, which enables
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existence of DB solutions with frequency ω in (1, 1.57906). The corresponding dispersion relation is

shown in Fig. 22(a).

To obtain the breathers with frequency ω and corresponding period T = 2π/ω, we consider a

chain of N = 200 elements and solve iteratively using Newton’s method the following equations:
u(T )− u(0)

u̇(T )− u̇(0)

θ(T )− θ(0)

θ̇(T )− θ̇(0)

 = 0,

where the vector functions u(t), u̇(t), θ(t), and θ̇(t) have the components un(t), u̇n(t), θn(t), and

θ̇n(t), n = 1, . . . , N , respectively. We perform numerical continuation in the frequency ω, starting

with ω = 1.57, just below the edge of the optical band at k = 0. The initial guess is of the form

un = εu tanh[δ(n−N/2)], θn = εθ sech[δ(n−N/2)], (46)

where εu, εθ and δ are small. The dynamical evolution of Eq. (30) (over the prescribed period T )

is performed using the symplectic fourth-order Runge-Kutta-Nyström algorithm [82] with free-end

boundary conditions.

To study the linear stability of the obtained solutions, we use Floquet analysis. Setting un(t) =

ûn(t) + ϵvn(t) and θn(t) = θ̂n(t) + ϵγn(t) in (30), where ûn(t) and θ̂n(t) comprise the DB solutions,

and considering O(ϵ) terms, we obtain the linearized system

v̈n = vn+1 + vn−1 − 2vn −

[
− sin(θ̂n+1 + ϕ0)γn+1 + sin(θ̂n−1 + ϕ0)γn−1

2 cos(ϕ0)

]
1

α2
γ̈n = −Kθ(γn+1 + 4γn + γn−1) +Ks[cos(θ̂n + ϕ0) cos(θ̂n+1 + ϕ0)γn+1

− sin(θ̂n + ϕ0) sin(θ̂n+1 + ϕ0)γn + cos(θ̂n + ϕ0) cos(θ̂n−1 + ϕ0)γn−1

− sin(θ̂n + ϕ0) sin(θ̂n−1 + ϕ0)γn − 2(cos2(θ̂n + ϕ0)− sin2(θ̂n + ϕ0))γn]

− [2 sin(θ̂n + ϕ0) cos(ϕ0)(vn+1 − vn−1) + 2 cos(θ̂n + ϕ0) cos(ϕ0)(ûn+1 − ûn−1)γn

+ 4 cos(θ̂n + ϕ0) cos(ϕ0)γn − (cos(θ̂n + ϕ0) cos(θ̂n+1 + ϕ0)γn

− sin(θ̂n + ϕ0) sin(θ̂n+1 + ϕ0)γn+1)− 2(cos2(θ̂n + ϕ0)− sin2(θ̂n + ϕ0))γn

− (cos(θ̂n + ϕ0) cos(θ̂n−1 + ϕ0)γn − sin(θ̂n + ϕ0) sin(θ̂n−1 + ϕ0)γn−1)],
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which is used to compute the monodromy matrix F defined by
v(T )

v̇(T )

γ(T )

γ̇(T )

 = F


v(0)

v̇(0)

γ(0)

γ̇(0)

 ,

where the vector functions v(t), v̇(t), γ(t), and γ̇(t) have the components vn(t), v̇n(t), γn(t), and

γ̇n(t), n = 1, . . . , N , respectively. The Floquet multipliers µ are the eigenvalues of the matrix F .

The existence of a Floquet multiplier µ satisfying |µ| > 1 indicates the presence of instability. When

the relevant instability-inducing multiplier is real, we refer to the instability as exponential, given the

exponential nature of the associated growth. When such real multipliers arise, they come in pairs

(µ, 1/µ) (one of which is outside, while the other is inside the unit circle). In the case of a complex

multiplier quartet (µ, 1/µ, µ̄, 1/µ̄) with |µ| > 1, the instability is referred to as oscillatory, given that

oscillations accompany the exponential growth due to the imaginary part of the associated multipliers.

The fact that the multipliers come in real pairs or complex quartets is a generic by-product of the

Hamiltonian nature of the underlying lattice dynamical system.

Fig. 25(a) shows the energy H of the breathers bifurcating from the k = 0 mode as a function

of the frequency ω. As we will see below, using this pair of independent and dependent variables

to illustrate our bifurcation diagrams allows us to connect the change in monotonicity of the energy-

frequency curve with a potential stability change [113]. As illustrated in the insets, the amplitude

of both the strain (33) and angle variables increases as the frequency is decreased away from the

edge of the optical band, i.e., as the strength of the nonlinear contribution increases. The maximum

modulus of the Floquet multipliers computed for this solution branch is shown by the blue curve in

Fig. 25(c). One can see that it exceeds unity and rapidly increases near the end of the continuation. As

illustrated in the inset (see also panels (a) and (b) of Fig. 26, which show the Floquet multipliers at the

beginning and the end of the continuation, respectively), this is due to the emergence of a pair (µ, 1/µ)

of real Floquet multipliers from µ = −1 at ω = 1.05155. One of these has modulus greater than one

and hence leads to an exponential instability, at the point d in Fig. 25(b), which corresponds to a

period-doubling bifurcation [50]. A second pair of real Floquet multipliers emerges from µ = −1 at

ω = 1.05006, leading to another exponential instability mode (not further explored). As the frequency

is decreased, these multipliers first move away from the unit circle along the real line and then start
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moving back toward it, eventually colliding at µ = −1 at ω = 1.0499, which corresponds to the point

e in Fig. 25(b) and is associated with another period-doubling bifurcation.
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Figure 25: (a) Energy H as a function of frequency ω. The two insets show the strain (33) and angle variables at the
points A, B, and C along the solution curve. (b) H(ω) for the single-period (blue curve) and double-period (red and
green curves) solution branches at twice their frequency. The bifurcation points are marked by d and e. The two insets
show the strain and angle variables at the points D and E along the double-period solution curves. (c) Maximum modulus
|µ| of Floquet multipliers versus frequency ω along the single-period (blue) and double-period (red and green) solution
branches. The insets show the corresponding Floquet multipliers near the unit circle. While the double-period solution
along the red curve coincides with the single period solution (blue curve) at the bifurcation point e, the Floquet multipliers
for the double-period solution are squares of those for the single-period one, resulting in the gap between the blue and red
curves. (d) Upper panel: largest modulus |µ| of the real Floquet multipliers as a function of frequency ω along the blue
single-period and green double-period solution curves near the bifurcation point d. Lower panel: second largest modulus
|µ| of the real Floquet multipliers as a function of ω along the blue single-period and red double-period solution curves
near the bifurcation point e. Note that these real Floquet multipliers are negative for the blue curve and positive for the
red and green curves. (e) Enlarged view of H(ω) along the green double-period solution curve. The dashed vertical lines
indicate the local minimum (left) and maximum (right). The points x1, . . . , x9 correspond to the Floquet multiplier panels
shown in (f). The inset shows an enlarged view around the cluster of points. (f) The Floquet multipliers near µ = 1 for
the points marked in the panel (e). The arrows indicate the motion of the Floquet multipliers. Here and in the remainder
of this section we have α = 1.8, Ks = 0.02, Kθ = 1.5× 10−4, N = 200, and ϕ0 = 26π/180.

To compute the double-period solutions that arise as a result of the bifurcations at the points d and

e along the single-period solution branch, we used the same iterative procedure as discussed above

with the initial guess consisting of a single-period solution with twice the frequency perturbed along

the corresponding unstable mode. Solutions along the bifurcating branches were then obtained using
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parameter continuation in frequency or energy. The resulting energy as a function of frequency for

the double-period solutions (red and green curves) is shown in Fig. 25(b) for each case together with

the single-period solution branch (blue curve) discussed above. The double-period solution curves are

plotted at twice their actual frequency in order to facilitate the comparison with the single-period solu-

tion curve. Insets in Fig. 25(b) show examples of the symmetric breather solutions along the different

double-period solution curves. As the insets of Fig. 25(c) reveal, the Floquet spectra of the double-

period and single-period solution branches are markedly different. While the single-period solutions,

as noted above, are characterized by an exponential period-doubling instability associated with a Flo-

quet multiplier µ < −1 for frequencies below the value at the bifurcation point d, the double-period

branches exhibit an exponential instability associated with a Floquet multiplier satisfying µ > 1. As

the bifurcation points are approached, the corresponding pairs of real multipliers collide at µ = −1

for the parent single-period branch and at µ = 1 for the bifurcating branches.

