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Temporal and Spatial Considerations in Maintenance Planning

Shadi Sanoubar, PhD

University of Pittsburgh, 2022

Maintenance spending is well-known to constitute a substantial part of total production

and service costs. We focus on optimal planning of maintenance activities in several novel

settings. In each setting, we formulate a mathematical optimization model using stochastic

modeling techniques and establish the structural properties of the optimal policy through

theoretical derivations. We provide additional policy insights using numerical observations

and develop easy-to-implement and high-performing heuristic policies.

Specifically, we first study an age-replacement setting (with minimal repair) in which the

maintenance worker may be unpunctual. That is, the actual preventive replacement times

may deviate from the prescribed replacement times in a probabilistic manner. We formulate

a long-run expected cost-rate minimization model and compare the optimal solution and

its performance to those when the unpunctual behavior is assumed to be either absent or

independent of the prescribed replacement time.

Next, we consider an age-replacement setting (without minimal repair) in which replace-

ment costs are non-decreasing in system age. This assumption is motivated by factors such

as decreasing salvage value or increasing costs associated with obtaining spare parts. We for-

mulate a long-run expected cost-rate minimization model that captures this dependency and

compare the optimal solution and its performance to those for the case in which replacement

costs are assumed to be constant.

Finally, we consider the problem of performing condition-based maintenance on a set of

geographically distributed assets via a single maintenance resource that travels between the

assets’ locations. We use a graph representation to model possible geographical locations of

the resource, including idling and asset locations and the links between them. We formulate

a Markov decision process to dynamically obtain the optimal positioning of the maintenance

resource and the optimal timing of the interventions that the resource performs.

Keywords: Maintenance Optimization, Stochastic Processes, Markov Decision Process.
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1.0 Introduction

Maintenance spending is well-known to constitute a substantial part of the operating

budgets in organizations with large investments in machinery and equipment [113]. Hence,

research on maintenance optimization has gained tremendous attention since the 1960’s [47].

Recent maintenance practices involve planning maintenance activities such as measurements,

adjustments, and replacements before asset/equipment failure. Proper planning and imple-

mentation of these maintenance tasks can reduce total failure costs and equipment downtime.

Maintenance strategies are often classified into time-based and condition-based main-

tenance [50, 54]. In time-based maintenance, the decisions are determined based on the

equipment time to failure distribution; whereas in condition-based maintenance, these deci-

sions are based on the information collected through a condition monitoring process.

Time-based maintenance is typically easy-to-implement as only system age or service

time has to be recorded. However, under this strategy, remaining life of systems may be

wasted if they are still in good conditions when a preventive maintenance is performed.

Preventive maintenance is referred to maintaining an asset before failure in a time-based

maintenance setting [3].

On the other hand, condition-based maintenance can prescribe maintenance interventions

when needed, resulting in more cost-effective strategies. That being said, condition-based

maintenance should only be adopted if its benefits outweigh the costs associated with im-

plementing this strategy. These costs include installing condition-monitoring equipment and

software, and training/hiring experienced personnel. Therefore, both strategies are widely

adopted across many industries [3, 46, 58, 115].

1.1 Time-Based Maintenance

Age-replacement is one of the most common time-based maintenance policies for systems

with increasing failure rates [131], and continues to receive attention in the literature [11,

1



137, 138]. Under an age-replacement policy, a system is replaced at some planned age

T (preventive maintenance) or is maintained at failure (reactive maintenance), whichever

occurs first. When the system fails before age T , it is either minimally repaired (i.e., has

the same failure rate as before failure after minimal repair) or replaced (i.e., the system is

restored to as-good-as-new.)

Unrealistic assumptions underlying time-based maintenance strategies is cited as one

of the practical issues [3]. For example, it is often assumed that maintenance actions are

carried out on time, or the cost of maintenance actions are independent of equipment age or

price at the time of replacement. Even though these assumptions simplify the analysis and

computation of the optimal maintenance policies, they may perform poorly in practice.

In many settings, the specification of maintenance policies and their implementation

are carried out by separate parties [43, 102]. Therefore, improper policy implementation,

e.g., unpunctual maintenance, can occur, leading to poor system performance. For instance,

when maintaining hydraulic accumulators, early or late deviations from the pre-charge main-

tenance interval are common and can be costly [34]. Moreover, according to a study by engi-

neering firm SWECO, delayed maintenance on bridges and tunnels can lead to major traffic

issues [101]. In fact, an important maintenance metric used by organizations is Preven-

tive Maintenance Compliance, which is defined as the percentage of preventive maintenance

activities completed within a predefined time window [41]. To mitigate the loss associated

with such deviations, potential implementation errors may be anticipated by planners during

policy specification.

Chapter 2 challenges the assumption of timely implementation of maintenance actions

in an age-replacement framework. Specifically, it assumes that the actual time of preventive

replacements that are carried out by a maintenance worker may deviate from the prescribed

replacement times in a probabilistic manner, and the degree of deviation depends on the

prescribed replacement time. We focus on modeling the temporal impact of the prescribed

replacement policy on the worker’s unpunctual behavior and analyzing its effect on the

optimal policy and its performance. We generalize a previous work in which the degree of

deviation is assumed to be independent of the prescribed replacement time [64].

2



Another limiting assumption in most studies on age-replacement policies is considering

stationary maintenance costs [12, 13, 138]; in practice, however, these costs can depend

on system age. There are multiple factors that contribute to age-dependent maintenance

costs. Decreasing salvage value of equipment and system components is one such factor

[16, 39, 116]. For example, preventive replacement of computers is a widely adopted policy

for medium to large size businesses that have low tolerance for downtime [84, 108]. In these

businesses, adjusting replacement ages by considering salvage values can significantly reduce

maintenance expenditures. Similarly, in construction and mining companies, salvage value

is one of the most important factors that impacts decisions such as repairing, replacing

or disposing of equipment [52]; indeed, various studies aim to model the residual value of

heavy construction equipment [40, 86, 103]. The study in [53] assumes decreasing salvage

value in deriving dynamic replacement policies for an agency that maintains large fleets of

vehicles and specialized equipment. The case of decreasing salvage value can also arise in

applications where the equipment is refurbished for reuse, and refurbishment costs increase

in equipment age. For instance, utility distribution transformers are often refurbished, and

their refurbishment may involve simple adjustments, additions of extra components, or a

complete rewind [14].

Moreover, in many settings (e.g., medical equipment, switchgears in power systems, com-

puter servers and IT infrastructures), sourcing replacement parts can become more challeng-

ing as equipment ages because they are either no longer available or become more expensive

[7, 74, 81, 89, 109]. Finally, sourcing trained technicians may also become more challenging

as equipment ages, resulting in increasing replacement costs [109].

In view of the discussion above, Chapter 3 challenges the assumption of constant re-

placement costs in an age-replacement framework. In particular, we formulate a long-run

expected cost-rate minimization model with instantaneous replacements that captures this

dependency, and provide conditions under which there exists a unique optimal solution. We

provide analytical and numerical results that compare the cost-rate minimizing optimal re-

placement policy, and its performance, to those for the case in which replacement costs are

assumed to be constant. We also consider non-instantaneous replacements, and compare

cost-rate minimizing and availability maximizing policies.

3



1.2 Condition-Based Maintenance

Recent advances in sensor technologies and remote monitoring tools have facilitated

real-time tracking of asset health parameters that enable the implementation of condition-

based maintenance (CBM) strategies. A CBM strategy prescribes maintenance activities

dynamically/adaptively over time based on condition monitoring information, resulting in

more cost-effective maintenance plans compared to traditional approaches. The global con-

dition monitoring market size is projected to grow from $2.6 billion (USD) in 2021 to $3.6

billion (USD) by 2026, with North America as a key market for these technologies [88].

This growth in the condition monitoring market is also fueled by recent shifts in many

industries toward automation, spurred in part by the “great resignation,” which resulted

in an increase of up to 37% in robotic orders of North American companies in 2021 com-

pared to 2020 [93]. Numerous industries, especially those with capital-intensive investments,

have recently adopted CBM strategies. Some examples include transportation networks,

marine technologies, aerospace and defense industries, oil and gas pipelines, and IT infras-

tructures [92, 105, 124, 135].

Common characteristics shared by many of these industry applications include a set of

geographically dispersed assets that must be maintained by a limited number of maintenance

resources. In such settings, the maintenance resources may be positioned between the asset

locations and travel to the assets to maintain (e.g., repair or replace) them.

The maintenance resources in these settings may be human crews, heavy equipment

and materials, or, increasingly, self-propelled maintenance robots. Consider, for example,

railway transportation, in which crews and equipment are positioned in anticipation of

performing many types of activities to maintain its infrastructure composed of tracks,

bridges, tunnels, signals, and other equipment [66]. In terms of inspection and maintenance

robots, it is worth noting that their market size is projected to grow from $1.7 billion

(USD) in 2020 to $3.5 billion (USD) by 2028 [44, 94]. Example applications of these robots

include customer fulfillment centers, subsea installations and technologies, water pipelines,

and computer server centers [4, 10, 26, 83].
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In all of these applications, an effective maintenance plan requires the integrated opti-

mization of two decision-making processes, namely, the timing of maintenance interventions

and the repositioning of maintenance resources (e.g., specialized equipment, human crews,

and robots) using the assets’ condition information. This complex decision space gives rise

to unique and as of yet, not well understood, trade-offs. For example, when maintaining a

set of geographically dispersed condition-monitored assets, it may be optimal to maintain an

asset earlier than it would be for that asset in isolation if a maintenance resource is currently

“sufficiently close” to the location of the asset. Or, based on current condition information

it may be optimal to reposition maintenance resources or have them idle in key locations in

anticipation of asset deterioration that would prompt a future maintenance action.

The literature on condition-based maintenance mainly focuses on optimal timing of main-

tenance actions [37, 71, 126]. Integrating positioning decisions with maintenance timing de-

cisions, however, has not been adequately studied in the literature. A few studies integrate

spatial considerations with preventive maintenance planning for time-based maintenance

[69, 85], however, they do not address condition-based maintenance.

The purpose of Chapter 4 is to integrate positioning and maintenance decisions under a

condition-based maintenance framework, and study the novel trade-offs associated with such

settings. In particular, we formulate a Markov decision process to dynamically obtain the

optimal positioning of the maintenance resource and the optimal timing of the interventions

that the resource performs. These decisions are made as a function of the conditions of

the assets and the current location of the maintenance resource to minimize total expected

costs, which include downtime, travel, and maintenance expenses. We develop insights on

properties of the optimal policies (analytically and numerically) and how they are affected

by the graph structure.
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2.0 Optimal Age-Replacement under Time-Dependent Unpunctual Policy

Implementation

2.1 Introduction

In this chapter, we consider a setting where a maintenance planner prescribes an age-

replacement policy for a degrading system and a maintenance worker implements the policy.

The maintenance worker may perform replacement earlier or later than intended and the

magnitude of this potential deviation is captured through the random variable Y . Unpunc-

tual maintenance-policy implementation is studied in [64] and [132]. The authors in [64]

provide analytical results based on the assumption that this deviation Y is independent of

the prescribed replacement time. In other words, no matter how near or far into the fu-

ture replacement is scheduled, the unpunctual tendencies of the maintenance worker remain

unchanged. The authors in [132] consider a different setting where a free repair warranty

expires when either the item age or the total usage exceeds a certain limit, whichever occurs

first, but like the model in [64], assume that the potential deviation from the intended policy

is independent of the policy set by the maintenance planner.

In practice, however, adherence to a plan and the degree of unpunctuality can be in-

fluenced by how far into the future activities are scheduled. This phenomenon is well-

documented in the appointment scheduling literature. For instance, in [133], the authors

examine the relationship between the rate of missed and canceled medical appointments and

the scheduling interval, i.e., the amount of time between when an appointment is made and

when it is scheduled to occur. Their study uses data from various clinic types and concludes

that shorter scheduling intervals significantly reduce missed appointment rates; authors in

[82] reach the same conclusion. Similar conclusions are also reached by the authors in [59],

who argue that the the rate of failed intake appointments increases linearly with each day of

appointment delay. Interestingly, the results in [100] suggest that increasing waiting times

can sometimes be beneficial for reducing no-shows, contrary to previous findings. Here, we

consider similar behavior in a maintenance optimization setting.
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More specifically, we consider policy-dependent unpunctuality (without the possibility of

no-shows). That is, we generalize the model in [64] by allowing the unpunctual behavior be

non-stationary. We do so by letting the deviation between the scheduled replacement time

and the time when replacement is actually performed depend on the scheduled replacement

age, T . We capture this dependence through a non-negative function z(T ) that scales the

deviation Y multiplicatively so that Y · z(T ) is the random deviation (positive or negative)

between the prescribed replacement time and the time at which replacement is actually

performed.

In our numerical and analytical results, we consider both the case of increasing (z′(T ) >

0) and decreasing (z′(T ) < 0) degree of unpunctuality as replacement is scheduled further

into the future. An increasing deviation could reflect the worker’s forgetfulness as time

passes, whereas a decreasing deviation could reflect the worker’s ability to better prepare

for actions further in the future. Our aim is to compare the optimal long-run cost-rate and

the optimal replacement age under non-stationary unpunctual implementation with minimal

repair, to those for the cases when the unpunctual behavior is assumed to be either absent

or independent of the prescribed replacement time.

Random replacement problems are also closely related to this problem setting

[13, 36, 97, 140]. In random replacement problems, replacement is performed at random

times as it is here, but it is assumed that a variable work cycle is what prompts replacement

times to be random. In contrast, we assume that the potential unpunctuality of the main-

tenance worker causes the actual replacement times to deviate from the intended times in a

stochastic way. That said, both problems seek to optimize over a set of replacement time dis-

tributions. The random replacement literature assumes a functional form for the distribution

that governs the time between replacements, and aims to determine the optimal parameter

values for that distribution. We, however, define a set of possible distributions through the

random variable Y and function z(T ) and seek an optimal replacement time. This difference

in defining the set of possible distributions yields fundamentally different models and results.

Herein, we adopt a similar stylized approach to model an age replacement setting in which

the actual implementation time of the replacement policy is random and depends on the

prescribed policy itself. Studies based on stylized models are typical in the age-replacement
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maintenance literature; see examples in [57, 136, 141]. Our model enables us to examine how

important it is to accurately capture the policy-dependent nature of the maintenance actions.

Moreover, we explore how policy-dependent unpunctual implementation affects the long-run

cost-rate and the optimal replacement policy. Our analytical results provide insights on how

to adjust maintenance policies in anticipation of such unpunctual behavior.

The remainder of the chapter is organized as follows. Section 2.2 provides a general

model formulation and establishes [64] and [13, p. 96] as special cases of our model. Section

2.3 provides sufficient conditions for the existence of a unique optimal solution. Section

2.4 makes certain assumptions on the distribution of unpunctuality under stationary

and non-stationary behavior and provides analytical results that compare the optimal

long-run cost-rate and the optimal prescribed replacement time for our problem with those

of stationary unpunctual and punctual implementation. Section 2.5 examines heuristic

policies, and provides lower and upper bounds on cost-rate ratios to examine the effect of

non-stationary behavior on the long-run cost-rate relative to both stationary unpunctual

and punctual implementation. Section 2.6 relaxes the assumptions made in Section 2.4

and analyzes a numerical example that compares the optimal policies and cost-rates of the

three problems. Finally, we summarize our findings and discuss future research directions

in Section 2.7. The proofs for all results are in Appendix A.

2.2 Model Formulation

Consider a failure-prone system with self-announcing failures that require immediate

(instantaneous) minimal repair. Let the continuous random variable X be the time to failure

of the system, with c.d.f. FX(t), p.d.f. fX(t), mean µX , survival function F̄X(t) and hazard

rate function hX(t), i.e., hX(t) =
fX(t)

F̄X(t)
. We impose the following conditions on hX(t):

Assumption 1. hX(0) = 0 and hX(t) is strictly increasing to +∞.

The first part of Assumption 1, hX(0) = 0, implies that the hazard rate is 0 at the time of

renewal; this assumption holds for many common failure distributions such as theWeibull dis-
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tribution. The second condition implies that the hazard rate is strictly increasing and defined

for all values of x ≥ 0. Thus, the random variable X has an infinite support. Both assump-

tions are commonly used in the maintenance and reliability literature [33, 63, 95, 137, 139].

Next, consider a maintenance planner who prescribes a maintenance policy consisting of

an age replacement time, T . That is, preventive replacement is scheduled to be performed

once the system has been operating for T units of time; again, failures that occur before

age T are repaired minimally. After preventive replacement the system is as-good-as-new.

Finally, consider a maintenance worker, i.e., an individual tasked with executing the main-

tenance policy. We consider the case in which this maintenance worker is unpunctual and

the degree of his/her unpunctuality depends on the replacement time T prescribed by the

maintenance planner. Note that, we use the terms “non-stationary” and “time-dependent”

interchangeably to describe this unpunctual behavior.

Let the probabilistic, non-stationary deviation between the prescribed replacement time

and the time at which preventive replacement is actually performed be denoted by the

continuous random variable W . To facilitate comparisons to the unpunctual, stationary

(i.e., time-independent) model studied in [64], we use the continuous random variable Y with

known c.d.f. FY (y) and p.d.f. fY (y), and a continuous non-negative function z(T ) such that

W (T ) = Y · z(T ). (2.1)

Correspondingly, the actual replacement time occurs at age T + W (T ) = T + Y · z(T ). If

Y > 0, then replacement is performed later than scheduled, and vice versa if Y < 0. We

assume that Y is independent of T and capture W ’s dependence on T via z(T ). We impose

the following assumptions on Y and z(T ):

Assumption 2. Y is independent of X and is defined over the interval [a, b], −∞ < a ≤

b < ∞. For all T ≥ 0, z(T ) ≥ 0 and z(T ) is twice differentiable.

Independence between the random variables X and Y implies that the time to failure

distribution does not influence the unpunctual behavior of the maintenance worker. We

assume finite bounds on Y for mathematical convenience and that z(T ) is non-negative

in order to limit the characterization of earliness or lateness to the sign of Y and let z(T )
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adjust the magnitude of the deviation. Lastly, we assume that z(T ) is a smooth, twice

differentiable function, which facilitates establishing analytical results. Functional forms

of z(T ) used for the illustrative examples in this chapter include: (T/c)d, cT − d + 1,

exp(−cT + d) for c > 0 and d > 0, and c/(T + d).

Figure 1 depicts the possible renewal cycle dynamics. In case (i) z(T ) is decreasing,

i.e., the further into the future that replacement is scheduled, the more punctual the

maintenance worker becomes. Conversely, in case (ii) where z(T ) is increasing, the further

into the future that replacement is scheduled, the less punctual the maintenance worker

becomes. In case (iii) the dependence between W and T is absent (i.e., z(T ) = 1 for all T ),

which corresponds to the cycle dynamics in [64].

Note that by equation (2.1), if z(T ) is increasing (decreasing) over some interval T ∈

[T1, T2], then the absolute value of the mean (if not equal to 0) and variance of W (T ) are also

increasing (decreasing) over T ∈ [T1, T2]. That is, e.g., if Y is defined over the interval [a, b]

such that a < b < 0, and z(T ) is increasing (decreasing) over all T , then the mean of W (T )

is decreasing (increasing) and the variance of W (T ) is increasing (decreasing) over T . Con-

versely, e.g., if Y is defined over the interval [a, b] such that 0 < a < b, and z(T ) is increasing

(decreasing) over all T , then the mean and variance of W (T ) are also increasing (decreasing).

In practice, statistical methods can be used to characterize the random variable Y and

function z(T ). A possible procedure is as follows. First, a function z(T ) is assumed in

accordance with historical observations of how the unpunctual behavior changes over time

(e.g., monotone increasing or decreasing, non-monotone, linear, concave, or convex). Then,

one or multiple classes of distributions is assumed for Y . The parameters of the assumed

distribution for Y are estimated from observed data, and the distribution with the maximum

likelihood function is adopted. If the fit is poor, this procedure is repeated with new assump-

tions on z(T ) and the classes of distribution for Y [128]. In Section 2.5, we provide bounds

on the cost-rate that do not require the full knowledge of the distribution of Y . Hence, these

bounds can reflect the value of estimating the true distribution of the unpunctual behavior.

The objective of the maintenance planner is to identify a cost-rate minimizing policy that

anticipates the (non-stationary) unpunctual behavior of the maintenance worker. Because

replacements return the system to as-good-as-new, we take a renewal-reward approach [111,

10



Figure 1: Possible cycle dynamics under age replacement with minimal repair for a < 0 < b.

The three cases are as follows: (i) z′(T ) < 0, i.e., the degree of potential unpunctuality of

the maintenance worker decreases in the scheduled replacement time; (ii) z′(T ) > 0, i.e.,

the degree of potential unpunctuality of the maintenance worker increases in the scheduled

replacement time; (iii) z′(T ) = 0, i.e., the degree of potential unpunctuality of the main-

tenance worker is stationary. For each case, we depict the distribution of the deviation

T +W (T ) = T + Y · z(T ) for three different ages T < T+ < T++.

p. 52] and formulate the long-run cost-rate as the ratio of the expected renewal cycle cost to

the expected renewal cycle length.

Let C(T ) and L(T ) be the cycle cost and cycle length, respectively. Then, the corre-

sponding long-run average cost-rate is

Ω(T ) ≡ EX,Y [C(T )]

EX,Y [L(T )]
.
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Because Y can assume negative values, we define the feasible set for T as

S =

{t : t > 0}, if a ≥ 0

{t : t+ az(t) > 0}, if a < 0.

The decision-making problem for the maintenance planner is given by

min
T∈S

Ω(T ) =
EX,Y [C(T )]

EX,Y [L(T )]
. (2.2)

Similarly, let Ĉ(T ) and L̂(T ) be the cycle cost and cycle length, respectively, when the

unpunctual behavior is time-independent (i.e., Y ̸= 0 and z(T ) = 1 for all T ) and let Ω̂(T )

be the corresponding long-run cost-rate. For this case the feasible set for T is

Ŝ =

{t : t > 0}, if a ≥ 0

{t : t+ a > 0}, if a < 0

and the optimization problem is given by

min
T∈Ŝ

Ω̂(T ) =
EX,Y [Ĉ(T )]

EX,Y [L̂(T )]
, (2.3)

which is studied in [64].

Lastly, let C̃(T ) and L̃(T ) be the cycle cost and cycle length under punctual behavior (i.e.,

Y ≡ 0) and let Ω̃(T ) be the corresponding long-run cost-rate. In this case the optimization

problem is given by

min
T>0

Ω̃(T ) =
EX [C̃(T )]

EX [L̃(T )]
, (2.4)

a well studied classical model (see [13]).

Let cp and cm denote the replacement cost and the minimal repair cost, respectively.

When replacement is always performed on time,

EX [C̃(T )] = cm

∫ T

0

hX(x)dx+ cp , EX [L̃(T )] = T,
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and the optimal solution to problem (2.4), T̃ ∗, corresponds to solving

min
T>0

Ω̃(T ) =
cm

∫ T

0
hX(x)dx+ cp

T
. (2.5)

If the timing of replacement is unpunctual, but independent of the scheduled replacement

time, renewal occurs at time T + Y . Therefore,

EX,Y [Ĉ(T )] =

∫ b

a

(
cm

∫ T+y

0

hX(x)dx
)
dFY (y) + cp,

EX,Y [L̂(T )] =T + µY ,

and the optimal solution to problem (2.3), T̂ ∗, corresponds to solving

min
T∈Ŝ

Ω̂(T ) =

∫ b

a

(
cm

∫ T+y

0
hX(x)dx

)
dFY (y) + cp

T + µY

. (2.6)

When the degree to which replacement is performed early or late depends on the

scheduled replacement time, renewal occurs at time T + Y · z(T ) and the expected cycle

length and expected cycle cost are given by

EX,Y [C(T )] =

∫ b

a

(
cm

∫ T+yz(T )

0

hX(x)dx
)
dFY (y) + cp,

EX,Y [L(T )] =T + µY z(T ),

respectively, and the optimal solution to problem (2.2), T ∗, corresponds to optimizing

min
T∈S

Ω(T ) =

∫ b

a

(
cm

∫ T+yz(T )

0
hX(x)dx

)
dFY (y) + cp

T + µY z(T )
. (2.7)

Note that the terms ∫ b

a

(
cm

∫ T+yz(T )

0

hX(x)dx
)
dFY (y)/

(
T + µY z(T )

)
and cp/

(
T + µY z(T )

)
represent the long-run minimal repair cost-rate and long-run

replacement cost-rate, respectively.

Table 1 summarizes the notation for the three models presented in Section 2.2.
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Table 1: Summary of age replacement models with minimal repair under punctual replacement [13]; stationary, unpunctual

replacement [64]; and non-stationary, unpunctual replacement (our model).

Model in [13] Model in [64] Our model

Cost-rate Ω̃(T ) Ω̂(T ) Ω(T )

Expected cycle cost cm
∫ T
0 hX(x)dx+ cp

∫ b
a

(
cm

∫ T+y
0 hX(x)dx

)
dFY (y) + cp

∫ b
a

(
cm

∫ T+yz(T )
0 hX(x)dx

)
dFY (y) + cp

Expected cycle length T T + µY T + µY z(T )

Prescribed replacement time T̃ T̂ T

Actual replacement time T̃ T̂ + Y T + Y · z(T )
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2.3 Existence of a Unique Optimal Solution

In this section, we establish conditions under which problem (2.7) has a unique solution.

Setting the first derivative of the objective function in problem (2.7) equal to zero yields

m(T ) = k, (2.8)

where k = cp
cm

> 1 and

m(T ) = −
∫ b

a

∫ T+yz(T )

0

hX(x)fY (y)dxdy

+
T + µY z(T )

1 + µY z′(T )

∫ b

a

(1 + yz′(T ))hX(T + yz(T ))fY (y)dy.

If m(T ) = k has a unique solution, then that solution, T ∗, satisfies equation (2.8) and the

minimum cost-rate Ω(T ∗) is

cm
1 + µY z′(T ∗)

∫ b

a

(1 + yz′(T ∗))hX(T
∗ + yz(T ∗))fY (y)dy.

Proposition 1 establishes sufficient conditions to ensure that there exists a unique optimal

solution for problem (2.7).

Proposition 1. For all T ∈ S, let (i) 1 + µY z
′(T ) ≥ δ > 0 for some δ ∈ IR, and (ii)

z′′(T ) ≥ 0. If

lim
T→max{min{t: t+az(t)>0},0}

m(T ) < k, (2.9)

then Ω(T ) is quasi-convex and there exists a unique solution T ∗ to (2.7). Otherwise,

inf Ω(T ) = lim
T→max{min{t: t+az(t)>0},0}

Ω(T ). (2.10)

Recall that the proofs of all analytical results including Proposition 1 are provided in

Appendix A. The sufficient condition (i) in Proposition 1 requires 1+µY z
′(T ) to be strictly

positive. Note that this expression is the derivative of the expected replacement time, T +

µY z(T ). Hence, the condition implies that the later the prescribed replacement time, the

later the expected replacement time, which is a reasonable assumption.
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The sufficient condition (ii) in Proposition 1 requires z(T ) to be convex. Although, we

are unable to prove the uniqueness of an optimal solution without this condition, all of our

numerical instances suggest that relaxing this condition does not affect the uniqueness of

the solution to problem (2.7). Violation of 1 + µY z
′(T ) > 0, on the other hand, can result

in multiple solutions to equation (2.8); see Example 1.

Example 1. Let X ∼ Weibull(4, 1), Y ∼ Uniform[−10,−9], z(T ) =
(

T
10.54

)2
and k = 4. As

seen in Figure 2, there are two solutions to equation (2.8), T = T ∗ = 1.20 and T = 10.51.

The third extremum of Ω(T ) occurs at age 5.87 where 1 + µY z
′(5.87) = 0.

Figure 2: Expected long-run cost-rate for Example 1. Because 1 + µY z
′(T ) > 0 does not

hold for all T ∈ S, there are two local minima for Ω(T ): T = T ∗ = 1.20 and T = 10.51.

Under the parameter settings in Example 1, 1+µY z
′(T ) > 0 holds for values of T < 5.87

and hence, the expected replacement time (i.e., T + µY z(T )) is increasing for T < 5.87.

Conversely, 1+µY z
′(T ) < 0 holds for values of T > 5.87 and hence, the expected replacement

time is decreasing for T > 5.87; i.e., the later the prescribed replacement time, the earlier

the expected replacement time. Because condition (i) in Proposition 1 is violated, there are

two local minima for problem (2.7); one at T = 1.20 where the expected replacement time

is increasing, and another at T = 10.51 where the expected replacement time is decreasing.

The local minimum at T = 1.20 corresponds to the global minimum to problem (2.7). ■
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Based on Proposition 1, we impose the following condition:

Assumption 3. There exists a δ ∈ IR such that 1 + µY z
′(T ) ≥ δ > 0 for all T ∈ S.

In all of the analytical results and numerical examples to follow, we ensure that Assumption

3 and condition (2.9) hold. Note that the value of k must be relatively large for condition

(2.9) to hold. That is, condition (2.9) may not hold when the preventive replacement cost cp

is nearly equal to the minimal repair cost cm; however, cp ≈ cm is unlikely to hold in practice.

2.4 Analytical Results

In this section, we derive analytical results to compare the optimal cost-rates and optimal

solutions of problems (2.5), (2.6) and (2.7). These comparisons inform maintenance planners

as to how to adjust their policies in anticipation of unpunctual maintenance workers. In

general, it is not straightforward to compare the optimal long-run cost-rates and replacement

policies for two arbitrary instances of problems (2.6) and (2.7) analytically (see the numerical

example in Section 2.6). Hence, throughout Section 2.4, to compare the optimal long-run

cost-rate and replacement policies of problems (2.6) and (2.7), we often assume that either

z(T̂ ∗) = 1, (2.11)

or

z(T ∗) = 1. (2.12)

Based on equation (2.1), condition (2.11) implies that at time T̂ ∗ the degree of unpunc-

tuality for problems (2.6) and (2.7) are stochastically equivalent and hence Ω(T̂ ∗) = Ω̂(T̂ ∗).

