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Abstract 

Modeling Energy and Material Use of Buildings at Urban Scale 

 

Rezvan Mohammadiziazi, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

In the past decade, scientific efforts to address the urgency of energy consumption and 

greenhouse gas (GHG) emissions from the building sector have increased. Buildings in the U.S. 

account for 39% of energy use and 38% of GHG emissions, contributing to adverse environmental 

and climate change impacts. Commercial buildings are responsible for approximately half of the 

total energy consumption. Given that more than 80% of the U.S. population lives in cities and 

urban areas, the role of urban buildings in energy consumption and emissions has become more 

crucial. Research about simulating energy consumption, modeling material use, and assessing the 

environmental impacts of buildings has increased; however, there are still issues that need to be 

addressed especially at the urban scale. The goal of this dissertation was to advance the 

sustainability of buildings by investigating the energy consumption and the embedded materials 

of existing building stocks. The energy use of buildings in the presence of climate change 

throughout the 21st century was estimated by integrating machine learning and climate change 

science. Most regions in the U.S. will experience increase in energy use. Further, to understand 

the trend of building energy use and evaluate the impacts of energy efficiency strategies at the 

urban scale, an urban building energy model was developed. This model also introduced a novel 

photogrammetry and imaging framework. The outcomes revealed that energy use was correlated 

to building use type and the implementation of efficiency strategies reduced energy use effectively. 

The gaps and barriers in analyzing the material stock of buildings were identified by the critical 
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review of the state of the art in this field to understand how building material stock analysis can 

contribute to and improve the circular economy of buildings. Finally, quantifying the accumulated 

materials and renovation flow of a building stock showed that brick and concrete had the highest 

share of accumulated materials and renovation flow. Moreover, there were significant variations 

in material distribution of different building components. The knowledge about the type, quantity, 

and time of availability of materials upon renovation and demolition was crucial for closing the 

resource loop and reducing waste.   
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1.0 Introduction 

1.1 Energy Use and Materials of Buildings at Urban Scale 

In the past decade, scientific efforts to address the urgency of energy consumption and 

greenhouse gas (GHG) emissions from the building sector has increased. Buildings in the U.S. 

account for 39% of energy use and 38% of GHG emissions [1], contributing to adverse 

environmental and climate change impacts. Commercial buildings are responsible for 

approximately half of the total energy consumption. Given that more than 80% of the U.S. 

population lives in cities and urban areas, the role of urban buildings in energy consumption and 

emissions has become more crucial. Buildings are also the largest generator of waste [2] and the 

main consumer of raw materials by being responsible for 50% of total use of raw materials, 

globally [3, 4]. In the U.S. alone, 600 million ton of waste was generated due to construction and 

demolition activities in 2018 [5]. Thus, the building sector is a major cause for resource depletion 

and a significant source of pollutants and waste discharges beyond the capacity of the environment. 

As the consequences of climate change increase and building stocks age, there is a need for 

especial emphasis on the building sector, a major negative contributor and a major positive solution 

provider [6]. 

Effective mitigation and adaptation strategies for the building sector in face of climate 

change are tied to knowledge about how buildings will consume energy in the future. Furthermore, 

with the increasing interest in reducing energy and emissions from the building sector, several 

cities established ambitious energy reduction goals and provided incentives for energy 

conservation strategies or measures. However, achieving these goals needs a thorough 
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understanding of the trend of building energy use and the impacts of energy conservation strategies 

on the overall energy reduction of buildings in a city. Urban building energy models (UBEMs) are 

being more prevalently used to investigate building energy use at the city scale, but they are usually 

dependent on assumptions and disparate in terms of methods and data, which prevent them from 

accurately estimating energy use and simulating impacts of conservation strategies. Besides 

energy, building materials are important for the sustainability of the building sector.  

While there have been notable efforts to reduce embodied energy and environmental 

impacts of new buildings through design, use of locally available materials, and less energy-intense 

materials and construction practices [6, 7], there is an expressed need to reduce demolition and 

renovation waste from existing buildings and close materials loop. Material stock and flow 

analysis enable the practical implementation of circular economy to close the material loop; 

however, building material stock analysis (MSA) is relatively nascent and there are gaps and 

barriers, especially in the U.S. that need to be addressed.   

1.2 Research Goals and Objectives 

The goal of this research was to mitigate the problems, which were discussed above, by 

developing machine learning and physics-based models to investigate the energy use of buildings 

under climate change, identify the trends of energy use, and assess the impacts of energy 

conservation measures at the urban scale. Additionally, this research advanced the circular 

economy of buildings and filled the gaps by a comprehensive review of state of the art in building 

MSA as well as modeling material stock and renovation flow of an existing building stock. This 

work achieved these goals by answering the following research questions: 
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1. Can machine learning methods be implemented to predict the shift in commercial 

buildings’ energy use as a result of climate change in the future? 

2. What is the framework for obtaining essential parameters to develop a UBEM in order to 

mitigate data disparity and reduce assumption dependency? And can a UBEM be used for 

both identifying trends of energy use and evaluating the impacts of energy conservation 

measures for a commercial building stock? 

3. Are there any gaps and barriers in the current literature about building MSA? And what 

are the quantity and type of accumulated materials and materials, which will become 

available due to renovation, in the different components of an existing commercial building 

stock? 

To answer the research questions, the following research objectives were developed and 

completed: 

1. Develop and test machine learning (ML) models using a publicly available national 

building database, the Commercial Building Energy Consumption Survey (CBECS) [8].  

2. Employ the ML model, selected in Objective 1, to estimate building energy use under 

climate change throughout the 21st century. 

3. Create a framework for developing and validating a UBEM for a commercial building 

stock with a focus on photogrammetry and image processing and employ the UBEM to 

investigate the energy use and the impacts of energy conservation measures. 

4.  Review and evaluate the current state of literature about building MSA in the context of 

circular economy to identify gaps, barriers, and future opportunities. Create a model to 

analyze the accumulated materials and renovation flow of different components of a 

commercial building stock. 
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5. Develop a multi-layer map that integrates outcomes from Objectives 3 and 4. 

1.3 Broader Impacts 

This research focused on two major factors that affect the sustainability of the building 

sector:  energy use and material. First, this work coalesced diverse viewpoints and technical 

terminology of data science and climate change science to build the connection between machine 

learning’s predictive ability and climate change projections. Further, the disparity in the required 

data for creating UBEMs and the dependency of previous UBEMs on assumptions were addressed 

by developing a framework, which provided a comprehensive summary of useful data resources, 

and introducing photogrammetry and image processing methods. These contributions will 

facilitate the reproducibility of research in this area; thus, more cities can establish realistic energy 

reduction targets and make informed decisions about mandating energy efficiency strategies based 

on urban scale models. The patterns of energy consumption in different commercial buildings of 

Pittsburgh, PA along with reduction potentials at an urban scale were shared with the City of 

Pittsburgh’s Division of Sustainability and Resilience, the Green Building Alliance, and policy 

makers that work toward a carbon-neutral city.  

The findings of this research regarding material stock and renovation flow have been 

shared with the City of Pittsburgh to aid the city officials in expanding the deconstruction policy 

beyond the city-owned condemned buildings. Additionally, the results of our research about the 

accumulated materials’ location, quantity, type, and time of availability have been presented to 

local companies that work on second-hand construction materials and building waste management 

in order to help these companies enhance their business models. The outcomes of this research 
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have been published in peer-reviewed journal articles and shared with engineering, industrial 

ecology, and academic communities at conferences such as CIRP Life Cycle Engineering, 

Architectural Engineering Institute Conference, Building Performance Analysis Conference & 

SimBuild, and International Symposium on Sustainable Systems and Technology. 

1.4 Intellectual Merit 

This research introduced a new approach to estimating the energy use of commercial 

buildings under climate change by synthesizing the power of machine learning and the future 

weather projections. Additionally, most urban energy models have been developed depending on 

publicly available databases. These databases usually lack detailed information regarding 

buildings’ parameters; hence, urban models rely on coarse national data or engineering 

assumptions to proceed. This work addressed this limitation by introducing photogrammetry and 

image processing, implementing geographic information system (GIS), and compiling a modeling 

structure to map required data and resources. Further, the overall accuracy of urban scale models 

has been impacted by the consistent performance of residential buildings; thus, this research 

focused on the development of a UBEM for commercial buildings to improve the field and the 

current knowledge. Ultimately, incorporating circular economy strategies in the building sector 

like reusing and repurposing materials demands a thorough knowledge of the location, quantity, 

and type of stockpiled materials in buildings of a city. This knowledge is scarce to date, especially 

in the U.S. Also, there is a need to differentiate between materials that are accumulated in various 

components and to emphasize on the components with high frequency of maintenance, repair, and 
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renovation like windows and roofs. The field of building circular economy will benefit from this 

research project, which addressed the aforementioned gaps. 
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2.0 Predicting Building Energy Use under Climate Change Using ML Models  

The research presented here addresses objectives one and two. Specifically, it answers the 

question ‘Can machine learning methods be implemented to predict the shift in commercial 

buildings’ energy use as a result of climate change in the future?’ The content of this chapter was 

published in a peer-reviewed journal: 

Mohammadiziazi, R., & Bilec, M. M. (2020). Application of machine learning for 

predicting building energy use at different temporal and spatial resolution under climate change in 

USA. Buildings, 10 (8), 139. 

2.1 Introduction 

Urban areas account for nearly 67% of total energy consumption worldwide [9]. As the 

population shifts from rural areas to cities, the energy consumption in cities will continue to rise 

[10, 11]. Understanding energy use in cities and associated greenhouse gas (GHG) emissions, is 

critical to solving energy and policy goals. Yet data related to urban energy use is disparate and 

diverse, especially in the area of building energy use. In London buildings consumes 61% of the 

city’s energy which is two times higher than the share of transportation [12]. Further, the rising 

dependency of city residents and workers on appliances, office equipment, and space conditioning 

has led to the increase in building energy use [9, 13]. For example, space conditioning comprises 

almost 31% of the total energy use of Shanghai, China [14]. Given the pressing nature of climate 

change, there is an immediate need to develop fast and reliable methods to understand urban 
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building energy use in the sector that accounts for 40% and 30–40% of total energy use in U.S. 

and the world, respectively [8, 15, 16].  

Urban buildings are comprised of many types, from residential to commercial, and the 

fabric of the urban environment is shifting as new buildings are constructed, while existing 

buildings remain unchanged or are renovated. Understanding the energy use of existing buildings 

remains challenging as their vintage, material properties, and renovations lead to a high uncertainty 

in predicting building energy use. 

In addition to these challenges, climate change will exacerbate building energy use 

modeling and predictions. Climate change and extreme weather events like heat waves may have 

positive or negative effects on energy use of this sector. Therefore, analyzing buildings at large 

scale and how they consume energy during operation in accordance to different factors such as 

weather condition, geographic region, building activity (use type), etc. will improve our 

understanding and aid policy makers and city planners in making informative decisions regarding 

regional energy and climate change mitigation policies as well as resiliency planning [17-19]. 

Machine learning (ML) may offer promise, and several researchers have explored this 

space in the context of building energy use [20-29]. ML approaches are less difficult to pursue 

than physics-based approaches that rely on heat and mass transfer and requires extensive “input” 

information [21]. However, disparate methods, databases, temporal resolutions, results, and 

recommendations related to ML have emerged. Thus, the body of literature was reviewed to 

analyze gaps and opportunities. 

Ahmad et al. established a comparison between artificial neural network (ANN) and 

random forest when predicting energy use (energy for heating, cooling, and ventilation) of a hotel 

with hourly resolution [20]. They used ten predictors that presented weather condition, time, and 
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booking status. Through a stepwise technique, hyperparametric ability of ANN and random forest 

were explored in order to introduce the models’ controls (number of hidden layers for ANN, depth 

of trees and number of tested predictors at tree nodes for random forest) that provided the closest 

predictions [20]. Yalcintas et al. used ANN and multiple linear regression (MLR) models to predict 

office buildings’ electricity use in nine U.S. census divisions, separately [30, 31]. The input 

predictors that were used in their ANN models varied from those that were used in the MLR 

models to achieve the best possible predicting performance. Among the predictors only age and 

number of floors were related to buildings and remaining predictors presented weather condition 

and operation of buildings [30]. Robinson et al. [32] used Commercial Building Energy 

Consumption Survey (CBECS) data for training, testing, and evaluating ML models [8]. Then, 

compared the predictive performance of eleven ML-based models and two linear models that were 

built using five variables from CBECS. This study reported that extreme gradient boosting 

provided the best goodness-of-fit in estimating annual energy use. Further, the authors validated 

this model through applying it to the New York City benchmark dataset and reported that the 

model performed well on an unseen dataset by having low magnitude of errors [32]. In these 

studies, ML-based models were reported to provide better performance (lower error) compared to 

linear models; however, these studies were limited by the numbers and type of predictors used. 

The diversity of a building’s use type, often used to develop prediction models, is another factor 

that may affect performance.  

Deng et al. selected a subset of CBECS data that was limited to office buildings, and they 

compared the performance of six models in predicting annual total energy use intensity (EUI), 

HVAC EUI, lighting EUI, and plug load EUI [33]. Random forest and support vector machine 

(SVM) were found to have better performance on total EUI prediction; however, different results 
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were reported for other end uses. Errors obtained from different models for HVAC EUI showed 

great discrepancy; however, for lighting EUI models showed close performance. Finally, the study 

showed that random forest model had the lowest values of errors for plug load EUI [33].  

In order to examine whether addressing the identified gaps have positive effect on 

prediction accuracy in this study, first, the scope was expanded to all commercial building use 

types available in CBECS, as Deng et al. focused only on office buildings. Second, this study used 

more than a hundred predictors via CBECS data to develop our ML models. 

In addition to ML disparities and gaps, the existing research also shows inconstancies 

related to integrating climate change models into energy modeling. Several research projects 

developed methods and tools to project future weather and studied trends of energy consumption 

in relation with weather variability [34-45], but it is not clear which approach is the most promising 

as many scenarios present large ranges, making it difficult for decision makers to enact policies. 

For example, in the thorough work by Reyna and Chester, they employed a physics-based 

approach to develop a bottom-up model and map the combined effect of climate change and energy 

efficiency policies for the residential building stock of Los Angeles County (LAC), CA between 

the years 2020 and 2060 [35]. The stock was clustered into eighty-four archetypes, based on 

construction period, use type, and climate zone, further electricity and natural gas consumption 

were simulated utilizing EnergyPlus [46]. The morphing technique was used to create hourly 

weather profiles, for forty-one years, based on four climate change scenarios established by 

Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (RCP2.6, RCP4.5, 

RCP6, RCP8.5) [47]. The authors ran numerous simulations and reported results that showed 

under RCP2.6 and RCP8.5 electricity demand will increase between 41% to 78% and 47% to 87% 

over different policy scenarios for LAC, respectively.  



11 

Similarly, Dirks et al. reported annual buildings energy use of three years (2004, 2052, 

2089) based on the IPCC fourth assessment report’s moderate scenario across U.S. [36, 48]. For 

this study, 26,000 energy models that encompassed a variety of building use types, envelope 

characteristics, size, etc. and resembled U.S. building stock were created using Building ENergy 

Demand (BEND), an energy simulation platform. Dirks and colleagues obtained the downscaled 

daily precipitation, minimum and maximum temperature, which are required as inputs for energy 

models, from Computational Assessment of Scenarios of Change for Delta Ecosystem 

(CASCaDE) dataset. Results for the late 21st century suggested that change in annual electricity 

use will consistently increase over different census divisions, ranging from 9% to 30%. On the 

other hand, for mid-century, annual electricity will change inconsistently across different regions 

ranging from 4% decrease to 19% increase [36].  

In another approach, Christenson et al. adopted a method which integrated degree days, 

building thermal loss, internal gain, and solar gain to develop an equation and quantify the energy 

demand under climate change in Switzerland [39]. The heating demand was projected to reduce 

(13% to 87%) for various temporal and spatial spans; however, it was suggested that cooling 

demand projection needed additional study [39]. In summary, energy use has predicted to rise or 

lower, with high variations, in different regions over different temporal periods and it deserves 

further exploration. 

The review of the existing literature has revealed that there are inconsistencies in the use 

of ML in urban building energy models. Some questions remain. At the same time, drawing general 

conclusions about algorithms’ accuracy is not realistic since every data has a unique characteristic. 

To address these challenges and summarize, robust machine learning methods were applied to 

predict commercial buildings’ annual energy use under projected heating and cooling degree days 
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(HDD and CDD) by IPCC across U.S. during the 21st century. Publicly available data via CBECS 

dataset was utilized to develop ML models. Specifically, statistical and ML algorithms were 

applied to the CBECS micro dataset to explore: 

• Which of the statistical and ML algorithms (multiple linear regression, single regression tree, 

random forest, and extreme gradient boosting) provide a better predictive ability of building 

energy use intensity by comparing the goodness-of-fit? 

• How many predictors will affect the performance of the model, and what are the type (e.g., 

age, number of occupants, etc.) and combination of the predictors? 

2.2 Materials and Methods 

This section describes the seven phases that were developed and employed to answer the 

two questions. Phase one, data and data preprocessing, clarifies the sources of data and the steps 

to prepare the dataset, such as predictor selection and feature engineering. In the second phase, a 

concise characterization of the four models is provided. The third phase, cross validation, focuses 

on techniques to address uncertainty and minimize bias in developing prediction models. To 

experiment with the effects of the number, type, and combination of predictors on the accuracy of 

energy use prediction, three groups of predictors (every group consists of different number and 

combination) were built (phase four, forming groups of predictors). Phase five, model 

performance, presents detail information on the metrics that are utilized to validate and evaluate 

strength of each model in predicting energy use of commercial buildings. These metrics establish 

the foundation for further comparing and selecting the best model. The next phase uses U.S. 

climate regions and census divisions’ boundaries to generate smaller geographic regions with less 
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weather variability, and the visualization of the higher resolution regions is demonstrated. Finally, 

the climate change phase explains climate change scenarios, obtaining weather projections based 

on the scenarios, and integration of weather projections into the best ML model to study the energy 

use change. 

2.2.1 Data and Data Preprocessing 

The U.S. Energy Information Administration (EIA) has published ten issues of CBECS 

since 1979. CBECS is a national-scale survey with a dataset about energy use and parameters that 

affect energy use of commercial buildings. The dataset is gathered through questionnaires filled 

out by buildings’ representative or energy suppliers or both parties. This work used CBECS 

microdata from 2012 [8]. The micro dataset includes 6,720 commercial buildings across U.S. with 

detailed information on 491 variables, such as, envelope attributes, mechanical systems, 

renovation status, operation, occupancy, weather, and energy end use; thus, the variables are either 

categorical or continuous.  

One goal was to include as many commercial buildings as possible, and not focus on a 

standard commercial office building.  847 buildings were removed from the CBECS dataset that 

are more industrial or processing related, these included manufacturing industrial complexes, 

central physical plant on complexes, plants that produce district steam, plants that produce district 

hot water, plant that produce district chilled water, plant that produce electricity, and central plants. 

The interquartile range analysis was conducted to remove outliers since regular models are prone 

to put high weight on outliers that will result in poor performance and low reliability [49]. Based 

on my experience in building energy modeling, use type plays an important role in the magnitude 

of energy use; for example, food service usually consumes more energy than office buildings. 
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Hence, an interquartile range analysis was performed for every use type, separately and upper and 

lower thresholds were estimated based on 1st and 3rd quartiles for all use types [50]. Figure 1 

shows the distribution of commercial building use types. Ultimately, the dataset included 5,252 

buildings. 

 

Figure 1 Distribution for building use types in the dataset 

In the development of the models, the input variables are called predictors and the 

building’s annual EUI is the target variable. The primary statistics of the EUI are displayed in 

Table 1. 

Table 1 Primary statistics of annual EUI (kBtu/ft2) in the dataset 

Minimum Maximum Median Mean Standard Deviation 

0.0 754.4 57.3 75.9 73.9 

A list of 114 predictors was developed based on consulting with building energy experts 

and using building energy modeling [32, 33, 51]. Table 2 is a partial list of the predictors for 

brevity, with the entire list of predictors along with descriptions in Appendix A, Table A.1. In 

summary, the dataset includes 5,252 observations (buildings) and 114 predictors.  
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Table 2 Partial list of input predictors used for developing prediction models. Note: * indicates that the 

feature engineering technique was applied to the predictors (see Appendix A, Table A.1 for entire list) 

CBECS ID Description 
Categorical/ 

Continuous 
Group 1 Group 2 Group 3 

HDD65* Heating degree days Continuous ✓ ✓ ✓ 

CDD65* Cooling degree days Continuous ✓ ✓ ✓ 

WKHRS* Total hours open per week Continuous ✓ ✓ ✓ 

NWKER* Number of employees Continuous ✓ ✓ ✓ 

OE* Office equipment Continuous ✓ ✓ ✓ 

PUBCLIM Building America climate region Categorical ✓ ✓ ✓ 

PBA Principal building activity Categorical ✓ ✓ ✓ 

WLCNS Wall construction material Categorical ✓ ✓ ✓ 

RFCNS Roof construction material Categorical ✓ ✓ ✓ 

GLSSPC Percent exterior glass Categorical ✓ ✓ ✓ 

YRCONC Year of construction category Categorical ✓ ✓ ✓ 

HEATP Percent heated Categorical ✓ ✓ ✓ 

COOLP Percent cooled Categorical ✓ ✓ ✓ 

ENRGYPLN Energy management plan Categorical ✓ ✓ ✓ 

WINTYP Window glass type Categorical ✓ ✓ ✓ 

 

Pre-processing of the data required two steps of feature engineering for continuous 

predictors and factorial design for categorical predictors. 

Feature engineering through scaling was applied to the predictors in Table 2 indicated with 

an “*” to improve the models’ accuracy. Feature engineering converts variables into new forms to 

be more compatible with machine learning algorithms [52, 53]. Equation 2-1 was utilized for 

scaling in which 𝑧𝑖 is the scaled value of a predictor, 𝑥𝑖 is original value of a predictor, �̅� is mean 

of original values, and 𝜎 represents standard deviation of original values.  

zi=
xi  −  x̅

σ
 

(2-1) 

Several categorical predictors have two or more categories, therefore requiring recoding 

via available techniques (e.g., dummy coding, effects coding, etc.) to be readable by regression-

based algorithms [52]. Dummy coding, which is described as a factorial design that creates 
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pairwise comparisons for categorical variable, was used [54]. A categorical variable with h 

categories is converted to h-1 dummy variables. For instance, the principal building activity or use 

type (e.g., office) is a predictor with twenty categories (1 to 20) which was recoded into nineteen 

dummy predictors. Every dummy predictor has a value of 0 or 1. Table A.2 in Appendix A 

provides a description of categories for all categorical predictors. 

2.2.2 Prediction Models 

EUI was calculated via the annual energy use (kBtu) and the floor space (ft2) and is the 

target variable in our models. The annual energy use is the sum of electricity, natural gas, fuel oil, 

and district heat as indicated in CBECS.  

In order to employ a prediction model for climate change analysis, a determination of what 

statistical or ML algorithm was explored. While there is a broad list of ML models, random forest 

and extreme gradient boosting were selected to predict annual EUI of buildings. Random forest 

manages multi-dimensional datasets, that encompass numerous predictors easily and it provides 

higher training speed compared to other ensemble algorithms, since it can work with a subset of 

predictors at every node of every tree. Other advantages of random forest are low bias and 

impartiality regarding non-linear predictors. Likewise, extreme gradient boosting (XGBoost) 

manages non-linearity of data; however, it requires longer training time because trees are formed 

sequentially (a detailed description of random forest and extreme gradient boosting are provided 

in subsequent sections). In addition to these advantages, research on predicting building energy 

use has mostly suggested that ensemble methods provide better performance compared to other 

ML models or deep learning models such as neural network [20, 32, 33]. Multiple linear regression 

and single regression tree were included because they require fewer control parameters; if they 
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provide promising prediction of a dataset, using complex ML models may not be reasonable. Thus, 

utilizing these four models establishes a sufficient comparison ground. The next subsections 

further describe the four models. 

2.2.2.1 Multiple Linear Regression 

Unlike simple linear regression that models a target variable based on one predictor, 

multiple linear regression finds linear connection between several predictors and a target variable 

[55]. In general, this connection can be described through the following formula in which k 

predictors are noted as 𝑥𝑖1, 𝑥𝑖2, …, 𝑥𝑖𝑘, 𝑌 is target variable, and 𝛼0, 𝛼1, …, 𝛼𝑘 are regression 

coefficients, Equation 2-2. 

Y=α0+α1xi1+α2xi2+…+αkxik 
(2-2) 

The algorithm determines coefficients through minimizing the sum of square of residual 

for n observations (every observation constitutes of k predictors and a dependent variable 𝑦𝑖) that 

is described in Equation 2-3 in which 𝑒𝑖 is residual: 

∑ ei
2

n

i = 1

=∑(y
i
- α0-∑ αjxij

k

j = 1

)

2
n

i = 1

 (2-3) 

2.2.2.2 Single Regression Tree 

A prediction tree aims to model the nonlinear relation between sets of predictors and a 

target variable through classification if the target is categorical or regression if it is continuous. A 

regression tree starts from a root node by splitting data into two sub-nodes. In the root node, linear 

regression is implemented using all predictors to determine the one that partitions data in a way 

that minimizes the impurity of sub-nodes. The splitting procedure continues recursively at each 
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sub-node until the measured impurity reaches the predefined threshold [56]. The threshold in the 

model in this work is defined as when data stops converging. Eventually, the value of the target 

variables at final nodes are averaged and reported as the predicted value of that branch. 

2.2.2.3 Random Forest 

Sometimes, results obtained from a single regression tree may show high variance and low 

accuracy. In order to manage this variation, an ensemble method called bagging has been proposed 

[57]. In this method, rather than creating one tree based on the original dataset, many smaller 

datasets consisting of fewer numbers of observations are randomly selected from the original 

dataset. Further, regression trees are built for every smaller dataset, separately. Ultimately, the 

predictions from several regression trees are averaged and reported as the final outcome [57]. 

Random forest, an ensemble ML method, follows the similar strategy as bagging through 

construction of several classifications or regression trees [58]. The main difference of bagging and 

random forest is that when splitting nodes of trees, this step is not determined through testing all 

predictors. If the original dataset includes m number of predictors, m/3 predictors are randomly 

selected and tested to partition data at each node. For forests which solve classification problems, 

the number of predictors tested at each node is √m [59].  

Since, the model in this work aims to predict annual EUI, a continuous variable, the m/3 

predictors are tested at every node of every tree to split data and minimize impurity of sub-nodes. 

Potential advantages of random forest are reduction in bias and overfitting. However, the required 

computational power may increase in comparison with multiple linear regression and single 

regression tree [60].  
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2.2.2.4 Extreme Gradient Boosting 

Another ensemble method is gradient boosting in which series of trees are constructed. 

Unlike random forest, trees are not independent. Each tree is formed by learning from the error of 

the previous tree and tries to improve its performance. The improvement occurs by first forming 

the loss function of the first tree, which is defined as deviation of the actual and predicted value, 

Equations 2-4 and 2-5, then minimizing the loss function through estimating the negative gradient, 

Equation 2-6. The second tree is fitted to the negative gradient and predicted values, obtained from 

the first tree, and is updated by adding predicted results obtained from second tree. This recursive 

process continues until the model stops converging or the model reaches predefined number of 

trees [61]. 𝑦 is true value of target variable, 𝐹(𝑥) is projected value of target variable, and n is the 

number of observations in Equations 2-4, 2-5, 2-6. 

𝐿 = (𝑦, 𝐹(𝑥)) =
(𝑦 − 𝐹(𝑥))

2

2
 (2-4) 

𝐽 =∑𝐿(𝑦𝑖, 𝐹(𝑥𝑖))

𝑛

𝑖=1

 
(2-5) 

𝑦𝑖 − 𝐹(𝑥𝑖) = −
𝜕𝐽

𝜕𝐹(𝑥𝑖)
 

(2-6) 

2.2.3 Cross Validation 

Generally, to reduce bias and address data uncertainty of statistical or ML models, cross 

validation is conducted. In a k-fold cross validation, the dataset is equally clustered to k folds. For 

each unique cycle, one-fold is reserved as a testing set and k − 1 folds are combined and serve as 

the training set. Selection of k should satisfy the tradeoff between the number of sufficient data 

samples in the training set and testing set.  
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In this study, a 5-fold cross validation was conducted with over ten rounds of iteration to 

have sufficient data samples (observations) for testing the models (see Figure 2). The original 

dataset (group 3, see Figure 3) was divided into five partitions each containing 20% of data 

samples. Four partitions were considered as the training set for developing a model and the 

remained one was employed as the testing set to evaluate the efficiency of model on an unseen 

dataset. Figure 2 shows a summary of cross validation process. For each algorithm, there was a 

total of fifty models (5 CV × 10 iterations). 

 

Figure 2 Five-Fold cross validation 
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Figure 3 Three subsets of CBECS dataset (group 1–3) used for experimenting impact of number, type, and 

combination of predictors on prediction error. m is the number of predictors in each group. Types of 

predictors that were added to each group are shown. Note: Bldg and BMS refer to building and building 

management system, respectively 

2.2.4 Forming Groups of Predictors 

Previous articles have suggested that discrepancies in the number, type, and combination 

of input predictors may impact the magnitude of prediction errors [32, 33]. To explore this issue, 

a stepwise approach in which three subsets of CBECS data were created and used to develop 

prediction models based on random forest. The first subset which is referred to as group 1 are 

predictors that are either commonly found in benchmarking databases (e.g., age, use type, HDD, 

CDD, etc.) or can be obtained by simple building audits and building management systems (e.g., 

energy management plan, window type, etc.) (see Table 2). Group 2 expands upon the number of 

predictors in group 1 and encompasses parameters that provide more detailed information about a 

building’s operation as well as any renovations (e.g., existence of cafeteria, existence of laboratory 

equipment, lighting upgrade, insulation upgrade, etc.). Lastly, group 3, which is considered as the 

original dataset, includes all predictors from groups 1 and 2 as well as new predictors that explain 
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sources of energy use for heating, cooling, cooking, water heating, and electricity generation (e.g., 

district heat used for water heating, electricity used for cooking). Figure 3 displays the relationship 

of groups 1–3 and a full description of each group is provided in Appendix A, Table A.1. 

Performance metrics of models created for every group are compared and presented in the results 

of this chapter.  

2.2.5 Model Performance  

The common method of evaluating the performance of prediction models in building 

energy modeling is estimating the errors that are known as performance metrics [25, 30, 32, 33, 

62, 63]. The errors show how the reported EUI varies from predicted EUI obtained from different 

models. Mean absolute error (MAE), root mean squared error (RMSE), and coefficient of 

determination (R2) are three metrics that are utilized to select the model that provides the closest 

predictions to reported EUIs, Equations 2-7 to 2-9. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦�̂� − 𝑦𝑖|

𝑛

𝑖=1
 

(2-7) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂� − 𝑦𝑖)2
𝑛
𝑖=1

𝑛
 (2-8) 

𝑅2 = 1 −
∑ (𝑦�̂� − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − (
∑ 𝑦𝑖
𝑛
𝑖=1
𝑛

))

2

𝑛
𝑖=1

 

(2-9) 

In above equations, 𝑦�̂� is the predicted EUI, 𝑦𝑖 is the reported EUI derived from CBECS 

dataset, and 𝑛 is the total number of data samples. Every performance metric represents different 

aspects of variation between reported and predicted values. For instance, MAE explains the 

average error over entire sample while RMSE penalizes larger errors. Coefficient of determination 
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illustrates the proximity of values to a regression line. Thus, estimating the three metrics 

establishes a comprehensive foundation for models’ comparison. 