To examine the nature of these bifurcations further, we plot in the top panel of Fig. 25(d) the

largest modulus of real Floquet multipliers µ as a function of ω along the green and blue curves

near the bifurcation point d. One can see that at the period-doubling bifurcation point d the single-

period branch develops an exponential instability associated with a Floquet multiplier µ < −1 via

a subcritical pitchfork bifurcation of the double-period branch, which has a pair of real multipliers

(µ, 1/µ) with µ > 1. In the bottom panel of Fig. 25(d), we show the second largest modulus of the

real Floquet multipliers near the bifurcation point e, where the second pair of real multipliers emerges

near µ = −1 for the single-period branch and near µ = 1 for the bifurcating red branch. Due to the

presence of the first pair of real multipliers, all solutions are unstable near the bifurcation point e, as

indicated in Fig. 25(c).

Note that the upper branch of the multivalued energy-frequency function corresponding to the

unstable green double-period solution curve bifurcating from the point d has a local minimum and a

local maximum, marked by the dashed vertical lines in Fig. 25(e). As illustrated in the first four panels

in Fig. 25(f), these extrema are associated with a change of multiplicity of the Floquet multiplier at

µ = 1 along this branch and subsequent emergence or collision of a second pair of real Floquet

multipliers. The change in multiplicity of the unit Floquet multiplier when H ′(ω) changes sign is

consistent with the energy-based stability criterion proved in [113] for discrete breathers in Fermi-

Pasta-Ulam and Klein-Gordon lattices. Note, however, that in this case the change in multiplicity

does not lead to a stability change due to the presence of an additional pair of non-unit real multipliers
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at these frequency values. As we trace the solution curve toward the point d, this pair collides at

µ = 1 on the unit circle at a bifurcation point and subsequently briefly remains on it (see panels 4

and 5 in Fig. 25(f)), while the solutions are still unstable due to the presence of complex multipliers

µ satisfying |µ| > 1 (not shown in panel 5). However, as illustrated in panels 7 and 8 in Fig. 25(f),

two pairs of real multipliers subsequently emerge on the real axis via collisions of complex conjugate

pairs of multipliers. One of the pairs eventually collides on the unit circle at another bifurcation point,

leaving a single pair (panel 9), which in turn collides at µ = 1 at the point d.
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Figure 26: Panels (a) and (b) show Floquet multipliers µ at the start (ω = 1.57, panel (a)) and the end (ω = 0.9972,
panel (b)) of the continuation. Panel (c) shows an enlarged view of Fig. 25(b). The vertical line indicates the frequency
ω = 1.229, at which the top optical and bottom acoustic arcs shown in Fig. 27 below first intersect (see the text for details).
Here |µ| > 1 corresponds to oscillatory instabilities, as shown in the insets, where the red curve is part of the unit circle.

The enlarged view of the Floquet multiplier curve for the single-period solution branch and the

insets shown in Fig. 26(c) reveal that the onset of the period-doubling instability is preceded by small-

magnitude oscillatory instabilities associated with pairs of multipliers colliding on the unit circle and

then moving slightly off it in the form of a quartet as discussed above. Note also that the Floquet

multipliers µ form an arc on or near the unit circle. Using the linearization (34) of Eq. (30) about the

uniform equilibrium state for an infinite chain, one can show [121] that the background state of the

breather with period T contributes the Floquet multipliers

µ = e±iω±(k)T , (47)

where we recall from Sec. 4.2 that ω+(k) and ω−(k) are the optical and acoustic branches of the

dispersion relation. As we vary k from 0 to π, we obtain arcs of multipliers along the unit circle. Such

arcs corresponding to the upper optical (ω+(k), red arc) and the bottom acoustic (−ω−(k), light blue
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arc) bands are depicted in panels (a), (b) and (c) of Fig. 27 for different values of ω (and hence different

T = 2π/ω in (47)) along with the numerically computed Floquet multipliers (dark blue crosses) for

the obtained DB solutions. There are also symmetric arcs (not shown in the figure) corresponding to

the bottom optical (−ω+(k)) and the upper acoustic (ω−(k)) bands.
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Figure 27: Numerically computed Floquet multipliers (dark blue crosses) and arcs of Floquet multipliers (47) corre-
sponding to top optical (ω+(k), red arc) and bottom acoustic (−ω−(k), light blue arc) dispersion bands at (a) ω = 1.57;
(b) ω = 1.4; (c) ω = 1.201.

Under the mapping given by (47), the left ends of the arcs corresponding to the top optical and

bottom acoustic bands, respectively, seen in Fig. 27, are associated with ω+(π) and −ω−(π). As ω is

decreased, the two ends approach each other along the unit circle and eventually coincide when

ei2πω+(π)/ω = e−i2πω−(π)/ω,

which yields
ω+(π) + ω−(π)

ω
= n,

where n is a positive integer. We find that the first such collision takes place when n = 2, which

together with (37) yields

ω =
2 + α

√
2(Kθ + 2Ks cos2 ϕ0)

2
≈ 1.2293.

This predicted value of ω = 1.2293 is close to the first significant peak shown in Fig. 26(c), although

there are also two smaller peaks to the right of it at ω = 1.231 and ω = 1.239. This discrepancy

between predicted and actual collision frequency values may be attributed to numerical accuracy of

computing the Floquet multipliers, as well as possible effects of weak nonlinearity.
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The solution curve shown in Fig. 25(a) was continued until the frequency ω = 0.9972, and thus

includes solutions with frequencies ω ≤ 1. As noted in Sec. 4.2, these frequencies are associated

with second harmonic resonances of the DB solution with the linear waves that have frequencies

in the optical band. As a result, the corresponding solutions are no longer localized and instead

possess non-decaying oscillatory wings. Such solutions are known as phantom breathers [122] or

nanoptera [123, 124]. The latter term stems from their non-vanishing tails given the resonance with

the linear modes. An example of a phantom breather with frequency ω = 0.9972 (red curve) is shown

in Fig. 28 along with the regular (localized) DB solution at ω = 1.02 (dashed blue).

140 160 180 200

n

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

w
n

10 -6

140 160 180 200

n

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n

10 -6

Figure 28: The angle and strain variables near the right end of the chain for the phantom breather with frequency
ω = 0.9972 (solid red) and the regular (localized) discrete breather with frequency ω = 1.02 (dashed blue).

We now consider the Fourier spectrum associated with the dynamic evolution of the obtained

breathers with prescribed frequency ω̃. Fig. 29 shows the Fast Fourier Transform (FFT) results in-

volving the dynamics simulated over a course of 100 oscillation periods for two different values of ω̃,

along with the acoustic and optical bands shaded in gray. In the case ω̃ = 1.1 (panel (a)), there are

only two peaks at nonzero frequencies for the displayed range, at ω̃ and 2ω̃, and the latter is clearly

above the top of the optical band (the right shaded strip) at ω = 2. When ω̃ = 1.02 (panel (b)), one can

see a third nonzero-frequency peak in addition to ω̃ and 2ω̃. This peak is at ω̃/2 and is associated with

the period-doubling instability, which is present at this frequency. Note that 2ω̃ is above the optical
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band (the right shaded strip), and ω̃/2 is above the acoustic band (the left shaded strip), so there are

no resonances with either optical or acoustic linear waves. In contrast, in the case ω̃ = 0.9972 (not

shown), the peak at 2ω̃ is just inside the optical band, and the second-harmonic resonance results in

the phantom breather structure shown in Fig. 28.
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Figure 29: The amplitude spectrum P (ω) obtained using the FFT for different values of the prescribed breather fre-
quency ω̃: (a) ω̃ = 1.1; (b) ω̃ = 1.02. The left and right shaded stripes in each of the bottom panels indicate the acoustic
and optical dispersion bands, respectively. The dashed vertical lines indicate ω̃ and 2ω̃ in both panels and ω̃/2 in panel
(b). It is clear that the frequencies associated with the breather do not resonate with the linear spectral bands in the cases
shown.

4.4 Snake-like solution branches

As we have seen, the existence of DB solutions with frequencies inside the band gap requires

rather large angles ϕ0 (above 16◦) for the set of model parameters used in the previous subsection.

Since large offset angles may render the present description of the system with only two degrees of

freedom somewhat less accurate [125], we consider in what follows the parameters α = 5,Ks = 0.02,

Kθ = 0.01, which allow breather existence at smaller values of ϕ0.
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4.4.1 Branches associated with the k = π mode

We start by considering solutions that exist when the bottom of the optical band is at k = π,

which, as shown in Sec. 4.2, can occur when the angle ϕ0 is above ϕ′′
0. Recalling that ϕ′′

0 = 0.1588 for

the chosen parameter values, we set ϕ0 = 10π/180 ≈ 0.1745. The corresponding dispersion relation

plot is shown in Fig. 22(c).

To compute solutions associated with the k = π mode, we modify our initial guess as follows.