That is, although in the non-stationary case the deviation distribution changes over

time, it coincides with that of the stationary case at T̂ ∗. More intuitively, if the worker

exhibits non-stationary unpunctual behavior and the system is intended to be replaced

at the optimal replacement time under stationary unpunctual behavior (i.e., T̂ ∗), then

the cost-rate would match that of a worker who exhibits stationary unpunctual behavior

implementing the same replacement policy; for scheduled replacement times before or after
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T̂ ∗, however, the deviation between planned and actual time may be smaller or larger than

that of a maintenance worker who exhibits stationary unpunctual behavior. The condition

in equation (2.12) can be explained similarly. In Section 2.6, we provide a numerical

example to examine the case in which neither (2.11) nor (2.12) holds.

2.4.1 Analysis of Ω(T ∗) vs. Ω̂(T̂ ∗) vs. Ω̃(T̃ ∗)

Barlow and Proschan (1965) establish the intuitive fact that the long-run cost-rate under

uncertain timing of replacements is greater than it would be under deterministically timed

replacements. Theorem 1 states this fact in the context of our problem in which replacement

times are uncertain with a time-dependent distribution.

Theorem 1. Ω̃(T̃ ∗) ≤ Ω(T ∗).

Theorem 2 compares the optimal long-run cost-rates of problems (2.5), (2.6) and (2.7).

Theorem 2. If z(T̂ ∗) = 1, then Ω̃(T̃ ∗) ≤ Ω(T ∗) ≤ Ω̂(T̂ ∗).

Similar to Theorem 1, the first inequality in Theorem 2 intuitively establishes that when the

timing of replacement is certain, the optimal long-run cost-rate is smaller than it would be

under unpunctual replacement. Therefore, the cost-rate of problem (2.5) is less than that

of both problems (2.6) and (2.7). The second inequality establishes that with z(T̂ ∗) = 1,

the optimal cost-rate under non-stationary unpunctual behavior is no more than that under

stationary unpunctual behavior. Theorem 3 compares the optimal solutions under the

assumption that z(T ∗) = 1 instead.

Theorem 3. If z(T ∗) = 1, then Ω̃(T̃ ∗) ≤ Ω̂(T̂ ∗) ≤ Ω(T ∗).

In Theorem 3, with z(T ∗) = 1, the cost-rates of problems (2.6) and (2.7) coincide at the

optimal solution to the problem with non-stationary unpunctual behavior. Hence, the

optimal solution to the problem with stationary unpunctual behavior is at least as good

as that for the non-stationary case. Intuitively, the fact that fY is stationary gives the

maintenance planner more flexibility in obtaining the optimal cycle length and cost as

opposed to fW (T ), and results in a lower cost per unit time.
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The insights gained from Theorems 2 and 3 are two-fold. First, the optimal cost-rate

under stationary unpunctual behavior can be improved by a maintenance worker with non-

stationary unpunctual behavior if the mean or variance of her/his unpunctuality at the

optimal replacement time is no more than that of the worker with stationary behavior. This

result holds because by exploiting the non-stationary behavior, the maintenance worker can

decrease the mean and variance of unpunctuality by scheduling replacement earlier or later

than T̂ ∗. Second, the optimal cost-rate under non-stationary unpunctual behavior can be

improved by a maintenance worker with stationary unpunctual behavior if the mean or

variance of her/his unpunctuality is no more than that of the worker with non-stationary

behavior at the optimal replacement time. This result holds because with a more consistently

behaved worker, the maintenance planner can obtain a better cycle length.

Next, under some assumptions on the distribution of Y , we compare the cost-rate

functions of problems (2.6) and (2.7) over all T , not just at their optimal solutions as in

Theorems 2 and 3.

Theorem 4. Let µY (y) = 0 and fY (y) be symmetric. For all T such that z(T ) ≤ 1,

Ω(T ) ≤ Ω̂(T ). Conversely, for all T such that z(T ) ≥ 1, Ω(T ) ≥ Ω̂(T ).

For µY = 0 the expected cycle lengths of problem (2.6) and (2.7) are equal. Note that under

non-stationary unpunctual behavior, if replacement is prescribed at a time T for which

z(T ) ≥ 1, then the variance of the degree of unpunctuality is at least as large as that for

the stationary case. Theorem 4 states that under such unpunctual behavior, larger variance

in the degree of unpunctuality results in a larger expected cycle cost. The opposite holds if

replacement is prescribed at a time T with z(T ) ≤ 1.

Example 2 compares Ω(T ) and Ω̂(T ) for (i) µY = 0 and symmetric fY (y), (ii) µY < 0

and (iii) µY > 0 under a monotone function z(T ).

Example 2. Let z(T ) = T

T̂ ∗ . Assume k = 4 and X ∼ Weibull(2, 1). Let (i)

Y ∼ Uniform[−0.8, 0.8], (ii) Y ∼ Uniform[−3, 0.8] and (iii) Y ∼ Uniform[−0.8, 1.5].

For these scenarios, see Figures 3(a), 3(b) and 3(c), respectively.

First, note that because z(T̂ ∗) = 1, as stated in Theorem 2, in all three cases in Figure 3

the optimal cost-rate under non-stationary unpunctuality is less than that under stationary
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(a) µY = 0 (b) µY < 0

(c) µY > 0

Figure 3: Long-run cost-rate under non-stationary and stationary unpunctual behavior for

Example 2.

unpunctuality. In Figure 3(a), µY = 0 and fY (y) is symmetric; thus, the conditions of

Theorem 4 hold and because z(T ) is monotone, the cost-rate functions coincide only at

T̂ ∗. However, for µY < 0 in Figure 3(b) and µY > 0 in Figure 3(c), the conditions of

Theorem 4 do not hold and the functions coincide twice. In Figure 3(c), although the

variance of the degree of unpunctuality is smaller for all replacement ages T less than T̂ ∗, the
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expected cycle length is also smaller under non-stationary unpunctual behavior; as a result,

for T < 1.03, the corresponding cost-rate function is larger than the time-independent

unpunctual cost-rate. The opposite holds for Figure 3(b), where µY < 0. ■

2.4.2 Analysis of T ∗ vs. T̂ ∗ vs. T̃ ∗

In this section, we compare the optimal replacement ages for problems (2.5), (2.6) and

(2.7). First, we establish conditions under which we can analytically compare the optimal

replacement ages under stationary (problem (2.6)) and non-stationary (problem (2.7)) un-

punctuality. Similar to Theorems 2 and 3, we assume that either z(T̂ ∗) = 1 or z(T ∗) = 1,

respectively, so that we are able to compare the corresponding optimal solutions. Note that

throughout this section, the convexity of z(T ) is a sufficient condition for the analytical

results to hold, but all of our numerical instances suggest that relaxing this condition does

not affect the results.

Theorem 5. Let z(T̂ ∗) = 1 and z′′(T ) ≥ 0 for all T ∈ S. If z′(T̂ ∗) > 0, then T ∗ < T̂ ∗.

Conversely, if z′(T̂ ∗) ≤ 0, then T ∗ ≥ T̂ ∗.

The intuition behind Theorem 5 is similar to that behind Theorem 2. For z(T ) increasing, if

the maintenance planner schedules replacement earlier than T̂ ∗, then the mean and variance

of the degree of unpunctuality decrease, resulting in a lower cost-rate. The opposite holds

for decreasing z(T ); Corollary 1 establishes the analogous result for z(T ∗) = 1.

Corollary 1. Let z(T ∗) = 1 and z′′(T ) ≥ 0 for all T ∈ S. If z′(T ∗) > 0, then T ∗ < T̂ ∗.

Conversely, if z′(T ∗) ≤ 0, then T ∗ ≥ T̂ ∗.

Next, Example 3 demonstrates the relationship between the cost-rate functions and op-

timal solutions for problems (2.6) and (2.7) when either z(T̂ ∗
1 ) = 1 or z(T ∗) = 1, where T̂ ∗

1 is

the solution that minimizes a stationary unpunctual cost-rate Ω̂1(T ). Under the condition

that z(T̂ ∗
1 ) = 1, we solve for the optimal solution T ∗ that minimizes the non-stationary

unpunctual cost-rate Ω(T ). Lastly, we solve for the optimal solution T̂ ∗
2 that minimizes a

second stationary unpunctual cost-rate Ω̂2(T ) under the condition that the distribution of

unpunctual behavior is equal to fW (T ∗) (i.e., z(T
∗) = 1).
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Figure 4: Long-run cost-rate functions under punctual behavior
(
i.e., Ω̃(T )

)
, non-stationary

unpunctual behavior
(
i.e., Ω(T )

)
, stationary unpunctual behavior for Y1 ∼ Uniform[0, 2](

i.e., Ω̂1(T )
)
and stationary unpunctual behavior for Y2 ≡ z(T ∗)·Y1

(
i.e., Ω̂2(T )

)
for the prob-

lem setting described in Example 3. Note that when comparing Ω(T ) and Ω̂1(T ), z(T̂
∗
1 ) = 1;

however, when comparing Ω(T ) and Ω̂2(T ), z(T̂
∗
2 ) ̸= 1.

Example 3. Let X ∼ Weibull(3, 1) and k = 8. Then, we have Ω̃(T̃ ∗) = 7.56 and T̃ ∗ = 1.59.

First, we let Y1 ∼ Uniform[0, 2] and obtain the optimal cost-rate and replacement time under

stationary unpunctual behavior: Ω̂1(T̂
∗) = 8.56, T̂ ∗

1 = 0.59. Next, we let z(T ) = T

T̂ ∗
1

, and

Ω(T ∗) = 8.45 and T ∗ = 0.53. Finally, we set Y2 ≡ W (T ∗) ≡ z(T ∗) · Y1; that is, we let

the distribution of the stationary unpunctual behavior be identical to the distribution of the

non-stationary unpunctual behavior at the optimal replacement time T ∗, for which Ω̂∗
2 = 7.82

and T̂ ∗
2 = 0.64. Figure 4 depicts the long-run cost-rate function for each problem instance.

In Figure 4, when comparing Ω(T ) to Ω̂1(T ), the optimal replacement time under

non-stationary behavior is earlier than that under stationary behavior. This relationship

holds because z(T ) = T

T̂ ∗
1

and by replacing earlier than T̂ ∗
1 , the mean and variance of the

degree of deviation would be smaller (recall Theorem 5). Furthermore, the optimal cost-rate

under non-stationary unpunctual behavior is smaller than that under stationary unpunctual
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behavior because the mean and variance of the degree of unpunctuality under non-stationary

behavior at T ∗ are smaller than that of stationary behavior (recall Theorem 2).

In contrast, when comparing Ω(T ) to Ω̂2(T ), the optimal cost-rate under non-stationary

behavior is larger than its stationary counterpart. This relationship holds because z(T̂ ∗
2 ) ̸= 1

and the deviation under stationary behavior has the same distribution as that under

non-stationary behavior at the optimal replacement age T ∗ (recall Theorem 3). Moreover,

T̂ ∗
2 is closer to T̃ ∗ compared to T̂ ∗

1 . This intuitive result holds because the mean and

variance of Y2 for Ω̂2(T ) is smaller than that of Y1 for Ω̂1(T ); hence, the optimal solution

that minimizes Ω̂2(T ) is nearer to that under the case of punctual implementation. ■

Next, to analyze the relative magnitude of T ∗, T̂ ∗ and T̃ ∗, we exploit the following four

results from [64], stated here as Lemmas 1-4.

Lemma 1 [64]. If µY = 0 and hX(t) is concave, then T̂ ∗ ≥ T̃ ∗.

Lemma 2 [64]. If a < b ≤ 0, hX(t) is convex and (i) m̃(−a) ≥ k, then T̃ ∗ ≤ −a < T ∗; (ii)

m̃(−a) < k, then −a < T̃ ∗ < T̂ ∗.

Lemma 3 [64]. If 0 ≤ a < b, hX(t) is convex and lim
T→+0

m̂(T ) ≥ 0, then 0 < T̂ ∗ < T̃ ∗.

Lemma 4 [64]. If X ∼ Weibull(α, β), α ∈ Z+, α > 2 and fY (y) is symmetric w.r.t. y = 0,

then T̂ ∗ ≤ T̃ ∗ = ( k
α−1

)
1
αβ. Moreover, if α = 3, then T̂ ∗ = T̃ ∗ = (k

2
)
1
3β.

The function m̃(T ) in Lemma 2 is obtained by setting the first derivative of the objective

function in problem (2.5) equal to zero:

m̃(T ) ≡ T · hX(T )−
∫ T

0

hX(x)dx = k. (2.13)

The solution to equation (2.13) is T̃ ∗. Similarly, the function m̂(T ) in Lemma 3 is obtained

by setting the first derivative of the objective function in problem (2.6) equal to zero:

m̂(T ) ≡ (T + µY )

∫ b

a

hX(T + y)fY (y)dy

−
∫ b

a

∫ T+y

0

hX(x)fY (y)dxdy = k.

(2.14)

The solution to equation (2.14) is T̂ ∗.
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We use Theorem 5 and Lemmas 1-4 to establish the following propositions that compare

the optimal solutions of problems (2.5), (2.6) and (2.7). For Propositions 2-5 we assume

that z(T̂ ∗) = 1.

Proposition 2. Let z′′(T ) ≥ 0, µY = 0 and hX(t) be concave. If z′(T̂ ∗) < 0, then T̃ ∗ <

T̂ ∗ < T ∗.

The concavity of hX(t) implies that the rate of increase in the hazard function decreases over

time. Under such a hazard rate, if the expected replacement time is equal to the prescribed

replacement time (i.e., µY = 0), then it is optimal to schedule replacement later than we

would under punctual behavior (i.e., T̃ ∗ < T̂ ∗). Moreover, if the variance of the degree of

unpunctuality decreases as replacement is scheduled further into the future, then it is optimal

to schedule the replacement later than we would under stationary unpunctual behavior.

Example 4 demonstrates that if instead z′(T̂ ∗) > 0, then depending on the model pa-

rameter values, both replacing earlier (T ∗ < T̃ ∗ < T̂ ∗) and replacing later (T̃ ∗ < T ∗ < T̂ ∗)

than the optimal replacement age under punctual implementation may be optimal.

Example 4. Let k = 5, X ∼ Weibull(1.5, 1) and Y ∼ Uniform[−4, 4]. The optimal solutions

for problems (2.5) and (2.6) are T̃ ∗ = 4.64 and T̂ ∗ = 5.45, respectively, and clearly T̃ ∗ < T̂ ∗.

Consider (i) z(T ) =
(

T

T̂ ∗

)2
and (ii) z(T ) = 0.4 T

T̂ ∗ + 0.6. In case (i) T ∗ = 4.11 and hence

T ∗ < T̃ ∗. However, in case (ii) T ∗ = 5.04 and T ∗ > T̃ ∗. Note that, in case (i), if the

maintenance planner disregards the non-stationary behavior and only anticipates stationary

unpunctual behavior, then replacement is prescribed at a time later than T̃ ∗. However, under

a true characterization of z(T ), preventive replacement is prescribed earlier than T̃ ∗. ■

Proposition 3. Let z′′(T ) ≥ 0, a < b ≤ 0 and hX(t) be convex. If z′(T̂ ∗) < 0, then

T̃ ∗ < T̂ ∗ < T ∗.

Proposition 3 establishes conditions under which, if the maintenance worker never performs

replacement later than intended, then the maintenance planner should schedule replacement

later than he would under punctual behavior (i.e., T̃ ∗ < T̂ ∗). Moreover, if the mean and

variance of the degree of unpunctuality decreases when replacement is scheduled beyond

T̂ ∗ (i.e., z′(T̂ ∗) < 0), then it is optimal to shift replacement even later than that under

stationary unpunctual behavior (i.e., T̂ ∗ < T ∗). Conversely, Proposition 4 implies that if the

24



maintenance worker never performs replacement earlier than intended, then the maintenance

planner should schedule replacement earlier than he would under punctual behavior.

Proposition 4. Let z′′(T ) ≥ 0, 0 ≤ a < b, hX(t) be convex and lim
T→+0

m̂(T ) ≥ 0. If

z′(T̂ ∗) > 0, then T ∗ < T̂ ∗ < T̃ ∗.

Proposition 4 addresses the opposite scenario of Proposition 3, however, unlike Propo-

sition 3, the result in Proposition 4 depends on the distribution of the delay time Y and

requires lim
T→+0

m̂(T ) ≥ 0. In [64], it is shown that this condition holds for sufficiently large

values of the mean delay time µY . For some instances with large variation in delay but

a small mean delay time, the majority of the cost-rate is attributable to minimal repairs.

Therefore, the long-run cost-rate decreases when replacement is prescribed at an age greater

than T̃ ∗. Hence, it may be optimal to schedule the replacement later than we would under

punctual behavior, even though the worker is never early (see Example 1 in [64]).

In Propositions 3 and 4, the comparison between the optimal replacement times of prob-

lems (2.6) and (2.7) is a direct result of Theorem 5 for the given conditions on z′(T̂ ∗). If

either z′(T̂ ∗) > 0 in Proposition 3 or z′(T̂ ∗) < 0 in Proposition 4 is violated, however, then

the relationships between the optimal replacement times under non-stationary unpunctuality

and punctual implementation still hold for all of the numerical instances that we tested.

Proposition 5. Let z′′(T ) ≥ 0, X ∼ Weibull(α, β), α ∈ Z+, α > 2 and fY (y) be symmetric

w.r.t. y = 0. If z′(T̂ ∗) > 0, then T ∗ < T̂ ∗ ≤ T̃ ∗. Moreover, for the special case of α = 3, (i)

if z′(T̂ ∗) > 0, then T ∗ < T̂ ∗ = T̃ ∗ = (k
2
)
1
3β, and (ii) if z′(T̂ ∗) < 0, then T̂ ∗ = T̃ ∗ < T ∗.

Note that a Weibull distribution with shape parameter greater than two has a convex

hazard function. Proposition 5 shows that if the hazard rate increases sufficiently quickly

(i.e., α > 2) and the unpunctual behavior of the maintenance worker is constant over time,

then it is optimal to prescribe replacement at an earlier age compared to the punctual

implementation case. Furthermore, under a symmetric fY (y) and α = 3, the optimal

solutions for stationary unpunctual and punctual implementation coincide [64]. However,

the optimal solution under non-stationary implementation is different and can be obtained

by solving T 3 + 3T 2z(T )z′(T )σY = k
2
β3 for T .
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In general, if X ∼ Weibull(α, β) for α ̸= 3 and z′(T̂ ∗) < 0, it is difficult to characterize

the relationship between T ∗ and T̃ ∗. Example 5 illustrates the type of results than can be

obtained for this case under different forms of z(T ).

Example 5. Let X ∼ Weibull(5, 2), Y ∼ Uniform[−1, 1] and k = 16. The optimal solutions

for problems (2.5) and (2.6) are T̃ ∗ = 2.63 and T̂ ∗ = 2.52. Consider (i) z(T ) = exp(−2 T

T̂ ∗ +2)

and (ii) z(T ) = exp(−1
2

T

T̂ ∗ +
1
2
). In case (i) T ∗ = 2.76 and hence T ∗ > T̃ ∗. However, in case

(ii), T ∗ = 2.59 < T̃ ∗. ■

To summarize, our derivations and examples indicate that if the maintenance worker

with stationary or non-stationary unpunctual behavior is never late, then it is usually

optimal to schedule the replacement time later than we would for a punctual worker. In

many instances, the opposite holds for a maintenance worker who is never early; however,

in some scenarios where the degree of unpunctuality has a small mean and large variance, it

may be optimal to schedule replacement later than we would under the punctual behavior.

Finally, if the maintenance worker is sometimes late and sometimes early (degree of

unpunctuality varies around zero), then the optimal replacement times under stationary

and non-stationary unpunctual behavior can have different relationships with T̃ ∗. For these

scenarios, ignoring the non-stationary behavior can increase the cost-rate significantly.

2.5 Heuristic Policies and Cost-rate Bounds

In this section, we examine heuristic policies and provide some bounds on cost-rate ratios

to study the effect of non-stationary behavior on the cost-rate. Note that the results in this

section generally do not require z(T ∗) = 1 or z(T̂ ∗) = 1. That is the results in this section

hold for a general function z(T ) with the exception of Proposition 7.

2.5.1 Heuristic Policies

Full characterization of an individual’s unpunctual behavior can be difficult. Therefore,

heuristic policies that do not depend on a fully specified fY can be appealing. Hence next,
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we numerically study the percent increase in cost-rate induced by prescribing replacement at

such a time. First, consider prescribing replacement at age T̃ ∗, which ignores the unpunctual

behavior. In Section 2.5.2 we quantify the cost-rate ratio for this heuristic (Proposition 8)

and provide numerous examples that illustrate the percent increase in cost-rate over the

optimal policy.

Next, consider opting to replace at T̃ ∗ − µY . This heuristic, which is discussed in [64],

only anticipates the expected degree of stationary unpunctuality. In Example 6, we show

that the increase in cost-rate under this policy can be as large as 62.97% under certain

parameter values.

Example 6. Let k = 20, X ∼ Weibull(8, 10), Y ∼ Uniform[−3, 6] and z(T ) = (T
8
)2. The

optimal solutions for problems (2.5) and (2.7) are T̃ ∗ = 11.40 and T ∗ = 7.95. For this problem

instance, replacing at age T̃ ∗−µY increases the cost-rate by 62.97% (i.e., Ω(T̃ ∗−µY )/Ω(T
∗) =

1.6297). ■

Finally, consider the heuristics T̃1 = T̃ ∗ − µY z(T̃
∗ − µY ) and T̃2 = T̃ ∗ − µY z(T̃

∗) which

appear to perform well in our numerical experimentation because both policies anticipate

the expected degree of unpunctuality under non-stationary behavior. That is, policy T̃1

subtracts the expected degree of unpunctuality at time T̃ ∗ − µY from T̃ ∗, and policy T̃2

subtracts the expected degree of unpunctuality at time T̃ ∗ from T̃ ∗. In Example 6, opting

for the sub-optimal replacement time T̃1 yields Ω(T̃1)/Ω(T
∗)=1.1659 and opting for the

sub-optimal replacement time T̃2 yields Ω(T̃2)/Ω(T
∗)=1.0161. Hence, these heuristic policies

appear to not affect the long-run cost-rate significantly.

The superiority of heuristic policy T̃1 or T̃2 over the other is problem specific. Hence,

we execute a designed experiment to generate insights as to when one outperforms the

other. For this numerical experiment, let X ∼ Weibull(α, 10) with α ∈ {1.5, 2, 4, 8};

k ∈ {2, 4, 6, ..., 20}; Y ∼ Uniform[a, b] with a and b as specified in Figure 5; and z(T ) be of

the three forms given in Figure 5. Figure 5 presents, for each combination of z(T ), [a, b] and

α, the heuristic that yields the smaller expected cost-rate. Because there are no instances

for which the value of k affects the outcome, we omit k from the figure.

For z(T ) = ( T

T̂ ∗ )
2 it is apparent that T̃1 usually yields a lower expected cost-rate compared

to T̃2. For z(T ) =
√

T

T̂ ∗ and small values of α, T̃1 dominates T̃2; the opposite holds for larger
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Figure 5: Preferred heuristic replacement age for different combinations of z(T ), [a, b] and

α where X ∼ Weibull(α, 10) and Y ∼ Uniform[a, b]. For each of the three cases of z(T ), the

value of a is fixed and the preferred suboptimal solution is depicted for different values of α

and b. The considered heuristics are T̃1 = T̃ ∗ − µY z(T̃
∗ − µY ) and T̃2 = T̃ ∗ − µY z(T̃

∗).

values of α. For z(T ) = T̂ ∗+1
T+1

, prescribing replacement at T̃2 is less costly for larger values of

b, i.e., larger mean and variance of Y . However, for larger values of α, T̃1 dominates.

Hence, we cannot draw any general conclusions about the superiority of one heuristic

replacement age over the other. However, with insights generated by the analysis akin to

that behind Figure 5, maintenance planners can make an informed choice of replacement age.

For example, if the maintenance worker is always late and the variance of his/her degree of

unpunctuality increases quickly over time, then the maintenance planner should opt for T̃1.

However, if the variance of his/her degree of unpunctuality increases slowly over time, the

planner should opt for T̃1 only if the failure rate of the system increases sufficiently slowly.

2.5.2 Cost-rate Bounds

First, we derive upper bounds on cost-rate ratios to characterize how non-stationary un-

punctual policy implementation increases the cost-rate relative to punctual implementation

(Proposition 6). Second, we compare the optimal cost-rates under non-stationary and sta-
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tionary unpunctual implementation and provide a lower bound on the degree to which the

maintenance planner can reduce the cost-rate by anticipating the non-stationary behavior

(Proposition 7). Lastly, we examine how disregarding non-stationary unpunctual behavior,

i.e., prescribing replacement in anticipation of punctual implementation, can increase the

cost-rate (Proposition 8).

Proposition 6. Assume T̃ ∗ is the unique solution to problem (2.5). If T̃1 = T̃ ∗ − µY z(T̃
∗ −

µY ) and T̃2 = T̃ ∗ − µY z(T̃
∗) are feasible to problem (2.7), then

1 ≤ Ω(T ∗)

Ω̃(T̃ ∗)
≤min{U1

Y (T̃1), U
1
Y (T̃2)} ≤ min{U1(T̃1), U

1(T̃2)} (2.15)

where

U1
Y (T ) =

∫ b

a

(
cm

∫ T+yz(T )

0
hX(x)dx+ cp

)
dFY (y)

cmhX(T )(T + µY z(T ))
, and

U1(T ) =
cmM(T ) + cp

cmhX(T )(T + µY z(T ))
,where

M(T ) =

∫ T+bz(T )

T+az(T )
hX(x)dx

b− a
(µY − a) +

∫ T+az(T )

0

hX(x)dx.

The first inequality in expression (2.15) implies that if the maintenance worker exhibits non-

stationary unpunctual behavior, then the optimal cost-rate is higher compared to the case

in which the maintenance worker is punctual (recall Theorem 2). Proposition 6 provides

upper bounds on this increase in cost-rate. The maintenance planner can compute these

bounds using the optimal replacement time under punctual implementation (i.e., T̃ ∗). The

presence of the subscript Y in (2.15) emphasizes the tighter bound’s dependence on the full

characterization of Y . In contrast, U1(T ) only requires minimal knowledge of Y , i.e., a, b

and µY . If U1(T ) is sufficiently tight, then the maintenance planner does not necessarily

need to estimate the full distribution of the maintenance worker’s unpunctuality.

If we assume that z(T̂ ∗) = 1, then by Theorem 2

1 ≤ Ω(T ∗)

Ω̃(T̃ ∗)
≤min{ÛY (T̃

∗), U1
Y (T̃1), U

1
Y (T̃2)} ≤ min{U1(T̃1), U

1(T̃2)}
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where

ÛY (T̃
∗) =

∫ b

a

(
cm

∫ T̃ ∗−µY +y

0
hX(x)dx+ cp

)
dFY (y)

cmhX(T̃ ∗)T̃ ∗
.

In [64], the cost-rate ratio Ω̂(T̂ ∗)

Ω̃(T̃ ∗)
is bounded by ÛY (T̃

∗), which is obtained using the sub-

optimal solution T̃ ∗ − µY . In Proposition 6 we also use sub-optimal solutions, namely T̃1

and T̃2, to derive upper bounds. Depending on the model parameters and z(T ), either one

of these sub-optimal replacement ages may yield a tighter bound than the other. Note that

if we let z(T ) = 1 for all T , then U1
Y (T ) and U1(T ) reduce to the bounds established in

[64, see Theorem 4].
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Table 2: Numerical example of the bounds in Propositions 6-8 for X ∼ Weibull(α, β) and Y ∼ Uniform[a, b], cm = 1 and

cp = 16, z(T ) = exp(− T

T̂ ∗ + 1). Note that U1
Y =min{U1

Y (T̃1), U
1
Y (T̃2)}, U1 =min{U1(T̃1), U

1(T̃2)}, L2
Y =min{L2

Y (T̃1), L
2
Y (T̃2)}

and T ∗
s =argmin{Ω(T̃1),Ω(T̃2)}.

I II III IV V VI VII VIII IX X XI

α β a b µY Var(Y ) T̃ ∗ T̂ ∗ T ∗ T ∗
s

Ω(T ∗)

Ω̃(T̃ ∗)
ÛY (T̃

∗) U1
Y U1 Ω(T ∗)

Ω̂(T̂ ∗)
L1
Y (T̃

∗) Ω(T̃ ∗)
Ω(T ∗) L2

Y U2
Y (T̃

∗) U2(T̃ ∗) Ω(T ∗
s )

Ω(T ∗)

5 10 0 5 2.5 2.08 13.20 10.54 10.87 9.98 1.0231 1.0242 1.0233 1.0693 0.9993 0.9764 1.0389 1.0387 1.0629 1.1013 1.0002

6 10 0 5 2.5 2.08 12.14 9.39 9.80 8.95 1.0336 1.0362 1.0337 1.1026 0.9985 0.9650 1.0579 1.0578 1.0934 1.1551 1.0001

5 10 -4 0 -2 1.33 13.20 15.09 15.60 15.9 1.0152 1.0154 1.0152 1.0459 0.9999 0.9848 1.0577 1.0577 1.0738 1.1015 1.0000

6 10 -4 0 -2 1.33 12.14 13.98 14.05 14.86 1.0224 1.0230 1.0225 1.0682 0.9999 0.9775 1.0772 1.0771 1.1013 1.1349 1.0001

5 10 -4 5 0.5 6.75 13.20 12.20 12.81 12.52 1.0735 1.0802 1.0736 1.2252 0.9964 0.9257 1.0014 1.0013 1.0750 1.2240 1.0001

6 10 -4 5 0.5 6.75 12.14 10.87 11.57 11.48 1.1055 1.1240 1.1057 1.3312 0.9934 0.8897 1.0044 1.0043 1.1104 1.3369 1.0001
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Table 3: Numerical examples of the bounds in Propositions 6-8 forX ∼ Weibull(α, β) and Y ∼ Uniform[a, b], cm = 1 and cp = 16.

