
 

  

Title Page  

Mathematical Modeling and Machine Learning Guided Optimization to Characterize 
Immunoregulation during Respiratory Infection 

 
 
 
 
 
 
 

by 
 

Jordan John Alexander Weaver 
 

Bachelor of Science in Chemical Engineering, South Dakota School of Mines and Technology, 
2017 

 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the 
 

Swanson School of Engineering in partial fulfillment 
  

of the requirements for the degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2022  



ii 

 

Committee Membership Page  

UNIVERSITY OF PITTSBURGH 

 
SWANSON SCHOOL OF ENGINEERING 

 
 
 
 
 
 
 
 
 

This dissertation was presented 
 

by 
 
 

Jordan John Alexander Weaver 
 
 

It was defended on 
 

July 5, 2022 
 

and approved by 
 

Dr. Christopher E. Wilmer, PhD, Associate Professor, Department of Chemical and Petroleum 
Engineering 

 
Dr. Ipsita Banerjee, PhD, Associate Professor, Department of Chemical and Petroleum 

Engineering 
 

Dr. James R. Faeder, PhD, Associate Professor, Department of Computational and Systems 
Biology 

 
Dissertation Director: Dr. Jason E Shoemaker, PhD, Associate Professor, Department of 

Chemical and Petroleum Engineering 
 

  



iii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Jordan John Alexander Weaver 
 

2022 
 

  



iv 

 

Abstract 

Mathematical Modeling and Machine Learning Guided Optimization to Characterize 
Immunoregulation during Respiratory Infection 

 
Jordan John Alexander Weaver, PhD. 

 
University of Pittsburgh, 2022 

 
Respiratory viruses present major public health challenges, as evidenced by seasonal 

influenza’s 290,000 – 650,000 worldwide annual deaths, while the Severe Acute Respiratory 

Coronavirus 2 (SARS-CoV-2) has caused 6.31 million deaths worldwide. These viruses invoke 

excessive immune responses; however, the kinetics that regulate inflammatory responses within 

infected cells remain unresolved. Understanding the dynamics of the innate immune response and 

its manifestations at the cell and tissue levels is vital to understanding the mechanisms of 

immunopathology and to developing strain-independent treatments. Computational models of the 

innate immune response to respiratory infections are designed to provide greater insights into the 

regulation of the immune system, which will likely provide insights into clinical treatments and 

the pathological understandings of the disease. Efforts to develop these models have greatly 

increased as RNA and protein level data have become widely available.  

Aim 1 incorporates viral replication, cell death, interferon stimulated genes’ effects on viral 

replication, and demonstrating that RIG-I is robust to viral antagonism. Aim 2’s model is a 

spatialized, multicellular representation of RNA virus infection and type-I interferon-mediated 

antiviral response that model suggests that modifying the activity of signaling molecules in the 

JAK/STAT pathway or altering the ratio of the diffusion lengths of interferon and virus leads to 

plaque growth arrest. Aim 3 compares low-pathogenic H1N1 and high-pathogenic H5N1 influenza 

virus infections, suggesting that the production rate of interferon is the major driver of strain-

specific immune responses. This rate difference may arise from the degree of antagonism of RIG-
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I by the invading virus. Aim 4 details an unbiased method to determine the minimum number of 

parameters which must vary to explain differences observed between two or more datasets using 

an extension of Aim 3.  

A greater understanding of the contributors to strain-specific immunodynamics can be 

utilized in future efforts aimed at treatment development to improve clinical outcomes of high-

pathogenic viral strains. As kinetics are host cell-specific, the model presented provides an 

important step to modeling the intracellular immune dynamics of many RNA viruses, including 

the viruses responsible for influenza and COVID-19.  A visual summary of the work is given in 

Figure 1. 

 
Figure 1. Visual abstract of work. 
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1.0 Introduction 

1.1 Viral Respiratory Infections 

Respiratory infections are a constant threat to public health with deadly infections often 

characterized by cytokine storms, i.e., overly aggressive innate immune responses that result in 

severe, unnecessary lung tissue inflammation. Both influenza and SARS-CoV-2 are RNA viruses, 

and the data to date suggests that cytokine storms are a common feature of both viruses during 

severe infections1. Typical seasonal influenza virus strains are responsible for 290,000 – 650,000 

annual deaths globally2, and occasional, highly pathogenic pandemic strains, such as the 1918 

Spanish Flu3, 1957 H2N24, 1968 H3N25, and 2009 H1N16 flus result in significantly higher 

mortality rates. As of May 27th, 2022, the SARS-CoV-2 virus, which causes COVID-19, has 

caused over 527 million recorded infections and 6.28 million deaths worldwide7.  

Immune responses can help or hinder an organism’s ability to overcome an infection, and 

excessively, inflammatory responses, like cytokine storms, can cause greater tissue damage, higher 

mortality, and slow recovery8,9. In highly pathogenic infections, an aberrant inflammatory 

response – specifically a prolonged, elevated inflammatory state and a high level of type-I 

interferons in the bloodstream, clinically called hypercytokinemia (colloquially known as a 

cytokine storm)1 – is believed to be a significant driver of mortality10,11. Excessive inflammation 

also exacerbates tissue damage and hinders clinical recovery9,12. 

Vaccination is effective for protecting public health against seasonal influenza; however, 

when new strains unexpectedly emerge, such as the 2009 novel pandemic H1N1 virus or the 2019 

SARS-CoV-2 virus, new treatment strategies that can be implemented rapidly, and preferably 
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independently of the specific virus, are needed. Immunomodulatory treatments that aim to reduce 

inflammation while still managing virus growth are a promising approach to protecting against 

emergent disease, but several fundamental questions on how unnecessarily aggressive immune 

responses emerge remain unknown. Mathematical modeling can help quantify the kinetics of the 

interactions that define the immune system, revealing the interactions that are most likely to be 

responsible for unnecessarily aggressive responses and potential targets, to interfere with 

immunity to ensure healthy virus clearance. 

1.2 Mathematical Modeling  

Modeling is tool to compress and translate observations, real-world data, and the growing 

behemoth of established literature into a form tractable to human interpretation. All models are 

wrong, but if careful and articulate questions are asked, models can reveal useful truths. Data itself 

is nothing more than an abstraction of real events, given form in numbers, categories, 

measurements, even natural language. Models simply construct another abstraction – a tool that 

can predict the same real event as the data it is built upon, given the same conditions. It is not 

necessarily useful to predict a past event, but the utility of models lies in proposing new conditions 

and making predictions which have not happened. A model which could predict last week’s lottery 

numbers is not exciting, but if predictions of next week were correct for even one number it would 

be advantageous. 

This thesis is centered around data from viral respiratory infections, and the models 

developed here are limited to the same scope. However, the model types, parameter optimization, 

statistical analyses, and algorithm development are broadly applicable to anywhere that real events 
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can be made abstract and recorded. This section serves to broadly introduce some of these 

concepts. 

1.2.1 Ordinary and Partial Differential Equations 

Ordinary differential equations (ODEs) are equations which model the progression of 

different states (populations, cytokine levels, income streams, velocity) over time or space. Partial 

differential equations are like ODEs, but the equations typically allow states to change over both 

time and space. This type of model is a common approach in systems biology, after their 

demonstrable success in analyzing the robustness of biological signaling13–15, the highly dynamic 

behaviors of NF-kB, and ultrasensitive cell fate binary responses16. ODEs allow for interpolation 

of the dynamics between a finite number of time points at which data has been measured, based 

on hypotheses of the mechanisms regulating the system’s components. From this, predictions can 

be made at extended time frames and under novel conditions. 

1.2.2 Agent Based Model 

Agent based, or multiscale models usually consist of individual agents like flocks of birds 

or cells in a lung, with a sense of “internal” and “external” modeling scopes. Internal models 

govern the agents – mathematical equations which could dictate the next movement of the bird 

within a flock based on its neighbors’ positions, or the amount of inflammation a cell is 

experiencing after detecting a virus. External models govern the environment, like wind currents 

and seasonal factors for our migrating birds or the physical process of inflammatory molecules 

diffusing through mucus to neighboring cells. Agent based models (ABM) can produce rich 
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temporal and spatial information but require both data types during construction to be defensible. 

Additionally, the number of decisions, equations, agents, parameters, and dimensions scales the 

computational and developmental cost of an ABM. 

1.2.3 Parameter Exploration and Optimization 

Models of any kind rely on parameters. These are completely abstract numbers which 

describe aspects of the system. A parameter can describe as broad a scope as the rate at which a 

virus can replicate itself within the cell, or as specific as the rate at which a single nucleotide is 

bonded with a small step in this process. Parameter values are based on data and estimations alike, 

and in any realm with noisy or biological data, one must not assign any numerical value too much 

importance. Parameters are descriptions, unique to the equations in which they act. Finding values 

for parameters which allow the model to replicate data is an integral step in model development, 

called parameter optimization. For simple models of < 5 parameters, simply guessing values by 

hand or in an automated way can be sufficient to find these parameter values. Once the number of 

parameters increases, both human intuition and the algorithms based on these approaches may start 

to falter. For larger models, stochastic (random) approaches are used with a numerical quality of 

the model’s ability to fit the data. More information can be found in each Aim’s Materials and 

Methods, or broadly within the field of stochastic methods. 
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1.3 Definition of Terms 

Due to the nature of this work, an overview of the vocabulary used is necessitated. Some 

terms may have unique definitions compared to their typical use in literature: what follows is a 

best attempt to use unified language within this work. 

Model: A model is a set of equations or rules which yield time-course or other predictions. 

A model can be applied to multiple sets of data (or conditions) by having an instance of the model 

for each dataset. This can consist of Ordinary Different Equations (ODE), Partial Differential 

Equations (PDE), agent-based (ABM or multiscale), Boolean, network, pharmacokinetic and 

pharmacodynamic, game engines, or other parameter-dependent functions. 

Energy: Energy is the value of the objective function value from an optimizer such as 

Basin Hopping parameterization or Markov Chain Monte Carlo parameter exploration. Smaller 

energies indicate more suitable parameters and a closer fit to the biological data. Energy does not 

consider model complexity but is based on the comparison of model predictions to data. Energy 

typically results from a user-supplied cost function. 

Likelihood: The likelihood function, L, is the exponential of negative energy, after 

Metropolis et al.17. Lower energies (better fits) give higher likelihoods for a model to be correct. 

Likelihood functions are the basis of both Basin Hopping’s and Markov Chain Monte Carlo’s 

stochastic steps. 
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Akaike Information Criterion (AIC): AIC18,19 (Equation 1-1) is a penalty function 

designed to consider both the model fit, as defined by Metropolis-like energy17 or statistical error20 

functions, and model complexity, in this application using Degrees of Freedom (DOF), k. Unlike 

traditional statistical error functions, such as Sum of Squares Error (SSE), lower AIC should 

indicate a model which is more likely to explain the underlying data while using the simplest model 

possible. The weighting of error and model complexity is both arbitrary and important; this 

weighting determines the sacrifices made in the model’s predictive ability for the sake of 

simplicity. Bayesian Information Criterion (below) leverages this.   

𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − ln (𝐿𝐿)                                                                                                         (1-1) 

Bayesian Information Criterion (BIC): BIC, or Schwarz Information Criterion21, utilizes 

a different relative weighting of error and complexity (Equation 1-2) and is dependent on the 

number of underlying data points, n. BIC performs a similar role to AIC, although there is ongoing 

debate between the criterions22. 

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑘𝑘 ln(𝑛𝑛) − 2 ln (𝐿𝐿)                                                                                              (1-2) 

Parameter: A parameter is a value which controls various aspects of model equations or 

outcomes. Parameters can represent rate constants, kinetic orders, probabilities, physical attributes, 

and similar concepts. Parameters are identified with italics (and subscripts as needed) such as Kvv. 

Parameters with values which can reasonably be assumed constant, such as decay rates, can be 

neglected from SPOT analysis to improve the computational tractability of larger models. 

State: A model state is a species, equation, or group whose dynamics are represented by 

the model, such as a chemical concentration or count of predators. States are identified with square 

brackets and italics, such as [V]. 
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Genome: A genome succinctly identifies which parameters are shared and independent 

between multiple data sets. Genomes consist of a series of Boolean bits (1 or 0), with a length 

equal to the number of parameters in the model. 0 indicates a parameter which is shared between 

all datasets. 1 indicates a parameter which is fit independently to each dataset. The degree of 

freedom for a genome is thus given in Equation 1-3.  

DOF = Length(𝐺𝐺𝐺𝐺𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺) + (𝑁𝑁𝑁𝑁𝐺𝐺𝑁𝑁𝐺𝐺𝑁𝑁 𝐺𝐺𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐷𝐷𝐷𝐷 − 1) ∗ ∑𝐺𝐺𝐺𝐺𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺                    (1-3) 

Model Structure: A model’s structure is the combination of a genome which defines the 

parameter sharing rules, and a model, which defines the dynamics, combined in a process referred 

to as translation. The model structure is parameterized using data and Basin Hopping, resulting in 

a BIC value and a parameter set. This BIC value, or genome performance, is variable since 

repeating the stochastic parameterization may result in different parameter sets.  

Dataset: Datasets are a collection of data, typically consisting of measurements at discrete 

time intervals from two or more distinct sets of conditions. The data is assumed to share a common 

underlying model, e.g., identically collected data on H5N1 and H1N1 viral infections in vitro. A 

single model may be capable of recreating both strains’ data, given an appropriate genome to 

define parameter sharing rules. Datasets can also refer to testing cohorts, treatment groups, age, 

species, or other grouping variables between which parameter differences are expected. A dataset 

may be real (coming from observations) or synthetic (computer-generated measurements with 

intentional differences). 
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Basin Hopping (BH): Basin hopping is a two-phase parameter estimation method, 

consisting of a stochastic global search method (hops, like Markov Chain Monte Carlo steps, to 

rapidly traverse parameter space) and a local optimization (basins, a gradient descent method used 

to rapidly find the minima associated with each hop). Generates a single, maximum likelihood 

value for each parameter.  

Markov Chain Monte Carlo (MCMC): A stochastic method which samples parameter 

space in a probabilistic way. While slower to reach a global minimum than Basin Hopping, MCMC 

provides a true exploration of parameter space, returning distributions of parameters and a 

characterization of the loss function’s space rather than a single parameter set and BIC value. 

Based on the Metropolis algorithm17. 

Shared Parameter: A shared parameter has the same value in all instances of equations, 

regardless of which dataset the equation relates to. It contributes only 1 Degree of Freedom to the 

model. 

Independent or Unshared Parameter: An unshared, or independent parameter has a 

different value in each dataset’s model instance. It contributes one Degree of Freedom for each 

dataset. 

Degrees of Freedom (DOF): represents the number of parameters which a model uses to 

fit to data. Shared parameters contribute 1 DOF, while unshared parameters contribute 1 DOF per 

dataset present. See Equation 1-3. 
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2.0 Determining How Paracrine Signaling Impacts Epithelial Cells’ Response to Influenza 

Infection 

2.1 Introduction 

The first step to occur during an immune response is the detection of the pathogens, leading 

to the early, localized, innate immune response23. This response to viral infection leads to the 

production of Type-I interferon (IFN). Interferon serves to establish an antiviral state by activating 

and inducing Mx proteins, RNA-activated protein kinase, and the 2-5A system24; they also regulate 

other immune responses, by acting on natural killer cells, T cells, B cells, dendritic cells, and 

phagocytic cells25. The presence of influenza virus is primarily sensed by cytoplasmic retinoic 

acid-inducible gene 1 (RIG-I) and endosomal Toll-like receptors 7 and 9 (TLR)26,27. RIG-I senses 

viral RNA in the cytoplasm28 but is antagonized by many influenza A viruses’ nonstructural 

protein I (NS1) to varying, strain-specific magnitudes29–31. TLR7 is free of this antagonism32,33, 

and is activated after the influenza envelope has been degraded by endosomal proteases. SARS-

CoV-1’s N protein has been implicated in the inhibition of Type-I interferon production via 

antagonism of RIG-I dynamically similar to influenza31,34,35. This suggests RIG-I as a common 

viral sensor protein and a common target of antagonism for RNA viruses. The activation of either 

sensor leads to the phosphorylation of interferon regulatory factor 7 (IRF7, IRF7P) and the 

production of IFN to act as a signaling cytokine. IFN induces secondary messenger molecules, 

ultimately leading to the induction of immune modulation and antiviral genes36. IFN is secreted 

from the infected cell and sensed through the Janus kinase/signal transducer and activator of 

transcription pathway (JAK/STAT), in both an autocrine and paracrine manner. The JAK/STAT 
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pathway leads to the induction of a broad family of IFN-stimulated antiviral genes37, as well as the 

supplementary (autocrine) or novel (paracrine) production of IFN. These IFN-stimulated genes 

(ISGs) cause cell death through apoptosis, necroptosis and pyroptosis38, slow viral replication 

within the cell39, regulate the infiltration and activity of key innate immune cells to clear the 

infection, and help initiate the adaptive immune response40. There are at least 12 distinct 

mechanisms of cell death41. IFN stimulation alone does not seem sufficient to trigger cell death, 

however, virus and immune cell triggered death mechanisms are enhanced in the presence of IFN 

and ISGs. While there is significant crosstalk between death mechanisms, two main categories 

exist: lytic and non-lytic. Lytic mechanisms such as proptosis and necroptosis result in a significant 

release of cytokines upon cell death. Non-lytic mechanisms such as apoptosis result in the 

intracellular contents being sequestered upon cell death. Influenza and SARS viruses do not seem 

to release virions on cell death, while HIV might42. 

The current models of innate immune response to RNA virus infection lack major 

intracellular components or lack important biological interactions, limiting their applicability to 

understanding how severe inflammation emerges. Extensive molecular pathway maps exist23,43, 

but they currently lack mathematical description to support simulating the immune response. Some 

models of the intracellular innate immune response have incorporated RIG-I and TLR activity, but 

consider their effect to be constant, independent of the viral load, and the models are inherently 

unstable, complicating their use44,45. 

In this study, we construct a novel ODE model to simulate the intracellular innate immune 

response of human bronchial epithelial cells (HBECs) to influenza A infection and use the model 

to determine the interactions that most affect cytokine production. This model was constructed 

with computational expense for parameterization and eventual ABM implementation in mind, with 
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a minimum number of ODE’s and parameters that capture the dynamics of interest. The model is 

numerically stable under realistic conditions and non-stiff, enhancing its reproducibility and 

reducing computational cost. The model incorporates a viral growth model46 and the 

proportionality of sensor protein activity to viral RNA levels in the cytoplasm, the first such 

integration of cell dynamics and viral replication. The feedback of interferon production on viral 

replication through the interferon stimulated gene (ISG) family47 is included. A literature search 

for data to perform parameterization produced viral titers48,49 and the time-series of RNA data in 

HBECs50. RNA data originated from Shapira et al.’s 2009 work elucidating a network of viral-

host interactions via genome wide expression profiling50. Viral titers came from Ramos et al.’s 

2013 work on the polyadenylation stimulating factor 30 (CPSF30) binding function of the NS1 

protein48. These consist of subsets, in which competing, parallel pathways were inhibited, allowing 

for improved identifiability of the model parameters; first, a wild-type A/Puerto Rico/8/1934 

Influenza A (PR8) infection, in which RIG-I is assumed fully antagonized and TLR is fully active; 

and second, an NS1 knockout PR8 strain which has both TLR and RIG-I activity50. The 

antagonism of RIG-I in wild-type PR8 infection is shown to drastically alter infection outcomes. 

Additionally, some parameters were sourced from or bounded by their respective values in 

previous models. This work establishes the first cell-level model of interferon signaling induced 

by influenza infection that can be used to compare host responses between infections with different 

influenza viruses, antagonism motifs and different RNA viruses. Paracrine signaling is 

demonstrated to produce the majority of HBEC’s cytokine response to influenza infection, while 

the initial sensor protein pathways are shown to serve as an ignition for said paracrine signaling. 
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2.2 Materials and Methods 

 

Figure 2. Schematic of intracellular innate immune signaling (Weaver model). 

Straight black arrows represent positive interactions while circle-capped black arrows 

represent antagonism through Interferon Stimulated Genes (ISGs) or Nonstructural Protein 1 

(NS1). Cells is normalized from 1 (initial infection) to 0 (complete death of culture). Virus is 

normalized by dividing by PR8’s peak viral titer  at all time points, resulting in a peak of 1 and an 

initial virus concentration of 6.9E-8 for an MOI of 5. The highlighted Paracrine Signaling pathway 

is responsible for both cell to cell (paracrine) and cell to self (autocrine) production of IFN. The 

complete model description and equations are given in Appendix A.1. 
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2.2.1 Data Sources 

Three primary literature sources were used for data to estimate model parameters. First, 

micro array gene expression data50 of two influenza strain (PR8 and an NS1-knockout PR8) time-

course experiments in human bronchial epithelial cells (HBECs) were used to fit IFN, STATP, 

and IRF7 gene expression. Second, viral titers of wild-type PR8 influenza in human lung 

adenocarcinoma epithelial (A549) cells49 and NS1-knockout PR848 were used to fit viral titers. 

Viral titers would ideally be obtained with the same cell type, time points, and infection 

methodology as the micro-array data; however, the immune response similarity of A549 cells and 

HBECs51 justifies this approach. 

2.2.2 ODE Simulation and Sensitivity Analysis 

Julia v1.3 was used to simulate the ODE model with the DifferentialEquations v6.11.0, 

ParameterizedFunctions v4.2.1, and DiffEqParamEstim v1.12.0 packages. The ODE system is 

solved with the non-stiff solver VERN7. A Sobol method global sensitivity analysis was conducted 

to determine the degree of control that each parameter exerted on the system using  

DiffEqSensitivity v6.7.0. 

2.2.3 Model Parameterization 

Since the ODE system relies on 15 parameters, simple regression methods are insufficient 

to successfully parameterize the model. Instead, a stochastic, parallel tempering Markov Chain 

Monte Carlo method (PT MCMC) was implemented in Julia v1.3. To initialize the parameters, a 
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literature search and manual fitting methods were conducted. The literature search provided 

estimated decay rates for STATP52, IRF753, and IRF7P54. A manual fitting gave estimates and 

stability-based bounds for cell death (k61), viral replication (k71), and nonspecific viral clearance 

(k73) rates. Estimates from the Qiao model45 were used to initialize the remaining parameters. Since 

parallel tempering results in faster convergence than single-chain methodologies55, and a thorough 

exploration of parameter space was desired, a PT MCMC optimization algorithm was run with 1 

million iterations with three parallel chains, for a total of three million samples per fitting attempt. 

The sum squared error minimized by the MCMC is given in Equation 2-1. 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∑ �𝑂𝑂𝑖𝑖𝑖𝑖 − 𝑁𝑁𝑖𝑖𝑖𝑖�
2𝑇𝑇1

𝑖𝑖=1
𝑆𝑆𝑚𝑚
𝑖𝑖=1 + ∑ (𝑆𝑆𝑘𝑘 − 𝑉𝑉𝑘𝑘)2𝑇𝑇2

𝑘𝑘=1                                                         (2-1) 

The left-hand portion of the objective function determines the error of the system dynamics, where 

Oij is the experimentally observed log-fold change of Species i at time j50, relative to a control 

RNA level of the same species and time point. Two points from biological replicates are available 

for each i,j pair. Intracellular interferon, [IFN], and [IRF7] were directly tracked by their 

corresponding RNA levels. Because phosphorylated STAT cannot be measured using microarray, 

the RNA levels of interferon-induced GTP-binding Protein Mx1 (MX1), which is induced 

primarily by the action of STATP23, were used as a proxy for [STATP] concentration. Ek is the 

normalized literature viral titer estimate at time k56, and Vk is the normalized calculated viral titer 

at time k. 

2.2.4 Structural Identifiability 

A common problem in ODE representations of biological systems is a lack of identifiable 

parameters, leading to non-unique parameter sets57. Models with imperfect structural 

identifiability must be carefully interpreted, as fixed values for parameters cannot always be 
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obtained. Structural identifiability analyses were carried out with structural identifiability taken as 

extended-generalized observability with lie derivatives and Decomposition (STRIKE-GOLLD) in 

MATLAB R2019a58. These analyses were done under two sets of conditions – perfect 

identifiability and practical identifiability. Under perfect identifiability conditions, all seven 

species are assumed to be perfectly observed, i.e., measured directly by experiment. Under 

practical identifiability, only [IFN], [STATP], [IRF7], [Cells], and [Virus] were observable, which 

reflects the availability of data under which the model was trained. Full Structural identifiability 

results are available in Appendix A.2. 

2.2.5  Interparameter Correlation 

Parameter correlation in MCMC training results was tested using Pearson’s correlation 

coefficient from SciPy v1.4.159 in Python 3.6.8. Significant correlations were considered as those 

with a correlation coefficient > ±0.560. Correlated parameters indicate mechanisms with 

interdependent behaviors, such as the parameters of a Hill-like kinetic or the birth and death rates 

of a population. Parameter correlation results are presented in Appendix A.3. 
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2.3  Results 

2.3.1 MCMC Parameterization 

During parameterization, the system was simulated to 48 hours post infection (HPI); only 

the first 36 hours are shown here for clarity. All accepted parameter fits require the system to be 

stable, returning to zero for all species after the infection has run its course. In this system, the 

multiplicity of infection is 550, leading to 99.3% of all cells being initially infected61. Shapira et 

al.’s50 experiments were carried out in vitro, without any immune cell presence. Thus, the model 

does not incorporate immune cell presence or phagocytosis, and it was assumed that all cells will 

die solely because of viral effects. The steady state for the model is complete cell culture death 

and the eventual decay of all species. The parameter set with the lowest SSE is shown in Figure 3. 

 

Figure 3. Innate immune model simulations show excellent fit to biological data.  
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The solid black lines are the trajectories that best fit the training data, as quantified by the 

MCMC Likelihood. The shaded area is ±1 standard deviation of the best 1,000 parameter sets’ 

simulations. LFC = Log 2 fold change of gene expression versus control samples with no virus. 

Broader predictions are seen in species without data present. The model’s stability is ensured as 

complete population death occurs during this infection. The model can also be interpreted as an 

intracellular model for a single cell, since this was a high MOI infection without significant spatial 

effects (Aim 2). 

2.3.2 Model Validation by Predicting Response to Infection Using a NSI Knockout 

Influenza Virus 

Once the model was parameterized, a validation study on a nonstructural protein 1 (NS1) 

knockout strain of PR8 influenza (dNS1PR8) was conducted. Since NS1 was assumed to be fully 

antagonizing the action of the sensor protein RIG-I during the initial training, the parameter (k11) 

associated with RIG-I was unfit and assumed to be zero (unitless). It was manually estimated at 

1E5 (unitless) for the dNS1PR8 simulation, based on the same likelihood function as the MCMC 

parameterization. All other parameters maintained their values from the wild-type PR8 training. 

An ensemble of the top 1,000 model parameterizations from the wild-type training were simulated 

with the nonzero k11 term and plotted against the NS1 knockout data50. The validation model results 

are shown in Figure 4. 
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Figure 4. NS1 knockout simulation shows much greater cell survival and sustained cytokine production. 

 Solid black lines are the best fitting parameter set. Shaded grey region is ±1 standard 

deviation of the best 1,000 parameter sets’ simulations (predicted). Dashed lines show wild-type 

PR8 best-fit from Figure 3 (fit). LFC = Log 2 fold change of gene expression versus control 

samples with no virus. 

The validation case lends credence to the underlying model structure; a different 

combination of sensor proteins and a modified strain of influenza can be modeled only by 

introducing a new term for the previously antagonized RIG-I. The assumption of complete and 

instantaneous RIG-I antagonism utilized for the PR8 parameterization is likely worse than 

biological reality, but it is useful to establish parameterizations at both extremes of RIG-I activity. 