To obtain the initial guess for the angle variable θn, we solve the linear problem (34) for the finite

chain of size N = 200 with zero strain and zero angle prescribed at the boundaries, observing that the

eigenvalues ν are equal to the negative of the square of the frequencies that make up the optical and

acoustic bands obtained for the linearized problem, and selecting the angle-related part of the eigen-

vector associated with the eigenvalue ν = −ω2
+(π) = −4. Selecting the corresponding displacement

part of the eigenvector did not yield nontrivial solutions, and thus we used the same form of the initial

guess for un as in (46). Fig. 30 shows the initial guess we used in the computation.
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Figure 30: Initial guess for (a) displacement un = εu tanh(δ(n − N/2)); (b) angle θn obtained from the π-mode
eigenvector (see the text for details). Here εu = 0.05 and δ = 0.15.

The results of our computations are summarized in Fig. 31, which shows the energy of the ob-

tained solution branches as a function of frequency. Blue, red and green curves show branches of DB

solutions that have even symmetry, while the black curves indicate asymmetric solution branches. For

each solution branch, thin dashed portions of the curve indicate the existence of real Floquet multi-
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pliers satisfying µ > 1, along with the corresponding real multipliers 1/µ inside the unit circle along

the real line. Thick dashed segments indicate the additional presence of real Floquet multipliers µ

and 1/µ satisfying µ < −1 and thus corresponding to a period-doubling instability akin the one dis-

cussed in Sec. 4.3. Parts of the curve where there are only oscillatory instabilities with the maximum

modulus of the Floquet multipliers exceeding 1.009 are shown by thin dotted segments, while along

the thick dotted portions there are also real multipliers µ and 1/µ with µ < −1. Solid curves indicate

the portions where there are no exponential instabilities, and the maximum modulus of the Floquet

multipliers is below the threshold value 1.009. Small-magnitude oscillatory instabilities along the

solid portions are similar to the ones observed in Sec. 4.3 and can be neglected, so that the associ-

ated solutions can be considered effectively (i.e., practically, for long-time simulations) stable. The

threshold of 1.009 is (by necessity) somewhat arbitrary and is connected with observations over the

time horizons selected for our numerical simulations of the breather dynamics.

We first consider the blue and red symmetric solution curves shown in panels (a) and (c), re-

spectively, of Fig. 32. Panels (b) and (d) of the same figure show strain and angle variables for the

solutions at selected points along the corresponding curves in panels (a) and (c) at the time instances

of maximal amplitude. Near ω = 2, the solutions for the blue curve have only a single trough in the

angle θn. As the curve is traversed, this single trough evolves first into a double trough, as can be

seen at points A and B in Fig. 32(b), and later into a quadruple trough at point C. Meanwhile, the

strain wn evolves from a single initial peak at point A into a single trough at point B in Fig. 32(b),

and finally into a quadruple trough at point C. The solutions along the red curve near ω = 2 have

a single minimum in θn, which is maintained at points A and B in Fig. 32(d). However, as can be

seen at point C in Fig. 32(d), these solutions also evolve from having a single minimum to multiple

extrema. As before, in the strain component we see an inversion of an initial peak to a single trough

as seen at points A and B in Fig. 32(d). A key distinction between the blue and red solution curves is

that the solutions along the blue branch are site-centered, and the solutions along the red branch are

bond-centered.

We remark that although both the energy and the amplitude of solutions along the blue and red

branches decreases as the frequency approaches the edge of the optical band, they do not appear

to tend to zero in the limit. This suggests that instead of bifurcating from the band edge, these

DB branches retain a finite amplitude as their frequency approaches the band edge, akin the large-

amplitude bright breathers computed in [126] for the Fermi-Pasta-Ulam lattices.
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Figure 31: Energy H of the computed DB solutions as a function frequency ω. Blue, red and green curves are branches
of solutions that have even symmetry, while the asymmetric solution curves are shown in black. Thin dashed portions of
the curves indicate the presence of the real multiplier pairs (1/µ, µ) with µ > 1. Along the thick dashed segments there
are also real multipliers (1/µ, µ) with µ < −1. Parts of the curve where there are only oscillatory instabilities with the
maximum modulus of the Floquet multipliers exceeding 1.009 are indicated by thin dotted segments. Solutions that also
have real multiplier pairs (1/µ, µ) with µ < −1 are along the thick dotted parts. Solid curves indicate the portions where
there are no exponential instabilities, and the maximum modulus of the Floquet multipliers is below 1.009. Here and in
the remainder of this subsection we have α = 5, Ks = 0.02, Kθ = 0.01, N = 200, and ϕ0 = 10π/180.

Examining now the stability of the solutions along the two branches, we note first that as shown

in the left panel of Fig. 32(e), the two exchange an effective stability via a connecting unstable asym-

metric solution branch. This is reminiscent of a similar phenomena observed in different settings (yet

still connecting the bifurcations from site-centered and bond-centered solution branches) [127]; see

also the discussion of [49], where asymmetric solution curves carry instabilities between neighboring

symmetric solutions. The blue curve has a real Floquet multiplier pair (1/µ, µ) with µ > 1 until

the bifurcation point at ω = 1.7742 and H = 2.264 × 10−3, where it becomes effectively stable

(modulo small-amplitude oscillatory instabilities), while the emerging asymmetric branch is expo-

nentially unstable; in other words, this is a subcritical pitchfork bifurcation. The asymmetric branch

then connects to the red curve, where a similar stability exchange (i.e., another subcritical pitchfork
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Figure 32: (a) Energy H as a function of frequency ω along the blue symmetric solution branch. The insets provide
a enlarged view of the turning points. (b) Strain and angle variables for the solutions at the points A, B, and C in (a).
(c) H(ω) along the red symmetric solution branch. The inset showing Floquet multipliers illustrates the emergence of
an exponential instability. A pair of complex Floquet multipliers (blue crosses) associated with a solution before the
transition collides to form two positive real multipliers (red crosses) associated with the solution after the collision. The
corresponding symmetric multipliers inside the unit circle are not shown. (d) Strain and angle variables for the solutions
at the points A, B, and C in (c). (e) Left panel: the unstable asymmetric branch connecting the red and blue symmetric
branches (left panel). Right panel: maximum real Floquet multiplier as a function of energy for the three branches. All
solution profiles are shown at the time instances of maximal amplitude.
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bifurcation) takes place at ω = 1.7738 and H = 2.172 × 10−3. The stability exchange is further

illustrated in the right panel of Fig. 32(e), where we plot the maximum real Floquet multiplier µ as a

function of the energy H .

Next, we note that the exponential instability that emerges from the oscillatory instability in the

solutions along the red curve, indicated by the inset in Fig. 32(c), is due to the collision of two complex

pairs of Floquet multipliers µ (only the multipliers outside the unit circle are shown in the inset). A

similar collision is responsible for the transition to exponential instability near the first local maxima

in the blue curve, which is indicated in the inset containing the point D in Fig. 32(a).

Panels (a) and (b) of Fig. 33 show a bifurcation at the point a along the blue curve, at which point

the blue curve loses its exponential instability (while still retaining oscillatory instability modes).

The instability is transferred to an asymmetric solution branch (again through a subcritical pitchfork

bifurcation). Another exponentially unstable asymmetric branch bifurcates at the point b from this

branch and at the point c from the blue curve. The resulting part of the bifurcation diagram, depicted

in the right panel of Fig. 33(b), is reminiscent of the “snaking” behavior that has been observed in

other systems [114, 115]. Further exploration of such snaking features and associated asymmetric

branches in the present metamaterial setting is a potentially interesting topic for future studies.

We also observe that stability changes at the points where H ′(ω) changes sign are associated with

the emergence of a pair of real Floquet multipliers from µ = 1. The multiplier µ > 1 then corresponds

to an exponential instability. One such example is shown in the inset of Fig. 32(a) zooming in on a

sharp turning point. The initial stability change happens at a local minimum, and the second saddle-

center bifurcation at a local maximum. This change in multiplicity of the unit Floquet multiplier

at the extrema of the energy-frequency curve is similar to the one we observed earlier in Sec. 4.3

and again consistent with the stability criterion in [113]. The same mechanism is responsible for the

onset of exponential instability at a local minimum of H(ω) near ω = 2 (see the bottom right inset of

Fig. 32(a)). Another example of such change in multiplicity takes place at the local maximum near the

point D in Fig. 32(a) (see the inset). At this point, a second pair of real Floquet multipliers emerges

from the unit circle, and this new pair subsequently collides at the point D with an already existing

pair of real multipliers forming a complex quartet of Floquet multipliers. A similar emergence of a

pair of real Floquet multipliers from µ = 1 is observed at the local extrema of energy along the red

curve.

