
The Search for Time Accuracy: A Variable Time-stepping Algorithm For

Computational Fluid Dynamics

by

Wenlong Pei

Bachelor of Economics in Finance, Shanghai University of International Business and

Economics, 2011

M.S. in Applied Financial Mathematics, University of Connecticut, 2014

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Wenlong Pei

It was defended on

July 13th 2022

and approved by

William Layton, Department of Mathematics, University of Pittsburgh

Catalin Trenchea, Department of Mathematics, University of Pittsburgh

Ivan Yotov, Department of Mathematics, University of Pittsburgh

Martina Bukač, Department of Applied and Computational Mathematics and Statistics,

University of Notre Dame

Dissertation Director: William Layton, Department of Mathematics, University of

Pittsburgh

Dissertation Co-advisor: Catalin Trenchea, Department of Mathematics, University of

Pittsburgh

ii

Copyright c© by Wenlong Pei

2022

iii

The Search for Time Accuracy: A Variable Time-stepping Algorithm For

Computational Fluid Dynamics

Wenlong Pei, PhD

University of Pittsburgh, 2022

Dahlquist, Liniger, and Nevanlinna proposed a two-step time-stepping scheme for systems

of ordinary differential equations (ODEs) in 1983. The little-explored variable time-stepping

scheme has advantages in numerical simulations for its fine properties such as unconditional

G-stability and second-order accuracy. However, this numerical scheme is always avoided for

time discretization due to its complex form. To solve this issue, we simplify its implementa-

tion through time filters (pre-filter and post-filter) on a certain first-order implicit method.

By adding only a few lines of code, accuracy will be improved while stability is not sacrificed.

G-stability of the scheme for systems of ODEs corresponds to unconditional, long-time

energy stability when applied to flow models. The combination of G-stability and consistency

provides the preliminaries for error analysis. We analyze the method of Dahlquist, Liniger,

and Nevanlinna (DLN) as a variable step, time discretization of the unsteady Stokes/Darcy

model, and the Navier-Stokes equations. We prove that the kinetic energy is bounded for

variable time-steps, show that the method is second-order accurate, characterize its numerical

dissipation and prove error estimates.

Moreover, the adaptivity algorithm for this variable time-stepping scheme, highly reduc-

ing computation cost as well as keeping time accuracy, has been applied to systems of ODEs

and flow models. The local truncation error criterion for adapting time steps, with corre-

sponding error estimators, is known in ODE problems. Many methods of error estimation

are possible; herein we focus on ones that involve minimal extra storage and computations.

First, we extend a classic and highly the efficient idea of Gear from the trapezoid rule to

the DLN method. Second, we consider a recent refactorization of the DLN method which

eases the implementation of DLN in legacy codes. We show that this refactorization provides

methods for effective error estimation, at no extra cost.

For fluid models, the minimum numerical dissipation criterion is used for adjusting the

iv

time steps, as the estimator of the local truncation error would be more complicated. The

2D offset circles problem by this algorithm is used to confirm the stability of the approximate

solutions.

Keywords: computational fluid dynamics, variable time-stepping, G-stability, second-order

convergence, time adaptivity.

v

Table of Contents

Preface . xii

1.0 Introduction . 1

2.0 Refactorization of a variable step, unconditionally stable method of

Dahlquist, Liniger and Nevanlinna . 4

2.1 The DLN method and its refactorization . 4

2.1.1 Related Work . 7

2.2 Convergence analysis of one-leg DLN method 8

2.2.1 Consistency error . 8

2.2.2 G-stability . 9

3.0 Time step adaptivity in the method of Dahlquist, Liniger and Nevanlinna 11

3.1 Introduction . 11

3.1.1 Related Work . 13

3.2 Adaptivity by Explicit Schemes . 14

3.3 Adaptivity by the DLN Refactorization Process 16

3.4 Numerical Tests . 21

3.4.1 Constant Step Tests . 21

3.4.1.1 Quasi-periodic oscillations . 22

3.4.1.2 Increase of Oscillation . 24

3.4.1.3 The Lorenz system . 24

3.4.1.4 The example of Sussman . 28

3.4.2 Variable Step Tests . 29

3.4.2.1 Quasi-periodic oscillations . 29

3.4.2.2 Lotka-Volterra Equations . 29

3.4.2.3 Kepler System . 34

3.4.2.4 Van der Pol’s equation . 35

3.4.3 Lindberg’s Example with Step Floor 39

vi

3.5 Conclusions . 43

4.0 The DLN Algorithm for the Unsteady Stokes/Darcy Model 44

4.1 Introduction . 44

4.1.1 Related Work . 46

4.2 The Time-dependent Stokes/Darcy Model 46

4.3 Preliminaries . 50

4.4 Stability Analysis . 52

4.5 Error Analysis . 53

4.6 Numerical Tests . 59

4.6.1 Test of Variable Time-stepping DLN algorithm 59

4.6.2 Test of constant Time-stepping DLN algorithm 60

4.7 Conclusions . 62

5.0 The DLN Algorithm for the Navier-Stokes equations 66

5.1 Introduction . 66

5.1.1 Related work . 67

5.2 The Variable Step DLN method . 68

5.3 Preliminaries and Notations . 69

5.4 Stability of DLN Method for the NSE . 72

5.5 Variable Time-Step Error Analysis . 73

5.6 Numerical Tests . 87

5.6.1 Convergence Test (constant time step size) 87

5.6.2 2D Offset Circles Problem (with preset variable time step size) 90

5.6.3 Adapting the time step . 91

5.7 Conclusions . 96

6.0 Conclusion and Future Work . 97

6.1 Future Work . 98

6.1.1 The DLN-ensemble Algorithm for Navier Stokes equations 98

6.1.2 The Semi-implicit DLN Algorithm for Navier Stokes equations 99

Bibliography . 101

vii

List of Tables

Table 1: Second-order convergence of the constant step DLN method using ‖·‖2,∞-

norm . 22

Table 2: Second-order convergence of the constant step DLN method using ‖·‖2,2-

norm . 23

Table 3: Comparison of Algorithm 2 and constant DLN algorithm with the same

number of time steps . 30

Table 4: Comparison of Algorithm 4 and constant DLN algorithm with the same

number of time steps . 31

Table 5: Number of steps of DLN algorithms and MATLAB ode functions 34

Table 6: Number of steps of DLN algorithms and MATLAB ode functions 37

Table 7: Number of steps of DLN algorithms and MATLAB ode functions 38

Table 8: Tolerance of DLN algorithms for Lindberg’s example 41

Table 9: Tolerance of Algorithm 2 for Lindberg’s example starting at t = 0 . . . 42

Table 10: The errors for DLN scheme with θ = 0.2. 63

Table 11: The errors for DLN scheme with θ = 0.5. 63

Table 12: The errors for DLN scheme with θ = 0.7. 63

Table 13: The convergence order of errors for DLN scheme with θ = 0.2. 64

Table 14: The convergence order of errors for DLN scheme with θ = 0.5. 64

Table 15: The convergence order of errors for DLN scheme with θ = 0.7. 64

Table 16: The errors for BDF2 scheme. 65

Table 17: The errors and convergence order of the DLN scheme at time T = 1 for

the velocity and pressure of L2-norm with θ = 0.2. 88

Table 18: The errors and convergence order of the DLN scheme at time T = 1 for

the velocity and pressure of L∞-norm with θ = 0.2. 88

Table 19: The errors and convergence order of the DLN scheme at time T = 1 for

the velocity and pressure of L2-norm with θ = 0.5. 88

viii

Table 20: The errors and convergence order of the DLN scheme at time T = 1 for

the velocity and pressure of L∞-norm with θ = 0.5. 89

Table 21: The errors and convergence order of the DLN scheme at time T = 1 for

the velocity and pressure of L2-norm with θ = 0.7. 89

Table 22: The errors and convergence order of the DLN scheme at time T = 1 for

the velocity and pressure of L∞-norm with θ = 0.7. 89

ix

List of Figures

Figure 1: Refactorization of the (DLN) method as a pre- and post-processed (BE)

method . 7

Figure 2: The estimator of LTE by the Refactorization Algorithm 19

Figure 3: log-log plot of convergence rate for the constant step DLN algorithm . . 23

Figure 4: Oscillations of BE, BE Plus Filter, and BDF2 solutions decrease as time

grows and in contrast the oscillations of the exact solution increase. . . 25

Figure 5: Oscillations of Constant Step DLN (δ = 2/3, 2/
√

5, 1) solutions increase,

which shows that the simulations approximate exact solutions well. . . . 26

Figure 6: The constant step DLN solutions oscillate correctly to steady state while

the constant step BE solutions over damp to equilibrium. 27

Figure 7: Constant step DLN solutions approach to steady state correctly. 28

Figure 8: Periodic oscillations . 30

Figure 9: Lotka-Volterra System Phase Solutions by DLN Method and Matlab

ODE Functions . 32

Figure 10:Lotka-Volterra System . 33

Figure 11:Phase solutions of Kepler system by DLN with δ = 2/3 and MATLAB

ode functions . 35

Figure 12:Hamiltonian Conservation of Kepler System 36

Figure 13:Van der Pol’s equation by DLN with δ = 2/3 and MATLAB ode functions 38

Figure 14:Van der Pol’s equation by DLN with δ = 1 and MATLAB ode functions 38

Figure 15:First and second components of Lindberg’s example by Algorithm 2 and

MATLAB ode functions . 40

Figure 16:First and second components of Lindberg’s example by Algorithm 4 and

MATLAB ode functions . 41

Figure 17:First and second components of Lindberg’s example by Algorithm 2 s-

tarting from t = 0. 42

x

Figure 18:A global domain Ω consisting of a fluid flow region Ωf and a porous

media flow region Ωp separated by an interface Γ. 47

Figure 19:Change of step size kn. 60

Figure 20:Speed contours and velocity streamlines with θ = 0.2, 0.5, 0.7. 61

Figure 21:Comparison between approximate solutions and exact solutions with d-

ifferent parameter θ. 61

Figure 22:Boundaries of Stability Region for constant DLN (θ = 0.5) and BDF2. . 68

Figure 23:Speed Contours of DLN. 91

Figure 24:Velocity Streamlines of DLN. 92

Figure 25:Energy, ‖u‖ and ‖∇u‖ of DLN, BDF2, BDF3 and BDF4 with variable

time step size. 93

Figure 26:The time step size kn and ratio χ changing with adaptive time step size. 94

Figure 27:The energy 1
2
‖u‖2 and numerical dissipation

√
εDLN changing with adap-

tive time step size. 94

Figure 28:The time step size k and ratio χ changing with constant time step size. 95

Figure 29:The energy 1
2
‖u‖2 and numerical dissipation

√
εDLN changing with con-

stant time step size. 95

xi

Preface

I want to express my sincere gratitude to all the people who gave me help and encour-

agement in the pursuit of the Ph.D. degree.

I would like to thank my advisor, Dr. William Layton for his fantastic ideas in computa-

tional fluid dynamics. In addition, he taught me how to do research efficiently, and become

a qualified researcher.

I am grateful to my co-advisor, Dr. Catalin Trenchea for helping me check the details of

the proofs, computing, and programming in my research.

Moreover, I appreciate Dr. Ivan Yotov and Dr. Martina Bukač for serving on my disser-

tation committee and providing suggestions on my research work.

Last but not least, I would like to thank my parents for their constant and essential

support in such a long and exciting journey.

xii

1.0 Introduction

The accurate numerical simulation of flows of an incompressible, viscous fluid, with

the accompanying complexities occurring in practical settings, is a problem where speed,

memory and accuracy never seem sufficient. For time discretization (considered herein),

many longer time simulations use constant step, low-order methods, and the remainder use

the constant time step implicit midpoint or the trapezoidal schemes, e.g., [7,11,78,114] (often

combined with fractional steps, or with ad hoc fixes to correct for oscillations due to lack of

L-stability, [10,101,124]) or the BDF2 method [3,43,57,81,86,128]. Time accuracy requires

time step adaptivity within the computational, space and cognitive complexity limitations of

computational fluid dynamics (CFD). Beyond accuracy, adaptivity has the secondary benefit

(depending on implementation) of reducing memory requirements and decreasing the number

of floating-point operations.