Thus, the validation simulation has high RIG-I activity. This new simulation shows several key 

differences. First, the interferon and extracellular interferon peaks are larger in magnitude and 
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occur faster than in the wild type, in good agreeance with microarray data. Second, the viral load 

is 96% lower than the wild type, which agrees with the viral titer data48. Finally, the simulation 

predicts that only 20% of infected epithelial cells die, regardless of the simulation’s time frame. 

While this qualitatively agrees with the much lower lethality of the dNS1PR8 strain, it does not 

reflect the biological expectation of certain cell death after the infection of all epithelial cells, 

regardless of viral strain. Overall, the validation study suggests that the model structure is sound 

and is capable of novel predictions. Further, the PR8 and dNS1PR8 parameterizations of the model 

may closely represent worst- and best-case viral infections for immune competent Human 

Bronchial Epithelial Cells.  

2.3.3 Sensitivity Analysis Reveals IRF7 Phosphorylation as Critical Step 

A Sobol global sensitivity analysis was conducted, allowing each parameter to vary over 

the same parameter space that the MCMC algorithm explored in the initial training. The resulting 

system sensitivities are shown in Figure 5. 
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Figure 5. System Sensitivity Analysis carried out on MCMC results reveals k42 and k51 as the most sensitive 

parameters. 

White bars represent First Order Sobol sensitivity indices. Black bars represent Total Order 

Sobol sensitivity indices. Retinoic acid-inducible gene 1 (RIG-I)’s sole parameter, k11, is not 

shown, as it was not fit via the Monte Carlo method. 

The most sensitive parameters are those which exert the most control over the innate 

immune response. Notably, the initial sensing of the virus’ presence via TLR (k12) contributes a 

relatively small proportion of the overall system response; most of the immune response originates 

from the paracrine signaling pathway. Parameters k42 and k51 correlate to the phosphorylation of 

[IRF7] to [IRF7P], and the induction of additional [IRF7] by the action of [IRF7P], respectively, 

which dominate the paracrine signaling pathway. Thus, the sensitivity analysis suggests that the 

model’s outcomes are strongly controlled by these two interactions. 
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2.3.4 Simulating Varying RIG-I Antagonism Reveals Robust Sensor Protein Action 

Next, an in silico knockdown study of RIG-I was performed. This study is comparable to 

varying the production and effectiveness of the NS1 protein across several influenza virus 

strains29,31. This was done by varying the k11 parameter in 25% increments from dNS1-PR8’s lack 

of antagonism (0% RIG-I knockdown, k11 = 1E5) to wild-type PR8’s total antagonism (100% RIG-

I knockdown, k11 = 0). As shown in Figure 6, any RIG-I activity above zero (0% to 75% 

knockdown) showed significant reductions in viral load and target cell lethality. 0% knockdown 

yielded the largest magnitude immune response, as quantified by [IFNe], however, 25% through 

75% knockdowns showed a robust immune response of near equal magnitude despite the reduction 

in RIG-I activity. This suggests that RIG-I is robust against viral antagonism and plays a vital role 

in initializing the host’s cytokine response to viral infections. 

 

Figure 6. Simulations at varying levels of RIG-I knockdown show robust virus sensing capability. 
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 Percent knockdown, or reduction in value, of k11 parameter. Here, 0% knockdown means 

zero NS1 antagonism, matching the dNS1PR8 strain results, with k11 = 1E5. Moreover, 100% 

knockdown is equivalent to total antagonism via NS1, matching the wild-type PR8 results, with 

k11 = 0. PR8 and dNS1PR8 (green and black lines) represent minimum and maximum interferon 

response, respectively. Counter intuitively, the virus which has the highest mortality also results 

in the lowest inflammation in this model. This can be interpreted as over fitting for the highly 

inflammatory state, which has an unbounded positive feedback loop through paracrine signaling 

when cells survive infection. The addition of death mechanisms (Aim 2), removal of target cells 

entirely and the use of model ensembles (Aim 3), and machine learning guided model ensembles 

(Aim 4) aim to address the shortcomings of this initial model. 
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2.3.5  Sensor Protein and JAK/STAT Originated Interferon Production 

This model incorporates the production of IFN through both sensor protein action and the 

paracrine JAK/STAT pathway. These contributions to IFN production were isolated in silico, to 

determine the relative contribution of each pathway under different conditions. Figure 7 

demonstrates these contributions for simulated wild-type PR8 and dNS1PR8 influenza infections. 

PR8 simulation showed almost complete antagonism of the sensor protein signaling, while 

dNS1PR8 simulation revealed a dynamic interplay between sensor proteins and paracrine IFN 

production, based on the infection stage. This analysis suggests that paracrine signaling is the 

major contributor to IFN production, especially in the presence of RIG-I antagonism, and that TLR 

activity alone is insufficient to trigger a strong immune response to infection. 

 

Figure 7. (A) Total, Sensor Protein, and Paracrine [IFN] production simulations in dNS1PR8 influenza. (B) 

Total, Sensor Protein, and Paracrine [IFN] production simulations in wild-type PR8 influenza.  

Note that Total and Paracrine [IFN] production in (B) are overlapping. Sensor Protein and 

Paracrine do not visually sum up to Total since these plots have a log fold change ordinate. 
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2.4 Conclusion 

The data used to inform this model was collected from human bronchial epithelial cell 

infections, with two influenza strains in vitro. Both strains induce an innate immune response, but 

the sensor protein RIG-I’s activity is antagonized by only one strain, leading to vastly different 

interferon production and peak viral load. The model presented here provides estimates of the rates 

that regulate intracellular responses to RNA virus infection. The model can be used to assess how 

distinct RNA viruses’ impact IFN production, a key early step in activating the immune system, 

and is a valuable platform for determining how intracellular immune signaling may be distinctly 

regulated between influenza and coronaviruses. 

A sensitivity analysis of the model revealed that [IRF7] and [IRF7P] have significant 

control over the innate immune response. This strong single-protein control of the system suggests 

an area of further experimental investigation; viruses may try to impede these reactions as well as 

initial sensor protein action, to limit the innate immune response mounted against the invader. 

Moreover, pre-stimulation of the TLR4 pathway has been shown to lead to an earlier induction of 

IRF7P production and increased protection from deadly influenza infection62. The systems-level 

analysis here suggests that IRF7 is a potent target for the immune-targeted treatment of severe 

respiratory infection, both as a means of increasing host immune response and as a target for 

interference for the mitigation of cytokine storms. 

By isolating paracrine and sensor protein originating production of IFN in silico, paracrine 

signaling is revealed to be responsible for most cytokine production and, thus, immune response. 

Early and strong sensor protein action serves to ignite this feedback loop in a dNS1PR8 strain. In 

both PR8 and dNS1PR8 strains, TLR’s activity is too slow and of insufficient magnitude to 

significantly alter infection trajectory. When active, RIG-I has a profound effect on the peak viral 
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titer. Effects would be more profoundly distinguished in low multiplicity of infection or in vivo 

cases, where uninfected neighboring cells would produce IFNs solely because of paracrine 

signaling. RIG-I is robust against antagonism, with 25 – 100% activity all reducing viral titer by 

about 97%. Full antagonism via NS1 is necessary for the virus to reach maximal peak. This level 

of antagonism is not achieved immediately, leaving a window for RIG-I to act before enough NS1 

is produced inside the cell and its antagonism sets in. An area of future work is the relaxation of 

this simplifying assumption and the incorporation of NS1 production, based on viral load and the 

exploration of different RNA viruses’ antagonism mechanisms. 

Developing a minimal ODE model that minimized the computational expense of 

performing MCMC optimization in high dimensional space necessitated several simplifying 

assumptions. All type-I interferon species were grouped together in a single [IFN] equation. 

Several species’ decay rates were estimated from literature52–54, rather than being included in the 

MCMC optimization. RIG-I was assumed to be completely antagonized by the wild-type PR8 

strain, which is supported by investigations of the NS1 protein29,31. The wild-type simulation is 

always stable since all simulated cells die. A validation study was performed by predicting a 

dNS1PR8 strain of influenza, using the same parameter set from training in the wild-type infection. 

The predictions of the validation case lend support to the model’s capability to capture the 

interactions of interest without overfitting and suggest that the model can predict responses outside 

of the training data. This validation case predicts only 20% cell lethality, despite total initial 

infection, which leads to a mathematically unstable chronic inflammation state. This places limits 

on model interpretation beyond 24 hours for NS1 knockout, or other reduced severity strains since 

an infection in vitro is expected to be fully lethal in the absence of immune response and cellular 

regeneration. However, simulated cell death proportion acts as an indicator for virus severity. 
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3.0 Identifying the Major Regulators of Viral Plaque Growth   

3.1 Introduction 

Plaques are visible areas of infected and dead cells that occur in cell cultures infected with 

a virus. Pre-stimulation of toll-like receptors to induce earlier interferon production protects 

against highly pathogenic influenza strains in mice62, while cell culture pre-stimulation with type-

I interferons prevents viral plaque growth by SARS-CoV (the original 2003 SARS virus)63, SARS-

CoV-263, and influenza64. Nebulized interferon α2b and interferon β are being investigated as an 

early treatment and preventative measure for COVID-1965,66. Collectively, these studies 

demonstrate that immune response regulation must balance tissue damage from inflammatory 

responses against efficient viral clearance. Computational modeling may reveal how complex 

responses emerge during infection and aid in identifying immune-targeted treatments.  

Recent computational models have considered many aspects of inflammatory responses to 

viral infection67–70.  ODE based models assume either homogeneity or a compartment-based quasi-

spatial structure and typically ignore the diffusion of virus, local cytokine signaling, heterogeneity 

of cell responses to stimuli, and stochasticity of individual cells’ responses67,71. Recent 

models68,72,73 of interferon response to viral infection commonly invoke a generic virally resistant 

cell type. A cell of this type is either immune to viral infection or stops ongoing viral replication 

completely. This all-or-nothing response does not capture the dynamics of interferon stimulated 

genes’ (ISGs’) effects on viral growth72,73 or the nuances of partially resistant cells. A spatial model 

of influenza viral spread and plaque growth71 replicates the linear growth of viral plaques in vitro 

and explores the impact of diffusion coefficients on viral plaque formation but did not incorporate 
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the cells’ interferon signaling response to the infection. Recent studies of DNA virus infection 

(Herpes simplex virus 2; HSV-2) used agent-based models to examine the role of adaptive immune 

cells in restricting plaque growth74 while another study found that the degree of stochastic 

signaling minimized the amount of interferon needed to restrict cell death75. However, HSV-2 is a 

DNA virus that activates different signaling pathways from RNA viruses, such as influenza, and, 

as described above, severe respiratory infection often involves strong inflammatory signaling 

responses. This paper extends these approaches to explain plaque growth arrest due to ISGs for 

respiratory viral infections.  

Plaque growth assays seed the virus at low multiplicity of infection (MOI) and allow it to 

replicate and form plaques across a monolayer of host cells in cell culture. We developed a 

multicellular spatial interferon signaling model (which we will call the MSIS model) of the early 

inflammatory response to RNA viral respiratory infections in vitro using CompuCell3D76 (CC3D). 

MSIS simulations can replicate observed plaque growth, cytokine response, and plaque arrest. The 

MSIS model allows us to determine conditions that lead to either arrested or persistent plaque 

growth during a simulated infection of a monolayer of lung epithelial cells with an RNA virus. 

Plaque growth assays are commonly used to compare virus growth rates across cell lines71,77, to 

quantify the concentration of infective agents78,79, and to observe the effects of drugs and 

compounds on virus spread80–83. Simulation of in vitro experiments in silico allows for cheaper, 

faster, higher-throughput hypothesis generation than experiments. The MSIS model replicates 

familiar biological plaque growth assays and cell staining experiments, making its simulation 

methodology and results readily accessible to wet-lab biologists.  

Our model focuses on two interacting processes: viral replication and the host cells’ early 

interferon response. The modeled virus is produced in infected cells, released into the extracellular 
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environment, and diffuses in this environment. The modeled inflammatory response includes 

interferon production, export, diffusion and decay, and the induction of virally resistant cell states 

via ISGs. The model represents a monolayer of immobile human bronchial epithelial cells 

(HBECs). Each cell contains a separate model of epithelial cell interferon signaling, viral 

replication and release, and cell death, which is an ODE model84 calibrated to data from influenza 

infected HBECs, that has been modified to include species release or export to the extracellular 

environment. We adapted a standard model of cell types during viral infection85, with cells 

transitioning from uninfected, to eclipse phase, virus releasing, and dead cell types. The 

extracellular environment allows for diffusion of both virus, which leads to the formation of viral 

plaques, and type-I interferons, which are responsible for paracrine interferon signaling. The MSIS 

model gives insight into the mechanisms of IFN regulation and the arrest of viral plaques. 

3.2 Materials and Methods 

3.2.1 ODE Model 

The MSIS model simulates the replication and spread of an RNA virus infection in a 

monolayer of epithelial cells and the interferon response induced by the infection. Using 

CompuCell3D, we created simulations of the MSIS model that represent a diffusive extracellular 

environment above a square grid of discrete cells, each of which incorporates an ODE 

representation of epithelial cell interferon production in response to infection by an RNA virus. A 

schematic of this system is shown in Figure 8. 
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Figure 8. Conceptual diagram of the MSIS model.  

The MSIS model consists of an Intracellular sub-model, which describes intracellular 

interferon signaling during infection, and a Cellular sub-model, which defines changes in cell types 

and extracellular molecular diffusion. Uninfected cells (U, blue) produce [IFN] via paracrine 

signaling alone since no virus is present in these cells. Eclipse-phase cells (I1, yellow) produce 

[IFN] via viral sensor proteins (RIG-I and TLR7) and paracrine signaling (through the STAT 

pathway). I1 cells also export [IFN] into the extracellular environment. I1 cells allow virus 

replication but do not release virus into the extracellular environment. Virus-releasing cells (I2, 
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red) produce [IFN] in a manner identical to I1 cells and export [IFN] and release virus into the 

extracellular environment. Dead (D, purple) cells do not interact with their surroundings and have 

no Intracellular sub-model. Cell type and chemical species colors are conserved throughout the 

sections of this work dedicated to the MSIS model. Each cell contains an instance of the 

Intracellular sub-model representing interferon signaling; RIG-I, TLR, [IFN], [IRF7], [IRF7P], 

and [STATP], viral infection, replication, and release; [V], and cell health, [H]. Type-I interferons, 

[IFNe], exported by U, I1, and I2 cells, and virus, [Ve], released by I2 cells diffuse and decay in the 

extracellular environment. Paracrine interferon signaling occurs through the JAK/STAT pathway, 

indicated by the arrow from [IFNe]  to [STATP] across the Intracellular/Cellular border. 

3.2.2 Spatial Considerations of the MSIS model 

During virus infection, lung epithelial cells produce and export virus and anti-viral type-1 

interferon proteins. In cell culture, these extracellular species diffuse freely in the medium above 

the apical surface of cells. 

The conceptual model is that the apical surface of the epithelium interacts with the bottom 

surface of the medium in which extracellular [IFN], [IFNe], and virus, [Ve], diffuse and decay. We 

represent the cells and the chemical species in the extracellular medium as a cell lattice next to two 

chemical field lattices, one for [IFNe] and one for [Ve]. Cells export [IFN] and release virus from 

their apical surface into the adjacent domain in the chemical field. The CompuCell3D model is a 

2D lattice model with the side of each voxel representing 3.0 microns. Unless otherwise specified, 

the simulation domain is a 300 by 300 lattice, representing a tissue patch of 900 by 900 μm. We 

represented the layer of epithelial cells using a 100 by 100 array of square cells, each occupying 3 

by 3 voxel sites. The cells are infected by [Ve] and respond to [IFNe] in the same adjacent domain. 
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The area of the cell in the cell lattice represents the interface between the extracellular space and 

the cell’s apical surface.  

Due to the spatial aspect of the model, the concentrations of extracellular species, [Ve] and 

[IFNe], can be reported at specific lattice sites, averaged over the area of a cell, or averaged over 

the enter lattice. [Ve] and [IFNe] indicate the concentration at a specific lattice site while [Ve]per cell 

and [IFNe]per cell indicate the average concentration over a specific cell for extracellular virus and 

extracellular [IFN], respectively. The model assumes no spatial variability within the cell. 

3.2.3 Cell Types and Rationale 

During an RNA virus infection in lung epithelial cells, cells go through four distinct stages. 

Lung epithelial cells are interferon-competent and produce interferon in response to infection by a 

virus. During an infection, both infected and healthy cells can respond to changes in extracellular 

IFN23 via the JAK/STAT pathway. After infection, cells enter an eclipse phase for about 6 hours, 

during which they produce, but do not release, virus56,86. After the eclipse phase, cells begin to 

release virus and continue to do so until the cell’s resources are depleted, resulting in death.  

To model the four stages of infection a cell experiences, the CC3D-based MSIS model has 

cells (agents) with 4 distinct types: uninfected (U), eclipse phase (I1), virus releasing (I2), and 

dead cells (D). Figure 8 provides a conceptual overview of the MSIS model. Uninfected cells, U, 

contain no virus but can produce and export [IFN] in response to [IFNe] via the STAT pathway. 

Paracrine signaling occurs when interferon external to the cell induces the phosphorylation of 

STAT ([STATP] in Figure 8). U cells transition to the eclipse phase (I1) immediately after a 

successful infection event. Eclipse-phase (I1) cells can produce and export [IFN], and replicate, 

but not release virus87. [IFNe] (via paracrine signaling activation of the JAK/STAT pathway) and 
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viral sensor protein (RIGI and TLR7) activation both stimulate cells to produce and export [IFN]. 

When an I1 cell transitions to the virus-releasing type (I2), all properties of the cell remain the 

same except that the cell can now release the intracellular virus into the extracellular virus field. 

When an I2 cell transitions to dead (D), it ceases to produce and export [IFN] or release virus but 

continues to occupy space in the simulation. 

3.2.4 Plaque Growth Metrics 

Viral plaques are visible areas of dead or damaged cells that occur where a virus has spread 

across a continuous patch of cells in cell culture. At early times, a growing plaque consists of a 

central domain of I2 cells surrounded by a ring of I1 cells. At later times, the plaque consists of a 

domain of dead cells surrounded by a ring of I2 cells, in turn, surrounded by a ring of I1 cells. We 

measure the radial growth speed of the outer border of the domain of eclipse (I1), virus releasing 

(I2), and dead (D) cell types. In the simulations, we determine these speeds by seeding a single I1 

cell in the center of a simulated sheet of cells and measuring the total area of each cell type over 

time. We assume the plaques are circular to estimate their radius. The change in the outer radius 

of the domain of each cell type over time gives the plaque growth velocities. Simulations involve 

probabilistic infection events and stochastic cell type transitions. We averaged plaque growth 

metrics over 20 simulations for each parameter set (Figure 36, Appendix B.8). In experiments, 

plaque-plaque interference occurs when two or more plaques grow into the same spatial region, 

slowing the radial growth of the colliding plaques. This paper simulates only the growth of isolated 

plaques. 
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3.3 Results 

3.3.1 Multicellular Spatial Model of RNA Virus Infection and IFN Signaling (MSIS model) 

Reproduces ODE Model Dynamics for High MOI infection 

We first checked whether the MSIS model reproduced the dynamics of the Weaver model 

(Aim 1) for the same simulated experimental conditions84. The Weaver model was fitted to data 

from HBECs50 that were uniformly infected with an influenza virus at MOI = 5. For such high 

MOI initial conditions, the spatial inhomogeneity of the multiscale model should have a negligible 

effect on the population-level dynamics, because all cells are infected simultaneously. 

The average concentrations of the intracellular species and viral titers of the MSIS model 

are like those of the Weaver model under high MOI conditions. For MOI = 5, more than 99% of 

cells are expected to be infected. The Weaver model has two cell types, alive and dead, and does 

not include eclipse phase cells. To replicate the Weaver model simulations for an MOI = 5 

infection, we initialized the MSIS model with only virus releasing (I2) cells and no eclipse phase 

(I1) cells71. A non-uniform cell type distribution (Figure 9 A) and local [IFNe] concentration field 

(Figure 9 B) emerge in the MSIS model simulations due to the stochastic cell transitions, which 

lead to spatially varying [IFNe] and [Ve], which in turn lead to non-uniform rates of death of I2 

cells. 

Figure 9 C compares the average fraction of live cells and average levels of chemical 

species in the MSIS and Weaver models. The fraction of live cells vs time has the same shape in 

the two models, but dead cells start accumulating slightly later in the MSIS model than in the 

Weaver model. A major distinction between the MSIS model and the Weaver model is that MSIS 

cells are discrete. Dead cells have no intracellular chemical species and do not release virus or 
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export [IFN]. These distinctions mean that we must compare the levels of intracellular chemical 

species (or Health) in live cells (I2 cells in this case) to the Weaver model outputs. However, the 

levels of extracellular species reflect production by all cells over time and thus we compare the 

[IFNe] averaged over all lattice sites to the Weaver model outputs. For homogeneous, high MOI 

starting conditions, all concentrations grow rapidly after the onset of viral release, reach a 

maximum, and then decay nearly exponentially on a slower time scale. For each variable, the MSIS 

model value is always greater than or equal to the Weaver model value. Relative errors are largest 

at times when the values are near their maxima and are always less than 15%. Cell death begins 

slightly later in the MSIS model than in the Weaver model and the cell death rate increases slightly 

faster, so that all cells die at nearly the same time. Since the MSIS model produces dynamic 

responses like those of the Weaver model under high MOI, we will assume that differences 

between the dynamics of the two models at low MOI result from spatial effects, not from 

differences in parameters or errors in spatializing the Weaver model. This paper focuses on 

simulated spatially heterogeneous low MOI initial conditions, which more closely resemble in 

vitro plaque growth assays than high MOI. 
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Figure 9. Comparison of time series for key variables between the multicellular spatial interferon signaling 

(MSIS) model and Weaver model for high MOI demonstrates vailidity in similar conditions. 
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All cells are initially infected with 6.9E-8 (unitless) virus, matching the original data to 

which the Weaver model was fit50. (A) Snapshots of the cell field showing cell type (virus releasing 

[I2] in red and dead [D] in purple) at different times in a representative MSIS simulation. (B) 

Snapshots of the concentrations of extracellular interferon (high concentrations in red, low 

concentrations in blue) at different times in a representative MSIS simulation. (C) Time series for 

key variables for the Weaver and MSIS models. MSIS simulations are averaged over 20 replicas 

at matching times (Figure 36, Appendix B.8). Error bars are included but are too small to be visible. 

For the MSIS model, average concentrations for intracellular species and Health are calculated 

over all live (I2) cells at each time point while [IFNe] is averaged across the entire simulation 

domain.  

3.3.2 MSIS Model Recapitulates Experimentally Observed Plaque Formation and Growth 

Dynamics 

High MOI experiments are useful for determining the time course of viral titer and how 

long cells survive a viral infection, but, unlike plaque assays, they do not provide information 

about viral spread and the spatial aspects of cytokine responses. We explored low MOI plaque 

assay experiments in silico. Figure 10 (left) shows multiple plaques that formed in a culture of 

cells infected with an H5N1 influenza virus. We first evaluated if the MSIS model produced 

plaque-like structures beginning with a single point of infection, like those in experiments for low 

MOI. We created a simulation with two I1 cells seeded in similar locations to a subset of the 

plaques shown in Figure 10’s left image. Figure 10 right shows the simulation at 80 hours. The 

MSIS model reproduces the circular geometry of experimental plaques. The length scales differ 
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between the experimental and simulated plaques because the MSIS model is parameterized for an 

H1N1 virus, while the experiment shown used a faster replicating H5N1 virus. 

 

Figure 10. Comparison of an experimental plaque assay for influenza (H5N1; left) with an MSIS model 

plaque simulation (for H1N1; right).  

The simulation seeded two plaques in a simulation domain to replicate a subset of the 

experimental area. The simulated plaques have a similar structure to the experiment. Outlined area 

in the experimental image corresponds roughly to the area of the simulation domain. 

Next, we explored plaque growth dynamics in the MSIS model. Figures 11 A, B show 

experimental plaque radii vs time (data reproduced from 71). While the increase in viral load during 

infection is typically exponential, plaque radius grows linearly in time. The experiment measured 

the radius of the outer edge of the domain of dead cells (equivalent to D in the model) and the 

outer edge of the domain of infected cells (equivalent to I1 in the model). The MSIS model 

distinguishes the eclipse phase (I1) from virus releasing (I2) cells, which normally cannot be 

distinguished in experimental plaque growth assays. For simulations beginning with a single I1 

cell, Figure 11 C shows that the MSIS model replicates several experimental observations. Both 

experiments (Figure 11 A, B) and the MSIS model (Figure 11 C) show a lag phase with no plaque 
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growth. During the lag phase, the cells are not releasing virus and no new cells are being infected. 

Figure 11 E shows snapshots of the cell types at 17 hours, 33 hours, 50 hours, and 67 hours in a 

single replica simulation. The plaque consists of a central nearly round disk of dead cells, 

surrounded by a concentric ring of I2 cells, in turn, surrounded by a concentric ring of I1 cells. A 

few I1 and I2 cells are scattered in the dead cell disk, dead and I1 cells in the I2 ring, and I2 cells 

in the I1 ring. Figure 11 D shows snapshots of the [Ve] field at corresponding times in the same 

simulation replica. The virus concentration is maximal over the ring of I2 cells and decreases 

rapidly at larger and smaller radii. Figure 11 F shows the [IFNe] concentration field at 

corresponding times for the same simulation replica. Figure 11 F shows that the [IFNe] level is 

high in a very narrow ring over the boundary between the I1 and I2 rings in the plaque. Figure 11 

G shows the cell type composition of the culture over time. Dead cells first appear after 20 hours, 

after which the radius of plaque’s central, circular domain of dead cells increases linearly in time. 

The radial growth rate of the plaque remains constant until the plaque reaches the edge of the 

simulation domain. Around 18 hours post-infection, [Ve] (Figure 11 H) and [IFNe] in the culture 

(Figure 11 I) decrease briefly because the initially infected cell has died and stopped releasing 

virus and exporting [IFN]. During this time, the second generation of infected cells (those infected 

by the virus released by the initially infected cell) are primarily I1 phase and not yet releasing 

virus. 
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Figure 11. Plaque growth simulations replicate experimentally observed linear radial plaque growth. 

 (A, B) Radius vs time of outer boundaries of the domains of infected and dead cells for 

wild-type and H275Y mutant A/Miss/3/2001 (HIN1) infection-induced plaques, respectively. Data 

reconstructed from 71. Squares indicate the radius of the outer edge of the plaque (the boundary 

between infected cells and uninfected cells) and circles indicate the radius of the boundary between 
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dead cells and infected cells in the plaque. Dotted lines show a linear regression for visualization 

of plaque radius vs time. (C) Simulated plaque growth shows the lag phase and linear growth of 

the experimental plaques. The solid line indicates the median for 20 simulation replicas (Figure 36 

includes additional information on the simulations standard deviations) and the shaded areas 

indicate the 5th and 95th percentiles of observed values. Panels D, E, and F show sequential 

snapshots (at 17, 33, 50 and 67 hours) of the [Ve] field (D), cell type (E), and [IFNe] field for a 

single simulation replica of a growing plaque. Time progresses from left to right. Panels G, H, and 

I show the median (solid line) and 5th to 95th percentile (shaded areas) of the simulated cell types, 

average [Ve], and [IFNe], respectively, calculated for an ensemble of 20 simulation replicas (Figure 

36).  

The MSIS model recapitulates the experiments’ linear radial growth of viral plaques. The 

MSIS model’s ability to simulate both high and low MOI experiments and reproduce phenomena 

seen experimentally, without additional parameter fitting to these conditions, gives confidence in 

its predictive capabilities in novel circumstances. The next five sections of Results are based on 

simulations of plaque growth assays, which give insights into the significance of spatial 

inhomogeneity to the mechanisms regulating plaque growth.  