As discussed above, a secondary asymmetric branch bifurcates from a primary asymmetric branch
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Figure 33: (a) Energy H as a function of frequency ω along the blue and green symmetric solution branches and
bifurcating branches of asymmetric solutions, with a, b, c, and d marking the bifurcation points. The insets show the
solutions of the asymmetric and symmetric branches at the points A, B, and C. (b) The stability exchange between
the symmetric (blue) and the asymmetric (black) branch. Both the associated portion of the bifurcation diagram and the
dominant multiplier of each branch associated with the instability growth rate are shown. (c) Energy H versus frequency
ω for the green symmetric solution branch with d and e marking the bifurcation points (see Fig. 34 for the asymmetric
branch bifurcating from e). (d) The enlarged view of the region inside the rectangle in (c). The insets show the transition
from exponential to oscillatory instabilities and vice versa that take place over the green symmetric curve. The red and
blue crosses indicate Floquet multipliers µ outside the unit circle that correspond to solutions before and after the transition
point, respectively.

at the point b in panels (a) and (b) of Fig. 33. The primary branch continues on past this bifurcation

point to intersect with a symmetric solution curve at the point d, shown in green color in panel (a).
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Following this green curve, shown in its entirety in Fig. 33(d), upward from point d, we observe the

sequence of events illustrated in Fig. 33(d). Two pairs of real multipliers (1/µ, µ) with µ > 1 emerge

due to two pairs of complex multipliers colliding on the real axis (only the multipliers outside the

unit circle are shown in the insets). The real multipliers then collide to form complex ones anew,

and subsequently reemerge again due to another collision of the oscillatory multipliers. Eventually,

the real multipliers rejoin the unit circle. This provides a sense of the complexity of the associated

bifurcation diagram.

Traveling downward now from the point d along the green curve, we eventually arrive at another

bifurcation of an asymmetric solution branch at the point e. This bifurcation is shown in Fig. 34 and

appears not to be associated with any stability change. A closer examination shows that this is due

to the prior existence of two pairs of real Floquet multipliers (one is not included due to its larger

magnitude), shown in the inset zooming in around the point D. After the bifurcation, a third pair of

real Floquet multipliers joins the other two, as shown in the inset of Fig. 34(b) zooming in around

the point E, indicating the emergence of a new exponential instability. It is important to note that in

both insets of panel (b) around points D and E, an additional exponential instability is present but not

shown due to its larger magnitude. As before, we also observe changes in stability due to collisions of

complex pairs, as shown in the inset zooming in around the point F , as well as due to turning points

in energy, e.g., near the local minimum of the black asymmetric solution curve of Fig. 34.

Finally, we consider the asymmetric branch in Fig. 31 that has not yet been discussed. This branch

is unique among the other asymmetric branches in that it comes near the π-mode edge of the optical

branch. However, that similar to the blue and red branches, it does not appear to bifurcate from the

edge. As in the previous cases, we observe the emergence or collision of real Floquet multipliers at

the turning points in energy. In Fig. 35(a), we show the evolution of the solutions as the branch is

traversed, and in Fig. 35(b), one can see the emergence of pairs of real multipliers from complex ones;

once again these are signaled by transitions from dotted lines to dashed ones.

To examine the consequences of an instability associated with real Floquet multipliers µ > 1

along the blue and red symmetric solution branches, we perturb unstable solutions at various points

featuring such an exponential instability along the corresponding eigenmodes and simulate the result-

ing dynamics. In Fig. 36(a), these points on the blue and red dashed portions of the curves are labeled

A - L. The corresponding final states are indicated by the points A∗ - L∗. As can be seen in the inset

of Fig. 36(a), in all cases, the perturbed solution eventually settles onto one of the two effectively
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Figure 34: (a) Energy H as a function of frequency ω along the green symmetric solution branch and a branch of
asymmetric solutions (different from the ones discussed earlier) bifurcating at the point e. The insets include profiles of
the angle variable at the points A, B, and C. (b) The insets pointing toward points D and E show the emergence of a
third pair of real Floquet multipliers. In both insets, an additional pair of real multipliers is present but not shown due
to its larger magnitude. The inset pointing toward the point F illustrates the collision of two pairs of real multipliers to
form two complex pairs. The red and blue crosses indicate Floquet multipliers outside the unit circle that correspond to
solutions before and after the transition point, respectively.

stable regions of the blue and red solution curves, with an apparent preference toward the blue curve,

which is effectively stable for a much larger interval of frequencies than the red curve.

As an example, we consider the point E in Fig. 36(a) and show the dynamic evolution of the per-

turbed solution in Fig. 36(b-d). Here ϵ = 10−5, and the largest real Floquet multiplier is µ = 1.3596.

The space-time plots of the displacement and angle are shown in panels (b) and (c), respectively,

while panel (d) zooms in on the dynamic evolution of the angle variable at smaller times. Both (c)

and (d) are shown on a logarithmic scale. This facilitates the last plot to show the nontrivial amount

of radiation that is emitted by the perturbed wave as it develops, as well as its temporary mobility.

Eventually, this perturbed wave settles into a stable breather, associated with the point E∗, as can be

verified by comparing its properties (once it settles) with those of the latter solution.
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Figure 35: (a) Energy H as a function of frequency ω along an asymmetric solution branch that exists near the k = π
edge of the optical branch. The insets include profiles of the angle variable at the points A, B, C, and D. (b) The same
branch, with the inset showing the collision of two pairs of complex Floquet multipliers to form two real pairs. Blue and
red crosses show the pairs outside the unit circle that correspond to solutions before and after the transition, respectively.

4.4.2 Zero-mode optical and π-mode acoustic branches

We now consider breather solutions bifurcating from the bottom of the optical band at k = 0, as

well as solutions that exist near the top of the acoustic branch at k = π. To ensure that the optical

branch has a minimum at k = 0, we choose ϕ0 = 8π/180 ≈ 0.1396, which is below ϕ
′′
0 = 0.1588.

The corresponding dispersion relation plot is shown in Fig. 22(b).

Using the continuation procedure with the initial guess of the form (46), we obtained the blue and

red branches of symmetric DB solutions shown in Fig. 37 that are site-centered and bond-centered,

respectively, and bifurcate from the edge of the optical band at k = 0. The green solution branch

of site-centered breathers shown in the same figure extends from near the top of the acoustic band at

k = π and was obtained using the initial guess that was constructed as described in Sec. 4.4.1. As

in the previous case discussed in Sec. 4.4.1, we expect there to be other solution branches emanating

from the band edges, as well as secondary branches that bifurcate from the primary ones. However,

the discussion below is limited to the three branches included in Fig. 37.

Fig. 38, shows each of the branches (left panels) along with the evolution of the strain and angle

variables along each curve (right panels). Along the blue branch shown in panel (a), the strain variable
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Figure 36: (a) Energy H as a function of frequency ω along the red and blue symmetric solution curves. The points A-L
indicate the perturbed unstable solutions, while the points A∗ - L∗ mark the corresponding final states. The inset zooms
in on the region including the end points. (b) Space-time plot of the displacement un(t) for the solution corresponding
to point E. Here ϵ = 10−5 is the strength of the perturbation, and µ = 1.3596 is the largest real Floquet multiplier. (c)
Space-time plot of the angle θn(t). (d) Enlarged view of (c). Both (c) and (d) are shown in a logarithmic plot to facilitate
the visualization of the small scales involving dispersive wave radiation as a result of the instability.

shown in panel (b) has a single peak at point A, which evolves to a single trough at point B, and then

to a triple trough at point C. Meanwhile, the angle variable changes from a single trough at point A

to a double trough at point B, and finally to a quadruple trough at point C.

In the case of the red symmetric branch (panel (c)), the strain variables shown in panel (d) initially

has a single peak at point A, which then evolves into a single trough at point B and later to a double
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Figure 37: Energy H of the computed DB solutions as a function frequency ω. Blue and red curves bifurcate from the
optical band at k = 0, while the green curve is associated with the acoustic π-mode. All of the branches shown contain
solutions with even symmetry. Thin dashed portions of the curves indicate the presence of the real multiplier pairs (1/µ, µ)
with µ > 1. Along the thick dashed segments there are also real multipliers (1/µ, µ) with µ < −1. Parts of the curve
where there are only oscillatory instabilities with the maximum modulus of the Floquet multipliers exceeding 1.009 are
indicated by thin dotted segments. Solutions that also have real multiplier pairs (1/µ, µ) with µ < −1 are along the thick
dotted parts. Solid curves indicate the portions where there are no exponential instabilities, and the maximum modulus
of the Floquet multipliers is below 1.009. Here and in the remainder of this subsection we have α = 5, Ks = 0.02,
Kθ = 0.01, N = 200, and ϕ0 = 8π/180.

trough at point C. Meanwhile, the angular variable has a single trough at point A and develops steps

at point B, which subsequently evolve into a triple trough at point C. In this case too, as is the case

for the blue branch, the expansion of the solution to more sites bearing high amplitudes is associated

with higher energies along the snake-like solution branch.

For the green solution branch that extends to near the top of the acoustic band (panel (e)), we find

that as we move from point A to point C, the strain variable shown in panel (f) develops two peaks.

Notice that in this case, the point A illustrates the provenance of this mode from a k = π band edge,

since adjacent sites are out of phase with each other at the starting point of the relevant branch in

panel (f). In the angular variable, we observe a widening of the core from point A to point C along
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with the emergence of two troughs at point C.