The richness of scales of higher Reynolds number flows and the cost per step of their

solution suggest a preference for A-stable (or even L-stable) multi-step methods called Smart

Integrators in Gresho, Sani and Engelman [52, Section 3.16.4]. For constant time steps,

a complete analysis of the general (2 parameter family) 2-step, A-stable linear multi-step

method is performed in the 1979 book Girault and Raviart [48] but there is no analogous

stability or convergence analysis for the important case of variable time steps. As an example

of the challenges involved in variable steps, BDF2 (a popular member of that A-stable family)

loses A-stability for increasing time steps, allowing non-physical energy growth. This BDF2

variable step instability is weak since 0-stability is preserved for smoothly varying time

steps [8, 117]. Similarly, the trapezoidal method is unstable [33], [119, pp.181-182] when

used with variable steps. Specifically, Nevanlinna and Liniger [98,99] gave a simple example

where the trapezoidal rule (multi-step method) is unstable, but the Crank-Nicolson rule (its

one-leg ‘twin’) is stable, for all problems of the form y′(t) = λ(t)y(t),Reλ(t) ≤ 0 and any

step size sequence.

Numerical methods for evolution equations are designed based on accuracy and stability.

The theory of both is highly developed for constant time steps and linear problems. Less

1

is known for variable time steps and nonlinear problems. Dahlquist, Liniger and Nevan-

linna in [33] proposed a one parameter δ-family of variable-step, one-leg, two-step methods

(DLN), which are second-order accurate, and variable-step, nonlinearly, long-time stable. Its

detailed specification (given in Section 2.1), is sufficiently Gordian to deter its use in com-

plex applications, in which a method with DLN’s excellent properties should be valued. Our

preliminary work on adaptive time-stepping for flow problems [83, 107] shows that (DLN)

has promise, motivating the work herein.

In Chapter 2, we show how (DLN) can be refactorized to be easily implemented in an in-

tricate, possibly legacy/black-box code, without modifying the ‘assemble and solve’ portion.

Refactorization generally means a restructuring of an existing algorithm without changing

its behavior. The goal of refactorization is to reduce complexity by creating a simple and

clean logical structure, improving implementation, code readability, source maintainability,

and extensibility. While our refactorization can work for other base methods, to fix ideas for

y′ = f (t, y), we consider a method based on the fully implicit Euler method

ynew − yold

tnew − told
= f (tnew, ynew) . (BE)

Figure 1 illustrates the implementation of the (DLN) method in Algorithm 1, by adding a

pre-filter step to the data ahead of the nonlinear solver (BE), and a poster-filter step after

the solver (BE). This algorithmic idea is our main contribution of Chapter 2 and our work

builds on and is related to work in [29,30,32,61,76,77].

To our knowledge, the variable time-stepping DLN method is the only two-step scheme

which is non-linear stable and second-order accurate so that it would be an ideal candidacy

for adaptivity. We address this herein in two ways. First, we adopt an ingenious idea

of Gear [18, 47, 50, 54, 55] to the DLN method in Section 3.2. Second, we show that the

refactorized DLN algorithm itself gives an efficient option for error estimation in Section

3.3. These are developed and compared with existing methods in numerical experiments in

Section 3.4.

The dissertation is organized as follows. In Chapter 2, we propose the refactorization

algorithm of the DLN method in Section 2.1 and explore some properties of the scheme

in Section 2.2. We develop two ways of adapting the DLN algorithm and provide various

2

numerical tests to show the efficiency and accuracy of the algorithms in Chapter 3. In

Chapter 4, we apply the variable time-stepping DLN method to the unsteady Stokes/Darcy

model in Section 4.3 and provide the stability and error analysis of the approximate solutions

in Section 4.4, 4.5. Similarly, we prove the stability and the error convergence of the DLN

solutions for the Navier Stokes equations(NSEs) in Section 5.4, 5.5 of Chapter 5. Our

conclusions are supported by some numerical tests for flow problems. The constant time-

stepping DLN algorithm is used to verify the second-order convergence of the solutions in

Section 4.6.2, 5.6.1. The variable time-stepping scheme is used to show the unconditional,

long-term energy stability in Section 4.6.1, 5.6.2. Moreover, we have tested the adaptive DLN

algorithm for flow problems under the minimal numerical dissipation criterion in Section

5.6.3.

3

2.0 Refactorization of a variable step, unconditionally stable method of

Dahlquist, Liniger and Nevanlinna

2.1 The DLN method and its refactorization

We consider a numerical approximation of the initial value problem

y′(t) = f (t, y(t)) , y(0) = y0. (2.1)

at times {tn}n≥0, with the time step kn = tn+1 − tn. To present the method of [33], let

εn = (kn − kn−1)/(kn + kn−1) denote the step size variability and δ ∈ [0, 1] be an arbitrary

parameter. The (DLN) method is a 2-step method with coefficients:

α2

α1

α0


=



1
2
(δ + 1)

−δ

1
2
(δ − 1)


,



β
(n)
2

β
(n)
1

β
(n)
0


=



1
4

(
1 + 1−δ2

(1+εnδ)2
+ ε2

n
δ(1−δ2)

(1+εnδ)2
+ δ
)

1
2

(
1− 1−δ2

(1+εnδ)2

)
1
4

(
1 + 1−δ2

(1+εnδ)2
− ε2

n
δ(1−δ2)

(1+εnδ)2
− δ
)


. (2.2)

Note that {α`}2
`=0 are step size independent, while {β(n)

` }2
`=0 are step size dependent. Define

the average step size k̂n as follows:

k̂n = α2kn − α0kn−1 = δ
kn − kn−1

2
+
kn + kn−1

2
. (2.3)

The variable step DLN method of [33] as a one-leg 1 method is

α2yn+1+α1yn+α0yn−1

k̂n
=f
(
β

(n)
2 tn+1+β

(n)
1 tn+β

(n)
0 tn−1, β

(n)
2 yn+1+β

(n)
1 yn+β

(n)
0 yn−1

)
. (DLN)

1 The ‘one-leg’ term was coined by Dahlquist in 1975 [28] to name the multistep methods which involve
only one value of f in each step. In particular, the leapfrog and BDF methods are one-leg multistep methods.

4

Remark 1. The (DLN) methods are indexed by the free parameter δ ∈ [0, 1]. When δ = 1,

the (DLN) method becomes the (implicit) midpoint rule [11, 15]

yn+1 − yn
kn

= f
(1

2
(tn+1 + tn),

1

2
(yn+1 + yn)

)
, (one-step midpoint)

while for δ = 0, the (DLN) method is the (implicit) midpoint rule with double time step

yn+1 − yn−1

kn + kn−1

= f
(1

2
(tn+1 + tn−1),

1

2
(yn+1 + yn−1)

)
. (two-step midpoint)

To reduce the complexity of implementing (DLN), we consider its implementation through

pre- and post-processes of an implicit (backward) Euler method, described in Algorithm 1,

and illustrated in Figure 1.

Theorem 2. Algorithm 1 is equivalent to the (DLN) method.

Proof. First using the notations (2.4), the post-processing step writes

ynew =
1

c
(n)
2

yn+1 −
c

(n)
1

c
(n)
2

yn −
c

(n)
0

c
(n)
2

yn−1 = β
(n)
2 yn+1 + β

(n)
1 yn + β

(n)
0 yn−1.

Using also the pre-processing relations, the backward Euler step in Algorithm 1

ynew − yold

(∆t)BE
n

= f (tnew, ynew) (DLN2BE)

translates to

1

k̂n

(
1

b(n)c
(n)
2

yn+1 −
1

b(n)

(c(n)
1

c
(n)
2

+ a
(n)
1

)
yn −

1

b(n)

(c(n)
0

c
(n)
2

+ a
(n)
0

)
yn−1

)
= f

(
β

(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1, β

(n)
2 yn+1 + β

(n)
1 yn + β

(n)
0 yn−1

)
.

Finally, by (2.4), this shows that the backward Euler-based Algorithm 1 yields the solution

of the (DLN) method.

5

Algorithm 1: Refactorization of the (DLN) method

Input: yn, yn−1 and tn−1, tn, tn+1 ;

// Pre-process : interpolation

// Evaluate quantities in (2.2) and (2.3)

α2 = 1
2
(δ + 1), α1 = −δ, α0 = 1

2
(δ − 1),

β
(n)
2 = 1

4

(
1 + 1−δ2

(1+εnδ)2
+ ε2

n
δ(1−δ2)

(1+εnδ)2
+ δ
)
,

β
(n)
1 = 1

2

(
1− 1−δ2

(1+εnδ)2

)
, β

(n)
0 = 1− β(n)

2 − β(n)
1 , k̂n = α2kn − α0kn−1.

// Define the refactorization coefficients

 a
(n)
1 = β

(n)
1 − α1β

(n)
2

α2

, a
(n)
0 = 1− a(n)

1 , b(n) =
β

(n)
2

α2

,

c
(n)
2 = 1

β
(n)
2

, c
(n)
1 = −β

(n)
1

β
(n)
2

, c
(n)
0 = −β

(n)
0

β
(n)
2

.

(2.4)

// Evaluate the time-step for BE

(∆t)BE
n ⇐ b(n)k̂n

// Set the BE time interval: [tnew − (∆t)BEn , t
new], and yoldn

tnew ⇐ β
(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1; yold ⇐ a

(n)
1 yn + a

(n)
0 yn−1 ;

// backward Euler

Solve for ynew:
ynew − yold

(∆t)BE
n

= f (tnew, ynew)

// Post-process : extrapolation

yn+1 ⇐ c
(n)
2 ynew + c

(n)
1 yn + c

(n)
0 yn−1 ; // the DLN solution

Output: yn+1, If desired: Estimate Error and adapt kn

Since α0 + α1 + α2 = 0, β
(n)
0 + β

(n)
1 + β

(n)
2 = 1, the coefficients a

(n)
i , b(n), c

(n)
i satisfy

a
(n)
0 + a

(n)
1 = 1, c

(n)
2 + c

(n)
1 + c

(n)
0 = 1.

6

Figure 1: Refactorization of the (DLN) method as a pre- and post-processed (BE) method

2.1.1 Related Work

The (DLN) method is variable-step G-stable outgrowth of a method of Liniger [93], which

is non-autonomous A-stable (i.e. for y′ = λ(t)y). The pre- and post-process steps in the

Algorithm 1 are akin to time filters, highly developed as numerical methods in atmospheric

science [4, 60, 91, 109, 127]. Recently it was noticed in Guzel and Layton [58] that this

technique for adding stability can also increase accuracy. The idea of prefilter → simple

method → postfilter was developed in a different direction for constant time steps in [35].

The refactorization of an algorithm to reduce its cognitive complexity has been used in [15]

to rearrange a family of one-leg one-step methods into a backward Euler code followed by

post-processing, and further applied for partitioning multi-physics problems [11,13,14,125].

In [126], the authors describe the implementation of the (DLN) formulas in a Nordsieck

formulation [100, 115] essentially identical to that of the backward differentiation formulas,

facilitating to adapt Nordsieck formulation codes like DIFSUB [46,47] to the (DLN) formulas.

7

2.2 Convergence analysis of one-leg DLN method

While stability and consistency were already addressed in [33], we present complementary

details on both, which are useful for developing an adaptive (DLN) method.

2.2.1 Consistency error

In [76,77], the variable time-step (DLN) method was implemented in an adaptive manner,

using a local and global error estimator. Similar to [33], the authors of [28, 76, 77, 126] use

the classical definition of the local truncation error (LTE)

L1

(
y(t), tn+1, kn

)
=

1

k̂n

2∑
`=0

α`y(tn−1+`)− f
(
tn,β, β

(n)
2 y(tn+1) + β

(n)
1 y(tn) + β

(n)
0 y(tn−1)

)
,

where tn,β = β
(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1. The above definition follows the approach taken

in the analysis of linear multi-step methods (see e.g. [79, page 27]), and involves both the

differentiation defect Ld = 1

k̂n

∑2
`=0 α`y(tn−1+`)−f

(
tn,β, y(tn,β)), and the interpolation defect

Li = f
(
tn,β, y(tn,β)

)
−f
(
tn,β,

∑2
`=0 β

(n)
` y(tn−1+`)

)
. Dahlquist raised in [31] the question of the

appropriateness of this viewpoint: “We accept this definition, but we do not accept L1 as the

adequate local truncation error!” Using the refactorized form (DLN2BE) and Theorem 2, we

now prove that the local truncation error of the one-leg (DLN) method can be evaluated only

by the differentiation defect (LTE), similarly to the midpoint rule [15] and the Runge-Kutta

methods. The new expression (LTE) simplifies greatly the error estimation.

Proposition 1. The local truncation error of (DLN) is the differentiation error and

Ld
(
y(t), tn+1, kn

)
≈ y′′′(tn)

2

[1

3k̂n

(
k3
n −

α0

α2

k3
n−1

)
− 1

α2

(
β

(n)
2 kn − β(n)

0 kn−1

)2
]
. (LTE)

Proof. The consistency order and the coefficient of the leading term in (LTE) follow by

Taylor expansions. On one hand, since (DLN) can be refactorized as the one-step method

(DLN2BE), we further write the (DLN) method as follows

α2yn+1 + α1yn + α0yn−1

k̂n
= f (tnew, ynew) . (2.5)

8

On the other hand, when we integrate (2.1) on [tn−1, tn] and on [tn, tn+1], multiply the results

by 1−δ
2

and 1+δ
2

, respectively, and add, we obtain

1+δ
2
y(tn+1)− δy(tn)− 1−δ

2
y(tn−1) = 1−δ

2

∫ tn

tn−1

f(t, y(t)) dt+ 1+δ
2

∫ tn+1

tn

f(t, y(t)) dt.

