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Estimation of Contact Forces in Reactor Internals using Neutron Noise Data:

A Comparison of Approaches

Nicholas Harn, M.S.

University of Pittsburgh, 2022

A pressurized water reactor’s radial keys prevent the reactor core from colliding with

its housing. These supports gradually degrade at their points of contact, requiring regular

inspections and preventative maintenance during reactor outages. Reactor outages are costly

and time-consuming, yet they are necessary for continued safe operations. Outages could be

expedited by monitoring the conditions of internal components during reactor operations.

This is partially achieved by tracking the contact forces acting on the core barrel, which are

altered by radial key degradation.

The contact force at each radial key is modeled as a hyperbolic tangent function of

the core barrel’s velocity at the point of contact, capturing the contact force’s transition

from viscous damping at low velocities to constant Coulomb friction at high velocities. Two

condition-dependent parameters control the contact force model: the maximum contact

force, α, and the inverse of the characteristic velocity at which the model transitions between

behaviors, β. The contact force dampens the core barrel’s vibrations, which previous research

has related to the neutron radiation measured outside the reactor core. The contact force is

monitored using these ex-core neutron noise measurements.

This report compares two methods for approximating the contact force parameters. One

method applies an unscented Kalman filter to the ex-core measurements. The other applies

a grid search algorithm to several ensembles of core barrel simulations, each associated with

a combinations of contact parameters. The grid search identifies the combination whose

ensemble best approximates the ex-core measurements. These methods are applied to four

synthetic datasets with known contact parameters to determine which approach, if any,

produces more accurate parameter estimates.

The Kalman filter’s estimates are more accurate than the grid search’s approximations

for Datasets 3 and 4. These datasets have α values of 490N and 660N, with β values of

iv



70 s/m and 110 s/m respectively. The grid search method performs better than the Kalman

filter for Dataset 1 where α = 100 N and β = 10 s/m, while both methods are inaccurate

for Dataset 2 where α = 31.6 N and β = 316 s/m. Neither method accurately estimates the

contact parameters for an arbitrary synthetic dataset.
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1.0 Introduction

1.1 Goals and Outcomes

The goal of this project is to develop a technique that approximates the condition of the

reactor vessel supporting structures based on the ex-core neutron radiation measurements.

A nuclear reactor core’s supporting structures prevent the core from colliding with the hous-

ing. These structures can gradually degrade, requiring regular inspections and preventative

maintenance. The reactor must be shut down to perform an inspection, resulting in lost

energy production. If inspections are performed too often, the plant will experience a severe

loss of profits due to these outages. However, the core’s supports will degrade undetected if

inspections aren’t performed often enough, causing significant damage to the reactor’s inter-

nal components. Therefore, there is a critical need to optimize maintenance and inspections

for safety and profits. The inspection process could be more efficient if we had methods

to monitor the condition of the reactor vessel during operation. At the conclusion of this

research, we should be able to do the following:

1. Detect changes in the condition of the reactor vessel internals over long time periods

2. Model the response of the core barrel to an input force applied by the turbulent coolant

flow

3. Relate the condition of the reactor internals to the contact force acting on the core barrel

4. Extract the contact force model’s parameters from the ex-core radiation measurements

5. Compare the performances of different methods for locating the contact force parameters

1.2 State of the Art and Limits of Current Practice

The reactor core of a pressurized water reactor (PWR) is housed in a core barrel sus-

pended within a pressure vessel filled with water. The water acts as a coolant for the reactor

core, and it is pumped at such a high flowrate that the turbulence excites movement in the
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core barrel. The core barrel is supported by two hold-down springs and two radial keys. The

springs support the majority of the core barrel’s weight within the vessel, while the radial

keys bear the rest of the load and prevent the structure from rotating about the vertical

axis. Additionally, two sets of horizontal springs and viscous dampers act on the core bar-

rel’s upper edges at the same locations as the hold-down springs. A diagram of the core

barrel system’s model is shown in Figure 1.

A typical PWR has eight ex-core neutron noise sensors mounted in the configuration

shown in Figure 2. Four sensors lie within the xz plane, while four are found in the yz plane.

Assuming the core barrel’s motion is restricted to the yz plane, the positions of the four

relevant ex-core sensors are configured as follows:

• Sensor 1: Positive y, positive z

• Sensor 2: Positive y, negative z

• Sensor 3: Negative y, positive z

• Sensor 4: Negative y, negative z

This 2-D configuration is displayed in Figure 3, and it allows the core barrel’s motion to be

fully described using an ex-core neutron noise method.

Current operations and maintenance (O&M) practices for a PWR consist of periodic in-

spections of the reactor internals, including the core barrel’s structural supports. The reactor

must be completely shut down for each inspection, leading to downtime for the nuclear plant.

If inspections are performed more often than necessary, the required downtime would sig-

nificantly restrict the plant’s power production capabilities and reduce its profits. However,

if the reactor is not inspected often enough, the degradation of its components could lead

to a failure, damaging the reactor and potentially endangering nearby personnel. Therefore,

a nuclear power plant must optimize inspections to minimize losses while maintaining safe

operating conditions.

The reactor’s radial keys are of particular interest to O&M personnel because they con-

strain the rotation of the reactor core barrel about the vertical axis and aid in damping

the rest of the barrel’s motion. The radial keys undergo a nonlinear contact force, and

the contact mechanism changes as the contact surfaces of the keys are “hammered-in” by
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Figure 1: A 3D representation of the core barrel. It is assumed to be a rigid cylindrical body

mounted inside of a reactor vessel.
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Figure 2: 3-D layout of the reactor’s eight ex-core neutron flux sensors
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Figure 3: Layout of the reactor’s ex-core neutron flux sensors in the yz plane
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the excited core barrel. This degradation gradually increases the spacing between the keys

and their mounts on the reactor vessel, decreasing the contact frequency and changing the

vibration spectra of the core barrel [9].

Although there are no vibration sensors within the core barrel, the structure’s vibrations

can be approximated from the measurements of the ex-core radiation sensors [8]. The rela-

tionship between the radiation measurements and the vibrations of the core barrel follows

a simple attenuation mechanism: As the core barrel moves towards a sensor, the effective

distance between the radiation source and the sensor decreases, and so the measured neutron

radiation will increase. Similarly, the radiation measurement will decrease as the radiation

source moves away from the sensor due to an increase in the effective attenuation distance

[7].

Certain research has attempted to directly relate the changes in the ex-core neutron radi-

ation measurements to the condition of the reactor supports [9]. These approaches begin by

defining the contact force at the radial key as a function of degradation. The contact surface

between the radial key and its mount is gradually worn away during operations, decreasing

the contact force applied to the core barrel through friction. The contact force is included

in the core barrel’s equations of motion, which are then substituted into the documented re-

lationship between vibrations and ex-core measurements. The result is an equation relating

the degradation of the radial key to the ex-core neutron noise measurements.

The vibrations of the core barrel are but one of many components comprising the ex-core

sensor readings of an actual PWR system. Other factors must be taken into account, such as

the reactivity of the reactor’s fuel, the spectra of the turbulent flow driving the core barrel’s

motion, and the random uncorrelated measurement noise in the outputs [2]. The approach

outlined in previous research assumes that the fluctuations in the ex-core measurements

are solely caused by the degradation of the radial key. This neglects fluctuations in the

other components of the ex-core sensor readings, potentially misidentifying those sources of

neutron noise as changes in the core barrel’s vibration profile.

The vibration profile could also be altered by the degradation of components other than

the radial keys, such as a decrease in the stiffness of the hold-down springs, or relaxation of

the supporting clamps that secure the core barrel [10]. Simply assuming that the change in
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the profile is due to wear at the radial keys would lead to confusion between the degradation

of the keys and any other changes within the vibration model. However, such issues are

beyond the scope of this project. This report focuses on methods for estimating contact

forces from ex-core neutron noise data for the purposes of condition monitoring. It assumes

that the changes in the core barrel vibrations are mostly caused by the changing behavior

of the contact forces due to degradation at the radial keys. Future research seeking to more

accurately represent the relationship between measured neutron noise, core barrel vibrations,

and radial key condition should account for the degradation of other reactor structures and

include other sources of neutron noise .

The core barrel’s vibrations include several modes, each of which describes a charac-

teristic behavior in the structure’s motion. For instance, shell mode vibrations account for

changes in the circumference and axial cross-section of the core barrel [8]. These changes

include distortion of the core barrel’s cross section from a circle to an ellipse, uniform ex-

pansion or contraction of the cylinder’s circumference, and fluctuations in the circumference

along the barrel’s axis. Beam mode vibrations isolate the pendulum-like swaying motion

of the core barrel’s free end about a fixed axis [5]. These are similar to the tilting mode

vibrations, which describe the rotation of the core barrel about an axis intersecting its center

of mass [2]. The three modes of vibration are visually compared in Figure 4. The general

vibrations of the core barrel are described by some combination of these three modes.

Early condition monitoring efforts for reactor internals relied on mechanical measure-

ments from pressure sensors and accelerometers to extract the eigenfrequencies of the core’s

vibrations, which decrease during degradation [5]. Later methods used neutron noise anal-

ysis via ex-core ion chambers to extract additional information, such as the direction and

amplitude of the vibrations.

The neutron noise method requires taking the auto-power-spectral densities (APSDs) of

the ex-core sensor readings and relating the peaks in the spectra to the vibrations at the

system’s eigenfrequencies, or relating the peaks to the resonances of the pressure fluctuations

that drive the vibrations [5]. Model-based analysis, independent pressure and displacement

measurements, and structural mechanics calculations are leveraged to determine the origins

of all peaks within the spectra.
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Figure 4: A comparison of the core barrel’s modes of vibration. Top left: Stationary core

barrel. Top right: Shell mode. Bottom left: Beam mode. Bottom right: Tilting mode.
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There are two main approaches for diagnosing the spatial distribution of the vibrations.

The first approach is to use a qualitative time-domain method, which assumes random 2-D vi-

brations that may or may not include some anisotropy and preferred direction. Time-domain

methods include visualizing the motion through 2-D amplitude probability distributions, 2-

D motion trajectories, and/or equi-probability lines [5]. The visualizations are useful for

detecting sudden changes in the ex-core outputs, and for monitoring the reactor in real-time

from the control room. However, identifying changes in the patterns of the visualizations is

a subjective process, unfit for quantitative analysis of the noise or analyzing its trend over

time [5].

The second approach for diagnosing the spatial distribution of the beam mode vibrations

is to apply a quantitative frequency-domain method. This assumes various vibration modes

and other noise components, such as reactivity and background noise, are present in the

ex-core signals. Frequency analysis methods separate these components, after which the

spatial properties of the beam mode vibrations are described by determining the weights

of the components. The spectral decomposition algorithm is an example of a frequency-

domain method for extracting the spatial properties of beam mode vibrations [5]. Spectral

decomposition estimates the direction and amplitude of vibrational motion over a range of

frequencies. The amplitude of the signal indicates how far the core barrel swings in its

pendulum mode, while the direction of the motion indicates the source of unbalance in the

reactor. This method separates the vibration modes by assuming the cross-spectra between

them are zero [4]. Spectral decomposition has been implemented for analyzing the motions

of multiple WWER-type reactors, such as Reactor Unit 2 at the Paks Nuclear Power Plant in

Hungary. The method is compatible with other reactor designs as well, making it a versatile

tool for frequency-domain analysis [4].

One major drawback of frequency domain methods is that the analysis assumes all modes

are equally likely to correspond to a given peak, due to a lack of assumptions on prior informa-

tion [5]. The spectral decomposition algorithm is expected to select the modes corresponding

to each peak, which is inefficient when prior testing has already revealed this information.

Also, some vibrational modes cannot be identified from the autospectral densities of the

ex-core signals. In 2016, degradation was observed in the reactor alignment pins and lower
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radial key of Reactor Unit 4 at the Ringhals Nuclear Power Plant in Sweden. Such wear

is inconsistent with the beam mode and shell mode motions of the reactor core barrel, sug-

gesting the presence of other vibration modes in the system [2]. The presence of a “tilting”

vibration mode was proposed in response to this observation. This new mode describes a

slight tilting motion of the reactor core barrel about a pivot in the xy plane running through

the structure’s center of mass [2].

The pendulum-like motion associated with the beam mode and the slight rotational

motion of the tilting mode are similar, causing confusion when analyzing them in the au-

tospectral density functions. The main differences between these two modes are instead

found in the phase and coherence relationships between ex-core signals, which are extracted

from the cross-spectra between the signals. When examining detectors on opposite sides of

the core barrel and on different axial levels, such as Sensors 1 and 4 in Figure 3, the tilting

mode components are in-phase with the measured signal and the beam mode components

are out-of-phase [2]. If the detectors on the same axial level are examined instead, then the

tilting mode components are out-of-phase.

The tilting mode cannot be easily identified from these pair-wise coherences and phases.

This is because the tilting motion is so slight that the change in the ex-core signals from

tilting is almost negligible. The tilting mode must be extracted from the signals and en-

hanced by considering the symmetries between all eight ex-core detectors. Time-domain

methods identify the tilting mode by comparing the detector signals at each instant in time.

Frequency-domain methods use cross-spectral-density functions and coherence functions be-

tween the output signals to separate their in-phase and out-of-phase components, thereby

isolating the tilting mode from the beam mode.

In summary, current reactor models require accounting for the beam mode, shell mode,

and tilting mode vibrations of the core barrel. Frequency-domain methods identify these

modes using patterns in the APSDs and CPSDs of the neutron radiation measurements at

the ex-core sensors. Peaks in the APSDs indicate vibration modes and resonances from

the system’s driving force. Most vibration modes are separated in the frequency domain

by applying spectral decomposition algorithms such as SPEC-DEC to the APSDs. Certain

vibration modes only appear when comparing the phase and coherence of output signals
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Table 1: Table of reactors included in the literature review, as well as the years in which

their frequency-domain information was extracted

Reactor Design Power (MWe) Year of Measurement

Paks-2 WWER 440 1992

Kalinin-1 WWER 1000 1992

Ringhals-3 Westinghouse 950 2013

Ringhals-4 Westinghouse 950 2015

ORNL Westinghouse 1148 1981

from different sensors. This is achieved using the CPSDs and coherence functions between

the ex-core sensor outputs.

1.3 Literature Review of Reactor Data

The outputs of the core barrel models should reflect the core barrel behavior documented

in other resources on this topic. A literature review was conducted to identify general trends

in the ex-core measurements and vibration spectra of PWR core barrels. This information

will aid in the development of a model that accurately represents the measured response of a

core barrel to its operating conditions. The five pressurized water reactors (PWRs) listed in

Table 1 are discussed in this literature review. The Paks-2 WWER-440 PWR is a 440 MWe

water-water energetic reactor (WWER, or VVER) located at the Paks Nuclear Power Plant

in Paks, Hungary. This type of reactor is a predecessor of the WWER-1000, which produces

1000 MWe of electrical energy. The Kalinin-1 PWR of the Kalinin Nuclear Power Station

in Kalinin, Russia is an example of a WWER-1000 reactor. Reactor units 3 and 4 at the

Ringhals Nuclear Power Plant in Sweden are both 950 MWe Westinghouse PWRs. Another

Westinghouse PWR from Oak Ridge National Lab (ORNL) is analyzed as well. This reactor

generates 1148 MWe of electrical energy.
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Table 2: Information regarding the vibration modes of a core barrel

Reactor Beam mode Tilting mode Pendulum mode Shell mode

Paks-2 1.27 Hz N/a 1.1 Hz N/a

Kalinin-1 2Hz to 6Hz N/a 1.3Hz to 4.7Hz N/a

Ringhals-3 7Hz to 8Hz N/a N/a 20 Hz

Ringhals-4 7Hz to 8Hz 6 Hz N/a 20 Hz

ORNL 6Hz to 7Hz N/a N/a 11.5Hz to 12Hz

The ex-core measurement spectra contain several resonant frequencies, each associated

with a separate mechanism in the reactor. The resonance peaks below 1 Hz are associated

with the thermal-fluid feedback effects of the system [10]. Peaks between 1 Hz and 10 Hz

generally come from the vibrations of the core barrel structure [10]. These include the beam-

mode vibrations of the core barrel as it swings in a pendular motion, the vibrations of the

fuel assembly, and the tilting mode of the core barrel [2]. For frequencies between 10 Hz

and 20 Hz, the resonant peaks originate from the shell-mode vibrations of the core barrel’s

rigid body [10]. Frequencies above 20 Hz come from the coolant pumps, which provide the

turbulent flow that excites the system [4]. The exact locations of the resonant peaks within

these frequency ranges depends on the construction of the reactor. The resonance frequencies

of the reactors from the literature review are listed in Table 2.

In an analysis of the Paks-2 reactor in 1998, the ex-core measurements were processed

through a low-pass filter with a cutoff frequency in the 4 to 6 Hz range [4]. As a result,

vibrations at frequencies above 6 to 9 Hz could only be detected from other sensors, such as

the in-core detectors. The ex-core measurements of the Ringhals-3 PWR were recorded every

50 days over a 100 day period in 2013 as part of a research study [3]. These measurements

had a sampling frequency of 62.5 Hz, allowing for the analysis of dynamics below 31.25 Hz

without introducing aliasing effects.

The beam modes of WWER-type reactors had resonant frequencies ranging from 2 to

6 Hz. These peaks separated over the course of a fuel cycle [4]. The Ringhals reactors had

beam-mode peaks in the range of 7 to 8 Hz, while Westinghouse’s four-loop reactor had a
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beam mode frequency near 6 to 7 Hz [5] [10]. The Ringhals and Westinghouse reactors had

multiple fuel assembly vibration modes, also known as reactivity modes. The first reactivity

mode for the Westinghouse reactor occurred near 3 to 3.5 Hz, while the second reactivity

mode was near 7 to 8 Hz [10]. Over the course of a fuel cycle, the second reactivity mode

and the beam mode for the Westinghouse reactor experienced shifts in frequencies, causing

the peaks to eventually overlap near 8 Hz. The Ringhals reactors had reactivity modes near

8 Hz as well [5].

The first-order shell modes for the Ringhals reactors were near 20 Hz, and the shell mode

for the Westinghouse reactor was in the range of 11.5 to 12 Hz [10]. These peaks remained

relatively constant over the fuel cycles of their reactors [3]. The tilting mode of the Ringhals

reactor occured at 6 Hz [2]. This mode appeared as a change in phase and coherence, rather

than as a peak in the spectra.

Sometimes, the dynamics of the coolant pumps become part of the ex-core spectra. For

the WWER reactors, the feedwater pump had an associated frequency of 25 Hz, which

was extracted from an accelerometer mounted to the pump’s housing [4]. This matches

the needle-peak frequency in the ex-core spectra of the Ringhals reactors, which is also

hypothesized to have originated from the pump [3]. However, the WWER reactors had

additional dynamics associated with their coolant pumps. The first-order harmonics of the

main coolant pumps for those reactors occurred at 33.3 Hz, and the pumps also experienced

a rotational frequency of 16.6 Hz [4]. Standing pressure waves formed in the coolant flows

of those reactors at 8.6 Hz, and the flow experienced a pressure oscillation of around 9 Hz.

As previously mentioned, the ex-core measurement spectra of the reactors were dom-

inated by thermal-hydraulic feedback effects for frequencies below 1 Hz [4]. Specifically,

thermal-hydraulic effects occurred in the WWER reactors in the region of 0.18 to 0.60 Hz,

and in the Westinghouse reactor in the 0.001 to 1 Hz region [10]. One of the seven control

rods within the Paks-2 WWER-440 reactor oscillated in a pendulum-like motion, creating a

peak in the measured spectra near 1.1 Hz [4]. The Ringhals-3 PWR also experienced a peak

at 1 Hz, although the source of this peak is unknown [5].

Minor peaks formed in the Westinghouse reactor from unknown causes. These peaks

occurred at frequencies of 2 Hz, 4 Hz, and 9 Hz. The 4 Hz peak is potentially believed to be
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connected to the vibrations of the fuel assembly, but research into the causes of the other

peaks is still ongoing [10]. These peaks were far less distinct than the other resonance peaks

in the reactor, and so they are usually ignored during analysis.

The Paks-2 WWER-440 reactor experienced a peak in its ex-core APSD at a frequency of

1.27 Hz [4]. At this peak, the maximum phase between horizontally-placed in-core detectors

reached 82 deg. In the Kalinin WWER-1000 reactor, a second resonance peak formed in

the 1.3Hz to 4.7Hz region [4]. This peak is assumed to originate from the beam-mode

vibrations of the core barrel, and it gradually separated into two peaks over the reactor’s

90-day installation period.

The literature review’s compiled information indicates that the core barrel’s vibration

estimates from the ex-core sensor readings should have a resonance peak in the range from

1Hz to 10Hz. This peak is associated with both the beam mode and the tilting mode of the

vibrations. The shell mode does not appear for this simulation because shell mode vibra-

tions require radial deformation of the core barrel. This core barrel simulation assumes the

structure is rigid, so deformation effects are ignored. No standing pressure waves, pump rota-

tion frequencies, thermal-hydraulic feedback effects, or fuel reactivity modes are considered

within the simulation either. The core barrel simulation assumes the ex-core neutron noise

readings are independent of these effects, and that the ex-core measurements only depend

upon the vibrations of a rigid core barrel.

1.4 Research Approach

The core barrel is modeled as a spring-mass-damper system undergoing turbulent and

contact excitation forces. The contact force, turbulent force, and vibrational behavior of the

core barrel are separated into three different models. This allows for the analysis of each

model’s mechanics and dynamics independent of the others.

Separating the contact model from the vibrations and turbulence models isolates the

degradation of the radial keys from all other changes in the overall system over time. Changes

in the relationship between the contact point velocities and the contact forces can then be
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analyzed without needing to consider the influence of the vibrational structure and the

turbulent input on the contact point velocities. If the contact, turbulence, and vibrations

models were not separated, any changes in one model could be confused for changes in

another. This would complicate the analysis of how any one model evolves over time as

the radial keys degrade. Therefore, separating the contact model from the vibrations and

turbulence models provides a better measure of the radial key’s condition over time.

The turbulent forces acting on the core barrel are assumed to be a scaling of Gaussian

white noise with an average value of 0. These forces drive the core barrel’s vibrations by

randomly exciting the structure. The scaling term applied to the white noise defines the

standard deviation of the Gaussian distribution. This term is selected such that the motion

of the excited core barrel system is significant enough to cause detectable deviations in the

ex-core neutron measurements.

The contact force at each radial key is modeled as a nonlinear function of the core barrel’s

velocity at the point of contact. At low velocities, the contact force acting on a radial key is

linearly proportional to the key’s velocity, much like a linearly-viscous friction force. How-

ever, the contact force transitions to a near-constant value at higher velocities. An accurate

model for the contact forces must account for these nonlinear mechanics while also taking

into account the changes in contact due to degradation. This is achieved by introducing two

scaling parameters for controlling the contact force model. The first parameter α controls

the magnitude of the contact force, and the second parameter β controls the velocity at

which the contact mechanics transition from a linearly-viscous force to a constant friction

force. The contact forces are approximated using a hyperbolic tangent function of velocity,

which transitions from a linearly-viscous force at low velocities to a constant friction force

at high velocities. An example of this model is shown in Figure 5 for parameter values of

α = 100 N and β = 10 s/m. The β parameter scales terms within the function, while α

scales the entire function. One of the main goals of this report is to compare two methods

for estimating these contact parameters from the ex-core neutron noise measurements.

As the radial keys degrade over time, the contact spacing increases and the contact

frequency decreases, changing the values of the contact model’s two unknown parameters.

Assuming that the ex-core measurements are taken for a few hours each month, the contact
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Figure 5: Model of the contact force acting upon a core barrel as a function of the point-of-

contact’s velocity. For this simulation, the contact force transitions from a linear function of

velocity to a constant force of α = 100 N near a velocity of 1
β
= 0.1 m/s.
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force parameters will remain constant during each measurement period. This is because

degradation takes place over a time scale much longer than the measurement period. The

degradation that occurs between two measurements has an imperceptible impact on the

parameter values, but these changes accumulate over the course of several months, eventually

producing a noticeable change in the system’s measured response.

The core barrel’s spring-mass-damper model is created using the system’s linearized equa-

tions of motion. This model simulates the core barrel’s response to the turbulent excitation

force and the nonlinear contact force over a given time interval. The spring-mass-damper

model is converted to a state-space representation, maintaining the same information but

in a different format. This representation expresses the core barrel system’s response as a

function of several states, each of which represents a component of the core barrel’s position

and velocity. The state-space representation is useful for examining the dynamics of the core

barrel system and simulating its response to a given input.

The vibrational, contact, and turbulence models are combined in a simulation to generate

a synthetic dataset for the core barrel system. It is important to note that the models are

only combined for the purposes of data generation. Any analysis of the data requires the

use of the separated models, so that changes in one model may be analyzed independent of

changes in the others. The synthetic dataset is used to train a grid search algorithm and a

Kalman filter to extract information regarding the contact model parameters from the ex-

core measurements. The results are then compared to investigate the performance of each

approach with respect to the synthetic dataset’s known contact parameters.

One method for contact parameter estimation applies a grid search algorithm to ex-core

measurements taken over the course of a single day. This approach simulates the ex-core

neutron measurements associated with each combination of contact force parameters on a

predefined grid. The simulation for a given parameter combination is repeated multiple

times, producing an ensemble of potential ex-core measurements for each parameter com-

bination. The reactor’s actual ex-core measurements are then compared to each parameter

combination’s ensemble of simulated responses. The grid search algorithm evaluates one or

more performance metrics on each parameter combination. These metrics represent the pa-

rameter combination’s ability to recreate the measured ex-core data. Potential performance
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metrics include the root-mean-squared error of the ensemble average with respect to the

measurements, the likelihood that the measured data originated from the ensemble of sim-

ulations, and the cross-correlation between the ensemble average and the measured signal.

Finally, the grid search method locates the best-performing combination of contact force

parameters on the grid. This identified combination is the grid search algorithm’s estimate

for the contact force parameters.

Another method estimates the contact force parameters by applying a Kalman filter to

the ex-core measurements for that day. The Kalman filter method simulates the core barrel

under an assumed set of contact force parameters, which are slightly perturbed at each time

step. An additional feedback mechanism is applied to the core barrel system such that the

simulated response’s deviation from the true measured data is minimized. This feedback

mechanism causes the contact parameter estimates to migrate towards their true values over

a period of time. The Kalman filter’s estimated contact force parameters are compared to

the grid search method’s results to determine which method is more reliable and accurate.