2.2.6 Integrating Geographic Regions into Dataset 

Weather is a key parameter in energy demand of buildings and thus it is always considered 

in energy and climate analysis. For instance, commercial reference buildings created by U.S. 

Department of Energy used sixteen climate regions to represent several weather conditions [51]. 

Unlike U.S. DOE, CBECS used lower spatial resolutions (less specificity with regards to location) 

to classify climate regions which increase weather variability within the regions. To reduce this 

variability, defining new boundaries with higher spatial resolution (enhanced specificity with 

regards to location) is beneficial. In addition, policies regarding climate change are usually 

established at regional or state level. Thus, in order for the results of our climate change analysis 

to be interpretable and meaningful for policy makers and planners, they should be aggregated 

according to these higher resolution boundaries.  

The specific location of buildings is not reported in the CBECS dataset to reserve 

confidentiality; although, two variables in the dataset related to buildings’ location were presented: 

1) climate region and 2) census divisions. The 2012 CBECS issue had four categories under 

climate regions as shown in Table 3 [8, 64] and nine categories under census divisions which are 

originally defined by the Census Bureau. The two variables were cross-referenced to form higher 

resolution boundaries which are referred as geographic regions in this chapter.  

The cross-referencing process resulted in eighteen geographic regions that are depicted in 

Figure 4 and the coding scheme is presented in Table 3. Further, every building in the dataset was 



24 

assigned to a geographic region based on the coding scheme. As an example, a building in a very 

cold/cold climate that is in New England has a geographic region code of 1,1.  

Table 3 Coding scheme for geographic regions 

Climate Region (Code) Census Divisions (Code) 
Geographic 

Region Code 

Very Cold/Cold (1) 

New England (1) 1,1 

Middle Atlantic (2) 1,2 

East North Central (3) 1,3 

West North Central (4) 1,4 

Mountain (8) 1,8 

Pacific (9) 1,9 

Mixed-Humid (2) 

Middle Atlantic (2) 2,2 

East North Central (3) 2,3 

West North Central (4) 2,4 

South Atlantic (5) 2,5 

East South Central (6) 2,6 

West South Central (7) 2,7 

Hot-Humid/Hot-Dry/Mixed-

Dry (3) 

South Atlantic (5) 3,5 

East South Central (6) 3,6 

West South Central (7) 3,7 

Mountain (8) 3,8 

Pacific (9) 3,9 

Marine (5) Pacific (9) 5,9 
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Figure 4 U.S. Geographic regions. Geographic regions are specified by unique codes that consist of climate 

regions and census divisions. #,# refers to climate region (blue text) and census division (red text), respectively 

2.2.7 Climate Change 

The prediction of the annual EUI of commercial buildings in the presence of climate change 

is a primary focus of this chapter. In this portion of the chapter, first climate change scenarios were 

introduced and then data acquisition was discussed.  

In the fifth assessment report, IPCC proposed four pathways, known as Representative 

Concentration Pathway (RCP), RCP 8.5, RCP 6.0, RCP 4.5, RCP 2.6, for the possible range of 

radiative forcing and associated uncertainties [47]. For each pathway, a concentration of 

greenhouse gases (GHG) and the radiative forces are projected until 2100. In the most optimistic 

pathway (RCP2.6), due to the projected concentration of GHG, the radiative forcing is projected 
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to increase by almost 0.95 (Btu/h.ft2) before 2100 and then reduce. Whereas, for RCP8.5 the 

projected radiative forcing is 2.69 (Btu/h.ft2) by 2100 and maintain an increasing trend after 2100. 

The radiative forcing will hit 1.43 (Btu/h.ft2) and 1.90 (Btu/h.ft2) by 2100 and will have the same 

amount after 2100 for RCP4.5 and RCP6.0, respectively. Additionally, the numerical models that 

are called General Circulation Models (GCMs) can simulate reactions of the climate due to 

increasing amount of GHG emissions [65, 66]. To make the GCM results functional for practical 

purposes such as regionalization, downscaling methods are usually implemented [37]. For 

example, National Aeronautics and Space Administration (NASA) used downscaling to create a 

database, called NASA Earth Exchange Global Downscaled Daily Projections (NEX-GDDP), that 

contains projection of minimum temperature, maximum temperature, and precipitation under 

RCP4.5 and RCP8.5 with 15.5 mi × 15.5 mi spatial resolution, which is important when predicting 

building energy use.  

Critical to building energy use is not only the aforementioned regional data, but also degree 

days. HDD is the summation of the deviation between the average daily temperature and 65 °F 

over a year, when the average temperature is below 65 °F. CDD is the summation of deviation 

between average daily temperature and 65 °F over a year when the average temperature is above 

65 °F. EIA considered 65 °F as the reference temperature for CBECS. Selection of HDD and CDD 

as weather variables had two reasons. First, relationship between degree days and building energy 

use has been proven [67-69]. For example, Kennedy et al. showed a correlation between annual 

EUI and HDD of several countries where increase in HDD led to increase in annual EUI [69]. 

Second, degree days are almost the only weather-related variables that are available in national-

level energy surveys (e.g., CBECS) or regional benchmarking databases.  
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For this chapter, a publicly available visualization tool was used. The tool was developed 

by the Partnership for Resilience and Preparedness, a public-private organization working to data 

accessibly and climate resilience. One of the organization’s key features is that they processed 

NEX-GDDP raw data and created a visualization tool. For this work, their projected degree days 

was used for the time period of 2030 to 2080 [70]. Future degree days, as inputs for climate change 

analysis, are associated with uncertainty. One approach to account for input uncertainty is scenario 

analysis in which values of input parameters vary over every scenario [71]. Hence, the projected 

values of HDD and CDD under two scenarios, RCP4.5 and RCP8.5, were imported to the model 

to address this uncertainty. 

Since CBECS does not provide exact locations, the goal was to find locations that have the 

closest HDD and CDD (for 2012) values to those of buildings in the dataset and use these locations 

for future HDD and CDD projection for climate change analysis. With this goal, first, the HDD 

and CDD for the year 2012 along with projected values for six years (2030–2080) of 650 locations 

in U.S. were gathered from the visualization tool [70].  

These locations were clustered based on the geographic regions (see Section 2.2.6) in an 

attempt to build a cross-referencing algorithm with CBECS. The algorithm first identifies a 

location that has the nearest 2012 values (HDD and CDD) for every building in the dataset. 

Secondly, it assigns projected degree days for six years in future to every building. In order to 

ensure that gathered data (labeled population 1) properly represents CBECS’s climatic predictors 

(population 2), variability of the two populations were tested using F-test. The null hypothesis of 

this test is the equality of the variance of the two population (ℎ𝑜: 𝜎1
2 = 𝜎2

2) which is shown in 

Table 4 and is not rejected for all regions. This result suggests that gathered climatic data of 650 

locations properly represents CBECS. Upon completion of cross-referencing, twelve new datasets 
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(2-scenarios × 6-years) were created and imported to the best fitted model separately to predict 

EUI.  

Table 4 Results of testing variability of two populations for both HDD and CDD 

Geographic 

Region 
HDD F-Value CDD F-Value 

Critical F-

Value 
Null Hypothesis 

1,1 0.767 0.723 1.471 Not Rejected 

1,2 0.737 1.033 1.729 Not Rejected 

1,3 1.355 1.383 1.410 Not Rejected 

1,4 0.972 1.392 1.432 Not Rejected 

1,8 1.403 1.312 1.408 Not Rejected 

1,9 1.800 0.730 1.808 Not Rejected 

2,2 0.317 0.507 2.342 Not Rejected 

2,3 0.964 1.367 3.296 Not Rejected 

2,4 0.511 0.644 1.803 Not Rejected 

2,5 1.367 1.375 1.498 Not Rejected 

2,6 1.153 1.129 1.556 Not Rejected 

2,7 1.119 1.279 1.554 Not Rejected 

3,5 1.501 0.643 1.565 Not Rejected 

3,6 1.481 0.671 2.349 Not Rejected 

3,7 0.949 0.582 1.599 Not Rejected 

3,8 0.862 1.127 1.751 Not Rejected 

3,9 1.234 0.344 2.43 Not Rejected 

5,9 1.668 1.464 1.737 Not Rejected 

2.3 Results 

2.3.1 Performance Validation 

Results in Table 5 and Table 6 show that random forest and XGBoost outperformed the 

other two algorithms; furthermore, random forest improved the testing set’s MAE by nearly 12%, 

11%, and 4% compared to multiple linear regression, single regression tree, and XGBoost, 

respectively. Likewise, implementation of random forest has decreased RMSE by almost 16%, 

14%, and 6% in comparison with multiple linear regression, single regression tree, and XGBoost, 
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respectively (see Table 6). Similarly, R² shows that random forest model has yielded closer linear 

relationship between reported and predicted EUIs in comparison with other models (see Table 7).  

Table 5 Mean absolute error of annual EUI of different models for training and testing sets (mean ± standard 

deviation). Performance improvement by comparing random forest model with other models (%) is provided 

in the last two columns 

Algorithm 
Mean Absolute Error (MAE) Improvement of Random Forest (%) 

Training set Testing set Training set Testing set 

Multiple linear regression 29.80 ± 0.28 31.58 ± 0.89 61.13 12.03 

Single regression tree 25.99 ± 0.35 31.25 ± 0.98 55.42 11.10 

Random forest 11.58 ± 0.09 27.78 ± 0.75 --- --- 

XGBoost 27.63 ± 0.50 28.89 ± 0.78 58.07 3.82 

 

Table 6 Root mean square error of annual EUI of different models for training and testing sets (mean ± 

standard deviation). Performance improvement by comparing random forest model with other models (%) is 

provided in the last two columns 

Algorithm 
Root Mean Square Error (RMSE) Improvement of Random Forest (%) 

Training set Testing set Training set Testing set 

Multiple linear regression 43.29 ± 0.53 46.07 ± 2.26 61.69 15.63 

Single regression tree 36.37 ± 0.58 45.41 ± 2.44 54.40 14.40 

Random forest 16.58 ± 0.20 38.87 ± 2.12 --- --- 

XGBoost 38.87 ± 0.82 41.25 ± 2.52 57.34 5.77 

 

Table 7 R² of annual EUI of different models for training and testing sets (mean ± standard deviation) 

Algorithm 
Coefficient of Determination (R2) 

Training set Testing set 

Multiple linear regression 0.66 ± 0.006 0.61 ± 0.029 

Single regression tree 0.76 ± 0.006 0.62 ± 0.034 

Random forest 0.95 ± 0.001 0.72 ± 0.028 

XGBoost 0.72 ± 0.012 0.69 ± 0.034 

 

In addition to performance metrics, required computational power may be a crucial factor 

in selecting the best model. Although the CBECS micro dataset is not considered a very large 

dataset, it is important to estimate the computational power in terms of total run time for every 
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model, especially because it will be beneficial for future researchers that may work with larger and 

multi-dimensional datasets. Table 8 lists total run time of models using the same central processing 

unit while no other software programs or applications were in use. Random forest and extreme 

gradient boosting have more computational power. It is worthwhile to address that the required 

computational power for hyperparametric models such as random forest and extreme gradient 

boosting is highly sensitive to parameters that control them for example number of trees, number 

of predictors tried at every node of a tree, depth of trees, loss function etc.  

Table 8 Computational power recorded for different models over ten iterations and 5-fold cross validation 

Algorithm Running Time (hour) 

Multiple linear regression 0.28 

Single regression tree 0.06 

Random forest 5.97 

XGBoost 6.13 

2.3.2 Experimenting with a Combination of Predictors on Model Performance 

As explained in Section 2.2.4, three groups were formed to investigate the sensitivity of 

the model’s performance to the number, type, and combination of predictors. Since random forest 

(RF) was found as the most promising model (Section 2.3.1), the sensitivity analysis was done 

using RF. Changing the combination of predictors imported into the RF model improved the 

learning process of random forest. In comparing groups 1 and 2 (Figure 3), the MAE decreased 

7% for the training set and 2% for the testing sets. The combination of predictors in group 3 

improved the MAE by 15% and 10% for training and testing sets in contrast with group 1 (see 

Table 9). The RMSE’s reduction was equal to MAE’s reduction when comparing groups 1 and 2 

(Table 10). Comparing groups 1 and 3, RMSE was lowered by 17% and 12% for training and 

testing sets, accordingly. In like manner, the standard deviations of MAE and RMSE obtained 
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through combination of cross validation and multiple iterations have reduced. Improvements of R² 

in correlation with combination of predictors and changes in computational power are presented 

in Table 11 and Table 12. 

Table 9 Mean absolute error of annual EUI for three groups of predictors for training and testing sets used in 

the Random Forest model (mean ± standard deviation) 

Algorithm – Group 
Mean Absolute Error (MAE) 

Training set Testing set 

Random forest – Group 1 13.61 ± 0.13 30.76 ± 0.95 

Random forest – Group 2 12.72 ± 0.13 30.20 ± 0.93 

Random forest – Group 3 11.58 ± 0.09 27.78 ± 0.75 

 

Table 10 Root mean square error of annual EUI for three groups of predictors for training and testing sets 

used in the Random Forest model (mean ± standard deviation) 

Algorithm – Group 
Root Mean Square Error (RMSE) 

Training set Testing set 

Random forest – Group 1 20.05 ± 0.35 44.23 ± 2.67 

Random forest – Group 2 18.72 ± 0.31 43.35 ± 2.57 

Random forest – Group 3 16.58 ± 0.20 38.87 ± 2.12 

 

Table 11 R²  of annual EUI for three groups of predictors for training and testing sets used in the Random 

Forest model (mean ± standard deviation) 

Algorithm – Group 
Coefficient of Determination (R2) 

Training set Testing set 

Random forest – Group 1 0.93 ± 0.002 0.64 ± 0.036 

Random forest – Group 2 0.94 ± 0.002 0.65 ± 0.031 

Random forest – Group 3 0.95 ± 0.001 0.72 ± 0.028 

 

Table 12 Computational power recorded for three groups of predictors used in the Random Forest model 

Algorithm – Group Running Time (hour) 

Random forest – Group 1 1.59 

Random forest – Group 2 3.62 

Random forest – Group 3 5.97 
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2.3.3 Impacts of Climate Change on EUI 

Deriving from CBECS data, office buildings include the largest portion of commercial 

buildings by having 18.3% of total floor space [8]. Although the RF model was comprehensive 

and included all use types defined by EIA, this section focuses on results obtained for office 

buildings for the purpose of brevity. Percentage of change in EUI for office buildings under 

RCP4.5 and RCP8.5 over six years during the 21st century is shown in Figure 5 and Figure 6, 

respectively. It should be noted that the percent change is averaged over every geographic region 

separately and the comparison baseline is the EUI in the year 2012.
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Figure 5 Change in EUI (%) compared to 2012 EUI for office buildings under RCP4.5 during the 21st century for different geographic regions. Note: Y-

axes change per geographic region 
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Figure 6 Change in EUI (%) compared to 2012 EUI for office buildings under RCP8.5 during the 21st century for different geographic regions. Note: Y-

axes change per geographic region 
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In region 1,1, EUI will increase almost 24% in 2030 with slight change throughout the 

century due to projected change in HDD and CDD. The average EUI of office buildings under 

RCP4.5 will increase by 9% in region 1,2 during 2030. In the same region, energy use is predicted 

to increase 8.8% in late 21st century under RCP8.5. Likewise, due to RCP8.5, in region 1,4 there 

will be 19.6% and 20.1% energy use intensity increase at the beginning and end of the century, 

respectively. The most drastic EUI change in very cold/cold climate has been predicted for region 

1,9 (comprising parts of Washington, Oregon, and California) as result of the highest climate 

change scenario (42.3% and 46.6% increase at 2030and 2080, respectively). 

The largest change across mixed-humid climate is projected for region 2,6 (Tennessee, 

Kentucky, northern Alabama and northern Mississippi) with average EUI growth of 62.7% during 

all time spans for both climate change scenarios. As shown in the graphs, EUI fluctuation in this 

region is not considerable throughout the century (ranging from 62.2% to 62.9%). Although 

predictions obtained from random forest model show that regions located in the mixed-humid 

climate will experience almost the same increase or decrease in energy use at late 21st century as 

early 21st century, the result for region 2,7 shows more variation during the century. In this region 

based on RCP8.5, office buildings are predicted to consume 1.8% more energy per square footage 

during 2080 as opposed to 2030 (see Figure 6). 

Interestingly, during the 1st temporal period in region 3,6 (parts of south Alabama and 

Mississippi) the EUI of office buildings will be reduced by 1.5% under RCP4.5 and 1.6% under 

RCP8.5 (see Figure 5 and Figure 6 for percent reduction throughout the century). Whereas, in the 

rest of geographic regions within hot-humid/hot-dry/mixed-dry climate, the EUI is showing an 

increasing trend. In order to find the reason for the moderate reduction trend in region 3,6, we 
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looked at the weather condition in 2012 and compared it with 2020. This comparison showed that 

81% of buildings in region 3,6 located in cities where the annual CDD were higher in 2012 than 

2020. This means that 2012 was a particularly hot year in region 3,6; therefore, the EUI in this 

region showed moderate decreasing patterns in the future and under climate change scenarios 

compared with 2012. As displayed in Figure 6, the projected increase in the EUI for region 3,9 in 

2080 (almost 26%) is notably distinct from the projected increase in the same region for other 

years throughout the 21st century (around 25%). The likely reason for this distinction may be the 

difference between the average annual CDD of 2080 and that of 2012, which is considerably higher 

than the differences between the average annual CDDs of the other five years and 2012. Finally, 

based on random forest model, EUI will gradually escalate from 34% increase at the beginning of 

the century to 35.1% increase by the end of century for the marine climate (region 5,9 contains 

parts of Washington, Oregon, and California) under RCP8.5. These EUI is projected to rise by 

34% (year 2030) and 34.7% (year 2080) under RCP4.5 for the same geographic region. The 

increase projected for 5,9 is consistent with finding by Reyna and Chester [35]. 

2.4 Conclusions 

Since previous studies have drawn a different conclusion from applying ML to various 

subsets of the CBECS dataset [32, 33], first the performance of simpler and complex statistics-

based algorithms on a subset of CBECS, that contains all commercial building use types and more 

than a hundred predictors, were investigated to single out the one that provides better goodness-

of-fit to proceed with climate change analysis. Then, the ability of the prediction model that was 
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developed using random forest algorithm in capturing the change in energy use intensity of 

commercial building as result of climate change was assessed.  

As presented earlier, multiple linear regression model showed higher error rates for training 

and testing sets compared to random forest and XGBoost which demonstrates the non-linear 

correlation of predictors and target variable. Although the computational power estimated for 

multiple linear regression model was less than random forest and XGBoost models, more 

convenient development and less power-intensive do not compensate for its poor performance. 

While the magnitude of MAE and RMSE that were obtained for random forest and extreme 

gradient boosting were slightly high considering the mean value of annual EUI (presented in Table 

1), these results were similar to findings by Deng et al. [33]. For instance, Deng et al. found that 

MAE and RMSE of random forest were 27.0 ± 1.1 and 35.4 ± 1.8, respectively for a subset of 

CBECS dataset that only included office buildings. In this chapter, random forest provided 

marginally better prediction for total EUI than extreme gradient boosting whereas Deng and 

colleagues showed that both random forest and SVM outperformed other models [33]. It was 

concluded that this difference was probably due to the difference in the combination of input 

predictors of models which shows that selecting input predictors have impacts on the final outcome 

and the fact that [33] developed the models for office buildings. Additionally, the choice of the 

models’ controls for hyperparametric models such as number of trees, loss function, depth of trees, 

etc. between two studies is another potential reason for this variation. The better performance of 

both random forest and extreme gradient boosting was reflective of non-linearity and complex 

interaction of building-, occupant-, operation-, and weather-related predictors and annual energy 

consumption of commercial buildings at national scale. The random forest model was used over 

extreme gradient boosting to proceed with both the experiment (Section 2.2.4) and the climate 
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change analysis because of the following reasons: 1) lower error rate and higher coefficient of 

determination as discussed above, 2) less computational power (higher running speed), 3) 

indifference to non-linear predictors, and 4) more convenient tuning of parameters. 

An experiment was conducted in Section 2.2.4 where three groups of predictors were 

created. Further, random forest models were developed using every group separately to analyze 

impact of number and various types of predictors on models’ performance. Results depicted that 

incorporating building operation- and renovation-related predictors (group 2) in the model 

improved performance marginally compared to group 1. On the other hand, performance of the 

model developed for group 3, that contained predictors describing energy sources used for various 

purposes (end uses) in buildings in addition to other predictors, showed considerable improvement 

over groups 1 and 2. Thus, it can be concluded that variables that describe energy sources for 

different purposes for instance “electricity used for main heating”, “natural gas used for water 

heating”, etc. have high contribution in predicting energy use and enhance the model. This is 

because energy source may influence the coefficient of performance and age of mechanical, 

HVAC, and hot water systems/equipment of buildings. Furthermore, these variables aid explaining 

complicated nature of the dataset. Another finding to be address is that incorporating more input 

predictors to achieve a better model did not lead to overfitting because training set’s and testing 

set’s errors (MAE, RMSE,), and R² have reduced and increased, respectively.  

As climatic analysis has suggested, EUI of commercial buildings will be affected by 

changes in two weather-related parameters (HDD and CDD). Most of geographic regions are 

predicted to have increase in energy use which conveys that increase in cooling demand due to 

warmer future will exceed the presumable reduction in heating demand. Moreover, space heating 

requires more energy than cooling [72], so presumable reduction in heating is not significant which 
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will lead to overall energy use increase. Although the impact of changes in HDD and CDD is 

considerable when comparing energy use intensity of six years throughout 21st century to energy 

use intensity in the year 2012, changes in energy use intensity between these six years are not 

significant. The insignificant changes may be due to two reasons: 1) generalization of the ML 

model, 2) reciprocal effects of building energy use and climate change. A well-generalized ML 

model is not affected by minor variations of few predictors. In the case of this work, since degree 

days changes minimally from one year to another year in future, the predicted energy use does not 

change considerably. However, since degree days is projected to change significantly compared 

to recorded HDD and CDD for the year 2012, the predicted energy use intensity shows noticeable 

changes. In conclusion, a well-generalized building prediction model does not reflect minor 

changes in weather-related predictors on the final target variable. Secondly, climate change in 

general and variation in degree days in specific are known to be the result of GHG emissions. 

Since operation of the building sector depends on the combustion of fossil fuels, the main source 

of GHG emissions, directly (i.e., coal, natural gas, petroleum) and indirectly (electricity 

generation) [1, 73], there is probably a reciprocal cause and effect between variation in degree 

days and building energy use. This is another reason for insignificant energy use intensity change 

of six studied years. This possibility opens discussion regarding future work. Outliers, imputed 

values for some data samples, lack of occupants’ behavior, correlation between predictors, and 

complex interaction between predictors and annual EUI in CBECS dataset are challenges of 

interpretability of the model. In order to solve this challenge and better explain how the prediction 

model based on random forest has made decisions, SHAP analysis could be conducted in future 

works. SHAP is a deep learning framework that explains which predictors are more relevant for 
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certain predictions or clarifies overall performance of a model through multiple visual means such 

as dependence plot, model explainer, and prediction explainer [74, 75].  

Detail and reliable data enhance predicting ability of ML and artificial intelligent 

approaches. However, majority of energy benchmarking efforts in U.S. cities like Philadelphia, 

New York, etc. lacks information regarding occupant-, operation-, HVAC system-, and weather-

related parameters. Therefore, launching movements toward collecting more comprehensive 

regional building datasets in future is crucial to evaluate counteraction of building energy 

consumption and climate change at finer spatial scale using ML approaches. Policy makers and 

urban planners can advocate for allocating budgets to gather building dataset. Also, they can use 

the results of this work as a future road map of building energy use in presence of climatic 

variation. 
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3.0 Development and Validation of an Urban Building Energy Model 

The research presented in this chapter addresses objective three. Specifically, it answers 

the question ‘What is the framework for obtaining essential parameters to develop a UBEM in 

order to mitigate data disparity and reduce assumption dependency? And can a UBEM be used for 

both identifying trends of energy use and evaluating the impacts of energy conservation measures 

for a commercial building stock?’. The content of this chapter was published in a peer-reviewed 

journal: 

Mohammadiziazi, R., Copeland, S., & Bilec, M. M. (2021). Urban building energy model: 

Database development, validation, and application for commercial building stock. Energy and 

Buildings, 248, 111175. 

3.1 Introduction and Background on Urban Building Energy Modeling  

In the past decades, scientists have addressed the urgency of energy consumption and 

greenhouse gas (GHG) emissions from different sectors including the building sector. The building 

sector in the U.S. accounts for 39% of energy use with commercial buildings responsible for 

approximately half of this portion [1]. The continuous and growing rate of urbanization has 

resulted in urban buildings becoming the center point of energy consumption and GHG emission 

reduction strategies and ambitious targets. In this context, cities and countries around the world 

have formulated short-term and long-term energy and environmental goals that include energy 

reduction [76], shifting towards renewable energy sources [76], and selecting building materials 
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with less environmental impacts [77]. For example, Los Angeles, California planned to reduce 

energy use per floor area of buildings 22% and 44% by 2025 and 2050, respectively [78]. Another 

example is California Title 24 which mandates new buildings to be equipped with photovoltaic 

systems for electricity generation [79]. The City of Pittsburgh, a member of the 2030 District 

Network and accounting for nearly 25% of floor spaces committed to this network, has established 

building energy and water reduction goals [80]. Achieving these goals for all cities and regions 

requires actionable and effective energy conservation (EC) strategies for buildings, especially 

existing buildings through renovation and retrofit. In addition to the demand side, launching 

actions and planning for renewable energy generation and supply systems, distributed energy 

resources (DER) [81], and district heating and cooling systems can also aid in accomplishing the 

energy goals. For regional decision makers to institute practical and effective energy efficiency 

policies and climate actions, thorough understanding of energy use of buildings in an urban area 

is essential.  

Critical to understanding energy use is data and information about energy consumption and 

characteristics of buildings. Some cities have building energy data obtained through disclosure and 

benchmarking laws, along with voluntary approaches including the aforementioned 2030 District 

[80, 82, 83]. However, there are a significant number of cities and areas that lack benchmarking 

ordinances and laws. Another challenge facing of local governments is budget limitations for 

enforcement and processing of the data into meaningful reports and visualizations. Hence, urban 

energy modeling tools and frameworks can be beneficial to overcome these challenges, as they 

can enable studying trends of citywide building energy demand, evaluating impacts of EC 

strategies on heating and cooling energy consumption, finding hotspots related to energy and 

emissions, and identifying suitable locations for developing district energy systems.  



43 

In this chapter, a modeling structure, established based on advanced imaging and remote 

sensing techniques, was proposed and used for acquiring data and simulating urban building 

energy use. This structure was designed to maximize the use of actual data as a substitute for 

secondary data or assumptions and provide a road map to extract information from resources and 

standards. The commercial buildings in Pittsburgh, Pennsylvania were selected to develop and test 

the modeling structure. In addition, the outcomes of this research aim to aid the city in its efforts 

toward reducing energy and emissions and combating climate change.  

Urban scale studies are categorized into two major approaches - top-down and bottom-up 

[84, 85]. The top-down approaches encompass macro-level variables and adopt statistical or 

machine learning methods to explore the energy use of buildings at a large spatial scale in relation 

to socio-economic aspects (e.g., income, education) [86]. For instance, Mostafavi et al. [87] 

developed a model based on the Residential Energy Consumption Survey (RECS) to predict 

residential energy use based on several factors, such as household size and ages of the occupants. 

While top-down approaches provide a broad view of energy demands, their ability to associate 

building- or stock-level characteristics with energy consumption are limited. Alternatively, 

bottom-up approaches (e.g., cluster analysis and urban building energy modeling) can incorporate 

individual buildings characteristics into the modeling process and study energy use at finer spatial 

scale such as building-, neighborhood-, zip code-level. One bottom-up approach is cluster analysis 

in which the energy use of a building stock is examined based on different characteristics or 

features of buildings such as use type, ownership status, and thermo-physical attributes [88, 89]. 

Conducting cluster analysis for a historic district in Italy, Lucchi et al. [89] concluded that 

geometric and thermo-physical features had higher correlation to building energy use compared to 

building age and can be utilized for energy demand assessment. Using cluster analysis requires 
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extensive information about features and energy use of all buildings at scale. Another bottom-up 

approach is urban building energy modeling. 

While definitions of this emerging area are evolving, the literature is gathering consensus 

that urban building energy models (UBEM) are bottom-up, physics-based models that unlock the 

capability of spatiotemporal energy demand analysis in an urban area. These models couple heat 

and mass transfer mechanisms of clusters of buildings with 3D models to simulate energy use [90, 

91]. Principally, UBEMs are developed using either building prototypes or archetypes. In order to 

create prototypes, buildings are clustered into groups and for every group average values of 

geometric parameters (e.g., height, aspect ratio) along with predominant classes for non-geometric 

parameters (e.g., window U-value, HVAC coefficient of performance) are determined and utilized 

to create energy models. On the other hand, archetypes are groups of buildings that only share 

similar non-geometric parameters which are determined based on predominant classes for every 

group. Defining archetypes for an urban building stock will be described in detail further in this 

chapter. Many studies have explored urban building energy modeling for different cities 

worldwide [92-103]. These studies have been reviewed to identify gaps and best practices (see 

Table 13). 

3.1.1 Urban Building Energy Modeling – Residential Buildings 

A review of the existing literature has revealed that several approaches for developing 

UBEMs have emerged to assess the energy consumption of residential buildings. In one of the 

earlier studies, Shimoda et al. [92] created 460 residential prototypes for Osaka, JP based on 23 

household types (e.g., household with two employed members) and 20 dwelling types (e.g., 

detached house with floor area more than 150 m2, apartment with floor area of 110-119 m2) and 



45 

simulated hourly energy use of every prototype over one year. Through accessing the number of 

buildings grouped under every prototype, the annual energy consumption of homes in the city was 

estimated. An 18% lower estimation from the model compared to the field surveys from 1999 was 

attributed to irregular occupants’ behavior in using appliances, air conditioner, and lighting. 

Despite a comprehensive description of non-geometric parameters, it was unclear how the 

prototypes for the 3D models were developed, such as how to determine the geometric parameters 

or envelope properties.  

Further, Cerezo et al. [93] and Sokol et al. [94] explored the importance of probabilistic 

approaches for determining non-geometric parameters of archetypes in Kuwait City, KW and 

Cambridge, Massachusetts, respectively in simulating the urban residential building energy use. 