Note that U1
Y =min{U1

Y (T̃1), U
1
Y (T̃2)}, U1 =min{U1(T̃1), U

1(T̃2)}, L2
Y =min{L2

Y (T̃1), L
2
Y (T̃2)} and T ∗

s =argmin{Ω(T̃1),Ω(T̃2)}.

I II III IV V VI VII VIII IX X XI

α β T̃ ∗ T̂ ∗ T ∗ T ∗
s

Ω(T ∗)

Ω̃(T̃ ∗)
ÛY (T̃

∗) U1
Y U1 Ω(T ∗)

Ω̂(T̂ ∗)
L1
Y (T̃

∗) Ω(T̃ ∗)
Ω(T ∗) L2

Y U2
Y (T̃

∗) U2(T̃ ∗) Ω(T ∗
s )

Ω(T ∗)

z(T ) = ( T
T̂ ∗ )

1.5, a = 0,
b = 5

5 10 13.20 10.54 10.39 10.64 1.0234 1.0242 1.0242 1.0656 0.9995 0.9764 1.1933 1.1916 1.2212 1.3756 1.0014

1.5 1 10.08 7.73 7.55 7.65 1.0049 1.0051 1.0050 1.0149 0.9998 0.9949 1.0256 1.0255 1.0306 1.0449 1.0001

z(T ) = ( T
T̂ ∗ )

1.5, a = −4,
b = 5

5 10 13.20 12.20 11.67 12.63 1.0723 1.0802 1.0802 1.2733 0.9953 0.9257 1.0393 1.0235 1.1145 1.3449 1.0154

1.5 1 10.08 7.73 7.55 7.65 1.0141 1.0167 1.0145 1.0436 0.9980 0.9835 1.0020 1.0016 1.0162 1.0476 1.0003

z(T ) = 3 T
T̂ ∗ − 2, a = −4,
b = 0

5 10 13.20 15.09 14.52 15.24 1.0136 1.0136 1.0136 1.0431 0.9983 0.9848 1.0091 1.0090 1.0228 1.0326 1.0000

1.5 1 10.08 12.18 11.15 11.04 1.0024 1.0033 1.0024 1.0061 0.9992 0.9967 1.0011 1.0010 1.0035 1.0053 1.0000
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Tables 2 and 3 illustrate the performance of the bounds established in Proposition 6

for monotone decreasing and monotone increasing z(T ), respectively. For all instances, we

assume a form of z(T ) for which z(T̂ ∗) = 1. Thus, we also include the upper bound ÛY (T̃
∗)

established in [64] in column II of Tables 2 and 3. In both tables, the time to failure

distribution is assumed to be Weibull with shape parameter α and scale parameter β. For

these examples, most bounds are tight, hence they can be used to determine when unpunctual

replacement increases the cost-rate significantly. For example, unpunctual replacements

could cost the maintenance planner upwards of 10.55% (column I Table 2). With only µY

specified, the upper bound indicates an increase of 33.12% (column IV Table 2); with full

information on Y , the corresponding upper bound is 10.57% (column III Table 2).

As seen in Tables 2 and 3, if the variance of the degree of unpunctuality is sufficiently

large and the hazard rate of the system increases quickly (i.e., large α), then the increase

in the cost-rate is larger and so are the bounds. Furthermore, U1 is a looser bound than

U1
Y in these instances compared to instances with smaller α and variance of Y . Also, note

that in most instances, U1
Y outperforms ÛY . The fact that U

1
Y appears to be a tighter bound

indicates that, compared to T̂ ∗, the suboptimal solutions T̃1 and T̃2 (which incorporate the

non-stationary behavior of the maintenance worker, i.e., they depend on z(T )) tend to be

closer to T ∗.

Next, Proposition 7 provides a lower bound on the ratio of the long-run cost-rates for

problems (2.6) and (2.7) under condition (2.11). The bound in Proposition 7 gives a po-

tential percent decrease in the cost-rate if the unpunctuality is non-stationary. Recall that

Theorem 2 establishes that by anticipating the non-stationary behavior, replacement can

be prescribed such that it reduces the mean and variance of the degree of unpunctuality,

resulting in a smaller optimal cost-rate.

Proposition 7. Assume T̂ ∗ is feasible to problem (2.7), and T̃ ∗ − µY is feasible to prob-

lem (2.6). If z(T̂ ∗) = 1, then

L1
Y (T̃

∗) ≤ Ω(T ∗)

Ω̂(T̂ ∗)
≤ 1, (2.16)
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where

L1
Y (T̃

∗) =
cmhX(T̃

∗)T̃ ∗∫ b

a

(
cm

∫ T̃ ∗−µY +y

0
hX(x)dx+ cp

)
dFY (y)

.

The second inequality in expression (2.16) is a direct result of Theorem 2. For the lower

bound in (2.16), the characterization of z(T ) is not necessary. In the numerical results in Ta-

bles 2 and 3, the maximum percent decrease in optimal cost-rate ratio is 11.03% (column VI

Table 2). For smaller values of α and smaller variance of Y , the lower bound on this decrease

is tighter. Note that in the absence of the assumption z(T̂ ∗) = 1, Proposition 7 still holds for

cases in which Ω(T ∗) ≤ Ω̂(T̂ ∗). More discussion on this comparison is provided in Section 2.6.

Lastly, we assess how prescribing replacement assuming punctual implementation can

affect the cost-rate when, in fact, the implementation is unpunctual and depends on time.

Proposition 8. Assume T̃ ∗ is a unique solution to problem (2.5) and feasible to problem

(2.7). If T̃1 = T̃ ∗ −µY z(T̃
∗ −µY ) and T̃2 = T̃ ∗ −µY z(T̃

∗) are feasible to problem (2.7), then

max{L2
Y (T̃1), L

2
Y (T̃2), 1} ≤ Ω(T̃ ∗)

Ω(T ∗)
≤ U2

Y (T̃
∗) ≤ U2(T̃ ∗), (2.17)

where

L2
Y (T ) =

∫ b

a

(
cm

∫ T̃ ∗+yz(T̃ ∗)

0
hX(x)dx+ cp

)
dFY (y)∫ b

a

(
cm

∫ T+yz(T )

0
hX(x)dx+ cp

)
dFY (y)

· T + µY z(T )

T̃ ∗ + µY z(T̃ ∗)

U2
Y (T̃

∗) =

∫ b

a

(
cm

∫ T̃ ∗+yz(T̃ ∗)

0
hX(x)dx+ cp

)
dFY (y)

cmhX(T̃ ∗)(T̃ ∗ + µY z(T̃ ∗))
, and

U2(T̃ ∗) =
cmM(T̃ ∗) + cp

cmhX(T̃ ∗)(T̃ ∗ + µY z(T̃ ∗))
.

Proposition 8 gives lower and upper bounds on the ratio of the long-run cost-rates under

non-stationary unpunctual implementation when replacement is scheduled at T̃ ∗ and T ∗, re-

spectively. These bounds measure the loss associated with the maintenance planner ignoring

the possibility of an unpunctual maintenance worker. Similar to Proposition 6, the subscript

Y used in U2
Y (T̃

∗) shows the bound’s dependence on the full characterization of Y , whereas

to calculate U2(T̃ ∗), only minimal knowledge of Y is required.
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For the examples in Tables 2 and 3, if the maintenance planner disregards the non-

stationary unpunctual behavior, the increase in cost-rate could be as large as 19.3% (column

VII Table 3). With only µY specified, the upper bound indicates an increase of 37.56%

(column X Table 3); with full information on Y , the increase in the long-run cost-rate

is as large as 22.12% (column IX Table 3). Moreover, similar to the bounds in Proposi-

tions 6 and 7, the upper bounds in Proposition 8 are rather loose for the instances with

larger variance in the degree of unpunctuality.

2.6 A Numerical Example for z(T̂ ∗) ̸= 1 & z(T ∗) ̸= 1

In this section, we relax the assumption that z(T̂ ∗) = 1 or z(T ∗) = 1 and compare

the optimal cost-rates of problems (2.5), (2.6) and (2.7) numerically. Example 7 does so

assuming that z(T ) = T/d, and varying value of d.

Example 7. Let X ∼ Weibull(3, 1), Y ∼ Uniform[0, 2] and k = 4. Then, Ω̃∗ = 4.76, T̃ ∗ =

1.26, Ω̂∗ = 5.76 and T̂ ∗ = 0.26. Table 4 presents the optimal cost-rates and replacement times

under non-stationary unpunctuality with z(T ) = T
d
, where d ∈ {0.02, 0.1, 0.12, 0.15, 0.2, 0.26,

0.4, 10, 100}.

Recall from Theorem 2 that for z(T̂ ∗) = 1, the optimal cost-rate under non-stationary

unpunctual behavior is smaller than that of stationary unpunctual behavior. In Table 4, this

relationship holds for values of d ≥ T̂ ∗ as well as d = 0.2 and d = 0.15. This result holds

because under those scenarios, the mean and variance of unpunctuality at T ∗ is smaller under

non-stationary unpunctual behavior compared to its stationary counterpart. Note that for

d = 0.12 and d = 0.1, even though the same relationship holds (i.e., mean and variance

of unpunctuality at T ∗ is smaller under non-stationary unpunctual behavior compared to

its stationary counterpart), the optimal cost-rate is larger. In those scenarios, because the

expected cycle length is very small under non-stationary unpunctual behavior, the expected

cost-rate is larger compared to that under stationary counterpart. ■

As demonstrated by Table 4, in general it is hard to compare the optimal policies under

non-stationary and stationary unpunctual behavior. Hence, making an assumption such as
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Table 4: Optimal cost-rate and replacement time under non-stationary unpunctuality for

Example 7 with z(T ) = T
d
, d ∈ {0.02, 0.1, 0.12, 0.15, 0.2, 0.26, 0.4, 10, 100}, and optimal cost-

rate ratios Ω(T ∗)/Ω̂(T̂ ∗) and Ω(T ∗)/Ω̃(T̃ ∗). The column with T̂ ∗ = 0.26 corresponds to the

case where z(T̂ ∗) = 1; hence, the comparison of the optimal cost-rates and replacement times

under stationary and non-stationary unpunctual behavior correspond to Theorems 2 and 5,

respectively.

d 0.02 0.1 0.12 0.15 0.2 T̂ ∗ =0.26 0.4 10 100

T ∗ 0.02 0.09 0.11 0.14 0.17 0.22 0.3 1.14 1.25

Ω(T ∗) 5.96 5.82 5.79 5.75 5.67 5.60 5.12 4.77 4.76

Ω(T ∗)/Ω̂(T̂ ∗) 1.03 1.01 1.005 0.99 0.98 0.97 0.89 0.83 0.82

Ω(T ∗)/Ω̃(T̃ ∗) 1.25 1.22 1.226 1.21 1.19 1.18 1.08 ≈ 1 ≈ 1

z(T̂ ∗) = 1 or z(T ∗) = 1 is helpful for deriving analytical results. Nevertheless, in most

scenarios, when comparing two maintenance workers with non-stationary and stationary

behavior, if z(T̂ ∗) or z(T ∗) are sufficiently close to 1, then the results of Theorems 2 and 3

apply, respectively. Moreover, in most cases, a maintenance worker with sufficiently larger

degree of unpunctuality increases the cost-rate compared to a maintenance worker with

smaller degree of unpunctuality.

2.7 Concluding Remarks

We consider a novel age-replacement policy with minimal repair that optimally antici-

pates potential deviations between prescribed and actual replacement times when the dis-

tribution of this deviation depends on the prescribed replacement time itself. We consider

both the possibility that the maintenance worker becomes more punctual as replacement
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is scheduled further into the future, as well as the possibility that the maintenance worker

becomes less punctual as replacement is scheduled further into the future.

We compare the optimal planned replacement time for this problem to that for the case

in which the nature of the unpunctual behavior of the worker is constant over time, i.e.,

independent of the prescribed replacement time. A comparison of the optimal replacement

ages reveals that if the mean and variance of the degree of deviation from the prescribed

replacement time are increasing (decreasing), then it is optimal to prescribe replacement

earlier (later) than we would for the stationary unpunctual case. This result suggests that

the optimal policy aims to decrease the expected degree of unpunctuality and its variance

by adjusting the optimal planned replacement time.

Furthermore, we compare these optimal replacement times and their cost-rates to those

for the case in which the maintenance worker is punctual. Under both stationary and non-

stationary unpunctuality, the optimal cost-rate is greater than it is for the punctual case.

However, in our numerical examples the optimal cost-rate for our problem is less than that

under stationary unpunctual behavior when the deviation distributions are similar near the

optimal replacement time for the stationary case; we prove that this result holds without

exception if distributions coincide at the optimal replacement time for the stationary case.

This decreased cost-rate reflects the benefit of capitalizing on the non-stationary behavior

to reduce the mean and variance of the degree of unpunctuality by adjusting the planned

replacement time.

We also provide a lower bound to characterize how much the maintenance planner can

gain under non-stationary behavior relative to the stationary case, as well as upper bounds

to characterize how much they can lose by ignoring non-stationary unpunctuality and assum-

ing punctual behavior. These bounds do not require the optimal solution to our problem.

Moreover, we provide upper bounds that do not require the full knowledge of the distribution

of the unpunctual behavior. Therefore, these bounds can reflect the value of estimating the

true distribution of the unpunctual behavior.

Finally, we present scenarios in which the mean and variance of the degree of unpunctual-

ity are smaller under non-stationary unpunctual behavior compared to stationary behavior,

but the expected cost-rate is larger. Hence, for some instances, even though the optimal
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policy is able to reduce the mean and variance of unpunctuality by replacing early or late,

it cannot reduce the overall cost-rate compared to the scenario when the worker behaves

consistently. Therefore, for such instances it may be valuable to incentivize workers to be

more consistent or punctual.
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3.0 Optimal Age-Replacement under Time-Dependent Replacement Costs

3.1 Introduction

Age-replacement with minimal repair after failure under age-dependent replacement

costs has been well studied in the literature. Authors in [24] and [25] consider increasing

minimal repair costs and prove existence and uniqueness of the optimal policy. Another

study in [127] defines an increasing cost function a(t), where t denotes system age, add

a(t) to the long-run expected total cost function, and prove existence and uniqueness

of the optimal policy under various functional forms of a(t). Authors in [118] assume

non-decreasing minimal repair and preventive replacement costs, formulate a semi-Markov

decision process model, and establish that the optimal policy is of threshold type under

mild assumptions. Lastly, the study in [120] consider age-dependent minimal repair costs

for a k-out-of-n system paired with ordering decisions.

In this chapter, we focus on age-replacement without minimal repair under age-dependent

replacement costs, which is less well studied in literature, and to the best of our knowledge,

is limited to the studies in [9, 39, 116]. The model developed in [116] incorporates a cost

factor that increases with the age of the system and is proportional to the length of time

between two replacements (when the system is functioning). This study provides conditions

for the existence and uniqueness of the optimal policy for specific forms of the cost factor

(polynomial and exponential functions of the expected cycle length) and exponential time

to failure distribution. Our existence and uniqueness results are more general in that we do

not assume specific forms of the cost factor and the time to failure distribution.

Moreover, the authors in [9] consider age-replacement without minimal repair under

age-dependent replacement costs, but in conjunction with spare part ordering decisions.

They assume that at most one spare part can be kept in stock or on order at each time epoch,

and restrict their attention to the case in which the reactive and preventive replacement

costs differ by a constant and are convex in age. We consider a variant of this model,

namely that in which a spare unit is always available. However, we allow the replacement
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cost functions to exhibit different growth rates and take either convex or concave forms.

Concave forms are motivated by the observation that replacement costs can increase at a

decreasing rate as equipment ages (see e.g., [77, 81]), and require novel conditions to ensure

the unimodality of the cost-rate function (Section 3.3).

Authors in [39] considers age-replacement without minimal repair for products that are

sold with a warranty policy. In their model, if the product fails during the warranty period,

then a refund is received in an amount proportional to the failure time; if it fails after

the warranty period, then no refund is received and a constant reactive replacement cost

is assumed. If the product is preventively replaced, then it is salvaged at a value that is

linearly proportional to its residual lifetime. That is, the reactive replacement cost after the

warranty period is not age-dependent and the functional form of the preventive replacement

cost is restricted to a linear form.

Our contributions are summarized as follows. We generalize the literature on age-

replacement without minimal repair by allowing for age-dependent replacement cost

functions to take on more general functional forms (Section 3.2). We provide conditions

under which there exists a unique optimal solution under a long-run expected cost-rate

minimization objective (Section 3.3). We compare the optimal replacement and long-run

expected cost-rates under age-dependent and constant replacement costs (Section 3.4). We

then generalize to non-instantaneous replacements and consider an availability criterion

(Section 3.5). Finally, we provide a summary of our findings and discuss future research

directions (Section 3.6). The proofs for all results are provided in Appendix B.

3.2 Model Formulation

Consider a stochastically deteriorating system with self-announcing failures that require

immediate reactive replacement. Here, we assume that replacements are instantaneous. Let

the continuous random variable X be the time to failure of the system, with c.d.f. F (x)

for x ≥ 0, p.d.f. f(x), survival function F̄ (x), hazard rate function h(x), i.e., h(x) = f(x)

F̄ (x)
,

and mean µ (limt→∞
∫ t

0
F̄ (x)dx = µ). We assume that F (0) = 0 and impose the following
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conditions on h(x):

Assumption 4. h(0) = 0 and h(x) is strictly increasing to +∞.

Note that the notations we use in this chapter are somewhat consistent with those in

Chapter 2, and Assumption 4 impose the same conditions as in Assumption 1. However, the

two models are different in that, here, the system is replaced upon failure (i.e., preventive

maintenance without minimal repair) whereas in Chapter 2 the system is minimally repaired.

For such deteriorating systems, age-replacement policies are commonly used in practice

to offset the replacement costs incurred by system failures [131]. Here, we consider an

age-replacement policy without minimal repair, and denote this policy by T . That is, the

system is replaced T units of time after its installation (i.e., when it ages T units of time)

or at failure, whichever occurs first. We have 0 < T ≤ +∞ where T = +∞ indicates that

preventive replacement is never optimal. Motivated by the applications described in the

previous section, we assume that upon replacement the system is exchanged with one that

is as-good-as-new and has the same age-dependent replacement cost functions.

We denote the age-dependent reactive replacement cost at time t as cr(t) and the pre-

ventive replacement cost at scheduled time t as cp(t). Throughout this chapter, we impose

the following assumption on the cost functions cr(t) and cp(t):

Assumption 5. For all t, cr(t) − cp(t) > δ for some δ > 0. Also, cr(t) and cp(t) are

continuous, three times differentiable, and c′r(t) ≥ 0 and c′p(t) ≥ 0 for all t.

The first condition in Assumption 5 implies that the cost of reactive replacement is strictly

larger than the cost of preventive replacement at all times. This assumption is common in the

maintenance literature [13]. The assumptions of continuity and differentiability are made for

mathematical convenience. Note that constant replacement costs satisfy these assumptions.

Finally, we assume replacement costs are non-decreasing in system age.

Let the sequence of random variables {R1, R2, ...} denote the replacement times of the

system, and the sequence of random variables {X1,X2, ...} denote the times to failure, where

Xi has p.d.f. f(x). Then, Ri − Ri−1 = min{T,Xi} for i ∈ {1, 2, ...} where R0 = 0. Let

ζi denote the replacement cost incurred at the ith replacement time. Then, under age-
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replacement policy T ,

ζi =

cp(Ri −Ri−1) if Xi ≥ T

cr(Ri −Ri−1) if Xi < T

=

cp(T ) if Xi ≥ T

cr(Xi) if Xi < T.

(3.1)

Equation (3.1) holds because the replacement costs depend on the system’s age (i.e., the

time elapsed since the last renewal). Figure 6 depicts the relationship between ζi and the

replacement cost functions cp(t) and cr(t) under various forms of cp(t) and cr(t). Figure

6 also compares our setting with the conventional age-replacement model under constant

replacement costs studied in [13].

Because replacement actions return the system to as-good-as-new, we can take a renewal-

reward approach and obtain the long-run expected cost-rate as the ratio of the expected

renewal cycle cost to the expected renewal cycle length. For an age-replacement policy T ,

let EX [C(T )] and EX [L(T )] be the expected cycle cost and length, respectively. Then, in

this chapter we have

EX [C(T )] =

∫ T

0

cr(x)f(x)dx+ cp(T )F̄ (T ), and

EX [L(T )] =

∫ T

0

F̄ (x)dx.

Hence, the optimization problem for minimizing the long-run expected cost-rate under age-

dependent replacement costs is given by

min
T>0

Ω(T ) =
EX [C(T )]

EX [L(T )]
=

∫ T

0
cr(x)f(x)dx+ cp(T )F̄ (T )∫ T

0
F̄ (x)dx

. (3.2)

We denote the optimal solution to problem (3.2) by T ∗. Throughout this chapter, we refer

to Ω(T ) as the “cost-rate” under policy T for brevity.

We study problem (3.2) under the assumption that the replacement costs are non-

decreasing in age. We provide analytical results that guarantee the existence and uniqueness

of the solution to problem (3.2). Moreover, Section 3.4 compares the optimal replacement

policy and cost-rate under age-dependent replacement costs with those under constant re-

placement costs. Finally, Section 3.5 introduces non-instantaneous repair times and com-

pares the optimal cost-rate minimizing and availability-maximizing replacement policies.

Appendix A provides additional notation that is used in the proofs and reviews some previ-

ous results. Appendix B provides the proofs for all results established in Sections 3.3-3.5.
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Figure 6: In each plot, a sequence of replacement times Ri is depicted for a given age-

replacement policy T . The random variable ζi denotes the corresponding replacement cost

incurred at time Ri. The plot on the left-hand side represents the case of constant replace-

ment costs previously studied by [13]. The plots on the right-hand side represent the case of

concave and convex non-decreasing replacement costs studied in this chapter.

3.3 Existence of a Unique Optimal Solution

Theorem 6 establishes sufficient conditions to ensure that there exists a unique finite

optimal solution for problem (3.2).

Theorem 6. Consider the following conditions: (i) c′′p(t) ≥ 0, (ii) c′r(t) ≥ c′p(t), (iii) c
′′
r(t) ≥

c′′p(t), (iv) c′′′p (t) ≥ 0 and (v) h′′(t) > 0. If either conditions (i) and (ii) hold for all t, or
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conditions (ii)− (v) hold for all t, then Ω(t) is quasi-convex and there exists a unique finite

solution T ∗ to problem (3.2). Moreover, Ω(T ∗) =
(
cr(T

∗)− cp(T
∗)
)
h(T ∗) + c′p(T

∗).

Condition (i) requires cp(t) to be convex. Condition (ii) implies that the rate of increase in

the reactive replacement cost is at least as large as that for the preventive replacement cost.

That is, for example, the salvage value of a failed system decreases more quickly than that

of a working system. Or, the efforts associated with replacing a failed system increase more

quickly than a working system. Under these two conditions, the cost-rate function decreases

to its unique minimum value and then increases.

Conditions (ii)− (v) in Theorem 6 relax the convexity assumption of cp(t). Instead, they

require the third derivative of cp(t) to be non-negative and h(t) to be convex. The convexity of

h(t) eliminates scenarios under which the cost-rate is decreasing and preventive replacement

is never optimal (i.e., T ∗ = +∞). A positive third derivative eliminates scenarios under

which the replacement cost function increases quickly (i.e., is convex) for a period of time,

and then increases slowly (i.e., is concave). Example 8 considers an instance with non-convex

cp(t) (i.e., condition (i) does not hold) in which condition (iv) is also violated (see Figure

7(a)) and as a result, the cost-rate is not quasi-convex (see Figure 7(b)).

Example 8. Let X follow a Weibull distribution with shape and scale parameter values

of 3 and 50, respectively. Additionally, let cr(t) =
(
1 + exp(−0.5(t − 30))

)−1
+ 6 and

cp(t) =
(
1 + exp(−0.5(t − 30))

)−1
+ 3. The corresponding replacement cost functions and

long-run expected cost-rates are depicted in Figure 7.

In Example 8, the first local minimum, which is also the optimal replacement time, occurs

at age T ∗ = 27.41; at this time, the cost of replacement is relatively smaller than it is

at ages greater than 30. However, the cost-rate starts decreasing again at age 33.52, and

reaches a second local minimum at age 44.01. This decrease in cost-rate occurs because

under policy T1, the expected cycle length is relatively longer than it is at ages less than

30, which balances the sudden increase in replacement costs. ■
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(a) Preventive and reactive replacement cost functions (b) Long-run expected cost-rate

Figure 7: Under the parameter values of Example 8, the replacement cost functions violate

condition (iv) in Theorem 6. As a result, the cost-rate function has two local minima at

ages T ∗ and T1.

In the remainder of this chapter, to ensure the existence and uniqueness of T ∗, we make

the following assumption.

Assumption 6. Either conditions (i)− (ii) or conditions (ii)− (v) in Theorem 6 hold for

all t.

Assumption 6 is essential to derive analytical results that compare the optimal cost-rate

minimizing or availability-maximizing replacement policies for different replacement costs.

3.4 Increasing vs. Constant Replacement Costs

In practice, replacement cost functions can be obtained by applying curve fitting

techniques to historical data [23, 8]. In some settings, however, maintenance planners may

choose to ignore the age-dependent nature of replacement costs when deriving replacement

policies for their assets, either because assuming constant replacement costs may be
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attractive in terms of model simplification, or due to data sparsity. Prescribing preventive

replacement policies according to constant replacement costs when in fact these costs

increase in age, however, can increase the cost-rate significantly. This increase may be

significant when replacement costs vary considerably in age, or when a company preventively

maintains a large number of assets (recall our discussion in Section 3.1). Hence, analyzing

the effect of age-dependent replacement costs on the optimal policy and the cost-rate can

be insightful for maintenance planners.

For notational convenience, we denote the constant reactive and preventive replacement

costs as c̃r and c̃p, respectively. Moreover, we denote the long-run expected cost-rate under

constant costs as Ω̃(T ). The corresponding optimization problem is given by

min
T>0

Ω̃(T ) =
c̃rF (T ) + c̃pF̄ (T )∫ T

0
F̄ (t)dt

, (3.3)

the classical age-replacement problem without minimal repair [13]. We denote the optimal

solution to problem (3.3) by T̃ ∗. See Appendix A for a discussion on the existence of a

unique finite solution to problem (3.3).

Section 3.4.1 provides analytical results and numerical examples that compare the

optimal long-run expected cost-rate and the optimal replacement time under constant

and age-dependent replacement costs. Section 3.4.2 examines the increase in the long-run

expected cost-rate induced by ignoring age-dependent costs (i.e., (Ω(T̃ ∗)− Ω(T ∗))/Ω(T ∗)).

3.4.1 Ω̃(T̃ ∗) vs. Ω(T ∗) and T̃ ∗ vs. T ∗

Theorem 7 compares the optimal policies under age-dependent and constant replacement

costs under the assumption that they coincide at time zero and the growth rate of reactive

and preventive replacement costs are identical.

Theorem 7. Let cr(t) = c̃r+g(t) and cp(t) = c̃p+g(t), where g(0) = 0. (i) If g(t) is convex,

then T ∗ ≤ T̃ ∗. (ii) If g(t) is concave, then T ∗ ≥ T̃ ∗. (iii) If g(t) = at where a ≥ 0, then

T ∗ = T̃ ∗ and Ω(t)− Ω̃(t) = a for all t. Under all these conditions, Ω(T ∗) ≥ Ω̃(T̃ ∗).
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Under the conditions of Theorem 7, because reactive and preventive replacement

costs have identical growth rates, their ratio decreases in system age. Nonetheless, when

age-dependent replacement costs are convex, the optimal policy under age-dependent costs

replaces more frequently than the optimal policy under constant costs. The opposite holds

when replacement costs are concave. It is intuitive that T ∗ ≤ T̃ ∗ under convex replacement

costs because replacement costs increase quickly as system ages.

Somewhat surprisingly, when age-dependent replacement costs have identical linear

growth rates, T ∗ and T̃ ∗ coincide even though cr(T
∗)/cp(T

∗) < c̃r/c̃p. To explain this result,

recall from Section 3.2 the sequence of replacement times Ri, and their corresponding

replacement costs ζi. Under the conditions of Theorem 7, for each i, for a given policy the

difference between ζi under age-dependent and constant replacement costs is a · Ri. Hence,

the difference between the long-run expected cycle costs under age-dependent and constant

replacement costs is a · EX [L(T )]. Consequently, the long-run expected cost-rates differ by

the constant a, and the optimal policies coincide.

Under the conditions of Theorem 7, the reactive and preventive replacement costs have

identical growth rates. Proposition 9 and Theorem 8 relax this assumption and compare

the replacement policies under different sets of conditions. Lastly in this section, Example 9

provides numerical examples that consider replacement costs with non-identical growth rates.

Proposition 9. If cr(0) ≥ c̃r and cp(T̃
∗) ≤ c̃p, then T ∗ ≤ T̃ ∗.