This is possible by applying both methods to a synthetic dataset generated with known

contact force parameters.

1.5 Research Impact

Creating a model to approximate the condition of the radial keys will aid operations and

maintenance (O&M) teams in scheduling the replacement of these components. Approxi-

mating the condition of the reactor’s supports reduces the required frequency of outages for

inspections while minimizing the risk of failure, saving money without foregoing safety. In

fact, the introduction of a tool for forecasting the condition of the radial key would ensure

that the component is replaced before it degrades past a condition threshold, making the

operation of the reactor safer. Knowledge regarding the health of the radial keys can be

applied to prioritize the maintenance of the most degraded radial keys during scheduled

outages. This would reduce the time spent inspecting and maintaining known healthy com-

ponents, optimizing the use of time during an outage and potentially reducing its overall
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length. If successful, the model could be extended to other components in the nuclear plant,

reducing wasteful spending on unnecessary replacements and inspections during outages

while potentially improving the safety of the plant.
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2.0 Models of the Core Barrel System

The core barrel system is described by a combination of four separate models listed below.

Each model has its own dynamics, and the models are connected through their inputs and

outputs. The simulation describing the core barrel’s motion incorporates all four of these

models.

• Neutron Noise: The neutron noise model describes the relationship between the core

barrel’s response and the ex-core neutron noise measurements.

• Vibrations: The vibration model approximates the core barrel’s response to some exci-

tation force by assuming that it behaves like a spring-mass damper.

• Contact: The contact model describes the contact force applied to the core barrel at the

radial key in response to its motion.

• Turbulence: The turbulence model approximates the excitation force acting on the core

barrel.

The block diagram of the core barrel model is shown in Figure 6. The vibration model has

two inputs: the turbulent excitation force u1, and the contact force u2. These inputs are

provided by the turbulence and contact models respectively. The turbulence model currently

used in the simulation is independent of the other models, while the contact model requires

the velocities of the contact points as an input. These velocities y2 are one of the two outputs

produced by the vibration model, the other output being the ex-core neutron noise sensor

measurements y1 from which the motion of the core barrel is extracted.
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Figure 6: Block diagram of the core barrel’s vibration model, using state-space notation

2.1 Neutron Noise Model

It has been documented that a PWR’s ex-core neutron radiation sensors are capable

of detecting the core barrel’s vibrations [6]. The ex-core neutron noise measurements are

directly related to the vibrations of the core barrel through the reactor core system’s dynamic

transfer function.

Neutron noise is classified into one of two types depending on its physical origin: power

reactor noise or zero power noise. The neutron noise fluctuations detected by a PWR’s

ex-core radiation sensors are known as power reactor noise. Power reactor noise describes

the dependence of the measured neutron noise upon mechanical and thermal noise sources

within the reactor. These noise sources include any processes that introduce fluctuations

in the behavior of the neutron transport medium, such as the reactor’s coolant flow, the

temperature dependence of the medium’s material properties, and the vibrations of the core

barrel [6].

The fluctuations of the medium introduce space and time fluctuations in all of the sys-

tem’s neutrons simultaneously in a random manner, correlating the parameters of the neu-
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trons [6]. Power reactor noise is often monitored to detect malfunctions that alter the

behavior of a nuclear reactor’s neutron transport medium.

Another type of neutron noise, known as zero power noise, is generated by the fission

process within the reactor’s core [6]. However, the zero power noise’s contribution to the total

neutron noise measured at each ex-core sensor is negligible. This is because power reactor

noise dominates the neutron noise signal for high-power reactors, such as commercial PWRs.

This paper focuses on vibration-induced neutron noise generated in a PWR. Therefore the

measured neutron noise is assumed to be power reactor noise, and the zero power noise is

assumed to be negligible.

The reactor core is modeled as a neutron radiation source undergoing vibrations. These

vibrations alter the flux of neutrons exiting the core barrel, creating fluctuations in the

measured neutron radiation flux at each ex-core sensor. As a result, the vibrations are

treated as a noise source for the ex-core sensors, and the vibration-induced neutron flux

fluctuations δϕ(t) are recorded as power reactor noise.

The neutron noise signal δϕ(t) at each sensor is described by [2],

δϕ1(t) = δr1(t) + δP (t) +D(t)− φ(r(t)) + λy(t) (2-1)

δϕ2(t) = δr2(t) + δP (t)−D(t)− φ(r(t))− λy(t) (2-2)

δϕ3(t) = δr3(t) + δP (t) +D(t) + φ(r(t))− λy(t) (2-3)

δϕ4(t) = δr4(t) + δP (t)−D(t) + φ(r(t)) + λy(t) (2-4)

The core barrel’s perturbation r(t) is decomposed into its y-axis translation component y(t),

z-axis translation component z(t), and x-axis rotation component θ(t). These perturbations

contribute to the neutron noise measurements by altering the attenuation distance between

the neutron radiation source and the sensors. As such, a portion of the neutron noise signal

denoted by φ(r(t)) is modeled as a linear combination of the core barrel’s perturbation com-

ponents. Similarly, the core barrel’s tilting-mode vibrations contribute to the neutron noise

measurements through the approximated term λy(t), and the core’s shell-mode vibrations

induce another neutron noise component D(t).

Background noise δr(t) is present in every sensor reading, with the same broad-band

characteristics between all four signals, but these components are assumed to be statistically
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independent between detectors. The uncorrelated background noise present in the measure-

ment of the ith sensor is denoted as δri(t). All four measurement signals also include an

identical point reactor neutron noise component δP (t).

The neutron radiation emitted from the reactor core is attenuated through the water

surrounding the core barrel. As the core vibrates, the path length from the core to the

detector changes. These perturbations r(t) create a change in the attenuation distance of

the neutron radiation, altering the measured neutron noise. The variation in the reactor’s

ex-core neutron flux caused by attenuation is assumed to take the following form:

δϕAttenuate(t) ≈ A exp (Σr(t)) (2-5)

where the displacement of the core barrel r(t) is multiplied by an arbitrary scaling coefficient

A and the core barrel’s effective cross-section Σ with respect to the core. The exponential

term describing attenuation complicates the decomposition of the ex-core signal into the

components expressed in Equations 2-1 to 2-4. Therefore, the variations in the neutron flux

are log-normalized to simplify decomposition. This process is achieved using the relationship

φ(t) = ln (δϕ(t))

= aΣr(t)
(2-6)

where a is some constant scaling coefficient.

The log-normalized neutron flux variations φ(t) detected at each sensor are expressed

below. The lower sensors detect greater log-normalized flux variations because the lower

end of the core barrel tends to move more than the upper end. This is reflected in the

factor (1 + b), where b is the decimal expression for the percent difference between the

measurements of the lower and upper sensors.

φ1(t) = aΣy(t) (2-7)

φ2(t) = (1 + b) aΣy(t) (2-8)

φ3(t) = aΣy(t) (2-9)

φ4(t) = (1 + b) aΣy(t) (2-10)
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The measurement noise n(t) of the ex-core sensors is assumed to introduce variations about

the true measured value according to a Gaussian distribution. This yields a measurement

noise term of n(t) ∼ N (0, σ2), where σ is the standard deviation of the distribution. The

full expression for the change in the neutron flux measured at an ex-core sensor is given

below:

φsensor(t) = aΣr(t) + n(t) ∼ N
(
aΣr(t), σ2

)
(2-11)

The output of each ex-core sensor is a current I proportional to the measured ex-core

neutron flux φ. Therefore, variations in the neutron flux are expressed as changes in the

output current. These changes ∆I(t) are written in terms of φ(t), n(t), and r(t):

∆I(t) = φ(t) + n(t) ∼ N
(
aΣr(t), σ2

)
(2-12)

The core barrel system has a total of 8 ex-core sensors, 4 of which lie within the yz plane.

Assuming the system is constrained to 2-D motion in the yz plane, only the 4 ex-core sensors

in the plane of motion are required to describe the core barrel’s motion.

∆I1(t) = aΣy(t) + n(t) ∼ N
(
aΣy(t), σ2

)
(2-13)

∆I2(t) = a (1 + b) Σy(t) + n(t) ∼ N
(
a (1 + b) Σy(t), σ2

)
(2-14)

∆I3(t) = aΣy(t) + n(t) ∼ N
(
aΣy(t), σ2

)
(2-15)

∆I4(t) = a (1 + b) Σy(t) + n(t) ∼ N
(
a (1 + b) Σy(t), σ2

)
(2-16)

2.2 Vibrational Model

The vibrations of the core barrel are found by modeling the structure as a spring-mass-

damper (SMD) system with three degrees of freedom. The body is assumed to be a cylindrical

mass undergoing slight horizontal, vertical, and rotational displacements within a 2-D plane.

This is a simplification of the core barrel’s actual motion within a 3-D space.

The 2D motion of the core barrel in the yz plane is fully described using the structure’s

translation along the y-axis, its translation along the z-axis, and the core barrel’s rotation
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about the x-axis. These 3 degrees of freedom are described using the variables y, z, and θ,

respectively. The origin of the xyz coordinate system used to describe these components is

located at the static equilibrium position of the core barrel’s center of mass.

Modeling the core barrel’s motion in a 3D space requires 2 additional degrees of freedom:

the structure’s translation along the x-axis, and its rotation about the y-axis. These motions

are neglected in the 2D model to simplify the equations of motion. The x-axis translation

and y-axis rotation must be re-introduced in a 3D model of the core barrel system to provide

a more complete representation of its dynamics.

2.2.1 Core Barrel Dynamics

The core barrel system’s dynamics account for the forces applied to the core barrel by

the springs and dampers. The forces and moments applied by the turbulent flow of coolant

in the reactor, as well as the contact forces at the radial keys, are described by separate

models. A free-body diagram of the core barrel in the yz plane is shown in Figure 7.

In this diagram, ∆yA, ∆zA, ∆yB, and ∆zB are the deflections of the core barrel’s upper

supports along the y- and z-axes. These values are found using the geometry of the core

barrel and the slight perturbations of its center of mass. The equations for computing them

are

∆yA = y +
w

2
(1− cos θ)− (H − h) sin θ (2-17)

∆yB = y − w

2
(1− cos θ)− (H − h) sin θ (2-18)

∆zA = z − w

2
sin θ − (H − h) (1− cos θ) (2-19)

∆zB = z +
w

2
sin θ − (H − h) (1− cos θ) (2-20)

where w is the diameter of the core barrel, H is the height of the core barrel, and h is the

distance from the core barrel’s bottom face to its center of mass.

Points A and B represent the locations on the core barrel where the upper supports are

attached, including both the hold-down springs and the horizontal supporting structures.

Points C and D represent the locations of the radial keys on the surface of the core barrel.

k0 is the spring coefficient of the hold-down springs, k1 is the spring constant for the horizontal
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Figure 7: The free-body diagram of the core barrel, assuming all forces and motions are

constrained to the yz plane. The body has a center of mass G, and its supports are attached

at points A, B, C, and D.
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supports, and c is the damping coefficient of the horizontal supports. The load applied by

the turbulent flow is decomposed into its equivalent force components and moment at the

core barrel’s center of gravity. These components are denoted as Mx, Fy, and Fz. Similarly,

the contact forces at the radial keys are also decomposed into their y- and z-components.

The contact force components at C are labelled fy1 and fz1, while the components at D are

named fy2 and fz2.

The equations of motion describing the core barrel’s dynamics are written using either

Lagrange’s method or Newton’s second law. If done properly, both approaches should yield

the same results. Therefore, the equations of motion created using Newton’s second law

can be used to verify the equations found through Lagrange’s method, and vice-versa. The

equations of motion describing the core barrel’s dynamics are then linearized using the small

angle assumption. This approximation assumes that the core barrel’s angle of rotation is so

small that the sine of the angle is approximately equal to the angle itself in radians, and the

cosine of the angle is assumed to be equal to 1.

2.2.1.1 Lagrangian Approach

Lagrange’s method describes the dynamics of the system using the principle of virtual

work and the law of conservation of energy. The total energy within the system is computed

by summing the kinetic and potential energies of all bodies. The total value remains constant

unless the system is acted upon by external or non-conservative forces, in which case the

change in the total energy of the system is equal to the amount of virtual work done by

the aforementioned forces. The Lagrangian, L, of the system is defined in Equation 2-23

as the difference between the total kinetic and potential energies of the system, which are

represented as T and U respectively.

T =
1

2
mv2G +

1

2
IGω

2 (2-21)

U = mgz +
∑ 1

2
k∆r2 (2-22)

L = T − U (2-23)
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The total kinetic energy of the system is expressed in terms of the core barrel’s mass m,

the translational velocity vG of the core barrel’s center of mass, the core barrel’s second

moment of inertia IG about its center of mass, and the core barrel’s angular velocity ω about

its center of mass. This combines both the translational and rotational kinetic energies

into a single term. Similarly, the total potential energy is the sum of the core barrel’s

gravitational potential energy and the total spring potential energy stored in its supports.

The vertical displacement of the core barrel from its equilibrium position is written as z, g

is the acceleration due to gravity at the Earth’s surface, k is the spring coefficient of a given

support, and ∆r is the distance that a given support has deflected.

The motion of the system can be described using n generalized coordinates, q1, q2, ...qn,

where n is the number of degrees of freedom within the system. This system has 3 degrees

of freedom and the following generalized coordinates: q1 = y, q2 = z, and q3 = θ. Lagrange’s

method uses one equation of motion per generalized coordinate, with the kth equation of

motion taking the form of Equation 2-24,

∂

∂t

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk (2-24)

where qk is the kth generalized coordinate and Qk is the generalized force associated with

qk. Qk is derived from the principle of virtual work according to Equation 2-25, where Fi

is the ith non-conservative or external force acting upon the system and Mj is the jth non-

conservative or external moment acting on the system. ri is the position vector of the ith

force’s point of application, and N1 is the total number of such forces performing virtual

work upon the system. Similarly, ϕj is the angular displacement of the system about the

jth moment’s point of application, and N2 is the total number of such moments performing

virtual work upon the system.

Qk =

N1∑
n=1

Fi.
∂ri
∂qk

+

N2∑
n=1

Mj.
∂ϕj

∂qk
(2-25)

The external force applied to the core barrel by the turbulence at point G is expressed as

FG, and the moment applied by the turbulence at G is written as MG. Similarly, the contact

forces applied to the core barrel at points C and D are represented by FC and FD. No

moments are applied to points C and D, although the contact forces will generate moments
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due to their offset from the core barrel’s axis of rotation. So, the expressions MC and MD

for the moments applied to points C and D are equal to zero.

Each external force and moment can be separated into its x-, y-, and z-components. Fy

is the y-component of FG, Fz is the z-component of the turbulent force, and the moment

applied by turbulence is given as Mx about the x-axis. Assuming the core barrel moves in

the yz plane, the translational motion of the core barrel along the x-axis is restricted, and

the core barrel cannot rotate about the y-axis. Additionally, the radial keys constrain the

core barrel such that it cannot rotate about the z-axis. As a result, no virtual work can be

done by the x-component of FG, nor can the y or z-components of MG perform any virtual

work on the system. These components are given by Fx, My, and Mz, and they still appear

in the equations for the forces and moments acting on the core barrel, but they will not

appear in any of the generalized force terms because they perform no virtual work.

The contact forces FC and FD oppose the motion of the core barrel. Since the core

barrel is assumed to remain in the yz plane, it cannot move along the x-axis, and so the x-

component of each contact force will be zero. The y- and z-components of FC are represented

by fy1 and fz1, while the y- and z-components of FD are given as fy2 and fz2. The contact

forces oppose the motion of the core barrel, so the virtual work they perform on the system

will be negative. This is reflected in the equations for their y- and z-components, which are

expressed as acting in the negative y- and z-directions. The external forces acting on the

system and their components are shown in Equations 2-26 to 2-28. Similarly, the external

moments applied to the system are expressed in Equations 2-29 and 2-30.

FG = Fxî+ Fy ĵ + Fzk̂ (2-26)

FC = −fy1ĵ − fz1k̂ (2-27)

FD = −fy2ĵ − fz2k̂ (2-28)

MG = Mxî+My ĵ +Mzk̂ (2-29)

MC = MD = 0 (2-30)

The turbulent forces are assumed to act on the core barrel’s center of gravity G, while

the contact forces act on the contact points at the radial keys C and D. The position vectors
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associated with these application points are expressed in Equations 2-31 to 2-35

rG = yĵ + zk̂ (2-31)

ϕG = θî (2-32)

rC =
(
−w

2
+ y + hθ

)
ĵ +

(
−h+ z − w

2
θ
)
k̂ (2-33)

rD =
(w
2
+ y + hθ

)
ĵ +

(
−h+ z +

w

2
θ
)
k̂ (2-34)

ϕC = ϕD = 0 (2-35)

where w is the diameter of the core barrel and h is the distance from the core barrel’s bottom

face to its center of mass. These position vectors represent the location of each point with

respect to the core barrel’s center of mass at the equilibrium position. rG gives the current

location of the core barrel’s center of mass, while rC and rD give the locations of the radial

key contact points. ϕG is the angular displacement of the core barrel about its center of

mass. Since the core barrel doesn’t rotate about points C or D, the angular displacements

ϕC and ϕD about those points are zero.

By using the center of mass at the equilibrium position as a reference point, the position

vectors take the motion of the core barrel into account, becoming functions of the generalized

coordinates q1 = y, q2 = z, and q3 = θ. The vectors are used in Equation 2-25 to find

the generalized forces Q1, Q2, and Q3 acting on the system. The expanded forms of the

generalized forces are shown in Equations 2-36 to 2-38. The values of FG, FC , FD, rG, rC ,

and rD are substituted into these equations and simplified.

Q1 = FG.
∂rG
∂y

+ FC .
∂rC
∂y

+ FD.
∂rD
∂y

= Fy − fy1− fy2 (2-36)

Q2 = FG.
∂rG
∂z

+ FC .
∂rC
∂z

+ FD.
∂rD
∂z

= Fz − fz1− fz2 (2-37)

Q3 = FG.
∂rG
∂θ

+ FC .
∂rC
∂θ

+ FD.
∂rD
∂θ

+M.
∂ϕG

∂θ

= Mx − h (fy1 + fy2) +
w

2
(fz1 − fz2)− hθ (fz1 + fz2)−

w

2
θ (fy1 − fy2)

(2-38)

The expression for Q3 is linearized by assuming that the generalized force terms multiplied

by θ ≪ 1 are negligible. The linearized generalized force expression for Q3 is as follows:

Q3 = Mx − h (fy1 + fy2) +
w

2
(fz1 − fz2) (2-39)
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The kinetic energy of the system is computed as a function of both time and the gener-

alized coordinates using Equation 2-40. The potential energy of the system is expressed in

a similar manner through Equation 2-41. In these equations, IGxx is the core barrel’s second

moment of inertia along the x-axis at the center of mass.

T =
1

2
m

(
ẏ2 + ż2

)
+

1

2
IGxx θ̇

2 (2-40)

U = mgz +
1

2
k1

(
∆y2A +∆y2B

)
+

1

2
k0

(
∆z2A +∆z2B

)
(2-41)

∆yA, ∆zA, ∆yB, and ∆zB are the deflections of the core barrel’s upper supports along the

y- and z-axes. These values are found using the geometry of the core barrel and the slight

perturbations of its center of mass, as shown in Equations 2-42 to 2-45.

∆yA = y +
w

2
(1− cos θ)− (H − h) sin θ (2-42)

∆yB = y − w

2
(1− cos θ)− (H − h) sin θ (2-43)

∆zA = z − w

2
sin θ − (H − h) (1− cos θ) (2-44)

∆zB = z +
w

2
sin θ − (H − h) (1− cos θ) (2-45)

For the equations above, w is the diameter of the core barrel, H is the height of the core

barrel, and h is the distance from the core barrel’s bottom face to its center of mass. Points

A and B represent the locations on the core barrel where the upper supports are attached, in-

cluding both the hold-down springs and the horizontal supporting structures. k0 is the spring

coefficient of the hold-down springs, k1 is the spring constant for the horizontal supports,

and c is the damping coefficient of the horizontal supports.

The resulting values for the system’s kinetic and potential energy are used to find the

Lagrangian, which is then substituted into Equation 2-24. One equation is found for each

generalized coordinate, and the system of equations is linearized using the small angle ap-

proximation. The linearized equations of motion describing the core barrel’s dynamics using

Lagrange’s method for y, z, and θ are

mÿ + 2cẏ − 2c(H − h)θ̇ + 2k1y − 2k1(H − h)θ = −fy1 − fy2 + Fy (2-46)

mz̈ + 2k0z = −mg − fz1 − fz2 + Fz (2-47)
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IGxx θ̈ − 2c(H − h)ẏ + 2c (H − h)2 θ̇ − 2k1(H − h)y

+ 2

[
k0

(w
2

)2

+ k1 (H − h)2
]
θ − 2k0(H − h)zθ

= −h (fy1 + fy2)−
w

2
(−fz1 + fz2)

− w

2
(fy1 − fy2) θ − h (fz1 + fz2) θ +Mz (2-48)

2.2.1.2 Newtonian Approach

Newton’s second law describes the dynamics of the core barrel using the body’s acceler-

ation, inertia, and the net forces and moments acting upon it. Equation 2-49 describes the

acceleration of the core barrel ÿ along the y-axis in terms of the net force acting on the core

barrel in that direction. Similarly, Equation 2-50 defines the z-axis acceleration z̈ of the core

barrel using the net force acting along the z-axis. Equation 2-51 provides the angular accel-

eration θ̈ about the x-axis in terms of the net moment about the x-axis. In these equations,

vAy and vBy are the translational velocities of the core barrel’s upper support points in the

y-direction.∑
Fy = − (k1∆yA + cvAy)− (k1∆yB + cvBy)− fy1 − fy2 + Fy = mÿ (2-49)∑
Fz = −k0∆zA − k0∆zB − fz1 − fz2 −mg + Fz = mz̈ (2-50)∑
Mx = (rA × FA + rB × FB + rC × FC + rD × FD) î+Mx = IGxx θ̈ (2-51)

The moments are expressed as cross products between the forces acting on the core barrel

and the position vectors indicating their locations of applications. FA and FB are the forces

applied to the core barrel by its upper supports, which are located at rA and rB with respect

to the center of mass. FC and FD are the contact forces applied to the radial keys at rC

and rD. Equation 2-52 expands the net moment equation by substituting the vectors and

evaluating the cross products.
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∑
Mx = IGxx θ̈ = Mx +

(
−w

2
sin θ + (H − h) cos θ

)
(k1∆yA + cvAy)

+
(w
2
cos θ + (H − h) sin θ

)
k0∆zA +

(w
2
sin θ + (H − h) cos θ

)
(k1∆yB + cvBy)

−
(w
2
cos θ − (H − h) sin θ

)
k0∆zB +

(w
2
cos θ − h sin θ

)
fz1

−
(w
2
sin θ + h cos θ

)
fy1 −

(w
2
cos θ + h sin θ

)
fz2 −

(
−w

2
sin θ + h cos θ

)
fy2 (2-52)

The horizontal velocities of points A and B can be computed using Equations 2-53 and 2-

54. These expressions can be substituted into Equations 2-49 through 2-52 to expand the

equations of motion.

vAy = ẏ +
w

2
θ̇ sin θ − (H − h)θ̇ cos θ (2-53)

vBy = ẏ − w

2
θ̇ sin θ − (H − h)θ̇ cos θ (2-54)

Once fully expanded, the equations of motion found using Newton’s second law are

linearized using the small angle approximation to produce the system’s final simplified linear

system of equations. The linearized equations of motion describing the core barrel’s dynamics

using Newton’s second law for y, z, and θ are expressed below.

mÿ + 2cẏ − 2c(H − h)θ̇ + 2k1y − 2k1(H − h)θ = −fy1 − fy2 + Fy (2-55)

mz̈ + 2k0z = −mg − fz1 − fz2 + Fz (2-56)

IGxx θ̈ − 2c(H − h)ẏ + 2c (H − h)2 θ̇ − 2k1(H − h)y

+ 2

[
k0

(w
2

)2

+ k1 (H − h)2
]
θ − 2k0(H − h)zθ

= −h (fy1 + fy2)−
w

2
(−fz1 + fz2)

− w

2
(fy1 − fy2) θ − h (fz1 + fz2) θ +Mx (2-57)
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2.2.1.3 Equations of Motion

The same equations of motion for the core barrel’s dynamics are found using Lagrange’s

method and Newton’s second law. Therefore, both approaches are equally valid for deriving

the system of equations that model the motion of the core barrel for the given assumptions.

Despite attempts at linearizing the equations of motion via the small angle approximation,

nonlinear terms remain within the equation describing the rotational motion of the system.

The nonlinear terms are made negligible by assuming that the products of θ with z, fy1, fy2,

fz1, and fz2 are small. Such an assumption eliminates the zθ, (fy1 − fy2) θ, and (fz1 + fz2) θ

terms from the system of equations, fully linearizing the equations of motion. This allows

the system’s dynamics to be represented using a linear state space representation (SSR).

The fully-linearized equations of motion representing the core barrel’s spring-mass-damper

system are shown below:

mÿ + 2cẏ − 2c(H − h)θ̇ + 2k1y − 2k1(H − h)θ = −fy1 − fy2 + Fy (2-58)

mz̈ + 2k0z = −mg − fz1 − fz2 + Fz (2-59)

IGxx θ̈ − 2c(H − h)ẏ + 2c (H − h)2 θ̇ − 2k1(H − h)y

+ 2

[
k0

(w
2

)2

+ k1 (H − h)2
]
θ

= −h (fy1 + fy2)−
w

2
(−fz1 + fz2) +Mx (2-60)

2.2.2 Continuous-Time State Space Representation

The equations of motion are written in matrix form as

Mr̈ + C̄ṙ +Kr = B̄1u1 + B̄2u2 (2-61)
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The position vector r, contact force input vector u1, and turbulent force input vector u2 for

the core barrel are

r =


y

z

θ

 , u1 =


Fy

Fz

Mx

 , u2 =


fy1

fy2

fz1

fz2

 (2-62)

The mass matrix M is a collection of mass and inertia terms from the equations of motion,

while the stiffness terms are brought into the stiffness matrix K. The input matrix B̄2

represents each equation’s dependence upon the elements of the model’s contact force vector

u2, and B̄1 represents the dependencies upon the turbulent forcing vector u1. The elements

of these matrices are as follows:

M =


m 0 0

0 m 0

0 0 IGxx

 , K =


2k1 0 −2k1(H − h)

0 2k0 0

−2k1(H − h) 0 2k1(H − h)2 + 2k0
(
w
2

)2
 (2-63)

B̄1 =


1 0 0

0 1 0

0 0 1

 , B̄2 =


−1 −1 0 0

0 0 −1 −1

−h −h w
2

−w
2

 (2-64)

The damping matrix C̄ is modeled using proportional damping, which assumes the system’s

matrix of damping coefficients is a sum of scalings of the mass and stiffness matrices.