Finally, approximating both integrals on the right-hand-side with the chord quadrature rule,

with tnew as the point of evaluation on both intervals, gives

1+δ
2
y(tn+1)− δy(tn)− 1−δ

2
y(tn−1) ≈

(
1+δ

2
(tn+1 − tn)− δ−1

2
(tn − tn−1)

)
f(tnew, y(tnew)).

which by (2.2)-(2.3) yields the (2.5) method.

Remark 3. In particular, for δ = 1 and δ = 0, from (LTE) we have that

L(one-step midpoint) ≈ 1
24
k3
ny
′′′(tn), L(two-step midpoint) ≈ 1

24
(kn + kn−1)3 y′′′(tn).

2.2.2 G-stability

Let 〈·, ·〉 and ‖ · ‖ denote the inner product and `2-norm in Euclidean space Cd. For any

pair of solutions u(t), v(t) of (2.1), a necessary and sufficient condition [30, page 384] for

‖u(t) − v(t)‖ to be a non-increasing function of t is the contractivity (one-sided Lipschitz)

condition on f :

Re
〈
f(t, u)− f(t, v), u− v

〉
≤ 0, ∀t ≥ 0, ∀u, v ∈ Cd. (contractivity)

The system (2.1) for which f satisfies the (contractivity) condition is called dissipative, see

e.g. the Definition in [80, page 268]. We recall that a Runge-Kutta method is B-stable, if

the (contractivity) condition implies ‖yn+1− zn+1‖ ≤ ‖yn− zn‖ for any {yn}, {zn} numerical

solutions, see e.g. [17, page 359], or Definition 12.2 in [62]. Similarly, a 2-step linear multistep

method is called G-stable [29, 30, 32, 62] if there exists a real positive definite matrix G

such that its one-leg version is contractive, namely ‖Yn+1 − Zn+1‖G ≤ ‖Yn − Zn‖G, where

9

Yn = [ytrn , y
tr
n−1]tr. In the case of the (DLN) method, there exists such a positive definite

matrix (independent of the step size)

G(δ) :=

1
4
(1 + δ)Id 0

0 1
4
(1− δ)Id

 , ∀δ ∈ [0, 1]. (2.6)

As pointed out by Dahlquist in [27], both B-stability and G-stability imply A-stability, and

A-stability implies G-stability for constant time steps.

Proposition 2. The (DLN) method is unconditionally G-stable, and

〈 2∑
`=0

α`yn−1+`,

2∑
`=0

β
(n)
` yn−1+`

〉
Rd

=

∥∥∥∥∥∥yn+1

yn

∥∥∥∥∥∥
2

G(δ)

−

∥∥∥∥∥∥ yn

yn−1

∥∥∥∥∥∥
2

G(δ)

+
∥∥∥ 2∑
`=0

γ
(n)
` yn−1+`

∥∥∥2

, (2.7)

where the γ-coefficients are γ
(n)
1 = −

√
δ(1−δ2)

√
2(1+εnδ)

, γ
(n)
2 = −1−εn

2
γ

(n)
1 , γ

(n)
0 = −1+εn

2
γ

(n)
1 , and the

corresponding G-norm∥∥∥∥∥∥uv
∥∥∥∥∥∥

2

G(δ)

:=
[
utr vtr

]
G(δ)

u
v

 =
1

4
(1 + δ)‖u‖2

Rd +
1

4
(1− δ)‖v‖2

Rd , (2.8)

2 for any u, v ∈ Rd.

The ‘energy’ identity (2.7), implicit in [33], follows from algebraic manipulations, see

e.g. [83]. The G-stability of (DLN), i.e. ‖Yn+1 − Zn+1‖G(δ) ≤ ‖Yn − Zn‖G(δ), follows from

(2.7) and the (contractivity) assumption.

Remark 4. The only (DLN) methods which yield the `2 invariance of the solution are the

symplectic (one-step midpoint) and (two-step midpoint) rules: the numerical dissipation∥∥∥∑2
`=0 γ

(n)
` yn−1+`

∥∥∥ vanishes if and only if δ ∈ {0, 1}.

2 The symbol ‘tr’ means the transpose of the vectors or matrices.

10

3.0 Time step adaptivity in the method of Dahlquist, Liniger and Nevanlinna

3.1 Introduction

Many numerical methods have been developed for approximate solutions of systems

of time-dependent differential equations, e.g., [3, 56, 61, 62]. In complex applications it is

however still common to use simple methods such as constant time step backward Euler,

the midpoint rule, the trapezoid rule, or increasingly, the BDF2 method [48, 65, 69, 70, 92].

For variable steps, the trapezoid rule loses stability for some specific preset steps [33] and

BDF2 is unstable if the step ratio is relatively large. In 1983, Dahlquist, Liniger, and

Nevanlinna designed a one-parameter family of one-leg, two-step schemes (henceforce the

DLN method) in [33], which is G-stable (non-linearly stable) [29, 30, 32] and second-order

accurate for variable steps, with arbitrary step-size ratios. Its ability to increase step sizes

rapidly, when local solution behavior warrants, is an attractive feature for large (storage

limited) systems. Our simple tests of the variable step DLN method presented in Chapter 4,

5, and in the related paper [83,107] have confirmed its potential. This work is complemented

by this thesis’ further analysis in Chapter 4, 5. Also see [83, 107] and the refactorization in

Chapter 2, to reduce the cognitive complexity of the (DLN) implementation in [84]. One

main remaining question addressed herein is how to estimate local errors, and adapt the

time step, within the limitations on computational, space, and cognitive complexity in large

applications. We propose two options to deal with this issue. In Section 3.2, we extend the

ingenious idea of Gear [18, 47, 50, 54, 55] to the DLN method. In Section 3.3, we show that

the refactorized DLN algorithm itself gives an efficient option for error estimation. We test

these algorithms and compare them with other existing methods in numerical experiments

presented in Section 3.4.

The DLN Method. To begin, consider the initial value problem

y′(t) = f(t, y(t)), y(0) = y0, (3.1)

11

where y : [0,∞) → Rd and f : R × Rd → Rd are two certain mappings and y0 is the given

vector in Rd. Let {tn}Nn=0 be the grid on the time interval [0, T] and kn = tn − tn−1 be the

local time step. The variable step, one parameter family (with the parameter δ ∈ [0, 1]) of

the DLN method applying to (3.1) reads

α2yn+1 + α1yn + α0yn−1

k̂n
= f

(
β

(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1, β

(n)
2 yn+1 + β

(n)
1 yn + β

(n)
0 yn−1

)
,

where the coefficients α` and β` are

α2

α1

α0


=



1
2
(δ + 1)

−δ

1
2
(δ − 1)


,



β
(n)
2

β
(n)
1

β
(n)
0


=



1
4

(
1 + 1−δ2

(1+εnδ)2
+ ε2

n
δ(1−δ2)

(1+εnδ)2
+ δ
)

1
2

(
1− 1−δ2

(1+εnδ)2

)
1
4

(
1 + 1−δ2

(1+εnδ)2
− ε2

n
δ(1−δ2)

(1+εnδ)2
− δ
)


. (3.2)

The step size variability εn and average step k̂n are

εn = (kn − kn−1)/(kn + kn−1) ∈ (−1, 1), k̂n = α2kn − α0kn−1. (3.3)

From (2.2) and (3.3), the left coefficients α` are functions of δ. The right coefficients β
(n)
`

are functions of δ and εn and the average step size k̂n constructed to ensure the second

order accuracy. The DLN method is reduced to the one-step, and two-step midpoint rule,

respectively, when δ = 1 and δ = 0.

Time step adaptivity (adjusting time step size according to the required accuracy) is an

essential algorithm in the numerical simulation since it improves time accuracy and keeps

the computational cost relatively low. To our knowledge, the variable time-stepping DLN

method is the only two-step scheme which is non-linear stable, and second-order accurate

so it would be an ideal candidate for adaptivity. The adaptivity process involves two issues:

estimator for the error and time step controller. Milne [96] was the first to estimate the LTE

with two solution approximations, by different methods of the same order but different error

constants. The method was also used by Gear [47], Shampine and Gordon [111]. Gresho

cited Gear, Shampine, and Gordon and estimated local truncation error (LTE) of trapezoid

rule via AB2 method (two-step explicit Adams method) in the numerical simulation of NSEs

12

[50, 54, 55]. This chapter extends Gresho’s idea and utilizes some commonly used explicit

schemes to derive estimators for local truncation error (LTE) of the DLN method. This

method provides an asymptotically accurate estimate of the local error at nearly minimal

extra work and storage.

The second method we consider requires no extra work or storage but gives a pessimistic

estimator of local errors. The report [58] tested an adaptive algorithm in which the local

truncation error is estimated by the difference between the BE solution and the time filter

solution. This method requires no extra storage or calculations but is pessimistic since it

uses the difference between first and second-order approximations to adapt the time step for

the second-order method. Motivated by this idea, we exploit the first-order approximation

embedded in the refactorized DLN method in [15,84] to adopt. For the time step controller,

we adopt the controller proposed in [62], which removes step size restriction and enhances

algorithmic robustness.

The chapter is organized as follows: In Section 3.2, we present the adaptivity of the DLN

method with the estimator of LTE by certain explicit schemes. Self-adaptivity algorithm

by refactorization process is introduced in Section 3.3. Numerical tests, especially tests for

adaptivity of variable step DLN method in Section 3.4.2 imply the efficiency of the adaptive

algorithms in this chapter.

3.1.1 Related Work

Gresho, Griffiths Silvester [53] applied adaptivity for trapezoidal method and AB2 pairs

to scalar advection-diffusion model. Based on this work, Kay, Gresho, Griffiths, and Silvester

[75] combined this adaptivity algorithm with robust Krylov subspace solvers for the NSEs.

Bukač and Trenchea [12] designed a time adaptive, strongly-coupled partitioned method for

fluid and structure interation [6,11,16,34,95,103,110]. Recently Capuano, Sanderse, Angelis,

and Coppola proposed a new adaptive algorithm with the numerical dissipation criterion for

incompressible viscous flows [20]. Adaptivity based on their minimal dissipation criterion

has been tested for the DLN method in [83]. The idea of embedding methods using time

filters in [58] has been developed in various directions, e.g., [1, 26, 36, 89, 105, 129], including

13

into VSVO methods in [37].

3.2 Adaptivity by Explicit Schemes

Adaptivity requires a reliable estimator such as the difference of the solutions by DLN

and a higher-order method. This typically introduces more time levels and the stability of

the higher-order explicit method must be considered.

The first estimator. To address these, we adapt Milnes device [96] for the estimator

of the LTE, using a variable two-step Adams-Bashforth method (AB2) [18,47,50,56]:

yn+1 = yn +
kn
2

[(
2 +

kn
kn−1

)
f(tn, yn)− kn

kn−1

f(tn−1, yn−1)
]
,

and its corresponding LTE

yAB2
n+1 − y(tn+1) = −

(1

6
+

1

4τn

)
y′′′(tn)k3

n + · · · , (3.4)

where yAB2
n+1 and y(tn+1) are the AB2 approximate solution, and the exact solution, at time

tn+1, and τn = kn/kn−1 is the ratio of steps. From [84, Proposition 3.1 on page 5], the LTE

for the variable step DLN method is

yDLN
n+1 − y(tn+1) = G(n)y

′′′
(tn)k3

n + · · · , (3.5)

where yDLN
n+1 is the approximate solution by DLN method and the coefficient G(n) for the LTE

is

G(n) =
(1

2
− α0

2α2

1− εn
1 + εn

)(
β

(n)
2 − β(n)

0

1− εn
1 + εn

)2

+
α0

6α2

(1− εn
1 + εn

)3

− 1

6
.

Subtracting (3.4) from (3.5)

yDLN
n+1 − yAB2

n+1 =
[
G(n) +

(1

6
+

1

4τn

)]
y′′′(tn)k3

n + · · · ⇔ y′′′(tn)k3
n =

yDLN
n+1 − yAB2

n+1

G(n) +
(

1
6

+ 1
4τn

) + · · · .