3.3.3 Increased STAT Activity Leads to Arrested Plaque Growth and Reduces Final Plaque 

Diameter 

The JAK/STAT pathway triggers an inflammatory reaction via auto/paracrine signaling 

and inhibition of this pathway has been implicated in improved H1N1 influenza survival in mice88. 

We wished to assess the impact of JAK/STAT activity on plaque growth dynamics in the MSIS 

model. We simulated plaque growth while altering the ability of extracellular interferons to 
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activate the JAK/STAT pathway in the MSIS model from its baseline value, 45.9 μM hours-1, up 

to 125.89x this value. For three values of kSTATP,IFNe, we show the plaque size and shape at 80 hours 

post-infection (Figure 12 A) and the cell type dynamics over time (Figure 12 B). The baseline 

value leads to unconstrained plaque growth. Values of kSTATP,IFNe ≥ 459.22 μM hours-1 (10x 

baseline value) led to the arrest of plaque growth. Increasing kSTATP,IFNe ≥ 4592.2 μM hours-1 (100x 

baseline value) reduces the time to plaque growth arrest, resulting in smaller plaques. These 

simulations use the same initial conditions and parameters except for the modified values of 

kSTATP,IFNe. Increasing the degree to which [IFNe] promotes [STATP] production arrests plaque 

growth and reduces the final plaque size. 

Figure 12 C shows the rate of change of plaque radius at the end of the simulation as a 

function of kSTATP,IFNe,  which controls the degree to which a given level of [IFNe] leads to active 

[STATP]. For kSTATP,IFNe multipliers of 15.85 and above, the plaque growth rate is always zero at 

the end of the simulation, indicating plaque arrest. Arrest occurs earlier for higher kSTATP,IFNe 

(Figure 12 B, 2nd 3rd panels). kSTATP,IFNe multipliers above 6.31 reduce the area under the curve 

(AUC) for average [Ve] (Figure 12 D), while multipliers between 1.0 and 6.31 have little to no 

effect on viral AUC. The AUC of average [IFNe] (Figure 12 E) increases with increasing 

kSTATP,IFNe, with a dramatic increase in the range of multipliers of 6.31 to 10.0. Note logarithmic 

ordinate scale for both average [Ve] and [IFNe] AUC. Larger kSTATP,IFNe would correspond to a 

stronger interferon response and reduced viral titer. kSTATP,IFNe ≥ 4592.2 μM hours-1 leads to non-

physiological unbounded production of [IFN], due to the lack of an interferon-mediated cell death 

mechanism in both the Weaver and MSIS models.  
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Figure 12. Elevated [STATP] activity (larger kSTATP,IFNe) leads to arrested plaque growth.  

(A) Images of the simulated plaques at 80 hours post-infection for a single simulation 

replica when kSTATP,IFNe was 1x, 10x, or 100x larger than its baseline value. Arrested plaque growth 

occurs when kSTATP,IFNe is 10x or 100x larger than baseline. (B) The median (solid line) and 5th and 

95th percentiles (shaded regions) for 20 simulation replicas of the cell types over time for kSTATP,IFNe 

at 1x, 10x, or 100x larger than its baseline value of 45.9 μM hours-1. (C) The plaque radius’ linear 

growth rate at 80 hours, (D) the area under the curve (AUC) of the average Ve, and (C) the AUC 

of the average [IFNe] when kSTATP,IFNe is changed between its nominal value to 125.98x nominal. 
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3.3.4 Elevated RIG-I Activity Delays Cell Death and Increases IFN Production 

In influenza infection, greater viral inhibition of RIG-I signaling via NS1 protein often 

increases viral infection severity29,31,89. We wished to investigate the effects of decreasing this 

antagonistic strength on plaque growth dynamics in silico, now with spatial considerations, after 

the demonstrated importance of this mechanism in Aim 1. In our simulations kIFN,V(RIGI) controls 

the strength of the RIG-I response, with larger values corresponding to a stronger response (more 

IFN produced per unit of virus). Our simulations so far assumed that the invading virus completely 

inhibited the RIG-I pathway (kIFN,V(RIGI) = 0, Aim 1 model). Previous work used data from cells 

infected with an NS1-knockout influenza virus (A/Puerto Rico/8/1934 [dNS1PR8]) to estimate the 

rate of IFN production via RIG-I virus sensing (kIFN,V(RIGI) = 1E5 μM hours-1)84. We ran single-

plaque growth simulations for 14 values of kIFN,V(RIGI) between 0% and 100% of this estimate. 

These simulations use the same initial conditions and parameters except for the value of kIFN,V(RIGI). 

At 80 hours post-infection (Figure 13 A) the plaque radius is nearly the same for all cases, shown 

for 0%, 50%, and 100% activity. However, the cell type composition of the plaque (Figure 13 B) 

differs significantly, with significantly less cell death and thus a higher fraction of I2 cells, for 

kIFN,V(RIGI) multipliers greater than 50%. Higher levels of RIG-I signaling (larger values of 

kIFN,V(RIGI)) only slightly reduce the radial plaque growth at the end of the simulations (Figure 13 

C). The AUC of the average [Ve] decreases steadily with increasing RIG-I activity (Figure 13 D), 

decreasing more rapidly for kIFN,V(RIGI) multipliers greater than 25%. The AUC of average [IFNe] 

increases dramatically for parameter multipliers less than 0.03x nominal and more gradually 

thereafter (Figure 13 E). 
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Figure 13. Increased RIG-I activity (kIFN,V(RIGI)) lowers plaque growth rates and viral titers, slows cell death, 

and increases interferon production. 

 (A) Images of plaques at 80 hours post-infection for a representative simulation replica for 

three values of kIFN,V(RIGI) (0, 0.5E5 μM hours-1and 1E5 μM hours-1) and (B) the median (solid line) 

and 5th and 95th percentiles (shaded regions) of the plaque radius over time for 20 simulation 

replicas for kIFN,V(RIGI) equal to 0x, 0.5x, or 1x its nominal value of 1E5 μM hours-1. (C) The plaque 

growth rate at 80 hours, (D) the area under the curve (AUC) of the average [Ve], and (E) the AUC 

of the average [IFNe] for different values of kIFN,V(RIGI). Full data with 5 additional outliers for the 

plaque growth rate and the average [Ve] AUC are available Figures 40 and 41, respectively.  
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Increasing levels of RIG-I activity for a given level of virus (larger kIFN,V(RIGI)) increases 

the intracellular production of [IFN]. This higher intracellular [IFN] leads to higher [IFNe] due to 

cell export. Higher [IFNe] leads to a reduction of intracellular viral levels. Since the rate of decrease 

of cell health, [H], is linear with respect to intracellular virus level and the death rate of cells is 

proportional to both the virus level and [H], higher values of kIFN,V(RIGI) increase the survival time 

of infected cells both by decreasing the intracellular virus level and by slowing the decrease of 

[H]. Overall, the model predictions are consistent with the expectations that greater RIG-I activity 

leads to reduced virus production, i.e., reduced virus titers. 

3.3.5 Interferon Prestimulation Arrests Plaque Growth 

In experiments, prestimulation of cell cultures with type-I interferons reduces the amount 

of virus produced in cells infected with SARS-CoV, SARS-CoV-263, or influenza64. We simulated 

prestimulation experimental conditions in the MSIS model to explore these protective effects by 

exposing uninfected (U) cells to [IFNe] at 0.04 μM at 12 hours pre-infection (-12 hours, since 

infection is referenced as time = 0), using the values of the parameters in Appendix B. All cells 

were exposed to the same concentration of [IFNe]. Since cell type transitions do not occur in the 

absence of virus, after 12 hours, all cells had identical intracellular chemical concentrations shown 

in Table 1. At 0 hours, [IFNe] is set to zero to simulate washing [IFNe] out of the cell culture, and 

a single cell is infected in silico by setting it to the I1 type. We then assessed the impact of [IFN] 

prestimulation on plaque growth.  
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Table 1. Intracellular chemical concentrations in cells 12 hours after in silico exposure to [IFNe]. 

Species Initial 

Conditions 

[IFN] 0.035 μM 

[IRF7] 0.097 μM 

[IRF7P] 0.028 μM 

[STATP] 0.714 μM 

 

Simulated prestimulation entirely arrests plaque growth after 35 hours (Figure 14 A), while 

the same initial infection in a field of naïve, unstimulated cells resulted in the infection and 

eventual death of all simulated cells (Figure 14 C, G). Only the initially infected cell dies. The 

proportion of eclipse phase (I1) cells steadily decreases after 20 hours, indicating a cessation of 

new infections (Figure 14 B). The average [Ve] concentration (Figure 14 C) also decreases after 

20 hours. The average [IFNe] concentration (Figure 14 D) is higher than in the baseline simulation. 

Time series for the intracellular variables, akin to Figure 14 C, are available in Appendix B.6, 

Figure 32. 
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Figure 14. Prestimulating cells with type-I interferon led to plaque growth arrest in simulations.  

We simulate an experiment with 0.04 μM [IFNe] prestimulation for 12 hours, which is 

removed immediately before infection. (A) Sequential snapshots (at 10-, 15-, 25- and 35-hours 

post-infection) of plaques for a representative simulation replica. (B) Cell type fractions vs time. 

(C) Average [Ve] vs time and (D) the average [IFNe] vs time. The solid lines indicate medians and 

shaded areas represent the 5th and 95th percentiles over 20 replicas. 

3.3.6 Faster Interferon Diffusion Promotes Plaque Growth Arrest 

Diffusion coefficients for the virus and interferon will depend on virion diameter and the 

viscosity and chemistry of the medium in vitro71. We varied virus and interferon diffusion 

coefficients simultaneously. Because the actual diffusion coefficient of [IFNe] is likely to be 11x 
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to 17x greater than that of the virus, we varied the interferon diffusion coefficient from 54 μm2 s-1 

to 2160 μm2 s-1 (1x to 40x the baseline interferon diffusion coefficient) and the virus diffusion 

coefficient from 54 μm2 s-1 to 216 μm2 s-1 (1x to 4x the baseline virus diffusion coefficient). 

Simulations used the same initial conditions and parameters except for the revised diffusion 

coefficients. We calculated the median growth rate of the plaque radius at the end of the simulation 

over 20 replicas. If the median linear growth rate was 0 at the end of the simulation, we classified 

the parameters as leading to plaque arrest (orange); otherwise, we classified the parameters as 

leading to continued growth (blue). In our simulations, an interferon diffusion coefficient of 8x to 

10x the viral diffusion coefficient led to plaque growth arrest (Figure 15). The curved boundary 

between the domains suggests that for high viral diffusion coefficients, virus diffusion ceases to 

be the rate-limiting factor in plaque growth. In summary, there is a broad range of values for both 

diffusion coefficients in which plaque arrest and continuous growth may occur. Better estimates 

of these diffusion coefficients can help clarify the relative importance of intracellular versus 

extracellular processes in viral infection. 
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Figure 15. Dependence of plaque growth rate and arrest on viral and [IFN] diffusion coefficients. 

 Each box shows 20 replica simulations’ cell type progression over time for the indicated 

diffusion coefficient multiplier combination. The solid-colored lines indicate the medians of the 

radii, and the shaded regions indicate the 5th and 95th percentile radii over 20 replicas. In the orange 
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shaded region (above the bold line) plaques arrest by 80 hours. In the blue shaded region (below 

the bold line), plaques continue to grow until the end of the simulation. 

3.3.7 Sensitivity Analysis Reveals that the Main Parameters Controlling Radial Plaque 

Growth Differ Between Regimes 

To determine how individual parameters affect the growth of plaques, we performed local 

sensitivity analyses around parameter sets in three distinct regimes in parameter space; the baseline 

parameter set (Appendix B.5), the High JAK/STAT regime (kSTATP,IFNe = 688.5 μM hours-1, 15x 

baseline value), and the High IFN Diffusion regime (DIFNe = 540.0 μm2 s-1, 10x baseline value). 

For each regime, we ran 20 simulation replicas using the regime’s nominal parameter values. Then, 

we perturbed each parameter individually ±25%, ran 20 simulation replicas for each perturbed 

parameter set, and performed statistical analyses on several sensitivity metrics derived from the 

simulated trajectories. Sensitivity metrics include the percent change from the average of the 

baseline simulations of the plaque radius growth rate, the maximum value of [Ve] and [IFNe] that 

occurred over time, and the AUC of average [Ve] and [IFNe]. We determined the statistical 

significance of the change in each metric from its unperturbed value using a student’s t-test. 

Statistical test results and sensitivity metrics are reported in the Appendix B.7 (Figures 33 – 35). 

Increasing and decreasing the parameter values primarily led to directionally consistent changes 

in the sensitivity metrics, e.g., if the metric increased when the parameter increased by 25%, then 

the metric also decreased when the parameter decreased by 25%. The top row of Figure 16 shows 

the cell type progression and variability for plaque growth assays for each regime.  
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Figure 16. Local single-factor sensitivity analysis varies greatly for three simulation regimes.  

(A) ‘Baseline’ corresponds to the baseline parameters in Appendix B.5. (B) ‘High 

JAK/STAT’ corresponds to a 15x increase in the phosphorylation rate of STAT to [STATP] via 

the JAK/STAT pathway (parameter kSTATP,IFNe). (C) ‘High IFN Diffusion’ corresponds to a 10x 

increase in the diffusion coefficient of [IFNe]. Sensitivity analyses varied each parameter one-at-

a-time ± 25% around its unperturbed value and quantified the average plaque radius growth rate 
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at the end of the simulation, the maximum extracellular virus, [Ve], and interferon, [IFNe], levels 

that occurred, and the area under the curve (AUC) for both average [Ve] and [IFNe]. The sensitivity 

metrics average the absolute values of the metric for increased and decreased parameters over 20 

replicas for each parameter set. 

Previous sections demonstrated that variation in multiple parameters could lead to either 

continuous or arrested plaque growth. The baseline parameter set leads to the continuous growth 

of the plaque. In this regime, the rate of [STATP] dephosphorylation (determined by τSTATP, 

Appendix B.2), the strength of induction of [IRF7] by [STATP] and [IRF7P] (determined by the 

kIRF7,STATP, and kIRF7,IRF7P rate parameters in Appendix B.2), the maximal rate of viral replication 

(represented by the rate parameter kV,V), the extracellular virus diffusion coefficient (DVe), and the 

rate of nonspecific extracellular viral clearance (τVe) have the largest effects on the metrics. For 

example, increasing the maximal viral replication rate (kV,V, effect shown in Appendix B.9, Figure 

38) or the extracellular virus diffusion coefficient (DVe, effect shown in Appendix B.9, Figure 39) 

leads to faster plaque growth, whereas increasing the virus release rate to the extracellular 

environment (QV) would slow plaque growth. The High JAK/STAT and High IFN Diffusion 

regimes both have arrested plaque growth. In these regimes, the parameters associated with the 

activation of paracrine signaling have statistically significant sensitivity to perturbations tested. 

The magnitude of the effects is higher in the High JAK/STAT regime than in the High IFN 

Diffusion regime. This, combined with the difficulty in selective diffusion length modification, 

suggests that paracrine signaling is a more feasible target for immunomodulation. The increase in 

parameter sensitivity in arrested plaque growth regimes also suggests that experimental conditions 

leading to arrested growth could improve the parameterization of future models and investigations 

into the interferon signaling response to viral infection. 
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3.4 Conclusion 

The MSIS model produced plaque-like structures (Figure 10). The MSIS model includes 

parameters that were fit to data from H1N1-infected cell culture experiments, but several 

parameters estimate also come from the literature (see Appendix B.5). Without additional 

parameter training, we showed that the model produced plaque growth dynamics (Figure 11 C) 

like those observed in cells infected with two different H1N1 influenza viruses (Figure 11 A, B).  

We then focused on using the MSIS model to evaluate how altering intracellular signaling rates 

and/or diffusion rates might impact plaque growth and performed sensitivity analyses to determine 

the experimental conditions under which the model’s parameter values can best be estimated. 

One of the most significant outcomes of this study is that the sensitivity analysis of the 

MSIS model suggests that experiments should be performed in conditions that lead to plaque 

growth arrest rather than unlimited growth to improve the identifiability of interferon signaling 

parameters (Figure 16). Often, cell culture experiments of virus growth dynamics employ cell lines 

or conditions that promote virus plaque growth. For example, Vero cells are frequently used in 

studies because they do not produce interferon and therefore support robust virus replication. 

However, our sensitivity analysis shows that performing experiments in cells with more robust 

IFN responses will provide more informative data to estimate 19 of the interferon signaling 

parameters, compared to only 9 parameters being significantly sensitive in regimes leading to 

unconstrained plaque growth. And 8 of these 9 parameters significantly affect the model outputs 

under both constrained and unconstrained plaque growth. In all, the model suggests that 

experiments performed in IFN-competent cells under conditions that lead to plaque arrest are best 

for accurately inferring interferon signaling-associated parameter values. 
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We also used the MSIS model to evaluate the effects of increased paracrine activity via 

[STATP], increased intracellular virus detection via RIG-I, and prestimulating cells with [IFNe]. 

All three changes lead to increased concentrations of [IFNe] but only elevated paracrine signaling 

resulting from enhancing [STATP] activation (Figure 12) and interferon prestimulation (Figure 14) 

led to plaque growth arrest. Both [IFN] prestimulation and enhanced [STATP] production via 

[IFNe] resulted in a reduced concentration of extracellular virus and an increased concentration of 

[IFNe]. Enhanced [STATP] activation and [IFN] prestimulation leading to suppressed virus 

production and plaque growth are consistent with known biology and experimental 

observations140,141. However, the model’s predictions on the effects of enhancing intracellular 

detection of virus via the RIG-I pathway differs significantly from experimental observations. 

Experiments show that enhanced RIG-I binding of viral RNA leads to increased IFN production, 

reduced virus production, and smaller plaques142. Increasing RIG-I activity in silico increased 

[IFN] production and decreased virus production but did not significantly change the plaque size 

at the end of the simulation (Figure 13 A). It did affect the cell type demographics, leading to 

significantly fewer dead cells and many persistent I2 cells (Figure 13 B). Future work could 

investigate the effect of intracellular IFN and viral load on the rate of cell death, which is 

independent of these factors in the MSIS model.  

We then considered how diffusion coefficients impact plaque growth (Section 3.3.6). A 

Stokes-Einstein estimate of diffusion coefficients for virus particles (with an effective radius of 80 

– 120 nm)143 and interferon proteins (with an effective radius of 7 nm)144 predict 11x – 17x larger 

diffusion coefficients for interferon in most media. While diffusion coefficients can vary over 

several orders of magnitude during a single cell culture experiment (due to cell secretion of 

molecular species like collagen which increase medium viscosity or proteases which can decrease 
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it)71, we used a constant, equal, diffusion coefficient for both species (54.0 μm2 s-1) in our baseline 

simulations, resulting in continuous radial plaque growth. The decay rates (τVe and τIFNe) yield 

effective diffusion lengths for [Ve] and [IFNe] of 0.09 μm and 0.23 μm, respectively. In Figure 15, 

we explored how changing the diffusion coefficients impacts plaque growth, identifying a clear 

boundary between regimes of arrested and continuous plaque growth. Figure 15 shows that even 

when DIFNe is significantly larger than DVe both arrested and unconstrained plaque growth can 

occur for different values of DIFNe. In summary, we show that the model can produce unconstrained 

and constrained plaque growth over a wide range of diffusion coefficient combinations. Future 

work will focus on refining these values and may consider time-dependent diffusion coefficients. 
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4.0 Comparing H5N1 and H1N1 infection dynamics in murine hosts 

4.1 Introduction 

Infections with different influenza A viruses reveal distinct trends in the observed timing 

and magnitude of immune system dynamics, which correlate to the severity of clinical outcomes90. 

Occasionally, high pathogenic subtypes emerge, which can result in deadly, worldwide pandemics 

such as the 1918 Spanish Flu and 1968 Flu pandemics. Of particular concern is the threat that avian 

H5N1 influenza viruses pose to public health91. An estimated 60% of human H5N1 infections end 

in death, the majority of which unexpectedly occur in those under 6592. Infections with H5N1 

viruses are characterized by higher viral loads, longer viral clearance times, and increased levels 

of inflammation and tissue damage in comparison to low pathogenic influenza viruses93.  

While it remains unclear how H5N1 and other highly pathogenic viruses induce a more 

severe inflammatory response, there are several potential explanations. One possibility is that 

H5N1 viruses replicate more quickly, and that observed differences in the immune response are 

driven primarily by the viral replication rate94. Another possibility is that H5N1 viruses may 

antagonize the immune system differently during the early stages of infection. A specific candidate 

mechanism involves the influenza virus’ nonstructural protein 1 (NS1). NS1 is well-established as 

an antagonist of intracellular immune signaling through the inhibition of retinoic acid-inducible 

gene I (RIG-I) activity, which leads to a delayed type-I interferon response95,96. The importance of 

RIG-I has further been demonstrated in this work97,98. By introducing mutations to the NS1 protein, 

some studies have shown that the NS1 protein of H5N1 viruses may more strongly antagonize 

cellular antiviral responses99,100. Another factor that may contribute to the H5N1 virus’ enhanced 
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pathogenicity is that H5N1 can more readily infect lung resident macrophages, though there is 

conflicting evidence on whether infected macrophages lead to enhanced inflammation101 or not102. 

Given the many factors contributing to H5N1’s pathogenicity, there is an opportunity to use 

dynamical mathematical modeling to analyze time-course infection data and identify the processes 

(factors) that differ between infections with different viruses.  

Dynamic mathematical models have been used to better understand the mechanisms 

driving in vitro and in vivo immunodynamics observed during influenza infection (103,104 are 

reviews of select relevant models). To date, most mathematical models of influenza infection 

consist of ordinary differential equations (ODEs) that systematically link virus replication and the 

availability of host target cells (cells that can be infected) to intracellular immune signaling 

(interferon responses) and/or immune cell activity. These models have been used to explore a 

variety of areas: target cell refractory periods as an explanation for double viral peaks85, 

prioritizing therapeutic targets to optimally reduce inflammation while controlling viral load105–

108, providing evidence that interferon paracrine signaling is the primary factor regulating 

hypercytokinemia109, and determining why viral titers rebound during bacterial co-infection110. 

Separately, agent-based models (ABMs), a rule-based approach that treats each cell as an 

individual entity while considering spatial effects and stochasticity, have been used to reveal the 

optimal experimental conditions for examining infection-induced interferon production, to 

quantify the benefits of noisy intracellular immune signaling75, and to elucidate the effect of spatial 

aspects on infection outcomes111. An engineering-based approach that employed a reduced ODE 

model of virus replication and treated measurements of key immune factors as system inputs 

suggested that increased levels of interferon-α/β promoted slower viral growth and limited immune 

cell stimulation in aged mice112. As in these previous studies, mathematical modeling is a 
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knowledge-driven, integrative approach well suited to explore the regulatory mechanisms 

responsible for the differences observed between mild and severe influenza infections.  

To elucidate the biological mechanisms that contribute to the distinct immunodynamics 

observed between H1N1 and H5N1 influenza virus infections, we developed mechanism-based, 

dynamic mathematical models of the innate immune response and performed several 

parameterizations to identify the biological processes (parameters) that are most likely to be 

differentially regulated between the two infections. The model parameters were fit to viral load 

and immunologic data from mice that had been infected with either an H1N1 or H5N1 virus. Using 

parameterization to test the contribution of macrophage activity in interferon production and viral 

suppression reveals that the inclusion of these mechanisms may negatively impact model quality 

(Section 4.3.1). Global sensitivity analyses of the models (Section 4.3.2) reveal distinct system 

control for each structure. Comparing model fits to the data (Sections 4.3.3 – 4.3.5) using the 

Akaike information criteria (AIC) suggests that the optimal model is achieved when the production 

rate of interferon (rI,V) is distinct between the two infections. In total, this modeling-based approach 

determines that the distinct rate of interferon induction in H5N1 infections is the most likely 

candidate mechanism for explaining the distinctive immune response observed in H5N1 

infections.  
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4.2 Materials and Methods 

4.2.1 Model development rationale and equations  

Studies have established that many innate immune processes are differentially regulated in 

mild and severe influenza infections113–118. As such, we focused on developing simple models of 

the early immune response. We first describe the relevant immunology and then describe how 

virus replication and innate immunity are mathematically modeled. 

Lung epithelial cells as well as lung-resident innate immune cells, i.e., macrophages and 

neutrophils, display pattern recognition receptors to detect viral RNA at the site of infection119,120. 

Pattern-recognition toll-like receptors 7 and 9 (TLR7/9)121, retinoic acid-inducible gene I (RIG-

I)30, and the pro-inflammatory NF-kB122 pathway work in concert to activate the type-I interferon 

response96. These pattern recognition receptors are antagonized by the invading virus to strain-

specific degrees29,31. Interferons induce the transcription of interferon stimulated genes (ISGs) that 

are responsible for establishing an antiviral state in the cells near infected cells123 and activating 

several components of the immune system. Studies suggest that the timing of the type-I interferon 

response is key in limiting viral replication and recruiting an appropriate pro-inflammatory 

response124–126. Induction of interferon production is also partially responsible for regulating the 

activity of innate immune cells such as macrophages and neutrophils. The precise role of these 

immune cells in viral clearance is still debated: while macrophages can engage in several 

inflammatory processes127 and are important for enhancing interferon induction128, they may also 

be targeted for infection by highly pathogenic viruses such as H5N1 influenza, altering their 

overall activity101,102.  
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Figure 17. 4 Structure Model Ensemble schematic. 

A significant body of contradictory predictions of macrophages’ role in infection was 

reviewed101,102,127,129–132. To explore all this space of mechanistic possibilities, four distinct model 

structures were created. Literature supporting the removal of each mechanism is given as super-

text in Figure 17, while the parameters controlling each process are indicated only in Model 1 for 

simplicity. 

4.2.2 Experimental data collected from literature and relating the data to the model  

Measurements of the viral load, interferon concentration, and a surrogate measurement of 

macrophage counts were collected and organized from Shoemaker et al.90. Briefly, female 

C57BL/6J mice were infected with a low pathogenic A/Kawasaki/UTK-4/09 H1N1 virus (H1N1) 

or high pathogenic A/Vietnam/1203/04 H5N1 virus (H5N1) at 1E5 PFU. A control group was 

mock-infected with PBS. At 14 time points spanning the first week of infection, three animals per 

infection group were sacrificed. Their lungs were harvested and analyzed by a variety of 

techniques to quantify the viral load and the state of the immune system. The H5N1 infected 

animals died between days 5 and 7. As such, only the first 13 measurements spanning days 0 – 5 
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are included in this work. In all, 234 measurements (78 for each model state) were collected and 

organized for model parameterization. 

The specific measurements90 and their relationship to the mathematical models are as 

follows: Viral titers were determined via plaque assay resulting in units of plaque-forming units 

per mg of lung tissue (PFU/mg). In Appendix C.1, [V] is the log10 of PFU/mg. To represent the 

change in interferon concentration over time, [I], log2 fold change of the gene expression of Ifnb1 

relative to mock-infected, time-matched samples (unitless) was used. Full details on normalizing 

the gene expression can be found in the original work90. Whole lung macrophage counts were 

determined at only four time points in the original work, spread across several days90. As a result, 

the concentration of MCP1 (measured using ELISA assay) was selected to act as a surrogate 

measurement of macrophage cell count, [M]. Appendix C.3, Figure 48 shows a linear regression 

of the log10 macrophage cell count and log2 MCP1 concentration (𝑅𝑅2  =  0.98, with a slope of 

0.613). The conversion between macrophage and MCP1 is, therefore, given by Equation 4-1:  

log10[𝑀𝑀]  =  0.6301 log2[𝑀𝑀𝐴𝐴𝑀𝑀1]                                                                                 (4-1) 

where [M] is the macrophage cell count in the lung and [MCP1] has units of pg/mL. During 

parameter training, the macrophage state is fit to the log2 of MCP1 measurements. Equation 4-1 is 

then used to transform MCP1 predictions into estimates of macrophage counts in the lung.  