C̄ = 3.6M + 0.001K (2-65)

The matrices from the equations of motion are used to create a state-space representation.

The general form of a linear state-space representation is

ẋ = Ax+Bu (2-66)

y = Cx+Du (2-67)

The dynamics matrix A indicates the dependencies of each state’s derivative upon the other

states. The input matrix B is the influence of each input term upon each state. The output
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matrix C represents the system’s outputs as functions of the states. There is an input-output

matrix D, but if the outputs only depend on the states, then D will be populated with zeros.

The state vector x represents the system’s states, while the inputs are contained in the

input vector u and the outputs in the output vector y. The state vector includes two sub-

vectors: x1 and x2. In the case of a spring-mass-damper system, x1 is the position vector

r and x2 is the velocity vector ṙ. The input vector u and output vector y are also each

composed of 2 sub-vectors. The input vector’s sub-vectors are the force vectors u1 and u2

described in Equation 2-62.

The output vector has 2 sub-vectors of responses: y1 represents the system’s response

measured by the 4 ex-core neutron sensors, and y2 contains the y- and z-components of

each contact point’s velocity. y2 is included in the output vector because the contact forces

applied at the radial keys are dependent on the velocities of the contact points. y2 is used

as an input for the contact model, which then generates the contact force input u2 for the

vibration model. This links the contact model with the vibration model to form a feedback

loop. The state, input, and output vectors are listed in terms of their sub-vectors:

x =

x1

x2

 =

r
ṙ

 , u =

u1

u2

 , y =

y1
y2

 (2-68)

Because the input and output vectors each contain two sub-vectors, the input and output

matrices are each split into two sub-matrices. The equations are then rewritten as

ẋ = Ax+B1u1 +B2u2 (2-69)

y1 = C1x (2-70)

y2 = C2x (2-71)

The matrices are

A =

 0 I

−M−1K −M−1C̄

 , B =
[
B1 B2

]

C =

C1

C2

 , D =
[
0
] (2-72)
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and

B1 =

 0

M−1B̄1

 , B2 =

 0

M−1B̄2



C1 =


αy 0 −αθ 0 0 0

αy 0 αθ 0 0 0

−αy 0 αθ 0 0 0

−αy 0 −αθ 0 0 0

 , C2 =


0 0 0 1 0 h

0 0 0 1 0 h

0 0 0 0 1 −w
2

0 0 0 0 1 w
2


(2-73)

where αy and αθ are calibration coefficients for the ex-core neutron sensors. The system’s

outputs are normalized by dividing the output matrices by the square root of the system

norm. The norm is computed as the trace of CPC ′, where the controllability gramian P

is found by solving the system’s Lyapunov equation in MATLAB. The normalized output

matrix Cnorm is then substituted in place of C in the system’s model, resulting in a normalized

output vector ynorm. The norm-normalized output matrix and normalized output vector are

computed using

norm = trace (CPC ′) (2-74)

Cnorm =
1√
norm

C (2-75)

ynorm = Cnormx (2-76)

2.2.3 Discrete-Time State Space Representation

Discrete-time simulations tend to be less computationally expensive than continuous-

time simulations due to the lack of interpolation for model inputs and the use of simpler

approximations between time points. Therefore, the system’s state-space representation is

converted from the continuous-time domain to the discrete-time domain. This is achieved

through discretization, where the system’s response is evaluated over a series of uniform time

steps. Assuming a sampling period of h, a discrete time vector is formed for the simulation,

and the value of x(t) is approximated at the (k+1)th time point using its value at the kth time

point. The discretized time vector and state approximation are displayed in Equation 2-77.
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t = 0, h, 2h, ..., hk, h(k + 1), ...

x(hk + h) = x(hk)eAh +

∫ hk+h

τ=hk

Bu(τ)eA(hk+h−τ)dτ
(2-77)

For a sufficiently small sampling period, the value of an input is assumed to remain

constant between time steps. This approximation is known as a zero-order hold, and it

is typically valid if the sampling frequency is 10 to 20 times greater than the system’s

fastest natural frequency. The validity of this assumption can be confirmed by extracting

the eigenvalues of the state-space representation’s dynamics matrix, which are equal to the

natural frequencies of the system, and comparing the maximum eigenvalue to the sampling

frequency.

Applying a zero-order hold to the input u(τ) over the time step h from tk to tk+1 sets

its value equal to a constant uk = u(hk), which exits the integral of Equation 2-77. The

value of the state vector at the kth time point is denoted as xk instead of x(hk) to match

this notation. Similarly, the state vector at the (k+1)th time point is written as xk+1. Also,

the integral is simplified by letting s = τ − hk. The rewritten and simplified equations are

shown in Equation 2-78.

xk+1 = xke
Ah +Buk

∫ hk+h

τ=hk

eA(hk+h−τ)dτ

= xke
Ah +Buk

∫ h

s=0

eA(h−s)dτ

= xke
Ah +Buke

Ah

∫ h

s=0

e−Asdτ

(2-78)

The newly-simplified equation is rewritten in matrix form to create a discrete state-space

representation with a discrete dynamics matrix F and a discrete input matrix G through

Equation 2-79.

F = eAh

G = B

∫ h

s=0

eA(h−s)

= A−1
(
eAh − I

)
B

xk+1 = Fxk +Guk

(2-79)
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Alternatively, the system’s continuous-time state-space representation can be discretized

for a given sample period using MATLAB’s c2d command. This uses the methods listed

above to change the dynamics and input matrices of the SSR from A and B to F and G

without manually discretizing the system of equations. Discretization changes the system

of differential equations describing ẋ into an approximately equivalent system of difference

equations describing xk+1.

The continuous-time output vector y(t) is discretized such that y(hk) = yk to match the

notation of xk and uk. The output equation then becomes

yk = Cxk

The output matrix is unaltered by the discretization process because both the continuous-

time and discrete-time output equations express the values of the output vector at a given

point in time as a function of the state vector at that same time.

The input and output matrices of the system’s continuous-time state-space representa-

tion contain sub-matrices, as expressed in Equations 2-72 and 2-73. The output matrix is

unaltered by discretization, so its submatrices remain unchanged. However, the process of

discretization changes the continuous-time input matrix B into the discrete input matrix G

according to Equation 2-79. Therefore, the discrete input matrix has submatrices G1 and

G2 following the same structure as B:

G =
[
G1 G2

]
G1 = A−1

(
eAh − I

)
B1

G2 = A−1
(
eAh − I

)
B2

The discretized system of equations is written in terms of the separated inputs and outputs:

xk+1 = Fxk +G1u1,k +G2u2,k

y1,k = C1xk

y2,k = C2xk

(2-80)
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2.3 Turbulence Model

The load applied by the coolant’s turbulent flow is represented by the components of the

equivalent force and moment applied at the core barrel’s center of mass. This load is the

driving force exciting the core barrel system, and its components are modeled as scalings of

averaged Gaussian white noise to reflect the random and chaotic nature of turbulence. The

components of the turbulent load approximated through this model are collected within the

input force vector u1 and used as an input to the core barrel system’s vibrational model.

u1 ∼ N (0, σ) (2-81)

2.4 Contact Model

The contact model approximates the forces acting on the core barrel’s points of contact.

These contact forces depend on the velocities of the contact points y2, and they change

as the core barrel’s radial keys degrade. Therefore, the degradation on the radial keys is

approximated by analyzing how the contact forces change over time, which is reflected in

the response of the core barrel. The y- and z-components of the contact forces at each radial

key are collected in the contact force vector u2.

The contact force was initially assumed to be a linearly viscous force, which is a friction

force proportional to the contact point’s velocity, and each radial key was represented by a

spring and a viscous damper in parallel. This model assumed the friction force acting on the

radial key was a linearly viscous force proportional to the contact point’s velocity and acting

in the opposite direction. This commonly occurs when an object moves through a viscous

fluid.

The radial keys were assumed to have the same spring rates and damping coefficients as

the horizontal supports. However, this linearly-viscous contact force model did not capture

the nonlinear contact mechanics inherent to the radial key, such as the constant Coulomb

friction that dominates the contact force at higher contact speeds. The contact force is best
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described by a function that transitions from linearly-viscous damping to constant Coulomb

friction near some characteristic velocity vc. This is accomplished using a hyperbolic tangent

function of the velocities of the contact points. As a result, a hyperbolic tangent contact

force model is used in this report instead of the original linearly-viscous model.

2.4.1 Viscous Damping and Coulomb Friction Contact Models

Each radial key was initially modeled as a spring and a viscous damper attached to the

point of contact in parallel. Viscous damping was assumed because most non-conservative

internal forces within spring-mass-damper systems are approximated as viscous dampers.

Additionally, the radial keys are submerged in the reactor’s coolant, which could introduce

viscous friction at the radial keys when they move through the water. The viscous damping

contact force served as an early test for the vibration model to ensure that it was work-

ing properly. Its application was simpler than a nonlinear contact model because it was

compatible with MATLAB’s linear solver tool lsim. The lsim solver required the vibration

model’s dynamics and the contact model’s mechanics to be combined into a single SSR. This

recombination conflated changes in the vibration model with changes in the contact model,

re-introducing confusion between their effects on the core barrel’s overall behavior.

As the contact point velocity approaches infinity, the observed contact force approaches

a constant value. This is consistent with a Coulomb force model, where the friction force

opposing the object’s motion is independent of velocity. However, the Coulomb force model

contradicts the core barrel’s aforementioned viscous behavior at low contact point veloci-

ties. This discrepancy in behavior indicates that the viscous and Coulomb models could

be combined to form a more comprehensive contact model, such as the hyperbolic tangent

model.

2.4.2 Hyperbolic Tangent Contact Model

When the contact point’s velocity is low, the contact force acts like a viscous damping

force. At high velocities, the contact force behaves more like a constant Coulomb friction

force. These two different behaviors are combined into a single model by approximating the
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contact force as a function of the hyperbolic tangent of the contact point’s velocity. As the

velocity of the contact point approaches infinity in the positive or negative direction, the

contact force resisting the core barrel’s motion asymptotically approaches a constant value.

This represents Coulomb friction, which is constant with respect to velocity. In contrast, the

contact force is almost linearly related to velocity at lower velocities. This represents viscous

damping, where the friction force resisting the motion of the contact point is proportional to

its velocity. The hyperbolic tangent model transitions between viscous and Coulomb friction

near some characteristic velocity vc.

This contact model includes two unknown parameters, α and β. The parameter α rep-

resents a scaling of the Coulomb friction’s magnitude, while β defines the characteristic

velocity vc = 1/β where the model transitions between friction forces. These two parameters

are used to define the equivalent damping coefficient γ = αβ for velocities below vc. The

hyperbolic tangent contact model for the core barrel system is

u2 = α tanh (βy2) (2-82)
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3.0 Synthetic Data Generation

Synthetic data is generated for the core barrel model established in Chapter 3. This

dataset should approximate the behavior of an actual core barrel, functioning as the “mea-

surement” for each contact parameter estimation method. The best-performing estimation

method should generate a response that reliably approximates the behavior of the synthetic

dataset’s outputs.

Most synthetic data generation methods rely on integrating the core barrel’s state space

equations of motion. MATLAB’s lsim simulation command can reliably integrate the state

space equations of a linear system in the continuous-time domain, but this solver is incom-

patible with nonlinear systems. Instead, an iterative discrete-time approach is recommended

for nonlinear systems such as the core barrel.

Discrete-time solvers are generally faster than continuous-time solvers because numerical

integration in the discrete-time domain is approximated as an iterative sum over finite time

steps rather than an integral over a period of time. These methods require discretizing the

continuous-time system, transforming it from the continuous-time domain to the discrete-

time domain. The discretization process must account for all dynamics in the continuous-

time system, including the nonlinear feedback mechanics introduced by the contact force

model.

Alternatively, some algorithms integrate a system of equations by locally approximating

the continuous-time system as a polynomial and iteratively solving the system at discrete

points in time through a Taylor series approximation. These continuous-time solvers are

typically slower than their discrete-time counterparts, but they do not require the discretiza-

tion of the system’s model. This is especially useful in systems with feedback mechanics not

included in the state-space representation. Continuous-time solvers include Euler’s method

and Runge-Kutta methods. A fourth-order Runge-Kutta method is applied to the core barrel

system’s continuous-time model for synthetic data generation.
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3.1 Discrete-Time State Space

An iterative solver approach is necessary to accommodate the core barrel model’s non-

linear contact force. The discrete-time iterative method for solving a system of equations is

faster and less computationally-expensive than the continuous-time integration methods.

One discrete-time method involves discretizing the state space matrices through a zero-

order hold. This assumption asserts that the system’s continuous-time input u(t) remains

constant for the duration of each time step. For example, if a system’s input u at time

tk = hk is known to be uk, the value of that input some time period τ < h after tk could be

approximated using a zero-order hold as follows:

u(hk + τ) ≈ u(hk) = uk (3-1)

The zero-order hold assumption simplifies the system’s discretization process by setting the

input equal to a constant value over the course of each time step, thereby allowing it to be

factored out of integrals.

The continuous-time state space model’s solution for the state x(t) at time t = hk + h

using the state and input from time t = hk is expressed as

x(hk + h) = x(hk)eAh +

∫ hk+h

τ=hk

Bu(τ)eA(hk+h−τ)dτ (3-2)

where the values of the state space matrices A and B are constant.

Using the zero-order hold assumption, the input u(τ) remains constant over the solution’s

integral from τ = hk to τ = hk + h. The input is factored out of the integral expression

alongside the system’s input matrix B.∫ hk+h

τ=hk

Bu(τ)eA(hk+h−τ)dτ ≈ Buk

∫ hk+h

τ=hk

eA(hk+h−τ)dτ (3-3)

The integral is then combined with B to form the discrete-time state space representation’s

input matrix G:

G ≈ B

∫ hk+h

τ=hk

eA(hk+h−τ)dτ (3-4)

The zero-order hold approximation thereby simplifies the system of equations.
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The discretization of a continuous-time state space model through a zero-order hold

is achieved in MATLAB using the c2d function. This function’s required inputs are the

continuous-time state space representation of the system and the sample period for dis-

cretization.

3.1.1 Structure

The response of the discretized state space representation is iteratively computed by

solving for the value of the state vector at the next time step using the current time step.

The discrete-time state space model takes the form shown below:

xk+1 = Fxk +G1u1,k +G2u2,k (3-5)

y1,k = C1xk (3-6)

y2,k = C2xk (3-7)

The system’s input, output, and state vectors at each time point are stored in matrices

that compile the vectors for all of the time points. For example, the state vector x evaluated

at the Nth time point is stored as the (N − 1)th column of the state matrix X. Similarly,

the output vector matrices Y1 and Y2 contain the output vectors at each time point, and the

input vector matrices U1 and U2 are populated with the input vectors. These matrices are

initialized prior to any iterative solving of the system. These matrices are initially populated

with zeros, with the exception of the first state vector of the state matrix, which is the

system’s initial condition.

Within each iteration of the system, the inputs and outputs are solved for the current

time step using the values of the current state vector. The inputs are then used alongside

the current state to evaluate the system’s state vector at the next time step. This process is

iterated over every time step in the system’s time span until the matrices are fully populated.

The resulting matrices describe the system’s inputs, outputs, and states at the discrete time

points listed in the time vector. In theory, this discrete-time simulation reflects the response

of the core barrel system to a turbulent excitation force while undergoing a nonlinear contact

force.
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The discrete-time simulation is used to generate synthetic data for the core barrel system.

This requires populating the dynamic matrices, providing an initial condition for the state

vector x, setting the magnitude of the turbulent load’s white noise function u1, and specifying

the contact force parameters. The simulation creates a set of matrices representing the

input, state, and output vectors at every discrete time point. The matrix associated with

the measured output vector y2 is used as the system’s synthetic response data.

The MATLAB code for the discrete-time simulation associated with a single replication

of a single parameter combination is shown in Appendix B. The variable ‘rep id’ identifies

the index of the replication, while ‘alpha’ and ‘beta’ are the values of α and β for the specified

parameter combination. The two functions turb() and contact(Y2) generate the turbulent

and contact forces. They are defined before the for-loop, as are the discretized state space

matrices F , G1, G2, C1, and C2.

3.1.2 Reasons to Avoid Using Discrete State Space

As previously mentioned, the discrete-time solver method is faster and less computa-

tionally expensive than continuous-time methods. However, the discrete-time computation

shown above cannot fully replicate the system’s continuous-time response due to flaws in

the state space discretization process. The feedback mechanism relating the velocity out-

put y2 and the contact force input u2 is neglected in the discretization process because the

nonlinear contact force is applied outside of the state space model’s dynamics matrix. This

is shown by examining the impact of discretization on the system if the contact force were

a linear-viscous damper. If the contact force is approximated as a linear function u2 = γy2

where γ ≈ αβ, the continuous-time state space representation becomes:

ẋ = Ax+B1u1 +B2u2

= Ax+B1u1 +B2αβy2

(3-8)

y1 = C1x (3-9)

y2 = C2x (3-10)
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Substituting for y2, the state space representation is simplified to the following expression:

ẋ = Ax+B1u1 +B2αβC2x

= (A+B2αβC2)x+B1u1

(3-11)

y1 = C1x (3-12)

The term (A+B2αβC2) is collected into a single equivalent dynamics matrix Ac. This yields

a simplified state space representation as follows:

ẋ = Acx+B1u1 (3-13)

y1 = C1x (3-14)

The input matrix and newly-formed equivalent dynamics matrix are discretized, yielding the

discrete-time state space model shown below:

xk+1 = Fcxk +Gc1u1,k (3-15)

y1,k = C1xk (3-16)

However, if the continuous-time state space representation shown in Equation 3-10 were

discretized before substituting u2 = αβC2x, then the discrete-time state space model would

instead be of the form shown in Equation 3-7. The discretization process uses a zero-order

hold method, which assumes the inputs u1 and u2 have constant values within each time

step. However, the contact force’s dependence on the system’s output may contradict the

zero-order hold assumption. If y2 varies between discrete time points, then u2 must also

vary between the time points. One way to confirm the validity of the assumption is to

compare two state space models: one where the contact force function is substituted before

discretization, and one where the function is substituted after discretization. If the two

expressions are equivalent, then the zero-order hold assumption is valid for the contact force

u2.
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The discrete-time state space representations expressed in Equations 3-16 and 3-7 are

only equivalent if the expressions for xk+1 are equivalent. The expression from Equation 3-7

is expanded below:

xk+1 = Fxk +G1u1,k +G2u2,k

= Fxk +G1u1,k +G2αβC2xk

= (F + αβG2C2)xk +G1uk+1

(3-17)

Substituting the expressions for Ac, F , and G into the expressions for Fc and Gc in Equa-

tion 3-16 yields

Fc = eAch = eA+αβB2C2

= eAeαβB2C2 = FeαβB2C2

(3-18)

and

Gc1 = A−1
c

(
eAch − I

)
B1

= (A+ αβB2C2)
−1 (eAheαβB2C2h − I

)
B1

= (A+ αβB2C2)
−1 (FeαβB2C2h − I

)
B1

(3-19)

The zero-order hold approximation cannot reasonably approximate the contact force

unless the two following statements are true:

1. exp (A+ αβB2C2) == exp (A) + A−1 (exp (Ah)− I)B2C2

2. (A+ αβB2C2)
−1 (exp (Ah+ αβB2C2h)− I) == A−1 (exp (Ah)− I)

The requirements are both met under any of the following conditions:

• α = 0

• β = 0

• B2 = 0

• C2 = 0
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These conditions can only be true if the contact force u2 has no impact on the core barrel’s

motion, or if the contact force is always zero. However, the condition monitoring technique

for the core barrel’s radial keys requires that the contact force has a measurable impact on

the core barrel’s response. Therefore, the zero-order hold approximation for the contact force

is not valid for condition monitoring applications.

The analysis so far has focused on a contact force approximated as a linear viscous

damper. As previously mentioned, the hyperbolic tangent contact force behaves like a viscous

damper at low velocities and approaches a constant value as the velocity increases past some

characteristic velocity. This nonlinear behavior prevents the substitution of the contact force

into the state space representation. The contact force must remain outside of the state space

representation as a separate input function. When discretizing the state space representation,

a zero-order hold must be applied to this input. However, the viscous behavior of the contact

force at low velocities can only be replicated by a zero-order hold approximation if the contact

force’s impact on the core barrel’s motion is negligible. This violates the assumption that

the contact mechanics can be extracted from the ex-core sensor readings, undermining the

entire purpose of this condition monitoring application. As a result, the discrete-time method

cannot accommodate the hyperbolic tangent contact force used in this condition monitoring

problem. A continuous-time solver must be used instead.

3.2 Continuous-Time State Space

As shown in the previous chapter, the core barrel system’s continuous-time response

takes the form:

x(t) = x0 exp (At) +

∫ t

τ=0

B1u1(τ)dτ +

∫ t

τ=0

B2u2(τ)dτ (3-20)

The computation of the true solution to this system requires integrating the inputs over the

time domain. Alternatively, the integral’s computation can be simplified by applying a Taylor

series approximation method to the system’s continuous-time state space representation.

These approaches locally approximate the system’s state as a polynomial function, allowing
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for the computation of the solution at some small time step away from the system’s initial

condition. This process is then repeated for the newly-computed state value, allowing for

iterative approximation of the state. The Taylor series approximation is only valid for local

approximations, though. Therefore, the error in the approximated state is proportional to

the approximation’s time step.

The continuous-time solvers based on the Taylor series include the Newton-Euler method

and Runge-Kutta methods. As the order of the polynomial used in the approximation

method increases, the expected global error of the approximation decreases. For instance,

the Newton-Euler method approximates the next state using a linear function, while the

second-order Runge-Kutta method uses a quadratic function to approximate the next state.

A standard fourth-order Runge-Kutta approximation (RK-4) of the solution x to a gen-

eral first-order differential equation f (tk, xk) for a constant time-step width h is described

as follows:

ẋ(t) = f (t, x) (3-21)

x(t0) = x0 (3-22)

tk+1 = tk + h (3-23)

xk+1 = xk +
1

6
(K1 + 2K2 + 2K3 +K4)h

≈ x (tk+1)

(3-24)

where ẋ is the time derivative of x and x0 is an initial condition. The values of K1, K2, K3,

and K4 are estimates for ẋ evaluated at the beginning, middle, and end of a single time step.

K1 = f (tk, xk) (3-25)

K2 = f

(
tk +

h

2
, xk + h

K1

2

)
(3-26)

K3 = f

(
tk +

h

2
, xk + h

K2

2

)
(3-27)

K4 = f (tk + h, xk + hK3) (3-28)

The RK-4 method uses the weighted average of these slopes to approximate the system’s

response at the end of the time step. The error of the RK-4 approximation decreases as the

width of the time step approaches zero.
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In the case of the core barrel model’s continuous-time state space representation, the

differential equation for the RK-4 method is ẋ = Ax + B1u1 + B2u2. Substituting this

equation for f (t, x) in Equation 3-24 yields

ẋ (t) = Ax (t) +B1u1 (t) +B2u2 (t, x) (3-29)

xk+1 ≈ xk +
1

6
(K1 + 2K2 + 2K3 +K4)h+B1u1 (tk) (3-30)

where the K values are

K1 = Axk +B2u2 (tk, xk) (3-31)

K2 = A

(
xk + h

K1

2

)
+B2u2

(
tk +

h

2
, xk + h

K1

2

)
(3-32)

K3 = A

(
xk + h

K2

2

)
+B2u2

(
tk +

h

2
, xk + h

K2

2

)
(3-33)

K4 = A (x+ hK3) +B2u2 (tk + h, xk + hK3) (3-34)

and the contact force u2 for a provided time t and state x is given by

u2 (t, x) = α tanh (βy2)

= α tanh (βC2x)
(3-35)

The MATLAB function ode45 uses the RK-4 approximation method to solve a system of

differential equations over a specified time interval for a given initial condition.
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3.2.1 Limitations Regarding White Noise

The RK-4 approximation method operates by computing the weighted average of the

response’s slope over a small time step. Complications may arise if the slope varies wildly

over the time step, such as if the system is excited by a signal with a frequency higher

than the step’s associated frequency. Theoretical white noise inputs are particularly trou-

blesome because the input randomly changes at every instant. The uppermost frequency

of a theoretical white noise signal always exceeds the solver’s time step frequency due to

the signal’s infinite frequency content. Therefore the turbulent white noise input u1 to the

continuous-time state space model varies randomly within the RK-4 solver’s time step. The

RK-4 approximation must account for this variation halfway through the time step, poten-

tially leading to significant variation amongst K1, K2, K3, and K4. This variation introduces

uncertainty to the weighted average slope over the time step, decreasing the accuracy of the

RK-4 approximation.

In the MATLAB simulation, the turbulent input force vector must be defined over the

response’s time interval prior to applying the continuous-time solver. Otherwise the solver

will attempt to generate a random white noise input at the beginning, middle, and end of

each time step. Repeatedly calling the random number generator in this manner drastically

increases the solver’s computation time. Pre-defining the turbulent input force vector over

the time interval is more computationally efficient.

The values of the system’s turbulent input vector u1(t) are only known for the time

points in its definition. The value of the input between these time steps must be approxi-

mated through methods such as interpolation. Solving the continuous-time equation would

also require integrating the interpolated values over a time interval, as shown through the

term
∫ t

τ=0
Bu(τ)dτ in Equation 3-20. Interpolating an input between its known values and

integrating the result over a time interval is computationally expensive, especially if the

calculation must be repeated over numerous time points.

The interpolation and integration issues are circumvented by assuming a zero-order hold

approximation between data points. This assumption sets the input to a constant value

between sampled data, removing the need for interpolation and allowing the integral to be
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expressed as a sum of time steps scaled by the input. The integral is then expressed as∫ t

τ=0

u1(τ)dτ ≈
n∑

i=0

hu1(ti) (3-36)

for t = hn.

3.2.2 Band-Limited White Noise

Truly random white noise has a uniform energy distribution over an infinite bandwidth.