In Kuwait City, their probabilistic approach focused on occupancy rate, lighting density, plug load, 

hot water peak flow, and heating/cooling set points; these parameters were modeled from either 

arrays of predefined values or Bayesian calibrations. Deterministic parameters (window to wall 

ratio, glazing type, wall material, roof material, cooling system) were gathered through in-person 

audits. When compared with the metered annual energy use, the Kuwait City results showed 

significant improvement in the model’s accuracy due to using probabilistic approaches versus a 

deterministic approach (the mean error reduced from 16% (deterministic approach) to 1% 

(probabilistic approach)) [93]. However, calculation methods specifically related to window to 

wall ratio (WWR), an envelope property, were not clarified, for example, how were the in-person 

audits conducted.  

Although these studies [92-94] and others listed in Table 13 [95, 96, 103, 104] investigated 

many aspects of residential UBEMs and proposed strategies to improve urban models, there are 
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unexplored spaces especially regarding the diversity of envelope properties and building facades, 

along with reproducibility challenges. This chapter aimed to address these gaps.  

Table 13 Overview of scopes in existing literature on urban building energy modeling. R, C, and EC are 

abbreviations for residential buildings, commercial buildings, and energy conservation, respectively 

Articles 

General building 

use type 
Prototype vs Archetype Envelope properties 

Incorporating EC 

strategies 

R 

R 

and 

C 

C Prototype Archetype 

Not 

described/ 

Assumption 

Actual/ 

Measured 

High 

cost 

Low/Med

ium cost 

[92]  ●   ●  ●  ●  

[93]  ●    ●  ●   

[94]  ●    ● ●    

[95]  ●   ●  ●    

[96]  ●    ● ●    

[97]   ●   ● ●    

[98]   ●  ●  ●    

[99]  ●   ● ●    

[100]   ●   ● ●    

[101]   ●  ●  ●    

[102]    ●  ● ●  ●  

[103]  ●    ● ●    

[104]  ●   ●  ●    

3.1.2 Urban Building Energy Modeling – Commercial and Residential Buildings 

As shown in Table 13, while the majority of UBEMs focused on residential buildings, in 

part due to less complexity of envelope properties and mechanical systems, some studies focused 

on both residential and commercial buildings [97-101]. In the absence of building- and energy-

related data, Heiple and Sailor [98] used aggregated information from Commercial Building 

Energy Consumption Survey (CBECS) [31] and RECS [105] to create residential and commercial 

prototypes for Houston, Texas. The prototype building energy models, created using eQuest and 

DOE-2, simulated the daily energy use of the city. Through validating the aggregated results with 
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the surveys data, the authors showed marginal difference between the model and survey results of 

2.5% and -1.3% for August and January, respectively [98]. However, a gap remains related to the 

performance of various building types and which building type requires a more detail prototype. 

Ding and Zhou [101] utilized the prototype methodology to explore energy data scarcity of a city 

in China. First, they formed three prototypes, a residential apartment and two office buildings. 

Second, a building energy database was developed by stochastic analysis that encompassed various 

mechanical- and occupancy-related variables. Characterizing and modeling the city’s buildings 

using aggregated information (e.g., [98]) or without accounting for actual use types, envelope 

properties, geometric parameters, and orientation (e.g., [101]) may lead to building energy 

performance challenges. The work in this chapter aimed to resolve these concerns for cities and 

areas, which suffer from data paucity, through our proposed modeling structure.  

In a thorough study, Cerezo et al. [97] hypothesized whether developing a UBEM was 

feasible for residential and commercial buildings using publicly available Geographic Information 

System (GIS) data. To test the hypothesis, the authors created a model for Boston, Massachusetts 

and validated results based on CBECS and RECS since metered energy use data was not available 

for the city at the time of study. While Boston has a richer GIS data, which included building 

footprint, roof and ground heights, construction year, use type and number of floors, compared to 

many cities in U.S. like Pittsburgh, Pennsylvania, lack of both building archetypes and data were 

still introduced as major barriers by the authors [97].  

3.1.3 Urban Building Energy Modeling – Commercial Buildings 

To date at the time of this writing, only one study by Chen et al. [102] focused on two types 

of commercial buildings (office and retail) by developing a tool that automized creation of UBEM. 
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The tool generates 3D models of buildings based on footprint, height, and number of floors. The 

tool uses secondary data from Commercial Building Energy Saver (CBES) to build the energy 

models; it does not compile an archetype library that reflects on non-geometric parameters and 

envelope properties specific to an urban area. The modeling structure in this chapter intends to 

describe a holistic approach for developing databases and to mitigate dependency of UBEMs on 

secondary data, which is the key barrier to the converging UBEM outcomes and energy use of 

buildings in real-world. In this study, the pattern and variation of the energy consumption relative 

to different commercial buildings are also analyzed. 

3.1.4 Objectives of the Chapter 

The objectives of this chapter were to:  

• Compile a unified modeling structure that maps methods, resources, and the steps essential to 

develop a comprehensive database of commercial buildings with a focus on actual envelope 

properties and façade reconstruction. 

• Focus on commercial buildings to close the gap regarding the building use type.  

• Validate the results of the UBEM with the actual energy data.  

• Employ the model to evaluate impacts of low to medium cost EC strategies on the total energy 

use and different end uses which is not explored as shown in Table 13.  

By achieving the objectives, this chapter aimed to contribute both to the field of urban 

building energy modeling and the region, while providing a path for other regions as well. 

Based on the earlier discussion, the energy use of residential buildings has been 

investigated. The consistency in energy performance of residential stock has enhanced the overall 

results that focuses on this type of buildings. While some studies have included both residential 
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and commercial buildings, the results of these models are still overshadowed by the consistent 

performance and simple characteristics of residential buildings. Increasing the knowledge about 

the energy performance of buildings at scale and improving UBEMs require special attention to 

commercial buildings. In addition, in the time of unforeseen crisis like Covid-19 pandemic, when 

there is a drastic energy demand shift from commercial to residential buildings, it is useful to have 

an urban model focusing on commercial building stock. This model will enable energy suppliers 

and utilities to estimate the energy demand reduction from the commercial stock and how the 

capacity could be directed toward residential buildings. While this is not the first investigation 

concentrating on commercial buildings [102]; it is the first, to our knowledge, that incorporates 

advanced imaging and remote sensing techniques to obtain envelope properties, which are not 

available in many city databases, and have been largely based on assumption and expert judgement 

in urban models. By using street-level digital images, the modeling related to the building 

envelope, especially WWR will be refined. 

As mentioned, many regions have aggressive energy reduction goals without adequate 

planning. The region of this study, Pittsburgh, Pennsylvania, is a part of the 2030 District Network, 

in which each region or district commits to 50% reduction in building energy, water consumption, 

and emissions from transportation below a baseline by the year 2030. In Pittsburgh, the majority 

of its district is comprised of commercial buildings. This work, therefore, can provide policy 

makers, urban planners, and entities working towards these goals with actionable strategies to aid 

in ensuring success. 
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3.2 Materials and Methods 

Development of a UBEM is a multi-layer process especially because in many cities, 

including Pittsburgh, the required data is not readily available and is scattered over various 

references or resources. This sub-chapter provides a detailed modeling structure regarding creating 

a comprehensive database and generating the model through five phases. Phase one describes the 

commercial buildings in the studied region together with available data. In the second phase, 

development of an archetype library is explained. The third phase presents a novel 

photogrammetry and image processing framework that was used to retrieve the envelope 

properties and for constructing the facades of buildings. To estimate the building’s height, LiDAR 

analysis was conducted (phase four). Finally, integrating all the information to generate the urban 

model for commercial buildings is explained in phase five. A visualization, that displays the 

integration of these phases, is shown in Figure 7. Moreover, the graphical synthesis of methods 

and results is provided in Appendix B, Figure B.1. 

 

Figure 7 Graphical overview of generating the urban building energy model  
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3.2.1 Phase 1 – Description of the Commercial Buildings in the Studied Region 

Pittsburgh is a city in western Pennsylvania located in cold climate (zone 5A) according to 

the U.S. DOE climatic boundaries [64]. The city houses the University of Pittsburgh and Carnegie 

Mellon University both with sizable commercial spaces. Recently, companies like Google, FedEx, 

and Facebook have opened offices in the city, which is another indicator of the growing 

commercial stock. This specific study contains a commercial building stock that belongs to the 

University of Pittsburgh and the City of Pittsburgh [17] and comprises total number of 209 

buildings. This stock was selected because of a few reasons. First, the 2030 District goals 

motivated this work. Second, the commercial stock consisted of a variety of different commercial 

building use types. Table 14 shows the percentage of floor area for different use types. Finally, the 

actual annual energy use of buildings from 2017 was reported to our research team, which was 

used for validating the results. In addition to the actual annual energy use, the floor area, property 

tax identification (ID), and the construction year were provided to our team. Essential to urban 

energy modeling is geolocating buildings to identify the location on map, orientation, and footprint 

(i.e., polygon shape of a building plan). For this purpose, the geospatial data that included 

Pittsburgh’s building footprint was obtained from the Western Pennsylvania Regional Data Center 

(WPRDC) in GIS format [106]. The property tax ID of the buildings was cross referenced with 

GIS data in order to identify the corresponding footprints. However, this information was 

insufficient to develop a UBEM; the additional input information for creating the model was the 

geometric parameters, non-geometric parameters, and envelope properties. The subsequent sub-

chapters are allocated to illustrate how the missing information was gathered or measured. 
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Table 14 Percentage of floor area for different use types of the 209 commercial buildings in the studied region  

Commercial building use type 

 Education Lodging Office 
Parking 

garage 

Public 

assembly 

Public 

order and 

safety 

Warehouse Other 

Floor 

area (%) 
31 24 14 7 14 5 1 4 

3.2.2 Phase 2 – Archetype Library Development 

Urban building energy modeling streamlines the modeling process by classifying buildings 

into homogenous groups, known as archetypes, that have similar characteristics [86]. One robust 

example is the TABULA project in which an archetype library was developed for the building 

stock of fifteen European countries [107].  

Creating an archetype library consists of two major steps: classification and 

characterization [93, 108]. With respect to classification, buildings are ‘binned’ into groups based 

on one or more categories. In this research, the selected categories were based on two criteria: first, 

the categories must be available for all buildings; second, they should be relevant to energy 

consumption. According to these criteria, several categories have been proposed and utilized for 

classification by different studies such as use type, construction period, shape ratio, heating and 

cooling systems, and climate condition [88, 90, 98]. As Monteiro et al. suggested, defining more 

detailed archetypes increases the homogeneity of groups and may improve the precision or 

accuracy of urban energy models [95]. The challenge, in this regard, is that these categories are 

usually not available in public databases or are labor intensive to obtain for all the buildings in the 

stock or the city [93].  

In this research, use type and construction period were used for classification; twenty 

archetypes were created for the commercial stock, comprised of eight commercial use types that 
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were built during three construction periods (not all use types spanned the construction periods). 

Table 15 provides a list of the archetypes with additional descriptions. The majority of the publicly 

available resources like building codes, standards (e.g., ASHRAE standards), and surveys (e.g., 

CBECS) have included non-geometric parameters according to use type and construction periods 

[51]. Therefore, the classification of use type and construction period facilitated extracting these 

parameters of buildings from various resources during the characterization step.  

Table 15 Archetypes defined by construction period and use type for the commercial building stock in 

Pittsburgh. The third column is a description of sub-categories that formed the broader use types. Note: sub-

categories are coded by Latin numeric to avoid redundancy 

Construction 

period 
Commercial use type Commercial use type sub-categories  

Pre-1980 

Education School, college, university I 

Lodging Dormitory, fraternity, sorority, nursing home II 

Office Administrative office, social services, city hall III 

Parking garage Multistory parking, underground parking IV 

Public assembly Recreation center, senior center, library, museum V 

Public order and safety Police station, fire station, medic center VI 

Other Laboratory, observatory, mixed-use VIII 

1980-2004 

Education I 

Lodging II 

Office III 

Parking garage IV 

Public assembly V 

Public order and safety VI 

Warehouse  Non-refrigerated warehouse, distribution center VII 

Other VIII 

Post 2004 

Education I 

Lodging II 

Public assembly V 

Public order and safety VI 

Other VIII 

 

Characterization is described as assigning values or classes of non-geometric parameters 

to every archetype. Drawing on the work from [93, 94], these parameters can be determined 
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through either deterministic (single value or class for each parameter) or probabilistic (multiple 

values or classes for each parameter) approaches which both have their own advantages and 

disadvantages. The non-geometric parameters that are required for energy simulation depend on 

zoning (single zone or multi zone), the software engine used for simulation, and the thermal 

modeling approach. For this research, the three sets of non-geometric characterization parameters 

were occupancy, envelope composition, and mechanical/electrical systems. It was found that 

characterizing the archetypes via gathering information from several resources is cumbersome 

mostly because a thorough outline that can guide urban modelers on where to find a certain 

parameter does not exist. Therefore, Table 16 was compiled as a road map to fill this gap and aid 

future modelers in conducting urban studies.  

Table 16 Outline of resources and references for developing an archetype library. Note: operating schedules 

encompass several sub-schedules like occupancy schedule, heating setpoint schedule, cooling setpoint 

schedule, HVAC schedule, etc. 

 Non-geometric parameter Resources/References 

Occupancy-related 

Operating schedules 

- Engineering assumption 

- DOE commercial reference buildings [51]  

- Consulting with local experts 

Occupancy rate 
- DOE commercial reference buildings [51]  

- Literature [109, 110]  

Plug and process loads 
- DOE commercial reference buildings [51]  

- Literature [109-111]  

Ventilation rate 
- Literature [109-111]  

- ASHRAE standards [112, 113]  

Service hot water demand - Literature [114, 115]  

Envelope 

composition 

Roof 
- CBECS [8]  

- ASHRAE standards [116-118]  

Window 

- CBECS [8]  

- ASHRAE standards [117, 118]  

- DOE commercial reference buildings [51]  

Flooring - ASHRAE standards [117, 118]  

Infiltration/Air leakage 
- Literature [119]  

- DOE commercial reference buildings [51]  
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Table 16 (continued) 

Mechanical/Electrical 

systems 

Lighting density 
- ASHRAE standards [117, 118]  

- DOE commercial reference buildings [51]  

HVAC system 

- ASHRAE standards [117, 118]  

- DOE commercial reference buildings [51]  

- Consulting with local experts 

Water heating system 

- Literature [120]  

- ASHRAE standards [117, 118]  

- Consulting with local experts 

 

Some of the parameters needed modification or additional processing prior to being 

imported into the energy simulation. For example, ASHRAE standards on ventilation and indoor 

air quality [112, 113] specified the minimum ventilated air per occupant (cfm/person); however, 

the ventilation rate (cfm/m²) was needed for energy simulation in this study. Thus, the minimum 

ventilation (cfm/person) was divided by occupancy rate (m²/person), obtained from [51, 109, 110], 

and the ventilation rate was calculated for every archetype. Additionally, the predominant classes 

of roofs for all archetypes (e.g., built up, slate or tile shingle, asphalt, concrete, metal surfacing) 

were determined by analyzing CBECS data for climate zone 5A, where Pittsburgh is located. 

Further, based on these classes, roof compositions and corresponding specifications such as the u-

value were extracted from ASHRAE standards on energy efficient design [116-118]. Determining 

specifications of windows (u-value and solar heat gain coefficient) and flooring for all archetype 

followed the same process as was done for roofs. Ultimately, the non-geometric parameters, that 

are listed in Table 16, formed the archetype library and were stored in a csv file used in energy 

simulation. 
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3.2.3 Phase 3 – Photogrammetry and Image Processing Framework 

Envelope properties including external wall material, WWR, and floor count (number of 

floors above ground) are known to influence energy consumption [17, 121, 122], yet they have 

been under-reported in UBEMs due to cities’ database deficiency and technological barriers. For 

instance, in the Boston work, WWRs were considered between 0.1 and 0.8 per use type based on 

authors’ judgement [97]; how the WWR and external wall materials were determined was not 

clarified in other studies [96, 98]. As previously delineated in the introduction and background of 

this chapter, incorporating detailed envelope properties through reconstructing facades is one of 

the objectives of this research. To achieve this objective, a framework, comprising 

photogrammetry (acquiring façade images) and image processing (interpreting images), was 

developed and utilized. 

Information about the surrounding environment and objects including building facades can 

be obtained by taking and analyzing aerial or street-level images. The quality and availability of 

aerial images are usually impacted by high-rise buildings in dense urban areas as they block vision 

of neighboring facades [123]. Hence, this framework was built using street-level images of facades 

obtained from Street View Static (SVS), which is an application programming interface (API) 

designed by Google to provide 360° images of numerous locations on the earth [124]. Employing 

SVS API provided the opportunity to download images in JPEG or PNG formats, that is not 

possible through regular Google Street View. Moreover, SVS API allowed for adjusting image 

attributes without using pointing devices, which mitigates randomness and enhances accuracy. To 

obtain the images, the buildings’ centroids were found using GIS analysis to determine the 

latitudes and longitudes coordinates of the centroid points for all buildings. These coordinates were 

then imported to the SVS API for every building, separately, to access the façade images. As 
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mentioned above, this semi-automatic API enables users to remotely control the attribute of an 

image by changing the vertical angel of camera (pitch), horizontal angel of camera (heading), field 

of vision (fov), and resolution (size) in order to find images with desired quality. Also, the remote-

control capacity allowed me to check images and maintain consistency (similar pitch, fov, and 

size) for different facades, which is critical to determine the material of the facades. Ultimately, 

the images of all buildings were downloaded, stored, and further processed. 

Agent-based processing was used for this research. Figure 8 illustrates the process. The 

external wall material (eight types as shown in Figure 8) and floor count were identified. According 

to the external wall type, the wall compositions and corresponding specifications were extracted 

from ASHRAE standards [116-118]. Accurate information about the floor count is important in 

energy simulations since it affects number of thermal zones. Next, the images were transferred 

into an area calculator software, SketchAndCalc, to measure the total area of the windows and the 

gross wall area, and then estimate the WWR, that is defined as area of window divided by area of 

wall above the ground [125, 126]. Following Equation 3-1, the WWR of building i with n facades 

was estimated. This process was replicated for all buildings. 

𝑊𝑊𝑅𝑖 =
∑ 𝑊𝑊𝑅𝑛
𝑗=1

𝑛
 (3-1) 
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Figure 8 Process flow diagram of photogrammetry and image processing framework for retrieving envelope 

properties. SVS API and WWR refer to Street View Static API and window to wall ratio, respectively 

In order to investigate the importance of including the measured WWR of buildings in 

every region and city, the WWR values of the studied buildings, estimated through this framework, 

were compared to values derived from CBECS [8] for the same commercial use types that were 

located in U.S. cold climate. As displayed in Figure 9, in Pittsburgh approximately 26% of 

commercial buildings have a WWR less than 0.1; on the other hand, based on CBECS data, almost 

56% of buildings have a WWR less than 0.1. Also, the majority of the studied buildings (60%) 

have a WWR between 0.11 and 0.25; whereas, 29% of the buildings in CBECS fall into this 

category. The comparison reveals that employing CBECS would have resulted in underestimating 

WWR of Pittsburgh commercial buildings. This difference confirmed the fact that surveyed data 

like CBECS may not represent façade architecture and the WWR that are specific to a region or 

city. It should be noted that while selecting equal WWR intervals or ranges for this comparison 

would be beneficial, the WWR of buildings were specified as predefined ranges in CBECS rather 

than exact values [8]. Therefore, the predefined ranges in CBECS were utilized for this 

comparison.  
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Figure 9 Comparison of measured WWR with WWR from CBECS [8]. WWR and CBECS stand for window 

to wall ratio and Commercial Building Energy Consumption Survey, accordingly 

3.2.4 Phase 4 – LiDAR Analysis 

GIS data at the municipal- or city-level is often 2-dimensional and lacks the elevation or 

height, a key geometric parameter for energy modeling. Some studies [93, 127] tried to reconstruct 

the volumetric models of buildings via visual inspection and site surveys, but logistics and time 

consideration can limit adoption at scale. Others [100, 104] used standard reference building 

heights but precision of this method remains uncertain [51, 128]. The height issue was addressed 

by using LiDAR analysis. LiDAR, Light Detection and Ranging, is a remote sensing technique to 

examine earth and objects on the earth. Figure 10 displays the procedure used in this work for 

determining the building height. Two sets of GIS compatible datasets were utilized: 1) the 

commercial building footprint in shapefile format (see section 3.2.1), 2) airborne LiDAR data in 

las format obtained from U.S. Geological Survey (USGS). 
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Figure 10 LiDAR analysis for building height estimation. DEM and DSM refer to Digital Elevation Model 

and Digital Surface Model, respectively. Note: the texts in the parentheses (e.g., shp) illustrate the file format 

of different stages of GIS-based analysis   

The raw LiDAR data was adopted to create the elevation models; Digital Elevation Model 

(DEM) and Digital Surface Model (DSM). The DEM contains the elevation of the earth’s surface 

with reference to a specific datum, whereas the DSM contains the elevation of different objects on 

the earth (i.e., buildings, city furniture, vegetation, and bridges) with reference to the same datum. 

Thus, subtracting the DEM’s elevations from the DSM’s elevations results in a new model that 

only includes the object’s height above the earth. To distinguish the height of the commercial 

building from other objects across the city; first, the new height model was filtered in relationship 

to the building footprint. Next, several random points, that were inscribed by the building footprint, 

were generated and synthesized with the height model; therefore, every point was assigned a 

height. Sometimes roofs are pitched or having height variations, and reconstruction of these types 

of roofs was difficult and time consuming. So, a simplified approach was used in which heights of 

points (inscribed by a building footprint) were averaged for every building independently and 

considered as the final value of a building’s height. While this simplification may affect precision 

of the thermal modeling, the associated error is negligible as it is averaged out when estimating 

the aggregated energy use for the entire stock. 
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3.2.5 Phase 5 – Urban Model Generation 

When all required input information was gathered or estimated, an energy model of each 

building in the stock was generated to simulate energy use utilizing EnergyPlus, an open source 

program designed by U.S. DOE [46]. Model generation was a multi-step task that included creating 

3D models, assigning envelope properties, defining thermal zones, and assigning non-geometric 

parameters to zones (see Figure 7).  

The 3D models represented the volumetric shape and orientation of the buildings. In the 

most basic models, a combination of a rectangle footprint and height forms the volumetric shape 

that is known as a shoe box model. However, the goal of this research was to develop more detailed 

3D models. The building footprints, from phase 1, were imported from ArcGIS to SketchUp, 

which is a drawing computer program, using Spirix Import Shapefile add-in tool, then they were 

extruded based on the buildings’ height, from phase 4, to form the volumetric shapes. This 

approach provided a volumetric shape similar to the actual building. Next, the floor count and 

WWR, from phase 3, were assigned to the 3D models of every building, separately. It was assumed 

that windows were evenly distributed among facades and located one meter above the ground. 

Considering five thermal zones per floor, a common practice in energy modeling of individual 

buildings, increases both model generation and running time [97]. So, in order to have a multi-

zone model and avoid run time issues, one thermal zone was defined for each floor of buildings. 

The boundary condition of the external walls, floors, and roof were completed in SketchUp and 

by leveraging the OpenStudio add-in tools. Upon completion of the 3D models, they were 

converted to idf format, the operational format of EnergyPlus, and imported into EnergyPlus. 

To complete the energy modeling, according to use type and construction period, an 

appropriate archetype, from phase 2, was selected for a respective building and non-geometric 
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parameters were appointed to different thermal zones of the building. As an example, one thermal 

zone in the archetype, that represented the lodging buildings constructed prior to 1980, was 

specified for laundry activities. The plug and process load of this zone was defined in a way that 

included energy consumption of laundry appliances such as washer and dryer. Weather variables 

such as dry bulb temperature, wind velocity, also have substantial impact on energy consumption. 

Typical Meteorological Year (TMY) data has been broadly used in building energy analysis as 

weather input. TMY data embodies 8760 sample points representing median values of weather 

variables for every hour over one year [129]. One of the recent TMY data is TMY3 for which 

hourly weather variables were calculated based on historical data between 1991 and 2005. For this 

urban model, TMY3 from the Pittsburgh International Airport weather station, which represented 

the average weather condition of Pittsburgh, Pennsylvania, was employed. Once the weather data 

was imported into EnergyPlus, the energy models were completed, and simulations were run for 

every building in the stock.  

The simulation results were analyzed in section 3.3 to identify the pattern of energy use for 

different commercial use types and to validate the UBEM. The implications of different EC 

strategies on the annual energy use of the building stock were assessed through adopting the 

UBEM. Three EC strategies including temperature set points adjustment, upgrading lighting 

systems, and plug and process load reduction were selected. To implement these strategies, the 

primary values for heating and cooling set points, lighting density, and plug and process loads, 

which were determined during characterization, were modified in the energy models and 

simulations were run for every building again. 
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3.3 Results and Discussion 

3.3.1 Energy Use Pattern Correlated with Commercial Use Types 

The simulated annual energy use intensity (EUI) of the buildings was calculated and 

mapped as displayed in Figure 11. EUI is summation of energy consumed by various end uses 

including space heating, space cooling, ventilation, lighting systems, internal equipment and 

appliances, water systems (e.g., pumps), and water heating systems normalized by floor area. The 

simulated annual EUI, averaged over the use types, ranged from 74 kWh/m² to 1,302 kWh/m² for 

parking garages and warehouses, respectively. The high annual EUI for warehouse can be 

attributed to high intensity internal equipment and their schedules such as refrigerators and fans 

that are operating throughout the day without interruption. Buildings categorized as ‘other’ 

followed by education buildings had second and third highest average annual EUI. The former 

housed mixed-use spaces including offices, medical centers, restaurants, and retail stores which 

typically have higher energy consumption. The latter housed research activities, laboratories, and 

server rooms with high intensity equipment that resulted in greater energy consumption compared 

to the rest of commercial use types. Finding the lowest annual EUI for parking garages was 

expected given that these buildings did not have space heating and cooling, which dominated the 

energy use compared to the other end uses.
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Figure 11 Simulated annual energy use intensity (EUI) of the commercial buildings in the urban building energy model (UBEM) for Pittsburgh, 

Pennsylvania. Note: we only included buildings for which we had actual energy use for this UBEM for validation purposes 
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Space heating, cooling, and lighting together comprised between 36% to 93% of the total 

energy use for various use types. Apart from parking garages with no heating systems, the share 

of space heating from total energy use was estimated at 23% for education buildings, which is the 

lowest compared to rest of use types in the stock. Two reasons can be posited. First, energy 

consumed by internal equipment and appliances (plug and process loads) dominated energy use of 

education buildings. Second, heat gain due to operation of these equipment compensated for 

heating and reduced space heating demand for this use type. Whereas, for lodging buildings, 65% 

of the total energy use was allocated to space heating since the majority of these buildings were 

dormitories and not 100% operational during the cooling season. Therefore, the energy consumed 

for space cooling along with the plug and process loads was reduced and resulted in heating 

became the dominant energy load. Aligned with significant impact of weather condition on trend 

of energy use, it was found that in this commercial building stock the share of space cooling from 

total energy use (0-12%) was fairly lower than that of space heating because Pittsburgh is located 

in a cold climate with severe winter weather and milder summers. Besides discrepancy in the 

simulated energy use pattern of different commercial use types, there were variations in the 

simulated energy use of buildings with similar use types.  

3.3.2 Variations in the Simulated Energy Use of Buildings with the Same Use Type Were 

Identified 

Frequency distributions for the annual simulated and actual EUIs and probability 

distribution functions (PDF) for annual simulated EUIs are shown in Figure 12a and 12b, 

accordingly. While the thermal zoning was similar for the buildings with the same use type, the 

simulated annual EUI varied for different buildings (see Figure 12b). This variation was because 



66 

the solar heat gain and heat loss were different for buildings due to the diversity of the orientation 

and WWR, which their influential role on the energy use of buildings are well-studied in the 

literature [130-132]. Thus, it can be inferred that considering the actual building orientation, 

obtained from geospatial data, and the WWR, measured through photogrammetry and image 

processing, likely improved the urban model’s accuracy. Moreover, incorporating the external wall 

material specific to each building and consequently wall composition, which impacts the heat 

transfer between buildings and unconditioned environment, was another reason for the variation 

of simulation results within one use type. 

 

Figure 12 Energy use pattern for different use types. a) Frequency distributions of annual simulated and 

actual EUIs for eight use types; b) PDF and frequency distribution of annual simulated EUIs. The average 

annual simulated EUI (Sim) and the average annual actual EUI (Actual) are shown in blue and red texts, 

respectively 
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Figure 12 (continued) 
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Figure 12 (continued) 

The PDF of the annual simulated EUI for seven types of buildings (excluding lodging 

buildings) followed a lognormal distribution as shown in Figure 12b. Buildings with lower EUIs 

had higher frequency than buildings with high EUIs. Another important finding to be addressed is 

that PDFs were right-skewed; therefore, the higher EUIs are more scattered. Furthermore, through 

comparing the frequency distributions of simulated and actual EUIs (Figure 12a), it can be 

concluded that the UBEM’s results were more concentrated whereas actual data were dispersed. 

This was mostly because when characterizing archetypes, the occupancy-related and 

mechanical/electrical systems parameters were assumed fixed for every archetype, which is a 

known limitation of UBEMs. Nonetheless in the real-world, these parameters differ for every 

individual building, consequently the actual EUI had a wider range. The simulated frequency 
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distributions of the public assembly and public order and safety buildings showed more similarity 

with actual frequency distributions compared to the rest of use types. This similarity was likely 

due to less complex mechanical systems and occupancy-related parameters of public assembly and 

public order and safety buildings. By examining the average annual EUIs, presented in Table 17, 

the difference between the overall simulated and actual energy use was not significant in this 

building stock. Thus, it pointed to the conclusion that despite inherent complexity and diversity of 

commercial buildings, the UBEM was able to provide accurate estimation of energy consumption.  

Table 17 Average annual simulated and actual energy use intensity for eight commercial use types and the 

overall studied building stock 

Use Type 
Average Annual EUI (kWh/m²) 

Simulated Actual 

Education 641 617 

Lodging 377 262 

Office 399 295 

Parking garage 74 46 

Public assembly 275 287 

Public order and Safety 318 290 

Warehouse 1302 1184 

Other 774 1198 

Overall 126 117 

3.3.3 The UBEM Was Validated According to Actual Data 

One of the contributions of this research was focusing on commercial buildings to advance 

the field. To examine the accuracy of the UBEM developed for solely commercial buildings 

without leveraging steady energy performance of residential buildings, it is imperative to validate 

results based on actual data. One path for validation is estimating and interpreting modeling error, 

which can be defined as deviation between simulated energy use and actual energy use [133]. 

Modeling errors can be generated from numerous sources from inaccuracy of simulation engine 
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and the uncertainty of input information, to simplification applied to various stages of developing 

the model. In this order, the percent error (PE) was estimated using the aggregated energy use of 

each use type. The mean PE of the annual EUI was estimated based on Equation 3-2, where Mean 

EUIaj was the average annual actual EUI for use type j, and Mean EUIsj was the average annual 

EUI obtained from the UBEM for use type j.  