4.2.3 Parameter training 

Basin Hopping (BH)133, via SciPy and Parallel Tempering Markov chain Monte Carlo (PT 

MCMC)55 were employed as global optimization algorithms to train parameter values. BH rapidly 

identifies a single estimate of parameter values, while PT MCMC characterizes the parameter 

space over an extended number of samples. The objective function used (Equation 4-2) is akin to 
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a weighted sum of squared error and is referred to hereafter as energy, following Metropolis et 

al17. This function was developed to equally consider error contribution from all ODE states ([V], 

[I], [M]) by normalizing over the data. Nearly any custom error function which quantifies the 

difference between model predictions and available data could be used in place of Equation 4-2 to 

accommodate different model and data structures. 

𝑆𝑆𝑛𝑛𝐺𝐺𝑁𝑁𝐸𝐸𝐸𝐸 = ∑ ∑ (𝑀𝑀𝑥𝑥,𝑡𝑡−𝑂𝑂𝑥𝑥,𝑡𝑡)2

2𝑂𝑂𝑥𝑥,𝑡𝑡
 𝑇𝑇

𝑡𝑡=0
𝑋𝑋
𝑥𝑥=1                                                                                    (4-2) 

Mx,t and Ox,t are the model output and the average of triplicate observed data points, 

respectively, for each state, x, and time point, t, across all states, X, and time points, T. Each time 

point was divided by the corresponding data point, Ox,t, to normalize energy values. The initial 

condition values (at time=0) are not used in data fitting, since the ODEs will always start with 

these values. All MCMC simulations were run across six chains of temperature (0.99, 0.9, 0.8, 0.4, 

0.2, and 0.05) to ensure adequate exploration of parameter space. Parameters were bounded by the 

numerical stability of the system; and priors were defined as uniform between zero and the stable 

upper limit. Optimized parameter values near this limit were evaluated again, until the result was 

both stable and well within bounds. Visualization code for the MCMC parameterizations can be 

found at github.com/ImmuSystems-Lab/Macrophage_Model. Additional information on 

parameterization results can be found in Appendix C.4. 

4.2.4 Model and scenario prioritization 

While an energy function conveys the quality of the fit achieved by parameterization for a 

given model, it is incapable of comparing models with varying numbers of parameters (differing 

degrees of freedom). Akaike Information Criterion (AIC) was used to compare models with 
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different numbers of parameters and determine the superior model based on a tradeoff between the 

model’s fit to training data (energy) and the number of free parameters used to achieve the fit. The 

optimal model is the model that reports the lowest AIC value. While Bayesian Information 

Criterion is argued to best suited to select a ‘true model’ out of an ensemble134, AIC is better at 

removing incorrect models19,22. For the current work, only a small subset of all possible model 

structures was investigated. Thus, we could not assume that the true model would be present, and 

AIC was used for model selection. As AIC is relative, a difference greater than 2 was considered 

significant when comparing two outcomes. AIC is defined135 as:  

𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 ∗ ln (𝑀𝑀𝐿𝐿𝑆𝑆) + 2 ∗ 𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                              (4-3) 

where MLE is the maximum likelihood estimate and Pfree is the number of parameters being fit. 

The number of free parameters in a model depends on the scenario being considered, which is 

described in Tables 2 and 3 in Sections 4.3.4-5.  

4.2.5 Sensitivity analysis 

An extended Fourier Amplitude Sensitivity Testing (eFAST) global sensitivity 

analysis136,137 was performed in Python Version 3.8.10 with Sensitivity Analysis Library (SALib) 

Version 1.4.5138 to determine the output variance of each state (Appendix C.1) as a function of 

input variance to each parameter. The output of the method is First-Order indices that represent 

the outcome variance of each system state that can be attributed to the perturbation in a single 

parameter, p. High First-Order indices imply that a single parameter has a significant role in 

controlling system outcomes, while low values indicate a less significant impact. While sensitivity 

of infection outcomes (viral and IFN peaks, etc.) were previously used97, we aimed to determine 

the overall system sensitivities or the output variance of each state; [V], [I], [M], for each 
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parameter, p. This was determined at 100 time points between 0 and 5 days. The average of these 

sensitivity indices over all time points is reported as a metric of overall system control during the 

infection.  

4.3 Results 

4.3.1 In silico screenings of candidate innate immune models find that H5N1 and H1N1 

viruses induce interferon production at different rates in vivo  

The goal of this work is to determine the innate immune processes that are differentially 

regulated in animals infected with a moderate H1N1 or severe H5N1 influenza virus. These 

processes can be represented as differences in the values of a parameter of the mathematical model. 

To identify differentially regulated processes, four biologically informed mathematical models 

with structural differences surrounding macrophage activity were developed, and a series of 

parameter fittings was performed to determine which parameter(s) distinguish an optimal fit to 

experimental data derived from H5N1 and H1N1-infected animals.  

The models are also shown in Appendix C.2, wherein four different regulatory structures 

link the concentration of virus, [V], the level of interferon, [I], and the number of macrophages, 

[M], in the lung. The primary distinction between the four models involves the role of 

macrophages. In Model 1, containing 12 parameters, macrophages can induce interferon 

production and suppress virus replication. However, experimental evidence suggests that 

macrophages may not play a major role in suppressing virus replication132. As such, we constructed 

four models of the innate immune response. In Model 2, macrophage induction of interferon 
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production is removed. In Model 3, macrophages do not directly suppress virus replication. Models 

2 and 3 both contain 11 parameters. In Model 4, containing 10 parameters, both macrophages’ 

ability to induce interferon and suppress virus replication are removed. 

 All four models were compared under three scenarios using the AIC as the discrimination 

metric. The overall strategy of the approach is illustrated in Appendix C.2. In the ‘No strain-

specific differences’ (NSSD scenario,  or All Shared  [AS] Condition within this Aim), parameters 

have equal values in both infections, with their optimized values resulting in trajectories between 

both sets of data. A single copy of each model is trained to the H5N1 and H1N1 data, resulting in 

one trained (parameterized) model. In the ‘One strain-specific difference’ (OSSD) scenario, we 

assume that a single interaction or process may be differentially regulated in the two infections. 

To consider this, we train two copies of a model to the data, one copy for the H5N1 data and 

another for the H1N1 data, but only allow one parameter to take on different values between each 

copy (referred to as independent parameters, like the approach used in 108). All other parameters 

must maintain the same value. This results in an H1N1 and an H5N1-specific parameterized 

version of a model, each of which has identical parameter values except for the strain-specific 

parameter under consideration. And lastly, we considered the ‘All different’ (AD) scenario in 

which all parameters can take on different values when training a model to the H1N1 or H5N1 

data, resulting in an H1N1 and an H5N1-specific parameterized version of the model in which all 

parameters have different values. AD provides a benchmark of the equations’ ability to capture the 

dynamics of each strain individually, while NSSD benchmarks the goodness of fit for when each 

infection is mechanistically identical. All four models were parameterized under each scenario 

(AD, NSSD, and an OSSD for each parameter in each model structure) using a basin hopping 
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algorithm. AIC scores were used to determine which model and scenario results in the best fit to 

the data. 

 

Figure 18. Energy versus AIC values for all four model structures under different parameterization 

scenarios. 

 All Different (AD), One Strain-Specific Difference (OSSD), and No Strain-Specific 

Difference (NSSD). The Model 4 OSSD rI,V scenario yields the global minima. Each shape 

represents a maximum of 500 Basin Hopping stochastic jumps. Each jump is followed by up to 

500 gradient descent steps. If 250 jumps pass without an improvement in the global minima, Basin 

Hopping exits. Although this does not prove convergence, this practice reliably finds the minima 

from the proposed initial parameters. Most (97%+) parameterizations do not require full iterations. 

Comparing the AIC results after training each model to the experimental data under each 

scenario suggests that H5N1 and H1N1 viruses induce the production of interferon at different 

rates. Figure 18 shows the energy and the AIC for all tested combinations of model and scenario. 

Generally, all four models can attain similar goodness of fits to the immunologic data. Model 4 

tends to have the lowest AIC, a result of both low energy fits and the fact that Model 4 has the 
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fewest parameters. The lowest energy is achieved by all four models under the AD scenario, which 

is expected as this scenario has the highest degree of freedom for fitting the models to the data. 

However, the lowest AIC values are not achieved under the AD scenario. The minimum AIC 

occurs in the OSSD scenario where the parameter representative of interferon production rate, rI,V, 

takes on H5N1 and H1N1-specific values. All four models achieve their lowest AIC under this 

condition (noted in Figure 18) with Model 4 achieving the lowest AIC overall. This suggests that 

virus-induced interferon production is regulated in a strain-dependent manner, a proposition that 

is independent of the model, and therefore, macrophage activity, employed. These findings also 

suggest that Model 4 is the best model for regressing against the H5N1 and H1N1 immunologic 

data. However, these conclusions are drawn from Basin Hopping, which converges when no new 

minimum can be found within 50 stochastic jump steps. To test the validity of these results, parallel 

Tempering Markov Chain Monte Carlo methods were used for a deeper exploration of parameter 

space in Section 4.3.3.  



 68 

4.3.2 Strain-specific interferon production is not an artifact of parameter sensitivity 

A challenge associated with this type of in silico screen is to determine if the screening 

methods have merely identified the most sensitive model parameter as the best parameter to take 

on different values and provide the best fit to the data. We next investigated the parametric 

sensitivity of the candidate models to determine if rI,V was the most sensitive model parameter. We 

conducted a sensitivity analysis of all the models to each of their constituent parameters using the 

eFAST algorithm136,137. The sensitivity of each state is reported in the form of fractional variance 

that can be explained by the variance of a single parameter, p. These indices are shown in Figure 

19.  

 

Figure 19. First-order indices of the eFAST sensitivity analysis of the Macrophage models. 

 Indices are reported as the normalized change for each model state, for each parameter. 

Parametric sensitivity analysis for each model shows that the most sensitive parameters differ 

across the candidate models. In Model 1, the concentration of interferon (I) and number of lung 
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macrophages, [M], are most sensitive to macrophage associated parameters (rM,I and rI,M), while 

the concentration of virus [V] is primarily dependent on the rate of interferon induction by the 

virus, rI,V. This trend holds for Models 2 and 3. In Model 4, the concentration of interferon, [I], 

and [M] are most sensitive to the rate of interferon induction by [V], rI,V, while [V] is most sensitive 

to rV,V. This establishes that the four model structures have a unique control scheme, i.e., the most 

sensitive parameters differ between the different models. This also demonstrates that the minimum 

AIC values of rI,V OSSD models during the in silico screen were not simply the result of rI,V being 

the most sensitive parameter. Thus, the remainder of this work is comprised of further analyses 

using Model 4 to understand the parameter space associated with the model fitting to H5N1 and 

H1N1-specific data. Aim 4 builds on this observation that models with slightly different structures 

have significant control differences, applying it to strain-specific parameters. 

4.3.3 Exploration of Model 4’s parameter space using PT MCMC  

Preliminary in silico screens and sensitivity analyses establish that Model 4 provides the 

best fit to the immunologic data when rI,V is allowed to take on H5N1 and H1N1-specific values. 

However, further exploration of the parameter space using Parallel Tempering Markov Chain 

Monte Carlo (PT MCMC) parameterization was needed to determine the breadth of the parameter 

space that supported Model 4’s best fit to H5N1 and H1N1 data. Using PT MCMC, we re-

evaluated all the scenarios described in Appendix C.2, Figure 47 B for Model 4. For each MCMC 

optimization, 2 million iterations were run.  

Figure 20 shows the fits of Model 4 under the ‘all different’ (AD) and ‘no strain-specific 

differences’ (NSSD) scenarios plotted against the H5N1 and H1N1 in vivo mouse data. Standard 

deviation intervals of the top 1,000 solutions, i.e., the 1,000 lowest energy parameter sets that were 
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identified, are narrow for the model’s fits under both the AD (black) and NSSD (blue) scenarios, 

indicating a range of possible model trajectories with similar energy. The resultant trajectory for 

the NSSD scenario is the average of the two strains’ data sets and, expectedly, fits neither strain. 

The AD scenario fits reproduce the observed dynamics for each strain very well, showing that the 

Model 4 equations can produce known in vivo behavior and strain-specific parameterizations can 

improve model energy at the cost of higher degrees of freedom. 

 

Figure 20. The top 1,000 fits of Model 4 to the H1N1 (top row) and H5N1 data (bottom row) when using PT 

MCMC parameterization.  

The top fits under the AD scenario (all parameters allowed to independently estimate across 

strains) are shown in black and NSSD results (all parameters shared between strains) are shown in 

blue. Intervals represent the standard deviation of the 1,000 lowest energy parameter sets. Data 

from Shoemaker et al.90 are shown as circles with bars indicating the standard deviation. Within 

the AD scenario, almost all parameters have strain-specific values except for rV,I. Of note between 
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H1N1 and H5N1 are the rate of host interferon production (rI,V, 1.66 vs. 2.83 days-1) and the rate 

of viral replication (rV,V, 0.957 vs. 1.19 days-1). 

4.3.4 MCMC-based parameter exploration again finds that H5N1 and H1N1 viruses induce 

interferon production at different rates in vivo  

We next considered Model 4’s goodness of fit to the H5N1 and H1N1 data under the OSSD 

scenarios using PT MCMC. The energy and AIC for all scenarios tested are reported in Table 2. 

For completeness, we show the time course trajectories of the best fit achieved for Model 4 under 

all OSSD scenarios in Figure 21. Energy per iteration for both AD and NSSD scenarios are shown 

in Appendix C.4, while best-fit parameter values and units are provided in Appendix C.6.  

Table 2. The mimumum energy, degrees of freedom (DOF), and AIC values achieved by Model 4. 

Scenario Independent 

Parameter 

Energy DoF AIC 

NSSD None 15.04 10 50.08 

AD All 3.33 20 46.66 

OSSD 𝑁𝑁𝑉𝑉,𝐼𝐼 10.83 11 43.66 

𝑁𝑁𝑉𝑉,𝑉𝑉 9.37 11 40.74 

𝐾𝐾𝑉𝑉,𝑉𝑉 9.79 11 41.59 

𝑑𝑑𝑉𝑉 9.65 11 41.31 

𝑁𝑁𝐼𝐼,𝑉𝑉 6.65 11 35.30 

𝑑𝑑𝐼𝐼 10.3 11 42.61 

𝑁𝑁𝑀𝑀,𝐼𝐼 12.36 11 46.73 

𝑘𝑘𝑀𝑀,𝐼𝐼 12.29 11 46.57 

𝑛𝑛  12.28 11 46.57 

𝑑𝑑𝑀𝑀 12.37 11 46.75 
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The lowest AIC is achieved when the rate of virus induction of interferon, rI,V, is allowed 

to have strain-specific values. Minimum energy values fall between 9 and 13 except in the case 

where the rate of interferon production, rI,V, is independently estimated, which yields a minimum 

energy of 6.65. While this is closest to the minimum AD energy for Model 4 (3.33), AIC 

calculations reveal that the resulting value of 35.30 for rI,V is not only lower than the results of the 

other nine OSSD parameterizations of Model 4 but is lower than that of the high degree of freedom 

AD results. Overall, using MCMC instead of basin-hopping for data fitting did not lead to a 

different conclusion with regards to the optimal solution occurring when rI,V is independently 

estimated for H5N1 and H1N1. The independent parameter column identifies the parameter 

allowed to take on different values while training two copies of the model to the H5N1 and H1N1 

data. These fits are demonstrated in Figure 21. 

 
Figure 21. Model 4 output for the minimum energy parameter set (lines) for OSSD parameterizations and 

corresponding training data (markers) for H1N1 (top row) and H5N1 (bottom row). 
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 Data is from Shoemaker et al.90 are shown with the standard deviation associated with 

triplicate data points per time point. In total, the model fits in Figure 21 capture some trends of the 

in vivo data, but many scenarios result in steady-state dynamics after just 1 day (dI, rI,V). However, 

the rI,V OSSD scenario has a distinct numerical improvement in fit over the NSSD results, although 

this result may be hard to visually determine. When each parameter is allowed to differ between 

strains, histograms can inform whether the strains’ parameter distributions are unique. Focusing 

on the rI,V OSSD scenario histograms, a comparison of the resultant top 1,000 parameter 

distributions across strains yields a significant difference between distribution means [Mann-

Whitney test p < 0.001 for rI,V  between H1N1 (blue) and H5N1(red), Figure 22] indicating that the 

strains have unique values for this parameter. All other parameter distributions for OSSD models 

overlap significantly (Figure 22), except for dI. This is to be expected when these parameters are 

shared between strains. The clear separation in distributions for the unshared parameter is not 

always present. When other parameters are allowed to vary between strains, the unshared 

parameter distributions often have significant overlap (Appendix C.7, Figures 51 – 60). Combined 

with the AIC results in Table 2, these results highlight that rI,V OSSD achieves the most statistically 

defensible fit to the datasets.  
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Figure 22. Posterior density distributions for all parameters for Model 4 with rI,V varying between strains.  

Only rI,V can have strain-specific values. All other parameters have the same value when 

fitting the model to H5N1 and H1N1 data. The x axis is given in log10 Parameter Value. 

Distributions result from the 1,000 lowest energy solutions identified using PT MCMC. Narrow 

posterior distributions indicate that the parameter had a small range of values under which the 

model optimally fit the data, while broad distributions indicate that a range of values would yield 

fits of the same energy. 

4.3.5 Independent estimation of virus parameters per strain does not improve model AIC 

Because it would be computationally intractable to fit all possible combinations of 

parameter values, this study focused largely on observing the effect that differences in single 

parameters while training to two infection data sets has on model quality. However, we 
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hypothesized that disparate immune dynamics between viral strains may be related to all virus-

based rates such as growth rate, rV,V, or death rate, dV. To test this, Model 4 was parameterized 

such that the viral state parameters, rV,V, KV,V, rV,I and dV (Denoted {V}) could take on different 

values when training to the H5N1 and H1N1 data, while all other parameters remained shared 

between strains. Six additional ‘Virus-Host’ parameterizations were performed with the addition 

of one of the non-viral state parameters, {V} +OSSD (DOF: 15). Independent parameter identifies 

the parameters allowed to take on different values when training to the H5N1 and H1N1 data. 

Table 3. The minimum energy, DOF, and AIC values for all seven Viral subset, {V}. 

Scenario Independent Parameter Energy DoF AIC 

{V}              {V}  9.34 14 46.68 

{V} + OSSD {𝑉𝑉}  + 𝑁𝑁𝐼𝐼,𝑉𝑉 5.55 15 41.11 

{𝑉𝑉}  + 𝑑𝑑𝐼𝐼 8.38 15 46.75 

{𝑉𝑉}  + 𝑁𝑁𝑀𝑀,𝐼𝐼 8.86 15 47.72 

{𝑉𝑉}  + 𝐾𝐾𝑀𝑀,𝐼𝐼 8.89 15 47.79 

{𝑉𝑉}  + 𝑛𝑛 8.92 15 47.85 

{𝑉𝑉}  + 𝑑𝑑𝑀𝑀 8.89 15 47.78 

 
The model solutions for each parameterization are found in Figure 23. Qualitatively, the 

resulting fits are more indicative of the expected dynamic trends, including during late infection. 

Model fits follow similar trends, with {V} + rI,V achieving the best fit to data. Corresponding 

minimum energy and AIC values are found in Table 3. A comparison of the top 1,000 parameter 

distributions per strain yields significant differences between distribution means, except for rV,I in 

{V} + KM,I (Mann-Whitney test p < 0.001 for all independently estimated parameters). This 

indicates that virus-related kinetic parameters likely vary between strains. Minimum energies 

associated with the {V} + OSSD parameterizations are lower than that of {V} alone, with a 

minimum energy of 5.55, associated with the independent fitting of {V} + rI,V. Compared to the 

AD and NSSD scenarios, {V} + rI,V results in a lower AIC value, reiterating the role of interferon 
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production rate in strain-specific infection dynamics. Although strain-specific viral parameters are 

demonstrably present in the datasets, {V} + rI,V has a higher AIC than the rI,V OSSD scenario. This 

attributes great importance to strain-dependent interferon production rate over simple strain-

dependent viral kinetics and implies that increased degrees of freedom are detrimental to model 

quality. Investigations with higher degrees of freedom were not performed due to the 

computational time required for each MCMC fit to run 2 million samples per study. 
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Figure 23. Model 4 output for minimum energy parameter set (line) for virus-related parameter independent 

fits. 

Corresponding training data (markers) for H1N1 (top row) and H5N1 (bottom row). {V} is 

representative of four viral parameters: rV,V, KV,V, rV,I, and dV. Data from Shoemaker et al.90 are 

shown with the standard deviation associated with triplicate data points per time point.The model 

trajectories in Figures 22 and 23 display an interesting property – a bias towards simplicity. Metrics 

other than AIC which have relative weighting of complexity and predictive accuracy would create 

different dynamics, lying between optimization entirely for simplicity (predict the mean of the 

data) and optimization entirely for data fitting (error-based model evaluation).  Likely since lower 

DOF eventually favors predicting the mean of the data, all scenarios achieved stable steady states.  

The selection of error function is arbitrary if the resulting relative weighting of error and 

complexity in AIC are considered. For this application, both metrics contribute similar scalars to 

AIC (total error ranging from ~1 to 10 per strain for typical parameterizations, and 10 – 24 DOF). 

Thus, the model is greatly (sometimes dominantly) influenced by the DOF penalty, especially 

when compared to an error-only model parameterization.  
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4.4 Conclusion 

Several mechanisms have been hypothesized to explain differential immunoregulation 

between low and high pathology infections. Three specific mechanisms are that high pathogenic 

viruses may simply replicate more quickly, high pathogenic viruses may differently interact with 

antiviral signaling pathways (i.e., interferon signaling), or high pathogenic viruses may infect 

and/or alter the behavior of macrophages (see introduction for further details). Prior modeling 

efforts implicated the infection of macrophages as a driving factor for strain-dependent 

pathogenicity108, however, the study did not consider alternative mechanisms and further 

exploration was needed146,147. The in silico screen used here is an unbiased approach that allows 

several candidate mechanisms to compete, with the most likely candidate mechanism being 

selected based on the model’s goodness of fit to H5N1 and H1N1 training data. The infection data 

originates from identical lineage, age, and gender-matched murine subjects, minimizing inter-

individual variability and increasing the likelihood that differences observed between infections 

are due to strain-specific immunoregulation or virus replication.  

Of the three hypotheses for why H5N1 viruses induce distinct immune responses, the 

primary finding from the in silico screen (Section 4.3.1) is that the rate of interferon production by 

infected lung cells is likely different in H1N1 and H5N1-infected animals. The lowest AIC was 

achieved when the interferon-associated parameter, rI,V, was allowed to take on different values 

while training to each infection cohort – regardless of the model employed. The robustness of this 

finding is further supported by the wide distribution of parameter values which optimally fit the 

data, quantified by the MCMC analysis, and by the results of the sensitivity analysis. One concern 

about our in silico screening approach, and indeed in model-based analysis in general, is that the 

most sensitive parameters are often identified as the most important for maintaining phenotypes 
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as they are the easiest to use for tuning system dynamics. Across the four models considered here, 

the top parameters to which the model outputs are sensitive differed (Section 4.3.2). Nevertheless, 

rI,V was identified as the most likely candidate across all four models. Finally, in Section 4.3.4, 

MCMC analysis showed that the best fit for the scenario with strain-specific rI,V values could be 

achieved for a wide range of parameter values. It was found that the rate of interferon production, 

rI,V, is approximately 2 – 3 times larger in H5N1 infected lung cells. Additional analyses were 

performed to consider strain-specific virus replication rates combined with strain-specific immune 

rates. Our work demonstrates that the magnitude of the interferon response is strain-dependent, 

and that these differences arise primarily from the host cells’ rate of interferon production in 

response to viral presence rather than strain-specific viral replication behavior.  

It is important to note that while the in silico screen identifies strain-specific interferon 

production as the key mechanism for differential immunodynamics, this does not fully negate the 

possibility of other mechanisms. Each of the three mechanisms discussed are supported by some 

studies and contradicted by others. For example, with regards to macrophages, studies have shown 

that macrophages are susceptible to high pathogenic viruses148 and H5N1 viruses can replicate in 

human macrophages cultured from monocytes149. However, it has also been shown that 

macrophages collected from human donors can be infected by H5N1 viruses, but do not produce 

virus nor inflammatory cytokines102. With regards to strain-specific regulation of interferon, there 

is evidence that H5N1 viruses may upregulate interferon production early in infected cells in 

vitro150. Our in silico screen considers several possible mechanisms for why H5N1 and H1N1 

immunodynamics may differ, and while we conclude that strain-specific interferon production is 

the most likely mechanism, we only considered two or more possible mechanisms occurring 
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simultaneously. Given the complexity of the immune system, future efforts will focus on 

considering more complex candidate mechanisms. 
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5.0 SPOT 

5.1 Introduction 

This Aim does not represent a publication, but the development of a toolkit which it is 

hoped will have novel insights on multiple condition or mixed effect modeling in the future. Thus, 

each section of the Results for this aim may be thought of as “Future Work” more than complete 

analysis. A model’s parameter identifiability, mathematical stability, and sensitivity greatly 

influence the control and dynamics of the system, and any analyses performed on results from the 

model. Any singular result could be an artefact from particulars of the model construction. An 

alternative approach, called the ensemble approach, has applications for strain-specific viral 

dynamics, as demonstrated in Aim 3 using multiple model structures to overcome some of these 

limitations which arise from using a single model. This approach could similarly be applied to sex-

based hormonal differences, age differences, treatment groups, or other multi-condition data 

sources. However, this approach has been deployed in a limited fashion due to both the 

computational cost of repeated MCMC parameter explorations and the need for human curation 

of the model structures and parameter sharing. This Aim proposes a flexible, computationally 

optimized method to enumerate and evaluate large ensembles of models with different parameter 

sharing between multiple data sets. The methodology and code are called the Shared Parameter 

Optimization Toolbox (SPOT). 

This toolbox contains several analysis tools for model ensembles, which are detailed in 

Results. SPOT highlights the host production of interferon as the main difference between H5N1 

and H1N1 dynamics across 1,024 parameter sharing combinations, directly supporting the findings 
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from Aim 3. This result achieved a p-value of < 0.01. However, any comparative analysis method 

requires at least two sources of data, limiting applications unless synthetic datasets are utilized. 

 

5.2 Materials and Methods 

5.2.1 Methodology 

At its core, SPOT evaluates the overall fitness of models with a semi-stochastic gradient 

descent Basin Hopping algorithm tasked to find optimum parameters for each model instance. An 

instance of the model is parameterized using data from two or more sources. This optimization 

method is not an exhaustive search, or parameter exploration, like MCMC, instead returning a 

minimum energy parameter set with 1 – 3 orders of magnitude reduction in computational time 

and memory footprint. This allows for most machines to evaluate as many model structures in 

parallel as available CPU cores. The fitness is the Bayesian Information Criterion, Equation 5-1, 

which considers both the model’s ability to capture the dynamics present in data (model fit) and 

the number of parameters required to achieve this (Degrees of Freedom). The fitness of many 

models is used in meta-analyses to find features in model structures which result in consistently 

improved model fitness. These analyses will be detailed along with results from reanalyzing Aim 

3 using SPOT.  

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑘𝑘 ln(𝑛𝑛) − 2 ln (𝐿𝐿)                                                                                              (5-1) 

A more complete mathematical description of SPOT is given in Appendix D.1. For 

convention, each model structure has a genome, which consists of a number of entries equal to the 
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number of parameters in the original model. The value for each parameter can be in two states. 