This results in a signal with infinite energy, which is purely theoretical. For more realistic

approximations, the bandwidth of white noise is limited to the given application’s frequency

range of interest. The maximum frequency of the bandwidth effectively acts as a sampling

frequency, defining a sample period over which the random signal is assumed to remain

constant. As a result, the band-limited white noise has random values at every time point

in a discrete time vector defined by the bandwidth’s upper frequency limit. A zero-order

hold approximation is applied between the time points, thereby maintaining the input force’s

status as a continuous-time signal.

The core barrel’s response to turbulence is simulated using a continuous-time method

with a band-limited white noise input for turbulence. The value of the input for each

time interval in the band-limited signal is randomly selected from a Gaussian distribution

with a specified mean and standard deviation. Normally, a continuous-time solver cannot

accommodate a random input because the value changes with every time step. However, by

setting the input to have a constant value within discrete time steps, the random input no

longer experiences sudden changes between time points in the continuous-time domain. As a

result, the input is compatible with solvers that use the continuous-time state space model,

such as the Fourth-Order Runge-Kutta Approximation.

The code for the discrete-time simulation is rewritten to consider the input, output, and

state vectors of the state space representation as functions. These functions are defined prior

to the for-loop in the code, except for the functions describing the turbulent input force and

the core barrel’s equations of motion.
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The turbulent force input function is defined within the simulation’s replication for-loop

so that every replication of a simulation is unique. The function for the equations of motion

is introduced within the for-loops that iterate over the values of α and β. This passes each

value of α and β into the equation of motion for every parameter combination.

3.3 Values of Model Variables

The values of the simulation’s variables are chosen to reflect existing PWRs. These

variables depend on the PWR design in question, leading to significant variations between

reactors. However, the model in the simulation represents a generalized PWR, and it is not

intended to reflect the response of a specific reactor.

3.3.1 Model Constants

Different PWR designs have different dimensions, so no single value for the height, width,

and diameter is representative of every PWR. However, the simulation’s core barrel model

should still reflect realistic values. Few nuclear plants publish information on the geometric

dimensions of their PWRs, complicating the generalization of the reactor model. Thankfully,

the WWER-440 and WWER-1000 PWR designs are available to the general public. The

dimensions of a WWER-1000 reactor are substituted into the simulation model to ensure

that the core barrel model is representative of a realistic reactor. The computations used

in the simulation assume the core barrel is a 10.51 m tall cylindrical shell with an inner

diameter of 3.67 m and a thickness of 65 mm. Other values may be substituted into the

model to reflect different PWR designs.
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Information regarding the material composition of reactor components is far more readily

available than information regarding geometric dimensions. Most American PWRs use core

barrels and radial keys are constructed from AISI Type-304 stainless steel [1]. This alloy

has a density of approximately 8000 kg/m3. Assuming the core barrel model is a uniform

stainless steel cylindrical shell with the dimensions defined above, the mass of the core barrel

is approximately 61 metric tons.

3.3.2 Expected Measurement Noise

The ex-core neutron measurements include some noise due to imperfections in the sensors,

the inherent randomness of radiation, and the turbulent coolant flow’s random excitation of

the core barrel. The excitation from turbulence is classified as process noise, an inherently

random input to the system. The noise from the sensors and the radiation are considered

measurement noise because they only offset the measured response from the system’s true

response. Unless an output feedback mechanism is present, measurement noise does not

influence the system’s states.

Due to the presence of measurement noise, only the theoretical values for the ex-core

sensor measurements are proportional to the displacement of the core barrel. The measure-

ment noise introduced by the radiation causes the measured currents to deviate from their

theoretical values, obscuring the displacement of the core barrel. One way to accommodate

for this noise is to create an ensemble of current measurements over multiple trials. Be-

cause the measurement noise takes the form of a Gaussian probability distribution centered

on the system’s theoretical output, the average value of the measurements approaches the

theoretical value as the sample size increases.

However, this ensemble average does not account for the randomness introduced by

the system’s process noise. The randomness in the system’s inputs prevents the ensemble-

averaged response from converging to a single theoretical function that only depends on

time.

Another method for analyzing the measured results is to partially remove the measure-

ment noise from the simulation using a Kalman filter. Kalman filters compare the measured
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output to the system model’s expected output at each discrete time step. The filter’s Kalman

gain multiplies the difference between these two outputs, and the result is used to correct the

model’s state estimate at the current time step through an additional feedback mechanism.

The corrected state estimate is then used to approximate the state at the next time point,

and the process repeats.

The value of the Kalman gain reflects the user’s trust in the measurements with respect

to their trust in the model. A low Kalman gain largely ignores the model’s predictions in

favor of the measurements when correcting the state estimate. This is beneficial when the

model’s representation of the actual system is questionable. In contrast, a high Kalman

gain weighs the model’s predicted outputs more heavily than the measurements, indicating

a greater trust in the system’s model when updating the estimates. The additional weight

helps combat the measurement noise’s impact on the state estimate. The Kalman filter

approach is discussed in detail in a later chapter.

3.3.3 Contact Parameters

The potential values of the contact force parameters α and β are restricted to ranges

defined by the physical constraints of the core barrel model. As previously mentioned, the

parameter α is the maximum magnitude of the contact force, and β is the inverse of the

characteristic velocity vc at which the contact force model transitions from linearly-viscous

behavior to a constant force. The contact force model is shown in Figure 8.

The value of the characteristic velocity should realistically lie somewhere in the region

between zero and the reactor’s maximum contact point velocity. If the characteristic velocity

were above the maximum contact point velocity, the contact force would never reach its

maximum value, and the contact force model could be approximated using a linear-viscous

contact model with a damping coefficient of γ = αβ. The maximum velocity at the contact

point is found by simulating the core barrel’s response while setting the contact force to

zero. For the core barrel system described in previous chapters, the maximum velocity at

the contact point is approximately 0.86 m/s. Therefore, the hyperbolic tangent contact

model only applies when the characteristic velocity is below 0.86 m/s. A characteristic
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velocity of 10 m/s is included within the grid of tested values for the simulation, to illustrate

the effects of a viscous contact force model on the simulation versus the hyperbolic tangent

contact force model.

The lower bounds for the characteristic velocity determines not only the velocity at which

the contact force settles, but also how quickly the contact force can switch from negative to

positive. The contact force could theoretically change from a value of −α to α over a velocity

change as small as 2vc, or vice-versa. This term 2vc defines the velocity resolution at which

the contact force potentially changes sign. If the contact point velocity can’t be accurately

determined within this interval, the contact force may suddenly change by 2α. For the core

barrel, the minimum characteristic velocity is assumed to be 0.00100 m/s. These bounds of

0.001 00m/s to 10.0m/s for the characteristic velocity vc are then converted into bounds of

0.100 s/m to 1000 s/m for the contact force parameter β = 1
vc
.

The effective viscous damping coefficient γ provides a decent approximation for the con-

tact force model’s damping at lower velocities. If the characteristic velocity were above

0.86 m/s, the viscous contact force could be combined with the core barrel system’s viscous

damping matrix, thereby including the contact force within the state-space model’s dynam-

ics. For a value of γ below 50 N s/m, the contact force’s contribution to the system’s overall

damping is negligible. If the contact force has a negligible impact on the core barrel system’s

response, the contact force parameters cannot be extracted from the ex-core measurements.

If the value of γ is above 50000 N s/m, though, two of the core barrel system’s modes become

critically-damped. This is undesirable because a critically-damped mode causes one of the

system’s natural frequencies to increase far above the sensor’s possible sampling frequencies,

leading to aliasing issues. Therefore the value of γ should be kept between 50 and 50000

N s/m, or within a more conservative range of 100N s/m to 10 000N s/m. In reality, the hy-

perbolic tangent contact force model prevents the contact force associated with the viscous

contact model from increasing above α. This decreases the actual contact force’s impact on

the core barrel system’s dynamics. However, the bounds of 100N s/m to 10 000N s/m for

γ = αβ should provide an effective range for extracting the contact force parameters from

the core barrel’s response.
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Figure 8: Relationship between the contact force and the velocity at the point of contact

for α = 100 N and β = 10.0 s/m. The characteristic velocity vc = 0.100 m/s represents the

contact force’s transition from a nearly linear relationship to a constant value.
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The range of values for the maximum contact force α are approximated by combining

the limits imposed upon β and γ. This is achieved using the relationship

α =
γ

β
= γvc (3-37)

where vc is the characteristic velocity. Potential values for α are found from 10N to 100 000N.

The parameter combinations are isolated to a logarithmically-scaled 9-by-9 grid ranging

from 10N to 100 000N on α and from 0.100 s/m to 1000 s/m on β. The combinations

with effective viscous damping coefficients outside the bounds of 100N s/m to 10 000N s/m

are excluded from the grid. This removes 47 parameter combinations from consideration,

reducing the grid from a set of 81 parameter combinations to the set of 34 shown in Figure 9.

Four synthetic datasets are generated using unique combinations of contact force param-

eters. The contact parameters for each dataset are estimated using both the grid search

method and the Kalman filter approach. These estimates are then compared to determine

which method, if any, provides a better approximation of the synthetic dataset’s contact

force parameters. The true parameter combinations associated with each of the synthetic

datasets are listed in Table 3.

3.4 System Response

Synthetic data is generated by applying the fourth-order Runge-Kutta solver to the

system’s continuous-time state space model for a single combination of α and β. The dataset

is structured such that it is compatible with both the Kalman filter and grid search methods

for identifying the system’s contact parameters. This is achieved by saving the state and

output vector values for the dataset over the simulation’s time interval, the state space

matrices and their dimensions, the Runge-Kutta solver’s discrete time step length, and the

variance matrices associated with the noise sources.

The time-domain response of the system is found by running the simulation described

above over the interval specified by the time vector. The system has four outputs in the

output vector y1, each corresponding to the measurement of an ex-core radiation sensor:
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Figure 9: Grid of parameter combinations for consideration

Table 3: Contact force parameters associated with each of the four synthetic datasets

Dataset True α (N) True β (s/m)

Case 1 100 10.0

Case 2 31.6 316

Case 3 490 70.0

Case 4 660 110
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• The first element of y1 is I1, the current measured at Sensor 1.

• The second element of y1 is I2, the current measured at Sensor 2.

• The third element of y1 is I3, the current measured at Sensor 3.

• The fourth element of y1 is I4, the current measured at Sensor 4.

The measurements at the ex-core sensors will include noise due to the inherent random-

ness of the neutron radiation. This noise v(t) is modeled by adding Gaussian noise to the

simulated currents.

v(t) ∼ N
(
0, σ2

)
(3-38)

The system’s outputs are the difference between each ex-core sensor’s output current at a

given time and the steady-state current constantly emitted from the sensor, I0; that is, we

subtract the mean response of the sensors. The system’s sensor outputs are linear combina-

tions of the linear displacement y and angular displacement θ,

y1 =


I1 − I0

I2 − I0

I3 − I0

I4 − I0

 =


αyy − αθθ + v(t)

αyy + αθθ + v(t)

−αyy + αθθ + v(t)

−αyy − αθθ + v(t)

 (3-39)

where αy and αθ are scaling coefficients.

If the measurement noise is negligible, the output associated with Sensor 1 will be the

exact opposite of the output associated with Sensor 3. The same relationship is observed

between the outputs associated with Sensors 2 and 4.

y1 = αyy − αθθ = −y3 (3-40)

y2 = αyy + αθθ = −y4 (3-41)

Therefore, the current change in one sensor is the exact opposite of the current change in

the other sensor on the same vertical level, assuming measurement noise is negligible.

I1 − I0 = − (I3 − I0) (3-42)

I2 − I0 = − (I4 − I0) (3-43)
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By re-arranging these relationships, the steady-state current is computed by averaging the

sensor current readings of the upper sensors, or by averaging the current outputs from the

lower sensors.

I0 =
1
2
⟨I1 + I3⟩ = 1

2
⟨I2 + I4⟩ (3-44)

The simulation shown in Figure 10 assumes contact force parameter values of α = 100

and β = 10, as well as a zero initial condition of x0.

x0 =



0

0

0

0

0

0


(3-45)

The plots show that the currents at Sensors 1 and 2 are nearly identical for the provided

conditions. Therefore, only the response of Sensor 1 will be visualized for the remainder of

the report, as the responses at the other sensors will exhibit similar behaviors.
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Figure 10: Response of the ex-core neutron noise sensors to the core barrel’s vibrations
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4.0 Machine Learning

The usefulness of the simulation is checked by attempting to extract the values of the

contact force parameters from the synthetic data. The contact parameters are assumed to

be the only parameters that change over the course of the system’s degradation. Therefore,

if the parameters cannot be extracted from the simulation’s outputs, the simulation won’t

be useful for estimating the degradation of the system.

The condition of the core barrel system is assumed to remain constant for the duration of

each simulation because degradation occurs on a much longer timescale than the simulation.

For example, assume a new reactor with a life cycle of 50 years is installed at a nuclear

power plant and ex-core measurements are recorded once a month. If properly installed and

maintained, the internals shouldn’t significantly degrade until the reactor draws near the

end of its estimated life cycle. Therefore, the dynamics of the reactor shouldn’t significantly

change over the course of a single month, barring some sudden change in operating conditions.

However, the condition of the reactor might change over the course of several months, and

it will definitely change by the end of its life cycle.

4.1 Grid Search Method

The characteristics of the non-linear contact force are an indication of radial-key health.

The contact parameters are assumed to be the only variables that change over the course of

the system’s degradation. Degradation occurs over a long time-scale, on the order of many

months or years. Data is collected over far shorter time-scales, such as hours or minutes,

during which the contact force parameters are considered constant. Each contact parameter

is assumed to have a vector of discrete values over some range. The two vectors form a

grid containing every possible combination of contact parameters. The system’s response

is simulated over a predetermined time interval for every contact parameter combination in

this grid, and the responses are collected into a synthetic dataset.
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An additional response is generated by the continuous-time simulation for a known com-

bination of machine learning parameters and a random seed for random number generation.

This represents the true measured response of the system. However, the machine learning

parameter values for the measured output of the actual system will be unknown. In such a

case, the parameters must be approximated from the measured time-domain response of the

system. This can be achieved through a grid search method, where the simulated responses

from the synthetic dataset are compared to the measured values. Ideally, the grid search

method should locate the combination of contact parameters whose average response best

approximates the behavior of the measured data.

A 9-by-9 grid of parameter combinations is considered for testing the grid search algo-

rithm. This grid includes 9 values uniformly-spaced on a base-10 logarithmic scale for each

parameter. The resulting grid of 81 unique parameter combinations is then reduced accord-

ing to the constraints imposed by the core barrel system. As previously mentioned in the

“Data Generation” chapter, the grid’s parameter values are selected such that α is within

the range of 10N to 100 000N, β falls in the range of 0.1 s/m to 1000 s/m, and γ = αβ is

within a range of 100N s/m to 10 000N s/m. The grid of 81 logarithmically-scaled parameter

combinations is reduced to a grid of 34 parameter combinations by limiting the combinations

according to these ranges.

4.2 Ensemble Average

The turbulent force input introduces randomness to every simulation of the system.

Even if a measured signal has the same contact parameters as one of the simulations in the

grid, the randomness of the input force will cause the signal to deviate from the simulation.

Therefore, the measurement signal’s contact parameters cannot be found using a single grid

of simulations. Instead, the signal is compared to an ensemble of simulations for each contact

parameter combination in the grid.

Each ensemble is composed of multiple replications of a simulation for a given set of

contact parameters. Each replication within the ensemble has a different seed for random
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number generation, producing a different random input force and a different response. The

average response of the ensemble’s replications represents the average response of the sim-

ulation to the random input. All simulation replications for every parameter combination

are stored in a single synthetic dataset. The ensemble average and standard deviation are

computed for each parameter combination. The reactor’s actual ex-core measurements are

compared to these ensemble averages to determine the parameter combination that best

describes the reactor’s operating conditions.

The simulations of the core barrel assume its motion begins at some state defined by

the initial condition. This assumption sets the initial variance amongst replications to zero,

and the randomness introduced by the turbulent force causes the variation to increase. As

a result, the initial response of the core barrel is highly transient, and the average time-

domain response varies significantly over time. The transient response of the core barrel is

non-stationary, complicating the analysis process.

Once the system’s transient response decays, the average response among replications

remains nearly constant. This indicates that the core barrel system’s non-transient response

to turbulence is a stationary random process, and that the ensemble average is equivalent

to the time-averaged mean of the response.

The turbulent force exciting the core barrel is assumed to be a band-limited white noise

signal, which is stationary. Realistically, the turbulent force can only be stationary if the

operating conditions of the reactor and the coolant system remain near-constant during the

measurement period. Under such an assumption, the ex-core sensor measurement taken dur-

ing the associated time period should be a stationary record. These conditions are generally

true under the reactor’s normal operating conditions.

The reactor’s ex-core radiation flux measurements are recorded once a month over the

course of an 18 month operation cycle. Until the outage at the end of the cycle, the reactor

continuously operates at full power, with only slight random variations in the operating

conditions. Assuming the transients of the reactor structure settle within a month, each ex-

core measurement should reflect the reactor’s steady-state response. Therefore, the transient

response of each core barrel simulation is ignored, and only the steady-state responses are

stored within the synthetic dataset.
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4.3 Performance Metrics

In this paper, the grid search method’s performance is defined as its ability to correctly

identify the contact parameters associated with a synthetic dataset. This dataset is generated

by simulating the model’s output for a specific combination of contact parameters. The grid

search method is said to perform well if it selects a set of contact parameters that generate

behavior similar to the true contact parameters.

The performance of an individual ensemble is evaluated by examining how closely it

matches the measured behavior. There are numerous ways to compare the ensemble and

the measured signal. This report uses three different performance metrics for comparing

how well each ensemble matches the measured data. Each performance metric compares the

signals through a different method. As such, the best-performing ensemble according to one

metric may not perform well according to another metric. However, the ensemble that best

matches the measured signal should perform relatively well on each metric.

4.3.1 Minimum Error

The first attempted approach locates the combination of contact parameters that pro-

duced the minimum root mean squared error compared to the true measurement. The overall

error of a simulation is represented by the root mean squared error,

RMSE =

√√√√ 1

N

N∑
i=1

(x̄sim,i − xtrue,i)
2 (4-1)

where N is the number of time-series measurements for the simulation, x̄sim,i is the average

simulated response at the ith time point, and xtrue,i is the measured response at the ith time

point.

The grid search method finds the measurement signal’s associated parameter combination

by comparing the measurement signal to the ensemble-averaged synthetic data for every

combination of contact parameters. It computes the RMSE between the measurement and

each ensemble average, compares the RMSE values found for each parameter combination,
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and returns the parameter combination with the lowest RMSE. This parameter combination

should theoretically describe the contact mechanics of the measured reactor.

However, the RMSE calculation does not account for variations within the ensemble. If

the standard deviation of the replications at a time point is high, any single replication at

that time is likely to deviate from the average. A response that falls within two standard

deviations of the average is said to be within the distribution’s 95% confidence interval. If

the measured response is within a parameter combination’s confidence interval at all points

in time, the behavior of the true signal matches the general behavior associated with that

combination of contact parameters. A parameter combination may have a high RMSE value

even if the measured signal falls within the confidence interval at all points in time, provided

the standard deviation amongst replications is high.

One method to compensate for the variance involves normalizing the error at each time

point by the standard deviation amongst the replications. This penalizes parameter combina-

tions with low variance more heavily than combinations with high variance. The penalization

is necessary because the grid search method is meant to locate the parameter combination

where the true measurement signal falls within the confidence interval of the average re-

sponse. If the true signal does not fall within the confidence interval at a specific time point,

the normalized error should increase substantially. The normalized error is expressed as

Errornorm =

∣∣∣∣x− µ

σ

∣∣∣∣ (4-2)

where µ is the average value of the distribution and σ is the standard deviation. Substituting

the normalized error into the equation for the root mean squared error yields

RMSEnorm =

√√√√ 1

N

N∑
i=1

(
x̄sim,i − xtrue,i

σsim,i

)2

(4-3)

where σsim,i is the standard deviation of the replications at the ith point in time.

The normalized error applies a greater penalty to a parameter combination when the

true signal falls outside of the response’s confidence interval at a given time point. If the

replications all exhibit similar responses at a given time point, the confidence interval will

be small at this time. If there are large variations between the replications at another time
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point, the confidence interval will be large at that time. Consider a true signal that deviates

from the average response at both of these time points by the same amount. The error at

each time point is the same, penalizing the parameter combination by the same amount

at both time points. However, the deviation from the average response may fall within the

wider confidence interval and outside of the more narrow confidence interval. In this case, the

behavior of the true signal matches the behavior of the replications within the wide confidence

interval, and the true signal’s behavior massively deviates from the replications at the more

narrow confidence interval. Therefore, the deviation should be more heavily penalized at the

narrow confidence interval than at the wide confidence interval. Normalizing the error by

the standard deviation accounts for such differences in the confidence interval, making the

normalized error a better measure for the true signal’s deviation from the average response

amongst replications.

This newly-introduced bias towards parameter combinations with larger standard de-

viations may over-correct the grid search. The algorithm may begin to identify parameter

combinations associated with larger standard deviations as better approximations of the mea-

sured data than combinations whose average values closely match the true measurements.

In a worst-case scenario, the grid search might always select the parameter combination

with the largest standard deviation as the true parameter value regardless of the measured

signal’s behavior. The RMSE must be weighted such that both the ensemble average and

the standard deviation amongst replications are considered when performing the grid search.

4.3.2 Maximum Likelihood

Likelihood functions are another way to select the ensemble average associated with

a measured signal. Likelihood expresses the probability that a sample originates from a

given probability distribution function. In this case, the distribution under analysis is the

ensemble of simulations, and the sample in question is the ex-core measurement. A high

likelihood indicates a strong possibility that the measured signal originated from the ensem-

ble. Therefore, the likelihood should be maximized for the ensemble associated with the

measured signal’s unknown contact parameters. To account for time-dependent variations
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in the ensemble and the response, the likelihood is computed at every point in time for the

simulation.

The likelihood that the true response is generated from the ensemble of replications is

computed at each time point for a given parameter combination. This is achieved by ap-

proximating the ensemble’s probability distribution at the provided time point as a Gaussian

distribution with the ensemble’s average and standard deviation at that time. A logarithm

is then applied to the likelihood, and the resulting log-normalized likelihoods at every time

point are averaged together over the entire steady-state time span of the response. The

logarithms are applied to avoid floating point errors. The process is repeated for every

combination of contact parameters in the grid of simulations. The parameter combination

with the maximum time-averaged log-normalized likelihood should theoretically be the set

of contact parameters most likely to match the true response’s behavior.

4.3.3 Maximum Cross-Correlation

Theoretically, the cross-correlation between the true measurement and the ensemble aver-

age associated with a parameter combination should be maximized for the true combination

of contact parameters. The cross-correlation time-shifts one signal with respect to the other,

maintaining the time order of each signal’s points. This accounts for the time dependence

of both the true measurement and the ensemble average, which is otherwise ignored by the

maximum likelihood method.

One cross-correlation method requires convolving each of the ensemble’s replications with

the measured signal for a single parameter combination. The convolution is averaged over the

measurement’s time period, creating a performance metric representing the time-averaged

cross-correlation between the replication and the measurement. This process is repeated for

every replication in the ensemble associated with the previously specified parameter combi-

nation. The cross-correlation is averaged over the entire ensemble of replications, creating a

single performance metric representing the agreement between the parameter combination’s

ensemble of replications and the measured signal. This is repeated for every parameter

combination in the grid before comparing the performance metrics. The measured signal’s
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cross-correlation with the ensemble average should be relatively high for the parameter com-

bination used during data generation.

Another cross-correlation method requires computing the ensemble average of the repli-

cations for a single parameter combination first, then convolving the ensemble average with

the true signal. The convolution is then averaged over time to produce the average cross-

correlation associated with that parameter combination. This process is repeated for every

parameter combination, and the one with the highest average cross-correlation is identified

as the parameter combination that best approximates the measured signal.

Both methods produced identical performance metric values when tested on a given

parameter combination, so neither cross-correlation method is more or less accurate than the

other. The second cross-correlation method is far faster and consumes less system memory

than the first. Therefore, the second cross-correlation method is recommended for locating

the contact parameters.
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5.0 Kalman Filter

Kalman filters excel at estimating the state of a system from its noisy measurements.

A Kalman filter is a type of optimal state estimator that compares a measured output to a

model’s prediction at a given point in time. The difference between the system’s predicted

output and the observation is used to update the system’s state estimate, improving the

accuracy of the estimation process. The difference between the measured output and the

model’s prediction is known as the ‘residual’ or ‘measurement innovation’ of the Kalman

filter, and this feedback term is weighted by the optimal Kalman gain K.

An a priori state estimate x̂− considers evidence from all time points prior to the one

being evaluated. This estimate is used to predict the output ŷ− at the current time point.

The predictor equation expresses the a priori state estimate and the predicted output at

time tk as follows:

x̂−
k = Fx̂+

k−1 (5-1)

ŷ−k = Cx̂−
k (5-2)

where x̂+
k−1 is the a posteriori state estimate at the previous time point tk−1. The a posteriori

state estimate x̂+ modifies the a priori estimate using an observation y made during the

associated time step. This computation is expressed in the corrector equation:

x̂+
k = x̂−

k +K
(
yk − ŷ−k

)
= x̂−

k +K
(
yk − Cx̂−

k

)
(5-3)

The predictor and corrector equations are combined to form the following expressions:

x̂+
k = x̂−

k +K
(
yk − Cx̂−

k

)
(5-4)

x̂−
k+1 = Fx̂+

k = Fx̂−
k + FK

(
yk − Cx̂−

k

)
(5-5)

The Leuenberger observer gain L = FK is substituted into the above expression to yield the

discrete-time state-space model for a Kalman-filtered system.

x̂−
k+1 = Fx̂−

k + L
(
yk − Cx̂−

k

)
ŷ−k = Cx̂−

k

(5-6)
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By grouping together the x̂−
k terms on the right-hand side of the above equation, the effective

dynamics matrix of the Kalman-filtered system is revealed to be F − LC.

x̂−
k+1 = (F − LC) x̂−

k + Lyk (5-7)

There are also prediction and correction equations for the variances of the state estimates.

The variance of the predicted state x̂−
k is expressed as Σ−

xx or Σ−
k , while the variance of the

predicted output ŷ−k is written as Σ−
yy. Similarly, the covariance of x̂−

k with respect to ŷ−k is

Σ−
xy, and the covariance of ŷ−k with respect to x̂−

k is Σ−
yx. Despite the lack of a subscript k,

the variance and covariance matrices of the state and output vectors are all dependent on

the time step tk.