As in the previous case discussed in Sec. 4.4.1, we expect the existence of an asymmetric solution

branch connecting the red and blue branches and facilitating an exchange of the exponential instability

shown in the inset in Fig. 37. Due to the extremely narrow frequency and energy intervals over

which this exchange takes place, we were unable to accurately compute the asymmetric solutions.

Similar stability exchange through symmetry-breaking bifurcations is expected at other points where

the emergence of an exponential instability is not caused by a collision of complex multipliers, as

depicted in the inset of Fig. 38(c), or associated with splitting of a pair of real multipliers at µ = 1

when H ′(ω) changes sign.

4.5 Concluding remarks

In this chapter we have revisited a dynamical system that constitutes a prototypical, experimen-

tally tractable example of a nonlinear mechanical metamaterial. While earlier work [94, 96, 112] on

this system focused on the possibility of its featuring propagating nonlinear excitations in the form

of traveling waves, the emphasis in this chapter has been on the dynamics of discrete breathers with

parameters allowed by the experimental setting (in accordance, e.g., with the Supplemental material

in [96]). To explore the DB waveforms, we started with a systematic analysis of the linear spectrum

of the system. We ensured the presence of a gap between the acoustic and optical branches of the

linear dispersion relation. In addition, we ensured the avoidance of resonances involving the second

harmonic, in order for the DBs to exist [120]. When the relevant conditions applied, we were able

to identify a rich set of families of discrete breathers, both symmetric and asymmetric. This includes

DB solutions bifurcating from or existing near the lower edge of the optical band, as well as solu-

tion branches that extend to the upper edge of the acoustic band. Utilizing the energy-vs-frequency

representation of the associated bifurcation diagrams, we were able to showcase numerous solution

branches, and importantly identified the wealth of bifurcations emerging between them. These in-

cluded saddle-center bifurcations (leading to exponential instabilities), symmetry-breaking bifurca-

tions (involving asymmetric branches) and finally Hamiltonian-Hopf bifurcations associated with the

emergence of complex multipliers. We also briefly discussed the nonlinear evolution dynamics as-

sociated with different branch instabilities and showed how these could lead to a restructuring of the
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waveforms towards stable DB patterns, while shedding some dispersive wave radiation as a result of

the dynamical instability.

Naturally, we believe that this chapter paves the way for further explorations of nonlinear wave

structures in this class of metamaterial lattices. The relevant possibilities emerge at different levels

of experiment, computation and theory. Experimentally, it remains to be seen whether parametric

regimes considered in this chapter allow for the identification of the discrete breather waveforms ex-

amined in this chapter. Theoretically, we showed that some of the obtained solutions bifurcate from

the band edges of the dispersion relation. This is a feature that calls for the analysis of such a bi-

furcation via multiple-scale expansions and the possible derivation of a nonlinear Schrödinger type

model to describe it, an effort that is already underway [128]. Lastly, it would be particularly interest-

ing to extend the relevant considerations of breathing waveforms to (numerically) exact computations

of discrete traveling solutions along the lines of recent connections between the two types of struc-

tures [31]. Such studies are currently in progress and will be reported in future publications.
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Figure 38: (a) Energy H as a function of frequency ω along the blue symmetric solution branch. (b) Strain and angle
variables for the solutions at the points A, B, and C in panel (a). (c) H(ω) along the red symmetric solution branch.
The inset showing Floquet multipliers illustrates the emergence of an exponential instability. A pair of complex Floquet
multipliers (red crosses) associated with a solution before the transition collides to form two positive real multipliers (blue
crosses) associated with the solution after the collision. The corresponding symmetric multipliers inside the unit circle are
not shown. (d) Strain and angle variables for the solutions at the points A, B, and C in panel (c). (e) H(ω) along the green
symmetric solution branch. The inset shows the enlarged view near the end of the computed branch. (f) Strain and angle
variables for the solutions at the points A, B, and C in panel (e). All solution profiles are shown at the time instances of
maximal amplitude.
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Appendix A

In this Appendix, we derive the condition for the change in multiplicity of the zero eigenvalue

that generalizes the corresponding condition in [20, 21, 31, 32] to the case when the energy of a STW

is not necessarily a single-valued function of its velocity. As in [31, 32], we consider a more general

Hamiltonian than in [20, 21] that goes beyond nearest-neighbor interactions. However, in [31, 32]

the effect of essential spectrum of the linearization operator was neglected in the derivation of the

stability criterion and perturbation results. Moreover, the proof was provided for the displacement

formulation and assumed localized displacements. Following [20, 21], here we consider the strain

formulation more appropriate for the problem at hand and work with weighted spaces that shift the

essential spectrum into the left half-plane.

A.1 Weighted spaces, skew symmetry and essential spectrum

Consider a Hamiltonian system in the form

H =
∑
n∈Z

(
1

2
p2n + Un(w)

)
=
∑
n∈Z

Hn(w(t), p(t)), (48)

where p(t) = [pn(t)] is an infinite vector of particle momenta, w(t) = [wn(t)] is the strain vector, and

the potential energy term Un(w) may include long-range interactions as in (1). The dynamics of the

lattice are governed by

d

dt
r(t) = J ∂H

∂r
, r(t) =

w(t)
p(t)

 , J =

 0 e∂ − I

I − e−∂ 0

 . (49)

Here e±∂ are the shift operators satisfying
(
e±∂x

)
i
= xi±1, and I is the identity operator.
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Remark 1. The operator J is invertible on space ℓ2× ℓ2, but the inverse is not bounded in this space

because zero is in the essential spectrum of J . In particular, if 1 represents a vector with all elements

being 1, then J

c11
c21

 vanishes for any c1 and c2. By using weighted spaces, one can make J a one-

to-one function and change the essential spectrum of J so that its inverse is bounded. In particular,

if a > 0 and ℓ2±a = {u :
∑

j∈Z |uj|2e±2aj < ∞}, then the inverse of J on ℓ2a × ℓ2a is explicitly given

by

J −1
a,a =

 0 −
∑∞

k=1 e
k∂

−
∑∞

k=0 e
k∂ 0

 (50)

and the inverse of J on ℓ2−a × ℓ2−a is of the form

J −1
−a,−a =

 0
∑−∞

k=0 e
k∂∑−∞

k=−1 e
k∂ 0

 . (51)

In particular, J −1
a,a u = J −1

−a,−au when u ∈ (ℓ2a ∩ ℓ2−a)× (ℓ2a ∩ ℓ2−a) and ∑∞
k=−∞ ek∂ 0

0
∑∞

k=−∞ ek∂

u = 0.

Remark 2. If one considers J on ℓ2 × ℓ2, then its adjoint is also viewed as an operator on ℓ2 × ℓ2,

and in particular J ∗ = −J , which implies that J is skew-symmetric. If J is defined on ℓ2a × ℓ2a, then

its adjoint J ∗
a,a can be viewed as on ℓ2−a × ℓ2−a. Since we can also treat J as an operator J−a,−a on

ℓ2−a × ℓ2−a, then

⟨u,Ja,av⟩ℓ2×ℓ2 + ⟨J−a,−au, v⟩ℓ2×ℓ2 = 0

where u ∈ ℓ2a × ℓ2a, v ∈ ℓ2−a × ℓ2−a and ⟨·, ·⟩ℓ2×ℓ2 represents the inner product on ℓ2 × ℓ2. This prop-

erty can be equivalently written as J ∗
a,a = −J−a,−a and it is another version of the skew-symmetry.

Moreover, since J −1 has different inverses on different weighted spaces, it in general does not inherit

the skew symmetry from J .
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We now assume that (49) has a smooth family of solitary traveling wave solutions which have the

form

rtw(t; s) =

wtw(t; s)

ptw(t; s)

 , wtw,n(t; s) = ŵ(ξ(s)), ptw,n(t; s) = p̂(ξ(s)), (52)

where ξ(s) = n − c(s)t and c(s) is the velocity of the wave, which is strictly above the sound speed

and depends on the parameter s. We assume that s provides a regular parametrization of the energy-

velocity curve, so that c′(s) and H ′(s) do not vanish simultaneously. This parametrization is not

necessarily unique. It is convenient to use rescaled time τ = c(s)t, so that the wave period is rescaled

to one. Then we have

dR

dτ
=

1

c(s)
J ∂H

∂R
, R(τ) =

W (τ)

P (τ)

 = r(t). (53)

Linearizing (53) around the solution Rtw =

Wtw

Ptw

 with R(τ) = Rtw(τ) + ϵS(τ), we find

dS

dτ
=

1

c(s)
J ∂2H

∂R2

∣∣∣∣
R=Rtw

S(τ). (54)

We consider perturbations in the form S(τ) = Stw(τ)e
ντ , where

Stw =

Xtw

Ytw


is a traveling wave with unit velocity; i.e., periodic modulo shift with period 1. This yields the

eigenvalue problem

LStw(τ) = νStw(τ) (55)

for the linear operator

L :=
1

c(s)
J ∂2H

∂R2

∣∣∣∣
R=Rtw

− d

dτ
(56)
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with eigenvalue ν, which is related to the eigenvalue λ used in Chapter 2 via ν = λ/c(s) due to the

time rescaling. Note also that Floquet multiplier µ is related to ν via µ = eν . For the Hamiltonian (1)

the eigenvalue problem becomes

− d

dτ

 Xtw,j(τ)

Ytw,j(τ)

+
1

c(s)

 Ytw,j+1(τ)− Ytw,j(τ)

V ′′(Wtw,j(τ))Xtw,j(τ)− V ′′(Wtw,j−1(τ))Xtw,j−1(τ)



+
1

c(s)

 0∑∞
m=1 Λ(m)

[∑m−1
l=0 Xtw,j+l(τ)−

∑−1
l=−mXtw,j+l(τ)

]  = ν

 Xtw,j(τ)

Ytw,j(τ)

 .