When the value is non-strain specific for all instances, referred to as 0 within the genome, the 

parameter is Shared. When the value is strain-specific, 1 within the genome, each dataset has an 

individual value of the parameter. This adds model complexity but may improve BIC for features 

which have sufficient justification present in the data. These parameters are called Unshared. The 

results in a small array of Booleans which can be combined with a model and multiple data sets, 

Sharing or Unsharing parameters as laid out by the genome.  

5.2.2 Software 

All programming for this work was performed using Python 3.8.10. The full code is 

available at github.com/ImmuSystems-Lab/shared-parameter-optimization-toolbox. Relevant 

packages and versions are provided in Table 4. 

Table 4. Python3 package versions and applications. 

Package Name Version 
DEAP 1.3.1 
itertools 8.11.0 
matplotlib 3.5.0 
multiprocess 0.70.12.2 
numba 0.54.1 
pandas 1.3.4 
scipy 1.7.2 
seaborn 0.11.2 
sklearn 0.0 
statsmodels 0.13.2 

5.2.3 Data Sources 

This work involves the parameterization of various model structures, using both synthetic 

and biological datasets. A brief description of each biological dataset and their respective 
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application within the current work is provided below, followed by an overview of the methods 

used to create synthetic datasets. Additional information on the dataset methodologies and 

structures can be found in Aim 3. Briefly, the biological datasets used in conjunction with the 

Ackerman MCP Model were sourced from Shoemaker et al139. This in vivo data is derived from 

triplicate C57BL/J mice, which were infected with either A/Kawasaki/UTK-4/09 H1N1 virus 

(H1N1) or A/Vietnam/1203/04 H5N1 virus (H5N1). [M] and [I] states are in log2 space, while [V] 

is in log10 space. 

5.3 Results 

5.3.1 Characteristic Curves from Brute Force Evaluation 

The number of possible model structures is combinatorial, i.e., Aim 3’s model with 10 

parameters and 2 data sources has 1,024 possible parameter sharing structures varying between 10 

and 20 degrees of freedom. SPOT’s evaluation of these structures takes roughly 4 hours real-time, 

with 56 evaluations in parallel. It is important to note that these results are not based on the 

sensitivity or identifiability of any single model; instead, they are based on features present in the 

dataset. Figure 24 shows Models 1 and 4 from Aim 3, demonstrating the separation in model 

structures according to common parameterization features.  
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Figure 24. Models 1 and 4 Characteristic Curves for a SPOT-significant parameter (rI,V) and a non-signficant 

parameter (rV,V). 

 Characteristic curves for Models 1 and 4, separated by Shared (orange) and Unshared 

(blue). Each dot represents a complete parameterization of a genome via Basin Hopping.  Despite 

unique model structures and sensitivities, both Models strongly indicate that strain-specific rI,V 

values consistently justify the increased degrees of freedom. This can be seen as clear visual 

separation of Shared and Unshared model fits in the left column. This implies that at least one of 

the biological mechanisms which rI,V represents causes the infection dynamic differences between 

H5N1 and H1N1. The viral replication rate, rV,V, surprisingly does not have a significant SPOT 

value, i.e., model structures with strain-specific viral replication parameters do not improve data 

fits sufficiently to justify the increased degrees of freedom. This can be seen as a lack of visual 

separation between Shared and Unshared model fits in the right column and indicates similar viral 

replication rates during the experiment. 
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5.3.2 Categorical Linear Regression Highlights Strain – Specific Rates 

For every model structure, the genomes (parameter sharing rules) are separable into Shared 

and Unshared categories for each parameter (0 and 1, respectively). By applying a multiple 

categorical regression to the BICs of each genome, a slope is found between the Shared and 

Unshared categories. This slope represents the degree of distinction between model fits which 

Share or Unshare this parameter and are influenced by the BIC of both groups. (). This makes a 

single value, the slope of the BICs between these groups, encompass both model fit and complexity 

between two groups of models. Each group has a shared feature, i.e., a parameter is Shared within 

all model instances of Group A. The same parameter is all Unshared within Group B. These slopes 

fall into one of several categories, and the resulting value of categorical slopes for each parameter 

in Aim 3, Model 4 are given in Figure 25. 

 

Figure 25. SPOT value for each parameter from Aim 3, Model 4 with biological data. 

The SPOT value (y-axis) represents a parameter’s normalized change in BIC when said 

parameter is allowed to fit in a strain-dependent manner. Parameters with no strain-dependent 

mechanisms typically have a positive SPOT value, comprised of equal model fit quality (energy) 
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but increased complexity (DOF). Those parameters with strain-dependent values may have lower 

negative SPOT values, indicating an improvement in model fit with a magnitude larger than the 

DOF penalty imposed. 

SPOT Value of 1: A SPOT value of exactly 1 usually indicates a parameter which has a 

global sensitivity of zero, i.e., the parameter has no control over system dynamics. Parameters of 

this type have no ability to improve model energy and thus only increase DOF when Unshared. 

These parameters cannot be identified as significant. Identifying these earlier and removing them 

from the genome enumeration would save time for parameter sweeps, if they can’t be eliminated 

any other way. 

SPOT Value Near 1: A SPOT value near 1 indicates a parameter which should most likely 

be shared between all present datasets, since independently fitting the parameter (a genome value 

of 1 for the parameter, increasing the DOF by fitting a new parameter value for each data set) 

correlates with an increased BIC. A SPOT value of about 1 demonstrates that the additional DOF 

is the main cause of increased BIC when the parameter is Unshared, and that the model energy is 

typically similar to genomes with the same parameter being Shared.  

SPOT Value Significantly Above 1: A SPOT value significantly above 1 (and/or 

extremely wide confidence intervals in SPOT values, outliers, and large spread in the DOF:BIC 

characteristic curve) may indicate poor model fits. This can usually be rectified with increased 

Basin Hopping or gradient descent steps, a finer time resolution during ODE solving, modification 

of the model equations or solver methods, parameter bounds, initial guesses, or data 

transformations. A few high-BIC genomes are typical for real models, simply due to the 

mathematical stability issues when separate ODE model instances share parameters and random 
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initial parameter guesses. If the minimum number of acceptable model fits for the desired 

resolution and p-value are attained, simply discarding these outliers is acceptable.  

SPOT Value Near 0: A value  near 0 shows that model fits improve, but the DOF penalty 

from the additional parameter is equal in magnitude to the improvement in energy. Note that 

Categories 3 and 4 (SPOT ≤ 0) often occur with structurally unidentifiable parameters like decay 

rates. Other model structures with different identifiability can be used to probe these aspects of the 

datasets (see Aim 3). 

Negative SPOT Value: A negative SPOT value indicates that the associated parameter 

should most likely be fit independently for each dataset. The improvements in model fit (energy) 

have a large enough magnitude to overcome the DOF penalty for additional parameters, and thus 

justify the unshared values. This can occur with none, one, or several parameters, depending on 

the model structure, data, energy function, parameter identifiability, and global sensitivity. Thus, 

SPOT results must be utilized in the context of a well-understood model environment and 

interpreted with these limitations in mind. 
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5.3.3 Sensitivity of SPOT to Dataset-Specific Parameter Values 

The SPOT value for a parameter depends strongly on the presence of a difference present 

in the underlying data. An increased magnitude of this difference leads to more significant (lower 

or more negative SPOT values). By generating synthetic datasets using a model using intentional 

strain-specific parameter differences, the relative change in SPOT value to these differences can 

be elucidated. This is given in Figure 26.  

 

 

Figure 26. SPOT Values with Synethic Strain-Specific Parameter Differences. 
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Since the model evaluations have been performed a priori, this analysis is a matter of 

visualizing the models’ features. In the top panel, the parameter rI,V was increased only for the 

H5N1 synthetic dataset, while remaining constant in the H1N1 dataset, in ratios from 1.25 to 5.0. 

As this ratio increases, rI,V’s SPOT value decreases, trending towards 0. However, other parameters 

(KV,V, rV,V, and dV) also experience lower SPOT values. This is due in part to parameter 

identifiability within the model, but also indicates a dataset which has not yet achieved a 

statistically significant difference between H5N1 and H1N1 for any parameter. It is expected that 

the first parameter which achieves a negative SPOT value should be considered significantly 

different between data sets. In the bottom panel dV is varied in the same strain-specific ratios to no 

effect. Unidentifiable parameters do not have the same effect on the system, meaning that fully 

probing parameter ratios in this way can narrow down which parameters are significant, similar to 

a global sensitivity analysis. 

5.3.4 SPOT with Reduced Samples 

In the case of large models or early screenings, it may not be necessary to evaluate all 

possible model genomes. Here, random sets of genomes from Aim 3, Model 4 were evaluated in 

SPOT. 100 such random samplings were performed for each Fraction of All Possible Samples. 

The results of this down sampling are given in Figure 27. 
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Figure 27. SPOT values from 0% to 100% of possible genomes for Aim 3, Model 4. 

SPOT was applied on Aim 3, Model 4, with H5N1 and H1N1 infected mice providing two 

biological strains. Solid lines indicate the average of 100 resamples at 100 fractions, resulting in 

10,000 total data points. Shaded areas are the 95% confidence intervals. At a fraction of 0.1, the 

SPOT predictions have settled close to the values obtained with all genomes evaluated. Most 

parameters have SPOT values near 1, suggesting that these parameters should be shared between 

H5N1 and H1N1 strains. 𝑁𝑁𝐼𝐼,𝑉𝑉’s SPOT value is -0.7, meaning that this parameter is tied to the most 

likely mechanism to explain the strain differences seen in the data. 𝑑𝑑𝐼𝐼’s SPOT value is close to 

zero, suggesting either that independently fitting this parameter to each strain could partially 

explain the difference between strains, or parameter identifiability issues with 𝑁𝑁𝐼𝐼,𝑉𝑉. When applying 

resampling, it is important to consider the loss of statistical power incurred. The number of samples 

required to meet any given p-value vary by parameter, as demonstrated in Figure 28. 
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Figure 28. Model 4 P-values of SPOT regression versus the fraction of all possible genomes analyzed can 

determine the significance of SPOT values. 

A. Overall behavior of P-values. An area of interest (p-values from 0.01 to 1) is given in 

B. While most parameters have reached significance (p < 0.01) by 10% of all genomes, rI,V, the 

only parameter with a negative SPOT value in this model, takes 80% of genomes evaluated before 

the trend reaches statistical significance. The use of these p-values can set confidence levels on 

comparative analyses, which are difficult when comparing parameter values alone. 
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6.0 Discussion and Future Work 

Together, this work makes several attempts to explain the different dynamic regimes of the 

early interferon signaling during viral respiratory infections. Each Aim targets different aspects of 

this critical immune signaling step. Aim 1 establishes best- and worst-case inflammatory states 

with an ODE model and shows the robustness of RIG-I activity to viral antagonism. Aim 2 extends 

this with spatial considerations and demonstrates that RIG-I can prolong the survival of infected 

cells. Aim 3 highlights that H5N1 and H1N1 do not have significantly different viral replication 

dynamics, and indeed primarily differ by the host immune response. This could be from the unique 

nonstructural protein (NS1) of each influenza strain differentially antagonizing RIG-I. Finally, 

Aim 4 proposes a method to elucidate these strain-specific differences in a rapid, unbiased manner. 

From these aims, a robust picture of the innate immune response to viral respiratory 

infection emerges. The establishment of a robust, early, pro-inflammatory (high IFN) response is 

critical to resisting infection, but dysregulation of this response may lead to cytokine storm or 

prolonged inflammatory-mediated cell damage. Future work will focus on the role of the adaptive 

immune system and clinical interventions to modulate the overall course of an infection. 

6.1 ODE Model of Interferon During Viral Respiratory Infection 

In Aim 1, an ODE model of the intracellular innate immune system’s response to influenza 

infection was developed and used to evaluate system properties associated with viral lethality and 

IFN production dynamics. This model considers signaling components not available in previous 
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work, uses unique data for parametrization and validation that perturbs distinct aspects of the 

pathways, and is numerically stable and well suited for continued adaption in future multiscale 

modeling efforts. This model does not stand alone in literature, and indeed must serve as a basis 

of further advancements. The action of drugs can be simulated by modifying only the relevant 

term(s) which the drug is thought to affect. Similarly, other strains or species of viral infection can 

be modeled by changing only the viral replication and clearance parameters. Both possibilities 

would be significantly computationally cheaper than the reparameterization of the entire model for 

each new system. If other parameters must change to reasonably fit a new data source, this could 

indicate previously unknown effects of the drug or infection on the species modeled herein, like 

NS1’s well known antagonistic effects. The degree of this antagonism on RIG-I massively controls 

cytokine production trajectory and infection outcomes, as demonstrated here in silico by varying 

levels of RIG-I knockdown. This insight applies to all RNA viruses, with varying mechanisms of 

antagonism. Such predictions generated by the ODE model will provide insight into infection 

trajectory, disease outcome, and their manipulation by intervention. 

6.2 Spatial Effects of Interferon Regulation and Viral Infections 

In Aim 2, we developed a mechanistic, multicellular spatial model of interferon signaling 

(the MSIS model) that we used to evaluate how changes in select reaction rates impacted plaque 

growth in RNA virus-infected cell cultures. One major shortcoming of the MSIS model is the lack 

of additional mechanisms to support simulating cell death. During infection, cell death occurs via 

several mechanisms, including via programmed cell death (apoptosis) and pyroptosis, cell death 

induced via inflammasomes145. Lacking these mechanisms, cell death only occurs in the MSIS 
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models as the intracellular concentration of virus increases and the cell health declines (Appendix 

B.1). Cells can become stuck in the I2 cell type as the reduced concentration of intracellular virus 

and the slow rate of health decline significantly reduces the likelihood of a cell transitioning to the 

dead type. The equation that defines how cell health declines (Appendix B.2) was directly 

translated from a population-level model where health translated to the fraction of uninfected cells, 

but as a model of the health of a single cell, having the rate of health decline be linearly dependent 

on the current health of the cell (i.e., health declines more rapidly for healthier cells) might not be 

reasonable. To improve the model's relatability to experimentation, future work will focus on 

including additional mechanisms of cell death as well as improving the kinetic description of how 

cell health impacts a cell’s transition to death.  

The SARS-CoV-2 and influenza viruses for which this model was constructed have many 

similarities. Like influenza’s NS1 protein, SARS-CoV’s NSp1 antagonizes RIG-I signaling89, and 

genome analysis shows an 87% conservation of NSp1’s genome between SARS-CoV and SARS-

CoV-263. This similarity suggests that the MSIS model could readily be adapted to model SARS-

CoV-2-induced interferon signaling from measurements of SARS-CoV-2-specific virus kinetics. 

The MSIS model can also be extended to consider additional spatial aspects of infection. The 

modular architecture supports independent and collaborative development of extensions to 

account for additional immune response mechanisms in vitro such as IFN-mediated cell death. It 

also supports extending the model to include aspects of the immune response in vivo such 

as propagation of IFN signaling by local innate immune cells and recruitment of adaptive immune 

cells to the site of infection. 
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6.3 Strain-Specific Modeling of H5N1 and H1N1 Influenza 

In Aim 3, four distinct, three-state ODE models of the early innate immune response to 

influenza virus were used to investigate the mechanistic roots of differential immunoregulatory 

behavior observed in vivo between low and high pathogenic H1N1 and H5N1 strains.  

The caveats of this study primarily relate to the available data and parameter identifiability. 

Insufficient macrophage count data was available, and the concentration of MCP1 was used as a 

surrogate measurement. While data was available to assess the accuracy of using MCP1 as a 

surrogate, there remains the possibility that macrophage counts differed from our estimates. With 

regards to parameter identifiability, in highly connected systems such as Model 1, it is often 

difficult to reasonably estimate values for all parameters. This can be improved in future work by 

incorporating data from knockout mice studies wherein feedback in immune signaling can be 

removed. The shared parameter optimization framework is highly generalizable to other cohorts 

of data including age, race, and sex-specific studies, making it a highly valuable tool for 

investigating disparate kinetics between groups of interest and the drivers of observed clinical 

behavior151,152. Additionally, conclusions from cohort-specific studies may prove useful for 

informing and simplifying future modeling work with additional cohorts.  

6.4 Minimizing Model Size While Fitting Multiple Data Sets with Parameter Sharing 

In Aim 4, we present the Shared Parameter Optimization Toolbox (SPOT), a comparative 

analysis toolkit which can demonstrably determine the smallest number of parameters required for 

a model to predict multiple sets of conditions by evaluating models with different structures. 
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SPOT’s use of multiple model structures allows for selection of a model regardless of individual 

parameter values or underlying data, i.e., the strain-specific interferon production in Aim 3 is 

highlighted via SPOT as the best parameter sharing scheme overall. This type of multiple condition 

comparative modeling has applications in many fields, allowing for unbiased comparison of 

features in a computationally efficient manner.  

Down sampling or Latin hypercube sampling can be used to reduce the number of 

parameter optimizations, or genomes, to be evaluated for any given analysis. Fixing certain 

parameters, such as those determinable from experiments, those structurally unidentifiable, or 

those of little to no interest, to make models more computationally tractable. 
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Appendix A Innate Immune Model 

Appendix A.1 ODE Model 

Weaver et al’s97 model of the innate immune response to respiratory RNA viral infection 

consists of seven ordinary differential equations (states) with three fixed parameters and 15 

unknown parameters. Type-I interferon, [IFN], and extracellular Type-I interferon [IFNe], 

represent the pro-inflammatory cytokine response mounted by the innate immune system. 

Phosphorylated signal transducer and activator of transcription, [STATP], and interferon regulatory 

factor 7 and its phosphorylated form, [IRF7] and [IRF7P], track the cellular mechanisms which 

propagate this cytokine signal. The proportion of living cells, [P], is a measure of remaining viable 

cells, while the virus, [V] is a measure of viral load, normalized from 0 to 1 against the wild-type 

PR8 peak viral load. For a single set of equations (one strain), the model has 14 parameters (DOF: 

14). The parameters n, k73, τ2, τ3, τ4, and τ5 have fixed values sourced from the original work and 

its cited literature. These parameters are decay rates (k73, τx) and a Hill-like coefficient (n), whose 

values are not expected to change under any conditions investigated in this work. The Weaver 

model is given in Equations A.1-1 through A.1-7. Grey shaded parameters were to be included in 

SPOT analyses. 

 

𝑑𝑑[𝐼𝐼𝐼𝐼𝐼𝐼]
𝑑𝑑𝑡𝑡

= [𝑀𝑀] �𝑘𝑘11[𝑅𝑅𝐴𝐴𝐺𝐺𝐴𝐴][𝑉𝑉] + [𝑇𝑇𝑇𝑇𝑇𝑇]𝑘𝑘12[𝑉𝑉]𝑛𝑛

𝑘𝑘13+[𝑉𝑉]𝑛𝑛 + 𝑘𝑘14[𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]� − 𝑘𝑘21[𝐴𝐴𝐼𝐼𝑁𝑁]         (A.1-1) 

𝑑𝑑[𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒]
𝑑𝑑𝑡𝑡

= 𝑘𝑘21[𝐴𝐴𝐼𝐼𝑁𝑁] − [𝐴𝐴𝐼𝐼𝑁𝑁𝑓𝑓]𝜏𝜏2                                                            (A.1-2) 
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𝑑𝑑[𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆]
𝑑𝑑𝑡𝑡

= 𝑘𝑘31[𝑆𝑆][𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒]
𝑘𝑘32+𝑘𝑘33[𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒] − [𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀]𝜏𝜏3                                                (A.1-3) 

𝑑𝑑[𝐼𝐼𝑇𝑇𝐼𝐼7]
𝑑𝑑𝑡𝑡

= [𝑀𝑀](𝑘𝑘41[𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀] + 𝑘𝑘42[𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]) − [𝐴𝐴𝑅𝑅𝐼𝐼7]𝜏𝜏4                    (A.1-4) 

𝑑𝑑[𝐼𝐼𝑇𝑇𝐼𝐼7𝑆𝑆]
𝑑𝑑𝑡𝑡

= 𝑘𝑘51[𝑀𝑀][𝐴𝐴𝑅𝑅𝐼𝐼7] − [𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]𝜏𝜏5                                               (A.1-5) 

𝑑𝑑[𝑆𝑆]
𝑑𝑑𝑡𝑡

= −𝑘𝑘61[𝑀𝑀][𝑉𝑉]                                                                               (A.1-6) 

𝑑𝑑[𝑉𝑉]
𝑑𝑑𝑡𝑡

= 𝑘𝑘71[𝑆𝑆][𝑉𝑉]
1+𝑘𝑘72[𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓] − 𝑘𝑘73[𝑉𝑉]                                                                 (A.1-7) 

Equations A.1-1 through A.1-7are measured in units of μM, thus, the right-hand side of 

each equation in in units of μM hour−1. All species except [P] and [V] are in units of μM. [TLR] 

and [RIGI] are set to unity and represent the presence of the sensor proteins. [P] represents the 

number of productive, infected cells present divided by the initial count of said cells; [P] = (live 

cells) ⁄ (initial cells). Since a multiplicity of infection (MOI) of 550 results in 99.3% of target cells 

becoming infected61, it is assumed that the entire cell population is producing new viral particles 

at the start of the trial. After normalization of virus, the initial concentration is 6.9E-8. [P] will 

thus vary from 1 to 0 and is unitless. [V] represents a virus concentration normalized to the 

maximum amount observed; [V] = (virus concentration) ⁄ (max virus concentration). These values 

can take on molarity, PFU, or similar matching units; [V] is unitless and can vary from 0 to 1. The 

viral titers48,49 are in units of PFU mL−1, and the maximum measure was the 24-hour observation 

of wild-type PR8. A [V] value > 1 is possible for viral strains with higher peak viral loads than 

wild-type PR8 and at model timespans greater than 24 hours. 

The parameterization of the ODE model was accomplished with a parallel tempering 

Markov Chain Monte Carlo (MCMC). The first 103 iterations comprised burn-in, a period where 

the MCMC algorithm was searching parameter space for potential local minima. This can be seen 

in the acceptance ratio (Figure 29 A) and sum squared error (Figure 29 B). 
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Figure 29. (A) MCMC Acceptance Rate. (B) Sum Squared Error. Note log scale abscissa. (B), Inset: Linear 

abscissa scale zoom-in on the 1 million iterations post burn-in. 

A 19% acceptance ratio is held after 103 burn-in samples. The MCMC algorithm would 

ideally accept new parameters 23% of the time153; for this parameterization, the acceptance ratio 

of the primary chain was 19%. This was considered acceptable. Further hyperparameter tuning to 

obtain exactly 23% acceptance was possible, but not pursued. The overall fit of the model, as 

quantified by the energy, is shown in Figure 29 B. After burn-in, no trend towards fit improvement 

is observed, despite high-temperature chain exploration for other local minima, thus, the MCMC 

fitting algorithm is sufficiently converged. Two additional optimizations of the same length were 

run with randomized starting parameter values, which converged to parameterizations with the 

same SSE value and ranges as Run 1. The parameterization with the lowest SSE was used. The 

values for this parameterization are given in Table 5, along with their origin. All three MCMC 

runs converged to redundant parameter sets; these represent the minimum sum squared error (SSE) 

among all runs. Literature sourced values gave estimates for some species’ decay rates, which were 

not fit via MCMC. 
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Table 5. Best-fit model parameters for the Innate Immune Model.  

Process Parameter  Units Value Remarks 
[IFN] induction via RIG-I k11  μM hours−1 1e5 Fit manually 

[IFN] induction via TLR7 k12  hours−1 9.746 

Fit via MCMC 

k13  [unitless] 12.511 
[IFN] induction via [IRF7P] k14  

hours−1 
13.562 

Transport of [IFN] k21  10.385 
[IFNe] degradation 𝜏𝜏2  3.481 

[STAT] phosphorylation 
k31  μM hours−1 45.922 
k32  μM 5.464 
k33  [unitless] 0.068 

[STATP] dephosphorylation 𝜏𝜏3  

hours−1 

0.31 52 
[IRF7] induction via [STATP] k41  0.115 Fit via MCMC [IRF7] induction via [IRF7P] k42  1.053 
IRF7 mRNA degradation 𝜏𝜏4  0.3 53 
IRF7 phosphorylation k51  0.202 Fit via MCMC 
[IRF7P] Dephosphorylation 𝜏𝜏5  0.3 54 
Cell death k61  0.635 

Fit via MCMC 

Viral replication k71  1.537 

[IFN] effect on virus k72  μM−1 47.883 

Nonspecific viral clearance k73  hours−1 0.17 

 

1 Later work98 determined a minimum value of 0.75 for mathematical stability 
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The parameter distributions are shown in Figure 30.

 

Figure 30. MCMC Parameter Histograms.  

Most parameters had a wide range of acceptable values which produced low-energy model 

fits. Narrower distributions are indicative of parameters which have few low-energy values. Note 

non-normal distributions for several parameters. The lack of normalcy is an indication of 

interparameter correlation within the MCMC samples. This correlation was tested using the 

Pearson correlation coefficient. The magnitude of correlations for all parameter combinations is 

summarized in Table 5.  

Appendix A.2 Structural Identifiability 

Only parameters k31, k32, and k33 were structurally unidentifiable under Perfect 

Identifiability. This was expected, since the complexity of the Michaelis–Menten kinetic form 

precludes a unique set of constants from being identified within this ODE system without 
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additional information or a simplification of the kinetic term. Parameters from perfect 

identifiability, plus k14, k42, and k51, were practically unidentifiable. Reparametrizing the ODE 

model presented in this work with time-course data for environmental IFN, cell population and an 

IRF7P proxy may permit unique solutions. Additionally, as the number of observed points 

approach a continuous data set, these parameters would become identifiable. [STATP]’s 

Michaelis–Menten parameters could only be uniquely identified with a more complex 

experimental design, a restructuring of the kinetic term to reduce fitted constants, or additional 

studies isolating its kinetic behavior. Structural identifiability results are summarized below. 

𝑑𝑑[𝐼𝐼𝐼𝐼𝐼𝐼]
𝑑𝑑𝑡𝑡

= [𝑀𝑀] �𝑘𝑘11[𝑅𝑅𝐴𝐴𝐺𝐺][𝑉𝑉] + [𝑇𝑇𝑇𝑇𝑇𝑇]𝑘𝑘12∗[𝑉𝑉]𝑛𝑛

𝑘𝑘13+[𝑉𝑉]𝑛𝑛 + 𝑘𝑘14[𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]�  − 𝑘𝑘21[𝐴𝐴𝐼𝐼𝑁𝑁]           (A.2-1)  

𝑑𝑑[𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓]
𝑑𝑑𝑡𝑡

= 𝑘𝑘21[𝐴𝐴𝐼𝐼𝑁𝑁] − [𝐴𝐴𝐼𝐼𝑁𝑁𝐺𝐺]𝜏𝜏2                                                                          (A.2-2)  

𝑑𝑑[𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆]
𝑑𝑑𝑡𝑡

= 𝒌𝒌𝟑𝟑𝟑𝟑[𝑆𝑆][𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓]
𝒌𝒌𝟑𝟑𝟑𝟑+𝒌𝒌𝟑𝟑𝟑𝟑[𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓]

− [𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀]𝜏𝜏3                                                                (A.2-3)  

𝑑𝑑[𝐼𝐼𝑇𝑇𝐼𝐼7]
𝑑𝑑𝑡𝑡

= [𝑀𝑀](𝑘𝑘41[𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀] + 𝑘𝑘42[𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀])  − [𝐴𝐴𝑅𝑅𝐼𝐼7]𝜏𝜏4                                   (A.2-4)  

𝑑𝑑[𝐼𝐼𝑇𝑇𝐼𝐼7𝑆𝑆]
𝑑𝑑𝑡𝑡

= 𝑘𝑘51[𝑀𝑀][𝐴𝐴𝑅𝑅𝐼𝐼7] − [𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]𝜏𝜏5                                                               (A.2-5)  

𝑑𝑑[𝑆𝑆]
𝑑𝑑𝑡𝑡

= −𝑘𝑘61[𝑀𝑀][𝑉𝑉]                                                                                               (A.2-6)  

𝑑𝑑[𝑉𝑉]
𝑑𝑑𝑡𝑡

= 𝑘𝑘71[𝑆𝑆][𝑉𝑉]
1+𝑘𝑘72[𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓] − 𝑘𝑘73[𝑉𝑉]                                                                                 (A.2-7)  

BOLD parameters are structurally unidentifiable under perfect observation. (All states 

directly observed). Grey boxed parameters are practically unidentifiable under the observation 

scheme available in the data50. 
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Appendix A.3 Parameter Correlation 

 

Figure 31. Correlation plots of MCMC parameter exploration.  