𝑀𝑒𝑎𝑛 𝑃𝐸𝑗 =
|𝑀𝑒𝑎𝑛 𝐸𝑈𝐼𝑎𝑗 − 𝑀𝑒𝑎𝑛 𝐸𝑈𝐼𝑠𝑗  |

𝑀𝐸𝑎𝑛 𝐸𝑈𝐼𝑎𝑗
× 100 

(3-2) 

As shown in Table 18, the mean PE varied according to the use type. The low PE for the 

education buildings was likely because most of these buildings belonged to the University of 

Pittsburgh and consulting with building managers aided our team in characterizing archetypes with 

greater similarity to real-world operation. The error for lodging, other, and office buildings were 

almost similar and can be mainly traced to various operating schedules and internal equipment. 

Surprisingly, comparing average simulated EUI with the average actual EUI of parking garages 

showed considerable difference (63%). Ventilation systems were defined during the archetype 

characterization for parking garages. However, some of these buildings were designed with 

vehicular barrier walls instead of external walls and used natural ventilation rather than ventilation 

systems (e.g., fans). So, their actual energy use was much lower than the simulated values, but this 

difference did not have a considerable impact on overall model error since the energy use of 

parking garages were low compared to other buildings.  

Overall modeled PE was 7%, which is within acceptable range (1-15%) suggested by 

existing literature [97]. In addition to error estimation, two-sample Kolmogorov-Smirnov (KS) test 

was adopted to explore the similarity of distributions of simulated EUI and actual EUI. The benefit 

of the test is showing if the UBEM’s outcomes represent the commercial building stock of 
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Pittsburgh and whether the distributions of energy use, acquired from the model, can be utilized in 

future to scale up outcomes to the entire city or not. 

Table 18 Percent error (PE) and Kolmogorov-Smirnov (KS) test results for annual energy use intensity 

  KS test 

Commercial use type Mean PE (%) P-value 

0: null hypothesis 

not rejected; 1: null 

hypothesis rejected 

Education 4 0.071 0 

Lodging 44 0.012 1 

Office 36 0.156 0 

Parking garage 63 0.980 0 

Public assembly 4 0.429 0 

Public order and Safety 10 0.342 0 

Warehouse 10 0.771 0 

Other 35 0.474 0 

The KS test is a non-parametric test providing insights on the statistical difference of two 

samples [134]. The null hypothesis is that the two distributions are not statistically different, and 

it is not rejected when the p-value is greater than a specific significance level. Usually, the 

significance levels are assumed to be 0.05 or 0.01. The p-values for every use type were compared 

with a significance level of 0.05. According to the results of KS test, displayed in Table 18, the 

null hypothesis was not rejected for all the buildings except lodging buildings, which confirms that 

distributions of simulated and actual EUI are not distinct. The statistical difference for lodging 

buildings may be correlated with operating schedules and other occupant behaviors, which can be 

addressed through implementing a probabilistic approach during the lodging archetype 

characterization to define occupant-related parameters. However, such this approach first requires 

comprehensive behavioral data that is not currently available, and second is computationally 

intensive. Another solution is to randomly select a sample of the lodging buildings, conduct 

occupants’ surveys, and recalibrate lodging archetypes based on surveys in a future work. 

Regardless of minor difference for lodging buildings, from both error estimation and KS test 
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results it can be concluded that the UBEM represented the commercial stock of Pittsburgh and 

verified to be accurate. So, it can be further employed to evaluate EC strategies.  

3.3.4 Selected Energy Conservation Strategies Reduced Energy Consumption of the 

Commercial Stock by 2-5% 

For policy makers and urban planner, broad knowledge about impacts of energy efficiency 

programs on energy performance of existing buildings at scale is essential as it aids them in 

refining codes and standards as well as structuring regional retrofit guidelines and regulations. On 

this basis the UBEM was utilized to assess energy reduction or savings of the studied building 

stock in concert with EC strategies. As mentioned earlier, three low to medium cost EC strategies 

[135]; temperature set points adjustment, upgrading lighting systems to LEDs, and plug and 

process load reduction were selected and applied. The rest of this section is allocated to discuss 

findings.  

Raising cooling set point from 24°C to 25.5°C and lowering heating set point from 21°C to 

20°C was the first strategy with no cost. The new temperature set points are within temperature 

spectrums that provide comfortable indoor environment for occupants [135, 136]. The cumulative 

energy use of the building stock prior to adjusting set points was simulated as 521 GWh which 

reduced approximately 5% after changing set points to new values in the UBEM. In addition to 

the cumulative energy use of the stock, the total EUI averaged over the entire stock reduced by 4% 

(see Table 19). Also, the impact of this EC strategy on dominant end uses (space heating, space 

cooling, and lighting) was estimated, which showed that the reduction in average cooling EUI 

(27%) was much higher than other two end uses.  
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Table 19 Percentage of energy use change due to energy conservation strategies. Positive values represent 

reduction and negative values represent increase 

 

Cumulative 

energy use 

(%) 

Average 

total EUI 

(%) 

Average 

heating EUI 

(%) 

Average 

cooling EUI 

(%) 

Average 

lighting EUI 

(%) 

Temperature set 

points adjustment 
5 4 9 27 0 

Upgrading lighting 

systems to LEDs 
4 10 -3 11 72 

Plug and process load 

reduction 
2 2 -1 2 0 

Replacing traditional incandescent bulbs, which convert 90% of energy to heat, with Light 

Emitted Diodes (LEDs) is a well-known strategy to conserve energy. As reported by the 

Department of Energy, LEDs consume 4 to 5 times less energy than incandescent bulbs [137]. In 

order to examine the impact of this strategy on the building stock, lighting density (W/m2) was 

reduced between 50% to 75% for different buildings. Shifting to LEDs resulted in percent 

decreases for the average total EUI, average cooling EUI, and average lighting EUI as presented 

in Table 19. On the other hand, average heating EUI increased by 3%. This is because heat 

generated from lighting system decreased when using LEDs and heating system should run more 

to compensate for the heat. Ultimately heating demand was simulated to be increased.  

Utilizing more energy efficient internal equipment and appliances for example those with 

ENERGY STAR label would reduce plug and process loads. The amount of energy conserved 

varies greatly for different equipment and appliances. For instance, ENERGY STAR refrigerators 

and washers consume about 10% and 40% less energy, respectively than standard ones [138]. In 

this chapter, it was assumed that plug and process loads would reduce by 15% and energy savings 

was estimated. The average reductions for total and cooling EUIs were less than set point 

adjustment and upgrading lighting systems. Moreover, average lighting EUI was remained 

unchanged, as expected, and the average heating EUI showed a slight increase. When the plug and 
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process load decreases, amount of rejected heat by equipment and appliances reduces. Thus, 

heating system would run more to meet the demand of buildings. Evaluating the EC strategies at 

an urban scale provided insights on how energy ecosystem of urban buildings would alter, and 

which strategy yielded higher promise.  

3.4 Conclusions  

This chapter described a holistic and detailed modeling structure for developing a UBEM 

focusing on commercial buildings. With the aim of increasing reproducibility of future UBEMs, 

an archetype library with sources was provided, along with proposing and implementing an 

advanced imaging technique to retrieve envelope properties and reconstruct façades as well as 

LiDAR analysis. The major findings of this chapter are:  

• The WWRs between 0.11 and 1 had higher frequencies in the studied building stock (74%) 

when compared to CBECS buildings (44%). Therefore, using CBECS data, rather than 

measuring WWR based on photogrammetry and image processing framework, would have led 

to underestimating WWR. 

• The average annual EUI for different building use types was simulated between 74 kWh/m² 

and 1302 kWh/m². This range showed that energy use of commercial buildings was highly 

related to use type. 

• Validating the simulation results with actual data showed the overall acceptable PE of 7% for 

the studied building stock. The PE for different building use types were estimated between 4% 

(education buildings) and 63% (parking garages). Ventilation systems were considered when 

simulating energy use of parking garages; however, some of these buildings did not have 
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ventilation systems in real-world. Therefore, the average simulated EUI was somewhat higher 

than the average actual EUI for parking garages resulting in the highest PE compared to other 

use types. 

• The KS test results revealed that the distributions of simulated and actual EUI were similar for 

seven use types (p-values were greater than 0.05). However, the p-value for lodging buildings 

was calculated as 0.012 showing that the distributions of simulated and actual EUI were 

statistically different for this use type. This difference can be attributed to variable schedules 

and occupant behavior.  

• The average EUI of the studied building stock was reduced 2-10% as result of three EC 

strategies. All three EC strategies reduced the average cooling EUI (2-27%); whereas, 

upgrading lighting systems to LEDs and plug and process load reduction slightly increased the 

average heating EUI by 3% and 1%, respectively. These increases were because rejected heat 

from lighting systems and different appliances and equipment was declined; thus, heating 

demand increased. 

In addition to providing policy makers, urban planners, and utility companies with insights 

about trends of energy use, the results of this research can be used to provide guidance about EC 

strategies for the commercial building stock at urban scale. So, relying on this information policy 

makers and urban planners can advocate for converting EC strategies from voluntary actions to 

regulations. 

As part of future work, the model can be utilized to evaluate simultaneous implementation 

of the three EC strategies as well as more aggressive and high-cost strategies such as upgrading 

heating/cooling systems and improving envelope airtightness. Additionally, the environmental 

impact associated with energy consumption of the studied commercial buildings can be assessed 
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through employing the amount of different energy sources. There are some studies that have 

integrated building energy use mostly at individual building-level with climate change based on 

physics-based or machine learning approaches [40, 139, 140]. The UBEM can be employed to 

predict changes in energy use of buildings in Pittsburgh, Pennsylvania region due to weather 

variation caused by climate change. Furthermore, the resiliency of energy supply network in time 

of extreme weather events (i.e., heat wave and cold wave) can be evaluated by meshing the UBEM 

with extreme meteorological year data. Technical aspects that require improvement are accessing 

documents of all buildings in the city, that includes basic data regarding buildings and their energy 

use, together with automating the photogrammetry and image processing framework. Artificial 

intelligence (AI) methods have been used to automize image processing especially in medical 

fields; therefore, it is planned to resolve current challenges and implement AI methods for façade 

image processing at urban scale. 
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4.0 State of Building Material Stock Analysis for Effective Circular Economy Strategies 

The research presented here addresses objective four. Specifically, it answers the question 

‘Are there any gaps and barriers in the current literature about building MSA?’ The content of this 

chapter was published in a peer-reviewed journal: 

Mohammadiziazi, R., & Bilec, M. M. (2022 accepted). Building Material Stock Analysis 

Is Critical for Effective Circular Economy Strategies: A Comprehensive Review. Environmental 

Research: Infrastructure and Sustainability. 

4.1 Introduction 

Global material use is projected to increase from 89 Gt to 167 Gt between 2017 and 2060, 

along with the associated environmental impacts including carbon emissions from material 

production [141]. This projected increase in material use is due in part to the building sector that 

is needed to house and support our growing population [142]. The building sector in urban areas 

is responsible for the largest share of consumption of raw materials for producing construction 

materials and accumulated materials as well as significant amounts of waste generated during 

construction and demolition [2, 3, 142, 143]. In 2018, construction and demolition activities in the 

United States resulted in 600 Mt of waste which  was more than double the amount of generated 

municipal solid waste [144]. In light of climate change, resource depletion, and waste generation, 

there is an urgent need to develop and implement innovative strategies. 
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Replacing the current linear economic system (i.e., take, make, and waste economy) with 

a circular economy system has been suggested as a solution for climate change, resource depletion, 

and waste management with a focus on plastic pollution [145]. Circular economy strategies such 

as reuse, recovery, design for disassembly, and extending lifetimes are intended to retain the 

primary value of materials and products, close the material loop, reduce natural resource 

extraction, reduce waste, and mitigate the environmental impacts of buildings. However, the 

practical implementation of circular economy strategies for the building and construction sector 

can be difficult. While some have proposed utilizing buildings as urban mines and secondary 

resources, extensive knowledge and information about building stocks are first needed to realize 

the potential. Simply put, one cannot mine without knowledge of where the material is located, 

along with the type, quantity, quality, and value of the material [146]. Information about buildings 

in several countries including the United States is usually disparate, sparse, and granular [139, 147, 

148].  

To overcome the data challenge and compile the information about accumulated materials 

in existing buildings, material stock analysis (MSA) and material flow analysis (MFA) can be 

employed. MSA and MFA explore the material's dynamic and metabolism at different temporal 

and spatial scales and are known as support tools to foster circularity. In the last twenty years, 

analyzing the stock of built environments (i.e., buildings, roads, railroads, bridges, water and sewer 

pipelines, and other civil infrastructure [149]) has gained attention and several researchers 

proposed different methods at neighborhood-, city-, and country-scale to understand metabolisms 

and estimate the quantity of available materials in these structures. Augiseau and Barles [150] 

summarized proposed methods and findings of thirty-one publications, between 1998 and 2015, 

that analyzed the stock and flow of non-metallic minerals in the built environment including road 
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and railroad networks. They found that in many case studies recycling, reusing, or recovering 

current materials in the built environment may not meet the growing demand for buildings and 

infrastructure. For instance, using recycled construction waste as secondary material would 

decrease the need for new materials only by 7% in Vienna, AT. In another article, Lanau et al. 

[151] depicted a broad picture of the scope and approaches of 249 technical reports and articles 

covering both buildings and infrastructure, that were published prior to 2018. They found that 

cities and urban areas are responsible for the highest share of materials in the built environment 

and material accumulation in developed countries are generally higher than in developing 

countries. Goswein et al. classified methods, tools, and data of studies that investigated building 

materials, embodied energy, and emissions at the neighborhood or district level [152]. 

In this chapter, the gaps from the prior papers are addressed [150-152]. This work focuses 

on the MSA of buildings because buildings are highly diverse and have complex systems; 

therefore, they warrant close attention that may be overlooked when the entire built environment 

is aggregated. Unlike former review papers that narrowed their scope to specific materials [150], 

all types of metallic and non-metallic materials are included in this review. Moreover, this work 

covers the latest studies until 2021. The spatial scale is expanded to encompass studies at the 

neighborhood-, district-, city-, and country-level, which is referred to throughout this chapter as 

“at scale”. 

Circular economy strategies include the reuse and recovery of materials and components. 

The objective of this chapter is to advance the circularity of the building sector by analyzing the 

current body of literature with a focus on the MSA of buildings, and illustrate a new and updated 

paradigm in this area by accomplishing the following research goals: 

• Characterize the scope, system boundary, and resolution of existing studies.  
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• Explore and classify the approaches to quantify and spatialize building materials, along with 

the gaps and limitations. 

• Compile an inventory that contains the composition and quantity of materials in existing 

buildings in different parts of the world by extracting results from several studies. 

• Discuss technological and data barriers, and remaining gaps as well as opportunities to improve 

this emerging field.  

4.2 Method 

To achieve the research goals, the narrative review method was adopted. First, Scopus, a 

citation database developed by Elsevier, was used to search for publications that were published 

after 2000 and contained “building material stock”, “building material flow”, and “building stock 

assessment” terms in the title, abstract, or keywords with an emphasis on the peer-reviewed journal 

and conference publications. More than 11,000 publications were found in the Scopus database 

under the aforementioned criteria; however, several irrelevant articles were included. The abstracts 

of all publications were reviewed through a rigorous process and 62 articles, which were directly 

related to the focus of building material stock analysis at scale and were published between 2001 

and February 2021, were identified. The 62 articles were comprised of 59 research articles and 3 

review articles. First, 59 research articles were categorized based on their main approaches. 

Second, the articles were clustered according to detailed methods that were utilized. Further, every 

article was investigated to extract the required information for synthesizing scopes and boundaries, 

archetype and material intensity, approaches, and materials inventory. 
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4.3 Progress in Material Stock Analysis of Buildings 

The chronological trend of publication dates is displayed in Figure 13. This increasing 

trend can be attributed to recent interests in the circular economy, urban mining, resource reuse, 

innovations in Geographic Information Systems (GIS), aerial photogrammetry, and building 

disclosure policies (e.g., the state of California mandated buildings over 50,000 ft² to disclose basic 

building information like floor area as well as energy use data). As the area of building MSA 

evolves over time, the inclination to employ bottom-up approaches has risen (see Figure 13). In 

addition to the number of publications over time, the level of details has improved; for example, 

more types of material have been accounted in recent publications. 

 

Figure 13 Number of articles on building material stock analysis at scale classified based on different 

approaches since 2001. The latest access date from the Scopus database was February 7, 2021 

Of the 62 reviewed articles, 59 were research articles. The type and number of materials, 

that were included in these research articles, were investigated in accordance with their publishing 

year. As shown in Figure 14, in recent years researchers have been conducting more in-depth and 
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comprehensive analyses of buildings by incorporating more types of building material in the stock 

analysis compared to the early 2000s. Out of 27 studies published from 2018 to 2021 and 20 studies 

published from 2014 to 2017, 23 (85%) and 15 (75%) studies estimated the quantity or calculated 

material intensity of more than one type of building material, respectively. However, this 

percentage was lower for studies published in the early 2000s (see Figure 14). Two studies 

proposed frameworks for MSA without quantifying or spatializing building materials [153, 154]. 

Turan et al. [153] and Lismont et al. [154] elaborated on classifying buildings into representative 

buildings or archetypes using manual and k-means clustering algorithms, respectively. Three 

articles reported the total accumulated building materials in different cities and countries without 

providing more disaggregated results regarding the type of materials [155-157]. This investigation 

shows that higher resolution and more holistic building stock assessments have been growing over 

time.  

 

Figure 14 Temporal trend of articles with respect to the number of building materials, that were included in 

studies 
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4.4 Material Stock Analysis Scopes and Boundaries 

The distribution of stocks of building materials at scale is influenced by scopes and system 

boundaries of studies. Thus, imperative to understand the in-use or accumulated material stocks of 

buildings is characterizing scopes and system boundaries. Scope and system boundary can be 

categorized into four groups: 1) building function or use type, 2) building components, 3) spatial 

or geographic boundary, 4) temporal resolution.   

4.4.1 Building Function or Use Type 

As required by the majority of codes and standards, the architectural, structural, and energy 

designs of buildings are determined based on their function. As a result, the composition and the 

amount of materials are affected by the building function. The functional system boundaries of 

reviewed articles mostly contained residential buildings (42%) or a combination of residential and 

non-residential buildings (52%); few articles limited their scope to solely non-residential buildings 

[158, 159]. Although there was not a definite explanation for the lower numbers of non-residential 

buildings, some factors were likely related to the complexity and diversity of construction 

techniques and structural systems. There is a need for an emphasis on non-residential buildings 

especially because they have a shorter average life span compared to residential buildings, which 

increases the frequency of demolition and consequentially the availability of reusable and 

recoverable materials [160].   

While a consensus has been formed on categorizing building function into two broad 

categories (residential and non-residential), there has been less agreement about how to categorize 

building stock into different functional subcategories (e.g., non-residential municipal). There are 
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overlaps and similarities between several functional subcategories both for residential and non-

residential buildings, but distinct or disparate language was utilized by different articles; for 

example, institutional buildings may have similar functions as economic or education buildings. 

Nine residential and nineteen non-residential buildings subcategories were identified (see Table 

20). 

In several studies, residential buildings were clustered into single-family and multi-family 

based on the number of units. A few studies considered the adjacency of buildings (detached house, 

semi-detached house, and townhouse) [154, 161-165]. An important parameter is building height, 

which influences the quantity and composition of materials and consequently impacts the spatial 

distribution of accumulated materials in a region [159, 166]. For non-residential buildings, height 

was inherently considered in some of the subcategories; for example, industrial, retail, and 

warehouse buildings were usually considered as a single story, and office buildings were usually 

designed with multiple stories [159]. Despite the importance of height, it was rarely incorporated 

in defining residential subcategories and only a small number of studies acknowledged the 

difference between high-rise and low-rise residential buildings [162, 163, 165, 167]. As illustrated 

in Table 20, there is a notable disparity among different articles regarding language or 

terminologies that were utilized to describe functional subcategories. This disparity is a barrier to 

the reproducibility of building MSA research. To overcome this barrier, collective terminologies 

like the International Standard on Building and Civil Engineering Works Vocabulary can be 

employed to define functional subcategories [168]. In addition, using unified and coherent 

terminology enables businesses and companies to adopt the results of academic research for 

adaptive reuse (repurposing) of buildings based on their function. The building function categories 

and subcategories for all reviewed articles are provided in Table 20. 
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Table 20 Building function categories and subcategories for the reviewed articles. Note: factory, government, storage, and school and childcare facility 

are included as industrial, institutional, warehouse, and education subcategories, respectively 
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[161] 
Mollaei et al. 

(2021) 
                             

[162] 
Ajayebi et al. 

(2020) 
                             

[169] 
Bradshaw et al. 

(2020) 
                             

[170] Yang et al. (2020)                              

[171] Mao et al. (2020)                              

[172] Gao et al. (2020)                              

[173] 
Gontia et al. 

(2020) 
                             

[174] 
Lausselet et al. 

(2020) 
                             

[175] 
Lederer et al. 

(2020) 
                             

[143] 
Romero et al. 

(2020) 
                             

[176] Guo et al. (2020)                              

[163] 
Deetman et al. 

(2020) 
                             

[177] Tazi et al. (2020)                              
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Table 20 (continued) 

[164] 
Marinova et al. 

(2020) 
                             

[178] 
Gontia et al. 

(2019) 
                             

[154] 
Lismont et al. 

(2019) 
                             

[148] Arora et al. (2019)                              

[179] 
Miatto et al. 

(2019) 
                             

[180] 
Heeren et al. 

(2019) 
                             

[181] Mesta et al. (2019)                              

[182] Han et al. (2018)                              

[183] 
Gontia et al. 

(2018) 
                             

[2] 
Stephan et al. 

(2018) 
                             

[184] 
Cheng et al. 

(2018) 
                             

[185] 
Schiller et al. 

(2017) 
                             

[186] 
Condeixa et al. 

(2017) 
                             

[166] 
Kleemann et al. 

(2017) 
                             

[187] 
Stephan et al. 

(2017) 
                             

[159] 
Schebek et al. 

(2017) 
                             

[188] 
Mastrucci et al. 

(2017) 
                             

[189] 
Surahman et al. 

(2017) 
                             

[190] 
Schiller et al. 

(2017) 
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Table 20 (continued) 

[191] 
Kalcher et al. 

(2017) 
                             

[158] 
Ortlepp et al. 

(2016) 
                             

[192] 
Ortlepp et al. 

(2018) 
                             

[193] 
Zamora et al. 

(2016) 
                             

[167] 
Wiedenhofer et al. 

(2015) 
                             

[156] 
Sugimoto et al. 

(2015) 
                             

[155] 
Tanikawa et al. 

(2015) 
                             

[153] Turan et al. (2015)                              

[194] 
Reyna et al. 

(2015) 
                             

[195] Ergun et al. (2015)                              

[196] Han et al. (2013)                              

[197] Hu et al. (2010)                              

[198] Hu et al. (2010)                              

[199] 
Tanikawa et al. 

(2009) 
                             

[200] 
Lichtensteiger et 

al. (2008) 
                             

[165] 
Bergsdal et al. 

(2007) 
                             

[201] 
Hashimoto et al. 

(2007) 
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4.4.2 Building Components 

Building materials are found in structural components (e.g., roof and floor elements, 

columns, beams, wall panels) and non-structural components (e.g., roof and wall insulations, 

windows, non-bearing partitions, interior finishes, mechanical, electrical, and pluming (MEP) 

elements [202]). The obsolescence or recovery paths of structural components are different from 

those of non-structural components. The former, which are chiefly made from masonry, wood, 

concrete, and steel, usually become available at the end of a building’s lifetime [164, 203]. 

Although there is a growing interest among building professionals in industry and academia for 

reusing structural components and returning them to a service loop while preserving initial value, 

considerable shares are still recycled or discarded in landfills. Recycling of these components is 

either energy-intensive like steel or associated with significant downgrading like crushing concrete 

into aggregate for further use in recycled concrete and pavement. The challenge of reuse is linked 

to a lack of building standards and regulations for testing the integrity of used structural 

components, the complexity of transforming traditional structural design in a way that can 

incorporate mechanical and geometric properties of reclaimed components into the design process, 

and a lack of enterprises that can bridge the gap between deconstruction and new construction 

[204, 205]. On the other hand, non-structural components are easier to access, sort and handle 

upon deconstruction, which facilitates reuse. Further, these components such as MEP elements 

and windows are more frequently replaced during a building’s lifetime due to weather and 

utilization stresses, which make their adaptive reuse economically and environmentally beneficial 

[206]. The different obsolescence characteristics of structural and non-structural components point 
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to the necessity of specifying scope with respect to the type of components beyond summing up 

the volume or mass of materials when conducting material stock analysis [176].  

To this point, 80% of reviewed studies analyzed materials accumulated in both structural 

and non-structural components without differentiating between the two component categories. 

Few articles (19% of reviewed studies) constrained their system boundaries to structural 

components [162, 167, 171, 185, 191, 197, 198, 207-209], whereas only Stephan and 

Athanassiadis [2, 187] quantified and spatialized materials in non-structural components (i.e., 

floors, external walls, internal walls, windows, doors, roofs, pipes, wires) of Melbourne’s building 

stock. This evaluation reveals that future MSAs need to consider and distinguish between materials 

available from different components to enable appropriate planning for circular usage in alignment 

with the respective lifetimes. 

4.4.3 Spatial Boundary 

The total amount of accumulated materials within a region and the level of detail about the 

exact location of materials are impacted by the spatial boundary of a study. Six spatial boundaries 

(i.e., global, continent, country, city, district, neighborhood) in the current body of work were 

found. Deetman et al. [163] and Marinova et al. [164] developed global building materials models 

by using population and floor area per capita data and reported total accumulated building 

materials in the world. In one study, Wiedenhofer and colleagues [167] conducted a continent-

scale MSA and estimated concrete and minerals in residential buildings of twenty-five countries 

that formed the European Union at the time of the study. Twenty-four articles analyzed the material 

stock of buildings for fourteen countries located in Asia, Europe, and North America. The highest 

frequency of country-scale studies belonged to Germany (five studies [158, 185, 190, 192, 210]), 
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China (five studies [170, 196, 211-213]), and Japan (four studies [155, 201, 212, 214]) followed 

by Sweden (2 studies [173, 183]), Norway (2 studies [165, 215]), and Switzerland (2 studies [180, 

200]). Twenty-four articles quantified or spatialized building materials of thirty-four cities across 

the world. The inconsistency between the number of articles and the number of cities was because 

few articles explored more than one city [161, 162, 189, 208]. For example, Guo et al. [208] and 

Surahman et al. [189] calculated the quantity of materials in buildings in fourteen cities in China 

and two cities in Indonesia, respectively. Likewise, Mollaei et al. [161] estimated the building 

materials of Kitchener and Waterloo in Canada, and Ajayebi et al. [162] developed a model to 

draw the spatial distribution of bricks in building stocks of Manchester, Bradford, and Leeds in 

GB. Among city-scale research articles, Beijing, CN, Shanghai, CN, and Vienna, AT have been 

investigated by multiple studies. Finally, five and three articles limited their geographic scopes to 

districts [143, 156, 176, 193, 199] and neighborhoods [153, 174, 207], accordingly.  

The high variation in the spatial boundary of studies increase the difficulty when comparing 

and validating results. This variation also complicates the transferability of data and outcomes 

between different regions. A closer look at geographic location showed that the majority of studies 

(80%) were concentrated in European countries, Japan, and China, while 8% were conducted in 

North America, and the remaining studies (12%) located in Australia, Asia, and South America or 

covers the entire world (see Figure 15). Unfortunately, no studies were found in Africa. Note that 

a country-scale study by Fishman et al. [214], which included both U.S. and Japan, is considered 

in Japan and North America percentages. Figure 15 displays the number of articles in different 

countries that conducted building MSAs regardless of spatial boundaries. For example, as shown 

in Figure 15, three articles analyzed material stocks of buildings in the U.S. [193, 194, 214]; 

however, the spatial boundary of these articles varied. Fishman et al. [214], Reyna et al. [194], and 
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Marcellus-Zamora et al. [193] analyzed material stocks of the entire U.S. (country-scale), Los 

Angeles (city-scale), and University City in Philadelphia (district-scale), respectively. 

 

Figure 15 Number of articles in different countries with various spatial boundaries. Note: few articles 

analyzed building material stocks in more than one country 

4.4.4 Temporal Resolution 

While building stocks are inherently dynamic in relation to time due to variations in 

demand for new buildings, recurrent renovations, and maintenance during a lifetime, and 

demolitions at the end of life, materials have been analyzed both statically and dynamically. The 

temporal resolution affects the selected approach and outcomes of MSA, which is thoroughly 

discussed in section 4.6. In a static MSA, a time interval (e.g., one year) is selected and building 

material stock is represented for the chosen interval. Although the static approach does not provide 

insight into the trend of material accumulation over time, it does not suffer from the uncertainty 

associated with the inaccuracy of historical data or future projections. Several studies (32% of 

reviewed articles) utilized the static approach to estimate material stocks [143, 153, 154, 158, 159, 

162, 169, 171, 177, 188, 192, 200, 208]. 
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The dynamic approach accounts for the changes in stocks throughout time and can be 

classified into retrospective and prospective studies [150, 151]. Retrospective studies (34% of 

reviewed articles) employed either available maps or historical data to characterize building stock 

from past to present. Few retrospective studies analyzed building stocks by reconstructing GIS 

maps based on old sketches, paper maps, aerial images, and digital maps [156, 157, 176, 199]. On 

the other hand, several studies relied on historical data (e.g., population, floor area) [148, 155, 166, 

173, 175, 178, 179, 181, 182, 193, 194, 196, 198, 214]. Prospective studies (8% of reviewed 

articles) predicted and characterized building stocks in the future [2, 161, 174, 180, 186, 187]. In 

addition to these dynamic approaches, retro-prospective studies investigated the building 

material’s metabolisms from the past to future [163-165, 167, 172, 189, 197, 201, 207, 209]. The 

temporal span of dynamic MSA ranged from a few years to centuries. In one example, Marcellus-

Zamora and colleagues [193] developed and validated a dynamic model to understand the material 

stock and flows of a neighborhood over eight years. However, Muller [209] assessed input flows, 

in-stock, and output wastes of concrete in the housing stock of the Netherlands between 1900 and 

2100 through defining different scenarios. 

4.5 Building Archetype and Material Intensity  

Diversity in composition and intensity of materials among buildings are noticeable because 

of heterogeneity in design and availability of materials in different parts of the world and during 

various time periods. Nonetheless, obtaining and employing detailed data about materials for every 

individual building at scale is relatively difficult or not likely feasible. To overcome this challenge, 

the common practice is to define archetypes or typologies that represent groups of buildings with 
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similar characteristics regarding materials. To classify a building stock into archetypes, the time 

of construction was prevalently utilized in the reviewed articles (see Table 21). In addition, other 

categories for archetype classification were building function, structure type, renovation state, 

urban vs rural, building height, floor counts, construction cost and lot size, and climate zone. As 

displayed in Table 21, the number of archetypes varied significantly. Classifying a building stock 

into more archetypes allows for capturing and integrating the diversity of buildings to a higher 

degree, which enhances accuracy. In addition to archetype classification, material intensity 

determination is an important factor. 