(3.6)

14

Combining (3.5) and (3.6), we have the estimator for LTE of DLN method by AB2 method

(denoted by T̂n+1)

Estimator 1: T̂n+1 =
∥∥∥ G(n)

G(n) + (1
6

+ 1
4τn

)
(yDLN
n+1 − yAB2

n+1)
∥∥∥, (3.7)

where ‖ · ‖ is the Euclidean norm in Rd.

The Second Estimator. The critical issue for the above technique is that we need

a second-order, explicit time-stepping scheme for which the LTE takes the form LTE =

Ck3
n + · · · . According to this principle, we have many other choices. We develop this next

for an explicit, two-step scheme. Recall the variable step BDF2 method

1 + 2τn
1 + τn

yn+1 − (1 + τn) yn +
τ 2
n

1 + τn
yn−1 = knf(tn+1, yn+1). (3.8)

To derive a second-order explicit scheme, We approximate the right part of (3.8) by second-

order linear extrapolation, i.e.

f(tn+1, yn+1) ≈ (1 + τn)f(tn, yn)− τnf(tn−1, yn−1),

and we obtain the explicit scheme

1 + 2τn
1 + τn

yn+1 − (1 + τn) yn +
τ 2
n

1 + τn
yn−1 = kn

[
(1 + τn)f(tn, yn)− τnf(tn−1, yn−1)

]
. (3.9)

The LTE of the scheme in (3.9) and the estimator of LTE by this scheme are

yExBDF2
n+1 − y(tn+1) = − (1 + τn)2

3τn(1 + 2τn)
y′′′(tn)k3

n + · · · ,

Estimator 2: T̂n+1 =
∥∥∥ G(εn)

G(εn) + (1+τn)2

3τn(1+2τn)

(yDLN
n+1 − yExBDF2

n+1)
∥∥∥. (3.10)

Time-step Controllers. The main principle for adaptivity is to adjust the step size

such that the estimator of LTE by DLN is less than or equal to the tolerance (Tol) [56]. The

basic step-size controller for next step size kn+1 is

Basic Controller: kn+1 = κkn

(
Tol/‖T̂n+1‖

)1/3

, (3.11)

where the safety factor κ ∈ (0, 1] is selected to minimize the number of step rejections. At

each time-step computing, if
∥∥∥T̂n+1

∥∥∥ > Tol, then the solution at current time is rejected and

15

the current step kn is adjusted by (3.11) for recalculation. For the robustness of computation,

we may employ the floor for step size kn, especially for stiff problems. To remove the

limitation on the step size to a large extent, the following improved time step controller,

based on the basic step controller in (3.11), was proposed by Hairer, Nørsett and Wanner

in [62]

Improved Basic Controller: kn+1 = kn ·min
{

1.5,max
{

0.2, κ
(
Tol/‖T̂n+1‖

)1/3
}}

.

(3.12)

Another way of avoiding the restriction, proposed by Söderlind and Wang in [116, 118],

replaces the term (Tol/‖T̂n+1‖) in (3.11) by taking geometric average of (Tol/‖T̂n+1‖),

(Tol/‖T̂n‖) and (Tol/‖T̂n−1‖), i.e.

Generalized Controller: kn+1 = kn
(
Tol/‖T̂n+1‖

)λ1(Tol/‖T̂n‖
)λ2(Tol/‖T̂n−1‖

)λ3τ−η2n τ−η3n−1.

The values of λ and η are decided by the order of dynamics of the closed-loop system [116]. To

end this section, we summarize the adaptivity algorithm of the DLN method with Estimator

1 (3.7) or Estimator 2 (3.10) of LTE and the step controller (3.12) in Algorithm 2.

3.3 Adaptivity by the DLN Refactorization Process

In this section, we will present another adaptive algorithm, via refactorization of the

DLN method with parameter δ ∈ (0, 1) and midpoint rule. Recall the refactorization of the

DLN method in [84]: given previous two step solutions yn−1, yn and time grid tn−1, tn, tn+1,

Step 1 (Pre-process):

(∆t)BE
n = b(n)k̂n, tnew

n+1 = β
(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1, yold

n = a
(n)
1 yn + a

(n)
0 yn−1,

Step 2 (BE solver):

ynew
n+1 − yold

n

(∆t)BE
n

= f
(
tnew
n+1, y

new
n+1

)
, (BE solver on interval [tnew

n+1 − (∆t)BE
n , tnew

n+1])

16

Algorithm 2: Adaptivity with Estimator 1 or Estimator 2 of LTE and step size

controller in (3.12)

Input: tolerance Tol, initial value y1, initial stepsize k1, safety factor κ, time interval

[T1, T2];

n⇐ 1; tn ⇐ T1 ;

tn+1 ⇐ tn + kn ; // update the current time

compute yn+1 by one-step method (e.g. backward Euler);

n⇐ n+ 1, kn ⇐ kn−1 ;

while tn + kn < T2 do

ttemp
n+1 = tn + kn; τn = kn/kn−1 ; // update current time and step size

ratio

compute yDLN
n+1 ; // find the DLN solution

compute yAB2
n+1 if Estimator 1 used or compute yExBDF2

n+1 if Estimator 2 used ;

T̂n+1 ⇐
∥∥∥ G(n)

G(n)+(1
6

+ 1
4τn

)
(yDLN
n+1 − yAB2

n+1)
∥∥∥ or T̂n+1 ⇐

∥∥∥ G(εn)

G(εn)+
(1+τn)2

3τn(1+2τn)

(yDLN
n+1 − yExBDF2

n+1)
∥∥∥ ;

if T̂n+1 < Tol then

tn+1 ⇐ ttemp
n+1 ; // accept current estimator for LTE

kn+1 ⇐ kn ·min
{

1.5,max
{

0.2, κ
(
Tol/‖T̂n+1‖

)1/3}}
; // adjust step by

(3.12)

yn+1 ⇐ yDLN
n+1 ; // accept result

n⇐ n+ 1 ; // come to next time step

else

kn ⇐ kn ·min
{

1.5,max
{

0.2, κ
(
Tol/‖T̂n+1‖

)1/3}}
; // adjust step for

recomputing

17

Step 3 (Post-process):

yDLN
n+1 = c

(n)
2 ynew

n+1 + c
(n)
1 yn + c

(n)
0 yn−1, (from tnew

n+1 to tn+1 to obtain the DLN solution)

where the coefficients in the DLN refactorization process are

a
(n)
1 = β

(n)
1 − α1β

(n)
2

α2

, a
(n)
0 = β

(n)
0 − α0β

(n)
2

α2

, b(n) =
β

(n)
2

α2

,

c
(n)
2 =

1

β
(n)
2

, c
(n)
1 = −β

(n)
1

β
(n)
2

, c
(n)
0 = −β

(n)
0

β
(n)
2

.

It’s easy to check

tn+1 − tnew
n+1 = (∆t)BE

n ,

which induces approximate solutions at tn+1 by the midpoint rule. Recall the refactorization

of the midpoint rule on interval [tn, tn+1] (see [15])

ymid
n+1 − yn
kn

= f
(
tn+1/2,

1

2
yn+1 +

1

2
yn
)
, ⇔


yn+1/2 − yn
tn+1/2 − tn

= f(tn+1/2, yn+1/2),

yn+1/2 =
1

2
yn +

1

2
ymid
n+1,

(3.13)

where tn+1/2 is the midpoint between tn and tn+1, yn+1/2 the BE solution at time tn+1/2 and

ymid
n+1 the midpoint solution at time tn+1. After we finish step 2 in the DLN refactorization

process, we obtain another approximate solution ỹn+1 by the midpoint algorithm in (3.13),

i.e.

ỹn+1 = 2ynew
n+1 − yold

n , ⇔ ynew
n+1 =

1

2
yold
n +

1

2
ỹn+1. (3.14)

For the post-process in (3.14), we replace kn by tn+1 − 2(∆t)BE
n , yn by yold

n and yn+1/2 by

ynew
n+1 in the algorithm (3.13) and obtain ỹn+1. We will show that ỹn+1 is exact first order

approximation to y(tn+1) in Theorem 5 and thus the difference between yDLN
n+1 (second order

approximation) and ỹn+1 works as one estimator of LTE. Estimator of LTE is then

Estimator 3: T̂n+1 = ‖yDLN
n+1 − ỹn+1‖. (3.15)

18

We summarize the refactorization process of two solutions yDLN
n+1 (the DLN solution) and ỹn+1

in Algorithm 3 and Figure 2

Algorithm 3: The estimator of LTE by the Refactorization Algorithm

Input: yn, yn−1 and tn−1, tn, tn+1 ;

// Pre-process

(∆t)BE
n ⇐ b(n)k̂n ; // time-step for BE

tnew
n+1 ⇐ β

(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1 ; // [tnewn+1 − (∆t)BEn , t

new
n+1] BE interval

yold
n ⇐ a

(n)
1 yn + a

(n)
0 yn−1 ;

// backward Euler

Solve for ynew
n+1:

ynew
n+1 − yold

n

(∆t)BE
n

= f
(
tnew
n+1, y

new
n+1

)
// Post-process : extrapolation

yDLN
n+1 ⇐ c

(n)
2 ynew

n+1 + c
(n)
1 yn + c

(n)
0 yn−1 ; // the DLN solution

ỹn+1 ⇐ 2ynew
n+1 − yold

n ; // first order solution for adaptivity

T̂n+1 ⇐ ‖yDLN
n+1 − ỹn+1‖ ; // Estimator of LTE

Figure 2: The estimator of LTE by the Refactorization Algorithm

19

We change (3.12) to obtain the step controller for Algorithm 3

kn+1 = kn ·min
{

1.5,max
{

0.2, κ
(
Tol/‖T̂n+1‖

)1/2
}}

. (3.16)

1/3 in (3.12) is replaced by 1/2 in (3.16) since ỹn+1 is first order accurate. Then we have

the DLN adaptivity algorithm (Algorithm 4) with the refactorization process in Algorithm

3 and step controller in (3.16)

Algorithm 4: Adaptivity with refactorization (Algorithm 3) and step size controller

in (3.16)

Input: tolerance Tol, initial value y1, initial stepsize k1, safety factor κ, time interval

[T1, T2];

n⇐ 1; tn ⇐ T1 ;

tn+1 ⇐ tn + kn ; // update the current time

compute yn+1 by one-step method (e.g. backward Euler);

n⇐ n+ 1, kn ⇐ kn−1 ;

while tn + kn < T2 do

tn+1 = tn + kn ;

Input yn, yn−1 and tn−1, tn, tn+1 in Algorithm 3 and obtain yDLN
n+1 and T̂n+1 ;

if T̂n+1 < Tol then

kn+1 ⇐ kn ·min
{

1.5,max
{

0.2, κ
(
Tol/‖T̂n+1‖

)1/2}}
; // adjust step by

(3.12)

yn+1 ⇐ yDLN
n+1 ; // accept result

n⇐ n+ 1 ; // come to next time step

else

kn ⇐ kn ·min
{

1.5,max
{

0.2, κ
(
Tol/‖T̂n+1‖

)1/2}}
; // adjust step for

recomputing

We have the following theorems about consistency and stability of the midpoint rule solution

in Algorithm 3

20

Theorem 5 (Consistency). The numerical solution ỹn+1 in Algorithm 3 is exactly first order

approximation to y(tn+1) and the local truncation error is

L =
(1 + εn)f(δ, εn)

2b(n)
[
(α2 − α0) + εn(α2 + α0)

]y′′(tnew
n+1)kn + · · · .

where

f(δ, εn) :=
{(

1− 2β
(n)
2

)
+ 2
(
β

(n)
0 − a(n)

0 β
(n)
2

)(1− εn
1 + εn

)
+ a

(n)
0

(
2β

(n)
0 − 1

)(1− εn
1 + εn

)2}
Proof. By definition, the LTE is

L =
1

tn+1 − told
n

{
y(tn+1)−

(
a

(n)
1 y(tn) + a

(n)
0 y(tn−1)

)
− f

(
tnew
n+1, y(tnew

n+1)
)}

(
≈ ỹn+1 − yold

n

tn+1 − told
n

− f
(
tnew
n+1, y

new
n+1

))
We use Taylor expansion and expand the above expression at time tnew

n+1, which results in (5).

Also we have: for fixed δ ∈ (0, 1), f(δ, εn) > 0 for −1 < εn < 1 since it’s easy to check

f(δ, 1) = 0, lim
εn→−1

f(δ, εn) = −∞, df(δ, εn)

dεn
> 0,

1 + εn
(α2 − α0) + εn(α2 + α0)

> 0.

3.4 Numerical Tests

3.4.1 Constant Step Tests

In this section, we implement the constant time-stepping DLN algorithm with parameter

δ = 2/3, 2/
√

5, 1 (δ = 1 corresponds to the midpoint rule). δ = 2/3 was suggested in [33]

to minimize the constant in the LTE of the constant DLN method. δ = 2/
√

5 was proposed

in [76], to ensure the best stability at infinity. When δ = 1, DLN reduces to the midpoint

rule and provides energy conservation.