Proposition 9 states that if reactive replacement is always more costly under the age-

dependent case compared to its constant counterpart, but the preventive replacement at

ages smaller than T̃ ∗ is less costly than its constant counterpart, then it is optimal to replace

more frequently.

Next, Theorem 8 compares the optimal policies under the special case where the

replacement costs coincide at the optimal replacement time under constant replacement

costs (i.e., T̃ ∗).

Theorem 8. If cr(T̃
∗) = c̃r and cp(T̃

∗) = c̃p, then T ∗ ≤ T̃ ∗ and Ω(T ∗) ≤ Ω̃(T̃ ∗).

First, note that unlike Proposition 9, under the conditions of Theorem 8, the reactive

replacement cost is smaller under the age-dependent case compared to its constant counter-

47



part for T ∗ ≤ T̃ ∗ (i.e., cr(t) ≤ c̃r for all t ≤ T̃ ∗ by Assumption 5). Intuitively, the result of

Theorem 8 holds because by scheduling replacement earlier than T̃ ∗, preventive replacement

is less expensive under the age-dependent case compared to the constant case, and if the

system fails before this age, then reactive replacement is also less expensive.

In general, without such conditions like those in Theorems 7, 8 and Proposition 9, it is

not straightforward to make analytical comparisons. Example 9 examines the relationship

between the optimal policies and cost-rates numerically for various replacement cost functions

in the absence of such conditions.

Example 9. Let X follow a Weibull distribution with shape and scale parameter values of 3

and 10, respectively. Four sets of replacement costs {c(1)r (T ), c
(1)
p (T ); c

(2)
r (T ), c

(2)
p (T ); c

(3)
r (T ),

c
(3)
p (T ); c

(4)
r (T ), c

(4)
p (T )} are presented in Figure 8 and their corresponding cost-rates {Ω(1)(T );

Ω(2)(T ); Ω(3)(T ); Ω(4)(T )} are presented in Figure 9. Lastly, let c̃r = 8 and c̃p = 4 and the

corresponding cost-rate function Ω̃(T ) is presented in Figure 9.

In Figures 8(a) and 8(b), age-dependent replacement costs are concave and coincide with

their constant counterparts at age 0. In Figure 8(b), the ratio of age-dependent reactive

and preventive replacement costs are larger than those in Figure 8(a) for larger values of

system age. Hence, the optimal replacement policy under {c(2)r (T ), c
(2)
p (T )} is earlier than

T̃ ∗, whereas the optimal replacement policy under {c(1)r (T ), c
(1)
p (T )} is later than T̃ ∗ (see

Figure 9).

Moreover, the replacement costs in Figure 8(c) meet the conditions in Proposition 9,

and hence the optimal replacement time under {c(3)r (T ), c
(3)
p (T )} is earlier than T̃ ∗. For

this scenario, the optimal cost-rate is smaller under the age-dependent costs because by

replacing earlier than T̃ ∗, the cost of preventive replacement is less than that under constant

costs which offsets the higher cost of replacement at failure. Finally, under the convex

replacement costs {c(4)r (T ), c
(4)
p (T )}, the optimal replacement policy is earlier than T̃ ∗

because the costs increase quickly, and their ratio also increases in system age. ■
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(a) Coincide at 0 and concave replacement costs (b) Coincide at 0 and concave replacement costs

(c) c
(3)
r (T ) ≥ c̃r ∀T & c

(3)
p (T̃ ∗) ≤ c̃p (Proposi-

tion 9)

(d) Coincide at 0 and convex replacement costs

Figure 8: Reactive and preventive replacement cost functions in Example 9. Their corre-

sponding long-run expected cost-rate functions are depicted in Figure 9.
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Figure 9: Cost-rate functions corresponding to the replacement cost functions in Figure 8

and Example 9. The replacement costs in Ω(3)(T ) meet the conditions in Proposition 9.

3.4.2 Price of Ignoring Age-dependency

In this section, we examine how much maintenance planners could lose if they prescribe

replacement policies based on constant replacement costs, when in fact replacement costs

depend on system age. We provide an example that considers various functional forms for

the replacement cost functions, and compares the increase in long-run expected cost-rate

induced by adopting replacement policies based on constant replacement costs.

Note that when reactive and preventive replacement costs are linear, with identical

growth rates, prescribing a replacement policy based on constant replacement costs of a

system at time zero does not affect the optimal policy; hence, the price of ignoring age-

dependency is zero (recall Theorem 7). However, under more general forms of the replace-

ment cost functions, the increase in the cost-rate can be large if the replacement policy is

based on constant costs.

Example 10 illustrates the increase in the long-run expected cost-rate induced by

adopting replacement policies T̃ ∗
0 , T̃

∗
µ/2 and T̃ ∗

µ , where policy T̃ ∗
0 is obtained by minimizing

Ω̃(T ) under c̃r = cr(0) and c̃p = cp(0); T̃
∗
µ/2 and T̃ ∗

µ are obtained by minimizing Ω̃(T ) under
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c̃r = cr(µ/2) and c̃p = cp(µ/2), and c̃r = cr(µ) and c̃p = cp(µ), respectively (recall that µ is

the expected time to failure of the system).

Example 10. Let X follow a Weibull distribution with shape and scale parameter values 2.5

and 50, respectively, and let c̃r = 3 and c̃p = 1. Table 5 illustrates the percent increase

in long-run expected cost-rate under T̃ ∗
0 , T̃

∗
µ/2 and T̃ ∗

µ for five scenarios. In all scenarios,

T̃ ∗
0 = 32.84 (because cr(0) = c̃r and cr(0) = c̃p under all scenarios).

In Example 10, the replacement costs in scenarios (a) and (b) are concave. Moreover,

the ratio of the reactive and preventive replacement cost is decreasing in age. Hence, it is

optimal to prescribe replacement policies later than T̃ ∗
0 ; under scenarios (a) and (b), T ∗ is

equal to 50.67 and 71.94, respectively. As a result, there is a substantial increase in the

cost-rate if replacement policies are based on the replacement cost of a new system (i.e., T̃ ∗
0 ).

However, the price of ignoring age-dependency is less if replacement policies are based on the

replacement cost of the system at µ/2 or µ, because the ratio of the reactive and preventive

replacement costs is smaller at ages µ/2 and µ compared to 0.

Under scenarios (c) and (d), again, the ratio of the reactive and preventive replacement

cost is decreasing in age. However, because the replacement costs increase more quickly

compared to the concave scenarios, it is optimal to prescribe replacement policies earlier

than T̃ ∗
0 ; under scenarios (c) and (d), T ∗ is equal to 22.03 and 21.65, respectively. As a result,

under T̃ ∗
0 , the increase in cost-rate is smaller than that under T̃ ∗

µ/2 and T̃ ∗
µ . Under scenario

(e), the optimal replacement time is 17.55, and the ratio of the reactive and preventive

replacement cost is first decreasing in age and then increasing. Hence, the increase in cost-

rate is small for large ratios of reactive and preventive replacement costs. For example, the

increase in cost-rate under the policy based on c̃r = cr(3µ) and c̃p = cp(3µ) is 0.36%. ■

From Example 10, we can conclude that assuming constant replacement costs, when

in fact they are age-dependent, can increase the cost-rate significantly, even when the

rate of increase in replacement costs is not large. Nevertheless, maintenance planners may

favor heuristic policies based on constant replacement costs. The results of Example 10

suggest several insights. First, examining the rate of change in the ratio of the reactive and

replacement costs is important in choosing a heuristic policy based on constant replacement

costs. Moreover, if replacement costs are concave, then opting for a replacement policy based
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Table 5: Percent increase in long-run expected cost-rate induced by T̃ ∗
0 , T̃

∗
µ/2 and T̃ ∗

µ under

different age-dependent replacement costs in Example 10.

Scenario Replacement costs
Ω(T̃ ∗

0 )−Ω(T ∗)

Ω(T ∗)

Ω(T̃ ∗
µ/2

)−Ω(T ∗)

Ω(T ∗)

Ω(T̃ ∗
µ )−Ω(T ∗)

Ω(T ∗)

(a)
cr(t) = t0.2 + c̃r

cp(t) = t0.2 + c̃p
7.48% 0.02% 0.12%

(b)
cr(t) = log(5t+1)+ c̃r

cp(t) = log(5t+1)+ c̃p
17.98% 0.0001% 0.03%

(c)
cr(t) = t/4 + c̃r

cp(t) = t/8 + c̃p
6.08% 14.21% 16.35%

(d)
cr(t) = (1.04)t+ c̃r − 1

cp(t) = (1.04)t+ c̃p−1
8.47% 31.85% 66.80%

(e)
cr(t) = (1.07)t+ c̃r − 1

cp(t) = (1.05)t+ c̃p−1
29.45% 65.46% 44.84%

on the costs at time µ/2 may yield a small increase in cost-rate. However, if replacement

costs are convex, then opting for a replacement policy based on the costs at time 0 may

yield a small increase in cost-rate. Based on our numerical study, these conclusions hold

across a wide range of values of the shape and scale parameters for the Weibull distribution.

3.5 Non-Instantaneous Replacements

In Sections 3.2-3.4, we assume that replacements are instantaneous; hence, the system is

effectively available at all times. In this section, we generalize optimization problem (3.2) by

allowing for non-instantaneous replacements and address two optimization criteria: cost-rate

minimization and availability maximization.

Let the random variable Yr denote the duration of reactive replacement with finite mean

βr. Similarly, let the random variable Yp denote the the duration of preventive replacement

with finite mean βp, where βr ≥ βp ≥ 0. We assume that Yr and Yp are independent of
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the replacement age T . We denote the long-run expected cost-rate function under non-

instantaneous replacements as C(T ), and its optimal solution as T ∗
C . Then, the optimization

problem for minimizing cost-rate under non-instantaneous replacements is:

min
T>0

C(T ) =
∫ T

0
cr(x)f(x)dx+ cp(T )F̄ (T )∫ T

0
F̄ (x)dx+ βrF (T ) + βpF̄ (T )

. (3.4)

Hence, Ω(T ) is a special case of C(T ) as they coincide when βr = βp = 0. For constant

replacement costs, [87] provide analytical conditions under which C(T ) is monotone or quasi-

convex. Here, we study the properties of function C(T ) for age-dependent replacement costs.

In problem (3.4), we do not incorporate downtime cost. Instead, we are interested

in comparing the optimal preventive replacement policies under two optimization criteria,

namely, cost-rate minimization and availability maximization. Thereby, we can explore the

degree to which age-dependent replacement costs may exacerbate the difference in the cost-

rate minimizing and availability maximizing policies.

Let the system availability function and its optimal solution be denoted by A(T ) and

T ∗
A, respectively. Then, the optimization problem for maximizing availability is:

max
T>0

A(T ) =

∫ T

0
F̄ (x)dx∫ T

0
F̄ (x)dx+ βrF (T ) + βpF̄ (T )

; (3.5)

see, e.g., [96] for the derivation of (3.5). Appendix A provides a discussion on the properties

of function A(T ) and the existence and uniqueness of T ∗
A. The function A(T ) is commonly

referred to as steady-state availability [114], or limiting interval availability [96], or avail-

ability [87]. Throughout this chapter, we use the term availability. For some studies on the

availability of deteriorating systems we refer the reader to [87, 96, 138, 35].

In Section 3.3, we study the properties of a special case of the cost-rate function C(T ),

namely that in which βp = βr = 0 (instantaneous replacements), and show that under

mild assumptions, the cost-rate is quasi-convex with a unique finite optimal solution (see

Theorem 6). Next, Theorem 9 establishes a similar result for cases in which βp = βr > 0.

Theorem 9. Let βp = βr > 0. Under Assumption 6, C(T ) is quasi-convex, there exists a

unique finite solution T ∗
C to problem (3.4), and C(T ∗

C ) =
(
cr(T

∗
C ) − cp(T

∗
C )
)
h(T ∗

C ) + c′p(T
∗
C ).

Also, T ∗
C < T ∗

A = +∞.
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The condition of Theorem 9, i.e., βp = βr, implies that the expected durations of reactive

and preventive replacement are equal. This scenario arises in applications where the amount

of time required to replace or perfectly repair a system is independent of whether the system

is failed or still in a working condition. The result of Theorem 9 indicates that for this special

case, the properties of C(T ) are similar to those of Ω(T ) (i.e., the cost-rate function under

instantaneous replacements), and that the optimal cost-rate minimizing policy is unique

and finite. Moreover, under the availability maximization criterion, there is no benefit in

performing preventive maintenance; that is, T ∗
A = +∞. Hence, the optimal policies under

cost-rate minimization and availability maximization are significantly different.

Under age-dependent replacement costs, when βp < βr, it is difficult to analytically obtain

easily verifiable conditions under which C(T ) has a certain form. This difficulty arises from

the fact that the properties of function C(T ) depend on the combination of all the parameters

involved; that is, the time to failure distribution, replacement durations, and replacement

cost functions. Hence, we resort to exploring the properties of C(T ) numerically. Our

numerical experiments suggest that when replacement durations are considerably smaller

than the expected time to failure of the system (µ), the cost-rate function is generally quasi-

convex; thus, the optimal solution T ∗
C is unique and finite. For this scenario, Example 11

depicts the cost-rate function C(T ) under different forms of replacement cost functions.

Example 11 (Case of βp < βr ≪ µ). Let X follow a Weibull distribution with shape and scale

parameter values 4 and 10, respectively. Hence, µ = 9.06. Moreover, let βp = 0.2, βr = 0.6

(note that we have βp < βr ≪ µ), cp(t) = 4 + g(t) and cr(t) = 15 + g(t). Figure 10 depicts

the cost-rate function C(T ) vs. T for g(t) ∈ {0,
√
t, t, t2}. ■

In Figure 10, we impose the conditions of Assumption 6 to avoid scenarios in which the

replacement cost functions are step-like and result in multiple local minima (recall Figure 7).

Hence, the cost-rate function C(T ) is quasi-convex and the cost-rate minimizing policy is

unique and finite. Based on our numerical study, these conclusions consistently hold across

a wide range of functional forms of replacement costs and time to failure distributions.

For the scenarios depicted in Figure 10, Table 6 illustrates (i) the optimal cost-rate

minimizing replacement times; (ii) the increase in cost-rate induced by never performing

preventive maintenance; (iii) the increase in cost-rate induced by adopting the availability
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maximizing policy; (iv) and the decrease in availability induced by adopting the cost-rate

minimizing policy. When replacement costs are constant (i.e., scenario (a) in Table 6),

[87] show that if the ratio of reactive to preventive replacement costs is larger than that of

replacement durations, then the optimal cost-rate minimizing policy replaces earlier than

its availability maximizing counterpart; and that if the two ratios are equal, then the two

policies coincide. Hence, T ∗
C under scenario (a) is relatively close to T ∗

A = 6.42, and adopting a

cost-rate minimizing or availability maximizing policy performs well under both optimization

criteria. A similar conclusion holds in scenarios (b) and (c); however, it is violated in scenario

(d) where the replacement costs increase rapidly in system age.

Figure 10: Case of βp < βr ≪ µ. Cost-rate function under different functional forms of

replacement costs and the parameter values of Example 11 (we assume cp(t) = 4 + g(t) and

cr(t) = 15+g(t)). Because replacement durations are considerably smaller than the expected

time to failure, the cost-rate function is quasi-convex in all scenarios, and the optimal solution

to (3.4) is unique and finite (i.e., it is optimal to perform preventive maintenance).

Next, we again assume that βp < βr, but that these values are not significantly smaller

than µ. For this scenario, Example 12 depicts the cost-rate function C(T ) under different

forms of the replacement cost functions.

Example 12 (Case of βp < βr ≤ µ). Let X follow a Weibull distribution with shape and scale

parameter values 4 and 10, respectively. Hence, µ = 9.06. Moreover, we let βp = 3, βr = 9,
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Table 6: Case of βp < βr ≪ µ. (i) Cost-rate minimizing replacement age, (ii) percent increase

in cost-rate induced by never performing preventive maintenance (i.e., T = +∞), (iii)

percent increase in cost-rate induced by setting T = T ∗
A = 6.42, and (iv) percent increase in

availability induced by setting T = T ∗
C under different age-dependent replacement costs and

the parameter values in Example 11.

(i) (ii) (iii) (iv)

Scenario Replacement costs T ∗
C

C(+∞)−C(T ∗
C )

C(T ∗
C )

C(T ∗
A)−C(T ∗

C )

C(T ∗
C )

A(T ∗
A)−A(T ∗

C )

A(T ∗
A)

(a)
cr(t) = 15

cp(t) = 4
5.90 76.7% 0.05% 0.03%

(b)
cr(t) = 15 +

√
t

cp(t) = 4 +
√
t

6.34 46.32% 0.02% ≈0

(c)
cr(t) = 15 + t

cp(t) = 4 + t
5.88 35.45% 0.47% 0.03%

(d)
cr(t) = 15 + t2

cp(t) = 4 + t2
1.80 195.42% 90.42% 6.21%

cp(t) = 4 + gp(t) and cr(t) = 10 + gr(t). Figure 11 depicts the cost-rate function C(T ) vs. T

for different functional forms of gp(t) and gr(t). ■

In Figure 11, it is apparent that the cost-rate function is no longer quasi-convex in

general (except when gr(t) = gp(t) = 0 or gr(t) = gp(t) = t), and may have multiple

local optima. In fact, the form of C(T ) and the value of the cost-rate minimizing policy is

very sensitive to the parameter values and replacement cost functions. For example, when

gr(t) and gp(t) are approximately linear functions with a slope of 1, the optimal cost-rate

minimizing policy is to never perform preventive maintenance; otherwise, it is finite. We

also want to note that in our numerical study, a similar conclusion does not necessarily

hold for cases where gr(t) and gp(t) are linear; rather, it depends on the combination

of the other parameter values. For example, when βr = 9, βp = 1, cr(t) = 90 + t2 and

cp(t) = 40 + t2, the optimal policy is to never perform preventive maintenance, even though
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Figure 11: Case of βp < βr ≤ µ. Cost-rate function under different forms of replacement

cost functions and the parameter values of Example 12 (we assume cr(t) = 10 + gr(t) and

cp(t) = 4 + gp(t)). Because the replacement durations are only slightly smaller than the

expected time to failure, the properties of C(T ) are very sensitive to the replacement cost

functions. Moreover, when gr(t) = gp(t) ≈ t, it is optimal to never perform preventive

maintenance.

the reactive replacement cost increases rapidly. Figure 11 indicates that misspecification of

the replacement cost functions can increase the cost-rate significantly.

Table 7 is the counterpart of Table 6 for the scenarios depicted in Figure 11. Because

the optimal replacement age is sensitive to the forms of the replacement cost functions, the

decrease in system availability is significant if the cost-rate minimizing policy is adopted, and

vice versa. Hence, when replacement durations are not considerably smaller than the ex-

pected time to failure, maintenance planners should (i) be concerned about accurately model-

ing the age-dependent replacement costs, and (ii) identify priorities in the optimization crite-
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ria because adopting a replacement policy under one criterion may significantly compromise

the other criterion. In these scenarios, obtaining Pareto efficient solutions may be of interest.

Table 7: Case of βp < βr ≤ µ. (i) Cost-rate minimizing replacement age, (ii) percent increase

in cost-rate induced by never performing preventive maintenance (i.e., T = +∞), (iii)

percent increase in cost-rate induced by setting T = T ∗
A = 6.42, and (iv) percent increase in

availability induced by setting T = T ∗
C under different age-dependent replacement costs and

the parameter values in Example 12.

(i) (ii) (iii) (iv)

Scenario Replacement costs T ∗
C

C(+∞)−C(T ∗
C )

C(T ∗
C )

C(T ∗
A)−C(T ∗

C )

C(T ∗
C )

A(T ∗
A)−A(T ∗

C )

A(T ∗
A)

(a)
cr(t) = 10

cp(t) = 4
7.28 15.09% 1.15% 0.84%

(b)
cr(t) = 10 +

√
t

cp(t) = 4 +
√
t

9.02 2.88% 4.79% 18.01%

(c)
cr(t) = 10 + t

cp(t) = 4 + t
+∞ 0 4.10% 18.02%

(d)
cr(t) = 10 + t1.2

cp(t) = 4 + t1.2
1.22 7.39% 9.69% 52.64%

(e)
cr(t) = 10 + t1.6

cp(t) = 4 + t
4.24 117.91% 7.02% 7.00%

(f)
cr(t) = 10 + t1.6

cp(t) = 4 + t1.6
0.65 103.42% 88.66% 70.98%

Finally, Table 8 summarizes our findings on the properties of functions C(T ) and A(T )

and optimization problems (3.4) and (3.5). Note that, we do not study the case where

replacement durations are larger than the expected time to failure as such scenarios are

uncommon in practice.
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Table 8: Summary of findings on the functions C(T ) and A(T ), and the cost-rate minimizing and availability maximizing

policies, under different replacement duration scenarios.

minT>0 C(T ) maxT>0A(T )

βp = βr = 0
Under mild conditions, C(T ) is quasi-convex, and there exists a
unique and finite optimal solution (Theorem 6)

A(T ) = 1 for all T

βp = βr > 0
Under mild conditions, C(T ) is quasi-convex, and there exists a
unique and finite optimal solution (Theorem 9)

A(T ) is monotone increasing, and the optimal
solution is infinite

βp < βr ≪ µ
C(T ) is generally quasi-convex, and there exists a unique and finite
optimal solution (Example 11)

A(T ) is quasi-convex, and there exists a unique
and finite optimal solution (Appendix A)

βp < βr ≤ µ
The properties of C(T ) are sensitive to the functional form of re-
placement costs, and the optimal solution may be finite or infinite
(Example 12)

A(T ) is quasi-convex, and there exists a unique
and finite optimal solution (Appendix A)
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3.6 Concluding Remarks

We consider age-replacement policies (without minimal repair) for systems with increas-

ing replacement costs under both instantaneous and non-instantaneous replacement dura-

tions. When replacements are instantaneous, we provide sufficient conditions under which

there exists a unique optimal solution that minimizes the long-run expected cost-rate. More-

over, we examine how age-dependent replacement costs affect the optimal replacement time

and the optimal cost-rate compared to those under constant replacement costs. We also ex-

plore the increase in long-run expected cost-rate when replacement costs are age-dependent

but a replacement policy based on constant replacement costs is implemented. Under convex

replacement costs, the increase in cost-rate is large if the policy is based on replacement costs

that have a small reactive to preventive cost ratio. The opposite holds when replacement

costs increase slowly and their ratio decreases in age.

Under non-instantaneous replacements, we study the form of the cost-rate function and

compare optimal cost-rate minimizing and availability maximizing replacement policies.

Our experiments indicate that ignoring age-dependency can result in both underestimating

the long-run expected cost-rate and overestimating system availability. We also learn that

when replacement durations are comparable to the expected time to failure, the form of the

cost-rate function and its optimal solution are sensitive to the replacement cost functions.

Hence, it is important that maintenance planners accurately model the age-dependent

replacement costs.
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4.0 Optimal Condition-Based Maintenance via a Mobile Maintenance

Resource

4.1 Introduction

In this chapter, we consider a condition-based maintenance setting where a set of identi-

cal, geographically distributed assets degrade stochastically over time and may fail without

proper intervention. Failures do not mandate immediate maintenance, but do incur down-

time costs. A single maintenance resource is tasked with traveling among and maintaining

these assets. We model the asset deterioration process as a completely observable discrete-

time Markov chain, and the location of the maintenance resource and assets using a graph

(network). In this graph, nodes represent possible geographical locations for the maintenance

resource, which include both auxiliary and asset locations. Traversing the auxiliary locations

allows the maintenance resource to reach asset locations. The maintenance resource may

also idle at the auxiliary or asset locations at any time. Edges represent links between nodes

along which the maintenance resource may travel. We assume that assets are not co-located,

and hence, the maintenance resource travels between asset nodes to carry out repairs, which

restore the assets to as-good-as-new.

We seek to (i) dynamically obtain the optimal actions (repair, reposition, idle) for the

maintenance resource as a function of the conditions of the assets and the current location of

the resource to minimize total expected discounted costs which include downtime, travel, and

maintenance expenses; (ii) study the structural properties of the optimal policies; (iii) pro-

vide insights on how current and future locations of the resource can be exploited to perform

proximal maintenance, and how the maintenance resource can be strategically repositioned

in anticipation of maintenance needs; (iv) explore how graph structure affects positioning

and maintenance decisions; and (v) design implementation-friendly heuristic policies.

The majority of studies on condition-based maintenance focus on adaptively determining

when to perform maintenance as a function of the condition of a single asset or multiple co-

located assets with economic dependencies; we refer the reader to [6, ] for a survey. To the
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best of our knowledge, the only existing work on condition-based maintenance for dispersed

assets is that in [62]. In their work, the assets are dispersed on a cycle graph and are visited in

a fixed order by a maintenance resource, hence no decisions are made on how to dynamically

reposition the resource. Our modeling framework, on the other hand, generalizes the graph

configuration and addresses both the timing of maintenance interventions and the dynamic

repositioning of the maintenance resource. A recent survey points out that condition-based

maintenance of geographically dispersed assets is an open research direction [45].

Other related studies consider preventive maintenance for geographically dispersed assets,

but in the context of time-based maintenance. These studies include [51, 60, 99, 85, 107, 117]

who consider deterministic settings where a set of maintenance tasks are predefined or

scheduled based on the assets’ ages and are carried out by multiple resources. Similarly,

the studies in [30, 31] determine optimal routes a priori that are updated once an asset

fails. The studies in [38, 72], asset locations are modeled in a flow network, where asset

failures on graph nodes can interrupt the flow of material in the network; but again, lifetime

distributions are used to make maintenance decisions a priori. Other studies consider

routing mobile assets to fixed maintenance facilities in which maintenance schedules are

predefined or determined based on number of operating hours [55, 112, 123]. Unlike this

body of literature, in our problem, maintenance actions and movements of the maintenance

resource are dynamically prescribed in response to changes in the assets’ conditions,

enabling maintenance planners to exploit the cost-saving benefits of condition monitoring.

Our research also has loose connections with the dynamic traveling repairman problem

[20, 21, 22], the medical unit dispatching literature [5, 73, 90, 91], and dynamic repositioning

problems for general applications [18, 19, 49]. The author in [125] studies optimal waiting

strategies when anticipating service requests from multiple customer locations. Other studies

consider dynamic vehicle routing problems in which some of the customer demands are known

a priori while others are dynamic [17, 79, 80]. In these studies, demands arrive stochastically

(either in some Euclidean space or a general network), and can be viewed in a maintenance

context as failed assets that (unlike our assets) require immediate maintenance. Our work,

however, focuses on applications with condition monitoring technologies put in place to

enable maintenance planners to maintain assets before failure. Hence, the models in this
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body of literature cannot adequately address the trade-offs in our maintenance setting.

Finally, another somewhat relevant body of literature is that on the inventory routing

problem, in which a supplier decides each period how much to deliver to each customer

and how to assign trucks/routes (see [42] for a review). In these studies inventory is often

distributed from a depot to a set of customers using a fleet of vehicles with limited capacity

[32, 75, 76] or is redistributed between different stations as in a bike sharing system [27, 28].

In relation to our problem, customer (or station) inventory levels can be viewed as asset

deterioration conditions, and replenishment decisions as maintenance interventions. That

said, in inventory routing, demand is assumed to be either deterministic or independently

and identically distributed at each customer; in our setting, the probability of transitioning to

a new deterioration condition depends on the current deterioration condition. Our model also

allows for transitioning to better conditions even in the absence of maintenance. Moreover,

similar to the vehicle routing literature, these studies only identify delivery routes that

must start and end at a depot and do not allow idling. Lastly, the cost structures in these

problems differ from ours in that they may include inventory holding costs, delivery rewards,

or shortage penalties.

Table 9 summarizes the most relevant literature and highlights our contributions. The

first column lists the attributes of interest. For example, the second attribute labeled as

“Allow maintenance before failure” signifies whether maintenance is allowed at failure only

or if maintenance is allowed before failure as well. Similarly, the third and fourth attributes

determine whether maintenance or positioning decisions are dynamic or pre-planned. The

last attribute indicates the methodology used (MDP and QT stand for Markov decision pro-

cesses and Queueing Theory, respectively). Notice that our work is the first to jointly address

optimal condition-based maintenance and dynamic positioning of a maintenance resource.

Table 9 also identifies potential future directions, for instance, considering condition-based

maintenance for dispersed assets with partially observable conditions.

The remainder of the chapter is structured as follows. Section 4.2 formulates a Markov

decision process model to obtain the optimal actions of the maintenance resource. Section

4.3 establishes structural properties of the optimal policy obtained from our theoretical

derivations. Section 4.4 provides insights on the structure of the optimal policy obtained from

63



Table 9: Summary of the related literature and our contributions.

O
u
r
m
o
d
el

[1
25

]

[1
8
,
1
9
]

[5
,
73

,
9
0,

9
1]

[6
2
]

[2
]

[2
1,

22
]

[7
0
]

[7
9
]

[8
0
]

[1
7
]

[5
1,

69
,
8
5
,
1
07

,
11

7]

[3
8,

99
]

[3
0,

31
]

[7
2]

[6
0]

Condition-based maintenance ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Allow maintenance before failure ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Dynamic maintenance decisions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Dynamic positioning decisions ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Allow idling ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Partially observable conditions ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Multiple maintenance resources ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Random service times ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Random travel times ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Methodology MDP QT Deterministic Optimization

numerical observations. In particular, we explore scenarios in which maintenance is earlier

compared to a single-asset setting and introduce the concept of proximal maintenance. More-

over, we explore use of graph centrality measures to identify promising idling locations for

the maintenance resource and present insights on optimal repositioning decisions. Sections

4.5 analyzes the sensitivity of several metrics of interest to various parameter values (e.g.,

costs or transition probabilities). Section 4.6 provides easy-to-implement heuristic policies

and analyzes their performance. Finally, Section 4.7 summarizes our findings. Appendices

C - F contain the proofs for all established results and additional numerical examples.