The covariance matrix of some vector of random variables x1 with respect to another

vector of random variables x2 is expressed as the expected value of the first signal’s deviation

from its mean multiplied by the transpose of the second signal’s deviation from its mean.

The variance and covariance matrices for the Kalman filter’s input and output vectors are

expressed as expected values

Σ−
xx = E

{
(x−mx) (x−mx)

′} (5-8)

Σ−
xy = E

{
(x−mx) (y −my)

′} (5-9)

Σ−
yx = E

{
(y −my) (x−mx)

′} (5-10)

Σ−
yy = E

{
(y −my) (y −my)

′} (5-11)

where mx is the mean of the input vector x and my is the mean of the output vector y. The

expected values are simplified, yielding the following expressions:

Σ−
xx = Σ−

k (5-12)

Σ−
xy = Σ−

k C
′ (5-13)

Σ−
yx =

(
Σ−

xy

)′
= CΣ−

k (5-14)

Σ−
yy = CΣ−

k C
′ +R (5-15)

The covariance of ŷ−k with respect to x̂−
k is the transpose of the covariance of x̂−

k with respect

to ŷ−k . In this computation, the predicted state’s variance matrix Σ−
xx = Σ−

k is assumed to
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be symmetric such that Σ−
k
′
= Σ−

k . The predictor and corrector equations associated with

the state estimate error covariance matrix Σk are as follows:

Σ−
k = AΣ+

k−1A
′ +BQB′ (5-16)

Σ+
k = Σ−

k − Σ−
xy

(
Σyy−

)−1
Σ−

yx (5-17)

The Kalman gain Kk can be expressed in terms of the variance matrices instead of state-

space matrices. This collects some of the factors in the equation for Σ+
k , simplifying its

expression.

Kk = Σ−
xy

(
Σ−

yy

)−1
= Σ−

k C
′ (CΣ−

k C
′ +R

)−1
(5-18)

Σ+
k = (I −KkC) Σ−

k (5-19)

The core barrel system has both a process noise signal w acting as a source of exci-

tation and a measurement noise signal v obscuring the observed output. These are both

assumed to be independent white noise signals. The process noise is assumed to have a nor-

mal probability distribution described by the process noise covariance matrix Q, while the

measurement noise is assumed to follow a normal probability distribution associated with

some measurement noise covariance matrix R. Under these assumptions, both covariance

matrices are diagonal and populated with the variances of their associated signals. The size

of the process noise covariance matrix is equal to the number of process noise inputs acting

on the system. For the case of a system with three process noise components, the process

noise variance matrix takes the form shown below,

Q =


σ2
w1 0 0

0 σ2
w2 0

0 0 σ2
w3


where σ2

w1, σ
2
w2, and σ2

w3 are the variances of the three process noise components. Likewise,

the measurement noise covariance matrix’s dimensions are determined by the number of
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measured outputs. For a system with four measured outputs, the measurement noise variance

matrix is

R =


σ2
v1 0 0 0

0 σ2
v2 0 0

0 0 σ2
v3 0

0 0 0 σ2
v4


where σ2

v1, σ
2
v2, σ

2
v3, and σ2

v4 are the variances of the measurement noise components associ-

ated with the first, second, third, and fourth measured outputs.

The a posteriori state estimate is optimized by selecting the Kalman gain matrix K

according to the following expression:

K = Σ−C ′ (CΣ−C ′ +R
)−1

(5-20)

Where Σ− is the a priori state error variance matrix. If K satisfies the above expression, the

a posteriori state estimate error variance Σ+ is minimized. The a priori state error variance

matrix is computed through the discrete algebraic Ricatti equation (DARE), which stabilizes

the feedback gain matrix F − LC.

Σ− = FΣ−F ′ − FΣ−C ′ (CΣ−C ′ +R
)−1

CΣ−F ′ +GQG′ (5-21)

5.1 Unscented Kalman Filters

The above formulation of a Kalman filter assumes the system in question is linear. For a

more generalized expression, the system’s discrete-time state space equations are rewritten

as

x̂−
k = a

(
x̂+
k−1

)
+ b

(
x̂+
k−1

)
wk−1 (5-22)

ŷ−k = c
(
x̂−
k

)
+ vk (5-23)

where a, b, and c are functions relating the states, process noise inputs, and outputs at

various time points. The dynamics function a and input function b in Equation 5-22 relate
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the previous state and previous process noise input to the current state. The measurement

function c in Equation 5-23 defines the relationship between the state and the measured

output at a given time point.

The formulation of the discrete algebraic Ricatti equation expressed in Equation 5-21

is only valid for a linear system. If the system is nonlinear, it can only be solved using a

nonlinear method. The state space equations for a nonlinear system follow the generalized

format shown in Equations 5-22 and 5-23.

An unscented Kalman filter (UKF) estimates the distribution of the output ya by prop-

agating the distribution of the input xa through the nonlinear function f .

xa =


x̂+
k−1

wk−1

vk

 , ya =

x̂−
k

ŷ−k

 (5-24)

ya = f (xa) =

 a
(
x̂+
k−1

)
+ b

(
x̂+
k−1

)
wk−1

c
(
a
(
x̂+
k−1

)
+ b

(
x̂+
k−1

)
wk−1

)
+ vk

 (5-25)

In the case of the core barrel simulation, the nonlinear function is approximated by applying

a fourth-order Runge-Kutta solver to the system’s continuous-time state-space model.

A minimal set of sample points are selected from the input’s distribution such that

their sample mean x̄a and sample variance Pxx match the distribution. The points are

symmetrically distributed about the set’s mean value, often including a single point located

at the mean. This set is known as the distribution’s sigma points xΣ, and they fully recreate

the statistics of the Gaussian input.

xa ∼ N (x̄a, Pxx) (5-26)

xΣ ∼ N (x̄a, Pxx) (5-27)

x̄a =


x̂+
k−1

0

0

 (5-28)

Pxx =


Σ+

k−1 0 0

0 Q 0

0 0 R

 (5-29)
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The sigma points are transformed through the nonlinear function, creating a new distribution

of points yΣ. The mean and variance of the transformed sigma points are then used to create

a new Gaussian probability distribution for the outputs. The actual outputs ya may not

strictly follow a Gaussian distribution, but if the transformed sigma points are assumed to

follow a Gaussian distribution, then the statistics of the transformed sigma points should

approximate the mean ȳa and variance Pyy of the nonlinear function’s distribution of outputs

for the provided inputs.

yΣ = f (xΣ) (5-30)

yΣ ∼ N (ȳa, Pyy) (5-31)

ya ∼ N (ȳa, Pyy) (5-32)

ȳa =

x̂−
k

ŷ−k

 (5-33)

Pyy =

Σ−
k Σ−

xy

Σ−
yx Σ−

yy

 (5-34)

The predicted state x̂−
k and output ŷ−k at the next time step are extracted from the average

values of the transformed sigma points. Similarly, the variances and covariances of the

predicted state and output are located within the transformed distribution’s variance matrix

Pyy.

As previously established, Σ−
k is the variance of the predicted state estimate x̂−

k at the

next time step. Similarly, Σ−
yy is the variance of the next time step’s predicted output ŷ−k .

Σ−
xy is the covariance of x̂

−
k with respect to ŷ−k , and Σ−

yx is the covariance of ŷ
−
k with respect to

x̂−
k . As a result, Σ−

yx is the transpose of Σ−
xy. The corrector equation updates the predictions

found in ȳa using the variance matrices extracted from Pyy.

Kk = Σ−
xy

(
Σ−

yy

)−1
(5-35)

x̂+
k = x̂−

k +Kk

(
yk − ŷ−k

)
(5-36)

Σ+
k = Σ−

k − Σ−
xy

(
Σ−

yy

)−1
Σ−

yx = Σ−
k −KkΣ

−
yx (5-37)
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5.2 Disturbed Parameter Estimation

A Kalman filter can estimate the value of a model parameter if that parameter is assumed

to slightly fluctuate about its true value. If a model parameter α fluctuates over time due

to a noise term ϵ with a variance of Qϵ, the parameter’s value at the next time point αk is

approximated by Equation 5-38, while the process noise term is defined in Equation 5-39.

αk = αk−1 + ϵ1,k−1 ≥ 0 (5-38)

ϵ1 ∼ N (0, Qϵ,1) (5-39)

The true value of α is assumed to either be positive or zero. Therefore, Equation 5-38 takes

the absolute value of αk to prevent the estimate of α from decreasing below zero.

The true value of a fluctuating parameter in a Kalman filter is estimated by treating the

parameter as an additional state and the fluctuation as a process noise input.

x =


x

ẋ

α

 , w =

u1

ϵ

 (5-40)

The terms x and u1 in the above equations are the core barrel position and turbulent force

vectors before introducing the disturbance ϵ1 to the model parameter α. In the case of the

core barrel model, these vectors have the following components:

x =


y

z

θ

 , u1 =


Fy

Fz

Mx

 (5-41)

A second contact force parameter β in the core barrel model is also disturbed by a noise

signal ϵ2 with a variance of Qϵ,2. The equation shown below for the next value of β is similar

to the equation for the next value of α.

βk = βk−1 + ϵ2,k−1 ≥ 0 (5-42)

ϵ2 ∼ N (0, Qϵ,2) (5-43)
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The state and process noise vectors for the core barrel system’s Kalman filter are expressed

as follows:

x =


x

ẋ

α

β

 , w =


u1

ϵ1

ϵ2

 (5-44)

Assuming the disturbance terms ϵ1 and ϵ2 are both white noise signals, the variance Q of

the new process noise vector is written as

Q =


Qf 0 0

0 Qϵ,1 0

0 0 Qϵ,2

 (5-45)

where Qf is the variance of the original process noise vector u1. The process noise vector is

represented as the distribution

w ∼ N (0, Q) (5-46)

For the core barrel disturbance problem’s state vector, the augmented input and output

vectors are rewritten according to Equations 5-47 and 5-48.

xa,k =


x̂+
k−1

wk−1

vk

 =



x̂+
k−1

α+
k−1

β+
k−1

u1,k−1

ϵ1,k−1

ϵ2,k−1

vk


(5-47)

ya,k =


x̂−
k

α−
k

β−
k

ŷ−k

 = f (xa,k) =


a
(
x̂+
k−1

)
+ b

(
x̂+
k−1

)
u1,k−1

α+
k−1 + ϵ1,k−1

β+
k−1 + ϵ2,k−1

c
(
x̂−
k

)
+ vk

 (5-48)
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The solutions to these systems of equations are approximated using a fourth-order Runge-

Kutta integration method.

A synthetic dataset describing the core barrel’s motion is generated for a known com-

bination of true contact parameters. This data is used as the Kalman filter’s measurement

dataset. Within the Kalman filter, the states associated with the contact parameters are

assumed to undergo their associated disturbances. In theory, the Kalman filter should grad-

ually adjust the values of these states over time until they match the contact parameters

of the measurement dataset. But in practice, the Kalman filter could adjust the values of

the contact parameter states until they produce an output roughly equivalent to that of the

measured dataset. If multiple combinations of contact parameters produce similar results,

the Kalman filter may trend towards whichever parameter combination is closest to the

provided initial condition.

5.3 Effects of Changing Model Parameters

The Kalman filter applied in the parameter disturbance problem should approximate

the contact parameters associated with the measured data. Therefore, applying the Kalman

filter to a synthetic dataset generated using a different combination of contact parameters

should result in different contact parameter estimates. The parameter estimates begin at an

assumed initial condition before approaching the values associated with the measured data.

The proximity of the initial conditions relative to the dataset’s true contact parameters

determines how quickly the estimates converge upon their final values. The estimates for an

initial guess of α and β near the true parameters should reach a solution more quickly than

estimates for an initial condition much further from the true values.

Several simulations are conducted to test these hypotheses. In one set of simulations,

the initial conditions are altered for a given synthetic dataset with contact parameters of

α = 1 and β = 1. In another group of simulations, synthetic data is generated for various

combinations of contact parameters. The contact parameters of each dataset are estimated

for an initial guess of α = 0 and β = 0.
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Table 4: Parameter estimates for various initial guesses α0 and β0 of the contact parameters.

The unscented Kalman filter is applied to a synthetic dataset generated using α = 100 N

and β = 10 s/m.

α0 β0 α̂ β̂

0 0 510 74

10 1 510 74

10 10 490 71

10 100 490 71

100 1 490 71

100 10 490 71

100 100 490 71

1000 1 490 71

1000 10 490 71

1000 100 490 71

5.3.1 Changing Initial Conditions

The Kalman filter requires some initial guess for the system’s states prior to state es-

timation. The value of this initial condition determines the speed at which the parameter

estimates approach their steady-state values. If the initial condition significantly deviates

from the synthetic dataset’s parameters, though, the Kalman filter may not replicate the

dataset’s contact parameters.

To test this hypothesis, a synthetic dataset describing the 2D motion of an arbitrary

spring-mass-damper system was generated for an assumed combination of true parameters.

The same spring-mass-damper model was used to create an unscented Kalman filter where

the contact parameters undergo some disturbance. This model was tested for various initial

conditions to determine their impact upon the simulation’s state estimates. The following

initial conditions for α and β were tested for a true parameter combination of α = 100 and

β = 10:
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For every tested combination of parameters, the contact parameter estimates approach

and then fluctuate about α ≈ 490 N and β ≈ 71 s/m. Therefore the contact parameter esti-

mates appear to be independent of the initial conditions, provided that the initial guesses for

the contact parameters are reasonably close to the true values. The contact parameter esti-

mates for an overestimated set of initial parameters are shown in Figure 11, while Figure 12

displays the estimates for an underestimated set of initial parameter values.

5.3.2 Changing True Parameters

Synthetic datasets were generated for multiple combinations of contact parameters in an

attempt to analyze how the Kalman filter state estimates change with respect to the true

parameter values. The tested parameter combinations are listed below:

The steady-state parameter estimates appear to be more dependent upon α than on β.

For synthetic datasets generated using lower values of α, such as α = 0 and α = 10, the

steady-state parameter estimates fluctuate around α̂ ≈ 490 and β̂ ≈ 71.

Datasets created with α = 100 generate parameter estimates that fluctuate about α̂ ≈

520 and β̂ ≈ 76

If α reaches a value of 1000, the estimated contact parameters vary about α̂ ≈ 1000

and β̂ ≈ 210. The value of β does not appear to approach a constant value within the

simulation’s 30s time span, indicating that its transients have not fully decayed..

The steady-state parameter estimates associated with a true parameter value of α = 0.1

all tend to fluctuate about α ≈ 1.0 Newtons and β ≈ 1.2 seconds per meter, despite having

different true values for β. The estimate associated with the parameter combination of α = 0

and β = 0 also exhibits this behavior, as well as the estimates for the parameter combination

of α = 1 and β = 0.1.

Some tested parameter combinations, including all combinations with a true value of

α = 10, deviate from this behavior. The estimates for α = 10 and β = 1 oscillate about

α ≈ 3.9 and β ≈ 3.6. The parameter combination of α = 10 and β = 10 yields estimates

oscillating about α ≈ 5.3 and β ≈ 4.5 instead. The estimates for the following parameter

combinations fluctuate about steady-state values of α ≈ 1.4 and β ≈ 1.7:
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Figure 11: Contact parameter estimates for α = 100 and β = 10, where the initial conditions

for the parameters are a factor of 10 above their true values
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Figure 12: Contact parameter estimates for α = 100 and β = 10, where the initial conditions

for the parameters are a factor of 10 below their true values
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Table 5: Parameter estimates created by applying the unscented Kalman filter to various

synthetic datasets These datasets are identified by their unique combinations of contact force

parameters. The estimates all assume an initial parameter guess of α0 = 0 and β0 = 0, with

a disturbance of σϵ1 = 10 for α and σϵ2 = 1 for β. These simulations are all performed for a

random number generation seed of 1, to ensure the variations between datasets are due to

their contact parameters and not due to random chance.

α β α̂ β̂ σα σβ

0 0 490 71 47 4.8

10 10 490 71 47 4.8

10 100 490 71 47 4.8

10 1000 490 71 47 4.8

100 10 510 75 50 5.1

100 100 520 76 52 5.3

100 1000 520 76 53 5.4

1000 10 780 140 99 8.5

1000 100 1000 210 150 35

1000 1000 1000 210 150 37
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• α = 1 and β = 1

• α = 1 and β = 10

• α = 10 and β = 0.1

For every tested combination of parameter values, the Kalman filter’s estimates could

not replicate both contact force parameters. The estimates associated with the combinations

of α = 1, β = 0.1 and α = 0.1, β = 1 each managed to closely approximate one parameter:

α for the former, and β for the latter.

5.4 State and Output Estimates

The unscented Kalman filter provides estimates for the core barrel system’s states, out-

puts, and contact parameters. The outputs are compared to the measurements of the re-

actor’s ex-core neutron radiation sensors. Unfortunately the internal states and contact

parameters for an actual core barrel system cannot be measured, preventing analysis of the

Kalman filter’s state and parameter estimates. This issue is remedied through the use of a

synthetic dataset for which the state and true parameter values are known. By training the

Kalman filter on such as dataset, the filter’s capabilities for approximating the contact force

model may be analyzed. For this specific example, a synthetic dataset is generated with true

contact force parameters of α = 100 N and β = 10.0 s/m.

The error for the Kalman filter method is quantified as the difference between the syn-

thetic dataset’s response and the Kalman filter’s corrected output. This error is used to

compute the root-mean-squared error of the Kalman filter’s approximated response. The

output vector ŷ1 is approximated by applying an unscented Kalman filter to the synthetic

dataset. The output estimates are plotted in Figure 13, and the errors of these estimates are

shown in Figure 14. Each estimated output in the vector ŷ1 has a root-mean-squared error

of 0.084 when compared to the synthetic dataset’s recorded true response y1, as shown in

Table 6.

The estimates of the core barrel system’s position states enjoy similar accuracy, as shown

by the position state estimates displayed in Figure 15 alongside the true position states. The
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Figure 13: The unscented Kalman filter’s estimates for the core barrel system’s ex-core

neutron noise outputs. The Kalman filter is trained on a synthetic dataset generated using

α = 100 N and β = 10.0 s/m.

87



Figure 14: Error of the unscented Kalman filter’s output estimates for a synthetic dataset

with α = 100 N and β == 10.0 s/m
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Table 6: Root-mean-squared error values for each output estimated by the unscented Kalman

filter with respect to the training dataset’s true outputs. The synthetic training dataset of

this Kalman filter is generated using α = 100 N and β = 10.0 s/m.

Output RMSE

Output 1 0.084

Output 2 0.084

Output 3 0.084

Output 4 0.084

errors for these estimates are shown in Figure 16. The root-mean-squared errors of the state

estimates ŷ, ẑ, and θ̂ with respect to their true values from the synthetic dataset are approx-

imately 2.50e − 6, 2.44e − 6, and 1.34e − 4 respectively. The error in the estimate for the

rotational displacement θ is significantly higher than the estimates for the horizontal dis-

placement y and vertical displacement z. This is likely because the rotational displacement

depends on both the horizontal and the vertical components of the contact force estimates.

The horizontal displacement y is directly related to the horizontal components of the contact

forces, but the vertical components of the forces only contribute to this displacement through

its dependencies on the other displacement terms. Similarly, the vertical displacement de-

pends on the vertical contact forces, but its dependence on the horizontal components is

limited to the term’s dependence on y and θ. In contrast, the rotational displacement is

directly related to the moments applied by all four contact force components. Therefore,

any error in the contact force estimates is magnified in the rotational displacement estimate

to a greater degree than in the other displacement estimates.

The system’s velocity state estimates and true velocity states are shown in Figure 17,

while the errors in the velocity state estimates are located in Figure 18. These state estimates

have root-mean-squared error values of 2.94× 10−6 for ˆ̇y, 2.86× 10−6 for ˆ̇z, and 1.24× 10−3

for ˆ̇θ. The velocity states have higher error values than the position state estimates because

numerical derivatives are inherently inaccurate. The core barrel system’s approximations

for the velocity states depend on numerical derivation through a Taylor series approxima-

89



Figure 15: The unscented Kalman filter’s estimates for the core barrel system’s position

states. The Kalman filter is trained on a synthetic dataset generated using α = 100 N and

β = 10.0 s/m.
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Figure 16: Errors in the unscented Kalman filter’s estimates for the core barrel system’s

position states. The Kalman filter is trained on a synthetic dataset generated using α = 100

N and β = 10.0 s/m.
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Table 7: Root-mean-squared error of each state estimated by the unscented Kalman filter

with respect to the training dataset’s true states. This Kalman filter is trained on a synthetic

dataset generated using α = 100 N and β = 10.0 s/m.

State RMSE

ŷ 2.50× 10−6

ẑ 2.44× 10−6

θ̂ 1.34× 10−4

ˆ̇y 2.94× 10−6

ˆ̇z 2.86× 10−6

ˆ̇θ 1.24× 10−3

tion. The Runge-Kutta algorithm assumes a fourth-order approximation of the Taylor series,

which neglects Taylor series terms higher than the fourth order. This is a fairly accurate

approximation for a numerical derivative, but the missing terms still introduce some error

into the process. This global error is proportional to h4, where h is the length of the numer-

ical solver’s time step. Provided that h is far below the system’s associated time constant,

the error should be relatively small, but it will still accumulate through numerical evalu-

ation of the system’s states at successive time points. Additionally, errors in the position

state estimates propagate through these numerical derivatives, generating increased error

in the velocity state estimates. This is especially true for the core barrel system’s angular

velocity estimate, since the rotational displacement estimate has greater error than the other

displacement estimates.

The root-mean-squared errors of the state estimates for this synthetic dataset are sum-

marized in Table 7.
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Figure 17: The unscented Kalman filter’s estimates for the core barrel system’s velocity

states. This Kalman filter’s training dataset uses a contact parameter combination of α = 100

N and β = 10.0 s/m.
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Figure 18: Errors in the unscented Kalman filter’s estimates for the core barrel system’s

velocity states. This Kalman filter’s training dataset uses a contact parameter combination

of α = 100 N and β = 10.0 s/m.
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6.0 Results and Discussion

The two methods for estimating the core barrel system’s contact force parameters are

tested on four synthetic datasets, each generated with its own combination of true contact

parameters. The performances of these estimation methods are then evaluated based upon

the contact parameter estimates for these datasets.

6.1 Overview of Methods

The grid search method and unscented Kalman filter method for contact parameter

estimation are outlined below.

6.1.1 Overview of Grid Search

The grid search method attempts to locate a combination of contact parameters on a

grid that best approximates the system’s response. This is achieved by generating multiple

simulations of the system for every parameter combination on the grid, taking the ensemble

average of those simulations, and evaluating the ensemble’s performance with respect to the

measured output.

A 9-by-9 grid of parameter combinations is considered for testing the grid search algo-

rithm. This grid includes 9 values uniformly-spaced on a base-10 logarithmic scale for each

parameter. The resulting grid of 81 unique parameter combinations is then reduced accord-

ing to the constraints imposed by the core barrel system. As previously mentioned in the

“Data Generation” chapter, the grid’s parameter values are selected such that α is within

the range of 10N to 100 000N, β falls in the range of 0.1 s/m to 1000 s/m, and γ = αβ is

within a range of 100N s/m to 10 000N s/m. The grid of 81 logarithmically-scaled parameter

combinations is reduced to a grid of 34 parameter combinations by limiting the combinations

according to these ranges.
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The performance of the grid search algorithm is found by computing all three performance

metrics discussed in Chapter 4 for each parameter combination in the grid, evaluated over

the entire ensemble of replications. These performance metrics are the root-mean-squared

error of the ensemble average with respect to the measured output, the likelihood that the

measured output came from the ensemble, and the cross-correlation between the ensemble

average and the output. The likelihood and cross-correlation should be maximized for a

parameter combination whose ensemble matches the measured output’s behavior, while the

root-mean-squared error should be minimized. Each simulation of the system’s response for a

given combination of contact force parameters is performed 20 times with randomized inputs

sampled from the same distribution. These simulations form the ensemble of replications for

that parameter combination, summarized by a mean and a variance.

The ensemble average for each parameter combination is compared to the measured out-

put of the system by computing the performance metrics. These metrics are then compiled

into a dataset representing the performance of every parameter combination on the grid.

The average value and standard deviation of each performance metric is computed over the

entire grid of combinations. Each performance metric p is then standardized by its mean p̄

and normalized by its standard deviation σp.

pnormal =
p− p̄

σp

(6-1)

The true combination of contact parameters associated with the measured data is ex-

pected to perform well on all three performance metrics. A simulation generated with the

true parameters should have a relatively low error with respect to the measured signal. The

cross-correlation between the simulation and the measurement should also be relatively high

in comparison to other simulations, and the likelihood that the synthetic data originated

from the ensemble associated with the true parameter combination should be greater than

the likelihoods associated with other parameter combinations. Therefore, all three perfor-

mance metrics should be considered together when evaluating the overall performance of a

parameter combination.

The parameter combinations whose ensembles perform better-than-average on all per-

formance metrics are extracted from the grid. A geometric mean is applied to the parameter
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estimates of this subset to approximate the synthetic dataset’s true parameter combination.

A geometric average is applied instead of an arithmetic mean because the contact force

parameters are spaced on a logarithmic scale.

6.1.2 Overveiw of Kalman Filtering

The unscented Kalman filter provides estimates for the core barrel system’s states, out-

puts, and contact parameters. The outputs are compared to the measurements of the re-

actor’s ex-core neutron radiation sensors. Unfortunately the internal states and contact

parameters for an actual core barrel system cannot be measured, preventing analysis of the

Kalman filter’s state and parameter estimates. This issue is remedied through the use of a

synthetic dataset for which the state and true parameter values are known. By training the

Kalman filter on such as dataset, the filter’s capabilities for approximating the contact force

model may be analyzed.

Our goal in implementing the unscented Kalman filter is to estimate the contact force

model’s parameters. Traditional performance metrics based upon the error between the

estimated response and the synthetic data’s response won’t indicate the Kalman filter’s

capability in estimating the contact parameters. Instead, the performance metric of interest

must account for the difference between the method’s approximations for the contact force

parameters and the true parameter values used when generating the synthetic data.

If the Kalman filter method approximates the contact force model, the estimates for α

and β should settle such that their time-averaged values are nearly constant. The disturbance

terms ϵ1 and ϵ2 prevent the approximations of α and β from reaching truly constant values.