21

3.4.1.1 Quasi-periodic oscillations

Consider the quasi-periodic oscillations,

y(4) + (π2 + 1)y′′ + π2y = 0, 0 ≤ t ≤ 20,

y(0) = 2, y′(0) = 0, y′′(0) = −(1 + π2), y′′′(0) = 0.

The exact solution is y(t) = cos(t) + cos(πt). We use this problem to verify the second-order

convergence. Let en = ‖y(tn) − yn‖ be the error at time tn and k be constant step size for

the DLN method. We have the following two discrete norms

‖e‖2,∞ = max
1≤n≤N

{en}, ‖e‖2,2 =
(N∑
n=1

ke2
n

)1/2

.

Table 1 and 2 and Figure 3 summarize the errors and rate of convergence for the constant

step DLN method with specific parameter.

Table 1: Second-order convergence of the constant step DLN method using ‖ · ‖2,∞-norm

Step size ‖e‖2,∞ (δ = 2
3
) Rate ‖e‖2,∞ (δ = 2√

5
) Rate ‖e‖2,∞ (δ = 1) Rate

0.05 0.32233672 - 0.19537687 - 0.12271718 -

0.025 0.08202388 1.9745 0.04926517 1.9876 0.03084194 1.9924

0.0125 0.02056438 1.9959 0.01234158 1.9970 0.00771706 1.9988

0.00625 0.00514472 1.9990 0.00308709 1.9992 0.00192962 1.9997

0.003125 0.00128642 1.9997 0.00077188 1.9998 0.00048244 1.9999

From the two tables and the log-log plot, we confirm the second-order convergence of

the constant step DLN method with the three specific values of parameter δ, and the error

is reduced as δ is increasing. In section 3.4.2.1, we also test adaptivity algorithms of variable

step DLN in Section 3.2 and Section 3.3 for this problem.

22

Table 2: Second-order convergence of the constant step DLN method using ‖ · ‖2,2-norm

Step size ‖e‖2,2 (δ = 2
3
) Rate ‖e‖2,2 (δ = 2√

5
) Rate ‖e‖2,2 (δ = 1) Rate

0.05 0.61799316 - 0.37320014 - 0.23460108 -

0.025 0.15634451 1.9829 0.09391299 1.9906 0.05876962 1.9971

0.0125 0.03917128 1.9969 0.02350951 1.9981 0.01469880 1.9994

0.00625 0.00979800 1.9992 0.00587936 1.9995 0.00367508 1.9998

0.003125 0.00244989 1.9998 0.00146999 1.9999 0.00091879 2.0000

(a) (b)

Figure 3: log-log plot of convergence rate for the constant step DLN algorithm

23

3.4.1.2 Increase of Oscillation

This test aims to compare the constant step DLN method with backward Euler(BE),

BE plus filter (with parameter ν = 2/3) [58] and BDF2 algorithms, showing that these

commonly used methods are so stable that they fail in some specific problems like (3.17).

The test problem is

x′ = µx+
1

µ
y, y′ = − 1

µ
x+ µy, x(0) = 1, y(0) = 0, µ = 1.e− 2. (3.17)

We simulate the test on the interval [0, 20]. We test the backward Euler with constant step

k = 1.e − 4 and other methods with k = 1.e − 3. Figures 4 show that the oscillations

of constant step backward Euler, BE plus filter and BDF2 decrease as the time grows,

which shows that these methods are too stable to approximate the true solutions well. BE

performance (Figure 4(a) and 4(b)) is worst among these methods even under smaller time

steps (k = 1.e − 4). From Figures 5, we can see that the oscillations of the DLN solutions

increase and these patterns are the same as those of the exact solution. In particular, the

constant DLN method simulates the exact solution better as δ increases.

3.4.1.3 The Lorenz system

Given the Lorenz system [94]:

x′ = σ (y − x) , y′ = −xz + λx− y, z′ = xy − ηz. (3.18)

We choose two arrays of parameters and initial values from [42,94]: σ λ η

x0 y0 z0

 =

 12 12 6

−10 −10 25

 , (LorenzData1)

 σ λ η

x0 y0 z0

 =

10 28 8/3

0 1 0

 . (LorenzData2)

The system of equations (3.18) is simulated over time interval [0, 5]. We choose constant

step size k to be 0.02 for both arrays (LorenzData1) and (LorenzData2). We don’t know the

24

(a) (b)

(c) (d)

(e) (f)

Figure 4: Oscillations of BE, BE Plus Filter, and BDF2 solutions decrease as time grows

and in contrast the oscillations of the exact solution increase.

25

(a) (b)

(c) (d)

(e) (f)

Figure 5: Oscillations of Constant Step DLN (δ = 2/3, 2/
√

5, 1) solutions increase, which

shows that the simulations approximate exact solutions well.

26

(a) (b)

(c) (d)

(e) (f)

Figure 6: The constant step DLN solutions oscillate correctly to steady state while the

constant step BE solutions over damp to equilibrium.

27

exact solution to (3.18) thus we use the MATLAB ode45 function for reference. Results are

given in Figures 6. From the graphs, we can see that the results of the constant step DLN

methods and the adaptive MATLAB ode45 function are almost the same. The constant step

DLN solutions oscillate correctly to steady state while the constant step BE solutions over

damp to equilibrium.

3.4.1.4 The example of Sussman

In this part, we test the non-linear autonomous system proposed by Sussman [120]:

u′1(t) + u2u2 + u1 = 1,

u′2(t)− u2u1 + u2 = 1, u1(0) = 0, u2(0) = 0.

Sussman found that non-linearly implicit methods converges to equilibrium as t→∞ (cor-

rectly) but semi-implicit (linearly implicit) methods do not. We simulate this system over

time interval [0, 10] and set the step size k to be 0.1. From Figure 7, we can see that the

approximate solutions by constant step DLN method approach to steady state correctly.

(a) (b)

Figure 7: Constant step DLN solutions approach to steady state correctly.

28

3.4.2 Variable Step Tests

In this subsection, we implement the variable time-stepping DLN method to several test

problems. For all test problems in this subsection, we use Algorithm 2 (with estimator

of LTE by AB2) and Algorithm 4 without setting the minimum step size. We still set

parameter δ = 2/3, 2/
√

5, 1.

3.4.2.1 Quasi-periodic oscillations

We still consider the Quasi-periodic oscillations system in (3.4.1.1). To test Algorithm 2

and Algorithm 4, we set the initial time step to be 0.01 and the tolerance to be 1.e−4 without

the restriction of step size. Figure 8(a) and 8(b) show that the DLN method with Algorithm

2 works well and the number of steps are 2948, 2118 and 1678 for δ = 2/3, 2/
√

5 and 1

respectively. Figure 8(c) and 8(d) display the results of the adaptivity of DLN by Algorithm

4. The only difference is that the results by Algorithm 4 take more steps (Number of steps

are 24880 and 25649 for δ = 2/3 and 2/
√

5 respectively). We also compare the errors of the

adaptive DLN algorithm and the constant DLN method (with the same number of steps for

each δ) in Table 3 and Table 4. For both ‖ · ‖2,2 and ‖ · ‖2,∞ of the error, the constant step

DLN method works better than the adaptive DLN algorithm under the same number of step

in that the exact solution of quasi-periodic oscillations problem is smooth. However, in some

extreme stiff test problems (Van der Pol’s equation 3.4.2.4), the adaptive DLN algorithm

has the advantage over the constant step DLN algorithm.

3.4.2.2 Lotka-Volterra Equations

We consider the following Lotka-Volterra equations [123]

x′ = 2x− xy, y′ = −y + xy,

x(0) = 4, y(0) = 2. (3.19)

We still apply the variable time-stepping DLN method to Lotka-Volterra system (3.19) with

Algorithm 2 and Algorithm 4. We set the total time interval to be [0, 500], the initial time

29

(a) (b)

(c) (d)

Figure 8: Periodic oscillations

Table 3: Comparison of Algorithm 2 and constant DLN algorithm with the same number of

time steps

δ = 2
3

δ = 2√
5

δ = 1

‖e‖2,∞ 0.00638129 0.00740505 0.00737554

‖e‖2,2 0.01215392 0.01410517 0.01404667

Const (δ = 2
3
) Const (δ = 2√

5
) Const (δ = 1)

‖e‖2,∞ 0.00606172 0.00704536 0.00701630

‖e‖2,2 0.01154431 0.01341880 0.01336421

30

Table 4: Comparison of Algorithm 4 and constant DLN algorithm with the same number of

time steps

δ = 2
3

δ = 2√
5

Const (δ = 2
3
) Const (δ = 2√

5
)

‖e‖2,∞ 0.00038190 0.00061367 0.00008513 0.00004806

‖e‖2,2 0.00072598 0.00116607 0.00016212 0.00009153

step k0 to be 1.e− 4 without restrictions on time steps. We set the tolerance to be 1.e− 6

and 1.e − 8 for Algorithm 2 and the tolerance to be 1.e − 6 for Algorithm 4. We use the

constant step DLN algorithm, MATLAB ode15s, ode23 and ode45 function (with relative

tolerance 1.e− 6 and absolute tolerance 1.e− 6) for reference. The phase solutions are given

in Figure 9. All the methods we apply for work well in terms of the phase solution. Then

we check the results of Hamiltonian conservation with the Hamiltonian function

H(x, y) = x− lnx+ y − 2 ln y.

The results are displayed in Figure 10 and the number of steps is summarized in Table 5.

Adaptive DLN algorithm 2 has higher accuracy with many more steps as the tolerance is

increased. Adaptive DLN algorithm 4 has higher accuracy with a larger number of steps as

the parameter δ decreases. Ode 45 functions works better than ode15s and ode 23 functions

but these functions take less number of steps than adaptive DLN algorithm 2 and 4. The

constant step DLN method has relatively good performance but with larger oscillations and

it has better simulation as the parameter δ increases.

31

(a) (b)

(c) (d)

Figure 9: Lotka-Volterra System Phase Solutions by DLN Method and Matlab ODE Func-

tions

32

(a) (b)

(c) (d)

(e) (f)

Figure 10: Lotka-Volterra System

33

Table 5: Number of steps of DLN algorithms and MATLAB ode functions

Constant step DLN Algorithm 2 Algorithm 2 (Tol = 1.e− 8) Algorithm 4

δ = 2/3 100000 79364 368352 900497

δ = 2/
√

5 100000 58122 269765 924047

δ = 1 100000 46619 216400 -

ode15s ode23 ode45

11879 29599 14149

3.4.2.3 Kepler System

Consider the Kepler system

q′1 = p1

q′2 = p2

p′1 = − q1√
(q21+q22)3

p′2 = − q2√
(q21+q22)3

,


q1(0)

q2(0)

p1(0)

p2(0)

 =


1− 0.6

0

0√
1+0.6
1−0.6

 ,

We still apply Algorithm 2, Algorithm 4, constant step DLN method and MATLAB ode

functions to the system over time interval [0, 120]. We set the tolerance to be 1.e − 8 for

Algorithm 2, 1.e− 6 for Algorithm 4. For MATLAB ode functions, we set relative tolerance

to be 1.e − 6 and absolute tolerance to be 1.e − 8. The initial step size is 1.e − 4 and the

number of steps for the constant step DLN algorithm is 100000. Phase solutions of q1, q2

and p1, p2 by DLN with δ = 2/3 and MATLAB ode functions are given in Figure 11. From

Figure 11(b) and Figure 11(d), the adaptive DLN algorithm (Algorithm 2 and Algorithm 4)

works better than constant step DLN method and MATLAB ode functions. For δ = 2/
√

5

and δ = 1, results are similar. Then we compare the Hamiltonian conservation function

H(q1, q2, p1, p2) =
1

2

(
p2

1 + p2
2

)
−
(
q2

1 + q2
2

)−1/2
.

34

The Hamiltonian conservation results are given in Figure 12. Combining Figure 12 and

Table 6, we have: Algorithm 4 with δ = 2/3 works much better than that of two other

parameters and constant step DLN algorithm. Solutions by Algorithm 2 are more accurate

than solutions of constant step DLN algorithm and take much less number of steps. Under

the tolerance above, MATLAB ode functions have worse performance than adaptive DLN

algorithm but with a few steps.

(a) (b)

(c) (d)

Figure 11: Phase solutions of Kepler system by DLN with δ = 2/3 and MATLAB ode

functions

3.4.2.4 Van der Pol’s equation

Finally, we test Van der Pol’s equation

x′′ − µ(1− x2)x′ + x = 0, x(0) = 2, x′(0) = 0.