(57)

In order to investigate the case with well-localized perturbations Stw (that belong to spaces like

(ℓ2a ∩ ℓ2−a) × (ℓ2a ∩ ℓ2−a)), we view L as an operator densely defined on D0
tw,a,a([0, 1]) with domain

D1
tw,a,a([0, 1]), where

D0
tw,a,a([0, 1]) :=

{
Z(τ) =

X(τ)

Y (τ)

 , τ ∈ [0, 1]

∣∣∣∣∣Z(1) =
 e−∂ 0

0 e−∂

Z(0),

∫ 1

0

∑
j∈Z

(|Xj(τ)|2e2a(j−τ) + |Yj(τ)|2e2a(j−τ))dτ <∞

}
and

D1
tw,a,a([0, 1]) :=

{
Z(τ) =

X(τ)

Y (τ)

 , τ ∈ [0, 1]

∣∣∣∣∣Z(1) =
 e−∂ 0

0 e−∂

Z(0),

∫ 1

0

∑
j∈Z

[(|Xj(τ)|2 + |X ′
j(τ)|

2
)e2a(j−τ) + (|Yj(τ)|2 + |Y ′

j (τ)|
2
)e2a(j−τ)]dτ <∞

}
,

with prime denoting the time derivative. Following the steps similar to the discussion about J on

ℓ2a × ℓ2a, we can also show that J has a bounded inverse on D0
tw,a,a([0, 1]).

We note that when L is considered on unweighted spaces such as D0
tw,0,0([0, 1]), zero is usually

embedded in the essential spectrum of L. To be specific, consider the Hamiltonian (1). Since Rtw

tends to zero and V ′′(0) = 1, the limiting operator L∞ can be defined as

L∞

 Xtw,j(τ)

Ytw,j(τ)

 = − d

dτ

 Xtw,j(τ)

Ytw,j(τ)

+
1

c(s)

 Ytw,j+1(τ)− Ytw,j(τ)

Xtw,j(τ)−Xtw,j−1(τ)



+
1

c(s)

 0∑∞
m=1 Λ(m)

[∑m−1
l=0 Xtw,j+l(τ)−

∑−1
l=−mXtw,j+l(τ)

] 
(58)
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Substituting  Xtw,j(τ)

Ytw,j(τ)

 = eik(j−τ)

 b1

b2


into νStw = L∞Stw and using Λ(m) = J(eα−1)e−α|m|, m = 1, 2, . . . , one can compute the essential

spectrum (similar to [21]) of L on D0
tw,0,0([0, 1]) in the form

{
ν = i

(
k ± 2

c(s)
sin

k

2

√
1 +

J(eα + 1)

2(coshα− cos k)

)
, k ∈ R

}
. (59)

Thus in this case the essential spectrum is along the imaginary axis and includes 0. Similarly, the

essential spectrum of L onD0
tw,a,a([0, 1]) with a > 0 is obtained by replacing k by k+ ia in the above,

which yields {
ν = −a+ ik ± 2i

c(s)

(
cosh

a

2
sin

k

2
+ i cos

k

2
sinh

a

2

)
×√

1 +
J(eα + 1)

2(coshα− cos k cosh a+ i sin k sinh a)
, k ∈ R

}
.

(60)

One can show that for c(s) > cs, where we recall that cs is the sound speed defined in (6), the essential

spectrum in this case is contained in the left half plane Re(ν) < 0 (and thus does not include zero) for

0 < a < ac, where ac > 0 is the exponential decay rate of Rtw. It satisfies

2

c(s)

√
1 +

J(1 + eα)

2(coshα− cosh ac)
sinh

ac
2
− ac = 0 (61)

For J > 0, we have 0 < ac < α, with ac tending to zero as c → cs and to α as c → ∞. At J = 0, ac

solves 2 sinh(ac/2) = acc(s) [21].
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A.2 Multiplicity of the zero eigenvalue

We now differentiate (53) with respect to τ to obtain

d2R

dτ 2
=

1

c(s)
J ∂2H

∂R2

dR

dτ
. (62)

Rearranging (62) and evaluating it at R = Rtw then yields L(∂τRtw)=0. Thus e0 := ∂τRtw is

an eigenvector of L with eigenvalue ν = 0 if e0 ∈ D0
tw,a,a([0, 1]). Multiplying (53) by c(s) and

differentiating the result with respect to s, we obtain

c′(s)∂τR + c(s)∂s∂τR = J ∂2H

∂R2
∂sR

Evaluating this equation at R = Rtw, we obtain

L(c(s)∂sRtw) = c′(s)e0, (63)

which for c′(s) ̸= 0 yields

L(e1) = e0, e1 :=
c(s)

c′(s)
∂sRtw.

Thus e1 is a generalized eigenvector of L for eigenvalue ν = 0 if e0, e1 ∈ D0
tw,a,a([0, 1]). Here we

assume

e0, e1 ∈ D0
tw,−a,−a([0, 1]) ∩D0

tw,a,a([0, 1]), (64)

which holds when (positive) a is less than ac, the exponential decay rate ofRtw, which for our problem

solves (61). This assumption then implies that the multiplicity of eigenvalue ν = 0 is always no less

than two. To further investigate the multiplicity of the eigenvalue ν = 0, we consider the adjoint of L

as

L∗ =
d

dτ
− 1

c(s)

∂2H

∂R2

∣∣∣∣
R=Rtw

J , (65)

onD0
tw,−a,−a([0, 1]). Suppose that L−a,−a has the same form of L, but it is restricted onD0

tw,−a,−a([0, 1]),

the adjoint of L for Z ∈ D0
tw,−a,−a([0, 1]) can then be written as

L∗Z = −J −1
−a,−aL−a,−aJZ. (66)

Consider the generic case when c′(s) ̸= 0 and ker(L) = span{e0} and similarly ker(L∗) = span{J −1
−a,−ae0},

where we note that L∗(J −1
−a,−ae0) = 0. From the definition of e0, it can be examined that

J −1
a,a e0 = J −1

−a,−ae0. (67)
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Since ⟨J −1
−a,−ae0, e0⟩ = ⟨e0,J −1

a,a e0⟩, it follows ⟨J −1
−a,−ae0, e0⟩ = 0. When L is defined onD1

tw,a,a([0, 1]) ⊂

D0
tw,a,a([0, 1]), where 0 < a < ac, with ac defined in (61) for Hamiltonian (1), it is a densely-defined

closed operator and the use of weighted spaces makes 0 outside the essential spectra of L and L∗. As a

result, L has closed range and e0 ∈ (ker(L∗))⊥ = rng(L). Hence there exists e1 such that L(e1) = e0.

Since the energy of the system is conserved, we have that

H(s) =

∫ 1

0

H|Rtw(τ ;s)dτ.

We will use this to show that H ′(s) = 0 if and only if ⟨J −1
−a,−ae0, e1⟩ = 0. Indeed,

0 =
〈
e1,J −1

−a,−ae0
〉
=

〈
c(s)

c′(s)
∂sRtw,J −1

a,a ∂τRtw

〉
=

〈
c(s)∂sRtw,

1

c(s)

∂H

∂R

∣∣∣∣∣
R=Rtw

〉
1

c′(s)

=
1

c′(s)

∫ 1

0

∂sRtw

(
∂H

∂R

) ∣∣∣∣∣
R=Rtw

dτ =
1

c′(s)

∫ 1

0

H ′(s)|R=Rtw(τ ;s)dτ =
H ′(s)

c′(s)

(68)

Thus, wheneverH ′(s) = 0, we have that e1 ∈ rng(L), and hence there exists e2 satisfying L(e2) = e1,

implying that the algebraic multiplicity of ν = 0 is at least three. Moreover, L∗(−J −1
−a,−ae1) =

J −1
−a,−aLJJ −1

−a,−ae1 = J −1
−a,−ae0 implies that

⟨J −1
−a,−ae0, e2⟩ = ⟨−L∗J −1

−a,−ae1, e2⟩ = ⟨J −1
−a,−ae1,Le2⟩ = ⟨J −1

−a,−ae1, e1⟩. (69)

Since in general  ∑∞
k=−∞ ek∂ 0

0
∑∞

k=−∞ ek∂

 e1 ̸= 0,

we have ⟨J −1
−a,−ae1, e1⟩ ≠ 0, and hence the multiplicity of the eigenvalue ν = 0 is at most three.