4.2 Model Formulation

Consider a single maintenance resource responsible for maintaining a set of nM identical

assets. We use graph G = (V,E) to capture the geographical locations of the assets and
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possible repositioning movements between them executed by the maintenance resource. The

set of nodes V consists of two disjoint subsets VM and VT , i.e., V = VM∪VT and VM∩VT = ∅.

Nodes in VM = {1, . . . , nM} represent the locations of the assets. Nodes in VT = {l1, . . . , lnT
}

are “auxiliary” nodes that are used to model travel between the assets. The maintenance

resource idles in or travels through these locations to reach asset locations. Hence, V =

{1, . . . , nM , l1, . . . , lnT
}. In our infinite horizon model, time is discretized and it is assumed

that the maintenance resource can traverse one graph edge per time period. For each pair

of nodes b, b′ ∈ V , b ̸= b′, the edge (b, b′) is contained in the set of edges E if and only

if it is possible to move from node b to node b′ within one time period. The maintenance

resource can traverse the edges of the graph and may repair an asset once it is located in an

asset node. Similar to traversing an edge, a repair action is assumed to take one time period

and restores the asset to as-good-as-new. We assume that the maintenance resource has no

home-base requirements and is available at all decision epochs.

The assets are prone to deterioration over time, and their deterioration condition is

remotely monitored and fully observed by sensors. The assets are assumed to deteriorate

independently according to a discrete-time Markov chain. The deterioration conditions are

denoted by 0, 1, . . . ,∆− 1,∆; where 0 represents the as-good-as-new condition, and ∆ < ∞

represents the failed condition in which the asset is “down.” Let K = {0, 1, . . . ,∆ − 1,∆}.

We denote the transition probability matrix for the discrete-time Markov chain by P , with

elements Pi,j denoting the probability of transitioning to deterioration condition j from i in

one time period.

Figure 12 depicts an example of a graph with four assets (nM = 4) and four possible

deterioration conditions (∆ = 3), as well as five auxiliary nodes (nT = 5). Auxiliary nodes

capture travel distances and possible travel routes between assets. For instance, it takes

six units of time to travel from Asset 1 to Asset 4. That is, the maintenance resource must

traverse the auxiliary nodes l1, l2, ..., l5 to reach Asset 4 when repositioning from Asset 1.

As depicted in Figure 12, we generally consider settings where travel durations between

assets are relatively longer than repair times (recall that a repair action takes one unit of

time). Our model is motivated by applications that arise in fulfilment centers, warehouses

and manufacturing plants, data centers, as well as recently developed satellite maintenance
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systems [10, 26, 110]. In these applications, maintenance tasks often include simple and quick

fixes or component replacement. For instance in a data center, maintenance tasks include

replacing generators, switches, and backup batteries [142]. Thus, a human technician or a ser-

vicing robot travels long distances between servers and performs quick repairs upon arrival.

Figure 12: Example of a (2,4)-banana graph [119] with four asset nodes (VM = {1, 2, 3, 4})

and five auxiliary nodes (VT = {l1, . . . , l5}). Each asset can be in one of four deterioration

conditions (K = {0, 1, 2,∆ = 3}); darker asset nodes indicate worse conditions. Asset con-

ditions are also indicated on the labels next to the assets.

Next, we formulate the components of our MDP model.

State Space. The state of the MDP includes the deterioration conditions of the assets and

the location of the maintenance resource, as these are the only pieces of information needed

to determine the resource’s next action. Specifically, let xi denote the deterioration condition

of asset i ∈ VM and x = (x1, . . . , xnM
) be the vector of deterioration conditions of all the

assets. Furthermore, let l ∈ V denote the current location of the maintenance resource. The

state of the MDP is then s = (x, l), and the state space S is

S =
{
(x, l) : x ∈ KnM , l ∈ V

}
.

Actions. We consider three types of actions. When the maintenance resource is in an asset

location, a repair may be carried out (action R); the maintenance resource may also travel

to an adjacent node b (action Tb); or, the maintenance resource can do nothing, i.e., idle

(action DN). When the maintenance resource is in an auxiliary node, it may either travel
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to an adjacent node or do nothing. The set of allowable actions, denoted by As, depends

on the current state s = (x, l) and is expressed as

As =


{R,DN}

⋃( ⋃
b:(l,b)∈E

{Tb}
)
, if l ∈ VM ,

{DN}
⋃( ⋃

b:(l,b)∈E
{Tb}

)
, if l ∈ VT .

Transition Probabilities. Let p(s′|s, a) denote the probability of transitioning to state

s′ = (x′, l′) when the current state is s and action a is chosen. Recall that repair actions

are perfect, i.e., restore the asset to as-good-as-new condition. If the repair action is chosen

(i.e., a = R), then the only possible transitions are to states in which the repaired asset is

as-good-as-new and maintenance resource location l′ is the same as the current location l:

p(s′|s, R) =


∏

j∈VM\{l} Pxj ,x′
j
, if x′

l = 0, l′ = l;

0, otherwise.

On the other hand, if the do nothing action is chosen (i.e., a = DN), then the only possible

transitions are to states in which maintenance resource location l′ is the same as the current

location l:

p(s′|s, DN) =


∏

j∈VM
Pxj ,x′

j
, if l′ = l;

0, otherwise.

Finally, if travel action to node b is chosen (i.e., a = Tb), then the only possible transitions

are to states in which maintenance resource location l′ is b:

p(s′|s, Tb) =


∏

j∈VM
Pxj ,x′

j
, if l′ = b;

0, otherwise.

Rewards. Three types of costs may be incurred: repair, downtime, and travel. The cost of

repairing an asset in condition k ∈ K is denoted by cR(k) ≥ 0. We assume that the repair cost

is non-decreasing in deterioration condition because it may be more costly to repair or replace

a highly deteriorated asset compared to a healthier asset. That is, 0 ≤ cR(0) ≤ . . . ≤ cR(∆).

This assumption is common in the maintenance optimization literature [56, 15]. A per unit
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downtime cost cD ≥ 0 is incurred in each period by any asset that is not functioning either

because it is in the failed state or is undergoing repair. A travel cost cT ≥ 0 is incurred for

traversing any edge (b, b′) ∈ E.

Using the above notation, the state and action dependent immediate costs r(s, a) can

be expressed as

r(s, R) = cR(xl) + cD +
∑

j∈VM\{l}

cD · 1{xj=∆}, (4.1)

r(s, DN) =
∑
j∈VM

cD · 1{xj=∆}, (4.2)

r(s, Tb) = cT +
∑
j∈VM

cD · 1{xj=∆}. (4.3)

Equation (4.1), for example, can be interpreted as follows. If the repair action is chosen

in state s =
(
(x1, . . . , xl, . . . , xnM

), l
)
, then the immediate cost is the summation of asset

l’s repair and downtime cost, plus the downtime cost of any other failed assets. Equations

(4.2) and (4.3) can be interpreted in a similar manner.

Value Function. The overall goal is to minimize the long-run total expected discounted

cost by choosing optimal actions as a function of the MDP state. Let vs be the expected

minimal discounted cost-to-go starting from state s = (x, l) and let λ ∈ [0, 1) be a discount

factor. Then

v(s) = v(x, l) =


min

{
R(s),DN (s), min

b:(l,b)∈E
Tb(s)

}
, if l ∈ VM ,

min
{
DN (s), min

b:(l,b)∈E
Tb(s)

}
, if l ∈ VT ,

(4.4)

where

R(s) ≡ cR(xl) + cD +
∑

j∈VM\{l}

cD · 1{xj=∆} + λ
∑

x′∈KnM

s.t. x′
l=0

∏
j∈VM\{l}

Pxj ,x′
j
· v(x′, l), (4.5)

DN (s) ≡
∑
j∈VM

cD · 1{xj=∆} + λ
∑

x′∈KnM

∏
j∈VM

Pxj ,x′
j
· v(x′, l), and (4.6)

Tb(s) ≡ cT +
∑
j∈VM

cD · 1{xj=∆} + λ
∑

x′∈KnM

∏
j∈VM

Pxj ,x′
j
· v(x′, b). (4.7)
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Equations (4.5)-(4.7) represent the total expected discounted cost-to-go starting from state

s and choosing action repair, do nothing, and travel to node b, respectively. The optimal

action in state s, denoted by a∗(s), is the one that obtains the minimum on the right-hand

side of equation (4.4). In the remainder of the chapter we use the value iteration algorithm

to compute the value function in (4.4) and obtain the optimal actions [106].

4.3 Structural Properties

For analyzing the structural properties of the value function and optimal policies, we

first provide the definition of an increasing failure rate (IFR) stochastic matrix [13].

Definition 1. Let
∑∆

j=k Pi,j be nondecreasing in i for all k ∈ K. Then, matrix P has the

increasing failure rate (IFR) property.

The IFR property indicates that assets deteriorate faster in worse conditions (see e.g.,

[1, 65]). The deterioration processes of many real world applications exhibit both IFR and

upper-triangular properties [1, 29, 65, 67]. Upper-triangularity implies that asset condition

cannot improve in the absence of maintenance interventions, but it is neither required for

nor implied by the IFR property.

We next show that under the IFR property, the optimal value function is monotonically

nondecreasing in each asset’s condition when all other state variables remain fixed. All proofs

are provided in Appendix A.

Proposition 10. If P has the IFR property, then v
(
(x1, . . . , xi, . . . , xnM

), l
)
is nondecreasing

in xi for fixed l and xj, j ̸= i.

Using Proposition 10, we establish sufficient conditions for the existence of an optimal

control-limit for the repair action with respect to the condition of the asset that is located

in the position of the maintenance resource.

Theorem 10. Consider the following two sets of conditions: (i) P has the IFR property and

cR(k) is constant for all k ∈ K; (ii) P has the IFR property, cR(k) is constant for all k ∈ K\

{∆} and cR(∆)−cR(∆−1) ≤ cD. Under either set of conditions in (i) or (ii), if there exists a
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condition x∗
i such that a∗

(
(x1, . . . , x

∗
i , . . . , xnM

), i
)
= R, then a∗

(
(x1, . . . , xi, . . . , xnM

), i
)
= R

for all xi ≥ x∗
i .

Theorem 10 implies that under mild conditions, when the maintenance resource is at an

asset location, the optimal maintenance decision can be characterized by a repair threshold

for that asset given the deterioration conditions of other assets. This control-limit structure

is appealing because it can save computational effort and is easy to implement in practice

[106]. In Section 4.6, we exploit this structure in developing heuristic policies.

The sufficient conditions of Theorem 10 ensure a control-limit structure by ruling out

repair costs that are significantly higher in worse conditions; e.g., the condition cR(∆) −

cR(∆ − 1) ≤ cD ensures that the difference between the repair cost at failure and at ∆ − 1

is bounded by the downtime cost. In scenarios in which repair costs are significantly higher

in more deteriorated conditions compared to better conditions, the control-limit structure

may be violated. That is, it may be optimal to repair an asset in a healthier condition,

but suboptimal to repair it in a relatively more deteriorated condition. In the extreme

of such instances, it may be optimal to abandon assets once they reach a certain level of

deterioration. See examples in Appendix B. In many of our numerical examples we let the

repair cost function take more general forms (e.g., monotone increasing) than those described

in the conditions of Theorem 10. However, in these examples, the repair costs do not vary

significantly between different deterioration conditions, and we observe that the optimal

repair action follows a control-limit rule.

Next, using Proposition 10, Theorem 11 establishes conditions under which it is subop-

timal to reposition to a location with a higher total expected discounted cost-to-go value.

Theorem 11. Let P have the IFR and upper-triangular properties. Consider two adjacent

locations l and b, i.e., (l, b) ∈ E. If v(x, l) = Tb(x, l), then v(x, l) ≥ λv(x, b). Moreover,

consider the following two sets of conditions: (i) v(x, l) < λv(x, b); (ii) cT > 0 and v(x, l) ≤

λv(x, b). If either (i) or (ii) holds, then v(x, l) < Tb(x, l).

The first result in Theorem 11 demonstrates that if it is optimal to reposition to a

particular location, then that location has a lower long-run expected discounted cost than

the current location. The second result establishes the reverse case; that is, if the long-run
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expected discounted cost of a location is less than that of an adjacent location, then it is

suboptimal to reposition to that adjacent location. When v(x, l) = λv(x, b) the result is

violated only if the travel cost is zero.

A direct consequence of Theorem 11 is that the optimal action in a node with locally

minimum value function cannot be traveling, and is instead idling or repairing. That is, if

v(x, l) < λ min
b:(l,b)∈E

v(x, b), then v(x, l) = DN (x, l) for l ∈ VT and v(x, l) = min{DN (x, l),

R(x, l)} for l ∈ VM . Note that the upper-triangular property implies that asset conditions

cannot improve in the absence of maintenance and thus, by Proposition 10 the value function

at the adjacent location b cannot improve in the next decision epoch. Consequently, it is

suboptimal to travel from node l to b in anticipation of an improvement in the value function.

4.4 Policy Insights

In this section, we discuss interesting insights on the structure of the optimal policy based

on numerical experimentation. Specifically, first in Section 4.4.1, we discuss the factors that

prompt “early” maintenance, that is, earlier than in a setting with a single asset. Then in

Section 4.4.2, we characterize how the vector of deterioration conditions affects the optimal

idling and repositioning decisions. Lastly in Section 4.4.3, we conduct a simulation study

that identifies the locations in the graph that are most used for idling under the optimal

policy and examine their relationship to graph structure. We build on these findings to

design high-performance heuristic policies in Section 4.6.

4.4.1 Maintenance Thresholds

Recall that under the IFR property and the cost conditions in Theorem 10, maintenance

decisions when in an asset location can be characterized by an optimal repair threshold. In

the special case of a single asset with a dedicated maintenance resource, this optimal repair

threshold only depends on the condition-dependent repair costs, downtime cost, and the

asset’s deterioration process. In our more general setting, however, the optimal thresholds
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are affected not only by these parameter values, but also by the conditions of the other

assets, the relative distances between the assets, the underlying graph structure, and the

current location of the maintenance resource. These novel features add to the complexity

of the decision making process pertaining to the maintenance decisions.

In general, when the maintenance resource is at an asset location, it is often optimal to

repair an asset earlier (i.e., in a less-deteriorated condition) than it would be if maintaining

only that one asset in isolation; we refer to this phenomenon as early maintenance. That is,

early maintenance implies that it is optimal to maintain an asset earlier in the multi-asset

setting compared to the single-asset setting under the same costs and deterioration process.

We summarize our numerical observations in three important scenarios where early main-

tenance is optimal, namely, when (i) an asset is in a non-central and thus unfavorable loca-

tion; (ii) multiple assets are deteriorated; and, (iii) the maintenance resource capitalizes on

its proximity to an asset, which we refer to as proximal maintenance. Note that proximal

maintenance is somewhat similar to opportunistic maintenance in that it exploits opportu-

nities to save costs by maintaining early. However, opportunistic maintenance applies to

multi-component systems and uses planned or unplanned downtime caused by one compo-

nent to preventively maintain another component(s) [48, 134, 143]. Therefore, the events

that trigger opportunistic and proximal maintenance are different.

These scenarios are presented in Examples 13-15 where we let cR(0) = 2, cR(1) = 4,

cR(2) = 6, cR(3) = 10, cD = 10, cT = 0.5, and

P =


0.98 0.01 0.01 0

0 0.96 0.03 0.01

0 0 0.95 0.05

0 0 0 1

 .

Under these parameter values, the optimal maintenance threshold for an asset in isolation

is 3 (i.e., at failure). We obtain this value simply by solving the special case of our model

with a single asset node.

Example 13 (Deteriorated Asset in a Non-Central Location). One scenario in which it is

optimal to maintain an asset earlier than we would for that asset in isolation (i.e., earlier
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than deterioration level of 3 under these parameter values) arises when the maintenance

resource is near a non-centrally located asset. Maintaining such assets early can be optimal

because the maintenance resource can then reposition to more central locations; take Figure

13 as an example.

Figure 13 depicts three scenarios, each with one deteriorated asset. Note that in all three

scenarios the deteriorated asset has the same deterioration level of 2, but early maintenance

is only optimal in Figure 13a when the deteriorated asset is Asset 1, which is located in

a relatively less-central location. Early intervention allows the maintenance resource to

subsequently reposition to central nodes of the graph to possibly idle in anticipation of

further deterioration of the assets. That is, although not presented in Figure 13, when all

assets are as-good-as-new and the maintenance resource is at Asset 1, the optimal action is

to travel toward l1. ■

Example 14 (Multiple Assets Are Deteriorated). Another common scenario in which optimal

early maintenance occurs arises when multiple assets are deteriorated. In such scenarios, by

maintaining an asset early, the maintenance resource can subsequently reposition to the

location of another deteriorated asset; take Figure 14 as an example. Comparing Figures

13c and 14 we observe that early intervention is optimal in the latter because another asset

is deteriorated. ■

Example 15 (Proximal Maintenance). Early maintenance of an asset can also be optimal

due to the proximity of the maintenance resource to that asset; we refer to this type of early

maintenance as proximal maintenance. In such scenarios, it may not be optimal to travel

towards a deteriorated asset either because other assets are more deteriorated, or because

that asset is not sufficiently deteriorated to justify the costs associated with traveling toward

that asset. However, if the maintenance resource is already at that asset, it may be optimal

to perform early maintenance; see Figure 15 as an example where proximal maintenance is

optimal for Asset 1. ■
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(a) Early maintenance is optimal for Asset 1

(b) Early maintenance is not optimal for Asset 2

(c) Early maintenance is not optimal for Asset 3

Figure 13: An excerpt of the optimal policy for Example 13. Only in (a) is early maintenance

optimal because the deteriorated asset is in a non-central location. That is, early mainte-

nance of Asset 1 allows the maintenance resource to subsequently reposition to l1 which is

more central to all assets. Icons represent optimal actions as follows: repair, travel

in the indicated direction. The do nothing action is optimal in nodes with no icon.
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Figure 14: An excerpt of the optimal policy for Example 14. Early maintenance is optimal for

Asset 3 because the maintenance resource can subsequently travel to Asset 2 in anticipation

of its further deterioration.

Figure 15: An excerpt of the optimal policy for Example 15. It is not optimal to travel

towards Asset 1 in l1, however, if the maintenance resource is at Asset 1, it is optimal to

perform proximal maintenance.

4.4.2 Positioning and Deterioration Conditions

To understand how the deterioration vector x affects the value function and the corre-

sponding optimal actions at different locations, we look at two scenarios: (i) when deteri-

oration levels are different among assets, i.e., are unbalanced, and (ii) when deterioration

levels are equal among all assets, i.e., are balanced.

Unbalanced Deterioration Levels. When deterioration conditions differ among the

assets, it is often optimal to move toward the assets in higher levels of deterioration. How-

ever, such policies are not necessarily optimal in general graph structures, especially when

assets are not located at equally central nodes. For instance, it may be optimal to idle or

move toward less deteriorated assets if the maintenance resource is close to those locations.

That is, the maintenance resource would take advantage of its proximity to these assets to
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perform early maintenance or idle at these locations in anticipation of further changes in

their conditions. Figure 16 depicts an example of such a scenario for cT = 1, cR(0) = 0.2,

cR(1) = 0.4, cR(2) = 0.6, cR(3) = 1, cD = 1 and

P =


0.8 0.15 0 0.05

0 0.8 0.15 0.05

0 0 0.8 0.2

0 0 0 1

 .

Figure 16: An excerpt of the optimal policy for unbalanced deterioration levels and high

travel cost. It is optimal to idle at the locations close to Assets 3 and 4 even though Assets 1

and 2 are more deteriorated.

Balanced Deterioration Levels. When deterioration levels among the assets are

balanced, our numerical results suggest that under sufficiently low travel costs and healthy

deterioration conditions (collectively among all assets), it is optimal to travel toward the

central locations of the graph and idle in anticipation of further changes. Conversely, under

sufficiently high travel costs and deterioration conditions, it is optimal to travel toward

and idle in the asset locations. Figure 17 illustrates this claim for a (2,4)-banana tree

with four assets on the leaf nodes. Specifically, Figure 17 plots the value function and

the corresponding optimal actions against each node of the graph under different (balanced)

deterioration conditions and travel costs. The graph configuration and the parameter settings

in Figure 17 are the same as those in Figure 16, except for the travel costs.
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Figure 17: Each plot depicts the value function and the corresponding optimal actions for

different locations in a (2,4)-banana tree graph with assets on all four leaf nodes. Travel cost

increases left to right and (balanced) deterioration conditions from top to bottom. Under low

travel costs and deterioration conditions, it is optimal to move toward and idle in the middle

locations of the graph. Conversely, under high travel costs and deterioration conditions, it

is optimal to move closer to and idle at the asset locations. Lower travel costs also prompt

earlier proximal maintenance. Note that the plots are consistent with the results established

in Theorems 10 and 11.
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Additionally, note that in all plots of Figure 17, the locations with locally minimum long-

run expected discounted cost correspond to idling or repairing actions as established in The-

orem 11. Also, for every optimal repositioning action, the long-run expected discounted cost

of the corresponding location is larger than that of the destination location (see Theorem 11).

4.4.3 Idling and Graph Centrality

In this section our goal is to identify the locations in the graph that are most used for

idling under the optimal policy and employ graph centrality measures [98] to explore the

connections between these idling locations and graph structure. We simulate the optimal

actions of the maintenance resource and its movement through the graph and record the

number of time units the maintenance resource (i) spends in each node, or (ii) idles, i.e., im-

plements the do nothing action, in each node. We then report the long-run average fraction

of time spent (or idle time spent) at each node and visualize these averages as heat maps.

Recall from Section 4.2 that, under our modeling assumptions, one unit of time elapses if

the optimal action is to repair an asset, idle (do nothing), or reposition to an adjacent node.

For metric (i), we record the cumulative time spent repairing, idling, and traveling through

each node. For metric (ii), we only record the time spent idling, which we later exploit in

Section 4.6. The heat map for metric (i) can also indicate the most frequently traversed

paths on the graph. Examples of heat maps for both metrics are depicted in Figures 18b

and 18c, respectively.

Example 16. Assume six assets dispersed on a graph as depicted in Figure 18a. Parameter

values are ∆ = 2, cR(0) = 1, cR(1) = 2, cR(2) = 3, cD = 2, cT = 0.05, λ = 0.995, and

P =


0.98 0.01 0.01

0 0.98 0.02

0 0 1

 .

To obtain the average fraction of time spent in each node, we conduct a simulation study

to trace the optimal movements of the maintenance resource for 1100000 units of time after

a warm up period of 4000 units of time. (Note that here we choose a sufficiently long

simulation duration such that the differences in averages obtained in three consecutive runs
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is less than 0.1%.) In the warm up period, we do not trace the movements so that we can

exclude the transient behavior. These averages are then visualized as a heat map in Figure

18b. Similarly, the averages for time spent idling only are visualized in Figure 18c.

(a) Graph configuration of Example 16; assets
are located at black nodes. Closeness centrality
scores, see equation (4.8), are above and to the
right of each node.

(b) Heat map for fraction of overall time spent in each
location, and its color scale. Asset locations are de-
picted with thick borders.

(c) Heat map for fraction of idle time spent in each location.

Figure 18: Idling is only optimal at nodes 4, l3, and l6 which are the most central nodes with

respect to the closeness centrality measure.

The heat map in Figure 18b illustrates the nodes at which the maintenance resource

spends most of its time. Moreover, a comparison of Figures 18b and 18c identifies nodes

used only for traveling (i.e., those with zero value in Figure 18c) and thus the regions most

frequently traversed under the optimal policy. Notice that the maintenance resource never

visits nodes l4, l5, and l8 because alternative paths of the same length exist and are closer to

all assets; such nodes can be eliminated.
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The heat map in Figure 18c indicates that idling is optimal only in three nodes: Asset 4,

l3, and l6. This observation holds across a wide range of parameter values (not presented

here). Under the optimal policy, when all assets are as-good-as-new, the maintenance re-

source travels toward the closest idling node (i.e., 4, l3, or l6), or idles if it is already at one

of these nodes. When an asset slightly deteriorates (i.e., reaches deterioration level 1), the

maintenance resource travels toward the idling node that is closest to that asset (or idles if it

is located at that node). Once an asset is sufficiently deteriorated (i.e., reaches deterioration

level 2), the maintenance resource travels toward and maintains that asset.

Our numerical work and the examples in this section suggest that idling nodes are

affected by the graph structure and tend to be centrally positioned with respect to the asset

nodes. In graph theory and network analysis, centrality is a fundamental concept to identify

the most “important” nodes within a graph. Various measures have been proposed that use

different definitions of centrality to identify such important nodes; examples include degree,

Eigenvector, Katz, closeness, and betweenness centrality. These measures reflect different

aspects of connectivity and are real-valued functions that provide a ranking of each node

with respect to the centrality measure. For instance, degree centrality is characterized by

the number of links incident upon a node; Eigenvector and Katz centralities measure the

influence of a node based on connections to high-scoring nodes; closeness centrality measures

how close a node is on average to other nodes; and, betweenness centrality quantifies how

often a node acts as a bridge on the shortest path between other nodes [98]. Next, we

propose two measures inspired by closeness and betweenness centralities that we believe are

well-suited measures to identify idling nodes.

We define a closeness centrality measure as

C(l) = 1∑
i∈VM

dG(i, l)
, (4.8)

where dG(i, l) denotes the length of the shortest path between nodes i and l. Note that in

the denominator of (4.8) we only include asset nodes in the summation of graph distances

because, in our application, the maintenance resource is positioned and travels between

assets. In a typical network science application, however, the denominator may include all

nodes [98]. Equation (4.8) assigns larger scores to nodes that are closer to all asset locations.
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Interestingly, in Example 16, idling nodes 4, l3, and l6 have the largest closeness

centrality score (i.e., 1/18) among all nodes; see Figure 18a. This example demonstrates

the relationship between the optimal policy obtained through the MDP formulation and

the graph structure that connects asset nodes, and that this relationship can be explained

by appropriate graph centrality measures such as closeness centrality. ■

Our numerical work also suggests that betweenness centrality together with closeness

centrality can identify idling locations. Example 17 illustrates the relationship between

idling locations and their closeness and betweenness centrality measures.

Example 17. Assume four assets dispersed on a graph as shown in Figure 19a. We let ∆ = 3,

cR(0) = 2, cR(1) = 2, cR(2) = 2, cR(3) = 3, cD = 2, cT = 0.1, λ = 0.995, and

P =


0.98 0.01 0.01 0

0 0.98 0.01 0.01

0 0 0.98 0.02

0 0 0 1

 .

We run a simulation study to trace the optimal movements of the maintenance resource for

1400000 units of time after a warm up period of 40000 units of time. The resulting heat

maps are presented in Figures 19b and 19c.

In our application, we define betweenness centrality as

B(l) =
∑

i,j∈VM ,i ̸=j ̸=l

σij(l)

σij

, (4.9)

where σij is the total number of shortest paths from node i to node j and σij(l) is the

number of those paths that pass through l. Similar to the closeness centrality measure, we

only include paths between assets. Equation (4.9) assigns larger scores to nodes that are

located on a larger number of shortest paths between assets.

In Example 17, the middle twenty nodes have equal closeness centrality scores. Among

these central locations, nodes 1, l3, l18, and l21 have the largest betweenness centrality

scores; that is, most of the shortest paths between assets pass through these nodes. When

all assets are as-good-as-new, the maintenance resource moves toward and idles at the

closest one of these nodes. Otherwise, it moves toward a deteriorated asset. ■
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(a) Graph configuration of Example 17; assets are located at black nodes. For each node, closeness centrality
and between centrality scores, see equations (4.8) and (4.9), are above and to the right, respectively.

(b) Heat map for fraction of overall time spent in each location, and its color scale. Asset locations are
depicted with thick borders.

(c) Heat map for fraction of idle time spent in each location.

Figure 19: Idling is optimal at asset nodes and at auxiliary nodes l3, l18, and l21. Among

the nodes with the largest closeness centrality score, these auxiliary nodes have the largest

betweenness centrality scores.
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In summary, Examples 16 and 17 highlight the connection between our problem setting

and graph structure. In general, when assets are not sufficiently deteriorated, it is optimal

to move toward central locations and idle there in anticipation of further deterioration.

Another takeaway from these examples is that our simulations and the resulting heat maps

can provide a holistic view of the maintenance resource’s optimal movements and identify the

important nodes and paths within a graph. Maintenance planners can potentially use such

“important” locations as bases, resource and material storage depots, and battery charging

stations in robotic applications.

Moreover, we find that graph theory measures such as closeness and betweenness central-

ity can be used to identify candidate locations a priori. The close relationship between these

measures and the idling locations obtained via simulating the optimal policy is intuitive in

that they identify nodes that are close to all assets and bridge most paths traversed between

them. In Section 4.6 we use these measures to generate easy-to-implement heuristic policies.

4.5 Additional Performance Metrics

Before exploring heuristic policies, in this section we conduct a simulation study to

quantify several metrics of interest under different parameter values to derive managerial

insights for maintenance planners. More specifically, we consider the average percentage of

time that the maintenance resource spends performing repairs (proximal and/or reactive;

i.e., at failure), traveling, or idling (in auxiliary and/or asset locations); and, the average

percentage of time that the assets are down.