Nine parameter pairs were found to have a Pearson’s Correlation Coefficient > ±0.5. These 

significant pairs are plotted here. High correlation and non-normal distributions were not 

unexpected, and are a frequent challenge in fitting nonlinear, biological signaling systems. Several 

model features, namely multiple parameters affecting the same species and the presence of 

feedback loops by nature, necessitate a correlated random walk to maintain or improve the model’s 
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fit. This manifests as a lower-than-expected acceptance ratio, which can be overcome by 

hyperparameter tuning if undesirably slow parameter space exploration results. 

 

Significant correlation pairs (Correlation coefficient > ±0.5) highlighted with Grey Box. 

Table 6. Pearson Correlation Coefficients for ODE parameters found via MCMC.  

k13 k14 k21 tau2 k31 k32 k33 k41 k42 k51 k61 k71 k72 k73 Par 

.17 .77 .3 .02 .31 .53 .05 .01 .23 .15 .01 .09 .35 0 k12 

1  .09 .7 .1 .28 .3 .63 .02 .02 .04 .03 .43 0 k13 
 1 −.06 −.04 .5 .39 .12 .17 .23 .34 .01 .1 0.28 0 k14 
  1 0.16 0 .36 .2 .09 .01 .23 .01 .01 .06 0 k21 
   1 .13 .5 .66 .45 .01 .03 .05 .13 .1 0 k2 
    1 .48 .44 .47 .14 .18 .03 .08 .09 0 k31 
     1 .47 .05 0.3 .06 .03 0 .06 0 k32 
      1 .04 .17 .13 .06 .13 .29 .1 k33 
       1 .05 .05 .06 .1 .29 0 k41 
        1 .35 .01 .05 .07 0 k42 
         1 .03 .07 .06 0 k51 
          1 .44 .03 .5 k61 
           1 .17 .6 k71 
            1 0.1 k72 
              

73 
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Appendix B Multiscale Immune Model 

Appendix B.1 Cell Type Transition Probabilities 

Transitions between cell types are stochastic, and the probability of a transition occurring 

depends on the simulation time step (Δt=0.167 hours), the cell’s local extracellular and 

intracellular concentration of virus ([Ve] and [V] respectively), the cell’s health ([H]; described 

under Appendix B.2 Intracellular Model Equations and Rationale), and a transition rate coefficient 

(β, k or γH,V). [Ve]per cell is measured as the local extracellular virus concentration each cell is 

exposed to over its entire cell area. We derived the rates in Equation B.1-1 through B.1-3 from the 

rate laws in 85, following literature transformation rules71. When a cell is infected (transitions from 

U to I1), the internal viral concentration changes from 0 to 6.9E-8 (unitless), equivalent to a single 

virus particle entering the cell84. This amount of virus was considered negligible compared to [Ve] 

and is thus not removed from the extracellular virus. Table 8 gives all simulation parameter values. 

Within CC3D, cell-type transitions are implemented by sampling a random number for each cell 

between 0 and 1, inclusive, at each time step. The cell’s transition occurs when the probability, P, 

is greater than the random number. Each transition must occur in order. 

𝑀𝑀(𝑈𝑈 → 𝐴𝐴1) = 1 − exp (−𝛽𝛽 [𝑉𝑉𝑓𝑓]𝑝𝑝𝑓𝑓𝑓𝑓 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 Δ𝐷𝐷),                                                              (B.1-1) 

𝑀𝑀(𝐴𝐴1 → 𝐴𝐴2) = 1 − exp (−𝜏𝜏𝐼𝐼1Δ𝐷𝐷)                                                                              (B.1-2) 

𝑀𝑀(𝐴𝐴2 → 𝐷𝐷) = 1 − exp (−𝛾𝛾𝐻𝐻,𝑉𝑉 [𝑉𝑉] {1 − 𝐻𝐻} Δ𝐷𝐷)                                                        (B.1-3) 
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Appendix B.2 Intracellular Model Equations and Rationale 

Figure 8 ‘Intracellular’ panel shows key molecules, species, and processes involved in an 

epithelial cell sensing RNA virus infection and producing IFN to suppress virus replication. The 

MSIS model adapts and extends to single cells the Weaver model of the dynamics of virus 

replication, interferon signaling, and cell health. The adapted Weaver model includes six ODEs 

(Equations B.2-1 through B.2-6) that define the rate equations for intracellular virus replication, 

interferon signaling, and cell health. Specifically, the equations define changes in the intracellular 

concentrations of virus ([V], unitless), interferon ([IFN] μM), phosphorylated STAT ([STATP], 

μM), IRF7 protein ([IRF7], μM), and phosphorylated IRF7 ([IRF7P], μM). Equation B.2-6 defines 

the dynamics of the health of the cell ([H], unitless). [IFNe]per cell is the average extracellular 

interferon concentration each cell is exposed to over its entire cell area. 

Rate equations for intracellular species and health adapted from Weaver et al: 

𝑑𝑑[𝑉𝑉]
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑉𝑉,𝑉𝑉[𝐻𝐻][𝑉𝑉]

1+
[𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒]𝑝𝑝𝑒𝑒𝑝𝑝 𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐

𝐾𝐾𝑉𝑉,𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒

− 𝑄𝑄𝑉𝑉[𝑉𝑉]                                                                                     (B.2-1) 

𝑑𝑑[𝐼𝐼𝐼𝐼𝐼𝐼]
𝑑𝑑𝑡𝑡

= [𝐻𝐻](𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼,𝑉𝑉(𝑇𝑇𝐼𝐼𝑅𝑅𝐼𝐼)𝑉𝑉 + 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼,𝑉𝑉(𝑇𝑇𝑇𝑇𝑇𝑇)𝑉𝑉𝑛𝑛

𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼,𝑉𝑉(𝑇𝑇𝑇𝑇𝑇𝑇)+𝑉𝑉𝑛𝑛
+ 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼,𝐼𝐼𝑇𝑇𝐼𝐼7𝑆𝑆[𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]) − 𝑄𝑄𝐼𝐼𝐼𝐼𝐼𝐼[𝐴𝐴𝐼𝐼𝑁𝑁]    (B.2-2) 

𝑑𝑑[𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆]
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒[𝐻𝐻][𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓]𝑝𝑝𝑒𝑒𝑝𝑝 𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐

𝐾𝐾𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒+[𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓]𝑝𝑝𝑒𝑒𝑝𝑝 𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐
− 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆[𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀]                                             (B.2-3) 

𝑑𝑑[𝐼𝐼𝑇𝑇𝐼𝐼7]
𝑑𝑑𝑡𝑡

= [𝐻𝐻](𝑘𝑘𝐼𝐼𝑇𝑇𝐼𝐼7,𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆[𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀] + 𝑘𝑘𝐼𝐼𝑇𝑇𝐼𝐼7,𝐼𝐼𝑇𝑇𝐼𝐼7𝑆𝑆[𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]) − 𝜏𝜏𝐼𝐼𝑇𝑇𝐼𝐼7[𝐴𝐴𝑅𝑅𝐼𝐼7]             (B.2-4) 

𝑑𝑑[𝐼𝐼𝑇𝑇𝐼𝐼7𝑆𝑆]
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝐼𝐼𝑇𝑇𝐼𝐼7𝑆𝑆,𝐼𝐼𝑇𝑇𝐼𝐼7[𝐻𝐻][𝐴𝐴𝑅𝑅𝐼𝐼7] − 𝜏𝜏𝐼𝐼𝑇𝑇𝐼𝐼7𝑆𝑆[𝐴𝐴𝑅𝑅𝐼𝐼7𝑀𝑀]                                                  (B.2-5) 

𝑑𝑑[𝐻𝐻]
𝑑𝑑𝑡𝑡

= −𝛾𝛾𝐻𝐻,𝑉𝑉[𝐻𝐻][𝑉𝑉]                                                                                                   (B.2-6) 
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Below, we provide a brief description of the Weaver model and then discuss how we 

modified the model to support its implementation in the MSIS model (see Figure 8 Intracellular 

panel). A thorough description of the rate equations is available84.  

The Weaver model groups interferon α and β into the single representative species 

interferon [IFN]. We modeled the inhibition of virus production in response to the cell’s spatially 

averaged level of extracellular interferon ([IFNe]per cell) using non-competitive inhibition-like 

kinetics. We used mass-action kinetics to describe the induction of IFN (Equation B.2-2) by virus 

(via the RIG-I pathway) and [IRF7P], and Hill kinetics to define the effect of the concentration of 

virus on IFN production via the TLR pathway. The rate of export of intracellular IFN into the 

extracellular environment obeys the concentration of IFN times a rate constant, QIFN. We model 

extracellular IFN’s ([IFNe]per cell) activation of STAP with Michaelis–Menten kinetics (Equation 

B.2-3), and mass-action kinetics are used to model the effect of [STATP] and [IRF7P] on the rate 

of production of IRF7 (Equation B.2-4). We also use mass-action kinetics to describe the rate of 

[IRF7P] production as a function of IRF7 (Equation B.2-5). In all equations, production terms are 

multiplied by the cell’s health, [H],to represent the loss of production capacity in an infected cell. 

Heath is a relative metric bounded between 0 and 1, and the rate of the decay of health (Equation 

B.2-6) is proportional to the concentration of virus in the cell and the health of the cell. All these 

rate laws are consistent with the original Weaver model. 

We made three changes to the Weaver model to employ it in the MSIS model. We 

reinterpreted the first-order virus degradation term in the original Weaver model to represent the 

release of virus into the extracellular environment in the MSIS model. The rate of release of virus 

to the extracellular environment is proportional to the concentration of virus times a rate constant, 

Qv. The Weaver model was a population model, while Equation B.2-1 through B.2-6 represent the 
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intracellular regulation of a single cell. The Weaver model has a state, [P], which represents the 

fraction of live cells in the population. The mathematical equation for health is unchanged from 

the original Weaver model, but we have reinterpreted [P] to represent the health, [H], of each cell. 

All production terms are multiplied by the cell’s health (bound between 0 and 1) to represent the 

diminished production capacity of unhealthy, virus-infected cells. And, lastly, due to the spatial 

aspect of the MSIS model, we redefined the concentration of extracellular IFN in to be the average 

[IFNe] over the area of a given cell; namely [IFNe]per cell. 

In the multicellular spatial MSIS model, each live cell (U, I1, I2 types) has a replica of the 

rate equations. For U and I2 cell types, the equations and their parameter values are unaltered. In 

I1 cells, the equations are the same and all parameter values are unchanged except for the 

parameter value that defines the rate of virus release into the extracellular environment, Qv, which 

is set to zero because eclipse phase cells (I1) do not release virus. Now that the mathematics of 

each cell’s dynamic responses have been defined, the spatial considerations must be accounted for 

when determining the concentrations of [IFNe] and extracellular virus [Ve] on a per-cell basis.  

Appendix B.3 Diffusion of Extracellular Species and Implementation in CC3D 

Virus releasing cells (I2) release intracellular virus into the extracellular environment. 

Uninfected, eclipse phase and virus releasing cells (U, I1, and I2) produce and export type-1 

interferons in response to either virus sensing proteins or autocrine/paracrine signaling. In cell 

culture, these extracellular species diffuse freely in the medium above the apical surface of cells. 

The MSIS model contains a cell lattice next to two chemical field lattices (described above) 

and the diffusion of extracellular species across either chemical field lattice is unaffected by the 
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presence of cells in the adjacent cell lattice. Equation B.3-1 models diffusion of extracellular 

interferons, where DIFNe is the diffusion coefficient of interferon, QIFN is the rate constant for export 

of interferon by cells into the extracellular environment, and [IFN] is the internal amount of 

interferon inside each cell. Cell types U, I1, and I2 can produce and export interferon.  

Equation B.3-2 models diffusion of the extracellular virus, where DVe is the diffusion 

coefficient of virus and Qv is the secretion rate constant for release of virus by late infected (I2) 

cells. Intracellular virus, [V], is a normalized, unitless quantity representing the per cell viral load, 

while extracellular virus [Ve] has units of PFU mL-1 and represents the concentration of infectious 

virus in the extracellular environment. The unit conversion is achieved via Qv’s units of PFU mL-

1 hours-1. 

𝜕𝜕[𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒]
𝜕𝜕𝑡𝑡

= 𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓∇2[𝐴𝐴𝐼𝐼𝑁𝑁𝑓𝑓] + 𝑄𝑄𝐼𝐼𝐼𝐼𝐼𝐼[𝐴𝐴𝐼𝐼𝑁𝑁] − 𝜏𝜏𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓[𝐴𝐴𝐼𝐼𝑁𝑁𝑓𝑓]                                             (B.3-1) 

𝜕𝜕[𝑉𝑉𝑒𝑒]
𝜕𝜕𝑡𝑡

= 𝐷𝐷𝑉𝑉∇2[𝑉𝑉𝑓𝑓] + 𝑄𝑄𝑉𝑉[𝑉𝑉] − 𝜏𝜏𝑉𝑉𝑓𝑓[𝑉𝑉𝑓𝑓]                                                                          (B.3-2) 

CompuCell3D solvers use a simple time-slicing algorithm. Each CompuCell3D time step 

represents 0.167 hours. CompuCell3D first calculates the integrated amount of [Ve] and [IFNe] 

directly above each cell to calculate [Ve]per cell and [IFNe]per cell and passes these values to internal 

cellular ODE instances. It then integrates the diffusion and the intracellular species’ rate equations 

forward in time independently, using these fixed values of [Ve]per cell and [IFNe]per cell for the 

equivalent of 0.167 hours. It then calculates the amount of virus released and the [IFN] exported 

from each cell over 0.167 hours and adds the amount released divided by the cell area into each 

voxel in the appropriate field at each position corresponding to a voxel of that cell. It then evaluates 

the probabilities for cell type transitions for each cell following to determine whether each cell 

experiences such a transition. For a more complete description of how CC3D implements 

simulations, please see 76. 
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Appendix B.4 Initial and Boundary Conditions 

All simulations use periodic boundary conditions along the x and y axes. When simulating 

low MOI conditions, at time zero all cells are U type, except for one I1 cell at the center of the 

simulation (two I1 cells in Figure 10). To simulate high MOI conditions, all cells are initially I2 

type. Table 7 gives the initial conditions for the intracellular variables of each cell type at time 

zero. In all simulations, the extracellular environment initially contains no [Ve] or [IFNe].  

To simulate interferon pretreatment, the simulation starts at 12 hours pre-infection, with all 

cells U type and exposed to [IFNe] = 0.04 μM. At time = 0 hours (12 hours after [IFNe] exposure), 

we simulate washing of the cells by setting [IFNe] = 0 μM and initiate the infection by setting a 

cell at the center of the simulation’s lattice to the I1 type. Due to the IFN pretreatment, all cells 

have the same intracellular state at time zero except for the single I1 cell, for which [V] is set to 

6.9E-8 (unitless). 

Table 7. Initial conditions for each cell type when present at the start of a simulated infection. 

 Cell Type Units 
U I1 I2  

 
Intracellular 

Species 
Initial Value 

[IFN] 0 0 0 μM 
[STATP] 0 0 0 
[IRF7] 0 0 0 

[IRF7P] 0 0 0 
[H] 1 1 1 unitless 
[V] 0 6.90E-8 6.90E-8 

Appendix B.5 Parameter Determination 

Many MSIS model parameters come directly from the Weaver model84. The Weaver model 

was parameterized using the lowest sum-of-squares error (energy) resulting from a parallel 

tempering Markov chain Monte Carlo fit to data collected from HBECs infected with wild-type 
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A/Puerto Rico/8/1934 Influenza A50. Each cell’s ODE model in the MSIS model is the Weaver 

model, modified as described previously. We adopted additional parameters from the 

literature53,54,78,154. Table 8 gives a comprehensive list of model parameters and their origin. Virus 

diffusion coefficients can vary by several orders of magnitude depending on media type, based 

primarily on the medium’s viscosity71. We set the diffusion coefficient for both [Ve] and [IFNe] to 

54.0 μm2 s-1, within the range of experimental measurements154,155 for both species. For these 

diffusion coefficients, the baseline parameter set led to continuous plaque growth. We rescaled the 

cell type transition parameter β85 from units of median tissue culture infectious dose (TCID50
-1 

hours-1) to plaque-forming units (mL PFU-1 hours-1) for consistency with the Weaver model’s units 

for viral load. 
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Table 8. Baseline parameter values and sources.  

Parameter Value Units Process Source 

kIFN,V(RIGI) 0.0 μM hours-1 IFN production via RIG-I  84 

kIFN,V(TLR) 9.746 hours-1 Maximal rate of IFN production  

KIFN,V(TLR) 12.511 [unitless] Apparent dissociation constant  

kIFN,IRF7P 13.562 hours-1 IFN production via [IRF7P] 

QIFN 10.385 hours-1 Export of IFN to the environment 

kSTATP,IFNe 675.323 μM hours-1 Max rate of [STAT] 
phosphorylation via [IFNe] 

KSTATP,IFNe 80.353 μM Michaelis-Menten constant for 
[STAT] phosphorylation via [IFNe] 

τSTATP 0.3 hours-1 
 

Dephosphorylation rate of [STATP] 52 

kIRF7,STATP 0.115 Rate of IRF7 induction  84 

kIRF7,IRF7P 1.053 Rate of IRF7 induction  

τIRF7 0.75 Decay rate of IRF7 53,84 

kIRF7P,IRF7 0.202 Rate of IRF7 phosphorylation  84 

τIRF7P 0.3 Dephosphorylation rate of [IRF7P] 54 

γH,V 0.635 Rate of cell health loss 84 

kV,V 1.537 Rate of viral replication 72,84 
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Table 8 (continued). 

Parameter Value Units Process Source 

KV,IFNe 0.020884 μM [IFNe] Michaelis-Menten constant  84 

QV 0.197 PFU mL-1 hours-1 Rate of viral release 

n 3 [unitless] Hill coefficient of TLR 

β 1E3  mL PFU-1 hours-1 Uninfected to eclipse phase cells 85 

τI1 0.167 hours-1 Eclipse phase to late infected cells (25) 

τVe 0.542 Rate of extracellular virus decay 

τIFNe 3.481 Rate of extracellular [IFNe] decay  84 

DVe 54.0 μm2 s-1 Diffusion coefficient of [Ve] 71,72 

DIFNe 54.0 μm2 s-1 Diffusion coefficient of [IFNe] 154,155 

LVe 0.09 μm Diffusion length of virus  

LIFNe 0.23 Fiffusion length of [IFNe] 

Voxel Width 3 Width of lattice voxels 76, *2 

Cell Size 9 Width of cells  

 

*2 Specific to the CompuCell3D’s implementation of the simulation. 
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Appendix B.6 MSIS Model interferon prestimulation 

 

Figure 32. Simulated [IFNe] exposure before infection protects cells from plaque formation.  

The plate was washed with extracellular Type-I interferons, then a single cell was infected 

at the center of the plate. Since cell health is the median of all live cells’ health, the initially infected 

cell dying ~16 hours caused a brief increase in median cell health. No interferon-triggered death 

mechanism or resource limitations are present, leading to boundless amplification of the cytokine 

signal after the virus has been cleared. Bold lines are median of 20 replicas; shaded areas represent 

the 5th and 95th percentiles. 
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Appendix B.7  MSIS model local sensitivity analyses 

 

Figure 33. Local sensitivity analysis of baseline simulation.  

Down and up columns give average value change for each of the metrics when the 

parameter is varied -25% (down) and +25% (up) of their baseline value. These changes are shaded 
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red for positive changes and blue for negative changes in the metric, with intensity normalized to 

the largest change within both columns of each metric. p-values are the statistical significance of 

the change, given the standard deviation of the stochastic simulations over 20 replicas. p-values < 

0.01 are highlighted in yellow. Note that τIRF7 has a large response in baseline [IFNe] Max because 

the baseline value for τIRF7 lies near the stability criterion of τIRF7 > 0.75, so the 25% decrease leads 

to a numerically unstable system. 

 

  

 



 119 

 

Figure 34. Local sensitivity analysis with elevated paracrine signaling.  

This case corresponds to a 15x increase in the phosphorylation rate of [STATP] via the 

JAK/STAT pathway (parameter kSTATP,IFNe. Value changed from baseline of 45.922 μM hours-1 to 

688.83 μM hours-1). Down and up columns give average value change for each of the metrics when 

the parameter is varied -25% (down) and +25% (up) of their baseline value. These changes are 
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shaded red for positive changes and blue for negative changes in the metric, with intensity 

normalized to the largest change within both columns of each metric. p-values are the statistical 

significance of the change, given the standard deviation of the stochastic simulations over 20 

replicas. p-values < 0.01 are highlighted in yellow. 
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Figure 35. Local sensitivity with an elevated interferon diffusion coefficient (15x baseline or 540 μm2 s-1). 

Plaques are arrested by the paracrine signal diffusion significantly faster than viral spread.  

Down and up columns give average value change for each of the metrics when the parameter is 
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varied -25% (down) and +25% (up) of their baseline value. These changes are shaded red for 

positive changes and blue for negative changes in the metric, with intensity normalized to the 

largest change within both columns of each metric. p-values are the statistical significance of the 

change, given the standard deviation of the stochastic simulations over 20 replicas. p-values < 0.01 

are highlighted in yellow. 

Appendix B.8 MSIS model replicate justification  

 

Figure 36. Standard deviation and standard error of simulations versus replicas for the baseline. 

Used to justify n = 20 replicas for sensitivity analyses and parameter sweeps. Standard 

deviation (SD) is blue while standard error (SE) is orange. 
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Appendix B.9 Additional MSIS model parameter sweeps  

 

Figure 37. A parameter sweep of β (rate of transition from uninfected (U) to eclipse phase (I1) cells) from 

0.01x to 100x baseline reveals steady growth increases.  

Plaques still form at any nonzero value. A. Plaque growth over 80 hours post-infection. B. 

Tracking of cell types (U, I1, virus releasing, I2, and dead, D) for plaque growth dynamics 

corresponding to plaques in A. Center lines represent median over 20 replicas; shaded areas are 

the 5th and 95th percentiles. C – E. β parameter multipliers versus growth rate of a single plaque 

at the end of the simulation at 80 hours (C) and the area under the curve (AUC) for both average 

[Ve] (D) and average [IFNe] (E) on log scales. C – E represent 20 simulation replicas. Full data 
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with 14 additional outliers for average extracellular interferon and 1 additional outlier for the 

average extracellular virus are available in Appendix B.10, Figures 42 and 43, respectively. Higher 

virus infectivity resulted in higher proportions of dead cells within the plaque. Note a non-

monotonic trend; natural virus infectivity leads to a minimum production of [IFNe]. Decreases and 

increases in β both led to higher [IFNe] production. Viruses have differing encapsulation proteins, 

genome sizes, and relative production of nonstructural proteins while replicating within a host cell. 

These differences lead to variable virus replication rates, represented in the model by kV,V.  

 

 

Figure 38. Parameter sweep of viral replication rate (kV,V) reveals dramatic changes to final plaque diameter.  
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A. Plaque growth over 80 hours post-infection. B. Tracking of cell types (uninfected, U, 

eclipse infected, I1, virus releasing, I2, and dead, D) for plaque growth dynamics corresponding 

to plaques in A. Center lines represent median over 20 replicas; shaded areas are the 5th and 95th 

percentiles. C-E. Viral replication rate, kV,V, multipliers versus growth rate of a single plaque at the 

end of the simulation at 80 hours (C) and the area under the curve (AUC) for both average [Ve] 

(D) and average [IFNe] (E, full data with 4 additional outliers available in Appendix B.10, Figure 

39) on log scales. C – E represent 20 simulation replicas. Lowering viral replication below the 

nonspecific viral clearance rate prevents plaque formation. Higher replications have exponential 

changes in system metrics. Lowering viral replication speed slows, and can even prevent plaque 

growth, as virus is cleared from the extracellular environment more quickly relative to the rate of 

production and release. This limits the size of plaques in vitro and lesion size in vivo. Higher viral 

replication leads to exponentially faster growth and larger lesions since virus replication is self-

amplifying. Viral titer growth follows an exponential growth curve; however, the radial growth of 

the plaques is linear. These replicate biological observations. 
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Figure 39. Elevated IFN diffusion coefficient (DIFNe) leads to plaque arrest.  

A. Plaque growth over 80 hours post-infection. B. Tracking of cell types (uninfected, U, 

eclipse infected, I1, virus releasing, I2, and dead, D) for plaque growth dynamics corresponding 

to plaques in A. Center lines represent median over 20 replicas; shaded areas are the 5th and 95th 

percentiles. C – E. Extracellular interferon diffusion, DIFNe, parameter multipliers versus growth 

rate of a single plaque at the end of the simulation at 80 hours (C.) and the area under the curve 

(AUC) for both average [Ve] (D, full data with any present outliers available in Appendix B.10) 

and average [IFNe] (E) on log scales. C – E represent 20 simulation replicas. Plaque growth loses 

linearity and is arrested after 10x increase over baseline. 
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Appendix B.10  MSIS Model Parameter Sweep Outliers 

 

Figure 40. Figure 13 Plaque Growth Rate with all outliers visible.  

Five outlier simulations of increased kIFN,V (RIG-I) activity over baseline resulted in fully 

arrested plaques by 80 hours post-infection. These outliers were cropped out in the original figure 

to show the distribution of the remaining 275 data points more clearly. Data represents 20 

simulation replicas. 
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Figure 41. Figure 13 Ve AUC with all outliers visible.  

The same five simulations which resulted in fully arrested plaques also result in 

dramatically lower average [Ve] AUC. These outliers were cropped out in the original figure to 

show the distribution of the remaining 275 data points more clearly. Data represents 20 simulation 

replicas. 

  

Figure 42. Figure 38 IFNe AUC with all outliers visible. 
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14 outlier simulations resulted in significantly higher average [IFNe] AUC. These outliers 

were cropped out in the original figure to show the distribution of the remaining 266 data points 

more clearly. Data represents 20 simulation replicas. 

  

Figure 43. Figure 38 Ve AUC with all outliers visible.  

A single outlier simulation resulted in a much lower average [Ve] AUC. This outlier was 

cropped out in the original figure to show the distribution of the remaining 279 data points more 

clearly. Data represents 20 simulation replicas. 
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Figure 44. Figure 39 IFNe AUC with all outliers visible. 

4 outlier simulations resulted in much higher average [IFNe] AUC. These outliers were 

cropped out in the original figure to show the distribution of the remaining 276 data points more 

clearly. Data represents 20 simulation replicas. 

  

Figure 45. Figure 39 Ve AUC with all outliers visible.  



 131 

A single outlier simulation resulted in a much lower average [Ve] AUC. This outlier was 

cropped out in the original figure to show the distribution of the remaining 279 data points more 

clearly. Data represents 20 simulation replicas. 

Appendix B.11 Model and Raw Data Repository 

The code to run the model in CC3D and the raw data generated for all simulations discussed 

in this study are available at https://github.com/ImmuSystems-

Lab/Multicellular_Spatial_Model_of_RNA_Virus_Replication. All data is generated by the MSIS 

model’s code and has the same format. 