The change of multiplicity of ν = 0 from two to three suggests that s = s0 such that H ′(s0) = 0

corresponds to a stability threshold. The fact that the multiplicity at the threshold becomes three

and not four, as suggested by our numerical computations that show collision of eigenvalue pairs

typical for Hamiltonian systems [129], is the consequence of the use of the weighted spaces in the

strain formulation that destroys the Hamiltonian structure of the problem. In contrast, in [32], where

the Hamiltonian structure was preserved, the eigenvalue zero splits as ν ∼
√
c− c0 near the critical

speed c0 in when H ′′(c0) ̸= 0 and ν = 0 has multiplicity four at c = c0. Due to the similarity between

J in our problem and ∂x in [130], a possible scenario for stability change in the present setting is

a resonance pole (a pole of the analytic continuation of the resolvent) moving across the imaginary
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axis as s crosses s0 from the upper sheet of the Riemann surface for the resolvent to the lower sheet

and emerging as a real positive eigenvalue during the transition from stability to instability [130].

This implies that although the zero eigenvalue has an odd multiplicity at s = s0 in current space, the

multiplicity could be even in a larger space. In fact, our numerical computation of the eigenvalues

near s0 shows that the eigenvalue splitting is in the form ν ∼
√
s− s0 (see Fig. 10). That is to

say, the Hamiltonian symmetry can be retained under certain circumstances, and we will provide an

explanation for that below.

A.3 Numerical implementations and Hamiltonian symmetry

It should be noted that the results of the numerical eigenvalue problem very much depend on the

choices in its implementation. For instance, if we consider a finite chain in the numerical calculation

and discretize the variables in time, then the operators such as J , d
dτ

and L are represented by matrices

[J ], [ d
dτ
] and [L], respectively. In particular, if the matrices for J and d

dτ
are invertible and skew-

symmetric, say,

[
d

dτ

]
=

 D

D

 , D =
1

2∆τ



0 1

−1 0 1

. . . . . . . . .

−1 0 1

−1 0


,

[J ] =

 0 J1

−JT
1 0

 , J1 =



−1 0 . . . 0 1

−1 0 . . . 0 1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

−1 0 . . . 0 1

−1 0 . . . 0

−1 0 . . .

. . . . . .

−1


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and

[J −1] = [J ]−1 =

 0 −(JT
1 )

−1

(J1)
−1 0

 ,

then naturally [J −1] is also skew-symmetric and the multiplicity of zero eigenvalue for [L] will be

even.

As another example, suppose we consider a finite cyclic chain and choose [J ], [ d
dτ
] and [L] so

that their kernels contain

c11
c21

. Since this is a finite chain, if [L]e0 = 0 and [L]e1 = e0, we can

choose c1 and c2 such that ẽ1 =

ẽ(1)1

ẽ
(2)
1

 = e1 −

c11
c21

 satisfies
∑∞

k=−∞ ẽ
(1)
1,k =

∑∞
k=−∞ ẽ

(2)
1,k =

0. Observe that violation of this condition causes the zero eigenvalue to have odd multiplicity in

the above discussion. In this setting, we consider the equivalence classes {ẽ} modulo

c11
c21

 with

representatives ẽ =

ẽ(1)
ẽ(2)

 satisfying
∑∞

k=−∞ ẽ
(1)
k =

∑∞
k=−∞ ẽ

(2)
k = 0. This way we can make [J −1]

skew-symmetric, and hence the zero eigenvalue of [L] should have even multiplicity.

These two examples illustrate how Hamiltonian symmetry can be retained in a finite-dimensional

implementation. A full charaterization of the eigenvalues near zero in different spaces is beyond the

scope of this work and is left for future investigations.
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Appendix B

B.1 Additional traveling breather solutions

Investigations of the resonances suggest that a second set of solutions coexists along with the

solutions discussed in Chapter 2. These additional solutions can be found by employing a method

similar to the one described in Sec. 3.2 for obtaining moving breathers from stationary breathers. By

scaling the momentum vector of the moving breather solution and using this scaled momentum along

with the unscaled displacement vector as an initial guess, Newton’s method can be employed to obtain

these secondary solution branches. The primary and secondary solutions typically differ in how the

Floquet multipliers at the origin evolve after a resonance. In what follows, these dual solution sets are

examined for the middle branch near the resonance at ω = 2.352 when N = 60 and V1 = 1/3.

An example of this systematic comparison can be seen in Fig. 39. Panels (a), (d) and (g) of Fig. 39

show the energy-frequency dependence along the two different solution branches (blue and red) near

the resonance frequency. As the amplitude of the wings increases, the gap between the two solutions

increases as well. Panels (b), (e) and (h) compare the displacements of the two solutions with the

same energy (shown by horizontal line in panels (a), (d) and (g), respectively) and slightly different

frequency. Note that the wings appear to be essentially in phase with each other. We emphasize that

the two solutions are not simply different time snapshots of the same breather. This can be seen by

observing the difference in the Floquet multipliers near unity. The multipliers are depicted in panels

(c), (f) and (i) for the pairs of solutions shown in panels panels (b), (e) and (h), respectively. Note that

for the blue branch we see the emergence of two real Floquet mulitpliers that separate from the ones at

µ = 1. However, for the red branch, the Floquet multipliers that leave µ = 1 move along the unit circle

(rather than the real axis). Thus, one solution branch develops an exponential instability associated

with a small real multiplier, while the other does not. This is reminiscent of the commensurability

effect discussed in Chapter 4 of [74] (see, for example, Fig. 4.11 therein).

In Fig. 40, the dependence of the energy H and maximum real Floquet multipliers µ on the

breather frequency is shown near the turning point connecting the middle and bottom branches. The

colors in each figure correspond to those used in Fig. 39. As can be seen, while the real Floquet

multipliers along the red branch, in which the Floquet multipliers emerge along the unit circle, are

80



2.3528626 2.3528628 2.352863 2.3528632

1.47297

1.47298

1.47299

1.473

1.47301

1.47302

1.47303

1.47304

1.47305

1.47306

H

(a)

0 10 20 30 40 50 60

n

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

q
n

(b)

-1 -0.5 0 0.5 1

Re( )

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
(
)

0.99995 1 1.00005

Re( )

-10

-5

0

5

Im
(
)

10 -5

(c)

2.3528912 2.3528914 2.3528916 2.3528918

1.475992

1.475994

1.475996

1.475998

1.476

1.476002

1.476004

1.476006

1.476008

1.47601

H

(d)

0 10 20 30 40 50 60

n

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

q
n

(e)

-1 -0.5 0 0.5 1

Re( )

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
(
)

0.9999 1 1.0001

Re( )

-2

-1

0

1

2

Im
(
)

10 -4

(f)

2.3549175 2.354918 2.3549185 2.354919
1.54985

1.5499

1.54995

1.55

1.55005

1.5501

1.55015

1.5502

1.55025

H

(g)

0 10 20 30 40 50 60

n

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

q
n

(h)

-1 -0.5 0 0.5 1

Re( )

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Im
(
)

0.996 1 1.004

Re( )

-2

0

2

Im
(
)

10 -3

(i)

Figure 39: Coexisting solutions. Panels (a), (d) and (g) show the energy H versus frequency ω along two coexisting
solution branches, red and blue, near the resonance at ω = 2.352. The horizontal black line marks the energy of the two
solutions whose displacements qn are compared in panels (b), (e) and (h), respectively. Panels (c), (f) and (i) show the
corresponding Floquet multipliers, with insets zooming in on the multipliers near µ = 1. In each case, a pair of Floquet
multipliers is separating from µ = 1. Here V1 = 1/3 and N = 60.

staying close to µ = 1, the largest real Floquet multiplier along the blue branch increases steadily

as the energy increases. It should be explicitly mentioned here that the energy of the two branches
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Figure 40: (a) Energy H versus frequency ω and (b) the maximum real Floquet multipliers µ along the two solutions
near the resonance at ω = 2.352. The colors correspond to those used in Fig. 39. Here V1 = 1/3 and N = 60. In the left
panel the blue and red branches cannot be distinguished over the scale of the figure (see also the magnified pictures in the
left panels of Fig. 39).
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Figure 41: Time evolution of the absolute difference between the computed speed c and the initial initial translational
velocity V2 = 1/(3T ) for the moving breather with the largest real Floquet multiplier µ = 1.0023 perturbed along the
corresponding unstable eigenmode. Panels (a) and (c) show the early and late stages of the evolution, while panel(b)
depicts over the entire time span. The maximum modulus of the Floquet multipliers is |µ| = 1.0104. In panels (a) and
(c), the red lines correspond to the best linear fit measuring the growth rate of the wave. The line in panel (a) measures the
initial growth due to the exponential instability, and the second line measures the growth due to the oscillatory instability.
In panel (b), the darker region corresponds to the emergence of the oscillatory instability as the main factor in the growth
of the perturbed moving breather. Here N = 60, ω = 2.355, V1 = 1/3, and the strength of the perturbation is ϵ = 10−7.