Once the core barrel system’s transient response decays and the Kalman filter’s parameter

estimates leave their initial conditions, each parameter estimate should form a Gaussian

distribution about some time-averaged value. The standard deviation of this distribution

is determined by the magnitude of the disturbance. Ideally, the average contact parameter

estimates should be relatively close to the true values from the synthetic dataset.
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The contact parameter estimates must adjust from their assumed initial conditions to

the unscented Kalman filter’s estimated values. As a result, the parameter estimates during

the system’s transient period are far from the final estimated values.

6.2 Synthetic Dataset 1

A synthetic dataset is generated for a maximum contact force of α = 100 N and a β

value of 10.0 s/m, which is associated with a characteristic velocity of vc = 0.100 m/s and an

effective viscous damping coefficient of γ = 1000 N s/m for the contact force. The contact

force model described by these parameters increases the damping ratio of the core barrel

system’s most damped mode from ζ = 0.10 to ζ = 0.12. This 20% increase in the core

barrel’s highest-damped mode should generate a detectable change in the system’s outputs.

The synthetic dataset’s contact force parameters are approximated using the grid search and

Kalman filter methods. The results are analyzed and compared below.

6.2.1 Grid Search Results

Across the grid of parameter combinations, the performance of each combination is eval-

uated according to each metric with respect to synthetic dataset 1. The performances are

displayed in Figures 19 to 21.

The performances of each metric’s optimal parameter combinations, as well as the per-

formance of the dataset’s true combination of parameter values, are shown in Table 8. Only

7 of the grid’s 34 parameter combinations perform above-average on all metrics with respect

to the synthetic dataset, as shown in Table 9.

The average value of α for the extracted dataset is 4870 N with a standard deviation of

11800 N, and the average of β is 61.6 s/m with a standard deviation of 118 s/m. The standard

deviations for both parameter estimates are larger than the average values, indicating that

the estimated contact parameters may not follow a Gaussian distribution.
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Figure 19: Root mean squared error of each parameter combination’s estimate with respect

to synthetic dataset 1. The star represents the dataset’s true parameter combination.
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Figure 20: Time-averaged log-likelihood that synthetic dataset 1 originates from each param-

eter combination’s ensemble of simulations. The star represents the dataset’s true parameter

combination.
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Figure 21: Time-averaged cross-correlation between synthetic dataset 1 and the ensemble

average of a parameter combination’s simulations, evaluated for each parameter combination

on the grid. The star represents the dataset’s true parameter combination.
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Table 8: (α = 100, β = 10.0) Grid search results for parameter combinations that perform

optimally on various metrics with respect to synthetic dataset 1. These metrics seek to

minimize the RMSE of the estimate with respect to the data, maximize the average log-

likelihood that the synthetic data at a particular point in time came from the estimated

ensemble, and maximize the time-averaged cross-correlation between the estimate and the

ensemble.

ID α β RMSE Avg Log-Likelihood Avg Cross-Correlation

True Data 100 10 1.04 −4.75 −25 400

Min RMSE 316 0.316 0.946 −4.67 −9850

Max Likelihood 1000 0.316 0.954 −4.67 68 800

Max Correlation 1000 0.316 0.954 −4.67 68 800

Table 9: (α = 100, β = 10.0) Grid search results for parameter combinations that perform

above-average on all tested performance metrics for synthetic dataset 1. The geometric mean

values of the contact parameters in this dataset are α ≈ 268 N and β ≈ 5.18 s/m.

α β RMSE Avg Log-Likelihood Avg Cross-Correlation

10.0 10.0 0.990 −4.69 11 100

10.0 316 0.984 −4.74 27 700

100 100 0.970 −4.69 6470

316 1.00 1.06 −4.73 31 100

1000 0.316 0.954 −4.67 68 800

1000 3.16 0.975 −4.69 −8.92

31600 0.316 1.04 −4.75 46 500
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Table 10: (α = 100, β = 10.0) Grid search method’s contact parameter estimates for syn-

thetic dataset 1

True α (N) True β (s/m) True γ (N s/m) α̂ (N) β̂ (s/m) γ̂ (N s/m)

100 10.0 1000 268 5.18 1390

Table 11: (α = 100, β = 10.0) Unscented Kalman filter’s contact parameter estimates for

synthetic dataset 1

True α (N) True β (s/m) True γ (N s/m) α̂ (s/m) β̂ (s/m) γ̂ (N s/m)

100 10.0 1000 487 70.6 34400

The geometric mean of each parameter’s estimates gives a better indication of the grid’s

average estimates for α and β, since the grid’s parameter values are spaced on a logarithmic

scale. The geometric average parameter values of this dataset are α ≈ 268 N and β ≈ 5.18

s/m, which are far closer to the synthetic dataset’s contact parameters than the average

values of α and β. These parameter estimates are stored in Table 10.

6.2.2 Unscented Kalman Filtering Results

For the first dataset, the Kalman filter’s approximations for α and β are higher than the

true values of α = 100 N and β = 10.0 s/m. After the transients decay, the average estimate

of α is approximately 487 N with a standard deviation of 49.0 N, while the approximated

β has an average value of 70.6 s/m and a standard deviation of 4.46 s/m. This yields an

average product of γ = αβ ≈ 34400 N s/m, 34.4 times greater than its actual value of 1000

N s/m. The high value of γ indicates that the system estimated by the unscented Kalman

filter is approaching the point of critical damping.

If the contact force acting on the core barrel is approximated by a linearly viscous force

with a damping coefficient of γ, the contact model can be combined with the core barrel’s

state-space dynamics matrix according to the relationship

Anew = A−B2γC2 (6-2)
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This new dynamics matrix contains information regarding the damping ratios and natural

frequencies of the new system’s modes. The linear viscous contact force model is an ap-

proximation of the hyperbolic tangent contact force’s influence on the core barrel system for

contact point velocities below the characteristic velocity. The hyperbolic tangent model devi-

ates from the linearly viscous model about the characteristic velocity by limiting the contact

force such that it does not increase past a value of α. This constraint indicates that at higher

velocities, the hyperbolic tangent contact model provides less damping to the system than

the linear viscous model. Still, the linear viscous contact model provides insight as to the

contact force’s impact on the core barrel system’s damping ratios. The contact force should

have a measurable impact on the core barrel system’s response without critically-damping

any of the system’s modes so long as γ falls within 50N s/m to 50 000N s/m. For γ values

below 50.0 N s/m, the contact force’s impact on the core barrel system is negligible. For γ

values above 50000 N s/m, though, two of the core barrel system’s modes become critically

damped.

The unscented Kalman filter’s parameter estimates suggest that the system has a γ

value of approximately 34400 N s/m instead of its true value of 1000 N s/m. A linear viscous

contact force with a damping coefficient of γ ≈ 1000 N s/m would shift the core barrel

system’s highest damping ratio from 0.10 to 0.12. In contrast, the Kalman filter estimate’s

equivalent damping coefficient of γ ≈ 34400 N s/m would increase the highest damping ratio

to a value of 0.72, far closer to critical damping.

6.2.3 Comparison of Results

The contact parameter estimates for synthetic dataset 1 are compared in Table 12. The

unscented Kalman filter overestimates both contact force parameters for this dataset, while

the grid search method overestimates α and underestimates β. The grid search method’s

parameter estimates are far closer to the true values than the Kalman filter’s parameter

estimates.
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Table 12: (α = 100, β = 10.0) Comparison of contact parameters estimated for synthetic

dataset 1, and the ratio of each estimate to its true value

Dataset Parameter True GS Est. KF Est. GS Est. Ratio KF Est. Ratio

Case 1
α 100 268 487 2.68 4.87

β 10.0 5.18 70.6 0.518 7.06

6.3 Synthetic Dataset 2

Another synthetic dataset is generated with contact parameter values of α = 101.5 = 31.6

N and β = 102.5 = 316 s/m. This dataset has a contact parameter product of γ = 10000

N s/m.

6.3.1 Grid Search Results

Each parameter combination on the grid has its performance evaluated according to each

of the performance metrics with respect to synthetic dataset 2. The results are shown in

Figures 22 through 24. The performances of the optimal parameter combinations for this

dataset are displayed in Table 13 alongside the performance of the dataset’s actual set of

contact parameters. Only the 7 parameter combinations listed in Table 14 perform above-

average on all performance metrics for this synthetic dataset. These 7 combinations have

average parameter values of α = 4820 N and β = 107 s/m, with standard deviations of 11800

N and 148 s/m respectively. The geometric average parameter values for this dataset are

α ≈ 164 N and β ≈ 10.0 s/m, which combine to form a product of γ ≈ 1640 N s/m. This

estimated contact parameter product is roughly a factor of 6 below the actual product value

of γ = 10000 N s/m.

6.3.2 Unscented Kalman Filtering Results

The unscented Kalman filter’s estimates for the new combination of α and β remain

almost the same as for the previous parameter combination: the average value for α is 480
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Figure 22: Root mean squared error of each parameter combination’s estimate with respect

to synthetic dataset 2. The star represents the dataset’s true parameter combination.
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Figure 23: Time-averaged log-likelihood that synthetic dataset 2 originates from each param-

eter combination’s ensemble of simulations. The star represents the dataset’s true parameter

combination.
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Figure 24: Time-averaged cross-correlation between synthetic dataset 2 and the ensemble

average of a parameter combination’s simulations, evaluated for each parameter combination

on the grid. The star represents the dataset’s true parameter combination.

Table 13: (α = 31.6, β = 316) Grid search results for parameter combinations that perform

optimally on various performance metrics for synthetic dataset 2

ID α β RMSE Avg Log-Likelihood Avg Cross-Correlation

True Data 31.6 316 0.812 -4.52 6670

Min RMSE 316 0.316 0.764 -4.58 −9040

Max Likelihood 31600 0.316 0.889 -4.51 −10 900

Max Correlation 10.0 10.0 0.806 -4.52 13 600
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Table 14: (α = 31.6, β = 316) Grid search results for parameter combinations that perform

above-average on all performance metrics of interest, with respect to synthetic dataset 2.

These parameters have geometric average values of α ≈ 164 N and β ≈ 10.0 s/m.

α β RMSE Avg Log-Likelihood Avg Cross-Correlation

10.0 10.0 0.806 -4.52 13 600

10.0 316 0.871 -4.58 2730

31.6 100 0.847 -4.57 1340

31.6 316 0.812 -4.52 6670

1000 0.316 0.846 -4.55 5210

1000 3.16 0.812 -4.53 4870

31600 0.100 0.866 -4.56 439

Table 15: (α = 31.6, β = 316) Grid search method’s contact parameter estimates for syn-

thetic dataset 2

True α (N) True β (s/m) True γ (N s/m) α̂ (N) β̂ (s/m) γ̂ (N s/m)

31.6 316 10000 164 10.0 1640
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Table 16: (α = 31.6, β = 316) Unscented Kalman filter’s contact parameter estimates for

synthetic dataset 2

True α (N) True β (s/m) True γ (N s/m) α̂ (s/m) β̂ (s/m) γ̂ (N s/m)

31.6 316 10000 480 69.7 33500

Table 17: (α = 31.6, β = 316) Comparison of contact parameter estimates for synthetic

dataset 2, and the ratio of each estimate to its true value

Dataset Parameter True GS Est. KF Est. GS Est. Ratio KF Est. Ratio

Case 2
α 31.6 164 480 5.19 15.2

β 316 10.0 69.7 0.0316 0.221

N, and the average of β is 69.7 s/m. The product of these two parameter estimates is 33500

N s/m, which is 3.35 times greater than the true product of 10000 N s/m. The highest-

damped mode for a simulation with a γ value of 33500 N s/m has a damping ratio of 0.69,

indicating that the mode is approaching critical damping.

6.3.3 Comparison of Results

The contact parameter estimates for synthetic dataset 2 found through both the grid

search approach and the unscented Kalman filter are displayed in Table 17. These estimates

are terrible approximations of the synthetic dataset’s true parameter combination. Both

methods overestimate α and underestimate β.

The grid search method’s estimate of α is a factor of 5.19 above the true value, while

the unscented Kalman filter’s α estimate is a factor of 15.2 greater than the dataset’s true

α. The unscented Kalman filter’s parameter estimate for β is a factor of 0.221 below the

dataset’s true value, and the grid search approach’s β estimate is less than the true β value

by a factor of 0.0316.
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6.4 Synthetic Dataset 3

Two other synthetic datasets are generated using parameter values not located on the grid

of contact parameter combinations. The first of these datasets is created using α = 490 N

and β = 70.0 s/m. These parameter values are selected to compare the grid search method’s

contact parameter estimates to an already-evaluated unscented Kalman filter’s estimates.

The unscented Kalman filter method provided the parameter values of α = 490 N and

β = 70.0 s/m as contact parameter estimates for the previous two synthetic datasets. The

Kalman filter method was then applied to a synthetic dataset generated using α = 490 N and

β = 70.0 s/m to determine if these values are the only contact parameter estimates provided

by the unscented Kalman filter. The grid search method’s estimates and the unscented

Kalman filter’s estimates can only be compared if both methods are applied to the same

synthetic dataset. So, the grid search method is applied to the synthetic dataset so that the

previously-evaluated Kalman filter parameter estimates for that dataset can be re-used in

the method comparison.

6.4.1 Grid Search Results

The performance of each parameter combination on the grid is evaluated with respect to

synthetic dataset 3 according to each metric. These performances are visualized in Figures 25

through 27. The dataset’s optimal parameter combination according to each performance

metric is listed in Table 18. The collection of 6 parameter combinations found in Table 19

are the only ones that perform better-than-average on every performance metric for this

synthetic dataset. The geometric averages of these parameter values are α ≈ 100 N and

β ≈ 3.83 s/m.
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Figure 25: Root mean squared error of each parameter combination on the grid with respect

to synthetic dataset 3. The star indicates the dataset’s true contact parameters.
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Figure 26: Time-averaged log-likelihood that synthetic dataset 3 originates from a parameter

combination’s ensemble of simulations, evaluated at every parameter combination on the

grid. The star indicates the dataset’s true contact parameters.
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Figure 27: Time-averaged cross-correlation between synthetic dataset 3 and the ensemble

average of a parameter combination’s simulations, evaluated at every parameter combination

on the grid. The star indicates the dataset’s true contact parameters.

Table 18: (α = 490, β = 70.0) Parameter combinations that perform optimally for synthetic

dataset 3 according to each performance metric. This grid does not contain the true contact

parameter combination, so the true combination’s performance on the various metrics cannot

be evaluated.

ID α β RMSE Avg Log-Likelihood Avg Cross-Correlation

Min RMSE 316 0.316 0.967 −4.75 22 600

Max Likelihood 10.0 100 1.00 −4.67 24 800

Max Correlation 100 1.00 −4.79 31 600
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Table 19: (α = 490, β = 70.0) Contact parameter combinations that performed better

than average on all metrics across the grid for synthetic dataset 3. The geometric average

parameter values for this subset are α ≈ 100 N and β ≈ 3.83 s/m.

α β RMSE Avg Log-Likelihood Avg Cross-Correlation

10.0 100 1.00 −4.67 24 800

31.6 3.16 0.991 −4.72 3210

100 3.16 1.02 −4.71 5600

100 100 1.01 −4.75 5160

316 0.316 0.967 −4.75 22 600

1000 0.100 1.03 −4.75 2090

115



Table 20: (α = 490, β = 70.0) Unscented Kalman filter’s contact parameter estimates for

synthetic dataset 3

True α (N) True β (s/m) True γ (N s/m) α̂ (s/m) β̂ (s/m) γ̂ (N s/m)

490 70.0 34300 665 108 71800

Table 21: (α = 490, β = 70) Comparison of contact parameters estimated for synthetic

dataset 3, and the ratio of each estimate to its true value

Dataset Parameter True GS Est. KF Est. GS Est. Ratio KF Est. Ratio

Case 3
α 490 100 665 0.204 1.36

β 70 3.83 108 0.0547 1.54

6.4.2 Unscented Kalman Filtering Results

For a dataset generated using α = 490 N and β = 70.0 s/m, the unscented Kalman

filter’s average parameter estimates are approximately α ≈ 665 N and β ≈ 108 s/m. The

product of the dataset’s true parameters γ = αβ is 34300 N s/m, 34.3 times its original value

of γ = 1000 N s/m. If the simulation used a linear viscous contact force with the product

of the parameter estimates γ = αβ ≈ 71800 N s/m as its damping coefficient, the resulting

core barrel system would have two critically-damped modes: one with a natural frequency

of 179 Hz, and the other with a natural frequency of 34 Hz.

6.4.3 Comparison of Results

The contact parameter estimates produced by the grid search and unscented Kalman

filter methods for synthetic dataset 3 are displayed in Table 21, alongside the ratio of each

estimate to its true value. The unscented Kalman filter overestimates α and β, while the

grid search method underestimates both parameters. The unscented Kalman filter’s contact

parameter estimates are significantly closer to the true values than the grid search approach’s

estimates.
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6.5 Synthetic Dataset 4

The final tested synthetic dataset is associated with a true parameter combination of

α = 660 N and β = 110 s/m. This combination is also associated with a previously-evaluated

unscented Kalman filter parameter estimate. The Kalman filter’s parameter estimates for

the dataset generated using α = 490 N and β = 70.0 s/m were approximately α̂ ≈ 660 N and

β̂ ≈ 110 s/m. These estimated parameter values are used to generate a new synthetic dataset,

to examine if the unscented Kalman filter’s tendency to overestimate contact parameters

persists when applied to datasets with higher-valued contact parameters. The results may

only be used for model-comparison purposes if the grid search is applied to the same dataset.

Therefore the grid search method is tested on a synthetic dataset with a true parameter

combination of α = 660 N and β = 110 s/m.

6.5.1 Grid Search Results

The performances of the grid’s parameter combinations with respect to synthetic dataset

4 are displayed in Figures 28 through 30. The performance is evaluated using a different

metric for each plot. The optimal parameter combinations for this dataset are collected

within Table 22, and the subset of parameter combinations that perform better than average

on every metric are shown in Table 23. A total of 6 parameter combinations satisfy this

condition for the synthetic dataset. Their geometric average parameter values are α ≈ 178

N and β ≈ 3.83 s/m.

6.5.2 Unscented Kalman Filtering Results

A dataset with a true parameter combination of α = 660 N and β = 110 s/m produces

unscented Kalman filter parameter estimates of α ≈ 718 N and β ≈ 125 s/m. The product

of this dataset’s true contact parameters is γ = 72600 s/m, 72.6 times the original product

and a factor of 2.1 greater than the product for the combination of α = 490 N and β = 70.0

s/m. The dataset’s true contact parameter product causes the core barrel system to have

two critically-damped modes at natural frequencies of 182.5 Hz and 33.4 Hz. If the contact

117



Figure 28: Root mean squared error of each parameter combination on the grid with respect

to synthetic dataset 4. The star indicates the dataset’s true contact parameters.
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Figure 29: Time-averaged log-likelihood that synthetic dataset 4 originates from a parameter

combination’s ensemble of simulations, evaluated at every parameter combination on the

grid. The star indicates the dataset’s true contact parameters.
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Figure 30: Time-averaged cross-correlation between synthetic dataset 4 and the ensemble

average of a parameter combination’s simulations, evaluated at every parameter combination

on the grid. The star indicates the dataset’s true contact parameters.

Table 22: (α = 660, β = 110) Grid search results for synthetic dataset 4. This parameter

combination does not fall on the grid, so the performance metrics associated with the true

parameters cannot be computed.

ID α β RMSE Avg Log-Likelihood Avg Cross-Correlation

Min RMSE 100 10.0 0.771 −4.51 12 500

Max Likelihood 100 1.00 0.805 −4.50 1290

Max Correlation 3160 1.00 0.825 −4.54 44 700
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Table 23: (α = 660, β = 110) Parameter combinations that perform above-average on all

performance metrics for synthetic dataset 4. This dataset’s geometric average parameters

are α ≈ 178 N and β ≈ 3.83 s/m.

α β RMSE Avg Log-Likelihood Avg Cross-Correlation

31.6 316 0.873 −4.57 1680

100 1.00 0.805 −4.50 1290

100 3.16 0.844 −4.55 1850

100 10.0 0.771 −4.51 12 500

316 0.316 0.823 −4.56 4830

3160 1.00 0.825 −4.54 44 700

force parameter product were 89800 N s/m, as predicted by the Kalman filter’s parameter

estimates, the critically-damped modes would instead be located at natural frequencies of

237.7 Hz and 25.5 Hz.

6.5.3 Comparison of Results

The unscented Kalman filter and grid search method’s contact parameter estimates are

compared in Table 25. The grid search method underestimates α by a factor of 0.270, and

it underestimates β by a factor of 0.0348. In contrast, the Kalman filter’s estimate for α

is greater than the true value by a factor of 1.09, and its β estimate is 1.14 times its true

value. The unscented Kalman filter’s parameter estimates are far more accurate than the

grid search approach’s estimates for synthetic dataset 4.

Table 24: (α = 660, β = 110) Unscented Kalman filter’s contact parameter estimates for

synthetic dataset 4

True α (N) True β (s/m) True γ (N s/m) α̂ (s/m) β̂ (s/m) γ̂ (N s/m)

660 110 72600 718 125 89800
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Table 25: (α = 660, β = 110) Comparison of contact parameters estimated for synthetic

dataset 4, and the ratio of each estimate to its true value

Dataset Parameter True GS Est. KF Est. GS Est. Ratio KF Est. Ratio

Case 4
α 660 178 718 0.270 1.09

β 110 3.83 125 0.0348 1.14

6.6 Discussion and Comparison of Methods

The contact parameter approximations for each method and dataset are displayed in

Figure 31, alongside the true parameters of the synthetic datasets. The markers on this plot

are colored according to their synthetic datasets, and the shape indicates whether a marker

is a true parameter combination, a Kalman filter estimate, or a grid search estimate. The

ratios of the contact parameter estimates to the true values for each synthetic dataset serve

as a means of comparison between the grid search and Kalman filter methods.

6.6.1 Comparison of Method Performance

The contact force parameter estimates generated through the unscented Kalman filter

approach and through the grid search method are compiled in Table 26. These estimates are

organized according to the true parameter values of the synthetic datasets. The parameter

estimates generated through each method are compared to the true contact force parameters

of the synthetic dataset.

The grid search method out-performs the unscented Kalman filter for synthetic dataset

1. The α estimate produced by the Kalman filter is a factor of 4.87 above the true value, and

the β estimate produced by the same method is 7.06 times its true value. The grid search

produces an α estimate 2.68 times its true value, and a β value that’s a factor of 0.518 below

the dataset’s true β.

The estimates produced by both methods for synthetic dataset 2 are far from the true

values, indicating almost equally terrible performance. These methods over-estimate α and
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Figure 31: Plot of the contact parameter estimates across all datasets and estimation meth-

ods. The shapes of the markers indicate whether a parameter combination is a synthetic

dataset’s true parameters, a Kalman filter estimate, or a grid search estimate. The markers

for the grid search and Kalman filter estimates are color-coded to match their respective

synthetic datasets.
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Table 26: Comparison of contact parameters estimated for 4 separate synthetic datasets

through the grid search (GS) and Kalman filter (KF) methods. The ratio between each

estimate and its associated true value is also computed.

Dataset Parameter True GS Est. KF Est. GS Est. Ratio KF Est. Ratio

Case 1
α 100 268 487 2.68 4.87

β 10.0 5.18 70.6 0.518 7.06

Case 2
α 31.6 164 480 5.19 15.2

β 316 10.0 69.7 0.0316 0.221

Case 3
α 490 100 665 0.204 1.36

β 70 3.83 108 0.0547 1.54

Case 4
α 660 178 718 0.270 1.09

β 110 3.83 125 0.0348 1.14

under-estimate β for this dataset. The estimate of α produced by the grid search method

is a factor of 5.19 above the true value, while the unscented Kalman filter’s α estimate is

a factor of 15.2 greater than the truth. The grid search estimate of β is a factor of 0.0316

below the true value, and the Kalman filter’s estimate is 0.221 times the true β. The grid

search method produces a better estimate of α than the unscented Kalman filter for this

dataset, yet the unscented Kalman filter creates a better estimate of β than the grid search

method.

The unscented Kalman filter approach performs better than the grid search on datasets

3 and 4. The Kalman filter’s contact parameter estimates for synthetic dataset 3 are factors

of 1.36 and 1.54 above their true values for α and β, respectively. The grid search method’s

estimate for α is a factor of 2.04 below its true value, and its estimate for β is 0.0547 times

the dataset’s parameter value. For dataset 4, the Kalman filter’s estimate of α is a factor of

1.09 above the true value, while the grid search method’s estimate is a factor of 0.270 below

the true value. Similarly, the Kalman filter estimate of β is 1.14 times the truth, and the

grid search’s approximation is a factor of 0.0348 below the true β.
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A general trend emerges from this analysis: The unscented Kalman filter’s contact pa-

rameter estimates seem to out-perform the grid search method’s estimates for higher true

values of α and β. In contrast, the grid search method appears to perform better than the

unscented Kalman filter for lower true values.

6.6.2 Discussion of Unexpected Phenomena

Several aspects of the parameter estimates generated by both methods require explana-

tion. Despite producing highly-accurate state and output estimates, the unscented Kalman

filter almost always overestimates the contact force model’s parameters and by extension

the contact force acting on the system. The Kalman filter somehow compensates for this

increased contact force such that the estimated outputs and states remain accurate.

Also, no single performance metric for the grid search method is optimized at the syn-

thetic dataset’s true contact parameter combination. This combination is known to have

generated the synthetic data, but the performance metrics indicate that several other pa-

rameter combinations perform better on the metrics.

6.6.2.1 Deviation of Kalman Filtered Parameter Estimates

The Kalman filter’s contact parameter estimates significantly deviate from the true values

used when generating the synthetic dataset. One reason for the difficulty in estimating the

contact force parameters α and β is their interactions with each other. According to the

hyperbolic tangent contact force model, if the velocity of the core barrel at the point of

contact is far below the characteristic velocity vc =
1
β
, the contact force u2 takes on the form

u2 = −α tanh (βy2) ≈ −αβy2 = −γy2 (6-3)

where γ = αβ is the effective viscous damping coefficient of the contact force model.

The unscented Kalman filter adjusts the estimated values of α and β until the system’s

response approximates the measurement signal. However, the contact force at velocities

below vc depend only on γ, the product of α and β. So long as the contact point velocity

is below the characteristic velocity and γ remains constant, changing the values of α and β
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will have no impact on the system’s response. Therefore the Kalman filter’s estimates for α

and β will randomly vary while the system attempts to reach the value of γ associated with

the measured response.