 

https://github.com/ImmuSystems-Lab/Multicellular_Spatial_Model_of_RNA_Virus_Replication
https://github.com/ImmuSystems-Lab/Multicellular_Spatial_Model_of_RNA_Virus_Replication
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Appendix C Macrophage Models 

Appendix C.1 Model Equations 

A three-state ODE model, referred to as Model 1, was developed using the immunological 

knowledge of the early innate immune response to a primary influenza A virus infection (i.e., the 

animal’s first exposure, no antibodies for the virus present) described above. The model contained 

in Equations C.1-1 through C.1-3 is illustrated in Aim 3. The units of each state (V, I, and M) are 

discussed in below.  

 

𝑑𝑑[𝑉𝑉]
𝑑𝑑𝑡𝑡

= 𝑁𝑁𝑉𝑉,𝑉𝑉[𝑉𝑉] �1 − [𝑉𝑉]
𝐾𝐾𝑉𝑉,𝑉𝑉

� − 𝑁𝑁𝑉𝑉,𝐼𝐼[𝑉𝑉][𝐴𝐴] − 𝑁𝑁𝑉𝑉,𝑀𝑀[𝑉𝑉][𝑀𝑀] − 𝑑𝑑𝑉𝑉[𝑉𝑉]                                  (C.1-1) 

𝑑𝑑[𝐼𝐼]
𝑑𝑑𝑡𝑡

= 𝑁𝑁𝐼𝐼,𝑉𝑉[𝑉𝑉] + 𝑁𝑁𝐼𝐼,𝑀𝑀[𝑀𝑀] − 𝑑𝑑𝐼𝐼[𝐴𝐴]                                                                                 (C.1-2) 

𝑑𝑑[𝑀𝑀]
𝑑𝑑𝑡𝑡

= 𝑓𝑓𝑀𝑀,𝐼𝐼[𝐼𝐼]𝑛𝑛

𝐾𝐾 M,I+[𝐼𝐼]𝑛𝑛
− 𝑑𝑑𝑀𝑀([𝑀𝑀])                                                                                        (C.1-3) 

 

Virus production is modeled in Equation C.1-1. [V], the concentration of virus in lung 

tissue, is modeled as logistic growth with a constant of proportionality, rV,V, and a carrying 

capacity, KV,V. This form of virus production was selected over target cell-based modeling 

approaches because data concerning the number of available target cells in the lung is not available, 

limiting the viability and accuracy of training a model. The effect of interferon-regulated inhibition 

of virus replication is modeled using mass action kinetics where rV,I is the corresponding rate 

constant. The inhibition of virus production via macrophage is also modeled with mass-action 

kinetics where rV,M is the rate constant. Virus degrades at a rate, dV. 
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Type-I interferon production is modeled by Equation C.1-2 where I is the concentration of 

interferon in the lung. Interferon is produced at a rate, rI,V, relative to viral load and decays at rate 

dI. Upregulation of interferon production via macrophages was modeled as a first-order mass-

action kinetic with a rate, rI,M.  

Macrophage production is modeled in Equation C.1-3 where [M] is the number of 

macrophages in the lung. Interferon induction of macrophage production is modeled using a Hill 

kinetic with a production rate, rM,I, and an apparent dissociation constant, KM,I. Instead of the 

classic interpretation of the Hill coefficient, n, as cooperativity in ligand binding156, it can be 

interpreted in this context as an activation threshold representing the threshold of interferon needed 

to induce macrophage production. This is like the activation threshold that must be exceeded to 

induce T cell cytokine production157,158. The parameter KM,I is not raised to the Hill-like coefficient, 

n, to improve parameter fitting. Macrophage decays at a rate of dM. 

Appendix C.2 Alternative Model Structures 

 

Figure 46. A) Model schemes of the four models considered in this work. B) Model structure variations. 
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 [V], [I], and [M] represent virus concentration, interferon concentration, and macrophage 

cell count in the lungs of infected mice. Arrows represent activating interactions; lines ending in 

crosses represent inhibiting interactions. The parameters involved in each interaction are indicated 

in Model 1 (degradation reactions not shown). Model 1 is the fully connected model of the innate 

immune response model. Models 2 – 4 are reduced versions of Model 1, wherein select interactions 

were removed. (B) Each model is analyzed for its goodness of fit to experimental data under three 

different scenarios. Schemes of the model emphasize the different outcomes that occur under each 

scenario. Black arrows indicate parameters that retain the same value when fitting the model to 

H5N1 and H1N1 infection data. Red, broken arrows identify parameters that take on different 

values when training two copies of a model to the H5N1 and H1N1 infection data.  

Equations C.1-1 through C.1-3 define the dynamic behavior of Model 1. We also 

developed reduced models, Models 2 – 4 (Figure 46), in which select interactions were removed 

to consider additional hypotheses on how the immune system in the lung might be regulated. For 

example, in CCR2-/- mice, there is conflicting evidence concerning whether inhibited macrophage 

infiltration into the lung of infected mice affects viral load146,147. In addition, although macrophage 

upregulation of interferon is well justified, it is not guaranteed that parameters associated with this 

interaction can be estimated from the data. In Model 2, [M] induction of [I] is removed. In Model 

3, [M] inhibition of [V] is removed. And in Model 4, both [M] induction of [I] and [M] inhibition 

of [V] are removed. These models were each fit to the experimental data to determine which model 

(and, therefore, which combination of biological processes) optimally fits the data based on the 

goodness of fit and the number of parameters estimated (DOF).  
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Appendix C.3 Correlation of MCP1 and Lung Macrophage Counts 

 

 

Figure 47.  Macrophage and MCP1 correlation.  

Log10 of macrophage cell count in the lung is highly correlated with the log2 of MCP1 gene 

expression. This regression is used to translate between MCP1 and Macrophage states.  
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Appendix C.4 Energy Traces of Macrophage Model 4 MCMC Parameter Exploration 

 

Figure 48. AD and NSSD model 4 energy plots. 

A) H1N1 energy trace under the All Different (AD) condition. B) H5N1 energy trace under 

the same conditions. C) Combined energy trace for H1N1 and H5N1 under the All Shared (AS) 

condition. MCMC quickly completes burn-in and thoroughly explored parameter space for all 

three scenarios. 
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Appendix C.5 Macrophage Model Structures 2 and 3 Data Fits 

 

Figure 49. Models 2 and 3 predictions.  

Macrophage-dependent feedback mechanisms (Models 2 and 3 NSSD) exhibit worse fits 

than a model structure without these mechanisms (Model 4). Macrophage-based clearance of Virus 

(rV,M, blue line) fits H5N1 data poorly. Data from Shoemaker et al are shown with the standard 

error associated with triplicate data points per timepoint. 
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Appendix C.6 Macrophage Model Structure #4 Optimal Parameters 

The lowest energy model parameterization (Model 4, all parameters independently fit to 

each dataset) is summarized in Table 9. 

Table 9. AD Minimum energy parameter values and units for each dataset in Model 4. 

Parameter H1N1 H5N1 Unit 

𝑁𝑁𝑉𝑉,𝑉𝑉 1.22E+00 1.21E+00 𝑑𝑑𝐷𝐷𝐸𝐸𝐷𝐷−1 

𝐾𝐾𝑉𝑉,𝑉𝑉 3.65E+01 7.80E+02 𝑙𝑙𝐺𝐺𝐸𝐸10(𝑀𝑀𝐼𝐼𝑈𝑈 𝐺𝐺𝐸𝐸⁄ ) 

𝑁𝑁𝑉𝑉,𝐼𝐼 1.20E-01 1.07E-01 𝑑𝑑𝐷𝐷𝐸𝐸𝐷𝐷−1 

𝑑𝑑𝑉𝑉 1.61E-01 1.10E-05 𝑑𝑑𝐷𝐷𝐸𝐸𝐷𝐷−1 

𝑁𝑁𝐼𝐼,𝑉𝑉 7.70E-01 3.06E+00 [𝑙𝑙𝐺𝐺𝐸𝐸10(𝑀𝑀𝐼𝐼𝑈𝑈 𝐺𝐺𝐸𝐸⁄ ) ℎ𝐺𝐺𝑁𝑁𝑁𝑁𝐷𝐷]−1 

𝑑𝑑𝐼𝐼 9.59E-01 3.22E+00 𝑑𝑑𝐷𝐷𝐸𝐸𝐷𝐷−1 

𝑁𝑁𝑀𝑀,𝐼𝐼 2.16E+07 9.71E+03 
𝑀𝑀𝐷𝐷𝑀𝑀𝑁𝑁𝐺𝐺𝑀𝑀ℎ𝐷𝐷𝐸𝐸𝐺𝐺 𝐴𝐴𝐺𝐺𝑙𝑙𝑙𝑙 𝐴𝐴𝐺𝐺𝑁𝑁𝑛𝑛𝐷𝐷

𝑑𝑑𝐷𝐷𝐸𝐸𝐷𝐷
 

𝐾𝐾𝑀𝑀,𝐼𝐼 1.90E+05 1.04E+09 unitless 

𝑑𝑑𝑀𝑀 8.80E+03 6.18E-01 𝑑𝑑𝐷𝐷𝐸𝐸𝐷𝐷−1 

𝑛𝑛 5.47E+00 9.98E+00 unitless 

𝑁𝑁𝑉𝑉,𝑀𝑀 N/A [𝑀𝑀𝐷𝐷𝑀𝑀𝑁𝑁𝐺𝐺𝑀𝑀ℎ𝐷𝐷𝐸𝐸𝐺𝐺 𝐴𝐴𝐺𝐺𝑙𝑙𝑙𝑙 𝐴𝐴𝐺𝐺𝑁𝑁𝑛𝑛𝐷𝐷 𝑑𝑑𝐷𝐷𝐸𝐸𝐷𝐷]−1 

𝑁𝑁𝐼𝐼,𝑀𝑀 
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Appendix C.7 Macrophage Model 4 OSSD Parameter Distributions 

This appendix contains AD, NSSD, and OSSD model 4 parameter posterior density 

distributions. Overlapping distributions with an OSSD parameter (rM,I, etc.) likely indicate non-

strain-specific mechanisms are likely, while distinct distributions (dI, etc.) likely indicate strain-

specific differences likely exist. 

 

Figure 50. Macrophage Model 4 AD and NSSD Parameter Distributions. 
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Figure 51. Macrophage Model 4 with unshared dI. 

 

Figure 52. Macrophage Model 4 with unshared dM. 
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Figure 53. Macrophage Model 4 with unshared dV. 

 

Figure 54. Macrophage Model 4 with unshared KM,I. 
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Figure 55. Macrophage Model 4 with unshared KV,V. 

 

Figure 56. Macrophage Model 4 with unshared n. 
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Figure 57. Macrophage Model 4 with unshared rM,I. 

 

Figure 58. Macrophage Model 4 with unshared rV,I. 
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Figure 59. Macrophage Model 4 with unshared rV,V. 
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Appendix D SPOT Supplement 

Appendix D.1 SPOT Methodology 

SPOT Value: the result of a multiple categorical linear regression between the genome 

(Shared or Unshared categories, 0 or 1, for each parameter in the genome) and the BIC which 

results from each genome. Multiple categorical linear regression fits slopes, kn’s, using Ordinary 

Least Squares (Equation D.1-1) and the BICs which result from evaluating the chosen population 

of genomes. 

𝐵𝐵𝐴𝐴𝐴𝐴 𝑀𝑀𝑁𝑁𝐺𝐺𝑑𝑑𝑝𝑝𝑀𝑀𝐷𝐷𝑝𝑝𝐺𝐺𝑛𝑛𝐷𝐷 𝑜𝑜𝑁𝑁𝐺𝐺𝐺𝐺 𝑀𝑀𝐷𝐷𝑁𝑁𝐷𝐷𝐺𝐺𝐺𝐺𝐷𝐷𝐺𝐺𝑁𝑁𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷𝑝𝑝𝐺𝐺𝑛𝑛 =  ∑ 𝑘𝑘𝑛𝑛 𝐺𝐺𝑛𝑛
𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑝𝑝
𝑛𝑛=0 + 𝐵𝐵𝐴𝐴𝐴𝐴𝑖𝑖𝑛𝑛𝑡𝑡         (D.1-1) 

The SPOT value for a parameter n is given by Equation D.1-2. This value is the slope of 

the categorical regression related to the parameter of interest. Confidence intervals for SPOTs are 

computed according to Equation D.1-3. 

𝑆𝑆𝑀𝑀𝑂𝑂𝑆𝑆𝑛𝑛 = 𝑘𝑘𝑛𝑛 ln (𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴⁄ )                                                                                               (D.1-2) 

𝑆𝑆𝑀𝑀𝑂𝑂𝑆𝑆 𝐴𝐴𝐴𝐴𝑛𝑛 = 𝑂𝑂𝐿𝐿𝑆𝑆 𝐴𝐴𝐴𝐴𝑛𝑛 ln (𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴)⁄                                                                                  (D.1-3) 

kn = slope of categorical linear regression for parameter(s) n 

Gn = Genome value for parameter(s) n (0 or 1 for shared or different, respectively) 

BICint = predicted BIC under the AS Condition. This is the intercept of the multiple 

categorical regression. 

SBIC = BIC Scaling Factor, the total number of datapoints present across all fit datasets. 

This normalizes SPOT results into four categories with fixed values, regardless of the underlying 

model and data. The scale factor is a result of BIC’s penalty for increased degrees of freedom. 
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Appendix D.2 Model 1 Characteristic Curves 

 

Figure 60. Characteristic Curves for Model 1. 
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Appendix D.3 Model 4 Characteristic Curves 

          

Figure 61. Model 4 Characterstic Curves. 
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Appendix D.4 Model 1 Parameter Sensitivity Sweeps 

Figure 62. Mode l H5N1:H1N1 Parameter Ratio Sweeps. 

Note that rV,M and rI,M were not evaluated due to time limitations. 
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Appendix D.5 Model 4 Parameter Sensitivity Sweeps 

 

Figure 63. Model 4 H5N1:H1N1 Parameter Ratio Sweeps. 

 



 150 

Bibliography 

1. AbdelMassih, A. F. et al. Possible molecular and paracrine involvement underlying the 

pathogenesis of COVID-19 cardiovascular complications. Cardiovascular Endocrinology 

& Metabolism Publish Ah, 1–4 (2020). 

2. World Health Organisation. Global Influenza Strategy Summary 2019-2030 Influenza. 

Global Influenza Strategy 2019-2030 Influenza 1, 1 (2019). 

3. THE GEOGRAPHY AND MORTALITY OF THE 1918 INFLUENZA PANDEMIC on 

JSTOR. https://www.jstor.org/stable/44447656?seq=1#metadata_info_tab_contents. 

4. 1957-1958 Pandemic (H2N2 virus) | Pandemic Influenza (Flu) | CDC. 

https://www.cdc.gov/flu/pandemic-resources/1957-1958-pandemic.html. 

5. 1968 Pandemic (H3N2 virus) | Pandemic Influenza (Flu) | CDC. 

https://www.cdc.gov/flu/pandemic-resources/1968-pandemic.html. 

6. 2009 H1N1 Pandemic (H1N1pdm09 virus) | Pandemic Influenza (Flu) | CDC. 

https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html. 

7. Weekly epidemiological update on COVID-19 - 29 June 2021. 

https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---

29-june-2021. 

8. Cilloniz, C. et al. Lethal Dissemination of H5N1 Influenza Virus Is Associated with 

Dysregulation of Inflammation and Lipoxin Signaling in a Mouse Model of Infection. 

Journal of Virology 84, 7613–7624 (2010). 

9. Peiris, J. S. M., Cheung, C. Y., Leung, C. Y. H. & Nicholls, J. M. Innate immune responses 

to influenza A H5N1: friend or foe? Trends Immunol 30, 574–84 (2009). 



 151 

10. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 

1918 influenza virus. Nature 445, 319–323 (2007). 

11. Baskin, C. R. et al. Early and sustained innate immune response defines pathology and death 

in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U 

S A 106, 3455–3460 (2009). 

12. Cilloniz, C. et al. Lethal Dissemination of H5N1 Influenza Virus Is Associated with 

Dysregulation of Inflammation and Lipoxin Signaling in a Mouse Model of Infection. 

Journal of Virology 84, 7613–7624 (2010). 

13. Kitano, H. Biological robustness. Nature Reviews Genetics 5, 826–837 (2004). 

14. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Müller, G. Computational modeling of 

the dynamics of the MAP kinase cascade activated by surface and internalized EGF 

receptors. Nature Biotechnology 20, 370–375 (2002). 

15. Shoemaker, J. E. et al. Fathead minnow steroidogenesis: in silico analyses reveals tradeoffs 

between nominal target efficacy and robustness to cross-talk. BMC Systems Biology 4, 89 

(2010). 

16. Ferrell, J. E. et al. The biochemical basis of an all-or-none cell fate switch in Xenopus 

oocytes. Science 280, 895–8 (1998). 

17. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation 

of state calculations by fast computing machines. The Journal of Chemical Physics 21, 

1087–1092 (1953). 

18. Stoica, P. & Selén, Y. A review of information criterion rules. IEEE Signal Processing 

Magazine 21, 36–47 (2004). 



 152 

19. Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel 

inference in behavioral ecology: some background, observations, and comparisons. 

Behavioral Ecology and Sociobiology 2010 65:1 65, 23–35 (2010). 

20. Chen, G. & Boyd, I. D. Statistical Error Analysis for the Direct Simulation Monte Carlo 

Technique. Journal of Computational Physics 126, 434–448 (1996). 

21. Cavanaugh, J. E., Neath, A., Joseph Cavanaugh, by E. & Neath, A. A. Generalizing The 

Derivation Of The Schwarz Information Criterion. Communications in Statistics { Theory 

and Methods 28, 49–66 (1999). 

22. Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of 

AIC and BIC. Ecology 95, 631–636 (2014). 

23. Sun, L., Liu, S. & Chen, Z. J. SnapShot: Pathways of Antiviral Innate Immunity. Cell 140, 

436-436.e2 (2010). 

24. Trinchieri, G. Type I interferon: friend or foe? J Exp Med 207, 2053–63 (2010). 

25. Prchal, M. et al. Type I interferons as mediators of immune adjuvants for T- and B cell-

dependent acquired immunity. Vaccine 27, G17–G20 (2009). 

26. Opitz, B. et al. IFNβ induction by influenza A virus is mediated by RIG-I which is regulated 

by the viral NS1 protein. Cellular Microbiology 9, 930–938 (2007). 

27. Wu, W. et al. RIG-I and TLR3 are both required for maximum interferon induction by 

influenza virus in human lung alveolar epithelial cells. Virology 482, 181–188 (2015). 

28. Fujita, T., Onoguchi, K., Onomoto, K., Hirai, R. & Yoneyama, M. Triggering antiviral 

response by RIG-I-related RNA helicases. Biochimie 89, 754–760 (2007). 

29. Rajsbaum, R. et al. Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction 

by the Influenza A Virus NS1 Protein. PLoS Pathogens 8, e1003059 (2012). 



 153 

30. Rehwinkel, J. & Gack, M. U. RIG-I-like receptors: their regulation and roles in RNA 

sensing. Nature Reviews Immunology vol. 20 537–551 Preprint at 

https://doi.org/10.1038/s41577-020-0288-3 (2020). 

31. Gack, M. U. et al. Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade 

Recognition by the Host Viral RNA Sensor RIG-I. Cell Host and Microbe 5, 439–449 

(2009). 

32. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis E Sousa, C. Innate Antiviral 

Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science 

(1979) 303, 1529–1531 (2004). 

33. Takeda, K., Kaisho, T. & Akira, S. T OLL -L IKE R ECEPTORS. Annual Review of 

Immunology 21, 335–376 (2003). 

34. Hu, Y. et al. The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits 

Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination. 

Journal of Virology 91, (2017). 

35. Lu, X., Pan, J., Tao, J. & Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-β 

response by targeting initial step of IFN-β induction pathway, and its C-terminal region is 

critical for the antagonism. Virus Genes 42, 37–45 (2011). 

36. le Page, C., Génin, P., Baines, M. G. & Hiscott, J. Interferon activation and innate immunity. 

Reviews in Immunogenetics vol. 2 374–386 Preprint at 

http://www.ncbi.nlm.nih.gov/pubmed/11256746 (2000). 

37. de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using 

microarrays. J Leukoc Biol 69, 912–20 (2001). 



 154 

38. Atkin-Smith, G. K., Duan, M., Chen, W. & Poon, I. K. H. The induction and consequences 

of Influenza A virus-induced cell death. Cell Death & Disease 9, 1002 (2018). 

39. Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: A complex 

web of host defenses. Annual Review of Immunology 32, 513–545 (2014). 

40. Alberts, B. et al. Molecular biology of the cell. (Garland Science, 2002). 

41. Kaminskyy, V. & Zhivotovsky, B. To kill or be killed: how viruses interact with the cell 

death machinery. Journal of Internal Medicine 267, 473–482 (2010). 

42. Pearson, J. E., Krapivsky, P. & Perelson, A. S. Stochastic theory of early viral infection: 

Continuous versus burst production of virions. PLoS Computational Biology 7, 1001058 

(2011). 

43. Matsuoka, Y. et al. A comprehensive map of the influenza A virus replication cycle. BMC 

Syst Biol 7, 97 (2013). 

44. Fribourg, M. et al. Model of influenza A virus infection: Dynamics of viral antagonism and 

innate immune response. Journal of Theoretical Biology 351, 47–57 (2014). 

45. Qiao, L. et al. Immune response modeling of interferon beta-pretreated influenza virus-

infected human dendritic cells. Biophys J 98, 505–14 (2010). 

46. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. 

Nature 373, 123–126 (1995). 

47. Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G. & Perelson, A. S. Kinetics of 

influenza A virus infection in humans. J Virol 80, 7590–9 (2006). 

48. Ramos, I. et al. Contribution of double-stranded RNA and CPSF30 binding domains of 

influenza virus NS1 to the inhibition of type I interferon production and activation of human 

dendritic cells. J Virol 87, 2430–40 (2013). 



 155 

49. Yang, C., Skiena, S., Futcher, B., Mueller, S. & Wimmer, E. Deliberate reduction of 

hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective 

live vaccine in mice. Proc Natl Acad Sci U S A 110, 9481–9486 (2013). 

50. Shapira, S. D. et al. A physical and regulatory map of host-influenza interactions reveals 

pathways in H1N1 infection. Cell 139, 1255–67 (2009). 

51. Foster, K. A., Oster, C. G., Mayer, M. M., Avery, M. L. & Audus, K. L. Characterization 

of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. 

Experimental Cell Research 243, 359–366 (1998). 

52. Cambridge, S. B. et al. Systems-wide proteomic analysis in mammalian cells reveals 

conserved, functional protein turnover. Journal of Proteome Research 10, 5275–5284 

(2011). 

53. Sharova, L. V. et al. Database for mRNA half-life of 19 977 genes obtained by DNA 

microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA 

Research 16, 45–58 (2009). 

54. Prakash, A. & Levy, D. E. Regulation of IRF7 through cell type-specific protein stability. 

Biochemical and Biophysical Research Communications 342, 50–56 (2006). 

55. Geyer, C. J. Markov Chain Monte Carlo Maximum Likelihood, Computing Science and 

Statistics. Proc. of the 23rd Symposium Interface, 1991 156–163 (1991). 

56. Dou, D., Revol, R., Östbye, H., Wang, H. & Daniels, R. Influenza A virus cell entry, 

replication, virion assembly and movement. Frontiers in Immunology vol. 9 1581 Preprint 

at https://doi.org/10.3389/fimmu.2018.01581 (2018). 

57. Bellman, R. & Åström, K. J. On structural identifiability. Mathematical Biosciences 7, 329–

339 (1970). 



 156 

58. Villaverde, A. F., Barreiro, A. & Papachristodoulou, A. Structural Identifiability of 

Dynamic Systems Biology Models. PLoS Computational Biology 12, (2016). 

59. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. 

Nature Methods 2020 17:3 17, 261–272 (2020). 

60. Schober, P., Boer, C. & Schwarte, L. A. Correlation Coefficients. Anesthesia & Analgesia 

126, 1763–1768 (2018). 

61. Mistry, B. A., D’Orsogna, M. R. & Chou, T. The Effects of Statistical Multiplicity of 

Infection on Virus Quantification and Infectivity Assays. Biophysical Journal 114, 2974–

2985 (2018). 

62. Shinya, K. et al. Toll-like receptor pre-stimulation protects mice against lethal infection 

with highly pathogenic influenza viruses. Virology Journal 8, 97 (2011). 

63. Lokugamage, K. et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from 

SARS-CoV. Journal of Virology 94, (2020). 

64. Qiao, L. et al. Immune response modeling of interferon beta-pretreated influenza virus-

infected human dendritic cells. Biophys J 98, 505–14 (2010). 

65. Zhou, Q. et al. Interferon-α2b Treatment for COVID-19. Frontiers in Immunology 11, 1061 

(2020). 

66. Covid: Large trial of new treatment begins in UK - BBC News. 

https://www.bbc.com/news/health-55639096. 

67. Gregg, R. W., Sarkar, S. N. & Shoemaker, J. E. Mathematical modeling of the cGAS 

pathway reveals robustness of DNA sensing to TREX1 feedback. Journal of Theoretical 

Biology 462, 148–157 (2019). 



 157 

68. Pawelek, K. A. et al. Modeling within-host dynamics of influenza virus infection including 

immune responses. PLoS Computational Biology 8, e1002588 (2012). 

69. Bocharov, G. A. & Romanyukha, A. A. Mathematical Model of Antiviral Immune 

Response III. Influenza A Virus Infection. Journal of Theoretical Biology 167, 323–360 

(1994). 

70. Smith, A. M. Validated models of immune response to virus infection. Current Opinion in 

Systems Biology vol. 12 46–52 Preprint at https://doi.org/10.1016/j.coisb.2018.10.005 

(2018). 

71. Holder, B. P., Liao, L. E., Simon, P., Boivin, G. & Beauchemin, C. A. A. Design 

considerations in building in silico equivalents of common experimental influenza virus 

assays. Autoimmunity 44, 282–293 (2011). 

72. Saenz, R. A. et al. Dynamics of Influenza Virus Infection and Pathology. Journal of 

Virology 84, 3974–3983 (2010). 

73. Hancioglu, B., Swigon, D. & Clermont, G. A dynamical model of human immune response 

to influenza A virus infection. Journal of Theoretical Biology 246, 70–86 (2007). 

74. Roychoudhury, P. et al. Tissue-resident T cell-derived cytokines eliminate herpes simplex 

virus-2-infected cells. Journal of Clinical Investigation 130, 2903–2919 (2020). 

75. Gregg, R. W., Shabnam, F. & Shoemaker, J. E. Agent-based modeling reveals benefits of 

heterogeneous and stochastic cell populations during cGAS-mediated IFNβ production. 

Bioinformatics 37, 1428–1434 (2021). 

76. Swat, M. H. et al. Multi-Scale Modeling of Tissues Using CompuCell3D. in Methods in 

Cell Biology vol. 110 325–366 (Academic Press Inc., 2012). 



 158 

77. Davis, J. W. & Hardy, J. L. In Vitro Studies with Modoc Virus in Vero Cells: Plaque Assay 

and Kinetics of Growth, Neutralization, and Thermal Inactivation. Applied Microbiology 

26, 344–348 (1973). 

78. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration 

of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501, 69–76 

(2009). 

79. Tobita, K. Permanent canine kidney (MDCK) cells for isolation and plaque assay of 

influenza B viruses. Medical Microbiology and Immunology 162, 23–27 (1975). 