Consider two network configurations, namely, a (2,4)-banana tree with four assets on the

leaf nodes, and a (3,3)-grid graph with four assets on the corner nodes (Tables 10 and 11,

respectively). Note that in both graphs, the average percentage of downtime among all assets

is nearly equivalent in the long-run because they are in equally central locations (i.e., they

have equal closeness centrality measures). Hence, we only report the average percentage of

downtime across the four assets. See Appendix C for additional graph configurations and a

comparison of downtime among assets with different closeness centrality measures.
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To assess how the parameter values affect the metrics of interest, first, Tables 10 and 11

report the values of the metrics for a benchmark scenario (second column). Under the bench-

mark scenario, we let ∆ = 3, cR(0) = 0.1, cR(1) = 0.2, cR(2) = 0.3, cR(3) = 0.5, cD = 0.1,

cT = 0.01, λ = 0.995, and

P =


0.95 0.03 0.01 0.01

0 0.95 0.03 0.02

0 0 0.95 0.05

0 0 0 1

 .

In the remaining columns of Tables 10 and 11, we change the value of a single parameter,

while keeping all other parameter values equal to the benchmark scenario. Thus, in each

column we can evaluate the effect of changing the corresponding parameter value on our

metrics of interest.

Regarding the transition probabilities, we let P vary as follows:

P ′ =


0.9 0.06 0.03 0.01

0 0.9 0.06 0.04

0 0 0.9 0.1

0 0 0 1

 , P ′′ =


0.85 0.1 0.03 0.02

0 0.85 0.1 0.05

0 0 0.85 0.15

0 0 0 1

 , and

P ′′′ =


0.8 0.15 0 0.05

0 0.8 0.15 0.05

0 0 0.8 0.2

0 0 0 1

 .

These transition probability matrices (P, P ′, P ′′, P ′′′) have the IFR property and are upper

triangular; note that we impose upper triangularity because in many applications it is un-

likely that the deterioration conditions of the assets improve in the absence of maintenance

interventions. Moreover, to explore the effect of deterioration speed on the optimal policy,

we construct the transition matrices such that they are orderable under first-order stochastic

dominance [78, 121], i.e., P ⪯ P ′ ⪯ P ′′ ⪯ P ′′′. The stochastic dominance of P ′ over P , for

instance, implies that in any given time period, given the current deterioration condition it

is more likely for an asset to deteriorate to a worse condition under P ′ compared to P .
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Table 10: The effect of changing parameter values on metrics of interest in a (2,4)-banana tree with assets on all leaf nodes.

All metrics are presented in percent values. The benchmark scenario represents the metric values under ∆ = 3, cR(0) = 0.1,

cR(1) = 0.2, cR(2) = 0.3, cR(3) = 0.5, cD = 0.1, cT = 0.01, and λ = 0.995. In the columns under “Repair cost,” the + sign

indicates adding 0.1 to the benchmark values of cR(0), cR(1), cR(2), cR(3). “Maintenance and Traveling” is equivalent to the

percentage of time that the maintenance resource is either travelling or performing maintenance; i.e., (1− idle)%. “Downtime”

is equivalent to the average percentage of time assets are down.

Repair cost Downtime cost Travel cost Transition matrix Discount factor
cR(0),...,cR(∆) cD cT P λ

benchmark +0.1 +0.5 +1 0.5 2 6 0.05 0.1 0.5 P ′ P ′′ P ′′′ 0.99 0.95 0.8

Maintenance: 10.1 9.8 8.5 8.5 10.7 10.9 10.9 9.6 9.8 7.8 17.6 21.1 22.8 9.9 9.1 8.5
Preventive (before failure) 3.2 2.4 0 0 4.3 4.7 4.8 2.3 2.4 1.3 5.8 4.7 2.8 2.6 1.1 0
Reactive 6.9 7.4 8.5 8.5 6.4 6.2 6.2 7.3 7.3 6.5 11.8 16.4 20.0 7.3 8.0 8.5

Travel 45.1 44.4 42.3 41.4 52.7 56.9 58.4 36.3 31.3 16.2 69.4 75.2 76.0 44.0 42.1 39.9

Idle: 44.8 45.7 49.2 50.2 36.6 32.2 30.7 54.1 60.0 75.9 13.0 3.8 1.2 46.2 48.9 51.6
Auxiliary locations 26.5 23.6 43.4 49.7 32.4 32.2 30.7 21.9 2.5 0.0 8.5 2.4 0.7 24.2 35.4 41.9
Asset locations 18.3 22.1 5.7 0.42 4.2 0 0 32.1 56.4 75.9 4.5 1.4 0.5 22.0 13.5 9.7

Maintenance and Traveling 55.2 54.3 50.8 49.8 63.4 67.8 69.3 45.9 41.0 24.1 87.0 96.2 98.8 53.8 51.1 48.4

Downtime 8.5 8.8 9.9 10.2 8.2 8.4 8.3 9.6 10.5 26.1 18.5 29.8 40.2 8.8 9.4 10.0
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Table 11: The effect of changing parameter values on metrics of interest in a (3,3)-grid graph with assets on all corner nodes.

All metrics are presented in percent values. The benchmark scenario represents the metric values under ∆ = 3, cR(0) = 0.1,

cR(1) = 0.2, cR(2) = 0.3, cR(3) = 0.5, cD = 0.1, cT = 0.01, and λ = 0.995. In the columns under “Repair cost,” the + sign

indicates adding 0.1 to the benchmark values of cR(0), cR(1), cR(2), cR(3). “Maintenance and Traveling” is equivalent to the

percentage of time that the maintenance resource is either travelling or performing maintenance; i.e., (1− idle)%. “Downtime”

is equivalent to the average percentage of time that assets are down.

Repair cost Downtime cost Travel cost Transition matrix Discount factor
cR(0),...,cR(∆) cD cT P λ

benchmark +0.1 +0.5 +1 0.5 2 6 0.05 0.1 0.5 P ′ P ′′ P ′′′ 0.99 0.95 0.8

Maintenance: 9.7 8.9 8.8 8.8 10.7 10.8 10.8 9.6 9.6 9.5 19.3 25.3 29.6 9.3 8.8 8.8
Preventive (before failure) 1.8 0.1 0 0 3.9 3.9 3.9 1.6 1.8 2.1 6.6 6.6 5.3 0.9 0 0
Reactive 7.9 8.8 8.8 8.8 6.8 6.9 6.9 8.0 7.8 7.4 12.7 18.7 24.3 8.4 8.8 8.8

Travel 28.7 28.0 28.1 27.9 35.9 36.5 39.7 21.4 17.9 13.1 50.8 56.8 60.4 28.3 26.5 20.5

Idle: 61.6 63.1 63.1 63.2 53.4 52.7 49.5 68.9 72.5 77.4 29.9 17.9 10.0 62.4 64.7 70.8
Auxiliary nodes 0.7 1.0 1.0 1.4 1.0 3.2 16.3 0.7 0.0 0.0 5.6 0.2 0.0 0.9 1.1 0.3
Asset nodes 60.8 62.1 62.1 61.8 52.3 50.0 33.2 68.2 72.5 77.4 24.3 17.7 10.0 61.6 63.6 70.5

Maintenance and Traveling 38.4 36.9 36.9 36.8 40.6 47.3 50.5 31.1 27.5 22.6 70.1 82.1 90.0 37.6 35.3 29.2

Downtime 5.2 6.0 6.2 6.2 4.7 4.7 4.5 5.9 6.5 11.7 9.8 17.1 27.0 5.7 6.3 7.0
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Examining the performance metrics in Tables 10 and 11 generates several insights. First,

note that because the distances between the asset locations are smaller in the grid graph

compared to the banana tree, idling time is lower in the latter. That is, the maintenance

resource spends more time performing maintenance and traveling. However, despite more

maintenance and traveling, the percentage of downtime is also higher in the banana tree

compared to the grid graph.

Second, note that as repair or travel costs increase, the percentage of time spent per-

forming maintenance and traveling decreases, and conversely, the percentage of time idling

increases. This effect is reversed under high downtime costs and discount factors, as well as

faster deterioration. These intuitive observations remain consistent across all scenarios in

both graph configurations and suggest that increases in maintenance are generally associ-

ated with increases in traveling. However, changes in the percentage of time spent idling at

assets versus auxiliary locations are somewhat arbitrary and are not consistent in the two

graph configurations. For instance, in the grid graph, the percentage of time spent idling

in auxiliary locations increases in downtime cost, whereas in the banana tree, the change is

non-monotone.

Lastly, note that asset downtime remains consistent under different values of the down-

time cost seemingly because maintenance actions also cause downtime. On the other hand,

asset downtime notably varies under different deterioration behavior and travel costs.

To summarize the discussion above:

(i) The maintenance resource spends more time idling in better connected graphs with

smaller distances between assets.

(ii) Assets incur less downtime in better connected graphs with smaller distances between

them. Hence, maintenance planners may save costs by utilizing multiple maintenance

resources, each responsible for the maintenance activities of a well-connected cluster of

assets.

(iii) Percentage of time idling increases in repair or travel costs and conversely decreases in

downtime cost, the discount factor, and deterioration speed. Also, increases in mainte-

nance are generally associated with increases in traveling.
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4.6 Heuristic Policies

Next, we propose heuristic policies that are appealing from an implementation perspec-

tive in that they consist of simple rules of thumb to be implemented by the maintenance

resource. Often in practice, once an asset is identified for maintenance, the resource must

commit to traveling to and maintaining that asset first, before taking on other tasks. We

consider heuristic policies that follow such practices and compare their performance with

that of policies that adopt more dynamic routing rules. Following our discussion in Section

4.3, all of the heuristics adhere to the control-limit rule established in Theorem 10.

The remainder of this section is organized as follows. We first formally define the

proposed heuristics in Section 4.6.1. We then compare their performance against the

optimal policy for small problem instances in Section 4.6.2, and against each other for large

problem instances in Section 4.6.3. Note that the state of the MDP grows exponentially

in the number of assets, and thus, for large instances we cannot solve our problem to

optimality in a practical amount of time using the value iteration algorithm.

4.6.1 Heuristic Policy Definitions

We consider three types of heuristic policies, namely, (i) Committed Maintenance, (ii)

Committed Routing with Proximal Maintenance, and (iii) Dynamic Routing with Proximal

Maintenance. All three adopt “anticipatory idling” rules that route the maintenance resource

to the central locations of the graph when assets are sufficiently healthy. We refer to these

central nodes as “anticipatory idling nodes” and define them by the set A. To obtain A,

we choose the nA nodes with the largest betweenness centrality score among the 2nA nodes

with the largest closeness centrality score (recall our discussion in Section 4.4.3). Later in

Section 4.6.3 we discuss how we select the value of nA and explore alternative approaches

for obtaining A.

Committed Maintenance. Define the travel threshold τ ∗ such that once the condition

of an asset reaches (or exceeds) τ ∗, the heuristic action is to travel to the location of that

asset and maintain it upon arrival. In case of ties, the maintenance resource chooses the

88



closest asset. This rule implies that the maintenance resource cannot change course en

route to the destination asset and commits to performing maintenance upon arrival. This

approach captures common practices where sufficiently deteriorated assets are identified for

maintenance and work orders are made for, e.g., human crews to travel to and repair those

assets. We also define an idling threshold ι∗ such that if all assets are healthier than that

threshold, then the heuristic action is to travel toward the closest anticipatory idling node

within the set of nodes in A. We formalize our policy definition as follows:

aCM(x, l) =



R if l is a destination asset and xl ≥ τ ∗,

DN if max
j∈{1,...,nM}

xj ≤ ι∗ and l ∈ A,

Tb if l is not a destination asset, max
j∈{1,...,nM}

xj ≤ ι∗,

and (l, b) is on the shortest path to

(the closest) anticipatory idling node in A,

Tb if l is not a destination asset, max
j∈{1,...,nM}

xj > ι∗,

and (l, b) is on the shortest path to (the closest) destination asset,

for l ∈ VM ,

and,

aCM(x, l) =



DN if max
j∈{1,...,nM}

xj ≤ ι∗ and l ∈ A,

Tb if max
j∈{1,...,nM}

xj ≤ ι∗ , and (l, b) is

on the shortest path to (the closest)

anticipatory idling node in A,

Tb if max
j∈{1,...,nM}

xj > ι∗ , and (l, b) is

on the shortest path to (the closest) destination asset,

for l ∈ VT ,

where aCM(x, l) denotes the action prescribed under the Committed Maintenance heuristic.

To determine the values of τ ∗ and ι∗, we compute the long-run average cost-per-unit time

incurred under all combinations of their values via simulation and choose a combination that

yields the lowest cost-per-unit time. We let τ ∈ {1, 2, ...,∆} and ι ∈ {−1, 0, 1, ..., τ − 1},

where ι = −1 indicates a policy with no anticipatory idling rules; i.e., the maintenance

resource only travels between and idles at asset nodes. Our numerical experiments indicate
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that the cost-per-unit time is unimodal with respect to the value of ι∗ for a fixed τ ∗, indicating

that we can stop the search once we reach a local minimum; we did not observe any instances

where this unimodality was violated.

Committed Routing with Proximal Maintenance. This policy is similar to the

previous one in that the maintenance resource uses a travel threshold τ ∗ to identify and travel

to an asset, and a idling threshold ι∗ to reposition and idle at central locations. However, once

the resource arrives at the destination asset (or an asset en route to the destination asset),

the maintenance resource uses a maintenance threshold µ∗ to make a repair decision. That is,

at the destination asset, the heuristic action is to repair if the deterioration condition of the

asset is µ∗ or greater and is to idle otherwise. This rule also implies that the heuristic action

is to repair if the maintenance resource arrives at an asset with a deterioration condition µ∗ or

greater on its way to the destination asset; we refer to this scenario as proximal maintenance

(recall Section 4.4.1). We have that µ∗ ≥ τ ∗ > ι∗.

To determine the threshold values, we first let ι = −1 and compute the long-run average

cost-per-unit time incurred under all combinations of µ and τ via simulation and choose

a combination that yields the lowest cost-per-unit time. We let τ ∈ {1, ..., µ} and µ ∈

{τ, ...,∆}. We then determine ι∗ by enumerating the values of ι ∈ {−1, 0, ..., τ ∗ − 1}.

We formalize our definition below:

aCR(x, l) =



R if xl ≥ µ∗,

DN if l is a destination asset and xl < µ∗,

DN if max
j∈{1,...,nM}

xj ≤ ι∗ and l is

an anticipatory idling node in A,

Tb if l is not a destination asset, max
j∈{1,...,nM}

xj ≤ ι∗,

and (l, b) is on the shortest path to (the closest)

anticipatory idling node in A,

Tb if l is not a destination asset, max
j∈{1,...,nM}

xj > ι∗, and (l, b)

is on the shortest path to (the closest) destination asset,

for l ∈ VM ,
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and,

aCR(x, l) =



DN if max
j∈{1,...,nM}

xj ≤ ι∗ and l ∈ A,

Tb if max
j∈{1,...,nM}

xj ≤ ι∗ , and (l, b) is

on the shortest path to (the closest)

anticipatory idling node in A,

Tb if max
j∈{1,...,nM}

xj > ι∗ , and (l, b) is

on the shortest path to (the closest) destination asset,

for l ∈ VT ,

where aCR(x, l) denotes the action prescribed under the Committed Routing with Proximal

Maintenance heuristic.

Dynamic Routing with Proximal Maintenance. Here, the maintenance and an-

ticipatory idling rules are the same as those described under the Committed Routing with

Proximal Maintenance policy. However, destination nodes are updated at each decision

epoch (i.e., upon arrival at each node or completing a repair action) such that the resource is

routed to the asset with the worst deterioration condition. Thus, the maintenance resource

may change course en route to a previously selected destination node. The rules are formally

defined below:

aDR(x, l) =



R if xl ≥ µ∗,

DN if xl = max
j∈{1,...,nM}

xj > 0 and xl < µ∗,

Tb if max
j∈{1,...,nM}

xj > xl and edge (l, b) is

on the shortest path to (the closest) argmax
j∈{1,...,nM}

xj,

Tb if max
j∈{1,...,nM}

xj ≤ ι∗ and (l, b) is

on the shortest path to (the closest) anticipatory idling node in A,

for l ∈ VM ,
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and,

aDR(x, l) =



DN if max
j∈{1,...,nM}

xj ≤ ι∗ and l ∈ A,

Tb if max
j∈{1,...,nM}

xj > ι∗ and edge (l, b) is

on the shortest path to (the closest) argmax
j∈{1,...,nM}

xj,

Tb if max
j∈{1,...,nM}

xj ≤ ι∗, l /∈ A,

and edge (l, b) is on the shortest path to

(the closest) anticipatory idling node in A,

for l ∈ VT ,

where aDR(x, l) denotes the action under the Dynamic Routing with Proximal Maintenance

heuristic. Similar to the previous heuristics, the values of µ∗ and ι∗ are again optimized via

enumeration.

Note. In each of the heuristic policies, the maintenance resource traverses the shortest

path between the current node and the “destination node” (e.g., the most deteriorated asset

or an auxiliary idling node). If there are multiple shortest paths, then one of them is chosen

arbitrarily.

4.6.2 Optimality Gap

Here, we conduct a numerical study to assess the performance of the heuristic policies

against the optimal policy. We use average cost-per-unit time as a comparison metric, which

we compute using simulation. Note that because our Markov decision model is multichain

[106], we cannot formulate an average cost-per-unit time optimization model, and instead,

derive our optimal policies from the total expected discounted cost-to-go criterion in (4.4).

When the discount factor is sufficiently large, the optimal policies under either criterion

should coincide [106].

In this study, first, we randomly generate ten instances of four asset locations on a

(5,5)-grid graph and one anticipatory idling location; i.e., nA = 1. Then, we compute the

percent increase in the cost-per-unit time incurred under each heuristic policy with respect

to that under the optimal policy for each random instance. Table 12 reports the mean of the

percent increases across the ten random instances under the following parameter settings.

92



In particular, the second column of Table 12 reports these means for a benchmark

scenario under which ∆ = 3, cR(i) = 40 for all i ∈ K, cD = 80, cT = 0.1. In the remaining

columns of Table 12, we change the value of a single parameter while keeping all other

parameter values equal to the benchmark scenario. The transition probabilities are equal

to those in the numerical study of Section 4.5 where we have P ⪯ P ′ ⪯ P ′′ ⪯ P ′′′. In all

scenarios we assume λ = 0.995. We run our simulations for forty thousand time units and

record the costs after a warm-up period of five thousand time units.

Table 12 indicates that under all settings the Dynamic Routing policy significantly out-

performs the other policies that adopt less dynamic routing rules. Moreover, allowing prox-

imal maintenance and relying on a repair threshold (i.e., µ∗) significantly improves policy

performance; that is, under all settings, the Committed Routing policy outperforms the

Committed Maintenance policy. The performance gap between the heuristics only decreases

when deterioration speed increases. This intuitive observation holds because when assets

deteriorate rapidly (i.e., under P ′′′) the rules under the heuristics become similar in that the

maintenance resource travels often between assets and repairs them when they are highly

deteriorated.

Table 12: Percent increase in the mean cost-per-unit time of the proposed heuristic policies

against the optimal policy. The percentages are averages across ten random graph instances

described in Section 4.6.2. “CM,” “CR,” and “DR” denote the heuristic policies as Commit-

ted Maintenance, Committed Routing and Dynamic Routing with Proximal, respectively.

repair cost downtime cost travel cost transition

benchmark cR(0),...,cR(∆) cD cT matrix P

scenario 60 100 160 100 120 160 1 5 10 P ′ P ′′ P ′′′

CM 521% 980 % 518% 252% 725% 889% 735% 720% 741% 498% 321% 227% 85%

CR 276% 270 % 270% 238% 267% 228% 421% 241% 472% 274% 74% 27% 23%

DR 8% 8% 6% 3% 7% 5% 7% 7% 4% 6% 5% 4% 4%
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4.6.3 Large Problem Instances

Next, we conduct a numerical study to assess the performance of the heuristic policies

against each other for large problem instances where we cannot solve our problem to optimal-

ity within a matter of hours. We consider two network configurations, namely, a tree graph

with fifty nodes and an (8,8)-grid graph; each instance has ten assets located on randomly

selected nodes. We generate the tree graphs using random graph generator functions built

in NetworkX, a Python graph library. Figure 20 depicts instances of two tree graphs and a

grid graph used in our study.

Similar to the previous section, we randomly generate ten instances of each graph config-

uration. Then, we compute the cost-per-unit time incurred by implementing each heuristic

policy. Figures 21 and 22 report the mean cost-per-unit time across the ten random in-

stances. In particular, in each chart we change the value of a single parameter while keeping

all other parameter values equal to a benchmark scenario and depict the mean cost-per-unit

time incurred under each policy. Our parameter values are the same as in Section 4.6.2

with the exception that here we let ∆ = 9 and change the deterioration probability matri-

ces accordingly. These matrices are presented in Appendix D and preserve the first-order

stochastic dominance relationship, i.e., P ⪯ P ′ ⪯ P ′′ ⪯ P ′′′. Moreover, we find that the

heuristics perform generally well when we assume four anticipatory idling nodes; that is, we

let nA = 4. We run our simulations for two hundred thousand time units and record the

costs after a warm-up period of one thousand time units.

The conclusions derived from Figures 21 and 22 are consistent with our findings in

Table 12 in that the Dynamic Routing policy incurs the smallest average cost-rate, followed

by the Committed Routing and Committed Maintenance policies. Also, the performance

gap between these policies decreases as deterioration speed increases (see Figures 21d and

22d). Furthermore, note that the average cost-rate under the Committed and Dynamic

Routing policies are generally increasing in each cost value. However, the average cost-rate

under the Committed Maintenance policy does decreasing in certain cost values in some

settings; e.g., see Figures 21c, 22b, and 22c). For large instances with many assets, the

Committed Maintenance policy often fails to balance the trade-offs between maintaining
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(a) Two randomly generated tree graphs

(b) An (8,8)-grid graph

Figure 20: Instances of graphs used in the numerical study of Section 4.6.3. Yellow nodes

indicate auxiliary locations and black nodes indicate asset locations. The tree configuration

and asset locations are generated randomly.

late, which may result in the failure of other assets, and maintaining early and too often.

Therefore, compared to the other policies, the performance of the Committed Maintenance

heuristic is more sensitive to the problem instance.

In the remainder of this section, first we propose alternative approaches for choosing the

set of anticipatory idling nodes A and report the performance of the heuristics under these

approaches. Next, we propose a simple modification to the fixed repair threshold µ∗ and

quantify its cost-saving benefits for the instances in Figures 21 and 22. Recall Section 4.4
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where we demonstrate the connections between the optimal policy and the graph structure,

in particular the graph centrality measures in (4.8) and (4.9). The following sections build

on those findings and highlight the benefits of considering the graph structure in designing

heuristic policies.

4.6.3.1 Other Approaches for Obtaining Anticipatory Idling Nodes

Recall that we obtain A (i.e., the set of anticipatory idling nodes), by choosing nA nodes

with the largest betweenness centrality score among the 2nA nodes with the largest closeness

centrality score, which is a hybrid approach to incorporating both our proposed centrality

measures with an emphasis on the closeness centrality score. This approach is inspired by our

findings in Section 4.4.3; in particular, recall equations (4.8) and (4.9) and our discussions

following Example 17.

In this section, we consider alternative approaches for obtaining set A and compare

the performance of the heuristics under those approaches against the current approach.

Figure 23 depicts the mean cost-per-time unit across twenty random tree and grid graph

instances under the benchmark parameter values. We consider the alternative approaches

as follows. “No idling” indicates A = ∅; “Closeness” and “Betweenness” indicates selecting

nA nodes with the largest closeness and betweenness centralities, respectively, which we

compute using (4.8) and (4.9). Similarly, “Degree,” “Eigen,” and “Katz,” indicates selecting

nA nodes with the largest degree, Eigen, and Katz centrality scores, respectively (recall the

brief introduction of these scores in Section 4.4.3). Moreover, “Hybrid-CL” indicates the

current approach, and “Hybrid-BW” indicates choosing nA nodes with the largest closeness

centrality score among the 2nA nodes with the largest betweenness centrality score. That is,

“Hybrid-BW” prioritizes betweenness centrality contrary to the current approach. Lastly,

“Random” indicates selecting nA nodes randomly.

Figures 23a and 23c suggest that the Committed Maintenance and Dynamic Routing

policies perform better by obtaining anticipatory idling nodes using the current approach

(i.e., “Hybrid-CL”) compared to alternative approaches. Specifically, in the tree graphs, our

hybrid approach decreases the mean cost-rate incurred under the Committed Maintenance
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policy by up to 20% compared to the other centrality measures and by 30% compared to the

“no idling” approach. Similarly, our hybrid approach decreases the mean cost-rate incurred

under the Dynamic Routing policy by up to 5% compared to the other centrality measures. In

the grid graphs, this difference is mitigated seemingly because there are many paths between

assets and distances may be smaller in a well-connected grid graph compared to a tree graph.

Thus, other centrality measures such as degree centrality can also capture important nodes in

a grid graph, whereas closeness and betweenness centralities perform better in a tree graph.

We want to point out that our conclusions hold across a wide range of parameter values (as

set in Table 12). However, for brevity, we only report the results for the benchmark scenario.

Interestingly, Figure 23b suggests that the Committed Routing policy does not benefit

from anticipatory idling rules; i.e., this policy performs better under “no idling” compared

to the other approaches. This rather counter-intuitive observation holds because under the

Committed Routing policy, the maintenance resource is allowed to idle at the destination

asset in anticipation of its further deterioration, contrary to the Committed Maintenance

policy. Moreover, the maintenance resource cannot leave that asset until completion of the

maintenance task, contrary to the Dynamic Routing policy. Hence, this policy performs

sufficiently well by only traveling between asset locations and employing those locations as

anticipatory idling nodes.

4.6.3.2 Modifying the Repair Threshold

Our results suggest that utilizing a repair threshold for making maintenance decisions

upon arriving at an asset node significantly improves the heuristic performance; i.e., Com-

mitted and Dynamic Routing policies with proximal maintenance significantly outperform

the Committed Maintenance policy across all parameter settings. In this section, we propose

a simple modification to the repair threshold and quantify its cost-saving benefits.

Recall our numerical observations in Section 4.4.1 where we conclude that repair thresh-

olds are generally affected by (i) the degree of asset centrality, (ii) the deterioration condi-

tions of other assets, and (iii) the proximity of the maintenance resource that allows for early

maintenance (i.e., proximal maintenance). The Committed and Dynamic Routing heuristics
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introduced in Section 4.6.1 already benefit from allowing proximal maintenance. The mod-

ification considered here factors in asset centrality and the condition of other assets. Let

l ∈ VM be the location of the maintenance resource and µ̄∗
l be the modified repair threshold

for Asset l, where

µ̄∗
l = max

{
1, µ∗ −

max
j∈{1,...,nM}/l

−κ∗

| max
j∈{1,...,nM}/l

−κ∗|
− 1{l∈C} + 1{l∈C}

}
; (4.10)

the set C denotes the quarter of the assets with the smallest closeness centrality scores;

conversely, the set C denotes the quarter of the assets with the largest closeness centrality

scores; and κ∗ ∈ {1, 2, ...,∆} is a threshold value for the condition of the remaining assets,

the value of which is optimized via enumeration.

Equation (4.10) modifies the repair threshold as follows. If the asset in the maintenance

resource location is relatively (non-)central with respect to the other assets, then its repair

threshold is (decreased) increased by one; i.e., the maintenance resource remains idle at

the current epoch and repairs that asset later. (Recall from Section 4.4.1 that it is often

optimal to repair assets with central locations later than their non-central counterparts.)

Moreover, if there are other assets with conditions worse than κ∗, then the repair threshold

for Asset l is decreased by one; otherwise it is increased by one. That is, if other assets

have elevated conditions, then the maintenance resource repairs Asset l early so that it can

consequently travel to other deteriorated assets; otherwise, the proposed modification saves

costs by delaying maintenance.

Tables 13 and 14 quantify the benefit of adopting the modified repair threshold µ̄∗ for the

problem instances generated in Figures 21 and 22, respectively. In particular, these tables

report the percent decrease in the mean cost-per-unit time incurred under the Committed

and Dynamic Routing policies when adopting the modified repair threshold µ̄∗ against the

fixed repair threshold µ∗. Note that our numerical study (not presented here) indicates that

closeness centrality is a better measure for obtaining C and C compared to betweenness

centrality or letting C = C = ∅.

Tables 13 and 14 suggest that the proposed modification of the repair threshold can

significantly improve the performance of the Committed Routing policy. This observation
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holds because the dynamic repair threshold µ̄∗ takes into account the degree of centrality

and the conditions of other assets. The Dynamic Routing policy also benefits, but less

significantly than the former policy, seemingly because, even in the absence of a dynamic

repair threshold, this policy capitalizes on its dynamic routing rules.

In some applications, maintenance resources may be repositioned by humans or are

human technicians themselves. In such applications, the Committed Maintenance and Com-

mitted Routing policies may be easier to implement, compared to the Dynamic Routing

policy which is more suitable for self-propelled maintenance resources. From our numerical

study we conclude that for such applications, the Committed Routing policy in conjunction

with proximal maintenance and a dynamic repair threshold performs well across a wide range

of parameter settings.

4.7 Concluding Remarks

We consider the joint optimization of condition-based maintenance decisions with repo-

sitioning and idling decisions of a mobile maintenance resource that is responsible for main-

taining a set of geographically distributed assets. We use a graph representation to model

possible geographical locations, including idling and asset locations, and the links between

them. We formulate a Markov decision process to obtain the optimal travel, idle, and repair

actions. To the best of our knowledge, this work is the first to consider dynamic reposi-

tioning and condition-based maintenance decisions with idling locations for geographically

distributed assets that are maintained by limited number of resources. In the remainder

of this section, we provide a summary of our findings and discuss interesting directions for

future research.