Material intensity is one of the key parameters in MSA and indicates the quantity of a 

certain material per unit of a building such as mass per floor area, mass per building, mass per 

volume of a building, volume per building, and volume per volume of a building. More definite 

determination of material intensity for archetypes increases the accuracy of results and mitigates 

uncertainty. As shown in Table 21, several studies relied on previous literature as well as building 

standards, handbooks, and manuals for material intensity. The drawback of dependency on 

previous literature is that it may cause uncertainty propagation. Identifying and investigating 

sample buildings, that were representative of archetypes, through construction documents, life 

cycle assessment (LCA) inventories, and on-site inspection were other methods to determine 

material intensity. Moreover, data embedded in Building Information Models (BIMs) can be 

retrieved and employed to estimate the material intensity of sample buildings [153]. One-third of 

the articles in Table 21 evaluated sample buildings; however, straightforward procedures for on-

site inspection and extracting material information from construction documents of old buildings 

were not described in these articles.  
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Advancements in determining the material intensity of building stocks require systematic 

collection and documentation of design and construction data to create comprehensive and 

publicly available inventories. Instituting policies and regulations that instruct design firms and 

construction companies to report the composition and quantity of materials in a building will help 

the creation of such inventories. In addition, leveraging technologies like BIM will not only 

facilitate documenting materials but also enable considering materials like plastics that are 

currently less considered in MSA of buildings. In Table 21, categories that were utilized for 

classifying archetypes, the number of archetypes, and how material intensity was determined as 

well as the units of material intensity are summarized. This table can be adopted for assessing the 

transferability of material intensity in different regions as well as employing material intensities in 

existing articles for future research.  
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Table 21 Summary of archetype classification and material intensity in reviewed articles 

R
ef

er
en

ce
 

Author/s 

(year) 

Archetype Classification Material Intensity for Archetypes 

Time of Construction Other Categories No. 
Determination 

Methods/Resources 
Unit 

[161] 
Mollaei et al. 

(2021) 

- Before 1930 

- 1930 – 1960 

- 1961 – 1975 

- 1976 – 1999 

- 2000 – 2018  
- Building function 15 a 

- Existing literature [183, 

194, 195, 216, 217] 

- Expert opinion  

kg/m² 

[162] 
Ajayebi et al. 

(2020) 

- Before 1850 

- 1851 – 1945 

- 1946 – 1970 

- After 1971  

- Building function 24 
- Building standard, 

handbook, manual 
#brick/m² d 

[169] 
Bradshaw et 

al. (2020) 
--- 

- Structure type (concrete 

1, concrete2, concrete 3, 

steel, stone, wood, wood-

concrete) 

7 

- Evaluation of 303 

sample buildings via on-

site inspections 

kg/m² 

[170] 
Yang et al. 

(2020) 

- 1949 – 1959  

- 1960 – 1979 

- 1980 – 1989 

- 1990 – 1999 

- 2000 – 2015 

- Building function 

- Structure type (brick-

concrete, brick-wood, 

steel, steel-concrete, 

wood) 

41 a 

- Evaluation of 813 

sample buildings via 

existing literature h 

t/100m² 

[171] 
Mao et al. 

(2020) 

- Before 1980 

- 1981 – 2000 

- 2001 – 2018   

- Building function 36 

- Evaluation of 1800 

sample buildings via 

construction documents, 

existing literature, and 

expert opinion h 

kg/m² 

[172] 
Gao et al. 

(2020) 

- Before 1949 

- 1950 – 1959  

- 1950 – 1979 

- 1950 – 2010 

- 1950 – 2100 

- 1960 – 1979 

- 1965 – 1979 

- 1980 – 1989 

- 1980 – 1999 

- 1990 – 1999 

- After 2000 

- Structure type (adobe-

wood, brick-concrete, 

brick-wood, reinforced 

concrete)  

- Urban vs rural 

21 a 

- Building standard, 

handbook, manual 

- Existing literature [182, 

211, 218-220] 

kg/m² 
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Table 21 (continued) 

[173] 
Gontia et al. 

(2020) 

- Before 1930 

- 1931 – 1950 

- 1951 – 1980 

- After 1981 

- Building function 8 - Existing literature [183] kg/m² 

[174] 
Lausselet et al. 

(2020) 

- 2019 – 2020 

- 2021 – 2025 

- 2026 – 2030 

- 2031 – 2080  

- Building function 

- Renovation state 
16 a - Construction documents kg/m² 

[175] 
Lederer et al. 

(2020) 

- Before 1919 

- 1919 – 1945 

- 1946 – 1980 

- 1981 – 2000 

- 2001 – 2015 
- Building function 20 

- Evaluation of 66 sample 

buildings via construction 

documents, LCA 

inventory, on-site 

inspection 

kg/m³ 

[143] 
Romero et al. 

(2020) 

- Before 1919 

- 1919 – 1939 

- 1945 – 1964 

- 1965 – 1983 

- 1984 – 1992  
- Building function 10 

- Evaluation of 12,043 

sample buildings via 

existing literature [221] 

kg/m² 

kg/m³ 

[176] 
Guo et al. 

(2020) 

- Before 1950 

- 1960 – 1979 

- 1980 – 1989 

- 1990 – 1999 

- After 2000 

- Building function 

- Structure type (brick-

concrete, brick-wood, 

reinforced concrete) 

24 a - Existing literature [170, 

220] 
kg/m² 

[163] 
Deetman et al. 

(2020) 
--- 

- Building function 

- Urban vs rural 
12 - Existing literature h kg/m² 

[177] 
Tazi et al. 

(2020) 

- Before 1919 

- 1919 – 1945 

- 1946 – 1970 

- 1971 – 1990 

- 1991 – 2005 

- 2006 – 2013  

- Building function 

- Structure type (brick, 

concrete, stone, wood) 

21 a - Existing literature h kg/m² 

[164] 
Marinova et 

al. (2020) 
--- - Building function 4 - Existing literature h kg/m² 

[178] 
Gontia et al. 

(2019) 

- Before 1920 

- 1921 – 1950 

- 1951 – 1980 

- After 1981 

- Before 1930 

- 1931 – 1980 

- After 1981b  

- Building function 17 

- Evaluation of 15 sample 

buildings via construction 

documents  

- Existing literature [183] 

kg/m² 

[207] 
Wang et al. 

(2019) 
--- 

- Structure type (brick-

concrete, steel) 
2 

- Existing literature [222-

224] 
kg/m² 
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Table 21 (continued) 

[208] 
Guo et al. 

(2019) 
--- 

- Structure type (brick-

concrete, reinforced 

concrete) 

2 - Existing literature [219] kg/m² 

[148] 
Arora et al. 

(2019) 
--- - Building function 1 

- Evaluation of 5 sample 

buildings via construction 

documents 

kg/m² 

[179] 
Miatto et al. 

(2019) 

- Before 1902 

- 1903 – 1954  

- 1955 – 1969 

- 1970 – 1981 

- 1982 – 1996 

- 1997 - 2007 

- Building function 

 
30 

- Building standard, 

handbook, manual 

- Existing literature h 

kg/m² 

[180] 
Heeren et al. 

(2019) 
NS NS NS - Existing literature [225] kg/m³ c 

[181] 
Mesta et al. 

(2019) 
--- 

- Building function 

- Structure type (adobe, 

brick, reinforced concrete) 

3 

- Evaluation of 120 

sample buildings via 

building standard, 

construction documents, 

expert opinion, on-site 

inspection 

kg/m² 

[182] 
Han et al. 

(2018) 

- Before 1960 

- 1960 – 1980 

- 1980 – 2000 

- 2000 – 2010   

- Structure type (brick-

concrete, reinforced 

concrete) 

8 
- Existing literature [213, 

220, 226] 
kg/m² 

[183] 
Gontia et al. 

(2018) 

- 1880 – 1890 

- 1880 – 1900 

- 1890 – 1900 

- 1890 – 1910 

- 1900 – 1910 

- 1910 – 1920 

- 1920 – 1930  

- 1930 – 1940 

- 1930 – 1950 

- 1940 – 1950 

- 1940 – 1960 

- 1950 – 1960 

- 1960 – 1970 

- 1960 – 1980 

- 1970 – 1980 

- 1980 – 1990  

- 1980 – 2000 

- 1990 – 2000 

- 2000 – 2010 

- Building function 

- Structure type (brick, 

brick-wood, concrete, 

wood) 

46 a 

- Evaluation of 46 sample 

buildings via construction 

documents  

kg/m² 

[2] 
Stephan et al. 

(2018) 

- Before 1900 

- Before 1960 

- Before 1980 

- 1901 – 1960 

- 1961 – 1970 

- 1961 – 2015 

- 1971 – 1980 

- 1981 – 2000 

- 1981 – 2006 

- 2001 – 2006 

- 2007 - 2015 

- Building function 

- Building height (≤10m, 

>10m and ≤18m, ≥19m) 

48 a - Existing literature [227, 

228] 

kg/m 

kg/m² 

kg/m³ 

kg/#comp-

onent 
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Table 21 (continued) 

[184] 
Cheng et al. 

(2018) 
--- 

- Building function 

- Structure type (brick, 

reinforced brick, 

reinforced concrete, steel, 

steel-reinforced concrete, 

wood, other) 

10 
- Existing literature [229, 

230] 
kg/m² 

[185] 
Schiller et al. 

(2017) 

- Before 1918 

- 1919 – 1948 

- 1949 – 1968 

- 1969 – 1990 

- After 1990  
- Building function 16 a - Existing literature [231, 

232] 
t/building 

[186] 
Condeixa et 

al. (2017) 
--- 

- Building function 

- Floor counts 
4 - Existing literature g kg/m² 

[166] 
Kleemann et 

al. (2017) 

- Before 1918 

- 1919 – 1945 

- 1946 – 1976 

- 1977 – 1996 

- After 1997 
- Building function 15 

- Evaluation of 66 sample 

buildings via construction 

documents, LCA 

inventory, on-site 

inspection 

- Existing literature h 

kg/m³ 

[187] 
Stephan et al. 

(2017) 

- Before 1900 

- Before 1960 

- Before 1980 

- 1901 – 1960 

- 1961 – 1970 

- 1961 – 2015 

- 1971 – 1980 

- 1981 – 2000 

- 1981 – 2006 

- 2001 – 2006 

- 2007 - 2015 

- Building function 

- Building height (≤10m, 

>10m and ≤18m, ≥19m) 

48 a - Existing literature [227, 

228] 

kg/m 

kg/m² 

kg/m³ 

kg/#compo

nent 

[159] 
Schebek et al. 

(2017) 

- Before 1918 

- 1919 – 1948 

- 1949 – 1957 

- 1958 – 1968 

- 1969 – 1978 

- 1979 – 1994 

- 1995 – 2001 

- After 2002 

- Building function 96 

- Evaluation of 19 sample 

buildings via construction 

documents, on-site 

inspection  

kg/m³ 

[188] 
Mastrucci et 

al. (2017) 

- Before 1949 

- 1949 – 1968 

- 1969 – 1994 

- After 1994  

- Building function 8 

- Building standard, 

handbook, manual 

- Existing literature [233, 

234] 

- Expert opinion 

kg/m² c 

[189] 
Surahman et 

al. (2017) 
--- 

- Construction cost and lot 

size 
3 - On-site inspection kg/m³ 
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[190] 
Schiller et al. 

(2017) 
--- - Building function 2 NS NS 

[191] 
Kalcher et al. 

(2017) 

- Before 1919 

- 1919 – 1944 

- 1945 – 1960 

- 1961 – 1970 

- 1971 – 1980 

- 1981 – 1990 

- 1991 – 2000 

- 2000 - 2010 

- Building function 8 
- Existing literature [235-

237] 
m3/m3 e 

[158] 
Ortlepp et al. 

(2016) 
--- - Building function 7 

- Evaluation of 252 

sample buildings via 

existing literature 
[238, 239] 

t/m² 

[192] 
Ortlepp et al. 

(2018) 

- Before 1918 

- 1919 – 1948  

- 1949 – 1978 

- 1979 – 1990 

- After 1991 
--- 5 

- Evaluation of 36 sample 

buildings via construction 

documents 

t/m² 

[193] 

Marcellus-

Zamora et al. 

(2016) 

--- - Building function 6 
- Existing literature h  

- Expert opinion 
kg/m² 

[167] 
Wiedenho-fer 

et al. (2015) 
--- 

- Building function 

- Structure and envelope 

type 

- Climate zone 

72 
- Existing literature [233, 

240] 
Mt/building 

[156] 
Sugimoto et 

al. (2015) 

- 1959 

- 1971 

- 1974 

- 1981 

- 2000 

- Structure type 

(reinforced concrete, steel, 

wood) 

- Floor counts 

20 - Existing literature [241] kg/m² 

[155] 
Tanikawa et 

al. (2015) 
--- 

- Structure type 

(reinforced concrete, steel, 

steel-reinforced concrete, 

wood, other)  

5 - Existing literature [242] kg/m² 

[153] 
Turan et al. 

(2015) 
--- --- 6 

- Evaluation of sample 

buildings via BIM model f 
kg/m² 

[194] 
Reyna et al. 

(2015) 

- Before 1950 

- 1950 – 1990 

- After 1990 

- Building function 42 
- Existing literature [217, 

243, 244] 
NS 

[195] 
Ergun et al. 

(2015) 

- Before 1930  

- 1931 – 1960 

- 1961 – 1975  

- 1976 – 2000 

- After 2001 
--- 5 

- Evaluation of sample 

buildings via construction 

documents f 
m³/building 
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[196] 
Han et al. 

(2013) 

- 1980s 

- 2000s 
- Urban vs rural 4 

- Existing literature [213, 

245, 246] 
kg/m² 

[197] 
Hu et al. 

(2010) 
--- 

- Structure type (brick-

concrete, concrete, 

shearing-force) 

3 - Existing literature [246] kg/m² 

[198] 
Hu et al. 

(2010) 
--- 

- Structure type (brick-

concrete, steel-concrete) 
2 

- Evaluation of sample 

buildings via construction 

documents f 
t/100m² 

[199] 
Tanikawa et 

al. (2009) 

--- 

- Building function 

- Structure type (brick, 

reinforced concrete) 

3 - Existing literature [247] kg/m² 

--- 

- Building function 

- Structure type 

(reinforced concrete, steel, 

wood) 

4 
- Building standard, 

handbook, manual 
kg/m² 

[200] 

Lichtenste-

iger et al. 

(2008) 

- 1900 – 1925 

- 1926 – 1950 

- 1951 – 1975 

- 1976 – 2000  

- Building function 16 

- Evaluation of 11 sample 

buildings via construction 

documents, on-site 

inspection  

t/building 

[165] 
Bergsdal et al. 

(2007) 

- Before 1900 

- 1901 – 1920 

- 1921 – 1940 

- 1941 – 1945 

- 1946 – 1960 

- 1961 – 1970 

- 1971 – 1980 

- 1981 – 1990 

- 1991 – 2001 

- Building function 45 - Expert opinion  kg/m² 

[201] 
Hashimoto et 

al. (2007) 
--- 

- Building function 

- Structure type 

(reinforced concrete, steel, 

steel-reinforced concrete, 

wood) 

8 
- Existing literature 
[248] 

t/m² 

[209] Muller (2006) --- --- --- 
- Amount of produced 

material per floor area 
t/m² 

a Not all categories exist in every time period.  

b 3 time periods for non-residential buildings and 4 time periods for residential buildings.  

c Material intensities were determined for every component (e.g., roof) of every archetype.  
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d Material intensity (#brick/m²) represents the number of bricks per unit area of an external wall.  

e Material intensity (m3/m3) represents the volume of timber in m3 per gross volume of a building. 

f Number of sample buildings was not specified. 

g Books, databases, journal articles, or reports, which were used as existing literature, were not specified. 

h Several books, databases, journal articles or reports were used as existing literature. Refer to the article. 

LCA and NS refer to life cycle assessment and not specified, accordingly. 
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4.6 Approaches for Development of Material Stock Analysis 

A detailed review of articles revealed different approaches for developing MSA. As 

displayed in Figure 16, the approaches can be clustered into bottom-up, top-down, and remote 

sensing. While selecting an approach to conduct MSA depends on the objectives of a study as well 

as available data and tools, it has impact on how the results of MSA can be utilized to redirect 

entire or some fractions of materials to a resource loop. Therefore, it is important to summarize 

and critically assess the advantages and shortcomings of these approaches, especially from the lens 

of the circular economy. Figure 16 demonstrates a basic sketch for the modeling structure of 

different MSA approaches. The directions of arrows indicate the steps for developing an MSA 

model that starts from acquiring input parameters or variables and ends with meshing the 

parameters with material intensity.  
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Figure 16 Approaches for quantifying and spatializing building materials at scale. Note: Surface Area (SA), 

Floor Area (FA), and Population (pop) 

4.6.1 Bottom-Up Approaches 

Primarily, bottom-up approaches are used to quantify and geolocate materials by 

combining physical attributes of buildings (i.e., floor area, volume, surface area) with materials 

intensity. These approaches provide the opportunity to produce finer results (usually at the building 

level) compared to other approaches. While the development of bottom-up models is data intensive 

and laborious, recent progress in GIS with increased data transparency and mandates in cities and 

municipalities have facilitated the creation of these models. To obtain the physical attributes of 

buildings, distinct methods were proposed and tested, which are critically reviewed in the rest of 

this sub-section. 

Bottom-up
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FA Data

(FA/Story) 

(#of Story)
(FA/Story)

 Height

Component

-based

Approach

[143, 155, 156, 161, 169,

171, 176, 178, 181, 182, 193,

199, 207, 208, ]

[148, 158, 167, 173,

174, 184, 186, 190,

192, 194, 196, 198,

200, 201]

[163, 164, 165, 172,

197, 209, 211, 213,

215]

[214][157, 212]

[180, 189]

[2, 153, 162, 179,

187, 188]

[159, 166, 175,

191]
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Floor area from existing inventories. Some cities and countries have inventories containing 

either floor area of individual buildings [148, 174, 184, 186, 196, 201], that are coded based on a 

variety of identification (ID) tools such as property tax ID, or average floor area for different 

archetypes [173, 192, 194, 198]. Lausselet et al. [174] used the individual building floor area of an 

under-development neighborhood in combination with material intensity and quantified metallic 

and non-metallic materials. Similarly, Cheng et al. [184] and Condexia et al. [186] derived the 

floor area of every building from the Taipei City Construction Management Office and Rio de 

Janeiro Construction License databases, respectively to estimate accumulated materials at the city-

scale. Hashimoto and colleagues [201] obtained the floor area of individual buildings from the 

Fixed Asset Prices Report and utilized it in conjunction with materials intensity to estimate the 

total materials embedded in the Japanese building stock. Gontia et al. [173] derived both the 

average usable floor area for every archetype and the number of buildings under different 

archetypes from national databases. Through multiplying the usable floor area and the 

corresponding number of buildings, the total floor area and further material stock of Sweden’s 

residential buildings were calculated [173]. Using average floor area per archetype inhibits 

geolocating or mapping materials at building-level that is important to efficiently recirculate 

materials to consumption loop through different means (e.g., reuse, recycle, repurpose). Also, it 

causes over- or under-estimation of floor area, which exacerbates uncertainty of estimated 

materials.  

Besides data about floor area, there are inventories or databases that contain the number of 

buildings. Wiedenhofer et al. [167] and Lichtensteiger and Baccini [200] extracted the number of 

buildings per archetype from available databases in European Union and Switzerland, accordingly. 

The former compiled the data from multiple sources (i.e., Eurostat, European Housing Statistics 
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reports, and national databases of different European countries), and the latter obtained the data 

from a previous study [249]. In both studies, the number of buildings per archetype was multiplied 

by materials intensity in the form of mass per building of the corresponding archetype to estimate 

accumulated materials. Although incorporating the number of buildings per archetype resolved 

miscalculation due to using the average floor area of every archetype, in [167] floor area and in 

[200] floor area and structure type were not included for classifying archetypes and determining 

the material intensity, respectively (see Table 21). Thus, materials intensity in both studies did not 

reflect the influence of the diversity of building size or structure type on materials quantity and 

composition.  

Floor area from GIS analysis. As displayed in Figure 16, floor area per story has been 

commonly employed in bottom-up models. This parameter is defined as the area of a representative 

polygon of a building and is obtainable from GIS databases. Utilizing the areas of polygons can 

provide two advantages. First, information about materials (i.e., amount and composition) can be 

geolocated at a building-level. The geolocation at this fine-scale allows local businesses and 

companies to plan for less destructive demolition and handling, sorting, storing, and trade of 

components and materials. Second, GIS-based software platforms like ArcMap offer drawing and 

geometric calculation tools. These tools enable the refinement of the representative polygons to 

match the real-world shape of buildings and a more accurate estimation of the polygon areas of 

the buildings.  

Several studies obtained the floor area of every building in studied regions through 

multiplying floor area per story by floor counts (number of stories for a building), which were both 

available via GIS data of cities and countries [155, 161, 171, 182, 199, 207, 208]. For China, this 

method was adopted for many cities (e.g., Beijing, Shanghai) and the estimated floor area of 
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individual buildings was combined with the material intensity to quantify material stock [171, 182, 

207, 208]. Tanikawa and colleagues [155, 199] merged current digital maps (in GIS format) with 

old aerial photographs, paper maps, and ground-level photographs to construct a 4-dimensional 

GIS database of Japan and retrieve floor area per story and floor counts of buildings. Further, floor 

area per story was multiplied by floor counts and the material intensity to quantify and spatialize 

materials throughout time. The 4-dimensional GIS method, which was first introduced by 

Tanikawa, allowed for synthesizing time as the 4th dimension into GIS analysis and tracking 

materials over time. In addition, material geolocation offered the ability to draw the spatial 

distribution of materials across a region; for example, Tanikawa showed that 80% of building 

materials were concentrated in 20% of land in Japan, mostly in metropolitan areas [155]. In some 

cases, the floor counts were not readily available in GIS databases; thus, different methods have 

emerged to resolve this shortcoming.  

Sugimoto et al. [156] conducted shadow analysis based on aerial images to estimate floor 

counts and complete the GIS database of a residential stock at the district-level. The accuracy of 

shadow analysis is tied to the quality of images and varies from image to image [250]. Moreover, 

the feasibility of applying this method to a larger scale or dense metropolitan area is not clear. 

Marcellus-Zamora and colleagues [193] utilized images from Google Earth’s Street View to 

retrieve floor counts of new buildings in their studied region. For older buildings, with available 

height information in GIS database, the authors converted individual buildings’ heights to floor 

counts assuming a floor-to-floor height of 3.6 m [193]. Similarly, Guo et al. [176] converted 

heights to floor counts based on a 3.5 m floor-to-floor height assumption. Another study 

determined floor-to-floor height according to building function [17]. Other articles used simple 

assumptions regarding floor counts to estimate total floor area and quantify materials [169, 178]. 
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Acquiring floor counts through manual processing of aerial or street-level images is practical at a 

small spatial scale or for a limited number of buildings like [193]; however, implementing this 

strategy for a city or country requires automation of the process using artificial intelligence 

methods [251]. 

Some articles calculated the average floor area of archetypes via multiplying the average 

floor area per story by the average floor counts for every archetype. For example, Romero et al. 

[143] estimated the average floor area of ten archetypes (see Table 2) for a district located in 

London, GB, and quantified accumulated timber in residential buildings. Likewise, Mesta and 

colleagues [181] measured the amount of concrete, timber, brick, steel, and other materials in 

Chiclayo, PE’s residential sector. Incorporating average values for archetypes instead of values for 

every individual building streamlines the complexity of the process and lessens computational 

challenges, but it may compromise the accuracy of outcomes.  

Volume from GIS analysis. The height of a building impacts the fraction of in-use materials 

[159]. For instance, a one-story building (20L×20W×4H) has an equal floor area to a two-story 

building (20L×10W×4H); however, it contains a double amount of roofing materials and 33% less 

external wall materials. While height sometimes was implicitly considered in building function 

and consequently in the archetype classification of several studies, few articles progressed further 

and directly included height in the analyses [159, 166, 175, 191]. This method has been particularly 

popular in Austria and Germany. For Vienna, AT, floor area per story, and the height of individual 

buildings were obtained from the Municipal Department’s GIS database and buildings’ volumes 

were estimated [166, 175]. Combining with materials intensity (mass per volume of a building), 

the magnitude of several metallic and non-metallic materials was calculated and mapped. Applying 

this method at a country-scale, Kalcher et al. [191] multiplied the average floor area per story of 
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different archetypes, obtained from the Austrian Statistical Office, by the average height (2.5 m or 

3 m). The volume of archetypes was combined with the number of buildings and material intensity 

of timber for the corresponding archetype to calculate accumulated timber in Austrian’s residential 

stock. The major barrier confronting the future of this method is that use of volume-based materials 

intensity is currently infrequent, as shown in Table 21. Therefore, materials intensity may not be 

transferred and used for building stocks that are less similar to building stocks, for which volume-

based materials intensity are available. 

Volume and surface area of components from GIS analysis. Geometric tools in GIS 

software platforms enable the calculation of surface area or volume of building components (e.g., 

roof, external wall, window). Synthesizing surface area or volume with materials intensity of 

different components provides the opportunity to list the accumulated materials in different 

components. Thus, component-level material analysis aids in more efficient return of materials 

into the resource loop and allows for distinguishing between the recovery paths of materials that 

can be retrieved from various components. As an example, timber from beams has a different 

recovery path compared to timber retrieved from doors and windows. Although some studies 

combined the surface area or volume of components with their materials intensity, the similar 

materials from different components were summed up and reported in an aggregated fashion [2, 

153, 162, 179, 180, 187-189]. Therefore, the outcomes of these studies were not useful for 

identifying more circular obsolescence or recovery pathway with less downgrading based on 

building components. 
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4.6.2 Top-Down Approaches 

The top-down approaches are established based on either the relationship between driving 

forces (e.g., population, lifestyle, gross domestic product (GDP)) and building material stock [84] 

or economic and trade data [150]. The benefits of these approaches are that they are less data-

intensive compared to bottom-up approaches and they incorporate social- and economy-materials 

interactions. Hence, one is capable of employing these approaches to develop prospective 

materials stock models based on a variety of socio-economic scenarios in the future. Also, the 

conceptualizations that are illustrated by top-down models can be useful for policy making. 

A model, that used population, lifestyle, and material intensity as input variables, was first 

introduced by Muller [209] and later employed by several other researchers [163-165, 172, 197, 

211, 213, 215]. One of the metrics that represents lifestyle or living standards in a region is floor 

area per capita [252]. In Muller’s model, the average floor area per capita was multiplied by 

population to estimate the floor area of buildings; further, the floor area was multiplied by the 

material intensity and total accumulated materials in Netherlands building stock were estimated 

[209]. Deetman et al. [163] and Marinova et al. [164] applied the same methodology to quantify 

building materials in 26 regions across the world. Although this top-down method unlocks the 

capability of large spatial scale analysis (e.g., country-scale and global-scale), it lacks information 

about the location of materials in a region. In addition, the accuracy of floor area per capita as one 

of the key variables is uncertain. Another drawback is that the population and the floor area per 

capita are usually aggregated over an entire building stock rather than being classified based on 

archetypes; thus, the end outcomes (floor area and quantity of materials) may vary significantly 

from real-world quantities.  
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As explained above, another type of top-down approach was based on economic and trade 

data. Fishman and colleagues [214] estimated the in-stock wood, steel, metals (i.e., copper, 

aluminum, tin), and minerals (i.e., stone, sand, limestone, gravel, clay) of Japan and the United 

States utilizing domestic production, import, and export data obtained from two previous studies 

[253, 254]. They calculated the in-stock materials in year t by estimating consumption in year t 

(sum of domestic extraction and import minus export) and survived materials from previous years. 

While estimation of accumulated materials can be provided by this method, there are two 

shortcomings. First, the accuracy and certainty of results are tied to the quality of trade data. 

Second, the data is usually at a country-scale, which inhibits the ability to locate and map materials. 

4.6.3 Remote Sensing Approaches 

A few studies leveraged satellite imagery to account for the material stock of buildings 

[157, 212]. He et al. [157] selected 260 circular sample points (with a radius of 50 m) in Jinchang, 

CN. Through analyzing satellite images for sample points, the total accumulated materials in 

buildings were roughly estimated. In another study, Hsu et al. [212] explored the relationship 

between nighttime light images and the quantity of accumulated steel in buildings of four Japanese 

cities, obtained from a previous study. They developed a linear regression model to correlate 

nighttime light and steel in buildings. Further, the linear regression model was utilized in 

conjunction with nighttime light images of Taiwan, South Korea, and China to estimate 

accumulated steel in buildings of these countries. Although this remote sensing method is rapid 

and beneficial in providing a broad perspective of steel in buildings, it does not offer specific 

information essential for circular usage of steel upon deconstruction of buildings.  
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In summary, bottom-up models provide more in-depth information about available 

materials in buildings compared to other approaches as they offer opportunities for locating 

materials and component-level analysis. While top-down and remote sensing approaches are 

viable to understand the balance of materials in the building sector and to depict a broad 

perspective for policy makers, they lack detailed information, which is necessary for using 

stockpiled materials as secondary resources. 

4.7 Materials Inventory 

One of the goals of this chapter was to compile an inventory of the composition and 

quantity of materials. This inventory serves two purposes. First, it can be employed to develop a 

global marketplace or blockchain-based network for secondary building materials. Second, it 

enables the adoption of the current body of knowledge for understanding the distribution of 

materials in buildings and validating future studies. A total of fifteen materials and “Other” were 

found in thirty-eight of the reviewed papers (see Table 22). The rest of reviewed papers (twenty-

four) were not included in this inventory because of the following reasons: 1) they were review 

articles, 2) they did not estimate the quantity of materials, 3) they estimated the total material in 

the building stocks. There are a few details about the composition of materials in the inventory: 

• Although concrete is made from aggregate and cement, some papers estimated concrete, 

aggregate and cement, separately. 

• While one of the main ingredients of asphalt is aggregate, few papers reported aggregates 

separately. 
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• Minerals in construction include a wide range of materials. However, different papers 

categorized different materials as minerals. Also, some studies did not provide further 

specifications about what materials are considered as minerals. 

• “Other” included a variety of materials in different papers.  

In the class of papers that formed the materials inventory in Table 22, five papers solely 

focused on one material [143, 167, 197, 201, 209]. Twenty-eight papers reported that concrete or 

a combination of aggregate and cement had the highest mass compared to the rest of the materials. 

This statistic shows that researchers have paid special attention to concrete as one of the highest 

intensity materials in buildings. However, there are noticeable challenges, that require tremendous 

industrial, technological, and academic efforts. First, traditional concrete is one of the most 

essential building materials and the use of alternative materials with a lower level of degradation 

is currently less widespread in the construction industry. The second challenge is directly related 

to the circular economy. Upon demolition of a building, concrete components are usually crushed 

and used as aggregate in various forms like recycled concrete; thus, they typically do not retain 

the original value. Although recycled concrete reduces waste and slows the resource loop, it does 

not completely prevent resource depletion because new cement and additives are needed. 