35

(a) (b)

(c) (d)

(e) (f)

Figure 12: Hamiltonian Conservation of Kepler System

36

Table 6: Number of steps of DLN algorithms and MATLAB ode functions

Constant step DLN Algorithm 2 Algorithm 4

δ = 2/3 100000 62337 154817

δ = 2/
√

5 100000 47202 157626

δ = 1 100000 38775 -

ode15s ode23 ode45

3374 12235 3733

Van der Pol’s equation with parameter µ = 1000 is a common test problem for stiff solvers.

We test the problem with constant step DLN method and adaptive DLN algorithm (Algo-

rithm 2 and Algorithm 4). We use MATLAB ode functions (ode15s, ode23, ode23s and ode

45) for reference. We simulate this problem over time interval [0, 6000]. We first choose the

parameter δ to be 2/3 and 1. For Algorithm 2, we set the tolerance to be 1.e− 6 and inital

time step to be 1.e−4. Due to the stiffness of the test, we adjust the tolerance to be 1.3e−6

and the safety factor κ to be 0.65 to avoid pre-setting the minimum step size for Algorithm

4. But initial time step is still 1.e − 4. For ode15s and ode23s, we set relative tolerance to

be 1.e− 10 and absolute tolerance to be 1.e− 15. For ode23 and ode45, we set both relative

tolerance and absolute tolerance to be 1.e− 6.

Figure 13 and Figure 14 give the global and local approximate solutions of the first

component and Table 7 summarizes the number of steps. From Figure 13(a) and 14(a), we see

that constant step DLN solutions lag behind other solutions even under large number of steps.

From Figure 13(b) and 14(b), adaptive DLN algorithms (Algorithm 2 and Algorithm 4) work

well for this stiff problem if we use solutions of MATLAB ode functions as reference. From

Table 7, adaptive DLN algorithms are more efficient than most MATLAB ode functions.

37

(a) (b)

Figure 13: Van der Pol’s equation by DLN with δ = 2/3 and MATLAB ode functions

(a) (b)

Figure 14: Van der Pol’s equation by DLN with δ = 1 and MATLAB ode functions

Table 7: Number of steps of DLN algorithms and MATLAB ode functions

Constant step DLN Algorithm 2 Algorithm 4

δ = 2/3 6000000 62806 769319

δ = 1 6000000 32379 -

ode15s ode23 ode23s ode45

19714 4377590 1593283 13242893

38

3.4.3 Lindberg’s Example with Step Floor

In this subsection, we consider a extremely stiff problem, Lindberg’s example [126]

y′1 = 104y1y3 + 104y2y4

y′2 = −104y1y4 + 104y2y3

y′3 = 1− y3

y′4 = −0.5y3 − y4 + 0.5

,


y1(0)

y2(0)

y3(0)

y4(0)

 =


1

1

−1

0

 .

The exact solution for the above system is

y1 = eg1(t)
[

cos(g2(t)) + sin(g2(t))
]

y2 = eg1(t)
[

cos(g2(t))− sin(g2(t))
]

y3 = 1− 2e−t

y4 = te−t

,

 g1(t) = 104(t+ 2e−t − 2)

g2(t) = 104(1− e−t − te−t)
.

We test this system with Algorithm 2 (with estimator of LTE by AB2) and Algorithm 4.

The third and fourth components consist of a linear system and all time-stepping schemes

work well for the system. Therefore we test the system of y1 and y2, i.e.y′1
y′2

 = A(t)

y1

y2

 , A(x) = 104

1− 2e−t te−t

−te−t 1− 2e−t

 ,
y1(0)

y2(0)

 =

1

1

 . (3.20)

The above system in (3.20) is extremely stiff because both eigenvalues of the matrix A(x)

are −104 initially and approach 5946± 3235i as t = 1.596. Both Algorithm 2 and Algorithm

4 simulate inaccurately starting from the initial time t = 0 without minimum step size (The

simulations decay from 1 to zero for the two components). All MATLAB functions including

ode15s, ode23, ode23s and ode45 (with relative tolerance 1.e − 11 and absolute tolerance

1.e− 15) also fail for this example.

Thus we simulate the problem on time interval [1.4622, 1.597] for Algorithm 2 and

[1.4633, 1.597] for Algorithm 4 with minimum step size 1.e − 8. We set the initial step

size to be the same as the minimum step size. The tolerance of the two adaptive DLN

algorithms is given in Table 8. The graphs of first and second components by Algorithm 2

are given in Figure 15. From Figure 15(c) and 15(d), the Algorithm 2 with δ = 2/3, 2/
√

5, 1

simulate relative well while all MATLAB ode functions fail even under small tolerance. From

39

Figure 16, we can see that the simulations by Algorithm 3 work much better but with more

steps and later initial time.

(a) (b)

(c) (d)

Figure 15: First and second components of Lindberg’s example by Algorithm 2 and MATLAB

ode functions

Then we try adaptive DLN algorithm on time interval [0, 1.597] and find that Algorithm

2 works to some extent (with different order) with tolerance around 1.e − 15. We also

use MATLAB ode15s, ode23, and ode23s for comparison. We neglect the ode45 function

because it diverges as time goes to the endpoint. From Figure 17, the values by adaptive DLN

algorithm increase to 1.e31, much larger than the value of exact solution (1.e8). However all

MATLAB ode functions keep zero even under extremely small tolerance (absolute tolerance

is 1.e− 15 and relative tolerance is 1.e− 11). The tolerance for the adaptive DLN algorithm

is given in Table 9

40

(a) (b)

(c) (d)

Figure 16: First and second components of Lindberg’s example by Algorithm 4 and MATLAB

ode functions

Table 8: Tolerance of DLN algorithms for Lindberg’s example

δ = 2/3 δ = 2/
√

5 δ = 1

Algorithm 2 0.635 ∗ (1.e− 14) 5.268 ∗ (1.e− 15) 4.627 ∗ (1.e− 15)

Algorithm 4 1.e− 14 1.e− 14 -

41

(a) (b)

(c) (d)

Figure 17: First and second components of Lindberg’s example by Algorithm 2 starting from

t = 0.

Table 9: Tolerance of Algorithm 2 for Lindberg’s example starting at t = 0

δ = 2/3 δ = 2/
√

5 δ = 1

Algorithm 2 0.79 ∗ (1.e− 15) 0.719 ∗ (1.e− 15) 1.01 ∗ (1.e− 14)

42

3.5 Conclusions

The DLN method is an unconditionally G-stable, second-order accurate time-stepping

scheme for both constant and variable time steps. In this chapter, we designed two adaptive

algorithms: first via a certain second order explicit scheme like AB2 method, second through

the DLN refactorization process in [84]. The numerous numerical tests of both constant

step and variable step DLN methods, by the adaptivity algorithms proposed in section

3.2 and 3.3, verify the properties of the DLN method, even in extreme stiff cases. In our

numerical studies, the constant timestep DLN methods work best for problems with smooth

solutions. The symplectic midpoint method has the smallest errors, also conserving all

quadratic Hamiltonians. For stiff problems, the adaptive DLN methods outperform the

constant time step algorithms, with minimal computational cost. The preferred step size

estimator is the one based on the Milnes device, using the AB2 approximate solution in

(3.7). In the near future, we would like to apply the adaptive algorithms in Section 3.2

and 3.3 to incompressible fluid models. The difficulty of Algorithm 2 (adaptivity by explicit

methods) is that the local truncation error for the fluid model would be different from that

of the evolutionary equation and thus the estimator in (3.7) and (3.10) can not be applied

directly. To apply Algorithm 4 (refactorization adaptivity algorithm), we need to prove the

first order accurate solution ũn of velocity in fluid model.

43

4.0 The DLN Algorithm for the Unsteady Stokes/Darcy Model

4.1 Introduction

The Stokes/Darcy model, simulating the coupling between surface and subsurface mo-

tions of fluid, deserves great interest in geophysics and related areas. Mathematical theory

and numerical schemes for both steady and unsteady Stokes/Darcy model [5, 38, 44, 49, 67,

85, 133] have been well developed in recent years. Nevertheless, the time discretization for

the unsteady Stokes/Darcy model is always a big problem, where various constant time-

stepping algorithms give accuracy and efficiency of computation to a different level. Some

simulations use first order, fully implicit scheme for simplicity, e.g. [21, 22, 97, 106, 112, 113],

while many others implement higher order time-stepping algorithms to increase accuracy,

e.g. [24, 25, 87, 88, 105]. Moreover, time adaptivity for variable time-stepping schemes is an

ideal way of solving the conflict between time accuracy and computational complexity. Due

to the limitations of most existing methods (e.g. BDF2 is not A-stable under increasing step

size), variable time-stepping analysis for the unsteady Stokes/Darcy model is promising but

technically challenging.

To solve this issue, we refer to the one-parameter family of two-step, one-leg method

proposed by Dahlquist, Liniger, and Nevanlinna (the DLN method) [33] and apply the

method to the time-dependent Stokes/Darcy model for variable time-stepping analysis. The

DLN algorithm maintains G-stability [29, 30, 32, 62] under any arbitrary sequence of time

steps and keeps second-order accuracy at the same time. To begin, consider the initial value

problem

x′(t) = f (t, x(t)) , x(0) = x0, (4.1)

where x : [0, T] → Rd and f : R × Rd → Rd are vector-valued functions. Let {tn}Nn=0 be

the grid on time interval [0, T] and kn := tn+1 − tn be local step size. Now given the two

44

initial values x0 and x1, the one parameter DLN algorithm (with parameter θ ∈ [0, 1]) for

the problem (4.1) is

2∑
j=0

αjxn−1+j = (α2kn − α0kn−1)f
(2∑
j=0

βj,ntn−1+j,

2∑
j=0

βj,nxn−1+j

)
, (4.2)

where coefficients {αj}j=0:2 and coefficients {βj,n}j=0:2 (εn-dependent) are
α2

α1

α0

 =


θ+1

2

θ

θ−1
2

 ,

β2,n

β1,n

β0,n

 =


1
4

(
1 + 1−θ2

(1+εnθ)2
+ ε2n

θ(1−θ2)
(1+εnθ)2

+ θ
)

1
2

(
1− 1−θ2

(1+εnθ)2

)
1
4

(
1 + 1−θ2

(1+εnθ)2
− ε2n

θ(1−θ2)
(1+εnθ)2

− θ
)

 .

The coefficients of {αj}j=0:2, {βj,n}j=0:2 and the average time step α2kn − α0kn−1 are con-

structed to ensure the G-stability and second order accuracy of the method. Combining

these fine properties, and existing numerical schemes for spatial discretization (e.g. finite

element method [39,40,74,108], two grid decoupled method [41,66,104,131,132], multi-grid

decoupled method [2, 130], domain decomposition method [45, 64], etc.), this chapter pro-

vides complete variable time-stepping analysis for unsteady Stokes/Darcy Model (stability

and error analysis) [107].

The remaining part of this chapter is organized as follows: we review the time-dependent

Stokes/Darcy model (including necessary notations) in Section 4.2. Preliminaries and two

lemmas about properties of the DLN algorithm (4.2) are presented in Section 4.3. In Section

4.4 and Section 4.5, we apply the variable time-stepping DLN algorithm (4.2) to the unsteady

Stokes/Darcy model and offer detailed proofs of unconditional stability and second-order

convergence of approximate solutions, which are rarely done in other papers. Two numerical

tests are given in Section 4.6. The variable time-stepping test is aimed to verify the stability

of the approximate solutions and is followed by a constant time-stepping example to confirm

second-order convergence.

45

4.1.1 Related Work

Even though the DLN method has shown its success in the variable time-stepping anal-

ysis of Navier-Stokes equations [83], the standard methods (backward Euler, BDF2, Crank-

Nicolson Leap Frog, etc.) would be a priority in numerical analysis of fluid flow. Recently

artificial compression algorithm, changing the mass conservation condition ∇ · u = 0 a little

by δpt+∇·u = 0 (0 < δ � 1) and thus advancing the pressure explicitly, has been employed

to improve the efficiency in time-stepping analysis of flow problems [23, 82, 90]. Addition-

ally, it is possible that adding time filters on certain standard methods increases the order

of convergence while keeping the conditional stability [58]. Furthermore, the mixture of

time filter and artificial compression becomes a pioneering technique in computational fluid

dynamics [59].

4.2 The Time-dependent Stokes/Darcy Model

In this section, we consider the unsteady Stokes/Darcy model in the region Ω = Ωf ∪Ωp,

where Ωf is the incompressible fluid region and Ωp is the porous media region. The two

regions are separated by the interface denoted by Γ = Ωf ∩ Ωp and nf and np are the unit

outward normal vectors on ∂Ωf and ∂Ωp. The schematic representation is displayed in Figure

18.