We establish that under the IFR property and mild conditions on the cost values, the

optimal repair action follows a control-limit rule. Moreover, through numerical examples, we

illustrate that the optimal repair thresholds are often lower in our geographically dispersed,

multi-asset setting compared to the single-asset setting with the same parameter values. This

difference result in “early” maintenance in three situations, namely, when an asset’s location
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is non-central with respect to the other assets; when multiple assets are deteriorated; or

when the maintenance resource takes advantage of its proximity to an asset, which we refer

to as proximal maintenance.

We also observe that when all assets are sufficiently healthy, the maintenance resource

often repositions to the central locations of the graph and idles in anticipation of further

changes in deterioration conditions. Such central locations can be auxiliary intermediate

nodes and are not necessarily asset locations themselves. We show that often these appealing

idling locations have close connections to the underlying graph structure. We capture this

connection using centrality measures, namely, closeness and betweenness centralities, which

are adopted from the network science area. We use these measures to identify critical nodes

and generate heuristic policies for large graph settings with many assets where our MDP

formulation cannot be solved to optimality (due to the curse of dimensionality).

Moreover, we find that the underlying graph structure that connects asset locations im-

pacts the optimal policy and performance metrics such as resource utilization, asset down-

time, and the percentage of time spent performing maintenance. For example, the graph

structure affects the maintenance thresholds and the potential anticipatory idling locations.

We also find that within a graph, assets in more central locations incur less downtime com-

pared to their non-central counterparts.

Lastly, we propose easy-to-implement heuristic policies and compare their performances

against each other and the optimal policy. We learn that allowing proximal maintenance

improves the performance of the policies. Moreover, the heuristic that adopts dynamic

routing/positioning rules significantly outperforms those that do not allow repositioning en

route to a prespecified asset. Maintenance planners can also adopt repair thresholds that

factor in the conditions of the other assets and the centrality score of the asset considered

for repair; such modifications especially improve the performance of the Committed Routing

policy which may be of interest in applications with human maintenance crews. Lastly, our

study indicates that closeness and betweenness centralities, together, yield better candidate

anticipatory idling locations compared to alternative centrality scores.
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(a) Average cost-rate vs. repair cost (b) Average cost-rate vs. downtime cost

(c) Average cost-rate vs. travel cost (d) Average cost-rate vs. deterioration matrix

Figure 21: Mean cost-per-unit time under the heuristic policies across ten randomly gen-

erated tree graphs. In each chart, the value of a single parameter changes while all other

parameter values remain equal to the benchmark scenario. Legend colors represent the poli-

cies as follows: Committed Maintenance, Committed Routing with Proximal

Maintenance, and Dynamic Routing with Proximal Maintenance.
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(a) Average cost-rate vs. repair cost (b) Average cost-rate vs. downtime cost

(c) Average cost-rate vs. travel cost (d) Average cost-rate vs. deterioration matrix

Figure 22: Mean cost-per-unit time under the heuristic policies across ten randomly gen-

erated grid graphs. In each chart, the value of a single parameter changes while all other

parameter values remain equal to the benchmark scenario. Legend colors represent the poli-

cies as follows: Committed Maintenance, Committed Routing with Proximal

Maintenance, and Dynamic Routing with Proximal Maintenance.
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(a) Committed Maintenance

(b) Committed Routing with Proximal Maintenance

(c) Dynamic Routing with Proximal Maintenance

Figure 23: Heuristic policy performance under different approaches of obtaining the “antic-

ipatory idling” set A for tree and grid graphs and the benchmark parameter setting.
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Table 13: Percent decrease in the mean cost-per-unit time of Committed and Dynamic

Routing with Proximal Maintenance policies by adopting repair threshold µ̄∗ obtained from

equation (4.10). The percentages are averages across the ten random tree graph instances

of Figure 21. A dynamic repair threshold significantly improves the performance of the

Committed Routing with Proximal Maintenance policy.

repair cost downtime cost travel cost transition

Policies with µ̄∗ benchmark cR(0),...,cR(∆) cD cT matrix P

obtained from (4.10) scenario 60 100 160 100 120 160 1 5 10 P ′ P ′′ P ′′′

Committed Routing 62% 53% 59% 46% 52% 31% 68% 29% 50% 48% 44% 28% 0%

Dynamic Routing 2% -1% 0% 0% 0% 0% 0% 3% 1% 2% 2% 3% 1%

Table 14: Percent decrease in the mean cost-per-unit time of Committed and Dynamic

Routing with Proximal Maintenance policies by adopting repair threshold µ̄∗ obtained from

equation (4.10). The percentages are averages across the ten random grid graph instances

of Figure 22. A dynamic repair threshold significantly improves the performance of the

Committed Routing with Proximal Maintenance policy.

repair cost downtime cost travel cost transition

Policies with µ̄∗ benchmark cR(0),...,cR(∆) cD cT matrix P

obtained from (4.10) scenario 60 100 160 100 120 160 1 5 10 P ′ P ′′ P ′′′

Committed Routing 53% 53 % 49% 53% 64% 38% 62% 64% 62% 48% 50% 35% 21%

Dynamic Routing 0% 0% 2% 2% 0% 1% -1% 1% 1% 4% 0% 0% 0%
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5.0 Summary of Contributions and Future Work

In Chapters 2 and 3 we relax the underlying assumptions of the age-replacement policy

to ensure its practicability in general settings. Specifically, Chapter 2 generalizes previous

work on unpunctual policy implementation by considering a setting where the degree of

deviation from prescribed replacement times depends of the policy itself. We model the

temporal impact of the prescribed replacement policy on the degree of deviation and analyze

its effect on the optimal policy. We conclude that the optimal policy aims to decrease the

expected degree of unpunctuality and its variance, and explore conditions under which the

nonstationarity can be exploited to reduce the long-run cost-rate.

The insights generated by Chapter 2 apply to settings in which a maintenance planner

prescribes an age-replacement policy with minimal repair. One may also consider unpunc-

tual implementation for age-replacement without minimal repair. In the absence of minimal

repair, the long-run cost rate minimizing replacement policy under punctual and stationary

unpunctual behavior are modeled and studied in [13] and [64], respectively. In our model-

ing framework with non-stationary unpunctual behavior, the optimal age-replacement time

without minimal repair corresponds to solving

min
T∈S

Θ(T ) =

∫ b

a

(
crFX

(
T + yz(T )

)
+ cpF̄X

(
T + yz(T )

))
dFY (y)∫ b

a

∫ T+yz(T )

0
F̄ (x)dxdFY (y)

, (5.1)

where cr and cp are the costs of reactive and preventive replacement, respectively. It could

be interesting to explore whether the optimal replacement policy exhibits similar behavior

to the results established in Chapter 2. As stated in [64], in the absence of minimal repair,

it is more difficult to characterize how unpunctual policy implementation affects the optimal

solution. Hence, analysis of (5.1) is likely to require novel analytical approaches or be largely

numerical in nature.

Next, in Chapter 3, we relax the assumption of constant replacement costs for the age-

replacement problem without minimal repair. In the literature on age-replacement policies

with minimal repair, results have been provided that prove the existence and uniqueness
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of the optimal policy under various functional forms of age-dependent replacement costs.

Yet, this body of literature does not compare optimal policies and cost-rates under differ-

ent maintenance cost functions, or with policies under an availability-maximizing criterion.

Extending and comparing our results to those under age-replacement policies with minimal

repair could yield useful insights to maintenance planners.

Moreover, we restrict our analysis to cases under which replacement costs are either

convex or concave. However, throughout system’s lifetime, replacement cost functions

may take both concave and convex forms (see e.g., Example 8) which could be because

of a sudden decline in salvage value at some age(s). Such functional forms can result in

near-optimal solution(s) that are far from the optimal solution, but may be more appealing

from an implementation standpoint. Further exploring the long-run expected cost-rate

under such step-like replacement costs may be an interesting direction for future research.

Age-dependent replacement costs have received little attention in the condition-based

maintenance (CBM) literature. The study in [61] consider a condition based maintenance

problem in which replacement costs depend on both system deterioration level and age, and

provide a limited numerical study for this interesting setting. Considering age-dependent

replacement costs in various CBM settings and exploring their effect on the maintenance

thresholds can be an interesting direction for future research.

Finally, in Chapter 4, we integrate spatial considerations with maintenance planning for

condition-based maintenance. The optimal policy derived from our Markov decision process

formulation prescribes routing/positioning decisions of the maintenance resource and the

timing of the interventions that the resource performs. We demonstrate these decisions are

affected by a deteriorated asset’s position on the graph and the overall graph structure.

The insights developed from our theoretical derivations and numerical observations yield

easy-to-implement yet high-performing heuristic policies that can be applied to large-scale

applications.

Our study in Chapter 4 can be generalized in various directions for future research.

Recall we assume that each repair action takes one unit of time, suggesting that our model

captures settings where repair times are relatively shorter than traveling times. Applications
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with larger repair to travel time ratios may pose novel trade-offs not captured by our model.

A subsequent study could explore how longer maintenance and downtime durations can

affect the repositioning decisions and repair thresholds.

Another important direction is to consider multiple maintenance resources. In particular,

one may formulate a mathematical program to optimally assign a resource to a cluster of

assets and use our model as a sub-procedure for every resource-cluster pair. Such model can

capture real-world practicalities where each resource is allocated to a particular geographical

area. In such settings, high-performance heuristics may use graph clustering methods to

identify the resource-cluster pairs using closeness-like centrality measures such as eccentricity,

harmonic, decay, and their group centrality counterparts which identify the centrality of a

group of nodes [129, 130].

Lastly, as stated earlier, our problem can suffer from curse of dimensionality for large

instances. A common approach to overcome this challenge is to design basis functions to ap-

proximate the value function [91, 104]. We conjecture that incorporating centrality measures

such as closeness centrality in basis functions can produce powerful approximations. Such

parametric models can tackle the computational challenges of dynamic mobile maintenance

resource problems.
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Appendix A Chapter 2.0: Proofs

Proof of Proposition 1

First, note that m(T ) is continuous on [0,+∞). Then, the first derivative of m(T ) is

given by:

m′(T ) =
(1 + µY z

′(T ))2 − µY z
′′(T )(T + µY z(T ))

(1 + µY z′(T ))2
·
∫ b

a

(1 + yz′(T ))hX(T + yz(T ))dFY (y)

+
T + µY z(T )

1 + µY z′(T )

∫ b

a

yz′′(T )hX(T + yz(T ))dFY (y)

+
T + µY z(T )

1 + µY z′(T )

∫ b

a

(1 + yz′(T ))2h′
X(T + yz(T ))dFY (y)

−
∫ b

a

(1 + yz′(T ))hX(T + yz(T ))dFY (y)

=
T + µY z(T )

(1 + µY z′(T ))2

∫ b

a

z′′(T )(y − µY )hX(T + yz(T ))dFY (y)

+
T + µY z(T )

1 + µY z′(T )

∫ b

a

(1 + yz′(T ))2h′
X(T + yz(T ))dFY (y)

=
T + µY z(T )

1 + µY z′(T )
· z′′(T )

1 + µY z′(T )
·
(
E[hX(T + yz(T )) · Y ]− E[hX(T + yz(T )] · E[Y ]

)
+

T + µY z(T )

1 + µY z′(T )

∫ b

a

(1 + yz′(T ))2h′
X(T + yz(T ))dFY (y)

=
T + µY z(T )

1 + µY z′(T )
· z′′(T )

1 + µY z′(T )
Cov

(
hX(T + yz(T )), Y

)
(A.1)

+
T + µY z(T )

1 + µY z′(T )

∫ b

a

(1 + yz′(T ))2h′
X(T + yz(T ))dFY (y). (A.2)

Next, because z(T ) ≥ 0 (Assumption 2), hX(T + yz(T )) is strictly increasing in y. Hence,

Cov
(
hX(T + yz(T )), Y

)
≥ 0. Therefore, if 1 + µY z

′(T ) > 0 and z′′(T ) ≥ 0, then expression

( A.1) is non-negative. Expression ( A.2) is also non-negative by Assumption 1. As a result,

m(T ) is increasing.

Next, it is sufficient to show that there exists a T ′ such that for all T ≥ T ′, m′(T ) ≥ ϵ > 0

for some ϵ ∈ IR. Given that m(T ) is increasing, the existence of such a T ′ implies that there

exists a T such that m(T ) = k. To establish this result, first note that by Assumption 1,
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there exists a strictly positive lower bound ℓ for h′
X(T + yz(T )). Thus, for sufficiently large

values of T , we have

m′(T ) ≥ T + µY z(T )

1 + µY z′(T )

∫ b

a

(1 + yz′(T ))2h′
X(T + yz(T ))fY (y)dy

≥ ℓ · T + µY z(T )

1 + µY z′(T )

∫ b

a

(1 + yz′(T ))2fY (y)dy

= ℓ · T + µY z(T )

1 + µY z′(T )
·
{
Var

(
1 + Y z′(T )

)
+
[ ∫ b

a

(1 + yz′(T ))fY (y)dy
]2}

= ℓ · T + µY z(T )

1 + µY z′(T )

{(
z′(T )

)2
Var(Y ) +

(
1 + µY z

′(T )
)2}

≥ ℓ ·
(
T + µY z(T )

)(
1 + µY z

′(T )
)
.

Therefore, by condition (i) of Proposition 1,

lim
T→∞

m′(T ) ≥
(
T + µY z(T )

)
δℓ > 0,

which implies the sufficient result.

Hence, Ω(T ) is quasi-convex and if condition (2.9) holds, then there exists a unique

solution T ∗ to problem (2.7). Otherwise, the minimum cost-rate is obtained by equation

(2.10) because the minimum ofm(T ) is achieved at time T = max
{
min{t : t+az(t) > 0}, 0

}
.

□

Proof of Theorem 1

See [13, p. 87].

Proof of Theorem 2

For the first inequality see [13, p. 87]. The second inequality holds because Ω(T ∗) ≤

Ω(T̂ ∗); and by equation (2.11), Ω(T̂ ∗) = Ω̂(T̂ ∗). □

Proof of Theorem 3

Because T ∗ is sub-optimal for problem (2.6), Ω̂(T̂ ∗) ≤ Ω̂(T ∗). Moreover, because z(T ∗) =

1, we have that Ω̂(T ∗) = Ω(T ∗). Therefore, Ω̂(T̂ ∗) ≤ Ω(T ∗). □

Proof of Theorem 4

Let H(u) =
∫ u

0
h(x)dx. For µY = 0 and symmetric fY (y) (i.e., a = −b), we have

Ω(T )− Ω̂(T ) =

∫ b

−b
cm

( ∫ T+yz(T )

0
hX(x)dx−

∫ T+y

0
hX(x)dx

)
dFY (y)

T
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=
cm

∫ b

−b

∫ T+yz(T )

T+y
hX(x)dxdFY (y)

T

=
cm

∫ b

−b

(
H(T + yz(T ))−H(T + y)

)
dFY (y)

T
. (A.3)

Now, let G(y, T ) = H(T + yz(T )) −H(T + y). We let G(y, T ) = G1(y, T ) + G2(y, T ) where

G1(y, T ) and G2(y, T ) are given by:

G1(y, T ) =
G(y, T ) + G(−y, T )

2

and

G2(y, T ) =
G(y, T )− G(−y, T )

2
.

Then, equation ( A.3) reduces to

Ω(T )− Ω̂(T ) =
cm
T

∫ b

−b

(
G1(y, T ) + G2(y, T )

)
dFY (y)

=
2cm
T

∫ b

0

G1(y, T )dFY (y), (A.4)

because
∫ b

−b
G2(y, T )dFY (y) = 0 for µY = 0 and symmetric fY (y).

Observe that H(u) is both non-decreasing and convex because hX(x) is non-negative

and increasing (Assumption 1). If z(T ) > 1, then from equation ( A.4) it suffices to show

that G1(y, T ) > 0, i.e.,

G1(y, T ) =
H(T + yz(T ))−H(T + y) +H(T − yz(T ))−H(T − y)

2

=
H(T + y + y(z(T )− 1))−H(T + y)

2

− H(T − yz(T ) + y(z(T )− 1))−H(T − yz(T ))

2

> 0. (A.5)

Note that y ∈ [0, b] and z(T ) > 1. Thus, T + yz(T ) > T + y > T − y > T − yz(T ).

Moreover,
(
T + yz(T )

)
− (T + y) = (T − y) −

(
T − yz(T )

)
. Therefore, in equation ( A.5),(

H(T + y + y(z(T )− 1))−H(T + y)
)
>

(
H(T − yz(T ) + y(z(T )− 1))−H(T − yz(T ))

)
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because of increasing differences in the convex function H(u) (see Proposition 2.1.6 in [122,

p. 20]). As a result, G1(y, T ) > 0. By a similar argument, if z(T ) < 1, then G1(y, T ) < 0.

The result follows directly. □

Proof of Theorem 5

By Assumption 3 (condition (i) in Proposition 1) and z′′(T ) ≥ 0 for all T (condition (ii)

in Proposition 1), m(T ) is monotone increasing (recall the proof of Proposition 1). Moreover,

in [64, see p. 140], it is shown that m̂(T ) in equation (2.14) is also monotone increasing.

In order to compare T ∗ and T̂ ∗ we compare m(T̂ ∗) and m̂(T̂ ∗) (note that m̂(T̂ ∗) = k).

If m(T̂ ∗) > k, then T ∗ < T̂ ∗. Conversely, if m(T̂ ∗) < k, then T ∗ > T̂ ∗. We have that

m(T̂ ∗)− m̂(T̂ ∗) =
T̂ ∗ + µY

1 + µY z′(T̂ ∗)

∫ b

a

(1 + yz′(T̂ ∗))hX(T̂
∗ + y)fY (y)dy

− (T̂ ∗ + µY )

∫ b

a

hX(T̂
∗ + y)fY (y)dy

=

∫ b

a

( 1 + yz′(T̂ ∗)

1 + µY z′(T̂ ∗)
− 1

)
(T̂ ∗ + µY )hX(T̂

∗ + y)fY (y)dy

=

∫ b

a

z′(T̂ ∗) · T̂ ∗ + µY

1 + µY z′(T̂ ∗)
(y − µY )hX(T̂

∗ + y)fY (y)dy

= z′(T̂ ∗) · T̂ ∗ + µY

1 + µY z′(T̂ ∗)
·
(
E[hX(T̂

∗ + y) · Y ]− E[hX(T̂
∗ + y)] · E[Y ]

)
= z′(T̂ ∗) · T̂ ∗ + µY

1 + µY z′(T̂ ∗)
· Cov(hX(T̂

∗ + y), Y ). (A.6)

Note that Cov(hX(T̂
∗ + y), Y ) > 0 because h(T̂ ∗ + y) is strictly increasing in y. Also,

1 + µY z
′(T̂ ∗) > 0 under Assumption 3. Thus, from equation ( A.6) we conclude that if

z′(T̂ ∗) > 0, then m(T̂ ∗) > m̂(T̂ ∗). On the contrary, if z′(T̂ ∗) < 0 then m(T̂ ∗) < m̂(T̂ ∗). The

result follows directly. □

Proof of Corollary 1

This result is proved by a similar approach used in the proof of Theorem 5.

Proof of Proposition 2

See Theorem 5 and Lemma 1.

Proof of Proposition 3

See Theorem 5 and Lemma 2.
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Proof of Proposition 4

See Theorem 5 and Lemma 3.

Proof of Proposition 5

See Theorem 5 and Lemma 4.

Lemma 5 (Edmundson-Madansky inequality [68]). Let V ∈ [ȧ, ḃ] have a c.d.f. FV (v) and

finite mean µV . Suppose ϕ is a bounded convex function of v ∈ [ȧ, ḃ]. An upper bound for

E[ϕ(V )] is

E[ϕ(V )] ≤ ϕ(ḃ)− ϕ(ȧ)

ḃ− ȧ
(µV − ȧ) + ϕ(ȧ).

Proof of Proposition 6

The first inequality in (2.15) follows directly from Theorem 2.

For the second inequality in (2.15), first note that given that T̃1 and T̃2 are feasible for

problem (2.7), Ω(T ∗) ≤ min{Ω(T̃1),Ω(T̃2)}. Also, note that Ω̃(T̃ ∗) = cmhX(T̃
∗) [13]. Thus,

U1
Y is obtained by dividing Ω(T ) in equation (2.7) by cmhX(T̃

∗).

For the third inequality in (2.15), first note that ϕ(y) =
∫ T+yz(T )

0
hX(x)dx is a bounded

convex function of y because ϕ′′(y) =
(
z(T )

)2
h′
X

(
T + yz(T )

)
≥ 0 (Assumption 1). Hence,

we can apply the Edmundson-Madansky inequality in Lemma 5 and for Y ∈ [a, b] we obtain

M(T ) =E
[ ∫ T+yz(T )

0

hX(x)dx
]

≤

∫ T+bz(T )

T+az(T )
hX(x)dx

b− a
(µY − a) +

∫ T+az(T )

0

hX(x)dx. (A.7)

The upper bound U1(Y ) in Proposition 6 is obtained accordingly. □

Proof of Proposition 7

For the first inequality in (2.16), first note that from Theorem 2, Ω̃(T̃ ∗) ≤ Ω(T ∗). Next,

observe that given that T̃ ∗−µY is feasible for problem (2.6), Ω̂(T̃ ∗−µY ) ≥ Ω̂(T̂ ∗). Therefore,

the lower bound in (2.16) is obtained by dividing Ω̃(T̃ ∗) = cmhX(T̃
∗) by Ω̂(T̃ ∗ − µY ).

The second inequality in (2.16) directly follows from Theorem 2. □

Proof of Proposition 8

For the first inequality in (2.17), L2
Y is obtained by dividing Ω(T̃ ∗) by Ω̃(T ). The result

holds because T̃1 and T̃2 are sub-optimal for problem (2.7).
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For the second inequality, recall that Ω̃(T̃ ∗) = cmhX(T̃
∗), and Ω̃(T̃ ∗) ≤ Ω(T ∗) by Theo-

rem 2. Thus, U2
Y (T̃

∗) is obtained by dividing Ω(T̃ ∗) by cmhX(T̃
∗).

Similar to the proof of Proposition 6, we let ϕ(y) =
∫ T+yz(T )

0
hX(x)dx, and note that ϕ(y)

is a bounded convex function of y. Hence, for the third inequality we apply the Edmundson-

Madansky inequality in Lemma 5 and obtain M(T ) as in equation ( A.7). The upper bound

U2(Y ) in Proposition 8 is obtained accordingly. □
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Appendix B Chapter 3.0: Proofs

Additional Notation and Previous Results

We take the approach in [13, p. 85]. A necessary and sufficient condition that T ∗

minimizes the cost-rate function in (3.2) is obtained by setting its derivative equal to zero:

m(T ) ≡
{(

cr(T )− cp(T )
)
h(T ) + c′p(T )

}∫ T

0

F̄ (t)dt−
∫ T

0

cr(t)f(t)dt− cp(T )F̄ (T ) = 0.

(B.1)

That is, if equation ( B.1) has a unique solution, then that solution minimizes the cost-rate

in problem (3.2); i.e., the solution to ( B.1) is T ∗.

Next, we provide proofs for existence and uniqueness of T̃ ∗ and T ∗
A. Recall that T̃ ∗

denotes the optimal policy to minimize the long-run expected cost-rate under constant

replacement costs (see Section 3.4), and T ∗
A denotes the optimal policy to maximize

availability (see Section 3.5).

Existence and Uniqueness of T̃ ∗ (see [13, p. 87])

By setting the first derivative of the objective function in problem (3.3) equal to zero,

we have

m̃(T ) ≡ (c̃r − c̃p)h(T )

∫ T

0

F̄ (t)dt− c̃rF (T )− c̃pF̄ (T ) = 0. (B.2)

It has been previously shown in [13, see p. 87] that m̃(T ) is monotone increasing, and as

a result Ω̃(T ) is quasi-convex. By Assumption 4, h(T ) is strictly increasing and hence,

limT→∞ m̃(T ) > 0. Finally, because m(0) < 0, there exists a unique and finite optimal

solution to equation ( B.2).

Existence and Uniqueness of T ∗
A (see [96, p. 139]))

By setting the first derivative of the objective function in problem (3.5) equal to zero,

we have

mA(T ) ≡ (βr − βp)F (T ) + βp − (βr − βp)h(T )

∫ T

0

F̄ (t)dt = 0. (B.3)

The function mA(T ) is monotone decreasing, and as a result Ω̃(T ) is quasi-concave. If βr >

βp, then by Assumption 4, h(T ) is strictly increasing and hence, limT→∞mA(T ) < 0. Finally,
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because mA(0) > 0, there exists a unique and finite optimal solution to equation ( B.3). If

βr = βp = β, then mA(T ) = β. Hence, A(T ) is strictly increasing from 0 to µ/(µ + β) and

T ∗
A = +∞.

Proof of Theorem 6

Recall that if T ∗ exists, then it is the solution to equation ( B.1) (see Appendix A). First,

note that m(0) = −cp(0) < 0 (because F (0) = 0). Hence, to ensure equation ( B.1) has

exactly one solution, it suffices to show that m(T ) is strictly increasing to infinity. We take

the first derivative of m(T ):

m′(T ) =
{(

cr(T )− cp(T )
)
h′(T ) +

(
c′r(T )− c′p(T )

)
h(T ) + c′′p(T )

}∫ T

0

F̄ (t)dt. (B.4)

Now, we prove the uniqueness result under conditions (i) and (ii). By equation ( B.4) as

well as Assumptions 4 and 5, if c′r(T ) ≥ c′p(T ) and c′′p(T ) ≥ 0 for all T , then m′(T ) > 0.

Because m(T ) is increasing, the cost-rate function Ω(T ) is quasi-convex and has at most one

solution.

Next, to ensure that the unique optimal solution is finite, it is sufficient to show that

m(T ) increases to infinity as T increases. Hence, we show that limT→∞m′(T ) > ϵ for some

ϵ > 0. By Assumptions 4 and 5, we have

lim
T→∞

m′(T ) ≥
(
cr(∞)− cp(∞)

)
h′(∞) · µ = δh′(∞)µ = ϵ > 0, (B.5)

which implies the sufficient result that the unique optimal solution is finite.

Next, we prove the uniqueness result under conditions (ii)− (v). Similar to the previous

part, it suffices to show m′(T ) is non-negative and limT→∞m′(T ) > ϵ for some ϵ > 0. From

equation ( B.4) we have

m′(T ) = G(T )
∫ T

0

F̄ (t)dt,

where

G(T ) =
(
cr(T )− cp(T )

)
h′(T ) +

(
c′r(T )− c′p(T )

)
h(T ) + c′′p(T ).

First, note that
∫ T

0
F̄ (t)dt is an increasing, non-negative function which equals 0 at time 0

and converges to µ. Next, note that

G(0) =
(
cr(0)− cp(0)

)
h′(0) + c′′p(0);
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thus, we can have either G(0) ≥ 0 or G(0) ≤ 0. We take the first derivative of G(T ):

G ′(T ) =
(
cr(T )−cp(T )

)
h′′(T )+2

(
c′r(T )−c′p(T )

)
h′(T )+

(
c′′r(T )−c′′p(T )

)
h(T )+c′′′p (T ). (B.6)

From equation ( B.6) as well as conditions (ii)− (v), G ′(T ) is non-negative. As a result,

if G(0) ≥ 0, then G(T ) ≥ 0 and consequently, m′(T ) ≥ 0, which implies the uniqueness

result. On the other hand, when G(0) < 0, because G(T ) is increasing, m′(T ) first takes

negative values for some T < T ∗
G , where T ∗

G is the solution to G(T ) = 0, and then takes

positive values. As a result, when G(0) ≤ 0, the function m(T ) has only one local minimum

at T ∗
G with m(T ∗

G) < 0. Then, equation ( B.1) has at most one solution.

Finally, by Assumption 5 and h′′(T ) > 0, we have limT→∞ G ′(T ) > ϵ1 for some ϵ1 > 0.

Hence, limT→∞m′(T ) > ϵ for some ϵ > 0 and there exists an optimal solution to equation

( B.1). As a direct result of equation ( B.1), we have that Ω(T ∗) =
(
cr(T

∗)− cp(T
∗)
)
h(T ∗)+

c′p(T
∗). □

Proof of Theorem 7

Recall from the proof of Theorem 6 that by Assumption 6, m(T ) is monotone increasing

for all T > 0 or T > TG, where TG is unique with m′(TG) = 0 and m(TG) < 0. Furthermore,

m̃(T ) is monotone increasing [13, p. 85]. Therefore, in order to compare T ∗ and T̃ ∗, we

compare m(T̃ ∗) and m̃(T̃ ∗). Let m̄(T ) = m(T ) − m̃(T ). From equations ( B.1), ( B.2),

cr(t) = c̃r + g(t) and cp(t) = c̃p + g(t) we have

m̄(T ) =g′(T )

∫ T

0

F̄ (t)dt−
∫ T

0

cr(t)f(t)dt− cp(T )F̄ (T ) + c̃rF (T ) + c̃pF̄ (T )

=g′(T )

∫ T

0

F̄ (t)dt−
∫ T

0

g(t)f(t)dt− g(T )F̄ (T ). (B.7)

From equation ( B.7), m̄(0) = −g(0) = 0 and m̄′(T ) = g′′(T )
∫ T

0
F̄ (t)dt. Consequently,

if g′′(T ) ≥ 0, then m̄(T ) ≥ 0 and m(T̃ ∗) ≥ m̃(T̃ ∗). Conversely, if g′′(T ) ≤ 0, then m̄(T ) ≤ 0

and m(T̃ ∗) ≤ m̃(T̃ ∗). Lastly, if g′′(T ) = 0, then m̄(T ) = 0 and m(T̃ ∗) = m̃(T̃ ∗). The results

follow directly.