Strategies like reusing and repurposing concrete components are nascent and need substantial 

research efforts to become industrialized. The integrity of recovered concrete components, 

disassembling, and shipping process along with the structural design of new buildings based on 

dimensions and specifications of recovered components are the roadblocks to reusing and 

repurposing these components.  
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Table 22 Mass of materials estimated and reported by the reviewed papers. The unit is in million metric ton. Note: NBHD and NS are abbreviations for 

neighborhood and not specified, respectively 

R
ef

er
en

ce
 

Author/s 

(year) 

Spatial 

Boundary 
Country 

Year 

of 

MSA C
o

n
cr

e
te

 

W
o

o
d

 

B
ri

ck
 

G
y

p
su

m
 

A
g

g
re

g
a

te
 

A
sp

h
a

lt
 

S
te

el
 

L
im

e
 

G
la

ss
 

C
em

en
t 

In
su

la
ti

o
n

 

A
lu

m
in

u
m

 

C
o

p
p

er
 

M
in

er
a

ls
 

P
la

st
ic

s 

O
th

er
 

[161] 
Mollaei et al. 

(2021) 
City CA 2018 15 3.5 5.5 2 8.5 0.5 1.5          

[169] 
Bradshaw et 

al. (2020) 
Country AG 2004 2.9 0.2   1.2  0.4          

[171] 
Mao et al. 

(2020) 
City CN 2018  6.9 331.7  1233.9  42.6   632      23.2 

[172] 
Gao et al. 

(2020) 
City CN 2020 165 6 70 4  1 15 5 4        

[173]  
Gontia et al. 

(2020) 
Country SE 2017  35.04 35.04  43.8  52.56       249.66  26.28 

[175] 
Lederer et al. 

(2020) 
City AT 2015 155.9 6.7 127.3    5.9  0.5  0.6    0.4 47.8 

[143] 
Romero et al. 

(2020) 
District GB 2016  0.1               

[176] 
Guo et al. 

(2020) 
District CN 2018  0.4 4.7  15.8  0.9 0.7 0.1 3.6       

[163] 
Deetman et 

al. (2020) 
World  2020 286427 11516     16748  2269   1395 340    

[164] 
Marinova et 

al. (2020) 
World  2018 243000 10200     12000  1780   1200 190    

[178] 
Gontia et al. 

(2019) 
City SE 2016  2 5.8  12.3 5.5 4.3       29.7  1.9 

[207] 
Wang et al. 

(2019) 
NBHD CN 2020 0.1  0.1              

[148] 
Arora et al. 

(2019) 
Country SG 2016 125.7      6.5          

[179] 
Miatto et al. 

(2019) 
City IT 2007 13.7 0.7 17.6    0.9         10 

[180] 
Heeren et al. 

(2019) 
Country CH 2015 527 31 203    17    17   276  2 

[181] 
Mesta et al. 

(2019) 
City PE 2007 14.1 0.2 5.6    0.4         4.2 
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Table 22 (continued) 

[182] 
Han et al. 

(2018) 
City CN 2010  5 95  330  20 10 2.4 70       

[184] 
Cheng et al. 

(2018) 
City TW 2014 150.1 2.2 15.3    15.5  0.2   0.1     

[186] 
Condeixa et 

al. (2017) 
City BR 2010 51.7 4.3 1.9  13.2  2.3 1.5 0.1 3.2     0.02 0.49 

[166] 
Kleemann et 

al. (2017) 
City AT 2013 152 7.4 129.2    5.9     0.1 0.1 30.4 0.6 55.2 

[159] 
Schebek et al. 

(2017) 
City DE 2011 0.7 0.0 0.3    0.1          

[188] 
Mastrucci et 

al. (2017) 
City LU NS 1.1 0.1 1.6    0.1         0.6 

[189] 
Surahman et 

al. (2017) 

City ID 

2012 

48 14.1 45.9 0.9 51  3   10.8      126.2 

City ID 16 5.2 14.8 0.1 15.4  1   3.3      38.3 

[190] 
Schiller et al. 

(2017) 
Country DE 2010 6584 328 2128 168   883  331     4747 226 55 

[158] 
Ortlepp et al. 

(2016) 
Country DE NS 2492 152 1325    532    59     2222 

[192] 
Ortlepp et al. 

(2018) 
Country DE 2010 1502.1 37.6 1089    187.8    37.6     901.3 

[193] 
Zamora et al. 

(2016) 
District US 2012 1.9  0.2  0.1 0.1 1.2         0.1 

[167] 
Wiedenhofer 

et al. (2015) 
Continent  2009 14500             20500   

[214] 
Fishman et al. 

(2014) 

Country US 2005  1530     790       36000  92 

Country JP 2005  8200     970       96000  1600 

[196] 
Han et al. 

(2013) 
Country CN 2008  290 3760  21680 60 450 670 130 4850     10 10 

[197] 
Hu et al. 

(2010) 
Country CN 2005 559                

[198] 
Hu et al. 

(2010) 
Country CN 

2004-

2008 
 1.58 4.8  111  21.9   25       

[199] 
Tanikawa et 

al. (2009) 

District GB 2004 0.5 0.1 0.5  0.6           0.5 

District JP 2004 6.8 0.1 0.1  2  0.6         0.5 
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Table 22 (continued) 

[200] 
Lichtensteiger 

et al. (2008) 
Country CH 2000  48.5   651.2     87.3   0.5    

[165] 
Bergsdal et al. 

(2007) 
Country NO 2000 98 19.8               

[201] 
Hashimoto et 

al. (2007) 
Country JP 2010              9500   

[209] Muller (2006) Country NL 2000 780                
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Aggregate, brick, gypsum, stone, etc. are considered construction minerals. Four papers 

estimated that construction minerals had the highest quantity compared to the remaining materials 

[173, 178, 201, 214]. Gontia et al. [173] considered concrete, plaster board, etc. as minerals and 

found that minerals had the highest share in residential buildings in Sweden. Fishman et al. [214] 

reported that in the United States and Japan, construction minerals had higher percentages 

compared to wood and steel. As a variety of construction materials can be considered minerals, a 

more specific classification of the type of mineral materials or mineral products aids in selecting a 

proper strategy for recovering and returning materials or products to resource loop.  

Besides concrete, minerals, and a combination of aggregate and cement, brick was reported 

as the material with the highest share in a few building stocks. Miatto et al. [179] and Mastrucci et 

al. [188] found brick as the most predominant material in Padua, IT and Esch-sur-Alzette, LU, 

accordingly. Among thirty-eight studies in the inventory, steel was quantified by thirty studies. 

The relatively high inclusion of steel in MSAs together with the facts that 98% of structural steel 

is returned to the resource loop provide a great source of data to create a marketplace for secondary 

steel. While the mass of plastics in buildings is significantly lower than the rest of the materials, 

the building and construction sector is recognized as one of the major consumers of plastics 

compared to other sectors [255]. From another perspective, plastics are lighter than most building 

materials; thus, a different denominator than mass such as environmental impacts may alter the 

distribution of materials. As displayed in Table 22, few papers estimated plastics accumulated in 

building stocks but, further disaggregation about the type of plastics such as PVC, LDPE, 

thermosets, etc. was not performed [166, 175, 186, 190, 196]. Overlooking quantification of 

plastics and identification of types of plastics in majority of reviewed articles is a substantial gap 

in the existing literature. To overcome environmental burdens caused by plastics pollutions and 
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waste management difficulties, type and quantity of plastics should be estimated for building 

stocks.  

4.8 Discussion 

The increasing need to preserve natural resources, reduce demolition waste, and explore 

urban mining has prompted demands for more information and knowledge about available 

materials in different sectors including buildings. High monetary values, increase in consumption, 

and scarcity of some products or materials such as critical materials and rare earth elements [256, 

257] have resulted in some knowledge about their accumulation and recovery, but the material 

stock analysis of buildings is a relatively new area. The remaining barriers and gaps for the 

progress of the field are: 

• Reviewing the geographic location of the research papers, few to no studies analyzed material 

stocks of buildings in North America, South America, Africa, and Asia (except for China and 

Japan). 

• Analyzing the embedded components in building stocks is currently overlooked. Only one 

study conducted a parallel analysis of material and component stocks [148].  

• There is a lack of coherence in defining building function subcategories and a scarcity of 

differentiation between accumulated materials in structural versus non-structural components 

in the existing literature. 

• The results of building MSAs are rarely validated.  

• Limited data – especially publicly available data – about the design and construction system 

of buildings especially for older stocks not only complicates or hinders the development of 
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building MSA models but also compromises the calculation of materials intensities of 

archetypes. This shortcoming will result in propagating uncertainty of material quantification 

from archetypes to entire building stock.  

• Another barrier pertains to deficiencies of GIS data. GIS data of buildings usually do not 

contain detailed geometric properties of buildings like the height or floor counts, especially in 

the United States. Although remote sensing methods like LiDAR analysis [147] and processing 

space-born sensor data [258] have been proposed to retrieve building height, this is an extra 

step in the creation of bottom-up material stock models. To resolve this barrier, cities and 

countries can consider making 3D models of existing buildings at scale. Practical applications 

of MSA results by urban mining and waste management companies are tied to the geolocation 

of materials, which is more feasible via bottom-up models. Hence, thorough GIS data not only 

helps with the development of bottom-up models but also increases the possibility of using 

outcomes of MSA in real-world applications.  

The high concentration of building MSAs research in developed countries may be 

attributed to an abundance of design and construction technologies such as BIM software platforms 

in developed countries. Knowledge about the accumulated building materials in developing 

countries, where the frequency of construction and demolition is higher, is essential for opening 

more secondary resources and fostering the circularity of the building sector. Furthermore, 

emphasis on analyzing building component stock and differentiation between materials 

accumulated in various components will increase the possibility of reuse and adaptive reuse over 

recycling. In addition to filling these gaps, addressing data barriers is important. 

Policy and decision-makers can contribute to solving data barriers through instituting 

regulations and policies, which enforce compiling and reporting composition, quantity, and 
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specification of construction products and materials, as a part of the construction and renovation 

permit process. These regulations and policies would enrich publicly available building databases 

at the city- and district-scales. Additionally, specifications of products and materials like 

instructions for disassembly will aid in selecting end-of-life strategies. 

4.9 Conclusions 

Recently, discussion over the role of circular economy to achieve the United Nations 

Sustainable Development Goals of Responsible Consumption and Production has increased. The 

major motivation of this chapter was to coalesce the findings of existing building MSAs, which 

are needed as the cornerstone of circularity for the building sector. This chapter evaluated the 

existing literature in accordance with scopes, boundaries, archetypes and material intensities, and 

approaches to identify barriers, gaps, and opportunities in the field. 

A major finding of this work showed that top-down and remote sensing approaches are less 

time-consuming to develop and offer a broad understanding of the balance of materials in building 

stocks; nonetheless, they are less informative for circular economy strategies compared to bottom-

up approaches. Also, current data deficiencies may adversely impact both developments of 

bottom-up MSA models and accurate determination of material intensities of archetypes. 

Reviewing the studies showed that the mass of concrete was higher than other materials in the 

majority of studies while the mass-based distribution of other materials varied considerably. 

Finally, plastics and their specific types were rarely included in MSA studies, which rises a 

discussion about utilizing a different denominator than mass for analyzing the material stock of 

buildings in the future.   
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MSA can aid regional policy and decision makers. Understanding the distribution of 

material stocks in a region may aid in deciding on investing in technologies and equipment for 

construction material reuse. Furthermore, MSA outcomes can provide policy makers with 

information about materials that are widely available in a building stock; thus, they can consider 

incentives for designers and contractors. Given these benefits, it is useful to identify future 

opportunities, which can facilitate conducting building MSA research.  

Convergence of building science’s disciplines with MSA brings opportunities for assessing 

in-use materials of building stocks. One of these disciplines is physics-based urban building energy 

modeling. An urban building energy model contains 3D models of hundreds of buildings; 

therefore, it is a rich repository of geometric properties of buildings including height, floor counts, 

and footprint. The data from these models can be employed to resolve deficiencies in GIS data. 

Furthermore, classifying a building stock into archetypes is a common practice in urban building 

energy modeling. Available archetypes can also be utilized for archetype classification and 

determining material intensity for future MSA studies. There are models at the urban scale in 

several United States cities that can be beneficial for conducting building MSA. Mohammadiziazi 

et al. [147] created a comprehensive database of non-residential buildings in Pittsburgh, US, that 

contained geometric properties along with envelope properties (i.e., window to wall ratio and 

external wall materials). Also, Chen et al. [102] assessed energy conservation measures of offices 

and retail buildings located in six districts in San Francisco, US based on an urban building energy 

model. Heiple and Sailor [98] and Cerezo et al. [97] developed similar models for residential and 

non-residential buildings in Houston, US, and Boston, US, respectively. Moreover, Breunig and 

colleagues [259] projected floor area of residential and non-residential buildings in the state of 

California, US until 2050, which can be employed in concert with material intensity to create a 
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prospective MSA. Another important point, which is can be addressed in future works, is related 

to ownership of construction materials and products. The general concept of MSA which is 

tracking construction materials over time and space can be employed to create an ownership 

system in which construction materials will be tracked and collected by original manufacturers to 

be disassembled and reused.  
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5.0 Quantifying and Spatializing Buildings Material Stock and Renovation Flow for 

Circular Economy 

The research presented here addresses objective four. Specifically, it answers the question 

‘What are the quantity and type of accumulated materials and materials, which will become 

available due to renovation, in the different components of an existing commercial building stock?’ 

The content of this chapter is currently under review: 

Mohammadiziazi, R., & Bilec, M. M. (2022 submitted). Quantifying and Spatializing 

Commercial Building Material Stock and Renovation Flow for Circular Economy. Journal of 

Cleaner Production. 

5.1 Introduction 

All phases of a building’s life cycle – material use, construction, maintenance and 

renovation, and deconstruction – result in resource use and depletion, environmental impacts, and 

waste. The rapid pace of urbanization and economic growth in nations have increased the amount 

of accumulated materials in buildings located in cities and urban areas [148, 260]. Thus, existing 

buildings in cities have the potential to serve as repositories of materials and products, in the 

context of urban mining. The re-use or repurposing of building stock materials, when needed, is a 

strategy in the circular economy for the built environment [261]. Our current linear system of take, 

make, and waste, has led to deleterious environmental impacts, while a circular economy may 

offer environmental benefits [262]. Despite the proposed benefits of a circular economy, currently, 
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a portion of materials are recovered and returned to the resource loop while preserving their 

original values. In the U.S., 22% of construction and demolition waste (by weight) was used for 

manufacturing new products in 2018 and the remaining waste was either downgraded (54%) or 

sent to landfills (24%) [144]. The linear system has resulted in decreasing the value of the materials 

both in monetary terms and use, along with contributing to the landfilling of valuable materials. 

Unlike knowledge about the primary resource of building materials and products that are 

widely accessible, there is a gap in knowledge about accumulated building materials. The practical 

implementation of circular economy in buildings requires an understanding of basic questions. 

What material is available in existing buildings? When will the materials be available? Where will 

the materials be located? How much material will be available from the renovation of buildings? 

Building material stock analysis (MSA) is a tool for tracking and mapping materials over time and 

space that can be used to answer some of the questions to aid in fostering a circular economy for 

the building sector. Given that in the U.S., 75% of raw materials that enter the manufacturing 

industry are used for producing building materials and products [3], and a significant magnitude 

of construction and demolition waste are generated every year (e.g., 600 million ton of construction 

and demolition waste in 2018) [5], the role of building MSA is crucial in achieving circularity, 

reducing environmental impacts, and reducing waste. Therefore, in this chapter, a bottom-up MSA 

model for a commercial building stock was developed. Pittsburgh, PA was used to actualize the 

MSA model and then analyzed the accumulated materials, explored the renovation flow of 

materials during a specific time period, and advanced the field by filling existing gaps in the current 

body of literature. 

Analyzing the material stock of buildings is an emerging field that has been progressing 

among industrial ecology and building sustainability experts, in the last decade [162]. Approaches 
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for conducting building MSAs can be categorized into three major classes: top-down, remote 

sensing, and bottom-up [150, 151, 263]. Muller [209] introduced a top-down method, which was 

later employed by several studies [163-165, 172, 197, 211, 213, 215], to assess the concrete stocks 

of residential buildings in the Netherlands. In this method, the author estimated the floor area of 

buildings by multiplying the population by floor area per capita. Then, the floor area was 

aggregated with the intensity of concrete and the accumulated concrete in the Netherland’s 

residential buildings was calculated [209]. Gao et al. [172] used this top-down method to analyze 

the material stock of residential buildings in Shanghai, China. Their analysis showed that the 

accumulated materials increased 41-fold from 1950 to 2010, and the rural-urban transition regions 

had the highest accumulated materials compared to rural and urban regions because of more 

affordable housing prices for urban migrants [172]. The advantages of analyzing material stocks 

based on floor area per capita are that this method is timesaving, can be applied to large spatial 

scales, and can be utilized together with future projections of floor area per capita to predict 

material metabolism and accumulation in the future. Applying this top-down method at the global 

scale, Deetman et al. [163] projected that the demand for building materials would increase by 

2050, and 71% of the demand for aluminum and 55% of the demand for steel, wood, and copper 

could be supplied from resources available in existing building stocks.  

Another top-down method established inflows and outflows based on economic systems, 

such as the imports, exports, and domestic production of materials [263]. The difference between 

the flows was then assumed to be ‘material stock’ [214]. Using this top-down method, Fishman et 

al. [214] estimated the accumulated stocks of timber, minerals, iron, and other metals for the 

countries of Japan and the U.S., and they found that both countries had similar material stock per 

capita by 2005.  
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Similar to top-down methods, remote sensing methods are less time-consuming [263]. For 

example, He et al. [157] estimated the total volume of materials in the building stock of Jinchang, 

China through high-resolution satellite images and remote sensing techniques. The authors found 

that 5,513,171 m³ of materials were accumulated in every hectare of land in 2015 [157]. Top-down 

and remote sensing approaches can provide a broad overview of the materials in existing buildings 

of a region, which are useful for policy and a general understanding of building material flow. On 

the other hand, both approaches are limited in the level of detailed information they can capture 

about material types and the location of materials at the individual building level, which are 

essential for answering the aforementioned questions and consequently implementing circular 

economy strategies. Thus, the bottom-up approach can be utilized to overcome these shortcomings.  

In general bottom-up methods are capable of quantifying and spatializing material stock at 

the individual building level by combining variables that represent physical attributes of buildings 

(i.e., floor area, volume, surface area of components, volume of components), with material 

intensity coefficients (MICs). Physical attributes of buildings are obtained either from available 

inventories in cities and countries or through geographic information system (GIS). Several studies 

used the former to develop MSAs at the city- or country scale [148, 158, 167, 173, 174, 184, 186, 

190, 192, 194, 196, 198, 200, 201]. Cheng and colleagues [184] derived the floor area and the 

MICs of buildings from the Taipei City Construction Management Office inventory and previous 

studies, respectively for quantification and spatialization of building material stocks in Taipei City, 

Taiwan. Their investigation showed that concrete (82%) had the largest portion of materials by 

mass followed by steel (8%) and brick (8%). Moreover, applying the lifetimes of buildings to their 

MSA model, the authors predicted the approximate time the materials would be available when 

buildings were deconstructed [184]. Examining the possibility of using this method at a country 
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scale, Hashimoto et al. [201] obtained the physical attribute data of buildings and quantified the 

construction minerals of the Japanese building stock.  

While utilizing physical attributes such as the floor area from available inventories 

bypasses GIS analysis, this bottom-up method does not account for a building’s floor count or 

height, both of which could have a significant impact on the fraction of materials [159, 263]; thus, 

the outcomes are associated with uncertainty. To mitigate this uncertainty, a bottom-up method 

was introduced by Tanikawa and Hashimoto [199] for the first time in which the floor count of 

buildings was integrated with footprint area, obtained from GIS, to estimate the floor area of 

buildings [263]. Employing GIS also allowed for mapping and spatial analysis of materials. In the 

study, Tanikawa and Hashimoto [199] used their proposed method to analyze the building material 

stock of two urban areas in the UK and Japan over one hundred and fifty years. The 4d-GIS 

databases of the urban buildings were constructed from a combination of street-level photos, aerial 

photos, paper maps, and digital maps to estimate the footprint area and floor count, and further 

floor area of buildings over time. They found that for Salford Quays, UK, the building material 

stock increased from the mid-nineteen century until the 1980s and slightly decreased during the 

1980s and 1990s. However, the building material stocks showed an increasing trend from 1855 to 

2004 for Wakayama City, Japan [199].  

In another study, Tanikawa et al. [155] developed the 4d-GIS database of the entire built 

environment (i.e., buildings, roads, railroads, airports, seaports, dams, water network) of Japan to 

assess the material stockpile between 1945 and 2010. Major findings of the study were that first, 

43% of the material stock in the built environment was attributed to buildings, which placed 

buildings as the number one material-intensive sector compared to other built environment. 

Second, 80% of the materials accumulated in buildings were located on only 20% of the land, 
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which formed major Japanese metropolitan regions [155]. These findings confirmed the 

significance of focusing on buildings in urban regions.  

Several other studies employed this bottom-up method with [156, 161, 176, 178, 181, 182, 

193, 207] or without [143, 169, 171, 208] temporal dimension. For example, Marcellus-Zamora et 

al. [193] estimated the floor area of buildings in a historic region located in Philadelphia, U.S. by 

multiplying the footprint area, derived from GIS, by floor counts. The total floor area was meshed 

with MICs of corresponding land use type and the total accumulated stock was estimated. The 

authors concluded that concrete (52%) and metal (35%) were the dominant materials in the studied 

building stock because of the abundance of both materials in buildings and their high density 

compared to other materials [193].   

A few studies adopted and slightly modified the bottom-up method, introduced by 

Tanikawa, to estimate the buildings’ volume via multiplying the height by footprint area, obtained 

from GIS. Buildings’ volumes were integrated with volume-based MIC (e.g., mass per volume) to 

quantify accumulated materials in building stocks of cities [159, 166, 175] and countries [191]. 

The distinction between structural and non-structural components for both the integrity of 

reclaimed materials and cost of recertification perspectives results in unique obsolescence paths 

for structural and non-structural components [264]; hence, making decisions and planning for 

appropriate end-of-life strategies for returning materials to resource loops requires differentiation 

between materials from different components. GIS allows for estimating the surface area or 

volume of different components of buildings. Leveraging this ability of GIS, the surface area or 

volume of different components can be meshed with their corresponding MIC to account for 

building material stocks [2, 162, 179, 180, 187, 188]. Ajayebi et al. [162] estimated and mapped 

the quantity and embodied carbon of clay bricks, which were used in external walls, in three urban 
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areas located in the UK. In another study that accounted for more than one type of material, Miatto 

et al. [179] calculated the surface area of building components using GIS and multiplied the surface 

area by the MIC of every component in mass per surface area to quantify the accumulated materials 

in residential and non-residential buildings of Padua, Italy. Miatto and colleagues’ analysis showed 

that in the early twentieth century, brick was the dominant material, but the distribution changed 

in the 1980s, and concrete and mortar became dominant building materials in Padua, Italy [179]. 

Although some studies utilized specifications of building components (i.e., surface area, volume, 

material intensity) for conducting MSAs, the quantity of similar materials like wood from different 

components was summed and the results were aggregated. Therefore, differentiation between 

available materials from various components of buildings is currently overlooked in building 

MSAs.  

In this chapter, the material stock and renovation flow of four components, which are 

frequently repaired and maintained during a building’s lifetime, were analyzed including exterior 

walls, windows, roofs, and floors of selected commercial building stock in Pittsburgh, PA through 

a bottom-up method. In addition, the goal was to further advance building MSAs by using an 

imaging technique developed in chapter 3 [147]. The imaging technique reduces the dependency 

of bottom-up MSA models on assumptions regarding the physical attributes of buildings (i.e., the 

ratio of windows to exterior walls, floor count, exterior wall material) and differentiating between 

materials accumulated in different components of buildings. Also, the results were presented in a 

disaggregated material/component fashion for pragmatic circular economy solutions. Moreover, 

the rigorous review of building MSA articles in chapter 4 showed a scarcity of knowledge about 

building material stock in the U.S. [263]. Only two studies developed bottom-up MSA models in 

the U.S. without analyzing potential waste, generated due to renovation, [193, 194] and one study 
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assessed the material stock of the country by top-down analysis of inflow and outflow data [214]. 

Therefore, focusing on a commercial building stock, the goal of this chapter was to enrich the 

knowledge about accumulated materials of existing buildings in the U.S. and provide policy 

makers, city planners, and local businesses with information about potential future material 

resources. This chapter addressed and discussed the following questions: 

• What are the material composition and material intensity coefficient of different building 

typologies? 

• What are the total accumulated materials of the studied building stock? 

• What are the accumulated materials in different components? 

• What are the total and annual material renovation flow between 2020 and 2030? 

• What are the spatial configurations of total accumulated materials and renovation flow? 

5.2 Materials and Methods 

Developing a bottom-up MSA model for a building stock includes several steps. In this 

section, the overall modeling approach and a description of the steps are detailed. First, the case 

study buildings and the region of study are described (section 5.2.1). Next, the physical attributes, 

which are required for the bottom-up model, and methods of acquiring them are explained (section 

5.2.2). The MICs for the four components are discussed in section 5.2.3. Finally, the methods of 

analyzing the material stock and the material renovation flows are presented (sections 5.2.4, 5.2.5). 

Figure 17 illustrates the overall modeling approach that was developed and utilized in this chapter. 
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Figure 17 Overall modeling approach. Note: WWR and MIC stand for the window to wall ratio and material 

intensity coefficient, respectively [147] 

5.2.1 Introduction to the Studied Commercial Building Stock 

The studied commercial building stock is located in Pittsburgh, PA. Pittsburgh is a city in 

western Pennsylvania with around 302,000 population. There are a considerable number of both 

abandoned buildings and new construction. In addition, the building stock in Pittsburgh is aging, 

which could increase the frequency of repair, maintenance, and renovation. To address the 

challenges regarding commercial buildings and unlock potential opportunities for cycling 

reclaimed materials as resources, the focus of this research is on commercial buildings.  

The studied commercial building stock contains eight use types with a cumulative floor 

area of 1,072,336 m². The floor area distribution of the building stock is displayed in Figure 18. 

Buildings with education (32%), lodging (20%), office (15%), and public assembly (15%) 

functions comprise a majority of the stock’s floor area. While some building use types account for 
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less floor area such as public order and safety buildings (5% of total floor area), there are more of 

them across the city that affects the spatial distribution of the materials. 

 

Figure 18 The floor area distribution of the studied commercial building stock based on building use type 

5.2.2 Physical Attributes 

This model includes four components: exterior wall, window, roof, and floor. The variable 

that represents the physical attribute in the model is the surface area of the components. Footprint 

area, footprint perimeter, height, floor count, and the ratio of window to the exterior wall are the 

essential parameters to estimate the surface area of the components.  

The building footprint is defined as a polygon shape that describes the boundaries of the 

exterior walls of a building. GIS data, in the format of a shapefile, that contained building 

footprints of Pittsburgh, PA was downloaded from the Western Pennsylvania Regional Data 

Center (WPRDC) [106]. Using a combination of the addresses and tax property identifications 

(IDs), the footprints of the buildings that belonged to the studied stock were identified. The GIS-

related analysis and mapping were completed in ArcGIS Pro, which is a software platform 

developed by Esri. The areas and perimeters of the footprints of the buildings were estimated using 

the geometric calculation tools in ArcGIS Pro, extracted from the software platform, and stored in 
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a physical attribute library. The GIS data from the WPRDC lacked elevation information of 

buildings, specifically height and floor count.  

Interestingly, variables like height that are required for developing bottom-up MSAs are 

usually available from studies that modeled building energy [97, 102, 147] and environmental 

impacts [187, 194] at the urban scale. In chapter 3, an urban building energy model (UBEM) for 

the commercial buildings of Pittsburgh, PA was developed [147]. In the UBEM [147], the height 

was estimated by conducting Light Detection and Ranging (LiDAR) analysis using a combination 

of the building footprints shapefile and raw LiDAR data, which was obtained from The National 

Map – Data Delivery dataset developed by the United States Geological Survey (USGS). The 

heights of the studied buildings were extracted from the UBEM and added to the physical attribute 

library. Moreover, the exterior wall material, floor count, and ratio of windows to exterior walls, 

known as the window to wall ratio or WWR, were estimated based on photogrammetry and an 

image processing framework, which was proposed and utilized for the UBEM [147]. Unlike other 

studies that relied on assumptions regarding exterior wall material, floor count, and WWR [17, 

169, 176, 178], the values of these parameters for every building in the studied stock were 

estimated. The rest of this subsection explains the process of estimating the surface area of the 

components using the parameters that formed the physical attribute library. 

5.2.2.1 Exterior Walls 

The gross exterior wall area of every building in the studied stock was estimated by 

multiplying footprint perimeter and height. Further, the net exterior wall area, which excluded any 

fenestrations and openings, was calculated by subtracting the window area from the gross exterior 

wall area. 
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5.2.2.2 Windows and WWR 

WWR is defined as the ratio of the area of windows or fenestrations to the gross exterior 

wall area. Thus, to estimate the window area of a building, the WWR was multiplied by the gross 

exterior wall area, which was obtained from the previous step (section 5.2.2.1). Some window 

assemblies like frames were measured in linear units. Therefore, it was assumed that for every 1 

m² of the window there were 3 m of enclosing [227]. 

5.2.2.3 Roofs 

Unlike steep roofs that are common in residential buildings, for commercial buildings, the 

roofs are often designed flat to accommodate heating, cooling, and ventilation systems. Based on 

the flat roof assumption, the roof area was considered equal to the footprint area of a building.  

5.2.2.4 Floors 

Building flooring systems can be classified into exposed and unexposed floors. An exposed 

floor has an interface with unconditioned spaces; whereas, an unexposed floor is adjacent to the 

conditioned spaces of a building. This classification is important because of its impact on the 

quantity of insulating materials, especially for buildings that were constructed in the past four 

decades when building designs must comply with energy efficiency codes and standards. 

According to this classification, the area of the exposed floor was assumed to be equal to the 

footprint area of a building. In addition, the area of the unexposed floor of a building was estimated 

as the product of footprint area and floor count minus one. 
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5.2.3 Material Intensity Coefficient  

As discussed in the introduction, the development of bottom-up MSAs depends on both 

physical attributes and MICs. MIC indicates the quantity of a specific material per surface area of 

different components. Architectural and energy designs along with the contractor’s choices of 

materials lead to a diversity of material composition (i.e., layer, assembly), thickness, density, 

mass, and dimensions, which are necessary to estimate MICs. This diversity complicates 

determining the material compositions and MICs of components for every individual building at 

the urban scale. Without building information models, it is relatively unfeasible and inefficient to 

access the construction documents and the bill of materials of hundreds of buildings to determine 

both material compositions and MICs. Therefore, the typologies or archetypes that represent 

groups of buildings with similar material compositions and MICs are defined to streamline the 

analysis. As shown in Figure 19, the studied commercial building stock was classified into twenty 

typologies based on use type and construction period. These two categories were selected for 

classification because they are most prevalently used by other articles [263]; hence, they facilitate 

transferring information about compositions and MICs from other building stocks to Pittsburgh’s 

commercial stock. Also, using the construction period can reflect changes that have occurred in 

the construction industry over time due to technological improvements, materials’ availability, and 

environmental concerns.  
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Figure 19 Typology classification for the studied commercial building stock based on use type and 

construction period [147] 

The composition of the exterior walls for different typologies was compiled from multiple 

resources including the Commercial Building Energy Consumption Survey (CBECS) [8], 

Commercial Reference Building Models of the National Building Stock [51], and existing 

literature [2, 187]. The composition of exterior walls was also reflective of wall systems based on 

material type including stucco, brick, concrete, stone, metal, and wood, which were identified and 

recorded by photogrammetry and image processing (see section 5.2.2). For example, if the exterior 

walls of an education building constructed after 2004, were made of stucco, then the exterior walls 

were composed of six layers or assemblies; however, if the same building was made of brick, then 

the exterior walls were considered to be composed of five layers or assemblies (See Table 23). The 

MICs of different layers or assemblies of exterior walls in form of mass per surface area were 

estimated based on thickness and density or dimensions and weight. Windows were composed of 

three assemblies: pane, frame, and sealing. The type and MIC of panes for different typologies 

were extracted from CBECS [8] and a local manufacturing company [265], respectively. Like 

panes, the material type for frames of each typology was derived from CBECS, and the MIC was 

determined from reviewing technical specifications of multiple available products in the market. 
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Finally, the MIC of sealing was derived from the ecoinvent, which is a life cycle inventory database 

[266].   