For the finite time interval [0, T], the fluid motion in Ωf is governed by the time-dependent

Stokes equations, i.e. the fluid velocity uf (x, t) and the pressure p(x, t) satisfy

∂uf
∂t
−∇ · T (uf , p) = F1(x, t) in Ωf × (0, T),

∇ · uf = 0 in Ωf × (0, T), (4.3)

uf (x, 0) = u0
f (x) in Ωf ,

where the stress tensor T and the deformation rate tensor D are defined as

T(uf , p) = −pI+ 2νD(uf), D(uf) =
1

2
(∇uf +∇truf)

1,

46

Figure 18: A global domain Ω consisting of a fluid flow region Ωf and a porous media flow

region Ωp separated by an interface Γ.

ν > 0 is the kinetic viscosity and F1 is the external force.

The velocity up(x, t) and hydraulic head φ(x, t) in porous media region are governed by

Darcy’s law and the saturated flow model

up = −K∇φ in Ωp × (0, T), (4.4)

S0φt +∇ · up = F2(x, t) in Ωp × (0, T), (4.5)

φ(x, 0) = φ0(x) in Ωp,

where positive symmetric tensor K denotes the hydraulic conductivity in Ωp and is allowed

to vary in space. S0 is the specific mass storativity coefficient and F2 is a source term.

Combining (4.4) and (4.5), we obtain the Darcy equation which describes the hydraulic

head:

S0φt −∇ · (K∇φ) = F2(x, t), in Ωp × (0, T). (4.6)

Now we introduce the boundary conditions:

uf = 0 on (∂Ωf \ Γ)× (0, T),

φ = 0 on (∂Ωp \ Γ)× (0, T), (4.7)

1tr means transpose of matrix or vector.

47

and the necessary interface conditions for the coupled Stokes/Darcy model:

uf · nf −K∇φ · np = 0, on Γ× (0, T),

−nf ·
(
T(uf , p) · nf

)
= gφ, on Γ× (0, T), (4.8)

−τi ·
(
T(uf , p) · nf

)
=

µBJSν
√
d√

trace(Π)
τi · uf , on Γ× (0, T),

where g is the gravitational constant and {τi}d−1
i=1 are the orthonormal system of tangential

vectors along Γ, µBJS is an experimentally determined parameter, Π represents the perme-

ability and satisfies K = Πg
ν

.

For the weak formulation of the unsteady Stokes/Darcy model, we define some function

spaces:

Hf =
{

v ∈ (H1(Ωf))
d : v|Ωf\Γ = 0

}
,

Hp =
{
ψ ∈ H1(Ωp) : ψ|Ωp\Γ = 0

}
,

U = Hf ×Hp, Qf = L2(Ωf).

We associate the space U with the following three norms: for all v = (v, ψ) ∈ U and

1 ≤ s <∞

‖v‖0 =
√

(v,v)Ωf + gS0(ψ, ψ)Ωp , ‖v‖s =
√
‖v‖2

s + ‖ψ‖2
s,

‖v‖U =
√
ν(∇v,∇v)Ωf + g(K∇ψ,∇ψ)Ωp .

Here (·, ·)Ω and ‖ · ‖ denote the L2-inner product and L2-norm on function space L2(Ω)

respectively. ‖ · ‖s represents ‖ · ‖s-norm of Sobolev space Hs.

By the positive definiteness of tensor K and Poincaré inequality, there exists constant

C0,U > 0 such that

‖v‖0 ≤ C0,U‖v‖U. (4.9)

Now we combine (4.3), (4.6), (4.7) and (4.8) to derive the weak form of the time depen-

dent Stokes/Darcy model: given F = (F1,F2) ∈ L2
(
0,T; (L2(Ωf))

d
)
× L2

(
0,T; L2(Ωp)

)
, find

u = (uf , φ) ∈ U and p ∈ Qf such that for all v = (v, ψ) ∈ U, q ∈ Qf

48

〈∂u

∂t
,v
〉

0
+ a(u,v) + b(v, p) =

〈
F,v

〉
U′
,

b(u, q) = 0, (4.10)

u(x, 0) = u0(x),

where 〈∂u

∂t
,v
〉

0
=
(∂uf
∂t

,v
)

Ωf
+ gS0

(∂φ
∂t
, ψ
)

Ωp
,

a(u,v) = aΩ(u,v) + aΓ(u,v),

aΩ(u,v) = aΩf (u,v) + aΩp(φ, ψ),

aΩf (u,v) = ν
(
D(u),D(v)

)
Ωf

+
(µBJSν

√
d√

trace(Π)
Pτ (u), Pτ (v)

)
Γ
,

aΩp(φ, ψ) = g(K∇φ,∇ψ)Ωp ,

aΓ(u,v) = g(φ,v · nf)Γ − g(ψ,uf · nf)Γ,

b(v, p) = −(p,∇ · v)Ωf ,〈
F,v

〉
U′

= (F1,v)Ωf + g(F2, ψ)Ωp ,

u0(x) = (u0
f (x), φ0(x)).

U′ is the dual space of U with the norm

‖F‖U′ = sup
v∈U\0

〈
F,v

〉
U′

‖v‖U
,

and Pτ (·) is the projection onto the local tangential plane, i.e. Pτ (v) = v− (v · nf)nf . The

biliear form a(·, ·) is continuous and coercive: for all u,v ∈ U,

a(u,v) ≤ C1‖u‖U‖v‖U,

a(u,u) ≥ C2‖u‖2
U. (4.11)

Here the above constants C1, C2 > 0 are independent of functions.

49

4.3 Preliminaries

For spatial discretization, we construct regular triangulations of Ω, Ωf and Ωp with

diameter h > 0 and choose any finite element spaces Hfh ⊂ Hf , Qfh ⊂ Qf , Hph ⊂ Hp such

that the pair (Hfh, Qfh) satisfies the discrete LBBh condition. Typical examples of such

pair include Taylor-Hood (P2-P1) and MINI (P1b-P1). Then we define Uh = Hfh ×Hph to

be finite element space of U. The discretely divergence-free subspace of Hfh is defined to be

Vfh :=
{

vh ∈ Hfh :
(
∇ · vh, qh

)
= 0, ∀qh ∈ Qfh

}
,

and the divergence free space of Uh to be Vh = Vfh ×Hph.

We define the linear projection operator (see [97]) Ph =
(
Pu
h , P

p
h

)
from U × Qf onto

Uh ×Qfh : given t ∈ (0, T] and (u(t), p(t)) ∈ (U, Qf),
(
Pu
h u(t), P p

hp(t)
)

satisfies

a(Pu
h u(t),vh) + b(vh, P

p
hp(t)) = a(u(t),vh) + b(vh, p(t)),

b(Pu
h u(t), qh) = 0. (4.12)

for all vh ∈ Uh, qh ∈ Qfh. Furthermore, the linear projection Ph defined above satisfies

‖Pu
h u(t)− u(t)‖0 ≤ C3h

2‖u(t)‖2,

‖Pu
h u(t)− u(t)‖U ≤ C4h‖u(t)‖2,

‖P p
hp(t)− p(t)‖ ≤ C5h‖p(t)‖1, (4.13)

if the pair (u(t), p(t)) is smooth enough.

For the rest of the paper, P = {tn}Nn=0 is the partition on time interval [0, T] with

t0 = 0, tN = T and kn = tn+1 − tn is the time step size. Let unh and pnh denotes the

approximate solutions of u(tn) and p(tn) by the DLN method (4.2) and for convenience we

denote

unh,β = β2,nu
n+1
h + β1,nu

n
h + β0,nu

n−1
h ,

Fn
β = β2,nF(tn+1) + β1,nF(tn) + β0,nF(tn−1).

50

Then we have the discrete weak formulation for the unsteady Stokes/Darcy model by variable

time-stepping DLN algorithm: given unh, un−1
h , pnh, pn−1

h , find un+1
h and pn+1

h such that for

all vh ∈ Uh and qh ∈ Qfh,〈α2u
n+1
h + α1u

n
h + α0u

n−1
h

α2kn − α0kn−1

,vh

〉
0

+ a(unh,β,vh) + b(vh, p
n
h,β) =

〈
Fn
β,vh

〉
U′
,

b(un+1
h , qh) = 0. (4.14)

(4.14) has the equivalent form: for all vh ∈ Vh〈α2u
n+1
h + α1u

n
h + α0u

n−1
h

α2kn − α0kn−1

,vh

〉
0

+ a(unh,β,vh) =
〈
Fn
β,vh

〉
U′
. (4.15)

For stability and error analysis, we recall the following consistency results [31,76,77] on

the interpolation and differentiation defects.

Lemma 6. Let y : Ω× [0, T]→ Rd be arbitrary function smooth enough, then for θ ∈ [0, 1)

∥∥∥ 2∑
j=0

βj,ny(tn−1+j)− y(tn,β)
∥∥∥2

≤ C(θ)(kn + kn−1)3

∫ tn+1

tn−1

‖ytt‖2dt,

and for θ ∈ [0, 1)∥∥∥α2y(tn+1) + α1y(tn) + α0y(tn−1)

α2kn − α0kn−1

− yt(tn,β)
∥∥∥2

≤ C(θ)(kn + kn−1)3

∫ tn+1

tn−1

‖yttt‖2dt,

where tn,β = β2,ntn+1 + β1,ntn + β0,ntn−1.

Proof. Apply Taylor theorem with integral reminder to y(tn+1), y(tn−1) and y (tn,β) and

expand these functions at point tn.

51

4.4 Stability Analysis

Now we apply G-stability of the DLN method to derive the following theorem about

stability of variable time-stepping DLN algorithm on Stokes/Darcy model (4.15).

Theorem 7. (Unconditional Stability) For any N ≥ 2, the approximate solutions of the

unsteady Stokes/Darcy model by the algorithm (4.15) satisfy

1

4
(1 + θ)‖uNh ‖2

0 +
1

4
(1− θ)‖uN−1

h ‖2
0 +

N−1∑
n=1

∥∥∥ 2∑
j=0

λj,nu
n−1+j
h

∥∥∥2

0
+ C(θ)

N−1∑
n=1

(kn + kn−1)‖unh,β‖2
U

≤ 1

4
(1 + θ)‖u1

h‖2
0 +

1

4
(1− θ)‖u0

h‖2
0 + C̃(θ)

N−1∑
n=1

(kn + kn−1)‖Fn
β‖2

U ′ . (4.16)

Here, the constants C(θ), C̃(θ) ≥ 0 are independent of the diameter h and time step kn.

Proof. Let vh = unh,β in (4.15) and multiply both sides of the equation by α2kn − α0kn−1,

(2∑
j=0

αju
n−1+j
h ,

2∑
j=0

βj,nu
n−1+j
h

)
0

+ (α2kn − α0kn−1)a(unh,β,u
n
h,β)

= (α2kn − α0kn−1)
〈
Fn
β,u

n
h,β

〉
U′
. (4.17)

Apply the Proposition 2 and replace L2 space by U and L2-norm by ‖ · ‖0-norm, we obtain

(2∑
j=0

αju
n−1+j
h ,

2∑
j=0

βj,nu
n−1+j
h

)
0

=

∥∥∥∥∥∥u
n+1
h

unh

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ unh

un−1
h

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑
j=0

λj,nu
n−1+j
h

∥∥∥2

0
, (4.18)

where {λj,n}2
j=0 correspond to the coefficients {γ(n)

j }2
j=0 in the Proposition 2. By the defini-

tion of the G(θ)-norm in (2.8)∥∥∥∥∥∥u
n+1
h

unh

∥∥∥∥∥∥
2

G(θ)

:=
1

4
(1 + θ)‖un+1

h ‖2
0 +

1

4
(1− θ)‖unh‖2

0. (4.19)

52

We combine (4.11), (4.17), (4.18) and use Cauchy Schwarz inequality:∥∥∥∥∥∥u
n+1
h

unh

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ unh

un−1
h

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑
j=0

λj,nu
n−1+j
h

∥∥∥2

0
+ C2(α2kn − α0kn−1)‖unh,β‖2

U

≤ C2

2
(α2kn − α0kn−1)‖unh,β‖2

U +
1

2C2

(α2kn − α0kn−1)‖Fn
β‖2

U′ . (4.20)

Note that

1− θ
2

(kn + kn−1) ≤ α2kn − α0kn−1 ≤
1 + θ

2
(kn + kn−1), (4.21)

then (4.20) becomes∥∥∥∥∥∥u
n+1
h

unh

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ unh

un−1
h

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑
j=0

λj,nu
n−1+j
h

∥∥∥2

0
+
C2(1− θ)

4
(kn + kn−1)‖unh,β‖2

U

≤ 1 + θ

4C2

(kn + kn−1)‖Fn
β‖2

U′ . (4.22)

Summing over (4.22) from n = 1, · · · , N − 1 and applying (4.19), we obtain the result.