Instead of this behavior, though, the Kalman filter’s estimates for both α and β are

several times greater than their true values: For synthetic dataset 1, which has true parameter

values of α = 100 N and β = 10 s/m, the estimate for α settles near a value of 487 N, and

the approximate value of β approaches 70.6 s/m. This yields a product of γ = αβ ≈ 34400

N s/m, 34.4 times greater than its actual value of 1000 N s/m.

When another synthetic dataset with drastically different contact force parameters is

tested, the Kalman filter’s estimated parameters still remain approximately the same. As

previously mentioned, for a synthetic dataset generated with α = 31.6 N and β = 316 s/m,

the unscented Kalman filter’s average parameter estimates are 480 N for α and 69.7 s/m for

β. This synthetic dataset even has a true γ value of 10000 N s/m, 10 times the previous

dataset’s γ value, and yet the Kalman filter approximates the values of α and β for both

datasets as being nearly identical.

The deviation of the contact parameter estimates from their true values could be excused

so long as the estimates recreate the true value of γ = αβ. However, the contact force

parameter approximation method should be capable of recognizing when two datasets have

different values of γ. The Kalman filter cannot be expected to accurately recreate the

hyperbolic tangent model of the contact force acting on the system if it cannot extract even

a basic viscous damping constant from the measured signal. The observed lack of change in

parameter estimates could be explained if we assume the unscented Kalman filter’s estimates

do not significantly change for a factor of 10 increase in the synthetic dataset’s true parameter

product.

Following the above assumption, the unscented Kalman filter is applied to a system

with significantly larger contact parameters such that the new dataset’s contact parameter

product is greater than a factor of 10 above the original’s. If applied to synthetic dataset

3, which has true parameter values of α = 490 N and β = 70.0 s/m, the unscented Kalman

filter’s parameter estimates increase to α ≈ 665 N and β ≈ 108 s/m. The product γ = αβ

for this dataset is 34300 N s/m, 34.3 times the γ value associated with synthetic dataset 1.
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Similarly, synthetic dataset 4 with a true parameter combination of α = 660 and β = 110

produces unscented Kalman filter parameter estimates of α ≈ 718 and β ≈ 125. The product

of this dataset’s parameters is γ = 72600, 72.6 times synthetic dataset 1’s γ value and a factor

of 2.12 greater than the contact parameter product for synthetic dataset 2.

The unscented Kalman filter previously produced near-identical parameter estimates for

two datasets where the parameter product of one dataset was 10 times the other’s: Both

a synthetic dataset with γ = 1000 N s/m and a dataset with γ = 10000 N s/m produced

parameter estimates near α ≈ 490 and β ≈ 70. Yet the same Kalman filter now generates

two different sets of parameter estimates for two synthetic datasets where one dataset’s

product is less than half the other’s: A dataset with γ = 34300 N s/m produces estimates

of α = 665 N and β = 108 s/m, while a synthetic dataset generated using γ = 72600 N s/m

has parameter estimates of α = 718 N and β = 125 s/m.

The unscented Kalman filter only produces different contact parameter estimates for two

synthetic datasets if the Kalman filter is sensitive enough to detect the differences between

those datasets. Assuming the unscented Kalman filter’s parameter estimates only depend

upon the product of the synthetic dataset’s contact parameters, if a Kalman filter is sensitive

enough to identify that one dataset’s contact parameter product is a factor of 2 greater than

the other’s, then it should be sensitive enough to identify that one dataset’s parameter

product is a factor of 10 greater than the other’s. Furthermore, if significantly different

contact parameter estimates are generated for two datasets where one contact parameter

product is double the other, then two synthetic datasets where one’s product is 10 times

the other’s should also have significantly different contact parameter estimates. However,

the unscented Kalman filter produces different parameter estimates for two datasets whose

products are γ = 34300 N s/m and γ = 72600 N s/m. This same method generates nearly

identical parameter estimates for two datasets whose products are γ = 1000 N s/m and

γ = 10000 N s/m. Therefore, the contact parameter estimates do not depend upon the

synthetic dataset’s contact parameter product alone, but on some other unknown factors as

well.
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6.6.2.2 Identification of the Best-Performing Grid Element

Each performance metric has its own optimal combination of contact parameters. For

example, synthetic dataset 2 is generated using α = 31.6 N and β = 316 N s/m. The grid

search method then locates the parameter combination on the grid with the highest time-

averaged likelihood of generating the synthetic dataset from its ensemble of simulations.

The likelihood is maximized for a parameter combination of α = 31600 N and β = 0.316

s/m. The root-mean-squared error of the ensembles with respect to the same dataset is also

computed for every parameter combination. This error is minimized for a combination of

α = 316 N and β = 0.316 s/m. The time-averaged cross-correlation between a parameter

combination’s ensemble and the synthetic dataset is computed over the entire grid as well.

This performance metric is maximized at its own optimal parameter combination of α = 10.0

N and β = 10.0 s/m.

None of the performance metrics identify the true parameter combination used in gener-

ating the synthetic data. Instead, the performance metrics must all be considered together

when evaluating the data’s contact parameters. This is achieved by normalizing each perfor-

mance metric by its mean and standard deviation, then isolating the parameter combinations

that perform better-than-average on all three performance metrics. A geometric average is

applied to the parameter combinations of this subset of the data, producing approximate

values for α and β associated with the best-performing parameter combinations in the grid.

This geometric average is often closer to the true parameter combination than the various

“optimal” parameter combinations produced by each performance metric.
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7.0 Summary and Conclusions

7.1 Summary

The 2D motion of a core barrel within a pressurized water reactor is modeled as a

spring-mass-damper system excited by a random force from turbulence and damped by

nonlinear contact forces. This model is used to simulate the core barrel system’s response

to a turbulent input and generate a synthetic dataset for analysis. The contact forces are

assumed to follow a hyperbolic tangent function of the system’s states, with two parameters α

and β determining the maximum contact force and its characteristic velocity. The outputs of

the synthetic dataset are analyzed to identify the unknown parameters within the nonlinear

contact force function. These attempts to extract the contact parameters from the data rely

on two methods: a grid search approach, and an unscented Kalman filter approach.

The grid search method approximates the contact parameters by evaluating the response

of the core barrel over a grid of possible combinations of contact force parameters. These

simulated responses are then compared to identify the contact parameter combination that

most accurately reproduces the synthetic dataset. Multiple simulations are evaluated for

each combination of parameters, with only the noise terms varying between simulations.

These replications form an ensemble representing the average behavior of the core barrel

system for those parameters. The ensemble’s ability to recreate the synthetic dataset is

evaluated through three separate performance metrics: likelihood, cross-correlation, and

root-mean-squared error. The synthetic data should have a high likelihood of originating

from the ensemble, the cross-correlation between the data and the ensemble average should

be high, and the root-mean-squared error in the ensemble average with respect to the syn-

thetic dataset should be minimal. The performance metrics are then compared amongst the

parameter combinations on the grid. The combination that performs best on all metrics

should be a close approximation for the contact parameters used in generating the synthetic

dataset.
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The second approach applies an unscented Kalman filter to the core barrel system. This

method assumes the contact parameters undergo some disturbance with a known variance.

The expected mean values and variances of the process noise, measurement noise, states, and

contact parameters are then used to select a set of values representing the distributions of

the system’s states and inputs. This set of points is known as the system’s sigma points. A

function representing the core barrel system’s response to the states and inputs transforms

the set of sigma points. The resulting set of transformed points describe the distribution of

the outputs for the given inputs and states. This process is repeated at every time point to

provide an estimate for the system’s states, outputs, and contact parameters.

Contact parameter estimates are evaluated through both methods for each synthetic

dataset. The estimates are then compared to the true values associated with the synthetic

dataset. The purpose of this analysis is to identify which method is better at extracting con-

tact parameters from the data. Additionally, the approximated states and responses associ-

ated with the contact parameter estimates are compared to the synthetic dataset whenever

possible. The estimated contact parameters closest to the true values should produce state

and output estimates matching the behavior of the synthetic data.

7.2 Conclusions

The unscented Kalman filter method recreates the core barrel system’s outputs with

incredible accuracy, but its approximations for the contact force parameters are not always

near the true values. Additionally, the contact parameter estimates are not particularly

sensitive with respect to the true parameter values: The unscented Kalman filter’s parameter

estimates for a true parameter combination of α = 100 N and β = 10 s/m are α̂ ≈ 487 N

and β̂ ≈ 70.6 s/m. A true parameter combination of α = 31.6 N and β = 316 s/m generates

a similar set of contact parameter estimates, α̂ ≈ 480 N and β̂ ≈ 69.7 s/m.

The grid search method provides better estimates for the contact force parameters when

the synthetic dataset’s true parameter values are relatively low, such as the parameter com-

bination of α = 100 N and β = 10.0 s/m. For higher parameter values, such as α = 660
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N and β = 110 s/m, the unscented Kalman filter’s estimates are closer to the true values.

Both methods struggle to approximate the contact parameters associated with certain syn-

thetic datasets. For instance, when analyzing a synthetic dataset such that α = 31.6 N and

β = 316 s/m, the unscented Kalman filter’s estimate for α is closer to the true value than the

grid search estimate. For this same dataset, the grid search method’s approximation of β is

more accurate than the Kalman filter’s estimate. Overall, the performance of each contact

parameter estimation method depends upon the synthetic dataset under analysis. Neither

method performs better than the other on all datasets.

7.3 Contributions

Prior attempts to describe the motion of the core barrel system approximated the contact

force using linear viscous damping. These models did not capture the transition of the contact

force model from linear viscous damping at low velocities to constant Coulomb friction at

higher velocities. Unlike prior research, the contact force applied in this report accounts

for the nonlinear relationship between the contact force and the velocity of the core barrel

at the point of contact. This research also attempts to identify two parameters describing

the contact force instead of just one. This introduces potential sources of complexity to the

problem, such as interactions between parameters and how those interactions impact the

measured outputs.

The state-space matrices and the contact force function accurately model the core barrel’s

response to an input force from turbulence. The ex-core neutron noise measurements are

approximated as a linear combination of the system’s position states. In an actual core

barrel system, though, the ex-core readings may not depend on the core barrel’s vertical

displacement. Additionally, the core barrel’s motion in the model is restricted to a 2D plane,

while a real core barrel in a PWR unit vibrates within a 3D space. The 2D model is adequate

for attempting to approximate the contact force model’s behavior from ex-core neutron noise

measurements.
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Modeling the core barrel system and extracting the contact force model’s parameters from

the neutron noise measurements proved to be far more difficult than anticipated. When gen-

erating synthetic data in the discrete-time domain, the state-space model of the core barrel

system could not be discretized due to the nonlinear feedback mechanism introduced by

the contact force. This problem was circumvented by creating a fourth-order Runge-Kutta

algorithm for approximating the states and outputs of the continuous-time system at dis-

crete points in time. For the Kalman filter method, the nonlinearity of the contact force

prevented the application of traditional Kalman filter approaches for parameter estimation.

Instead, an unscented Kalman filter was applied to the core barrel system. The three per-

formance metrics analyzed in the grid search method each produced a different optimal

parameter combination for each dataset, necessitating a different approach that accounts

for all three metrics simultaneously. Additionally, several months were spent debugging the

data generation, core barrel simulation, and contact parameter estimation analysis code.

These difficulties significantly delayed research into the other aspects of the project, such as

the analysis of the relationship between the contact forces and the conditions of the reactor

internals. Due to these delays, the contact parameter estimation method’s applications to

condition monitoring were not analyzed in this report. Such research shall remain for any

aspiring researchers in the field of condition monitoring for nuclear power plants.

As for contact parameter estimation method performance, neither approach produces

better estimates for all synthetic datasets. The grid search approach is better at estimating

contact parameters in systems with lower contact force parameter values, while the unscented

Kalman filter’s estimates perform better than the grid search approach for synthetic datasets

with higher parameter values. In some cases, the Kalman filter might produce a better

estimate of α and a worse approximation of β when compared to the grid search method,

or vice-versa. Each method’s performance depends upon the dataset under analysis. If the

dataset’s true parameter values are unknown, the performance of each method cannot be

evaluated. More research is required to improve these contact parameter estimation methods.
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7.4 Future Work

The core barrel simulation could be made more realistic by incorporating 3D motion

within the model. The current model only has 3 degrees of freedom, allowing for horizontal,

vertical, and rotational motion of the structure within a 2D plane. A real core barrel moves

in 3D space, with translational motion normal to the 2D plane and rotational motion about

the plane’s component axes. A 3D model of the core barrel system was not considered for this

report because the additional degrees of freedom complicate the modeling process. Rewriting

the system’s equations of motion for 3 more degrees of freedom would be time-consuming,

without yielding any additional benefits to the contact parameter estimation process. The

3D simulation of the core barrel would be useful for simulating the response of an actual

core barrel system for purposes such as condition monitoring.

The contact force model tested in this report assumes the parameters α and β are iden-

tical for each contact point. However, if the contact points degrade at different rates, the

parameter values at each contact point would no longer be equal. The simulation could

be made more realistic by providing a separate set of contact parameters for each point of

contact. This would allow for simulations of non-uniform degradation within the core barrel

system.

The contact force’s impact on the core barrel system’s response could be approximated

by an effective viscous damping force. This would be achieved by extracting the damping

ratios of the core barrel system’s modes from the output simulated for a given contact force.

These could then be compared to damping ratios extracted from a simulation without the

contact force. A method for approximating the damping ratios of the core barrel system’s

modes using the power spectral density of each output is outlined in Appendix A. The change

in the damping ratios would indicate the contact force’s impact on the system’s response,

and an effective damping coefficient could be found to recreate this same change using a

viscous contact force. The unscented Kalman filter might approximate a single parameter

in the form of an effective damping coefficient more accurately than its previous attempts

at estimating two separate parameters to describe a nonlinear contact force.
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Assuming the core barrel and contact force models are correct, the synthetic dataset

generated for the simulation should approximate the response of an actual reactor core bar-

rel. If the models are inaccurate, though, the simulation’s results may significantly deviate

from a reactor’s ex-core neutron noise measurements. The accuracy of the models could be

determined by comparing the simulations to data from a real PWR system. Furthermore, a

training dataset from an actual reactor would serve as an excellent test for the grid search

and Kalman filter methods’ capabilities in approximating the PWR’s behavior. The actual

contact force parameters associated with this dataset would be unknown, so the approxi-

mations of the parameters would have no “true value” for comparison, but the simulated

outputs could still be tested against the true response of the reactor. Once the contact

parameter extraction method is improved and known to produce accurate estimates on syn-

thetic datasets, testing the method on data from an actual reactor system would serve as an

excellent proof-of-concept.
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Appendix A Approximation of Damping Ratios

The damping ratios associated with the core barrel simulation’s modes are extracted from

the power spectral density of the system’s output, as estimated through Welch’s method.

Each mode is identified on the power spectral density plot as a peak occurring at some

resonance frequency ωr. Two points on the resonance peak occur halfway between the

peak’s highest and lowest magnitudes. These are labelled the half-power points, and they

are located at the half-power frequencies ω1 and ω2 on the power spectral density curve. The

damping ratio ζ associated with the peak is approximated using the resonance frequency

and the width between the peak’s half-power frequencies, assuming ω2 > ω1 and ζ ≪ 1
2
.

ζ ≈ ω2 − ω1

2ωr

(A-1)

This computation is repeated for each peak identified in the power spectral density plot.

One way to identify a peak is using a minimum prominence threshold. This method

locates a local minimum on the curve, then searches for a local maximum such that the

difference between the minimum and maximum exceeds some specified threshold. If another

local minimum below the previous one is encountered before locating such a maximum, the

lower value is selected as the peak’s new minimum. After finding the maximum, another

point on the curve to the right of the peak at approximately the same height as the first

minimum is identified. The power spectral density plots of the core barrel system’s outputs

for simulations with and without the contact force are shown in Figure 32.

The peak’s prominence is the height of the peak above the identified local minima. This

differs from the peak’s height, which is the peak’s magnitude above or below zero. The

width of the peak is approximated as the difference between the half-power frequencies.

The damping ratio of the mode is then approximated as half the ratio between the peak

width and the peak’s resonance frequency, as shown in Equation A-1. The resonance

frequency, height, width, and prominence of each peak in the power spectral density plot are

computed in MATLAB using the findpeaks function. This command locates the peaks while

applying any specified thresholds, such as a minimum prominence, minimum peak height, or
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Figure 32: Power Spectral Density plots of the core barrel system’s outputs for simulations

with and without the contact force. The simulation that accounts for the contact force has

contact parameter values of α = 100 N and β = 10 s/m. Resonance peaks are identified

using a minimum prominence threshold of 15 dB, minimum peak width of about 1.5 Hz, and

a minimum peak height of −50 dB to exclude the output’s noise floor.
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a minimum or maximum peak width. It even allows the specification of the reference for the

peak’s width, with options of either the half-prominence width or the half-height width. For

the core barrel system, the minimum prominence is set to 15 dB, the minimum peak width

is specified as 0.1 Hz, and the minimum peak height threshold is placed at −50 dB. These

thresholds allow the MATLAB command to identify the system’s resonance peaks without

accidentally mislabelling random variations in the power spectral densities as peaks.

The contactless simulation of the core barrel system is compared to a contact-damped

simulation with contact parameters of α = 100 N and β = 10 s/m. The resonance frequencies

and modes for each output of these simulations are located in Tables 27 to 30. The contact

force provides additional damping to the system, so the contact-damped simulations should

have higher damping ratios than the contactless simulations.

The first resonance peak occurs near 10 Hz for every output. The damping ratios as-

sociated with this mode are 0.12 for Outputs 1, 2, and 3 when considering the contactless

simulation. In this same simulation, the damping ratio of this mode for Output 4 is ap-

proximately 0.08. For the contact-damped simulation, the damping ratio of this mode is

roughly 0.09 or 0.10 for every output. This mode tends to be lower for the contact-damped

simulations than for the contactless simulations. The only exception is when analyzing Out-

put 4, where the damping ratio of the contact-damped simulation is slightly higher than the

damping ratio for the contactless simulation.

Several intermediate peaks occur between 10 Hz and 80 Hz on most outputs for both

simulations. However, the frequencies of these peaks are not consistent between outputs, and

they all have damping ratios of approximately 0.02. The low damping ratios and inconsistent

resonance frequencies seem to indicate that these peaks are caused by noise rather than some

significant mode of the core barrel system.

The final resonance peak occurs in every output at a frequency of approximately 80 Hz.

The contactless simulation’s outputs all have damping ratios of 0.11 or 0.12 for this mode.

Outputs 1, 2, and 3 of the contact-damped simulation have damping ratios of 0.15 for this

mode, while Output 4 of the simulation has a damping ratio of 0.13. The mode associated

with this resonance peak has significantly more damping in the contact-damped simulation

than in the contactless simulation.
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Table 27: Resonance peaks and damping ratios for Output 1 of the core barrel system

Peak Statistic Contactless Contact

Peak 1

Frequency (Hz) 9.8 9.9

Width (Hz) 2.4 1.8

Damping ratio 0.12 0.09

Peak 2

Frequency (Hz) 51 47

Width (Hz) 1.7 2.2

Damping ratio 0.02 0.02

Peak 3

Frequency (Hz) 72 N/a

Width (Hz) 2.4 N/a

Damping ratio 0.02 N/a

Peak 4

Frequency (Hz) 78 79

Width (Hz) 17 23

Damping ratio 0.11 0.15

Table 28: Resonance peaks and damping ratios for Output 2 of the core barrel system

Peak Statistic Contactless Contact

Peak 1

Frequency (Hz) 9.8 9.8

Width (Hz) 2.3 1.9

Damping ratio 0.12 0.10

Peak 2

Frequency (Hz) N/a 36

Width (Hz) N/a 1.7

Damping ratio N/a 0.02

Peak 3

Frequency (Hz) N/a 47

Width (Hz) N/a 1.8

Damping ratio N/a 0.02

Peak 4

Frequency (Hz) 78 79

Width (Hz) 17 23

Damping ratio 0.11 0.15
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Table 29: Resonance peaks and damping ratios for Output 3 of the core barrel system

Peak Statistic Contactless Contact

Peak 1

Frequency (Hz) 9.8 9.8

Width (Hz) 2.4 1.9

Damping ratio 0.12 0.10

Peak 2

Frequency (Hz) N/a 47

Width (Hz) N/a 1.7

Damping ratio N/a 0.02

Peak 3

Frequency (Hz) 73 N/a

Width (Hz) 2.4 N/a

Damping ratio 0.02 N/a

Peak 4

Frequency (Hz) 78 79

Width (Hz) 17 25

Damping ratio 0.11 0.15

Table 30: Resonance peaks and damping ratios for Output 4 of the core barrel system

Peak Statistic Contactless Contact

Peak 1

Frequency (Hz) 9.8 9.9

Width (Hz) 1.6 1.7

Damping ratio 0.08 0.09

Peak 2

Frequency (Hz) 78 79

Width (Hz) 18 21

Damping ratio 0.12 0.13
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Appendix B MATLAB Simulation Code

The synthetic datasets, unscented Kalman filter estimates, and the grid search method’s

ensembles of simulations are generated using MATLAB.

B.1 Synthetic Data Generation

The MATLAB code for generating synthetic data is listed below for a true parameter

combination of α = 100 N and β = 10 s/m. The true contact parameter values associated

with a synthetic dataset are set by changing the values of alpha and beta in the code.

% 07/20/2022, Nicholas Harn

% Data generation for core barrel system

clear;

close all;

clc;

rng (1);

%% System dimensions

% Number of degrees of freedom

ss_mat.n_dof = 3;

% Number of outputs

ss_mat.m_out = 4;

% Number of process noise inputs (turbulent force)

ss_mat.n_w_in = 3;

% Number of known inputs (contact force)

ss_mat.n_u_in = 4;
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%% Core Barrel Structure

% Properties known from Western -type PWR specs:

rho = 27678*0.285; % Density of ASTM -304 Stainless Steel

% Properties approximated from Eastern -type PWR specs: WWER

-1000

w_core = 3.67; % Outer diameter of core barrel

H = 10.51; % Height of core barrel

thick = 0.065; % Thickness of core barrel

%% Calculated inertia of thick -walled cylinder

% Assuming uniform mass distribution:

% Core barrel ’s mass (kg)

m = pi*rho*H*( w_core ^2 - (w_core -2* thick)^2)/4;

% Height of core barrel ’s center of mass (m)

h_G = H/2;

% Core barrel ’s mass moment of inertia (kg m^3)

Igxx = m*((3*( w_core /2)^2 + H^2) -(3*( w_core/2-thick)^2 + H^2))

/12;

%% System properties

% m xddot + c_damp xdot + k x = b1 w + b2 u

% Expected/guessed values (desire wn = 10 Hz)

delta_z = 0.0025; % Assume 2.5 mm static displacement

% for 2 vertical hold -down springs

kz = (m*9.81/ delta_z)/2; % Estimated spring rate

% of each hold -down spring

delta_y = 0.5; % Assume 50 cm static displacement

% for horizontal springs & radial keys
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ky = m*9.81/ delta_y; % Estimated spring rate

% of each horizontal spring/radial key (N/m)

zeta = 0.1; % Expected damping ratio

% for horizontal support & radial key

% Process noise coefficients (scaled by 1000)

by1 = 1000;

bz1 = 1000;

btheta1 = 1000;

% Mass matrix

M = [ m, 0, 0; ...

0, m, 0; ...

0, 0, Igxx ];

% Spring matrix

K = [2*ky, 0, -2*ky*(H-h_G); ...

0, 2*kz, 0; ...

-2*ky*(H-h_G), 0, 2*(ky*(H-h_G)^2 + kz*w_core ^2/4)];

% Locate eigenvalues (Omega2) and eigenvectors (Phi)

[Phi ,Omega2] = eig(M\K);

Omega = sqrt(Omega2);

% Damping matrix

% C_damp = 3.6*M + 0.001*K;

C_damp = M*Phi *(2* zeta*Omega)/Phi;

save(’c_damp.mat’, ’C_damp ’);
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% Process noise coefficient matrix

B1_coef = [ by1 , 0, 0; ...

0, bz1 , 0; ...

0, 0, btheta1 ];

% Input coefficient matrix

B2_coef = [ 1, 1, 0, 0; ...

0, 0, 1, 1; ...

h_G , h_G , -w_core/2, w_core /2 ];

%% Create the CT SS

% Dynamics matrix

ss_mat.A = [ zeros(ss_mat.n_dof), eye(ss_mat.n_dof); ...

-M\K, -M\C_damp ];

% Process noise input matrix

ss_mat.B1 = [ zeros(ss_mat.n_dof , ss_mat.n_w_in); ...

M\B1_coef ];

% Contact force input matrix

ss_mat.B2 = [ zeros(ss_mat.n_dof , ss_mat.n_u_in); ...

M\B2_coef ];

% Measurement output matrix coefficients

coef_y = 0.25; % Current ’s dependence on y

coef_z = 0.25; % Current ’s dependence on z

coef_theta = 0.5; % Current ’s dependence on theta

% Output matrix for all ex-core sensor measurements

ss_mat.C1 = [ coef_y , coef_z , -coef_theta; ... % Sensor 1

coef_y , -coef_z , coef_theta; ... % Sensor 2
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-coef_y , coef_z , coef_theta; ... % Sensor 3

-coef_y , -coef_z , -coef_theta ]; % Sensor 4

ss_mat.C1 = [ss_mat.C1, zeros(ss_mat.m_out , ss_mat.n_dof)];

% Contact force velocity feedback matrix

ss_mat.C2 = [ 1, 0, h_G; ...

1, 0, h_G; ...

0, 1, -w_core /2; ...

0, 1, w_core /2 ];

ss_mat.C2 = [ zeros(ss_mat.n_u_in , ss_mat.n_dof), ss_mat.C2 ];

%% Natural frequency

wn = damp(ss_mat.A); % Natural frequency (rad/sec)

fn = wn/(2*pi); % Natural frequency (Hz)

fNyq = 2*max(fn); % Nyquist frequency (Hz)

%% Sampling frequency (greater than fNyq)

fs = 3200; % ~40 times fn

ss_mat.h = 1/fs; % Sampling period

%% Process noise

ss_mat.Qf = 3* ss_mat.h*eye(ss_mat.n_w_in); % Variance of f

swf = chol(ss_mat.Qf); % Standard deviation of noise

w = @(k) (swf*randn(ss_mat.n_w_in , 1)); % Process noise

function

%% Measurement noise

ss_mat.R = (1e-2)*eye(ss_mat.m_out); % Variance of v

sv = chol(ss_mat.R); % Standard deviation of noise
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v = @(k) (sv*randn(ss_mat.m_out , 1)); % Measurement noise

function

%% Lyapanov Equations (normalizing outputs)

P = lyap(ss_mat.A, ss_mat.B1 * ss_mat.Qf * ss_mat.B1

’);

norm1 = sqrt( trace(ss_mat.C1 * P * ss_mat.C1 ’) );

% Normalize outputs

ss_mat.C1 = ss_mat.C1/norm1;

%% Scale the state -space representation (Change of Basis)

omega_c = norm(Omega); % Norm of natural frequency

matrix

% Scaling matrix

T = inv(diag([1, 1, 180/pi, ...