The compositions of the roof and the floor for different typologies were modeled based on 

consulting with construction companies and the CBECS [8]. To determine MICs, the thickness 

and density of several layers, which were installed on the roof and floor, were derived from the 

ecoinvent [266] and the Building Component Library, which is an online searchable library 

developed by the National Renewable Energy Laboratory [267]. Next, the MICs were calculated 

by multiplying thickness and density. However, there were few layers or assemblies such as vapor 

barrier and vinyl composite tile (VCT) for which required specifications were not available in the 

aforementioned sources. Thus, we searched and assessed the specifications of different products 

in the market and estimated the MICs. The material composition and the MICs of the four 

components for education buildings constructed after 2004 are summarized in Table 23. Moreover, 

the inventory that encompasses the material composition and the MICs of all typologies is 

provided in a google drive folder: 

https://docs.google.com/spreadsheets/d/1Tjli402XtfT7yY0O8DNIo_RIGCytAKWy/edit?usp=sh

aring&ouid=109256935135058741258&rtpof=true&sd=true.  

Table 23 Composition and Material Intensity Coefficient (MIC) of education buildings constructed after 

2004. OSB and VCT stand for oriented strand board and vinyl composite tile, accordingly  

  Composition 
Type of 

Material 
MIC (kg/m²) 

Service Life 

(year) 

Exterior 

Wall 

System 1 – 

Stucco  

Stucco * Cementitious 47.19 50-100 

Concrete block (8") Concrete 455.78 Lifetime 

Vapor barrier Plastics 0.49 Lifetime 

Insulation Insulation 4.12 Lifetime 

Metal Stud Steel 6.40 100 

Gypsum board (1/2") Mineral 9.98 40 

System 2 – 

Brick  

Brick Brick 172.85 100 

Vapor barrier Plastics 0.49 Lifetime 

Insulation Insulation 4.12 Lifetime 
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Table 23 (continued) 

 

 Metal Stud Steel 6.40 100 

Gypsum board (1/2") Mineral 9.98 40 

 

System 3 – 

Concrete  

Concrete block (8") Concrete 455.78 Lifetime 

Vapor barrier Plastics 0.49 Lifetime 

Insulation Insulation 4.12 Lifetime 

Metal Stud Steel 6.40 100 

Gypsum board (1/2") Mineral 9.98 40 

System 4 – 

Stone  

Stone panel Mineral 102.53 100 

OSB (7/16") Wood 7.11 30 

Vapor barrier Plastics 0.49 Lifetime 

Insulation Insulation 4.12 Lifetime 

Metal Stud Steel 6.40 100 

Gypsum board (1/2") Mineral 9.98 40 

System 5 – 

Metal  

Metal siding Steel 11.53 50 

Vapor barrier Plastics 0.49 Lifetime 

Insulation Insulation 15.87 Lifetime 

Metal Stud Steel 6.40 100 

Gypsum board (1/2") Mineral 9.98 40 

System 6 – 

Wood 

Wood siding Wood 5.45 40 

Vapor barrier Plastics 0.49 Lifetime 

Insulation Insulation 19.79 Lifetime 

Metal Stud Steel 6.40 100 

Gypsum board (1/2") Mineral 9.98 40 

Window 

Double Pane ** Glass 32.12 30 

Frame Aluminum 4.83 20 

Sealing Plastics 0.29 30 

Roof 

Synthetic rubber membrane Plastics 3.13 40 

OSB (5/8") Wood 10.16 30 

Insulation Insulation 33.11 Lifetime 

Vapor barrier Plastics 0.32 Lifetime 

Floor 

Unexposed  

VCT (1/8") *** Mineral, Plastics 6.61 40 

Cement board (1/2") Cementitious 11.72 50 

Plywood (3/4") Wood 10.40 60 

Exposed 

VCT (1/8") *** Mineral, Plastics 6.61 40 

Cement board (1/2") Cementitious 11.72 50 

Plywood (3/4") Wood 10.40 60 

Insulation Insulation 16.85 Lifetime 

Note:  

* The average service life was considered.  

** The system consisted of two ¼" thickness panes filled with argon gas. 

*** VCT was assumed to be comprised of 84% minerals and 16% plastics. 
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5.2.4 Material Stock 

The accumulated material for one material type in a building was estimated as the product 

of the surface area of a component and the corresponding MIC, summed over different components 

based on Equation 5-1: 

𝑀𝑆𝑚𝑛 =∑𝑆𝐴𝑛𝑖𝑗  × 𝑀𝐼𝐶𝑖𝑗𝑚
𝑖𝑗

 
(5-1) 

Where 𝑀𝑆𝑚𝑛 is the amount of material type m in building n; 𝑆𝐴𝑛𝑖𝑗 is the surface area of 

component i, for building n, typology j; and 𝑀𝐼𝐶𝑖𝑗𝑚 is the material intensity coefficient of material 

type m, for component i, typology j. The total accumulated material type m (𝑀𝑆𝑚) in the studied 

building stock and the total accumulated materials in the studied building stock (𝑀𝑆𝑇) were 

estimated according to Equation 5-2 and Equation 5-3, respectively:  

𝑀𝑆𝑚 =∑𝑀𝑆𝑚𝑛
𝑛

 
(5-2) 

𝑀𝑆𝑇 =∑𝑀𝑆𝑚
𝑚

 
(5-3) 

5.2.5 Material Renovation Flow 

The material renovation flow can be calculated as the function of the service life of 

products, which form layers and assemblies, and the buildings’ construction year between 2020 

and 2030. It was assumed that no changes occur in technology and availability of construction 

materials during this time frame. Also, the selection of the 2020-2030 time frame was because of 

its alignment with the Pittsburgh 2030 District sustainability goals. The material renovation flow 

was estimated based on Equation 5-4 in which 𝑅𝐹𝑚𝑛𝑦 is the quantity of flow of material type m in 
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building n as a result of renovation in year y. 𝑀𝑆𝑚𝑛 was calculated using Equation 5-1 and 𝛼 was 

a determining factor, which specified whether a material will be replaced in year y or not. If the 

ratio of the difference between a specific year (𝑦) and the construction year of building n (𝐶𝑌𝑛) to 

the service life of material type m that can be found in component i, typology j (𝑆𝐿𝑖𝑗𝑚) is an integer, 

then 𝛼 is 1, which means that in year y, material type m in building n will be replaced. Otherwise, 

𝛼 is 0, which means that in year y, material type m in building n will not be replaced. The service 

life of materials was derived from the ecoinvent [266], Study of Life Expectancy of Home 

Components [268], and Building Materials Life Expectancy Chart [269]. 

𝑅𝐹𝑚𝑛𝑦 = 𝑀𝑆𝑚𝑛 ×  𝛼,    𝑊ℎ𝑒𝑟𝑒 

{
 
 

 
 𝛼 = 1    𝑖𝑓    

𝑦 − 𝐶𝑌𝑛
𝑆𝐿𝑖𝑗𝑚

  ∈   𝑍+

𝛼 = 0    𝑖𝑓    
𝑦 − 𝐶𝑌𝑛
𝑆𝐿𝑖𝑗𝑚

  ∈   𝑍+
 

(5-4) 

The total renovation flow of material type m in the studied building stock in year y, and the 

total renovation flow of material type m in the studied building stock cumulated from 2020 to 2030 

were calculated using Equation 5-5 and Equation 5-6, respectively. 

𝑅𝐹𝑚𝑦 =∑𝑅𝐹𝑚𝑛𝑦
𝑛

 
(5-5) 

𝑅𝐹𝑚 = ∑ 𝑅𝐹𝑚𝑦

2030

𝑦=2020

 
(5-6) 
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5.3 Results and Discussion 

5.3.1 Material Stocks 

The total mass of accumulated materials in the four components of the studied building 

stock was estimated as 256,085 mt or metric ton. Expectedly, most materials are accumulated in 

exterior walls (68%) and floors (27%), and the remaining 6% is accumulated in windows and 

roofs. Twelve material types were identified in the components (see Figure 20). Concrete and brick 

form the majority of the stock by representing 37% (94,692 mt) and 30% (77,611 mt) of the entire 

accumulated materials, respectively. Based on the MSA results, minerals (e.g., gypsum board, 

stone panel, terrazzo) and wood have 17% and 5% of total accumulated materials in the studied 

stock, accordingly. While insulation (2%) and plastics (less than 1%) have lower mass-based 

shares compared to other materials, they are inherently lightweight. Therefore, reclaiming and 

returning insulation and plastics to the consumption loop through circular economy strategies like 

reuse, adaptive reuse, etc. not only reduce the amount of waste and landfill pollution but also may 

be associated with considerable benefits from environmental impacts and resource depletion 

perspectives. Furthermore, the studied building stock locates in a heating-dominated climate zone, 

where compliance with energy codes and standards requires extensive air tightening measures for 

building envelopes. This makes the quantity of insulation available from exterior walls, roofs, and 

floors even more compared to cooling-dominated regions.  
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Figure 20 Total accumulated materials and materials in different components of the studied building stock 

The spatial distribution of total accumulated materials in the studied buildings is illustrated 

in Figure 21. This distribution shows that in condensed urban neighborhoods with high-rise 

buildings like Oakland, Pittsburgh, where the University of Pittsburgh campus locates, the mass 

of accumulated materials is higher than in other neighborhoods. In addition to the total 

accumulated materials and their spatial distribution, another question that this work aims to address 

is what is the distribution or balance of accumulated materials in different components.   
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Figure 21 Spatial distribution of total accumulated materials in the studied building stock. Note: mt = metric 

ton 

5.3.2 Material Stocks by Component 

As displayed in Figure 20, nine out of twelve material types, which were identified in the 

four components, were found in exterior walls making this component a diverse repository of 

secondary materials. Cumulatively, 173,379 mt of materials are accumulated in the exterior walls 

from which brick and concrete together account for 87% by mass. Minerals comprise slightly more 

than 10% of the mass of the exterior walls. Cementitious, glass, insulation, plastics, steel, and 

wood each comprise less than 1% of the accumulated materials in the exterior walls. Pastes such 

as mortar that are usually used to bind the outer layer of walls such as bricks, concrete blocks, and 

stones were not accounted for in this analysis because their quantities can vary significantly among 

buildings. 

Windows are the least diverse components in terms of material types. Expectedly, 77% of 

accumulated materials (by mass) in windows are glass. Glass is either found in windows or exterior 
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walls and the majority of glass in the studied building stock exists in windows (98%); whereas 

only 2% of glass (by mass) are in the form curtain walls. Aluminum and steel that are utilized as 

the framing materials account for 8% (382 mt) and 14% (716 mt) of accumulated materials in 

windows, accordingly (see Figure 20).  

There are 9,477 mt of materials accumulated in roofs, which makes this component the 

third material-intensive component before windows. Insulation and felt and tar constitute equal 

portions of roofs, each having 34% of total accumulated materials (by mass) in the component. 

While the cumulative surface area of exterior walls in the studied building stock is larger than that 

of roofs, the thickness and subsequently MICs of insulations installed in roofs are higher than the 

thickness and MICs of insulations in exterior walls. As an example, for education buildings 

constructed after 2004, the thickness of roof insulation was 12.5 cm, whereas the thickness of 

exterior wall insulation ranged between 4.5 cm to 7.5 cm based on the different wall systems. 

Hence, the total mass of roof insulation is 3,244 mt, which is approximately 4-times higher than 

the total mass of the exterior wall insulation (905 mt). This analysis confirms that roofs are 

potential mines for insulating materials. Plastics, steel, and wood comprise 4%, 4%, and 24% of 

the accumulated materials of roofs, respectively. Plastics used in roofs are mostly synthetic rubber 

membranes, which are installed as the outer layer, and vapor barriers that help keep moisture and 

water away from other roof layers and assemblies. Finally, 68,199 mt of materials are accumulated 

in floors, which puts floors in second place among the four components analyzed in this article. 

Minerals, concrete, and cementitious (i.e., cement boards, normal duty screed) account for 37%, 

31%, and 15% of accumulated materials in floors. The considerable mass of flooring concrete is 

especially due to concrete used in parking garages’ pavements. It was found that insulation 

constitutes 2% of flooring materials because unexposed floors are designed without insulation. In 
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addition, the MSA results showed less than 1% of plastics in floors, which has the lowest share 

among other components. The quantity (mass) of accumulated products in exterior walls, 

windows, roofs, and floors is provided in Appendix C, Tables C.1 to C.4. 

5.3.3 Material Renovation Flow 

As mentioned in the materials and methods section, the material renovation flow of the 

studied commercial building stock was analyzed during an eleven-year time period from 2020 to 

2030. The cumulative amount of twelve materials, available as secondary resources due to 

renovation during this specified time period, is estimated as 43,069 mt. As displayed in Table 24, 

brick is identified as the material with the highest cumulative mass of renovation flow during the 

studied time period compared at 15,255 mt. Minerals and concrete account for the second and the 

third highest cumulative mass by having 8,514 mt and 8,003 mt, respectively. Considering the 

service life of insulating materials, the renovation flow of insulation is estimated as zero. This is 

because the insulating materials last for a building lifetime without requiring replacement. Plastics 

have the second lowest cumulative mass due to renovation in the specified period (see Table 24). 

The reason is that the majority of products, which are categorized as plastics, have the service life 

of a building lifetime. Besides, analyzing the cumulative quantity of renovation flow of different 

materials between 2020 and 2030, temporal analysis of the quantity of renovation flow for different 

material types is important as it provides valuable information for city planners and waste 

management businesses about when materials will become available as secondary resources due 

to renovating activities.  

From the temporal analysis of material renovation flow, presented in Table 24, the highest 

quantities of aluminum, cementitious, concrete, felt and tar, glass, plastics, and wood are projected 
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to become available as potential resources or wastes in 2020. In Table 24, cells’ shades display the 

amount of renovation flow. Darker blue shades mean more renovation flow and lighter blue shades 

mean less renovation flow. The highest amounts of carpet (294 mt) and steel (96 mt) will be 

generated as the result of renovation in 2023. Also, 9,460 mt of bricks and 2,889 mt of minerals 

will become available in 2024 and 2028, respectively. To investigate the importance of renovation 

activities in buildings in relation to waste generation and the possibility of reclaiming and returning 

materials to the resource loop, a fraction of the materials renovation flow to the total accumulated 

materials was analyzed. The shortest service life of carpets has resulted in high replacement 

frequency from 2020 to 2030 by having a 110% fraction of the materials renovation flow to the 

total accumulated materials. Other materials with considerable replacement frequency are 

aluminum (67%), felt and tar (66%), and glass (55%). Brick, minerals, and plastics are each 

estimated to have a 20% fraction of the materials renovation flow to the total accumulated 

materials. While the estimated fraction for plastics is lower than many materials in the studied 

building stock, the adverse impacts of plastics on the environment and ecosystems because of 

significant decomposition time in a landfill may require special attention to plastics-based 

products. Circular economy strategies such as prolonging the service life of plastics-based products 

and producing plastics materials using thermosets, which facilitates the recycling process, can be 

possible mitigation strategies for use of plastics in buildings. Also, using materials with less 

detrimental impacts on the environment as a substitute for plastics in buildings may mitigate the 

adverse impacts. The spatial distribution of total material renovation flow cumulated over the 

eleven-year time period (2020-2030) is presented in Figure 22. Furthermore, the total quantity of 

products, which will become available as a result of renovation between 2020 and 2030 from 

exterior walls, windows, roofs, and floors, are provided in Appendix C, Tables C.5 to C.8. 
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Figure 22 Spatial distribution of the total material renovation flow between 2020 and 2030 in the studied 

building stock. Note: mt= metric ton  
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Table 24 Renovation flow of different materials between 2020 and 2030 and the percentage of the total renovation flow to the total accumulated 

materials in the studied building stock. Darker blue shades mean more renovation flow and lighter blue shades mean less renovation flow. The unit of 

materials flows is in metric ton (mt) 

Material Types 

Year Aluminum Brick Carpet Cementitious Concrete Felt and Tar Glass Insulation Minerals Plastics Steel Wood 

2020 95.6 0.0 74.7 638.0 3907.7 479.1 639.2 0.0 951.1 105.7 23.2 623.5 

2021 0.0 1018.5 0.0 40.7 1736.2 273.5 10.4 0.0 285.2 0.9 7.2 52.7 

2022 45.0 2973.6 111.8 132.6 0.0 384.6 346.6 0.0 113.2 3.5 41.1 229.9 

2023 15.7 0.0 294.4 94.3 0.0 130.0 328.5 0.0 44.7 11.7 96.4 134.0 

2024 14.9 9459.6 206.4 493.8 0.0 130.1 138.5 0.0 876.1 9.7 18.1 469.2 

2025 31.2 0.0 0.0 227.5 940.3 225.3 231.6 0.0 2007.0 2.3 27.2 238.8 

2026 16.5 1469.9 54.9 87.8 0.0 22.0 122.0 0.0 506.3 1.1 4.9 84.2 

2027 1.6 0.0 0.0 112.2 0.0 29.8 12.7 0.0 630.4 0.1 1.8 99.5 

2028 5.3 333.9 0.0 527.8 0.0 157.9 83.1 0.0 2889.1 9.7 34.2 544.8 

2029 21.1 0.0 0.0 0.0 0.0 12.8 165.4 0.0 13.7 1.6 16.2 3.7 

2030 10.9 0.0 74.7 540.6 1419.2 254.8 100.6 0.0 197.4 11.1 38.8 100.6 

Total 

Renovation 

Flow 

257.8 15255.5 817.0 2895.2 8003.3 2099.9 2178.6 0.0 8514.3 157.4 309.1 2581.0 

Total 

Accumulated 

Materials 

382.1 77610.6 742.3 11401.0 94691.8 3175.3 3981.5 5799.1 43303.4 784.6 2581.0 11632.8 

Renovation 

Flow to 

Accumulated 

Materials (%) 

67 20 110 25 8 66 55 0 20 20 12 22 
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5.4 Conclusions 

In this chapter, the accumulated material stocks, projected to become available upon 

deconstruction, and the material renovation flow during a specific time period for a commercial 

building stock in the U.S. were analyzed. The work presented in this chapter fills the knowledge 

gap regarding building material stocks in the U.S. as well as analyzing materials stocks and 

renovation flow at the component level, which has been overlooked in the field of building MSA. 

Furthermore, leveraging a remote sensing technique and photogrammetry and image processing, 

actual building parameters for all buildings were estimated and used as inputs to develop the MSA 

model. One of the main findings of this work is that the exterior walls and floors are the largest 

repository of materials among the four components, which were included in this work, and 

concrete, minerals, brick, and wood have the highest mass among identified material types. Thus, 

to efficiently reclaim materials from exterior walls and floors upon deconstruction of buildings, 

nondestructive techniques should be employed.  

Recent attention to energy efficiency has resulted in the increase of insulating materials to 

tighten a building’s envelope. Since insulations are usually lightweight, their mass-based quantity 

is significantly lower than other materials like concrete or steel; however, a considerable amount 

of insulation is accumulated in the studied components, especially roofs. While it was found that 

plastics comprise less than 1% mass of accumulated materials in the studied building stock, the 

adverse implications of disposing of plastics in landfills justify the importance of time and 

financial investments to identify strategies, aligned with the circular economy, to return plastics to 

resource loop. Drawing on the results of spatial analysis, the spatial distribution of the accumulated 
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material stocks is highly correlated to urban form and the neighborhood’s compactness. Analyzing 

the material renovation flow of the studied building stock revealed that time is an essential factor 

that can contribute to effective planning for circular economy strategies and returning materials to 

the consumption loop after renovation. 

The results of this work will aid in fostering the circular economy of the building sector; 

however, they are associated with uncertainty. The variable uncertainty, which is a limitation of 

this work, is related to both physical attributes and MICs. For physical attributes, the main 

variables that cause uncertainty are buildings’ height and WWR which are estimated through 

LiDAR analysis and photogrammetry and image processing, respectively. Cities and 

municipalities can enforce reporting elevation and façade information of buildings as part of the 

construction and renovation permits process. Such information can be employed to compile 

comprehensive databases of buildings that may reduce the uncertainty of bottom-up MSA models 

and facilitate the development of these models. In addition, every building has a unique structure, 

design, and consequently unique MICs [155]; however, the bill of materials for buildings is often 

not publicly available especially in the U.S. Therefore, for determining MICs, publicly available 

databases and products’ specifications were utilized. To address the variable uncertainty, which is 

attributed to MICs, a probabilistic bottom-up MSA model based on defining and utilizing 

distributions of MICs for different layers and assemblies can be developed in future. Furthermore, 

it was found that MSA models have utilized mass-based or in rare cases volume-based systems to 

analyze material stocks of buildings. These systems are constrained in capturing several 

advantages of returning materials to the resource loop such as potential impacts on natural resource 

preservation. Introducing and testing novel methods based on other denominators than mass or 
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volume will advance the field of building MSA in the future. Ultimately, the scope of this model 

will be expanded to encompass all commercial and residential buildings in Pittsburgh, PA.  
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6.0 Visualizing Energy Use and Materials of a Building Stock 

The research presented here addresses objective five. 

Visualizing the results of modeling energy use (chapter 3), material stocks (chapter 5), and 

material renovation flow (chapter 5) of the commercial building stock in Pittsburgh, PA is 

beneficial for practical application of the outcomes by policy makers, planners, and stakeholders 

such as building owners and utility companies. For this purpose, an interactive map, which is a 

tool that enables users to explore the embedded information, was created.  

The interactive map that is available online via https://arcg.is/0zjDO0 was comprised of 

three layers. The first layer contained the annual EUI of the studied commercial buildings, which 

were obtained from the UBEM. The second and third layers visualized the total accumulated 

materials and the cumulative renovation flow between 2020 and 2030 of the studied commercial 

buildings, respectively.  

 

https://arcg.is/0zjDO0


152 

7.0 Conclusions and Future Work 

7.1 Major Findings 

The question about implementing ML models to predict building energy use in the future 

was answered by developing four statistical and ML models, comparing the prediction 

performance of models, and selecting the model with the best goodness-of-fit (chapter 2). The 

better performance of the random forest model, a non-linear algorithm, showed the non-linearity 

and the complex interactions of predictors in CBECS data. Using the random forest model in 

conjunction with climate change projections revealed that most office buildings across the U.S. 

will experience an increase in EUI due to increase in cooling demand in the future. While the 

estimated increase or decrease in EUI of office buildings was significant when compared to EUI 

in 2012, the estimated changes were insignificant when comparing the six future years (2030-

2080). This was probably the result of the well-generalization of the random forest model and the 

interaction between building energy consumption and climate change. Although an ML model can 

be employed to predict the shift in building energy use under climate change, considering large 

geographic regions (low spatial resolution) with high weather variability may overlook weather 

conditions specific to a city or an urban area. Therefore, we conducted an urban scale study (high 

spatial resolution) and created a UBEM for a commercial building stock in Pittsburgh, PA. The 

UBEM can be integrated with climate change science for resolving the limitation related to spatial 

resolution.  

The holistic modeling structure, which was developed in chapter 3, presented a multitude 

of data sources, which were required for the development of a UBEM, and resolved the data 
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disparity in the field. Also, advanced imaging and GIS techniques like photogrammetry, image 

processing, and LiDAR analysis demonstrated that dependency on assumptions can be reduced. 

Validating the results of the UBEM for the commercial building stock of Pittsburgh, PA showed 

that while commercial buildings are more complex and less consistent in energy performance than 

residential buildings, acceptable accuracy was achieved.  Moreover, the distributions of EUI of 

commercial buildings estimated by the UBEM were similar to the distributions of actual data for 

almost all use types. According to the outcomes of this research, the annual energy use of 

commercial buildings was highly related to their specific use type.  Another finding of chapter 3 

was that while low to medium cost energy conservation measures effectively reduced the energy 

use of the commercial building stock, achieving the ambitious goal of reducing energy use by 50% 

until 2030 demands more rigorous and more costly measures. In addition to energy use, the 

sustainability of buildings is tied to materials and their end-of-life management. 

The question regarding the gaps and barriers in the current literature on building MSA were 

answered by a rigorous review of existing peer-reviewed articles (chapter 4). No studies in some 

parts of the world like Africa, lack of component analysis, limited data about building design and 

construction, and deficiency of GIS data were among the major gaps and barriers in the existing 

building MSAs. The results of this research showed that bottom-up approaches provided in-depth 

information about the accumulated materials; hence, outcomes were more useful for planning the 

circular economy strategies. Also, we found that while the building sector is one of the main 

consumers of plastics [255], plastics, which are lighter than most building materials, were rarely 

estimated in MSAs. Finally, policy makers and planners can leverage the distribution of 

accumulated materials in building stocks to consider incentives for designers and contractors that 

plan for strategies, which reduce building materials’ disposal.  
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By developing a material stock and flow analysis model, the question of quantity and type 

of accumulated materials and renovation flow for a commercial building stock in Pittsburgh, PA 

was addressed (chapter 5). Our analyses revealed that exterior walls and floors had the highest 

shares of accumulated materials compared to windows and roofs. Concrete, brick, minerals, and 

wood were prevalently found in the studied components. Also, urban form and neighborhood 

compactness influenced the spatial distribution of accumulated materials. The temporal analysis 

of renovation flow between 2020 and 2030 determined the approximate time that a specific 

material type with a specific quantity will become available as a potential secondary resource. In 

addition, we found that the short service life of some materials such as carpet led to a considerable 

ratio of renovation flow to the total accumulated materials. 

7.2 Limitations 

One limitation of developing and employing ML models to predict building energy use is 

that the accuracy of outcomes is confined to the quality of data. Although the CBECS dataset, 

which was utilized in chapter 2, was comprehensive in the number of predictors, most predictors 

were categorical. Thus, categories, which indicated ranges of values, were entered into a model 

instead of inputting the exact value of a predictor. The performance of prediction models in chapter 

2 was validated based on different metrics; however, the results of impacts of climate change on 

energy use were not validated. A plan for validating and confirming these results is recommended 

as a part of future research in section 7.3. For simulating energy consumption at scale using a 

UBEM in chapter 3, there was uncertainty associated with characterizing the non-geometric 

parameters during the archetype development. While we tried to mitigate the impact of this 
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uncertainty by close inspection of buildings in the commercial stock and consulting with building 

managers about operation and systems, lack of access to design documents of buildings and 

consequently their non-geometric parameters still remained as a limitation. Another shortcoming 

of this research pertained to photogrammetry. When acquiring images of various facades of a 

building utilizing SVS API, the goal was to maintain the consistency of the images’ attributes. 

Nonetheless, to attain full coverage of façades, the image attributes of a few buildings were not 

consistent over different facades. Additionally, typical meteorological data from the weather 

station, located outside Pittsburgh, PA, may not represent the urban heat island in the City as well 

as the weather condition in 2017, which was employed as a base year for validating simulation 

results from the UBEM. Finally, the uncertainty of some variables including physical attribute and 

material intensity coefficient, which were utilized to analyze the accumulated materials and the 

renovation flow of the studied commercial building stock, was another limitation (chapter 5) that 

can be addressed by probabilistic approaches. Additionally, the scarcity of building MSA studies 

in the U.S. as well as the distinction between scopes and approaches of these studies [193, 194, 

214] and the scope and approach of our study, presented in chapter 5, inhibited us from validating 

the outcomes of the building MSA model. 

7.3 Future Work 

Further research could be conducted to improve understanding of building energy 

consumption in presence of climate change, urban building energy modeling, and material stock 

analysis of buildings at the urban scale. First, the CBECS datasets that will be published in the 

future by EIA (e.g., a dataset for 2022 or later) are recommended to be used for comparing the 
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energy consumption of office buildings in a specific year like 2022 with energy consumption from 

2012. The results of this comparison may show how weather variabilities over one decade have 

affected energy consumption. Also, comparing data from 2012 with 2022 will help confirm the 

future trends of change in the energy consumption of office buildings that were obtained from the 

random forest model in chapter 2. The main barrier to this comparison at the time of this research 

was that the recent CBECS dataset published after 2012 encompassed information on commercial 

buildings from 2018 and did not contain the amount of electricity, natural gas, fuel oil, and district 

heat for buildings. Therefore, it could not be employed for validating the patterns of change in 

energy of buildings in different regions across the U.S.  

In order to better understand how global warming and climate change will affect the energy 

for building cooling and heating, ML models can be developed to predict cooling and heating 

loads, separately. This will facilitate the interpretation of results in correlation with HDD reduction 

and CDD increase in the future. Also, it allows for identifying building features in different regions 

that have positive impacts on reducing energy and the environmental impacts associated with 

energy use. One challenge of studying building energy use is including prospective advancements 

in design, materials, and technology of buildings in the future. For instance, buildings will undergo 

changes, which are linked to renovation (e.g., upgrading envelope, HVAC systems, lighting) and 

use type adjustment, in the future. Scenarios that encompass individual change or multiple changes 

related to renovation and use type adjustment in buildings are recommended to be defined. 

Through scenario analysis, the energy consumption is suggested to be predicted considering 

variabilities in both weather conditions due to climate change and building’s state due to 

renovation and use type adjustment.  
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Besides ML models, UBEMs enable the investigation of building energy consumption in 

presence of climate change at the city scale; thus, this ability of UBEMs will resolve the low spatial 

resolution problem of some databases like the CBECS. The weather files based on various climate 

change scenarios can be created by using high-resolution climate models or downscaling global 

climate models (GCMs). Running the UBEM with these weather files provides the total energy 

use of buildings as well as energy use by fuel type under climate change during the 21st century. It 

is recommended for the future that a dynamic life cycle assessment model be paired with existing 

UBEMs’ outcomes to calculate the environmental impacts of energy use under climate change. 

The dynamic analysis will then be able to capture the possible variabilities in future systems.   

One of the main contributions of this work, described in chapter 3, was compiling the 

archetype library for eight types of commercial buildings built in three eras. The library will be 

published to facilitate building simulation. In addition, to reduce the uncertainty, which is 

associated with characterizing non-geometric parameters of archetype, employing a probabilistic 

method is recommended as a part of future work. In this method, distributions can be defined for 

every non-geometric parameter (i.e., occupancy-related, envelope composition, and 

mechanical/electrical systems). The parameters can be selected from distributions and the energy 

use can be simulated using the UBEM. Through several iterations, the non-geometric parameters 

that will result in the closest simulated energy use to actual energy use can be found and the 

archetype library can then be recalibrated.  