80. Porterfield, J. S. A SIMPLE PLAQUE INHIBITION TEST FOR ANTIVIRAL AGENTS : 

APPLICATION TO ASSAY OF INTERFERON. The Lancet 274, 326–327 (1959). 

81. Rittenberg, M. B. & Pratt, K. L. Antitrinitrophenyl (TNP) Plaque Assay. Primary Response 

of Balb/c Mice to Soluble and Particulate Immunogen. Experimental Biology and Medicine 

132, 575–581 (1969). 

82. Lindenmann, J. & Gifford, G. E. Studies on vaccinia virus plaque formation and its 

inhibition by interferon. III. A simplified plaque inhibition assay of interferon. Virology 19, 

302–309 (1963). 

83. Hayden, F. G., Cote, K. M. & Douglas, R. G. Plaque inhibition assay for drug susceptibility 

testing of influenza viruses. Antimicrobial Agents and Chemotherapy 17, 865–870 (1980). 

84. Weaver, J. J. A. & Shoemaker, J. E. Mathematical modeling of rna virus sensing pathways 

reveals paracrine signaling as the primary factor regulating excessive cytokine production. 

Processes 8, 1–16 (2020). 



 159 

85. Smith, A. M. & Perelson, A. S. Influenza A virus infection kinetics: Quantitative data and 

models. Wiley Interdisciplinary Reviews: Systems Biology and Medicine vol. 3 429–445 

Preprint at https://doi.org/10.1002/wsbm.129 (2011). 

86. White, D. O. & Cheyne, I. M. Early events in the eclipse phase of influenza and 

parainfluenza virus infection. Virology 29, 49–59 (1966). 

87. Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G. & Perelson, A. S. Kinetics of 

influenza A virus infection in humans. J Virol 80, 7590–9 (2006). 

88. Ding, Y. et al. Andrographolide inhibits influenza A virus-induced inflammation in a 

murine model through NF-κB and JAK-STAT signaling pathway. Microbes and Infection 

19, 605–615 (2017). 

89. Yuan, S. et al. Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor 

Redirecting Host Protein Synthesis Machinery toward Viral RNA. Molecular Cell 80, 1055-

1066.e6 (2020). 

90. Shoemaker, J. E. et al. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced 

Inflammation. PLoS Pathogens (2015) doi:10.1371/journal.ppat.1004856. 

91. Kawaoka, Y. H5N1: Flu transmission work is urgent. Nature 482, 155 (2012). 

92. CDC. Highly Pathogenic Asian Avian Influenza A(H5N1) in People | Avian Influenza (Flu). 

93. Guarner, J. & Falcón-Escobedo, R. Comparison of the pathology caused by H1N1, H5N1, 

and H3N2 influenza viruses. Archives of Medical Research Preprint at 

https://doi.org/10.1016/j.arcmed.2009.10.001 (2009). 

94. Boon, A. C. M. et al. H5N1 influenza virus pathogenesis in genetically diverse mice is 

mediated at the level of viral load. mBio 2, (2011). 



 160 

95. Hale, B. G., Randall, R. E., Ortin, J. & Jackson, D. The multifunctional NS1 protein of 

influenza A viruses. J Gen Virol 89, 2359–2376 (2008). 

96. Sun, L., Liu, S. & Chen, Z. J. SnapShot: Pathways of Antiviral Innate Immunity. Cell 140, 

436-436.e2 (2010). 

97. Weaver, J. J. A. & Shoemaker, J. E. Mathematical Modeling of RNA Virus Sensing 

Pathways Reveals Paracrine Signaling as the Primary Factor Regulating Excessive 

Cytokine Production. Processes 2020, Vol. 8, Page 719 8, 719 (2020). 

98. Aponte-Serrano, J. O., Weaver, J. J. A., Sego, T. J., Glazier, J. A. & Shoemaker, J. E. 

Multicellular spatial model of RNA virus replication and interferon responses reveals 

factors controlling plaque growth dynamics. PLOS Computational Biology 17, e1008874 

(2021). 

99. Li, W. et al. Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFα 

response and p53 activity. Cellular and Molecular Immunology 7, 235–242 (2010). 

100. Mok, B. W.-Y. et al. The role of nuclear NS1 protein in highly pathogenic H5N1 influenza 

viruses. Microbes and Infection 19, 587–596 (2017). 

101. Cheung, C. Y. et al. Induction of proinflammatory cytokines in human macrophages by 

influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? The 

Lancet 360, 1831–1837 (2002). 

102. van Riel, D. et al. Highly pathogenic avian influenza virus H5N1 infects alveolar 

macrophages without virus production or excessive TNF-alpha induction. PLoS Pathog 7, 

(2011). 

103. Mochan, E., Ackerman, E. & Shoemaker, J. A Systems and Treatment Perspective of 

Models of Influenza Virus-Induced Host Responses. Processes 6, 138 (2018). 



 161 

104. Smith, A. M. Validated models of immune response to virus infection. Current Opinion in 

Systems Biology 12, 46–52 (2018). 

105. Price, I. et al. The inflammatory response to influenza A virus (H1N1): An experimental 

and mathematical study. Journal of Theoretical Biology (2015) 

doi:10.1016/j.jtbi.2015.03.017. 

106. Gregg, R. W., Sarkar, S. N. & Shoemaker, J. E. Mathematical modeling of the cGAS 

pathway reveals robustness of DNA sensing to TREX1 feedback. Journal of Theoretical 

Biology 462, (2019). 

107. Pawelek, K. A. et al. Modeling within-host dynamics of influenza virus infection including 

immune responses. PLoS Computational Biology 8, (2012). 

108. Pawelek, K. A., Dor, D., Salmeron, C. & Handel, A. Within-host models of high and low 

pathogenic influenza virus infections: The role of macrophages. PLoS ONE 11, (2016). 

109. Weaver, J. J. A. & Shoemaker, J. E. Mathematical modeling of rna virus sensing pathways 

reveals paracrine signaling as the primary factor regulating excessive cytokine production. 

Processes 8, 1–16 (2020). 

110. Smith, A. M. et al. Kinetics of Coinfection with Influenza A Virus and Streptococcus 

pneumoniae. PLOS Pathogens 9, e1003238 (2013). 

111. Aponte-Serrano, J. O., Weaver, J. J. A., Sego, T. J., Glazier, J. A. & Shoemaker, J. E. 

Multicellular spatial model of RNA virus replication and interferon responses reveals 

factors controlling plaque growth dynamics. PLOS Computational Biology 17, e1008874 

(2021). 

112. Hernandez-Vargas, E. A. et al. Effects of aging on influenza virus infection dynamics. J 

Virol 88, 4123–4131 (2014). 



 162 

113. Peiris, J. S. M., Cheung, C. Y., Leung, C. Y. H. & Nicholls, J. M. Innate immune responses 

to influenza A H5N1: friend or foe? Trends Immunol 30, 574–84 (2009). 

114. Shinya, K. et al. The TLR4-TRIF Pathway Protects against H5N1 Influenza Virus Infection. 

Journal of Virology 86, 19–24 (2012). 

115. Neumann, G., Chen, H., Gao, G. F., Shu, Y. & Kawaoka, Y. H5N1 influenza viruses: 

outbreaks and biological properties. Cell Res 20, 51–61 (2010). 

116. Shinya, K. et al. Integrated clinical, pathologic, virologic, and transcriptomic analysis of 

H5N1 influenza virus-induced viral pneumonia in the rhesus macaque. J Virol 86, 6055–66 

(2012). 

117. Muramoto, Y. et al. Disease severity is associated with differential gene expression at the 

early and late phases of infection in non-human primates infected with different H5N1 

highly pathogenic avian influenza viruses. J Virol 88, 8981–8997 (2014). 

118. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 

1918 influenza virus. Nature 445, 319–23 (2007). 

119. Diamond, G., Legarda, D. & Ryan, L. K. The innate immune response of the respiratory 

epithelium. Immunological Reviews Preprint at https://doi.org/10.1034/j.1600-

065X.2000.917304.x (2000). 

120. Koyama, S., Ishii, K. J., Coban, C. & Akira, S. Innate immune response to viral infection. 

Cytokine Preprint at https://doi.org/10.1016/j.cyto.2008.07.009 (2008). 

121. Petes, C., Odoardi, N. & Gee, K. The Toll for trafficking: Toll-like receptor 7 delivery to 

the endosome. Frontiers in Immunology vol. 8 1 Preprint at 

https://doi.org/10.3389/fimmu.2017.01075 (2017). 



 163 

122. Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-κB signaling in inflammation. Signal 

Transduction and Targeted Therapy vol. 2 1–9 Preprint at 

https://doi.org/10.1038/sigtrans.2017.23 (2017). 

123. Koyama, S. et al. Differential Role of TLR- and RLR-Signaling in the Immune Responses 

to Influenza A Virus Infection and Vaccination. The Journal of Immunology (2007) 

doi:10.4049/jimmunol.179.7.4711. 

124. Zeng, H. et al. Highly Pathogenic Avian Influenza H5N1 Viruses Elicit an Attenuated Type 

I Interferon Response in Polarized Human Bronchial Epithelial Cells. Journal of Virology 

81, 12439–12449 (2007). 

125. Channappanavar, R. et al. IFN-I response timing relative to virus replication determines 

MERS coronavirus infection outcomes. Journal of Clinical Investigation 129, 3625–3639 

(2019). 

126. Galani, I. E. et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III 

interferon patterns and flu comparison. Nature Immunology 22, 32–40 (2021). 

127. Lee, J., Adler, F. R. & Kim, P. S. A Mathematical Model for the Macrophage Response to 

Respiratory Viral Infection in Normal and Asthmatic Conditions. Bulletin of Mathematical 

Biology 79, 1979–1998 (2017). 

128. Kumagai, Y. et al. Alveolar macrophages are the primary interferon-alpha producer in 

pulmonary infection with RNA viruses. Immunity 27, 240–252 (2007). 

129. Dawson, T. C., Beck, M. A., Kuziel, W. A., Henderson, F. & Maeda, N. Contrasting effects 

of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A 

virus. Am J Pathol 156, 1951–1959 (2000). 



 164 

130. Kumagai, Y. et al. Alveolar macrophages are the primary interferon-alpha producer in 

pulmonary infection with RNA viruses. Immunity 27, 240–252 (2007). 

131. Hui, K. P. Y. et al. Induction of Proinflammatory Cytokines in Primary Human 

Macrophages by Influenza A Virus (H5N1) Is Selectively Regulated by IFN Regulatory 

Factor 3 and p38 MAPK. The Journal of Immunology 182, 1088–1098 (2009). 

132. Lin, K. L., Suzuki, Y., Nakano, H., Ramsburg, E. & Gunn, M. D. CCR2 + Monocyte-

Derived Dendritic Cells and Exudate Macrophages Produce Influenza-Induced Pulmonary 

Immune Pathology and Mortality . The Journal of Immunology 180, 2562–2572 (2008). 

133. Wales, D. J. & Doye, J. P. K. Global Optimization by Basin-Hopping and the Lowest 

Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of 

Physical Chemistry A 101, 5111–5116 (1997). 

134. Yang, Y. Can the Strengths of AIC and BIC Be Shared? *. (2003). 

135. Akaike, H. A New Look at the Statistical Model Identification. IEEE Transactions on 

Automatic Control 19, 716–723 (1974). 

136. Saltelli, A., Analysis, R. B.-C. S. & D. & 1998, undefined. An alternative way to compute 

Fourier amplitude sensitivity test (FAST). Elsevier. 

137. Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing 

global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical 

Biology vol. 254 178–196 Preprint at https://doi.org/10.1016/j.jtbi.2008.04.011 (2008). 

138. Herman, J. & Usher, W. SALib: An open-source Python library for Sensitivity Analysis. 

Journal of Open Source Software 2, 97 (2017). 

139. Shoemaker, J. E. et al. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced 

Inflammation. PLoS Pathogens (2015) doi:10.1371/journal.ppat.1004856. 



 165 

140. Shinya, K. et al. The TLR4-TRIF Pathway Protects against H5N1 Influenza Virus Infection. 

Journal of Virology 86, 19–24 (2012). 

141. Davidson, S., Crotta, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon αβ 

in acute influenza infection. Nature Communications 2014 5:1 5, 1–15 (2014). 

142. Pichlmair, A. et al. RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 

5’-Phosphates. Science (1979) 314, 997–1001 (2006). 

143. Stanley, W. M. THE SIZE OF INFLUENZA VIRUS. Journal of Experimental Medicine 

79, 267–283 (1944). 

144. Derynck, R. et al. Expression of human fibroblast interferon gene in Escherichia coli. 

Nature 1980 287:5779 287, 193–197 (1980). 

145. Lee, S., Hirohama, M., Noguchi, M., Nagata, K. & Kawaguchi, A. Influenza A Virus 

Infection Triggers Pyroptosis and Apoptosis of Respiratory Epithelial Cells through the 

Type I Interferon Signaling Pathway in a Mutually Exclusive Manner. Journal of Virology 

92, (2018). 

146. Dawson, T. C., Beck, M. A., Kuziel, W. A., Henderson, F. & Maeda, N. Contrasting effects 

of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A 

virus. Am J Pathol 156, 1951–9 (2000). 

147. Lin, K. L., Suzuki, Y., Nakano, H., Ramsburg, E. & Gunn, M. D. CCR2 + Monocyte-

Derived Dendritic Cells and Exudate Macrophages Produce Influenza-Induced Pulmonary 

Immune Pathology and Mortality . The Journal of Immunology 180, 2562–2572 (2008). 

148. Perrone, L. A., Plowden, J. K., García-Sastre, A., Katz, J. M. & Tumpey, T. M. H5N1 and 

1918 Pandemic Influenza Virus Infection Results in Early and Excessive Infiltration of 

Macrophages and Neutrophils in the Lungs of Mice. PLOS Pathogens 4, e1000115 (2008). 



 166 

149. Yu, W. C. L. et al. Viral Replication and Innate Host Responses in Primary Human Alveolar 

Epithelial Cells and Alveolar Macrophages Infected with Influenza H5N1 and H1N1 

Viruses. Journal of Virology 85, 6844 (2011). 

150. Mi, Z., Ma, Y. & Tong, Y. Avian influenza virus H5N1 induces rapid interferon-beta 

production but shows more potent inhibition to retinoic acid-inducible gene i expression 

than H1N1 in vitro. Virology Journal 9, 1–8 (2012). 

151. Cate, T. R. Clinical manifestations and consequences of influenza. The American Journal 

of Medicine 82, 15–19 (1987). 

152. Cromer, D. et al. The burden of influenza in England by age and clinical risk group: A 

statistical analysis to inform vaccine policy. Journal of Infection 68, 363–371 (2014). 

153. Roberts, G. O., Gelman, A. & Gilks, W. R. Weak convergence and optimal scaling of 

random walk Metropolis algorithms. Annals of Applied Probability 7, 110–120 (1997). 

154. Coppey, M., Berezhkovskii, A. M., Sealfon, S. C. & Shvartsman, S. Y. Time and length 

scales of autocrine signals in three dimensions. Biophysical Journal 93, 1917–1922 (2007). 

155. Cohen, L. S. & Studzinski, G. P. Correlation between cell enlargement and nucleic acid and 

protein content of hela cells in unbalanced growth produced by inhibitors of DNA synthesis. 

Journal of Cellular Physiology 69, 331–339 (1967). 

156. Weiss, J. N. The Hill equation revisited: uses and misuses. The FASEB Journal 11, 835–

841 (1997). 

157. Waldrop, S. L., Davis, K. A., Maino, V. C. & Picker, L. J. Normal Human CD4+ Memory 

T Cells Display Broad Heterogeneity in Their Activation Threshold for Cytokine Synthesis. 

The Journal of Immunology 161, (1998). 



 167 

158. Itoh, Y. & Germain, R. N. Single cell analysis reveals regulated hierarchical T cell antigen 

receptor signaling thresholds and intraclonal heterogeneity for individual cytokine 

responses of CD4+ T cells. Journal of Experimental Medicine 186, 757–766 (1997). 

  

 

 


	Title Page
	Committee Membership Page
	Abstract
	Figure 1. Visual abstract of work.

	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 Introduction
	1.1 Viral Respiratory Infections
	1.2 Mathematical Modeling 
	1.2.1 Ordinary and Partial Differential Equations
	1.2.2 Agent Based Model
	1.2.3 Parameter Exploration and Optimization

	1.3 Definition of Terms

	2.0 Determining How Paracrine Signaling Impacts Epithelial Cells’ Response to Influenza Infection
	2.1 Introduction
	2.2 Materials and Methods
	Figure 2. Schematic of intracellular innate immune signaling (Weaver model).
	2.2.1 Data Sources
	2.2.2 ODE Simulation and Sensitivity Analysis
	2.2.3 Model Parameterization
	2.2.4 Structural Identifiability
	2.2.5  Interparameter Correlation

	2.3  Results
	2.3.1 MCMC Parameterization
	Figure 3. Innate immune model simulations show excellent fit to biological data. 

	2.3.2 Model Validation by Predicting Response to Infection Using a NSI Knockout Influenza Virus
	Figure 4. NS1 knockout simulation shows much greater cell survival and sustained cytokine production.

	2.3.3 Sensitivity Analysis Reveals IRF7 Phosphorylation as Critical Step
	Figure 5. System Sensitivity Analysis carried out on MCMC results reveals k42 and k51 as the most sensitive parameters.

	2.3.4 Simulating Varying RIG-I Antagonism Reveals Robust Sensor Protein Action
	Figure 6. Simulations at varying levels of RIG-I knockdown show robust virus sensing capability.

	2.3.5  Sensor Protein and JAK/STAT Originated Interferon Production
	Figure 7. (A) Total, Sensor Protein, and Paracrine [IFN] production simulations in dNS1PR8 influenza. (B) Total, Sensor Protein, and Paracrine [IFN] production simulations in wild-type PR8 influenza. 


	2.4 Conclusion

	3.0 Identifying the Major Regulators of Viral Plaque Growth  
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 ODE Model
	Figure 8. Conceptual diagram of the MSIS model. 

	3.2.2 Spatial Considerations of the MSIS model
	3.2.3 Cell Types and Rationale
	3.2.4 Plaque Growth Metrics

	3.3 Results
	3.3.1 Multicellular Spatial Model of RNA Virus Infection and IFN Signaling (MSIS model) Reproduces ODE Model Dynamics for High MOI infection
	Figure 9. Comparison of time series for key variables between the multicellular spatial interferon signaling (MSIS) model and Weaver model for high MOI demonstrates vailidity in similar conditions.

	3.3.2 MSIS Model Recapitulates Experimentally Observed Plaque Formation and Growth Dynamics
	Figure 10. Comparison of an experimental plaque assay for influenza (H5N1; left) with an MSIS model plaque simulation (for H1N1; right). 
	Figure 11. Plaque growth simulations replicate experimentally observed linear radial plaque growth.

	3.3.3 Increased STAT Activity Leads to Arrested Plaque Growth and Reduces Final Plaque Diameter
	Figure 12. Elevated [STATP] activity (larger kSTATP,IFNe) leads to arrested plaque growth. 

	3.3.4 Elevated RIG-I Activity Delays Cell Death and Increases IFN Production
	Figure 13. Increased RIG-I activity (kIFN,V(RIGI)) lowers plaque growth rates and viral titers, slows cell death, and increases interferon production.

	3.3.5 Interferon Prestimulation Arrests Plaque Growth
	Table 1. Intracellular chemical concentrations in cells 12 hours after in silico exposure to [IFNe].
	Figure 14. Prestimulating cells with type-I interferon led to plaque growth arrest in simulations. 

	3.3.6 Faster Interferon Diffusion Promotes Plaque Growth Arrest
	Figure 15. Dependence of plaque growth rate and arrest on viral and [IFN] diffusion coefficients.

	3.3.7 Sensitivity Analysis Reveals that the Main Parameters Controlling Radial Plaque Growth Differ Between Regimes
	Figure 16. Local single-factor sensitivity analysis varies greatly for three simulation regimes. 


	3.4 Conclusion

	4.0 Comparing H5N1 and H1N1 infection dynamics in murine hosts
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Model development rationale and equations 
	Figure 17. 4 Structure Model Ensemble schematic.

	4.2.2 Experimental data collected from literature and relating the data to the model 
	4.2.3 Parameter training
	4.2.4 Model and scenario prioritization
	4.2.5 Sensitivity analysis

	4.3 Results
	4.3.1 In silico screenings of candidate innate immune models find that H5N1 and H1N1 viruses induce interferon production at different rates in vivo 
	Figure 18. Energy versus AIC values for all four model structures under different parameterization scenarios.

	4.3.2 Strain-specific interferon production is not an artifact of parameter sensitivity
	Figure 19. First-order indices of the eFAST sensitivity analysis of the Macrophage models.

	4.3.3 Exploration of Model 4’s parameter space using PT MCMC 
	Figure 20. The top 1,000 fits of Model 4 to the H1N1 (top row) and H5N1 data (bottom row) when using PT MCMC parameterization. 

	4.3.4 MCMC-based parameter exploration again finds that H5N1 and H1N1 viruses induce interferon production at different rates in vivo 
	Table 2. The mimumum energy, degrees of freedom (DOF), and AIC values achieved by Model 4.
	Figure 21. Model 4 output for the minimum energy parameter set (lines) for OSSD parameterizations and corresponding training data (markers) for H1N1 (top row) and H5N1 (bottom row).
	Figure 22. Posterior density distributions for all parameters for Model 4 with rI,V varying between strains. 

	4.3.5 Independent estimation of virus parameters per strain does not improve model AIC
	Table 3. The minimum energy, DOF, and AIC values for all seven Viral subset, {V}.
	Figure 23. Model 4 output for minimum energy parameter set (line) for virus-related parameter independent fits.


	4.4 Conclusion

	5.0 SPOT
	5.1 Introduction
	5.2 Materials and Methods
	5.2.1 Methodology
	5.2.2 Software
	Table 4. Python3 package versions and applications.

	5.2.3 Data Sources

	5.3 Results
	5.3.1 Characteristic Curves from Brute Force Evaluation
	Figure 24. Models 1 and 4 Characteristic Curves for a SPOT-significant parameter (rI,V) and a non-signficant parameter (rV,V). 

	5.3.2 Categorical Linear Regression Highlights Strain – Specific Rates
	Figure 25. SPOT value for each parameter from Aim 3, Model 4 with biological data.

	5.3.3 Sensitivity of SPOT to Dataset-Specific Parameter Values
	Figure 26. SPOT Values with Synethic Strain-Specific Parameter Differences.

	5.3.4 SPOT with Reduced Samples
	Figure 27. SPOT values from 0% to 100% of possible genomes for Aim 3, Model 4.
	Figure 28. Model 4 P-values of SPOT regression versus the fraction of all possible genomes analyzed can determine the significance of SPOT values.



	6.0 Discussion and Future Work
	6.1 ODE Model of Interferon During Viral Respiratory Infection
	6.2 Spatial Effects of Interferon Regulation and Viral Infections
	6.3 Strain-Specific Modeling of H5N1 and H1N1 Influenza
	6.4 Minimizing Model Size While Fitting Multiple Data Sets with Parameter Sharing
	6.5 Publications Resulting from This Work

	Appendix A Innate Immune Model
	Appendix A.1 ODE Model
	Figure 29. (A) MCMC Acceptance Rate. (B) Sum Squared Error. Note log scale abscissa. (B), Inset: Linear abscissa scale zoom-in on the 1 million iterations post burn-in.
	Table 5. Best-fit model parameters for the Innate Immune Model. 
	Figure 30. MCMC Parameter Histograms. 

	Appendix A.2 Structural Identifiability
	Appendix A.3 Parameter Correlation
	Figure 31. Correlation plots of MCMC parameter exploration. 
	Table 6. Pearson Correlation Coefficients for ODE parameters found via MCMC. 


	Appendix B Multiscale Immune Model
	Appendix B.1 Cell Type Transition Probabilities
	Appendix B.2 Intracellular Model Equations and Rationale
	Appendix B.3 Diffusion of Extracellular Species and Implementation in CC3D
	Appendix B.4 Initial and Boundary Conditions
	Table 7. Initial conditions for each cell type when present at the start of a simulated infection.

	Appendix B.5 Parameter Determination
	Table 8. Baseline parameter values and sources. 
	Table 8 (continued).

	Appendix B.6 MSIS Model interferon prestimulation
	Figure 32. Simulated [IFNe] exposure before infection protects cells from plaque formation. 

	Appendix B.7  MSIS model local sensitivity analyses
	Figure 33. Local sensitivity analysis of baseline simulation. 
	Figure 34. Local sensitivity analysis with elevated paracrine signaling. 
	Figure 35. Local sensitivity with an elevated interferon diffusion coefficient (15x baseline or 540 μm2 s-1).

	Appendix B.8 MSIS model replicate justification 
	Figure 36. Standard deviation and standard error of simulations versus replicas for the baseline.

	Appendix B.9 Additional MSIS model parameter sweeps 
	Figure 37. A parameter sweep of β (rate of transition from uninfected (U) to eclipse phase (I1) cells) from 0.01x to 100x baseline reveals steady growth increases. 
	Figure 38. Parameter sweep of viral replication rate (kV,V) reveals dramatic changes to final plaque diameter. 
	Figure 39. Elevated IFN diffusion coefficient (DIFNe) leads to plaque arrest. 

	Appendix B.10  MSIS Model Parameter Sweep Outliers
	Figure 40. Figure 13 Plaque Growth Rate with all outliers visible. 
	Figure 41. Figure 13 Ve AUC with all outliers visible. 
	Figure 42. Figure 38 IFNe AUC with all outliers visible.
	Figure 43. Figure 38 Ve AUC with all outliers visible. 
	Figure 44. Figure 39 IFNe AUC with all outliers visible.
	Figure 45. Figure 39 Ve AUC with all outliers visible. 

	Appendix B.11 Model and Raw Data Repository

	Appendix C Macrophage Models
	Appendix C.1 Model Equations
	Appendix C.2 Alternative Model Structures
	Figure 46. A) Model schemes of the four models considered in this work. B) Model structure variations.

	Appendix C.3 Correlation of MCP1 and Lung Macrophage Counts
	Figure 47.  Macrophage and MCP1 correlation. 

	Appendix C.4 Energy Traces of Macrophage Model 4 MCMC Parameter Exploration
	Figure 48. AD and NSSD model 4 energy plots.

	Appendix C.5 Macrophage Model Structures 2 and 3 Data Fits
	Figure 49. Models 2 and 3 predictions. 

	Appendix C.6 Macrophage Model Structure #4 Optimal Parameters
	Table 9. AD Minimum energy parameter values and units for each dataset in Model 4.

	Appendix C.7 Macrophage Model 4 OSSD Parameter Distributions
	Figure 50. Macrophage Model 4 AD and NSSD Parameter Distributions.
	Figure 51. Macrophage Model 4 with unshared dI.
	Figure 52. Macrophage Model 4 with unshared dM.
	Figure 53. Macrophage Model 4 with unshared dV.
	Figure 54. Macrophage Model 4 with unshared KM,I.
	Figure 55. Macrophage Model 4 with unshared KV,V.
	Figure 56. Macrophage Model 4 with unshared n.
	Figure 57. Macrophage Model 4 with unshared rM,I.
	Figure 58. Macrophage Model 4 with unshared rV,I.
	Figure 59. Macrophage Model 4 with unshared rV,V.


	Appendix D SPOT Supplement
	Appendix D.1 SPOT Methodology
	Model 1 Characteristic Curves
	Figure 60. Characteristic Curves for Model 1.

	Model 4 Characteristic Curves
	Figure 61. Model 4 Characterstic Curves.

	Model 1 Parameter Sensitivity Sweeps
	Figure 62. Mode l H5N1:H1N1 Parameter Ratio Sweeps.

	Model 4 Parameter Sensitivity Sweeps
	Figure 63. Model 4 H5N1:H1N1 Parameter Ratio Sweeps.


	Bibliography