1/omega_c , 1/omega_c , 1/ omega_c *180/ pi]))

;

ss_mat.A = T \ ss_mat.A * T; % New basis: z = inv(T)*x, x = T*

z

ss_mat.B1 = T \ ss_mat.B1; % z_{k+1} = inv(T)*x_{k+1}

% = inv(T)*(A x_k + B u_k)

ss_mat.B2 = T \ ss_mat.B2; % z_{k+1} = T\A*(T*z_k) + T\B*u_k

ss_mat.C1 = ss_mat.C1 * T;

ss_mat.C2 = ss_mat.C2 * T;

% y_k = C*x_k = C*T*z_k

%% Check the steady state solution
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% State error variance matrix

Sigma = lyap(ss_mat.A, ss_mat.B1 * ss_mat.Qf * ss_mat.B1 ’);

disp(’-----’)

norm(Sigma) % State variance

norm(ss_mat.C1*Sigma*ss_mat.C1’ + ss_mat.R) % Innovation

variance

%% True parameters

% For alpha = 0 and beta = 0, y2max = 0.87.

% Set vc = (1/beta) < 0.87, or else the contact force

% will behave like linear -viscous damping.

% 1e-3 < vc < 0.87 for hyperbolic tangent model

% beta = 1/vc;

% 10 < gamma < 5e4 for underdamped system with significant

contact

% alpha = gamma*vc;

% % Parameters for contactless simulation:

% alpha = 0;

% beta = 0;

% gamma = alpha*beta;

% Setting parameters directly:

alpha = 100;

beta = 10;

gamma = alpha*beta;

%% Equivalent Damping of Contact Force
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disp(’Damping␣Norms’)

% Structural Damping

disp(’Structure␣alone:’)

damp(ss_mat.A)

norm(C_damp)

% Contact force damping

disp(’Structure␣with␣Contact:’)

A_contact = ss_mat.B2*alpha*beta*ss_mat.C2;

damp(ss_mat.A - A_contact)

norm(A_contact)

disp(’Fastest␣natural␣frequency␣w/␣contact ’)

wn_contact = damp(ss_mat.A - A_contact);

fn_contact = max(wn_contact /(2*pi))

%% Allocate space

N_time = 1e5;

x = zeros (2* ss_mat.n_dof , N_time);

y = zeros(ss_mat.m_out , N_time);

time = 0: ss_mat.h:ss_mat.h*( N_time - 1);

% Iterate

for i = 2: N_time

wCT_ = w(i-1);

fturb = ss_mat.B1 * wCT_;

x(:, i) = myRK4(i-1, x(:, i-1), ss_mat , alpha , beta , fturb)

;

y(:, i) = ss_mat.C1 * x(:, i) + v(i);
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end

% Evaluate contact force

y2 = ss_mat.C2 * x;

fc = -fcontact(y2, alpha , beta);

% Time point indices

t = 1: N_time;

%% Save Data

% Save synthetic data

save(’data_core.mat’, ’y’, ’x’);

% Save SS model information (SS matrices , dimensions , Qf, R)

save(’model_core.mat’, ’ss_mat ’);

% Save contact info (parameters for grid search)

save(’contact_core.mat’, ’alpha’, ’beta’);

% Save CSV file for true response (grid search method)

ytrue_mat = [ 0:4;

time ’, y’ ];

writematrix(ytrue_mat , ’Synth_Outputs_True_core.csv’)

% Save CSV file for true coefficient combination

coefs = [1; alpha; beta];

writematrix(coefs , ’Synth_Outputs_True_Coefs_core.csv’)

% Save CSV file for true states (UKF)

xtrue_mat = [ 0:6;

time ’, x’];

writematrix(xtrue_mat , ’Synth_States_True_core.csv’)
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B.1.1 Fourth-Order Runge-Kutta Method

The synthetic dataset’s states at each time point are evaluated for the core barrel system

using a fourth-order Runge-Kutta method, as defined in the function myRK4.

%% 4th-Order Runge Kutta integrator

function xnext = myRK4(t, x, ss_mat , alpha , beta , process_noise

)

% Time step

h = ss_mat.h;

% Slopes

K1 = CT_ODEs(t, x, ss_mat , alpha , beta);

K2 = CT_ODEs(t + (h / 2), x + (h / 2)*K1 , ss_mat , alpha ,

beta);

K3 = CT_ODEs(t + (h / 2), x + (h / 2)*K2 , ss_mat , alpha ,

beta);

K4 = CT_ODEs(t + h, x + h*K3, ss_mat , alpha , beta);

% Estimate the next state (including process noise from

turbulence)

xnext = x + (ss_mat.h / 6)*(K1 + 2*K2 + 2*K3 + K4) +

process_noise;

end

B.1.2 Continuous-time Equations of Motion

The continuous-time equations of motion for the core barrel system are expressed in the

user-defined function CT ODEs. These equations are used within the Runge-Kutta method

to solve for the system’s states.

%% CT differential equations of motion (no process noise)

function xdot = CT_ODEs(t, x, ss_mat , alpha , beta)

% Compute the velocity of each contact point

149



y2 = ss_mat.C2 * x;

% Differential equations of motion

xdot = ss_mat.A * x + ss_mat.B2 * fcontact(y2 , alpha , beta)

;

end

B.1.3 Hyperbolic Tangent Contact Force Function

The function for the equations of motion also depends upon the user-defined contact

force function fcontact.

%% Contact force applied to the core barrel

function Fc = fcontact(y2, alpha , beta)

% Hyperbolic tangent contact force model

Fc = -alpha * tanh(beta * y2);

end

B.2 Grid Search Ensemble Generation

An ensemble of 20 simulations is generated for each combination of contact parameters

in the grid search method. This requires a total of 680 simulations for the entire grid of 34

parameter combinations. The data generation process is hastened by using MATLAB’s par-

allel computing toolbox to simultaneously generate simulations across 4 pools of processors.

This process requires more computational power, but in return it drastically decreases the

computation time. The following code uses a parallel for-loop with 4 workers to generate

the grid of ensembles.

% 06/03/2022, Nicholas Harn

% Grid of ensembles
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clear;

close all;

clc;

delete(gcp(’nocreate ’));

% Set rng seed for each replication (shuffle)

rng(’shuffle ’);

%% Load Data

load(’data_core.mat’); % Load synthetic data

load(’model_core.mat’); % Load core barrel model

load(’contact_core.mat’); % Load contact parameters

%% System dimensions

% Number of states (including parameters)

ss_mat.n_state = 2* ss_mat.n_dof;

% Number of process noise inputs (including disturbances)

ss_mat.q = ss_mat.n_w_in;

% Number of augmented states

ss_mat.n_a = ss_mat.n_state + ss_mat.q + ss_mat.m_out;

% Number of augmented outputs

ss_mat.m_a = ss_mat.n_state + ss_mat.m_out;

% Number of time points and samples

ss_mat.N = length(x);

% Time vector

time = 0 : ss_mat.h : ss_mat.h*( ss_mat.N - 1);

%% Define process noise
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swf = chol(ss_mat.Qf); % Process noise standard deviation

w = @(k) (swf*randn(ss_mat.q, 1)); % Process noise

%% Define measurement noise

sv = chol(ss_mat.R); % Measurement noise standard deviation

v = @(k) (sv*randn(ss_mat.m_out , 1)); % Measurement noise

%% Set-up grid search

% Parameter values

a = 1:0.5:5;

ss_mat.alpha_vect = 10.^a; % Max contact force

b = -1:0.5:3;

ss_mat.beta_vect = 10.^b; % Inverse of characteristic

velocity

% Number of coefficients for the grid

ss_mat.N_coef = length(a);

%% Parfor loop (for multiple replications)

num_reps = 20; % Number of replications for the ensemble

% Begin timer and loop

tic;

parfor rep_id = 1: num_reps % Parallel computing on 4 workers

%% Initializing arrays for storing data

% Initialize array for storing states of simulations

X_all_coefs = zeros(ss_mat.N_coef , ss_mat.N_coef , ...

ss_mat.n_state , ss_mat.N);

% Initialize arrays for storing inputs and outputs
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Y1_all_coefs = zeros(ss_mat.N_coef , ss_mat.N_coef , ...

ss_mat.m_out , ss_mat.N);

Y2_all_coefs = zeros(ss_mat.N_coef , ss_mat.N_coef , ...

ss_mat.n_u_in , ss_mat.N);

U1_all_coefs = zeros(ss_mat.N_coef , ss_mat.N_coef , ...

ss_mat.q, ss_mat.N);

U2_all_coefs = zeros(ss_mat.N_coef , ss_mat.N_coef , ...

ss_mat.n_u_in , ss_mat.N);

% Set Initial Condition for State

X_all_coefs (:, :, :, 1) = zeros(ss_mat.N_coef , ...

ss_mat.N_coef , ss_mat.n_state , 1);

%% Iterative solver

% Iterate over alpha

for i_alpha = 1: ss_mat.N_coef

alpha = ss_mat.alpha_vect(i_alpha);

% Iterate over beta

for i_beta = 1: ss_mat.N_coef

beta = ss_mat.beta_vect(i_beta);

% Keep 1e2 <= gamma = alpha * beta <= 1e4

if alpha * beta > 1.01e4 % 1.01e4?

continue

elseif alpha * beta < 9.9e1 % 9.9e1?

continue

end

% Initialize matrix of state vectors
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X = zeros(ss_mat.n_state , ss_mat.N);

% Initial conditions for this parameter combination

X(:, 1) = zeros(ss_mat.n_state , 1);

% Initialize arrays for storing forces and outputs:

% Matrix of ex-core measurements

Y1 = zeros(ss_mat.m_out , ss_mat.N);

% Matrix of turbulent forces

U1 = zeros(ss_mat.q, ss_mat.N);

% Matrix of process noise terms from turbulence

fturb = zeros(ss_mat.n_state , ss_mat.N);

% Iterate over time

for i_t = 2: ss_mat.N

% Input vector

U1(:, i_t - 1) = w(i_t - 1);

% Process noise from turbulence

fturb(:, i_t - 1) = ss_mat.B1 * U1(:, i_t - 1);

% Solve for the state at the next time point

X(:, i_t) = myRK4(i_t - 1, X(:, i_t - 1), ...

ss_mat , alpha , beta , fturb(:, i_t - 1));

% Output vector

Y1(:, i_t) = ss_mat.C1*X(:, i_t) + v(i_t);

end

% Solve for contact force

Y2 = ss_mat.C2 * X;

U2 = fcontact(Y2, alpha , beta);
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% Save data for this coefficient combination

X_all_coefs(i_alpha , i_beta , :, :) = X;

Y1_all_coefs(i_alpha , i_beta , :, :) = Y1;

Y2_all_coefs(i_alpha , i_beta , :, :) = Y2;

U1_all_coefs(i_alpha , i_beta , :, :) = U1;

U2_all_coefs(i_alpha , i_beta , :, :) = U2;

end

end

%% Save synthetic grid data

% Define reorganized matrix for storing synthetic data

output_matrix_1 = zeros(ss_mat.N, ss_mat.N_coef ^2 + 1);

output_matrix_1 (:, 1) = time ’;

% Extract coefficient values

alpha_vect = ss_mat.alpha_vect;

beta_vect = ss_mat.beta_vect;

% Reorganize the data

i_col = 0;

for i_alpha = 1: ss_mat.N_coef

for i_beta = 1: ss_mat.N_coef

% Establish ranges of parameter values

if alpha_vect(i_alpha)*beta_vect(i_beta) > 1.01e4

continue

elseif alpha_vect(i_alpha)*beta_vect(i_beta) < 99

continue

end
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% Column index

i_col = i_col + 1;

% Reorganized output data

out_mat_icol = squeeze(Y1_all_coefs(i_alpha , ...

i_beta , 1, :));

output_matrix_1 (:, i_col + 1) = out_mat_icol;

end

end

% Label the reorganized matrix ’s columns

output_matrix_1_labelled = [0: ss_mat.N_coef ^2; ...

output_matrix_1 ];

% Save matrix as a CSV datafile

writematrix(output_matrix_1_labelled , ...

sprintf(’Synth_Output1_Grid_core_Rep_ %03d.csv’, ...

rep_id));

end

% Delete parallel pool once finished

delete(gcp(’nocreate ’));

% End timer

toc

%% Save coefficient data

% Initialize the coefficient matrix

coefs = zeros(2, ss_mat.N_coef ^2);
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% Extract coefficient values for the grid

alpha_vect = ss_mat.alpha_vect;

beta_vect = ss_mat.beta_vect;

% Populate the coefficient matrix

i_col = 0;

for i_alpha = 1: ss_mat.N_coef

for i_beta = 1: ss_mat.N_coef

% Establish ranges of parameter values

if alpha_vect(i_alpha)*beta_vect(i_beta) > 1.01e4

continue

elseif alpha_vect(i_alpha)*beta_vect(i_beta) < 99

continue

end

% Indexing the data matrix ’s empty columns (2 - 120)

i_col = i_col + 1;

% Populating columns of matrices

coefs(:, i_col) = [alpha_vect(i_alpha); ...

beta_vect(i_beta)];

end

end

% Label the coefficient matrix

coef_label = 1: length(coefs);

coef_matrix_labelled = [coef_label; coefs];

% Save coefficient data in .csv file
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writematrix(coef_matrix_labelled , ’Synth_Output1_Coefs_core.csv

’);

B.3 Unscented Kalman Filter Approximation

The following MATLAB code applies an unscented Kalman filter to a synthetic dataset,

generating state, output, and parameter estimates for the core barrel system.

% 07/20/2022, Nicholas Harn

% Unscented Kalman filter for Core Barrel

clear;

close all;

clc;

rng(’shuffle ’);

%% Load Data

load(’data_core.mat’); % Load synthetic data

load(’model_core.mat’); % Load core barrel model

% Load core contact parameters

load(’contact_core.mat’); % Load core contact parameters

%% System dimensions

% Number of states (including parameters)

ss_mat.n_state = 2* ss_mat.n_dof + 2;

% Number of process noise inputs (including disturbances)

ss_mat.q = ss_mat.n_w_in + 2;

% Number of augmented states
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ss_mat.n_a = ss_mat.n_state + ss_mat.q + ss_mat.m_out;

% Number of augmented outputs

ss_mat.m_a = ss_mat.n_state + ss_mat.m_out;

% Number of time points

ss_mat.N = length(x); % Number of samples

time = 0: ss_mat.h:ss_mat.h*( ss_mat.N - 1); % Time vector

%% Define noise on the system

% Disturbance of alpha ’s estimate

seps1 = 1e1; % Standard dev of alpha ’s estimate (0.1*alpha)

Qeps1 = seps1 ^2; % Variance of alpha ’s estimate

% Disturbance of beta ’s estimate

seps2 = 1e0; % Standard dev of beta ’s estimate (0.1*beta)

Qeps2 = seps2 ^2; % Variance of beta ’s estimate

% State variance (with parameter disturbances)

ss_mat.Q = [ss_mat.Qf, zeros(ss_mat.n_w_in , 2);

...

zeros(1, ss_mat.n_w_in), Qeps1 , 0;

...

zeros(1, ss_mat.n_w_in), 0, Qeps2];

%% Initialize

% Initial guess of state estimate

% alpha0 = 1e1; % Underestimate as 10% of the true value

% beta0 = 1e0; % Underestimate as 10% of the true value

alpha0 = 0;

beta0 = 0;
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xc0 = [ zeros (2* ss_mat.n_dof , 1); alpha0; beta0 ];

% Initial guess of state variance

Sxxc = (1e-3) * eye(ss_mat.n_state);

% Set weighting factor kappa

kappa = 0.5;

%% Generate the state estimate

[xp , xc, yp, yc, K_t , Sxxc] = myUKF(y, ...

xc0 , Sxxc , kappa , ss_mat);

%% Estimates of alpha and beta

alpha_avg = mean(xc(7, ss_mat.N/5: ss_mat.N));

alpha_stdev = std(xc(7, ss_mat.N/5: ss_mat.N));

beta_avg = mean(xc(8, ss_mat.N/5: ss_mat.N));

beta_stdev = std(xc(8, ss_mat.N/5: ss_mat.N));

%% Create plots of state , output , and parameter estimates

PLOT_SOME_STUFF

%% Save data as CSV

% Create dataset label

data_label = 1:(1 + ss_mat.m_a);

%% Organize data:

% Column 1 = Time vector , Columns 2 - 7 = States

% Columns 8 - 9 = Contact Parameters

% Columns 10 - 13 = Outputs , Row 1 = Labels

% Rows 2 - 100001 = Values at various time points
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data_matrix = [ data_label; ...

time ’, xc ’, yc ’];

% Save as CSV

writematrix(data_matrix , ’Synth_UKF_Estimates_core.csv’)

% Organize data:

% Column 1 = alpha , Column 2 = beta

% Row 1 = Labels , Row 2 = Average value

% Row 3 = Standard deviation

param_est = [ 0, 1;

alpha_avg , beta_avg;

alpha_stdev , beta_stdev ];

% Save as CSV

writematrix(param_est , ’Synth_UKF_Param_Estimates_core.csv’)

% Save outputs as mat file

xc_states = xc(1:2* ss_mat.n_dof , :);

xc_params = xc((2* ss_mat.n_dof + 1):ss_mat.n_state , :);

save(’ukf_estimates.mat’, ...

’time’, ’xc_states ’, ’xc_params ’, ’yc’, ’y2c’, ’fc_est ’);

%% FUNCTIONS

% Augmented function for the sigma point transformation

function ybig = fa(t, xbig , ss_mat)

%% Extract info from ss_mat

n_state = ss_mat.n_state; % Number of states

n_a = ss_mat.n_a; % Number of augmented states

n_dof = ss_mat.n_dof; % Number of degrees of freedom
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q = ss_mat.q; % Number of process noise

inputs

n_w_in = ss_mat.n_w_in; % Number of turbulent inputs

%% Deconstruct the function ’s augmented input vector xbig

% States

x_ = xbig (1: n_state , :);

% Process noise

w_ = xbig(( n_state + 1):( n_state + q), :);

% Measurement noise

v = xbig(( n_state + q + 1):n_a , :);

%% Deconstruct the state

% CT system ’s states

xCT_ = x_(1:2* n_dof , :);

% Parameter states

param_ = x_((2* n_dof + 1):n_state , :);

%% Deconstruct process noise

% CT system ’s process noise

wCT_ = w_(1:n_w_in , :);

% Process noise on parameters

epsilon = w_(( n_w_in + 1):q, :);

% Compute process noise from turbulence

fturb = ss_mat.B1 * wCT_;

% Update the state

xCT = myRK4(t, xCT_ , ss_mat , ...

param_ (1,:), param_ (2,:), fturb);
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% Require positive parameters

param = abs(param_ + epsilon);

% Evaluate the measurement (including noise)

y = ss_mat.C1 * xCT + v;

% Augmented function ’s output

ybig = [ xCT; param; y ];

end

% UKF prediction and update equation

function [xp, xc , yp , yc, K_t , Sxxc] = myUKF(y, ...

x0 , Sxx0 , kappa , ss_mat)

% Extract dimensions

N = ss_mat.N; % Number of time points

n_state = ss_mat.n_state; % Number of states

n_a = ss_mat.n_a; % Number of augmented states

m_out = ss_mat.m_out; % Number of outputs

m_a = ss_mat.m_a; % Number of augmented outputs

q = ss_mat.q; % Number of process noise inputs

n_dof = ss_mat.n_dof; % Number of degrees of freedom

% Extract other information

Q = ss_mat.Q; % Process noise variance

R = ss_mat.R; % Measurement variance

h = ss_mat.h; % Time step length

% Allocate space for inputs and outputs

xp = zeros(n_state , N);
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xc = zeros(n_state , N);

yp = zeros(m_out , N);

yc = zeros(m_out , N);

% Initialize posterior (corrected) estimates

xc(:, 1) = x0;

Sxxc = Sxx0;

% Create time -varying Kalman gain matrix

K_t = zeros(n_state , m_out , N);

% Iterate

for i = 2:N

% Current value of time

t = h*i;

% Assemble augmented state vector

xbig = [xc(:, i-1); zeros(q + m_out , 1)];

% Assemble augmented state variance

Xbig = [Sxxc , zeros(n_state , m_out + q); ...

zeros(q, n_state), Q, zeros(q, m_out); ...

zeros(m_out , n_state + q), R];

% Sigma -point transformation

[ybig , Ybig] = unscented_trans(@(t,xbig) fa(t, ...

xbig , ss_mat), t, xbig , Xbig , n_a , m_a , kappa);

% Deconstruct mean

xp(:, i) = ybig (1: n_state , :);

164



yp(:, i) = ybig(( n_state + 1):m_a , :);

% Deconstruct covariance matrix

Sxxp = Ybig (1: n_state , 1: n_state);

Sxyp = Ybig (1: n_state , (n_state + 1):m_a);

Syxp = Ybig(( n_state + 1):m_a , 1: n_state); % Sxyp ’

Syyp = Ybig(( n_state + 1):m_a , (n_state + 1):m_a);

% Compute Kalman gain

K = Sxyp*inv(Syyp);

K_t(:, :, i) = K;

% Correct state estimate

xc(:, i) = xp(:, i) + K*(y(:, i) - yp(:, i));

Sxxc = Sxxp - Sxyp*inv(Syyp)*Syxp;

% Corrected output

yc(:, i) = ss_mat.C1*xc (1:2* n_dof , i);

end

end

B.3.1 Unscented Transformation Function

The unscented Kalman filter approach uses the function unscented trans to apply an

unscented transformation to the core barrel system’s augmented states at each time point.

%% Unscented Transformation function , as developed by

% Julier and Uhlmann

% Code written by Nicholas Harn and Dr. Daniel G Cole
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function [ybar , Pyy] = unscented_trans(func , ...

t, xbar , Pxx , n, m, kappa)

% [ybar ,Pyy] = UNSCENTED_TRANS(FUNC ,t,XBAR ,PXX,M,N,KAPPA)

% returns the mean estimate ybar and

% covariance estimate Pyy of a function FUNC

% for an input probability density

% with mean XBAR and covariance PXX.

% The dimension of the input to FUNC is N and

% the dimension of the output is M.

% KAPPA is a free parameter used in

% the unscented algorithm.

% t is the time vector for the simulation.

% Cholesky factorization of the input ’s variance

% (effectively the input ’s standard deviation)

U = chol((n + kappa)*Pxx)’;

% Initialize matrices for the sigma points ,

% weights , and transformed points

chi = zeros(n, 2*n + 1);

W = zeros (2*n + 1, 1);

y = zeros(m, 2*n + 1);

% Transform the mean of the input

chi(:, 1) = xbar;

W(1) = kappa /(n + kappa);

y(:, 1) = func(t, chi(:, 1));

for i = 1:n,
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% Sigma points of x (distributed about the mean)

chi(:, i+1) = xbar + U(:, i);

chi(:, i+n+1) = xbar - U(:, i);

% Weights of the sigma points

W(i+1) = 1/2/(n + kappa);

W(i+n+1) = 1/2/(n + kappa);

% Transform the sigma points

y(:,i+1) = func(t,chi(:,i+1));

y(:,i+n+1) = func(t,chi(:,i+n+1));

end

% Initialize the statistics of the transformed points

ybar = zeros(m, 1);

Pyy = zeros(m, m);

% Evaluate the mean of the transformed sigma points

for i = 1:(2*n+1),

ybar = ybar + W(i)*y(:, i);

end

% Evaluate the variance of the transformed sigma points

for i = 1:(2*n+1),

Pyy = Pyy + W(i)*(y(:, i) - ybar)*(y(:, i) - ybar)’;

end

return

end
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B.3.2 Additional Computations for the Estimates

The MATLAB file PLOT SOME STUFF.m computes additional information regarding the

unscented Kalman filter’s simulated responses. These computations include a comparison of

the estimated contact force to the synthetic dataset’s true contact force, approximating the

power dissipated by the system, and evaluating the errors of the estimations.

%% Calculate innovation of the output and errors of the

estimates

% Innovation of the output predictions

innov = y - yp;

% State correction term (theoretically xc - xp)

x_correction = zeros(ss_mat.n_state , ss_mat.N); % Initialize

for i = 1: ss_mat.N

x_correction (:, i) = K_t(:, :, i)*innov(:, i);

end

% Error of the corrected outputs

err = y - yc;

%% Calculate various estimates and true values

% Slope of the contact force function ’s viscous region

gamma_true = alpha * beta; % True

gamma_est = xc(7, :) .* xc(8, :); % Estimate

% True velocity at the point of contact

y2 = ss_mat.C2 * x;

% Corrected contact point velocity estimate

y2c = ss_mat.C2 * xc (1:(2* ss_mat.n_dof), :);
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% True contact force

fc_true = fcontact(y2 , alpha , beta);

% Corrected contact force estimate

fc_est = zeros(ss_mat.n_u_in , ss_mat.N); % Initialize

for i = 1: ss_mat.N

fc_est(:,i) = fcontact(y2c(:, i), xc(7, i), xc(8, i));

end

% True power dissipated by the contact force

Pdiss_cont_true = sum( abs(fc_true .*y2), 1);

% Estimated power dissipated by the contact force

Pdiss_cont_est = sum( abs(fc_est .*y2c), 1);

% Power dissipated by the core barrel structure

load(’c_damp.mat’); % Load structure ’s damping matrix

Pdiss_struc_est = zeros(1, ss_mat.N); % Initialize

Pdiss_struc_true = zeros(1, ss_mat.N); % Initialize

for i = 1: ss_mat.N

% True structural power dissipation

Pdiss_struc_true = sum (0.5*x(4:6, i)’*C_damp*x(4:6, i), 1);

% Estimated structural power dissipation

Pdiss_struc_est = sum (0.5*xc(4:6, i)’*C_damp*xc(4:6, i),

1);

end

% Total power dissipated

Pdiss_true = Pdiss_cont_true + Pdiss_struc_true; % True

Pdiss_est = Pdiss_cont_est + Pdiss_struc_est; % Estimate
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