Additionally, the scope of the UBEM could be extended to encompass the entire 

commercial buildings in Pittsburgh, PA. Imperative for this extension is to calculate the height and 

envelope properties of all commercial buildings. Thus, the automation of photogrammetry and 
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image processing framework is needed to acquire façade images as well as WWR, floor count, and 

external wall type of all buildings.  

Much work regarding the circular economy and MSA of the building sector could stem 

from the research presented in this dissertation. Repurposing or adaptive reuse can be a substitute 

for recycling building materials, which is often associated with downgrading. For instance, with 

ongoing discussions about improving the resiliency of coastal areas and riverbanks against the sea 

level rise, accumulated materials like concrete in existing buildings that will become available due 

to renovation and deconstruction could be repurposed for strengthening shores and riverbanks 

against sea level rise and flooding. The feasibility and benefits of repurposing and reusing of 

building materials and components should be studied from various aspects including structural 

integrity standpoint, environmental impacts, and health-related safety. As a suggestion, the 

quantity and location of materials from the MSA model in chapter 5 can be employed to estimate 

emissions from both transporting materials to shores and coastal areas along with installation.  

Moreover, the embodied energy (EE) from renovation, known as recurrent EE, and EE 

from the demolition of a building stock are the functions of renovation flow and accumulated 

materials, respectively. First, subsequent work is recommended to assess embodied energy of 

renovation and deconstruction while considering the energy for disassembling components along 

with energy for handling, sorting, and storage of the second-hand building materials. The amount 

of stockpiled materials in a building stock, which were estimated in this dissertation, can be utilized 

for embodied energy calculation. Second, the ability and thoroughness of current LCA databases 

for assessing both the embodied energy and environmental impacts of building circular economy 

strategies (e.g., repurposing and reuse) are limited [270, 271] and open to more investigation. 



159 

Similar to the environmental impacts, investigating the health risks and hazards of returning 

building materials or products to the resource loop is necessary.  

Many building materials and products contain chemicals and substances like asbestos, 

isocyanates, and per-and polyfluoroalkyl substances (PFAS) that are known to elevate health risks. 

Although the use of asbestos has been banned, there are still a considerable amount of materials 

and products in older buildings, which were constructed between the 1920s and late 1980s, that 

contain asbestos. Currently, other harmful chemicals are widely used in manufacturing building 

materials without any restrictions. For example, isocyanates are used to produce coating and 

adhesive materials. PFAS are detected in carpet, stone, and tile to increase water and stain 

resistance. Also, PFAS are extensively used to make composite wood products such as oriented 

strand board and plywood and to reduce corrosion and weathering. Despite knowledge about 

accumulated materials in buildings and the health risk of some materials, there are questions to be 

answered. First, how much of the accumulated materials in existing buildings contain harmful 

substances? Does disassembling components, which contain toxic chemicals, during 

deconstruction or renovation put construction workers and occupants at risk? Do weather-related 

stressors (e.g., wind, sunlight, precipitation) cause the release of chemicals from building 

materials; consequently, impact the safety of handling and storing second-hand building materials? 

How much of a closed loop can be achieved with the growing knowledge about the toxicity of 

some materials? The outcomes of the building MSA, presented in chapter 5 and Appendix C, can 

further be employed to explore the accumulated materials with harmful substances in a building 

stock and answer the above questions. Also, future research can be built upon this dissertation to 

assess the health risks due to weathering or aging while materials and products are still in-use in 

building stocks as well as when they are handled and stored.  
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Finally, building material identification at scale helps refine the inputs for modeling energy 

and materials. Hyperspectral or multispectral remote sensing technology allows for determining 

the type of impervious surfaces like roof materials based on spectral images. The images are 

processed to identify spectrums that are identical to those for different roof materials, obtained in 

laboratories. Information about roof surface materials will aid in determining the roof composition 

for every building in an urban area; thus, enhancing thermal specification for energy modeling and 

other specifications (i.e., thickness and density) for material modeling. Additionally, technologies 

in other disciplines like ground penetrating radar (GPR) can be utilized to find the envelope layer’s 

type, thickness, and thermal specifications. Application of the GPR for every building in a city, 

although expensive and time consuming, can be used for a sample of buildings that represent 

archetypes or typologies. 
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Appendix A Supporting Information for Predicting Building Energy Use under Climate Change Using ML Models 

Appendix Table A.1 Specific ID and detail description of predictors. 

 Predictors are from CBECS dataset that were used in creating prediction models. Every predictor is marked as group 1 and/or group 2 and/or group 

3. Note: predictors that are indicated by ‘*’ are continuous and their corresponding range and unit are listed in separate columns. The range of 

continuous predictors are prior to scaling 

CBECS ID Description 
Categorical/

Continuous 

Original 

Range 
Unit 

Number of 

Categories 
Group 1 Group 2 Group 3 

PUBCLIM 
Building America climate 

region 
Categorical --- --- 5 ✓  ✓  ✓  

PBA Principal building activity Categorical --- --- 20 ✓  ✓  ✓  

WLCNS Wall construction material Categorical --- --- 9 ✓  ✓  ✓  

RFCNS Roof construction material Categorical --- --- 9 ✓  ✓  ✓  

GLSSPC Percent exterior glass Categorical --- --- 7 ✓  ✓  ✓  

YRCONC Year of construction category Categorical --- --- 10 ✓  ✓  ✓  

WKHRS* Total hours open per week Continuous 168 Hour --- ✓  ✓  ✓  

NWKER* Number of employees Continuous 6500 Person --- ✓  ✓  ✓  

HEATP Percent heated Categorical --- --- 5 ✓  ✓  ✓  

COOLP Percent cooled Categorical --- --- 5 ✓  ✓  ✓  

ENRGYPLN Energy management plan Categorical --- --- 3 ✓  ✓  ✓  

OE* Number of office equipment Continuous 8540 Number --- ✓  ✓  ✓  

WINTYP Window glass type Categorical --- --- 4 ✓  ✓  ✓  

HDD65* Heating degree days Continuous 10697 °F --- ✓  ✓  ✓  

CDD65* Cooling degree days Continuous 5857 °F --- ✓  ✓  ✓  

FREESTN Freestanding building Categorical --- --- 2  ✓  ✓  

RFCOOL Cool roof materials Categorical --- --- 2  ✓  ✓  

RFTILT Roof tilt Categorical --- --- 3  ✓  ✓  

BLDSHP Building shape Categorical --- --- 12  ✓  ✓  
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Table A.1 (continued) 

NFLOOR Number of floors Categorical --- --- 3  ✓  ✓  

FLCEILHT Floor to ceiling height Categorical --- --- 2  ✓  ✓  

NELVTR Number of elevators Categorical --- --- 2  ✓  ✓  

NESLTR Number of escalators Categorical --- --- 2  ✓  ✓  

RENOV Any renovations Categorical --- --- 3  ✓  ✓  

RENRFF Roof replacement Categorical --- --- 3  ✓  ✓  

RENWLL Exterior wall replacement Categorical --- --- 3  ✓  ✓  

RENWIN Window replacement Categorical --- --- 3  ✓  ✓  

RENHVC HVAC equipment upgrade Categorical --- --- 3  ✓  ✓  

RENLGT Lighting upgrade Categorical --- --- 3  ✓  ✓  

RENPLB Plumbing system upgrade Categorical --- --- 3  ✓  ✓  

RENELC Electrical upgrade Categorical --- --- 3  ✓  ✓  

RENINS Insulation upgrade Categorical --- --- 3  ✓  ✓  

COURT Food court Categorical --- --- 3  ✓  ✓  

OCCUPYP Percent occupancy Categorical --- --- 6  ✓  ✓  

MAINHT Main heating equipment Categorical --- --- 8  ✓  ✓  

MAINCL Main cooling equipment Categorical --- --- 9  ✓  ✓  

HWRDHT How reduce heating Categorical --- --- 5  ✓  ✓  

HWRDCL How reduce cooling Categorical --- --- 5  ✓  ✓  

ECN Economizer cycle Categorical --- --- 3  ✓  ✓  

WTHTEQ Water heating equipment Categorical --- --- 4  ✓  ✓  

SNACK Snack bar or concession stand Categorical --- --- 3  ✓  ✓  

FASTFD Fast food or small restaurant Categorical --- --- 3  ✓  ✓  

CAF Cafeteria or large restaurant Categorical --- --- 3  ✓  ✓  

FDPREP Commercial or large kitchen Categorical --- --- 3  ✓  ✓  

KITCHN Small kitchen area Categorical --- --- 3  ✓  ✓  

BREAKRM 
Employee lounge, breakroom, 

or pantry 
Categorical --- --- 3  ✓  ✓  

OTFDRM Other food prep or serving area Categorical --- --- 3  ✓  ✓  

HWTRM Large amounts of hot water Categorical --- --- 3  ✓  ✓  

MEDEQP Medical equipment Categorical --- --- 3  ✓  ✓  

LABEQP Laboratory equipment Categorical --- --- 3  ✓  ✓  

MCHEQP Machine equipment Categorical --- --- 3  ✓  ✓  

POOL Indoor swimming pool Categorical --- --- 3  ✓  ✓  

HTPOOL Heated indoor swimming pool Categorical --- --- 3  ✓  ✓  

RFGEQP Refrigeration Categorical --- --- 3  ✓  ✓  

EQGLSS Equal glass on all sides Categorical --- --- 3   ✓  
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Table A.1 (continued) 

ELHT1 
Electricity used for main 

heating 
Categorical --- --- 2   ✓  

NGHT1 
Natural gas used for main 

heating 
Categorical --- --- 3   ✓  

FKHT1 Fuel oil used for main heating Categorical --- --- 3   ✓  

PRHT1 Propane used for main heating Categorical --- --- 3   ✓  

STHT1 
District steam used for main 

heating 
Categorical --- --- 3   ✓  

HWHT1 
District hot water used for 

main heating 
Categorical --- --- 2   ✓  

WOHT1 Wood used for main heating Categorical --- --- 3   ✓  

COHT1 Coal used for main heating Categorical --- --- 3   ✓  

SOHT1 Solar used for main heating Categorical --- --- 2   ✓  

OTHT1 
Other source used for main 

heating 
Categorical --- --- 3   ✓  

ELCOOL Electricity used for cooling Categorical --- --- 2   ✓  

NGCOOL Natural gas used for cooling Categorical --- --- 3   ✓  

FKCOOL Fuel oil used for cooling Categorical --- --- 3   ✓  

PRCOOL Propane used for cooling Categorical --- --- 3   ✓  

STCOOL District steam used for cooling Categorical --- --- 3   ✓  

HWCOOL 
District hot water used for 

cooling 
Categorical --- --- 2   ✓  

CWCOOL 
District chilled water used for 

cooling 
Categorical --- --- 2   ✓  

OTCOOL Other source used for cooling Categorical --- --- 3   ✓  

ELWATR 
Electricity used for water 

heating 
Categorical --- --- 2   ✓  

NGWATR 
Natural gas used for water 

heating 
Categorical --- --- 3   ✓  

FKWATR Fuel oil used for water heating Categorical --- --- 3   ✓  

PRWATR Propane used for water heating Categorical --- --- 3   ✓  

STWATR 
District steam used for water 

heating 
Categorical --- --- 3   ✓  

HWWATR 
District hot water used for 

water heating 
Categorical --- --- 2   ✓  

WOWATR Wood used for water heating Categorical --- --- 3   ✓  

COWATR Coal used for water heating Categorical --- --- 3   ✓  
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Table A.1 (continued) 

SOWATR Solar used for water heating Categorical --- --- 3   ✓  

OTWATR 
Other source used for water 

heating 
Categorical --- --- 3   ✓  

ELCOOK Electricity used for cooking Categorical --- --- 2   ✓  

NGCOOK Natural gas used for cooking Categorical --- --- 3   ✓  

FKCOOK Fuel oil used for cooking Categorical --- --- 3   ✓  

PRCOOK Propane used for cooking Categorical --- --- 3   ✓  

STCOOK District steam used for cooking Categorical --- --- 3   ✓  

HWCOOK 
District hot water used for 

cooking 
Categorical --- --- 2   ✓  

WOCOOK Wood used for cooking Categorical --- --- 3   ✓  

COCOOK Coal used for cooking Categorical --- --- 3   ✓  

SOCOOK Solar used for cooking Categorical --- --- 2   ✓  

OTCOOK Other source used for cooking Categorical --- --- 2   ✓  

ELMANU 
Electricity used for 

manufacturing 
Categorical --- --- 2   ✓  

NGMANU 
Natural gas used for 

manufacturing 
Categorical --- --- 3   ✓  

FKMANU 
Fuel oil used for 

manufacturing 
Categorical --- --- 3   ✓  

PRMANU 
Propane used for 

manufacturing 
Categorical --- --- 3   ✓  

STMANU 
District steam used for 

manufacturing 
Categorical --- --- 2   ✓  

HWMANU 
District hot water used for 

manufacturing 
Categorical --- --- 2   ✓  

WOMANU Wood used for manufacturing Categorical --- --- 2   ✓  

COMANU Coal used for manufacturing Categorical --- --- 2   ✓  

SOMANU Solar used for manufacturing Categorical --- --- 2   ✓  

OTMANU 
Other source used for 

manufacturing 
Categorical --- --- 2   ✓  

NGGENR 
Natural gas used for electricity 

generation 
Categorical --- --- 3   ✓  

FKGENR 
Fuel oil used for electricity 

generation 
Categorical --- --- 3   ✓  

PRGENR 
Propane used for electricity 

generation 
Categorical --- --- 3   ✓  
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Table A.1 (continued) 

WOGENR 
Wood used for electricity 

generation 
Categorical --- --- 2   ✓  

COGENR 
Coal used for electricity 

generation 
Categorical --- --- 3   ✓  

SOGENR 
Solar used for electricity 

generation 
Categorical --- --- 3   ✓  

OTGENR 
Other source used for 

electricity generation 
Categorical --- --- 3   ✓  

DRYCL Dry cleaning onsite Categorical --- --- 3   ✓  

LOHRPC Lit when open category Categorical --- --- 6   ✓  

LNHRPC Lit off hours category Categorical --- --- 6   ✓  
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Appendix Table A.2 Description of categories for the categorical predictors 

CBECS ID Description Categories 

PBA Principal building activity 

'01' = 'Vacant' 

'02' = 'Office' 

'04' = 'Laboratory' 

'05' = 'Nonrefrigerated warehouse' 

'06' = 'Food sales' 

'07' = 'Public order and safety' 

'08' = 'Outpatient health care' 

'11' = 'Refrigerated warehouse' 

'12' = 'Religious worship' 

'13' = 'Public assembly' 

'14' = 'Education' 

'15' = 'Food service' 

'16' = 'Inpatient health care' 

'17' = 'Nursing' 

'18' = 'Lodging' 

'23' = 'Strip shopping mall' 

'24' = 'Enclosed mall' 

'25' = 'Retail other than mall' 

'26' = 'Service' 

'91' = 'Other' 

FREESTN Freestanding building 
1' = 'Yes' 

Missing='No'  

WLCNS Wall construction material 

'1' = 'Brick, stone, or stucco' 

'2' = 'Pre-cast concrete panels' 

'3' = 'Concrete block or poured concrete (above grade)' 

'4' = 'Aluminum, asbestos, plastic, or wood materials 

(siding, shingles, tiles, or shakes)' 

'5' = 'Sheet metal panels' 

'6' = 'Window or vision glass (glass that can be seen 

through)' 

'7' = 'Decorative or construction glass' 

'8' = 'No one major type' 

'9' = 'Other' 
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Table A.2 (continued) 

RFCNS Roof construction material 

'1' = 'Built-up (tar, felts, or fiberglass and a ballast, 

such as stone)' 

'2' = 'Slate or tile shingles' 

'3' = 'Wood shingles, shakes, or other wooden 

materials' 

'4' = 'Asphalt, fiberglass, or other shingles' 

'5' = 'Metal surfacing' 

'6' = 'Plastic, rubber, or synthetic sheeting (single or 

multiple ply)' 

'7' = 'Concrete' 

'8' = 'No one major type' 

'9' = 'Other' 

RFCOOL Cool roof materials 
'1' = 'Yes' 

'2' = 'No' 

RFTILT Roof tilt 

'1' = 'Flat' 

'2' = 'Shallow pitch' 

'3' = 'Steeper pitch' 

BLDSHP Building shape 

'01' = 'Square' 

'02' = 'Wide rectangle' 

'03' = 'Narrow rectangle' 

'04' = 'Rectangle or square with an interior courtyard' 

'05' = '"H" shaped' 

'06' = '"U" shaped' 

'07' = '"E" shaped' 

'08' = '"T" shaped' 

'09' = '"L" shaped' 

'10' = '"+" or cross shaped' 

'11' = 'Other shape' 

Missing = Not applicable 

GLSSPC Percent exterior glass 

'1' = '1 percent or less' 

'2' = '2 to 10 percent' 

'3' = '11 to 25 percent' 

'4' = '26 to 50 percent' 

'5' = '51 to 75 percent' 

'6' = '76 to 100 percent' 

Missing = Not applicable 

EQGLSS Equal glass on all sides 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

NFLOOR Number of floors 

1 - 14 

994 = 15 to 25 

995 = More than 25 

FLCEILHT Floor to ceiling height 
6 - 50 

995 = More than 50 

ELEVTR Elevators 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

ESCLTR Escalators 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 
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Table A.2 (continued) 

YRCONC Year of construction category 

'01' = 'Before 1920' 

'02' = '1920 to 1945' 

'03' = '1946 to 1959' 

'04' = '1960 to 1969' 

'05' = '1970 to 1979' 

'06' = '1980 to 1989' 

'07' = '1990 to 1999' 

'08' = '2000 to 2003' 

'09' = '2004 to 2007' 

'10' = '2008 to 2012' 

RENOV Any renovations 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENRFF Roof replacement 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENWLL Exterior wall replacement 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENWIN Window replacement 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENHVC HVAC equipment upgrade 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENLGT Lighting upgrade 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENPLB Plumbing system upgrade 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENELC Electrical upgrade 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RENINS Insulation upgrade 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

COURT Food court 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OCCUPYP Percent occupancy 
0 - 100 

Missing = Not applicable 

ELHT1 Electricity used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

NGHT1 Natural gas used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 
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Table A.2 (continued) 

FKHT1 Fuel oil used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

PRHT1 Propane used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

STHT1 District steam used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

HWHT1 District hot water used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

WOHT1 Wood used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

COHT1 Coal used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

SOHT1 Solar used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OTHT1 Other source used for main heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

HEATP Percent heated 
0 - 100 

Missing = Not applicable 

MAINHT Main heating equipment 

'1' = 'Furnaces that heat air directly, without using 

steam or hot water' 

'2' = 'Packaged central unit (roof mounted)' 

'3' = 'Boilers inside (or adjacent to) the building that 

produce steam or hot water' 

'4' = 'District steam or hot water piped in from outside 

the building' 

'5' = 'Heat pumps (other than components of a 

packaged unit)' 

'6' = 'Individual space heaters (other than heat pumps)' 

'7' = 'Other heating equipment' 

Missing = Not applicable 

ELCOOL Electricity used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

NGCOOL Natural gas used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

FKCOOL Fuel oil used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 
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Table A.2 (continued) 

PRCOOL Propane used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

STCOOL District steam used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

HWCOOL District hot water used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

CWCOOL District chilled water used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OTCOOL Other source used for cooling 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

COOLP Percent cooled 
1 - 100 

Missing = Not applicable 

MAINCL Main cooling equipment 

'1' = 'Residential-type central air conditioners (other 

than heat pumps) that cool air directly and circulate it 

without using chilled water' 

'2' = 'Packaged air conditioning units (other than heat 

pumps)' 

'3' = 'Central chillers inside (or adjacent to) the 

building that chill water for air conditioning' 

'4' = 'District chilled water piped in from outside the 

building' 

'5' = 'Heat pumps for cooling' 

'6' = 'Individual room air conditioners (other than heat 

pumps)' 

'7' = '"Swamp" coolers or evaporative coolers' 

'8' = 'Other cooling equipment' 

Missing = Not applicable 

HWRDHT How reduce heating 

'1' = 'Part of the Building Automation System' 

'2' = 'Programmable thermostat' 

'3' = 'Manually change thermostat' 

'4' = 'Manually shut down equipment' 

Missing = Not applicable 

HWRDCL How reduce cooling 

'1' = 'Part of the Building Automation System' 

'2' = 'Programmable thermostat' 

'3' = 'Manually change thermostat' 

'4' = 'Manually shut down equipment' 

Missing = Not applicable 

ECN Economizer cycle 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

ELWATR Electricity used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 
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Table A.2 (continued) 

NGWATR Natural gas used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

FKWATR Fuel oil used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

PRWATR Propane used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

STWATR District steam used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

HWWATR District hot water used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

WOWATR Wood used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

COWATR Coal used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

SOWATR Solar used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OTWATR Other source used for water heating 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

WTHTEQ Water heating equipment 

'1' = 'One or more centralized water heaters' 

'2' = 'One or more "point-of-use" water heaters' 

'3' = 'Both types' 

Missing = Not applicable 

ELCOOK Electricity used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

NGCOOK Natural gas used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

FKCOOK Fuel oil used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

PRCOOK Propane used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

STCOOK District steam used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 
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Table A.2 (continued) 

HWCOOK District hot water used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

WOCOOK Wood used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

COCOOK Coal used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

SOCOOK Solar used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OTCOOK Other source used for cooking 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

ELMANU Electricity used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

NGMANU Natural gas used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

FKMANU Fuel oil used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

PRMANU Propane used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

STMANU District steam used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

HWMANU District hot water used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

WOMANU Wood used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

COMANU Coal used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

SOMANU Solar used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OTMANU Other source used for manufacturing 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

NGGENR Natural gas used for electricity generation 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 



173 

Table A.2 (continued) 

FKGENR Fuel oil used for electricity generation 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

PRGENR Propane used for electricity generation 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

WOGENR Wood used for electricity generation 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

COGENR Coal used for electricity generation 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

SOGENR Solar used for electricity generation 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OTGENR Other source used for electricity generation 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

TOGRID Deliver electricity to grid 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

ENRGYPLN Energy management plan 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

SNACK Snack bar or concession stand 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

FASTFD Fast food or small restaurant 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

CAF Cafeteria or large restaurant 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

FDPREP Commercial or large kitchen 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

KITCHN Small kitchen area 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

BREAKRM Employee lounge, breakroom, or pantry 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

OTFDRM Other food prep or serving area 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

HWTRM Large amounts of hot water 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 
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Table A.2 (continued) 

MEDEQP Medical equipment 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

LABEQP Laboratory equipment 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

MCHEQP Machine equipment 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

POOL Indoor swimming pool 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

HTPOOL Heated indoor swimming pool 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

RFGEQP Refrigeration 

'1' = 'Yes' 

'2' = 'No' 

Missing = Not applicable 

LOHRPC Lit when open category 

'1' = '1 to 25 percent' 

'2' = '26 to 50 percent' 

'3' = '51 to 75 percent' 

'4' = '76 to 100 percent' 

'5' = 'Not lit at all when it is normally open' 

Missing = Not applicable 

LNHRPC Lit off hours category 

'1' = '1 to 25 percent' 

'2' = '26 to 50 percent' 

'3' = '51 to 75 percent' 

'4' = '76 to 100 percent' 

'5' = 'Not lit at all during off hours' 

Missing = Not applicable 

WINTYP Window glass type 

'1' = 'Single layer glass' 

'2' = 'Multi-layer glass' 

'3' = 'Combination of both' 

'4' = 'No windows' 

PUBCLIM Building America climate region 

1' = 'Very cold/Cold' 

'2 '= 'Mixed-humid' 

'3' = 'Hot-dry/Mixed-dry/Hot-humid' 

'5' = 'Marine' 

'7' = 'Withheld to protect confidentiality' 
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Appendix B Supporting Information for Development and Validation of An Urban 

Building Energy Model 

Table B.1 presents the predominant classes of roofs for different archetypes, which were 

extracted from CBECS data [8]. 

Appendix Table B.1 Predominant roof materials extracted from CBECS data 

 Predominant roof material 

 Pre-1980 1980-2004 Post 2004 

Education 

Built-up (tar, felts, or 

fiberglass and a ballast, 

such as stone) 

Built-up (tar, felts, or 

fiberglass and a ballast, 

such as stone) 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Lodging 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Office 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Parking garage Metal surfacing Metal surfacing Metal surfacing 

Public assembly 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Metal surfacing Metal surfacing 

Public order and safety 

Built-up (tar, felts, or 

fiberglass and a ballast, 

such as stone) 

Built-up (tar, felts, or 

fiberglass and a ballast, 

such as stone) 

Metal surfacing 

Warehouse  

Built-up (tar, felts, or 

fiberglass and a ballast, 

such as stone) 

Metal surfacing Metal surfacing 

Other 

Plastic, rubber, or 

synthetic sheeting (single 

or multiple ply) 

Metal surfacing 
Asphalt, fiberglass, or 

other shingles 

 

Table B.2 provides the predominant classes of windows for different archetypes, which 

were extracted from CBECS data [8]. 
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Appendix Table B.2 Predominant type of windows extracted from CBECS data 

 Predominant roof material 

 Pre-1980 1980-2004 Post 2004 

Education Single layer Multiple layer Multiple layer 

Lodging Multiple layer Multiple layer Multiple layer 

Office Multiple layer Multiple layer Multiple layer 

Parking garage Single layer Multiple layer Multiple layer 

Public assembly Single layer Multiple layer Multiple layer 

Public order and safety Multiple layer Multiple layer Multiple layer 

Warehouse  Single layer Multiple layer Multiple layer 

Other Single layer Multiple layer Multiple layer 

 

The relationship between external wall materials and wall composition based on ASHRAE 

standard 90.1 are presented in Table B.3. 

Appendix Table B.3 Classifying wall composition based on external wall materials 

External wall material Wall composition 

Brick, Stone, Stucco Mass wall Metal building wall Steel-framed wall 
Wood-framed wall 

and other 

Concrete block, poured 

concrete 
Mass wall    

Pre-cast concrete Mass wall    

Sheet metal panels  Metal building wall   

Siding, shingle, tile   Steel-framed wall 
Wood-framed wall 

and other 

Construction glass   Steel-framed wall  

 

Figure B.1 displays the graphical synthesis of the proposed approach including methods 

and results. 
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Appendix Figure B.1 Graphical synthesis of the approach for the UBEM. LiDAR, EC, and UBEM stand for 

Light Detection and Ranging, energy conservation, and urban building energy model, respectively 

Methods

Phase 2: Archetype library

Phase 3: Photogrammetry and image 

processing

Phase 4: LiDAR analysis

Phase 1: Available data

Phase 5: Urban model generation

UBEM

Energy use pattern

Validation

EC strategies 

evaluation

Results
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Appendix C Supporting Information for Quantifying and Spatializing Buildings Material 

Stock and Renovation Flow for Circular Economy 

Table C.1 to Table C.4 present the total accumulated materials by different products in 

exterior walls, windows, roofs, and floors.  

Appendix Table C.1 Total accumulated materials in the exterior walls by different products 

Product Quantity (metric ton) 

Stucco (1") 841.5 

Concrete block (8") 69341.7 

Gypsum board (1/2") 4742.7 

Brick  77610.6 

Stone panel (1-1/2") 13582.9 

Concrete 25 MPa (15 cm) 4376.2 

Reinforcement 130.2 

Insulation (4.5 cm) 763.2 

Insulation (5.99 cm) 120.4 

Insulation (7.47 cm) 21.1 

Metal Stud 1241.0 

Vapor barrier 90.8 

Metal siding 87.4 

Wood siding 5.8 

Plywood (1/2") 198.3 

OSB (7/16") 135.7 

Double Pane (1/4") 90.0 

 

Appendix Table C.2 Total accumulated materials in windows by different products 

Product Quantity (metric ton) 

Single and double pane (1/4") 3891.4 

Frame steel 716.1 

Frame aluminum 382.1 

Plastics sealing  39.4 
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Appendix Table C.3 Total accumulated materials in roofs by different products 

Product Quantity (metric ton) 

Felt and tar - 5 ply 1920.1 

Felt and tar - 4 ply 1255.3 

Plywood (5/8") 1201.2 

Plywood (1/2") 883.3 

Synthetic rubber membrane 

(90 mil) 
301.9 

Insulation (12.5 cm) 3243.7 

Vapor barrier 33.2 

Metal surfacing 406.2 

OSB (5/8") 232.4 

 

Appendix Table C.4 Total accumulated materials in floors by different products 

Product Quantity (metric ton) 

Terrazzo (1") 23301.6 

Cement board (1/2") 10115.3 

Plywood (3/4") 8976.0 

Carpet (1/2") 742.3 

Paving concrete (6") 19554.6 

VCT (1/8") 1995.5 

Insulation (6.36 cm) 1650.7 

Normal duty screed (4 cm) 444.3 

Concrete substrate (10 cm) 1419.2 

 

 

 

 

 

 

 

 



180 

Table C.5 to Table C.8 present total material renovation flow cumulated between 2020 and 

2030 by different products in exterior walls, windows, roofs, and floors.  

Appendix Table C.5 Total material renovation flow in exterior walls cumulated between 2020 and 2030 by 

different products  

Product Quantity (metric ton) 

Stucco (1") 0.0 

Concrete block (8")  0.0 

Gypsum board (1/2")  1054.0 

Brick 15255.5 

Stone panel (1-1/2")  1088.4 

Concrete 25 MPa (15 cm)  0.0 

Reinforcement  0.0 

Insulation (4.5 cm)  0.0 

Insulation (5.99 cm)  0.0 

Insulation (7.47 cm)  0.0 

Metal Stud  0.0 

Vapor barrier  0.0 

Metal siding 19.8 

Wood siding 5.8 

Plywood (1/2") 0.0 

OSB (7/16") 0.0 

Double pane (1/4") 0.0 

 

Appendix Table C.6 Total material renovation flow in windows cumulated between 2020 and 2030 by 

different products 

Product Quantity (metric ton) 

Single and double pane (1/4")  2178.6 

Steel frame 249.6 

Aluminum frame  257.8 

Plastics sealing 21.2 
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Appendix Table C.7 Total material renovation flow in roofs cumulated between 2020 and 2030 by different 

products 

Product Quantity (metric ton) 

Felt and tar 2099.9 

Plywood 366.7 

Synthetic rubber membrane (90 

mil) 
55.0 

Insulation (12.5 cm) 0.0 

Vapor barrier 0.0 

Metal surfacing 39.7 

OSB (5/8") 33.6 

 

Appendix Table C.8 Total material renovation flow in floors cumulated between 2020 and 2030 by different 

products 

Product Quantity (metric ton) 

Terrazzo (1") 5945.5 

Cement board (1/2") 2450.9 

Plywood (3/4") 2174.9 

Carpet (1/2") 817.0 

Paving concrete (6") 6584.1 

VCT (1/8") 507.6 

Insulation (6.36 cm) 0.0 

Normal duty screed (4 cm) 444.3 

Concrete substrate (10 cm) 1419.2 
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