A key question is whether the exponential instability seen along the blue branch is a true insta-
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bility given its relatively small size. To examine this, we perturbed a selected moving breather along

its real unstable eigenmode with a perturbation strength ϵ = 10−7, as explained in Sec. 3.4. Here,

µ = 1.0023 is the largest real multiplier, V1 = 1/3 and ω = 2.355. In Fig. 41, we show a semiloga-

rithmic plot of the time evolution of the absolute difference of the computed velocity c and the initial

translational velocity V2 = 1/(3T ). As can be seen, the growth of the perturbed moving breather has

two regimes. The first, shown in Fig. 41(a), is dominated by the exponential instability associated with

an eigenmode along which the dynamics was initially perturbed. The second, depicted in Fig. 41(c),

is determined by the maximal-modulus Floquet multipliers µ = 0.5034± 0.8761i with |µ| = 1.0104.

The middle panel of Fig. 41(b) captures the transition from the former to the latter. We note that this

is different from the example shown in Sec. 3.4, where the real Floquet multiplier corresponding to

the eigenmode along which the moving breather was perturbed also had the largest modulus among

the Floquet multipliers. The red lines in panels (a) and (c) measure the growth rate and have the slope

ln(|µ|)/(6T ), where µ is the corresponding multiplier and we have used the fact that V1 = 1/3 for

the unperturbed breather. Comparing the lines of growth rate for maximum real multiplier and the

complex multiplier with maximum modulus to the early and late stages, respectively, of the evolution

in the simulation results yields an absolute difference of sizeO(10−5) in both cases, indicating that the

two regimes are indeed dominated by the two distinct types of instability. At later times, the velocity

evolution is similar to that for the examples discussed in Sec. 3.4. In short, this detailed examination

of the associated dynamical evolution reveals that the instability growth rates captured by our Floquet

analysis, even when very small, accurately reflect the instability features of the associated solutions

and hence appear to be real features of the wave dynamics.

B.2 Effect of the lattice size

In this Appendix we discuss the effect of the lattice sizeN on the structure of the moving breathers

constructed in Chapter 3. Profiles of displacements qn and energy density en at N = 60 and N = 180

are compared in panels (a) and (b), respectively, of Fig. 42-44, which show the results for V1 = 1/2

and three different frequencies, ω = 2.19, ω = 2.37, and ω = 2.49, from across the spectrum typically

considered in the simulations we have performed. One can see that the lattice size mainly affects the

wing amplitude, which is consistent with the number of resonances increasing with N . Meanwhile,
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the core structure of the breather barely changes as N is increased. The maximum relative difference

between the energy densities of the central 60 sites is approximately 0.0121 at ω = 2.37, the case

in which the difference in the wing amplitude of the two solutions is most pronounced (see Fig. 43),

5.7057 · 10−5 at ω = 2.19 (Fig. 42) and 0.0045 at ω = 2.49 (Fig. 44).

The total energy at ω = 2.37 isH = 1.4729 forN = 60 andH = 1.476 forN = 180 respectively.

We attribute this slight increase in energy forN = 180 to the fact that the wings have larger amplitude

and are more extended in this case. The wing energy is 0.0193% of the total energy for N = 60 and

0.2064% for N = 180. However, the amounts of energy retained in the core differ only slightly for

N = 60 and N = 180. More precisely, the core energy is 1.4726 for N = 60 and 1.473 for N = 180.

This corresponds to a relative difference of 0.0227% between the core energies for the two lattice

sizes. When the wing amplitude is smaller, as in the other two cases we examined, the difference is

even smaller.

Finally, we remark that perturbing one of the unstable moving breathers for the case N = 180

and simulating its dynamics over a long period of time, we observe a similar evolution as that seen

in the N = 60 case, wherein the velocity decreases to 0 before oscillating around that point. The

time scale over which this slowing down takes place is longer than in the N = 60 case. This is to be

expected, given that the expelled waves must travel a longer distance before interacting with the core

in the N = 180 case.
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Figure 42: Profiles of (a) displacement qn and (b) energy density en of a moving breather with N = 60 (solid blue) and
N = 180 (dash-dotted red) of the central 60 sites. Here ω = 2.19 and V1 = 1/2. The inset in each panel shows a segment
of the wings of the two solutions.
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Figure 43: Profiles of (a) displacement qn and (b) energy density en of a moving breather with lattice size N = 60
(solid blue) and N = 180 (dash-dotted red) of the central 60 sites. Here ω = 2.37 and V1 = 1/2. The inset in each panel
shows a segment of the wings of the two solutions.
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Figure 44: Profiles of (a) displacement qn and (b) energy density en of a moving breather with N = 60 (solid blue) and
N = 180 (dash-dotted red) of the central 60 sites. Here ω = 2.49 and V1 = 1/2. The inset in each panel shows a zoomed
in view of the wings of the two solutions.
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breathers in a nonlinear electric line: Modeling, computation, and experiment. Phys. Rev. E,
84(2):026605, 2011.

[58] L. Q. English, F. Palmero, J. F. Stormes, J Cuevas, R. Carretero-González, and P. G.
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	38. (a) Energy H as a function of frequency  along the blue symmetric solution branch. (b) Strain and angle variables for the solutions at the points A, B, and C in panel (a). (c) H() along the red symmetric solution branch. The inset showing Floquet multipliers illustrates the emergence of an exponential instability. A pair of complex Floquet multipliers (red crosses) associated with a solution before the transition collides to form two positive real multipliers (blue crosses) associated with the solution after the collision. The corresponding symmetric multipliers inside the unit circle are not shown. (d) Strain and angle variables for the solutions at the points A, B, and C in panel (c). (e) H() along the green symmetric solution branch. The inset shows the enlarged view near the end of the computed branch. (f) Strain and angle variables for the solutions at the points A, B, and C in panel (e). All solution profiles are shown at the time instances of maximal amplitude.
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	39. Coexisting solutions. Panels (a), (d) and (g) show the energy H versus frequency  along two coexisting solution branches, red and blue, near the resonance at = 2.352. The horizontal black line marks the energy of the two solutions whose displacements qn are compared in panels (b), (e) and (h), respectively. Panels (c), (f) and (i) show the corresponding Floquet multipliers, with insets zooming in on the multipliers near =1. In each case, a pair of Floquet multipliers is separating from =1. Here V1 = 1/3 and N=60.
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	40. (a) Energy H versus frequency  and (b) the maximum real Floquet multipliers  along the two solutions near the resonance at = 2.352. The colors correspond to those used in Fig. 39. Here V1 = 1/3 and N=60. In the left panel the blue and red branches cannot be distinguished over the scale of the figure (see also the magnified pictures in the left panels of Fig. 39).
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	41. Time evolution of the absolute difference between the computed speed c and the initial initial translational velocity V2 = 1/(3T) for the moving breather with the largest real Floquet multiplier = 1.0023 perturbed along the corresponding unstable eigenmode. Panels (a) and (c) show the early and late stages of the evolution, while panel(b) depicts over the entire time span. The maximum modulus of the Floquet multipliers is || = 1.0104. In panels (a) and (c), the red lines correspond to the best linear fit measuring the growth rate of the wave. The line in panel (a) measures the initial growth due to the exponential instability, and the second line measures the growth due to the oscillatory instability. In panel (b), the darker region corresponds to the emergence of the oscillatory instability as the main factor in the growth of the perturbed moving breather. Here N = 60, = 2.355, V1 = 1/3, and the strength of the perturbation is = 10-7.
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	42. Profiles of (a) displacement qn and (b) energy density en of a moving breather with N=60 (solid blue) and N=180 (dash-dotted red) of the central 60 sites. Here = 2.19 and V1 = 1/2. The inset in each panel shows a segment of the wings of the two solutions.
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	43. Profiles of (a) displacement qn and (b) energy density en of a moving breather with lattice size N=60 (solid blue) and N=180 (dash-dotted red) of the central 60 sites. Here = 2.37 and V1 = 1/2. The inset in each panel shows a segment of the wings of the two solutions.
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	44. Profiles of (a) displacement qn and (b) energy density en of a moving breather with N=60 (solid blue) and N=180 (dash-dotted red) of the central 60 sites. Here = 2.49 and V1 = 1/2. The inset in each panel shows a zoomed in view of the wings of the two solutions.
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