To finish the proof, we have

Ω(T )− Ω̃(T ) =

∫ T

0
g(x)f(x)dx+ g(T )F̄ (T )∫ T

0
F̄ (x)dx

. (B.8)
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The right-hand side in ( B.8) is non-negative for all T . Thus, Ω(T ∗) ≥ Ω̃(T̃ ∗). For the case

when g(T ) = aT , recall that we have T ∗ = T̃ ∗ by the first part of the proof. Also, recall

than Ω(T ∗) =
(
cr(T

∗) − cp(T
∗)
)
h(T ∗) + c′p(T

∗) (see Theorem 6). Then, Ω(T ∗) − Ω̃(T̃ ∗) =

Ω(T ∗)− Ω̃(T ∗) = c′p(T
∗) = a. □

Proof of Proposition 9

We take a similar approach as in the proof of Theorem 7 and compare functions ( B.1)

and ( B.2) at time T̃ ∗. From equations ( B.1) and ( B.2) we have

m(T̃ ∗)− m̃(T̃ ∗) =
(
cr(T̃

∗)− c̃r

)
h(T̃ ∗)

∫ T̃ ∗

0

F̄ (t)dt−
∫ T̃ ∗

0

(
cr(t)− c̃r

)
f(t)dt (B.9)

−
(
cp(T̃

∗)− c̃p

)
h(T̃ ∗)

∫ T̃ ∗

0

F̄ (t)dt+ c′p(T̃
∗)

∫ T̃ ∗

0

F̄ (t)dt−
(
cp(T̃

∗)− c̃p

)
F̄ (T̃ ∗). (B.10)

By Assumption 5, if cp(T̃
∗) ≤ c̃p, then the term in ( B.10) is non-negative. From the

term in ( B.9), let

H(T ) =
(
cr(T )− c̃r

)
h(T )

∫ T

0

F̄ (t)dt−
∫ T

0

(
cr(t)− c̃r

)
f(t)dt.

First, note that H(0) = 0. Next, we have

H′(T ) = c′r(T )h(T )

∫ T

0

F̄ (t)dt+
(
cr(T )− c̃r

)
h′(T )

∫ T

0

F̄ (t)dt.

Given Assumptions 4 and 5, if cr(T ) ≥ c̃r for all T ≤ T̃ ∗, then H′(T ) is non-negative for all

T ≤ T̃ ∗. Hence, H(T ) ≥ 0 for all T ≤ T̃ ∗. Consequently, m(T̃ ∗) ≥ m̃(T̃ ∗) and T ∗ ≤ T̃ ∗. □

Proof of Theorem 8

We take the same approach in the proof of Proposition 9 and compare m(T̃ ∗) and m̃(T̃ ∗):

m(T̃ ∗)− m̃(T̃ ∗) =
{(

c̃r − c̃p
)
h(T̃ ∗) + c′p(T̃

∗)
}∫ T̃ ∗

0

F̄ (t)dt−
∫ T̃ ∗

0

cr(t)f(t)dt− c̃pF̄ (T̃ ∗)

− (c̃r − c̃p)h(T̃
∗)

∫ T̃ ∗

0

F̄ (t)dt+ c̃rF (T̃ ∗) + c̃pF̄ (T̃ ∗)

=c′p(T̃
∗)

∫ T̃ ∗

0

F̄ (t)dt+

∫ T̃ ∗

0

(
c̃r − cr(t)

)
f̄(t)dt. (B.11)

By Assumption 5, cr(T ) ≤ c̃r for all T ≤ T̃ ∗ and c′p(T̃
∗) ≥ 0. Thus, by equation ( B.11),

m(T̃ ∗) ≥ m̃(T̃ ∗) and consequently, T ≤ T̃ ∗.
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Next, we show that Ω(T ∗) < Ω̃(T̃ ∗). Note that

Ω(T ∗) < Ω(T̃ ∗) =

∫ T̃ ∗

0
cr(t)f(t)dt+ cp(T̃

∗)F̄ (T̃ ∗)∫ T̃ ∗

0
F̄ (t)dt

. (B.12)

Thus, the inequality

Ω(T̃ ∗)− Ω̃(T̃ ∗) =

∫ T̃ ∗

0
cr(t)f(t)dt+ cp(T̃

∗)F̄ (T̃ ∗)∫ T̃ ∗

0
F̄ (t)dt

− c̃rF (T̃ ∗) + c̃pF̄ (T̃ ∗)∫ T̃ ∗

0
F̄ (t)dt

=

∫ T̃ ∗

0

(
cr(t)− c̃r

)
f(t)dt+

(
cp(T̃

∗)− c̃p
)
F̄ (T̃ ∗)∫ T̃ ∗

0
F̄ (t)dt

< 0

holds because by Assumptions 5, cr(T ) ≤ c̃r for all T ≤ T̃ ∗ and cp(T̃
∗) = c̃p. Consequently,

by inequality ( B.12) we have that Ω(T ∗) < Ω̃(T̃ ∗). □

Proof of Theorem 9

Note that if βr = βp = β, then

min
T>0

C(T ) =
∫ T

0
cr(x)f(x)dx+ cp(T )F̄ (T )∫ T

0
F̄ (x)dx+ β

.

Hence, the proof of the first statement in Theorem 9 is very similar to that of Theorem 6,

and it is omitted. The second statement follows directly from the fact that T ∗
C is finite, while

T ∗
A = +∞. □
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Appendix C Chapter 4.0: Proofs

Additional Notation and Lemma

For the deterioration vector x = (x1, . . . , xi, . . . , xnM
), define x(i)+1 = (x

(i)+1
1 , . . . , x

(i)+1
i ,

. . . , x
(i)+1
nM ) = (x1, . . . , xi + 1, . . . , xnM

). That is, the deterioration condition of the ith asset

in x(i)+1 is one unit larger than that in x, and all other conditions remain unchanged. Next,

we establish Lemma 6.

Lemma 6. If P has the IFR property and v(x′, l) = v
(
(x′

1, ..., x
′
i, ..., x

′
nM

), l
)
is nondecreasing

in x′
i, then ∑

x′∈KnM

∏
j∈VM

Pxj ,x′
j
· v(x′, l) ≤

∑
x′∈KnM

∏
j∈VM

P
x
(i)+1
j ,x′

j
· v(x′, l).

Proof. By the IFR property, for all k ∈ K we have

∆∑
x′
i=k

Pxi,x′
i
≤

∆∑
x′
i=k

Pxi+1,x′
i
=

∆∑
x′
i=k

P
x
(i)+1
i ,x′

i
. (C.1)

Then, from equation ( C.1) and that v(x′, l) is nondecreasing in x′
i we have∑

x′∈KnM

Pxi,x′
i
·
( ∏
j∈VM\{i}

Pxj ,x′
j
· v(x′, l)

)
≤

∑
x′∈KnM

P
x
(i)+1
i ,x′

i
·
( ∏
j∈VM\{i}

Pxj ,x′
j
· v(x′, l)

)
(C.2)

=
∑

x′∈KnM

P
x
(i)+1
i ,x′

i
·
( ∏
j∈VM\{i}

P
x
(i)+1
j ,x′

j
· v(x′, l)

)
.

(C.3)

Inequality ( C.2) is a result of Lemma 4.7.2. in [106, see p. 106], and equality ( C.3) holds

by the definition of x(i)+1. The result follows directly. □

Proof of Proposition 10

We construct the proof by induction on the iterates of the value iteration algorithm

described in [106, see p. 161]. Let vk(x, l) represent the cost obtained in the kth iteration of
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the algorithm. Because the value iteration algorithm converges for any set of initial values,

without loss of generality we assume that

v0(x, l) = v0, for all (x, l) ∈ S.

It follows directly that for all (x, l) ∈ S, v0
(
(x1, . . . , xi, . . . , xnM

), l
)
is nondecreasing in xi

with all other state variables fixed. We now assume that for all (x, l) ∈ S, vk
(
(x1, . . . , xi, . . . ,

xnM
), l

)
is also nondecreasing in xi with all other state variables fixed. Thus, to complete the

proof of Proposition 10 we need to show that vk+1
(
(x1, . . . , xi, . . . , xnM

), l
)
is nondecreasing

in xi with all other state variables fixed.

For now, we assume that l ∈ VM so that it is feasible to choose the repair action. Recall

from Section 4.2 that cR(xl) is nondecreasing in xl. Then, from Lemma 6 we have

vk+1(x, l)

=min



R(x, l) ≡ cR(xl) + cD +
∑

j∈VM\{l}

cD · 1{xj=∆} + λ
∑

x′∈KnM

s.t. x′
l=0

∏
j∈VM\{l}

Pxj ,x′
j
· vk(x′, l),

DN (x, l) ≡
∑
j∈VM

cD · 1{xj=∆} + λ
∑

x′∈KnM

∏
j∈VM

Pxj ,x′
j
· vk(x′, l),

min
b:(l,b)∈E

Tb(x, l) ≡ cT +
∑
j∈VM

cD · 1{xj=∆} + λ min
b:(l,b)∈E

∑
x′∈KnM

∏
j∈VM

Pxj ,x′
j
· vk(x′, b)



≤min



R(x(i)+1, l) ≡

cR(x
(i)+1
l ) + cD +

∑
j∈VM\{l}

cD · 1{x(i)+1
j =∆} + λ

∑
x′∈KnM

s.t. x′
l=0

∏
j∈VM\{l}

P
x
(i)+1
j ,x′

j
· vk(x′, l),

DN (x(i)+1, l) ≡
∑
j∈VM

cD · 1{x(i)+1
j =∆} + λ

∑
x′∈KnM

∏
j∈VM

P
x
(i)+1
j ,x′

j
· vk(x′, l),

min
b:(l,b)∈E

Tb(x
(i)+1, l) ≡

cT +
∑
j∈VM

cD · 1{x(i)+1
j =∆} + λ min

b:(l,b)∈E

∑
x′∈KnM

∏
j∈VM

P
x
(i)+1
j ,x′

j
· vk(x′, b)


(C.4)

=vk+1(x(i)+1, l).

Inequality ( C.4) holds because R(x, l) ≤ R(x(i)+1, l), DN (x, l) ≤ DN (x(i)+1, l), and

Tb(x, l) ≤ Tb(x
(i)+1, l) for all b such that (l, b) ∈ E. Hence, the induction hypothesis holds
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for n ∈ {0, 1, . . . , k + 1}. The proof follows similarly when l /∈ VM and only the do nothing

and travel actions are allowed, or when i = l. □

Proof of Theorem 10

Proof under conditions of (i). We need to show that if R(x, i) < DN (x, i) and R(x, i) <

minb:(l,b)∈E Tb(x, i), then R(x(i)+1, i) < DN (x(i)+1, i) and R(x(i)+1, i) < minb:(l,b)∈E Tb(x
(i)+1

, i). First, assume for contradiction that R(x(i)+1, i) < DN (x(i)+1, i) does not hold. Hence,

we have the following inequalities from R(x, i) < DN (x, i) and R(x(i)+1, i) ≥ DN (x(i)+1, i),

respectively:

cR(xi) + cD +
∑

j∈VM\{i}

cD · 1{xj=∆}+λ
∑

x′∈KnM

s.t. x′
i=0

∏
j∈VM\{i}

Pxj ,x′
j
· v(x′, i) <

∑
j∈VM

cD · 1{xj=∆} + λ
∑

x′∈KnM

∏
j∈VM

Pxj ,x′
j
· v(x′, i), (C.5)

and

cR(xi + 1) + cD +
∑

j∈VM\{i}

cD · 1{xj=∆}+λ
∑

x′∈KnM

s.t. x′
i=0

∏
j∈VM\{i}

Pxj ,x′
j
· v(x′, i) ≥

∑
j∈VM

cD · 1{x(i)+1
j =∆} + λ

∑
x′∈KnM

∏
j∈VM

P
x
(i)+1
j ,x′

j
· v(x′, i).

(C.6)

Subtracting equation ( C.5) from ( C.6), yields

cR(xi + 1)−cR(xi) >

cD · 1{xi+1=∆} + λ
∑

x′∈KnM

{∏
j∈VM

P
x
(i)+1
j ,x′

j
· v(x′, i)−

∏
j∈VM

Pxj ,x′
j
· v(x′, i)

}
. (C.7)

The right-hand side of inequality ( C.7) is non-negative by Lemma 6. Moreover, the left-hand

side of ( C.7) is 0 because the repair cost is constant under the set of conditions delineated

in (i). Hence, inequality ( C.6) cannot hold.
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Second, assume for contradiction that R(x(i)+1, i) < minb:(l,b)∈E Tb(x
(i)+1, i) does not

hold. Hence, we have the following inequalities from R(x, i) < minb:(l,b)∈E Tb(x, i) and

R(x(i)+1, i) ≥ minb:(l,b)∈E Tb(x
(i)+1, i), respectively:

cR(xi) + cD +
∑

j∈VM\{i}

cD · 1{xj=∆} + λ
∑

x′∈KnM

s.t. x′
i=0

∏
j∈VM\{i}

Pxj ,x′
j
· v(x′, i) <

cT +
∑
j∈VM

cD · 1{xj=∆} + λ min
b:(l,b)∈E

∑
x′∈KnM

∏
j∈VM

Pxj ,x′
j
· v(x′, b), (C.8)

and

cR(xi + 1) + cD +
∑

j∈VM\{i}

cD · 1{xj=∆} + λ
∑

x′∈KnM

s.t. x′
i=0

∏
j∈VM\{i}

Pxj ,x′
j
· v(x′, i) ≥

cT +
∑
j∈VM

cD · 1{x(i)+1
j =∆} + λ min

b:(l,b)∈E

∑
x′∈KnM

∏
j∈VM

P
x
(i)+1
j ,x′

j
· v(x′, b). (C.9)

Subtracting equation ( C.8) from ( C.9), yields

cR(xi + 1)− cR(xi) > cD · 1{xi+1=∆}

+ λ

{
min

b:(l,b)∈E

∑
x′∈KnM

∏
j∈VM

P
x
(i)+1
j ,x′

j
· v(x′, b)− min

b:(l,b)∈E

∑
x′∈KnM

∏
j∈VM

Pxj ,x′
j
· v(x′, b)

}
. (C.10)

By Lemma 6, for any b we have∑
x′∈KnM

∏
j∈VM

P
x
(i)+1
j ,x′

j
· v(x′, b) ≥

∑
x′∈KnM

∏
j∈VM

Pxj ,x′
j
· v(x′, b),

and thus the right-hand side of inequality ( C.10) is non-negative. Moreover, the left-hand

side of ( C.10) is 0 because the repair cost is constant under the set of conditions delineated

in (i). Hence, inequality ( C.9) cannot hold.

Proof under conditions of (ii). The steps for the proof under conditions of (ii) are very

similar to those outlined above. Note inequalities ( C.7) and ( C.10) with non-negative right-

hand sides. If xi < ∆ − 1, then the left-hand sides of ( C.7) and ( C.10) are non-positive

because the repair cost is assumed to be constant for xi < ∆. On the other hand, if xi = ∆−1,

by the conditions delineated in (ii) we have cR(xi+1)−cR(xi) ≤ cD. Whereas, by ( C.7) and

( C.10) we have cR(xi+1)−cR(xi) > cD. Hence, inequalities ( C.6) and ( C.9) cannot hold. □
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Proof of Theorem 11

We have

v(x, l) = Tb(x, l) = cT +
∑
j∈VM

cD · 1{xj=∆} + λE
[
v(x′, b)|X = x

]
(C.11)

≥ λE
[
v(x′, b)|X = x

]
(C.12)

≥ λv(x, b), (C.13)

where X is the vector of random variables denoting asset deterioration conditions. Equa-

tion ( C.11) holds by definition (see equation (4.7)), and inequality ( C.12) holds by the

non-negativity of travel and downtime costs. Next, with regard to ( C.13), note that under

the assumptions of Theorem 11, transition probability matrix P has the IFR and upper

triangular properties. The upper triangular property ensures that assets transition to de-

terioration levels that are greater than or equal to the current levels. Moreover, the IFR

property is a sufficient condition for the result established in Proposition 10. Consequently,

inequality ( C.13) holds by Proposition 10. The first result of Theorem 11 follows directly.

For the second result, we first establish the proof under conditions of (i) followed by that

under conditions of (ii).

Proof under conditions of (i). Assume for contradiction that if v(x, l) < λv(x, b), then

v(x, l) ≥ Tb(x, l). Note that by (4.4), the latter inequality holds by equality. That is,

v(x, l) = Tb(x, l) < λv(x, b). (C.14)

Moreover, The result follows because inequality ( C.14) contradicts ( C.13).

Proof under conditions of (ii). The steps of the proof are very similar to those under

conditions of (i) with the exception that the inequality in ( C.14) is not strict whereas the

inequalities in ( C.12) and ( C.13) are strict because cT > 0. □
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Appendix D Chapter 4.0: Control-Limit Rule Violation

Here we present two numerical examples in which the conditions of Theorem 10, and

thus the control-limit structure, are violated. These resulting optimal policies are depicted

in Figure 24. Let cR(0) = 0, cR(1) = 0, cR(2) = 40, cD = 41, cT = 0.5, and

P =


0.98 0.01 0.01 0

0 0.96 0.03 0.01

0 0 0.95 0.05

0 0 0 1

 .

Moreover, we let cR(3) = 40 in Figure 24a and cR(3) = 5000 in Figure 24b. The control-limit

structure is violated in Figure 24a because, all else held equal, it is optimal to repair Asset

1 in conditions 1 and 3, but not in condition 2. In Figure 24b it is optimal to repair Asset 1

in conditions 1 and 2, but not in condition 3, i.e., it is optimal to abandon Asset 1 once it

reaches condition 3.
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(a) cR(3) = 40 (b) cR(3) = 5000

Figure 24: Excerpt of the optimal policies for the examples in Appendix B. The conditions

of Theorem 10 are violated, and thus, the control-limit structure does not hold for Asset 1

in either Example (a) or (b). Moreover, in Example (b), assets are abandoned upon failure.
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Appendix E Chapter 4.0: Downtime and Graph Centrality

In the examples of Section 4.5 all assets are in equally central locations, and thus, their

average percentage of downtime is almost equal in the long-run. In this section, we study

the relationship between the centrality of an asset’s location and its downtime as well as how

the downtime is affected by the graph structure.

Specifically, we consider six assets connected through four different graph configurations,

namely, linear, grid, tree, and star configurations. We assume parameter values of cR(0) = 1,

cR(1) = 2, cR(2) = 3, cD = 1, cT = 1, λ = 0.995, and

P =


0.85 0.1 0.05

0 0.85 0.15

0 0 1

 .

We run a simulation study for 600000 units of time and record the average percentage of

downtime of all assets in each graph configuration; the results are depicted in Figure 25.

In Figure 25, first note that assets in less central locations incur more downtime

compared to assets in more central locations. In fact, an asset’s downtime decreases in its

closeness centrality; recall equation (4.8). Second, assets on the grid graph have the least

amount of downtime compared to assets on the other graph configurations, seemingly due

to the high level of connectivity in the grid graph [144]. These results imply that assets’

downtime is affected by both their relative centralities and network configuration.

Next, we present another example to examine the relationship between closeness central-

ity and downtime. Here, we let cR(0) = 1, cR(1) = 2, cR(2) = 3, cD = 1, cT = 1, = 0.995,

and

P =


0.95 0.03 0.02

0 0.95 0.05

0 0 1

 .

We run a simulation study for 2 million units of time to record the average percentage of

downtime for each asset. Figure 26a depicts the graph configuration and Figure 26b plots

the percentage of downtime against the closeness centrality of each asset.
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(a) Linear (b) Grid

(c) Tree (d) Star

Figure 25: Average percentage of downtime for six assets in different graph configurations.

The assets incur the lowest downtime in the grid graph due to its high connectivity. Moreover,

in each graph, asset downtime is nondecreasing in closeness centrality.

The plot in Figure 26b implies that asset downtime decreases in the measure of closeness

centrality. Furthermore, note that Asset 5 incurs a higher percentage of downtime compared

to Asset 3 even though their measures of closeness centrality are equal. This difference can

be explained by other measures of centrality such as eccentricity (i.e., the longest shortest

path between the node of interest and all other asset nodes). In this example, Asset 5 has a

larger eccentricity index compared to Asset 3.
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(a) Graph for the example of Appendix C. Closeness centrality score, see equation (4.8), is labeled on the
top of each node.

(b) Percentage of downtime versus closeness centrality of each asset

Figure 26: Plot of average percentage of downtime against the closeness centrality of six

assets with the graph configuration depicted in (a). Asset downtime is decreasing in closeness

centrality.
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Appendix F Chapter 4.0: Deterioration Probability Matrices of Section 4.6

In the computational study of Section 4.6.3, we let the deterioration probability matrices

be as follows:

P =



0.988 0.01 0.02 0 0 0 0 0 0 0

0 0.988 0.01 0.02 0 0 0 0 0 0

0 0 0.988 0.01 0.02 0 0 0 0 0

0 0 0 0.988 0.01 0.02 0 0 0 0

0 0 0 0 0.988 0.01 0.02 0 0 0

0 0 0 0 0 0.988 0.01 0.02 0 0

0 0 0 0 0 0 0.988 0.01 0.02 0

0 0 0 0 0 0 0 0.988 0.01 0.02

0 0 0 0 0 0 0 0 0.988 0.12

0 0 0 0 0 0 0 0 0 1



,

P ′ =



0.98 0.012 0.005 0.002 0.001 0 0 0 0 0

0 0.98 0.012 0.005 0.002 0.001 0 0 0 0

0 0 0.98 0.012 0.005 0.002 0.001 0 0 0

0 0 0 0.98 0.012 0.005 0.002 0.001 0 0

0 0 0 0 0.98 0.012 0.005 0.002 0.001 0

0 0 0 0 0 0.98 0.012 0.005 0.002 0.001

0 0 0 0 0 0 0.98 0.012 0.005 0.003

0 0 0 0 0 0 0 0.98 0.012 0.008

0 0 0 0 0 0 0 0 0.98 0.02

0 0 0 0 0 0 0 0 0 1



,
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P ′′ =



0.97 0.021 0.006 0.002 0.001 0 0 0 0 0

0 0.97 0.021 0.006 0.002 0.001 0 0 0 0

0 0 0.97 0.021 0.006 0.002 0.001 0 0 0

0 0 0 0.97 0.021 0.006 0.002 0.001 0 0

0 0 0 0 0.97 0.021 0.006 0.002 0.001 0

0 0 0 0 0 0.97 0.021 0.006 0.002 0.001

0 0 0 0 0 0 0.97 0.021 0.006 0.003

0 0 0 0 0 0 0 0.97 0.021 0.009

0 0 0 0 0 0 0 0 0.97 0.03

0 0 0 0 0 0 0 0 0 1



,

and

P ′′′ =



0.95 0.041 0.006 0.002 0.001 0 0 0 0 0

0 0.95 0.041 0.006 0.002 0.001 0 0 0 0

0 0 0.95 0.041 0.006 0.002 0.001 0 0 0

0 0 0 0.95 0.041 0.006 0.002 0.001 0 0

0 0 0 0 0.95 0.041 0.006 0.002 0.001 0

0 0 0 0 0 0.95 0.041 0.006 0.002 0.001

0 0 0 0 0 0 0.95 0.041 0.006 0.003

0 0 0 0 0 0 0 0.95 0.041 0.009

0 0 0 0 0 0 0 0 0.95 0.05

0 0 0 0 0 0 0 0 0 1



.
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construction equipment using predictive data mining model. Journal of Computing
in Civil Engineering, 22(3):181–191, 2008.

[53] W. D. Fan, M. D. Gemar, and R. Machemehl. Equipment replacement decision
making: Opportunities and challenges. Journal of the Transportation Research Forum,
52(3), 2013.

[54] L. Fangxing and R. E. Brown. A cost-effective approach of prioritizing distribu-
tion maintenance based on system reliability. IEEE Transactions on Power Delivery,
19(1):439–441, 2004.

135

https://datainsightspartner.com/report/inspection-and-maintenance-robots-market/963
https://datainsightspartner.com/report/inspection-and-maintenance-robots-market/963


[55] T. A. Feo and J. F. Bard. Flight scheduling and maintenance base planning. Man-
agement Science, 35(12):1415–1432, 1989.

[56] M. Finkelstein and S. Eryilmaz. On optimal maintenance of degrading multistate
systems with state-dependent cost of repair. Applied Stochastic Models in Business
and Industry, 37(4):790–801, 2021.

[57] M. Finkelstein, M. Shafiee, and A. N. Kotchap. Classical optimal replacement strate-
gies revisited. IEEE Transactions on Reliability, 65(2):540–546, 2016.

[58] D. M. Frangopol and M. Liu. Maintenance and management of civil infrastructure
based on condition, safety, optimization, and life-cycle cost. Structure and Infrastruc-
ture Engineering, 3(1):29–41, 2007.

[59] G. Gallucci, W. Swartz, and F. Hackerman. Brief reports: Impact of the wait for
an initial appointment on the rate of kept appointments at a mental health center.
Psychiatric Services, 56(3):344–346, 2005.

[60] A. Goel and F. Meisel. Workforce routing and scheduling for electricity network
maintenance with downtime minimization. European Journal of Operational Research,
231(1):210–228, 2013.

[61] H. Golmakani and M. Pouresmaeeli. Optimal replacement threshold and inspection
interval for condition-based maintenance with variable failure cost. In 2012 IEEE
International Conference on Industrial Engineering and Engineering Management,
pages 1944–1948. IEEE, 2012.

[62] M. J. Havinga and B. de Jonge. Condition-based maintenance in the cyclic patrolling
repairman problem. International Journal of Production Economics, 222:107497,
2020.

[63] K. He, L. M. Maillart, and O. A. Prokopyev. Scheduling preventive maintenance
as a function of an imperfect inspection interval. IEEE Transactions on reliability,
64(3):983–997, 2015.

[64] K. He, L. M. Maillart, and O. A. Prokopyev. Optimal planning of unpunctual pre-
ventive maintenance. IISE Transactions, 49(2):127–143, 2017.

136



[65] K. He, L. M. Maillart, and O. A. Prokopyev. Optimal sequencing of heterogeneous,
non-instantaneous interventions. Annals of Operations Research, 276(1):109–135,
2019.

[66] V. J. Hodge, S. O’Keefe, M. Weeks, and A. Moulds. Wireless sensor networks for con-
dition monitoring in the railway industry: A survey. IEEE Transactions on Intelligent
Transportation Systems, 16(3):1088–1106, 2015.

[67] M. Hoffman, E. Song, M. P. Brundage, and S. Kumara. Online improvement of
condition-based maintenance policy via monte carlo tree search. IEEE Transactions
on Automation Science and Engineering, pages 1–12, 2021.

[68] C. C. Huang, W. T. Ziemba, and A. Ben-Tal. Bounds on the expectation of a con-
vex function of a random variable: With applications to stochastic programming.
Operations Research, 25(2):315–325, 1977.

[69] C. A. Irawan, D. Ouelhadj, D. Jones, M. St̊alhane, and I. B. Sperstad. Optimisation
of maintenance routing and scheduling for offshore wind farms. European Journal of
Operational Research, 256(1):76–89, 2017.

[70] M. Jamil, R. Batta, and D. M. Malon. The traveling repairperson home base location
problem. Transportation Science, 28(2):150–161, 1994.

[71] A. K. Jardine, D. Lin, and D. Banjevic. A review on machinery diagnostics and prog-
nostics implementing condition-based maintenance. Mechanical Systems and Signal
Processing, 20(7):1483–1510, 2006.

[72] C. Jia and C. Zhang. Joint optimization of maintenance planning and workforce
routing for a geographically distributed networked infrastructure. IISE Transactions,
52(7):732–750, 2020.

[73] S. K. Keneally, M. J. Robbins, and B. J. Lunday. A Markov decision process model for
the optimal dispatch of military medical evacuation assets. Health Care Management
Science, 19(2):111–129, 2016.

[74] R. Khan, A. B. Mad, K. Osman, and M. A. A. Aziz. Maintenance management of
aging oil and gas facilities. In Maintenance Management, chapter 5. IntechOpen,
London, 2019.

137



[75] A. J. Kleywegt, V. S. Nori, and M. W. P. Savelsbergh. The stochastic inventory
routing problem with direct deliveries. Transportation Science, 36(1):94–118, 2002.

[76] A. J. Kleywegt, V. S. Nori, and M. W. P. Savelsbergh. Dynamic programming ap-
proximations for a stochastic inventory routing problem. Transportation Science,
38(1):42–70, 2004.

[77] C. H. Kriebel, A. A. Atkinson, and H. W. H. Zia. Optimal investment, pricing and
replacement of computer resources. Naval Research Logistics Quarterly, 24(4):537–
547, 1977.

[78] M. Kurt and J. P. Kharoufeh. Monotone optimal replacement policies for a Marko-
vian deteriorating system in a controllable environment. Operations Research Letters,
38(4):273–279, 2010.

[79] A. Larsen, O. Madsen, and M. M. Solomon. Partially dynamic vehicle routing-models
and algorithms. Journal of the Operational Research Society, 53(6):637–646, 2002.

[80] A. Larsen, O. B. Madsen, and M. M. Solomon. The a priori dynamic traveling sales-
man problem with time windows. Transportation Science, 38(4):459–472, 2004.

[81] D. J. Leatham and T. G. Baker. Empirical estimates of the effects of inflation on
salvage values, cost and optimal replacement of tractors and combines. North Central
Journal of Agricultural Economics, 3(2):109–117, 1981.

[82] V. J. Lee, A. Earnest, M. I. Chen, and B. Krishnan. Predictors of failed attendances in
a multi-specialty outpatient centre using electronic databases. BMC Health Services
Research, 5(1):51, 2005.
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