4.5 Error Analysis

In this section, we utilize the G-stability (Proposition 2) and consistency (Lemma 6)

of the DLN algorithm to show the second-order convergence of approximate solutions to

unsteady Stokes/Darcy model. We denote un = (un, φn) and pn be the exact solutions of

the coupled Stokes/Darcy model (4.10) at time tn and define the error functions

en = unh − un = (unh − P
u
h un)− (un − Pu

h un) = ηn − ξn.

enp = pnh − pn = (pnh − P
p
hp

n)− (pn − P p
hp

n) = ηnp − ξnp , (4.23)

and η0 = η1 = 0.

53

For variable time-stepping analysis, we need to define some continuous and discrete

norms. Given v ∈ U, q ∈ Qf , G ∈ U′ and 1 ≤ m, s <∞, we define continuous norms

‖v‖m,0 :=
(∫ T

0

‖v(t)‖m0 dt
) 1
m
, ‖v‖m,s :=

(∫ T

0

‖v(t)‖ms dt
) 1
m
, ‖v‖m,U :=

(∫ T

0

‖v(t)‖mUdt
) 1
m
,

‖q‖m,L2 :=
(∫ T

0

‖q(t)‖mdt
) 1
m
, ‖G‖m,U′ :=

(∫ T

0

‖G(t)‖mU′dt
) 1
m
.

and new discrete norms

‖|v|‖m,0 :=
(N−1∑
n=0

kn‖vn+1‖m0
) 1
m
, ‖|v|‖m,s :=

(N−1∑
n=0

kn‖vn+1‖ms
)1/m

,

‖|vβ|‖m,s :=
(N−1∑
n=1

(kn−1 + kn)‖v(tn,β)‖ms
)1/m

.

Now we have the main theorem for error analysis.

Theorem 8. (Second Order Convergence) The approximate solutions {unh}Nn=0 by the vari-

able timestepping DLN scheme (4.15) with parameter θ ∈ [0, 1) satisfies

‖|uh − u|‖2,0 ≤C(θ, T)
{

max
1≤n≤N−1

{
(kn + kn−1)2

}(
‖ptt‖2,L2 + ‖uttt‖2,0 + ‖utt‖2,U + ‖Ftt‖2,U′

)
+ h2‖ut‖2,2 + h2‖|u|‖2,2

}
, (4.24)

and (N−1∑
n=1

(α2kn − α0kn−1)‖u(tn,β)− unh,β‖2
U

)1/2

(4.25)

≤ C(θ) max
1≤n≤N−1

{
(kn + kn−1)2

}(
‖ptt‖2,L2 + ‖uttt‖2,0 + ‖utt‖2,U + ‖Ftt‖2,U′

)
+ C(θ, T)h2‖ut‖2,2 + C(θ)h max

1≤n≤N−1

{
(kn + kn−1)2

}
‖utt‖2,2 + C(θ)h‖|uβ|‖2,2.

54

Proof. By (4.10), the true solution of unsteady Stokes/Darcy model at time tn,β satisfies〈∂u

∂t
(tn,β),vh

〉
0

+ a(u(tn,β),vh) + b(vh, p(tn,β)) =
〈
F(tn,β),vh

〉
U′
, for all vh ∈ Vh.

(4.26)

Equivalently, (4.26) can be rewritten as〈α2u
n+1 + α1u

n + α0u
n−1

α2kn − α0kn−1

,vh

〉
0

+ a(unβ,vh) + b(vh, p
n
β)

=
〈
Fn
β,vh

〉
U′

+ τ
(
u(tn,β), p(tn,β),vh

)
, (4.27)

where

unβ = β2,nu
n+1 + β1,nu

n + β0,nu
n−1, pnβ = β2,np

n+1 + β1,np
n + β0,np

n−1,

τ
(
u(tn,β), p(tn,β),vh

)
=
〈α2u

n+1 + α1u
n + α0u

n−1

α2kn − α0kn−1

− ∂u

∂t
(tn,β),vh

〉
0

+ a(unβ − u(tn,β),vh)

+b(vh, p
n
β − p(tn,β))−

〈
Fn
β − F(tn,β),vh

〉
U′
.

We subtract (4.27) from first equation of (4.14) and use the definition of error function in

(4.23) to obtain: for all vh ∈ Vh,〈α2η
n+1 + α1η

n + α0η
n−1

α2kn − α0kn−1

,vh

〉
0

+ a(ηnβ ,vh) + b(vh, η
n
p,β)

=
〈α2ξ

n+1 + α1ξ
n + α0ξ

n−1

α2kn − α0kn−1

,vh

〉
0

+ a(ξnβ ,vh) + b(vh, ξ
n
p,β)− τ

(
u(tn,β), p(tn,β),vh

)
, (4.28)

where

ηnβ = β2,nη
n+1 + β1,nη

n + β0,nη
n−1, ξnβ = β2,nξ

n+1 + β1,nξ
n + β0,nξ

n−1,

ηnp,β = β2,nη
n+1
p + β1,nη

n
p + β0,nη

n−1
p , ξnp,β = β2,nξ

n+1
p + β1,nξ

n
p + β0,nξ

n−1
p .

By definition of discrete divergence-free space Vh and the definition of projection operator

Ph, we have

b(vh, η
n
p,β) = 0 and a(ξnβ ,vh) + b(vh, ξ

n
p,β) = 0. (4.29)

55

Now we choose vh = ηnβ in (4.28) and then apply (4.29) and Proposition 2 to the equation

(4.28) to obtain∥∥∥∥∥∥η
n+1

ηn

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ ηn

ηn−1

∥∥∥∥∥∥
2

G(θ)

+
∥∥∥ 2∑
j=0

λj,nη
n−1+j

∥∥∥2

0
+ C2(α2kn − α0kn−1)‖ηnβ‖2

U

≤ (α2ξ
n+1 + α1ξ

n + α0ξ
n−1, ηnβ) + (α2kn − α0kn−1)τ

(
u(tn,β), p(tn,β), ηnβ

)
. (4.30)

Using the Taylor theorem with integral reminder,

un = un+1 +

∫ tn

tn+1

utdt and un−1 = un+1 +

∫ tn−1

tn+1

utdt. (4.31)

Then by (4.31) and the fact α2 + α1 + α0 = 0, we have

‖α2ξ
n+1 + α1ξ

n + α0ξ
n−1‖0 =

∥∥∥α1

∫ tn

tn+1

(Pu
h − Id)utdt+ α0

∫ tn−1

tn+1

(Pu
h − Id)utdt

∥∥∥
0

≤ C(θ)

∫ tn+1

tn−1

‖(Pu
h − Id)ut‖0dt, (4.32)

where Id is the identity mapping. Thus by (4.9), (4.32), Cauchy Schwarz inequality and

Young’s inequality,〈
α2ξ

n+1 + α1ξ
n + α0ξ

n−1, ηnβ
〉

0
≤C(θ, T)

∫ tn+1

tn−1

‖(Pu
h − Id)ut‖2

0dt

+
C2(α2kn − α0kn−1)

2
‖ηnβ‖2

U. (4.33)

Summing over (4.30) from n = 1, 2, ...,M (1 ≤M ≤ N − 1) and using (4.33),∥∥∥∥∥∥η
M+1

ηM

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥η
1

η0

∥∥∥∥∥∥
2

G(θ)

+
M∑
n=1

∥∥∥ 2∑
j=0

λj,nη
n−1+j

∥∥∥2

0
+

M∑
n=1

C2(α2kn − α0kn−1)

2
‖ηnβ‖2

U

≤C(θ, T)
M∑
n=1

∫ tn+1

tn−1

‖(Pu
h − Id)ut‖2

0dt+
M∑
n=1

(α2kn − α0kn−1)τ
(
u(tn,β), p(tn,β), ηnβ

)
. (4.34)

Then we deal with four terms of τ
(
u(tn,β), p(tn,β), ηnβ

)
respectively. Combining (4.9), (4.11),

Lemma 6 and using Cauchy Schwarz inequality, Young’s inequality again, we obtain〈α2u
n+1 + α1u

n + α0u
n−1

α2kn − α0kn−1

− ∂u

∂t
(tn,β), ηn+1

β

〉
0
≤C(θ)(kn + kn−1)3

∫ tn+1

tn−1

‖uttt‖2
0dt

+
C2

16
‖ηnβ‖2

U,

56

a(unβ − u(tn,β), ηnβ) ≤C1‖unβ − u(tn,β)‖U‖ηnβ‖U

≤C(θ)(kn + kn−1)3

∫ tn+1

tn−1

‖utt‖2
Udt+

C2

16
‖ηnβ‖2

U,

b(ηn+1
β , pnβ − p(tn,β)) ≤C‖pn+1

β − p(tn,β)‖‖ηnβ‖U

≤C(kn + kn−1)3

∫ tn+1

tn−1

‖ptt‖2dt+
C2

16
‖ηnβ‖2

U,

〈
Fn
β − F(tn,β), ηnβ

〉
U′
≤‖Fn

β − F(tn,β)‖U′‖ηnβ‖U

≤C(kn + kn−1)3

∫ tn+1

tn−1

‖Ftt‖2
U′ +

C2

16
‖ηnβ‖2

U. (4.35)

Since η0 = η1 = 0 and by (4.13), (4.21), the definition of G(θ)-norm and estimators in (4.35),

(4.34) becomes

1 + θ

4
‖ηM+1‖2

0 +
1− θ

4
‖ηM‖2

0 +
M∑
n=1

∥∥∥ 2∑
j=0

λj,nη
n−1+j

∥∥∥2

0
+
C2

4

M∑
n=1

(α2kn − α0kn−1)‖ηnβ‖2
U

≤ C(θ) max
1≤n≤N−1

{
(kn + kn−1)4

}(
‖ptt‖2

2,L2 + ‖uttt‖2
2,0 + ‖utt‖2

2,U + ‖Ftt‖2
2,U′

)
+

M−1∑
n=1

C(θ, T)

∫ tn+1

tn−1

h4‖ut‖2
2dt

≤ C(θ) max
1≤n≤N−1

{
(kn + kn−1)4

}(
‖ptt‖2

2,L2 + ‖uttt‖2
2,0 + ‖utt‖2

2,U + ‖Ftt‖2
2,U′

)
+C(θ, T)h4‖ut‖2

2,2. (4.36)

Note that

‖|e|‖2,0 ≤ ‖|ξ|‖2,0 + ‖|η|‖2,0, (4.37)

by (4.13) and (4.36), we have

‖|ξ|‖2,0 =
(N−1∑
n=0

kn‖ξn+1‖2
0

)1/2

≤
(N−1∑
n=0

C3h
4kn‖un+1‖2

2

)1/2

≤ Ch2‖|u|‖2,2, (4.38)

57

‖|η|‖2,0 ≤C(θ, T)
(N−1∑
n=0

kn
)1/2
{

max
1≤n≤N−1

{
(kn + kn−1)2

}(
‖ptt‖2,L2 + ‖uttt‖2,0 + ‖utt‖2,U

+ ‖Ftt‖2,U′

)
+ h2‖ut‖2,2

}
≤C(θ, T)

√
T
{

max
1≤n≤N−1

{
(kn + kn−1)2

}(
‖ptt‖2,L2 + ‖uttt‖2,0 + ‖utt‖2,U + ‖Ftt‖2,U′

)
+ h2‖ut‖2,2

}
. (4.39)

Combining (4.37), (4.38) and (4.39), we have (4.24). For the second part, we have

N−1∑
n=1

(α2kn − α0kn−1)‖u(tn,β)− unh,β‖2
U

≤ C(θ)
N−1∑
n=1

(kn + kn−1)‖u(tn,β)− unβ‖2
U +

N−1∑
n=1

(α2kn − α0kn−1)‖unβ − unh,β‖2
U. (4.40)

Using Lemma 6,

C(θ)
N−1∑
n=1

(kn + kn−1)‖u(tn,β)− unβ‖2
U ≤ C(θ) max

1≤n≤N−1

{
(kn + kn−1)4

}
‖utt‖2

2,U. (4.41)

And

N−1∑
n=1

(α2kn − α0kn−1)
∥∥unβ − unh,β

∥∥2

U
≤ C(θ)

N−1∑
n=1

(kn + kn−1)
∥∥ξnβ∥∥2

U
+

N−1∑
n=1

(α2kn − α0kn−1)
∥∥ηnβ∥∥2

U
.

(4.42)

By (4.13) and linearity of the projection operator Ph,

‖ξnβ‖2
U = ‖Pu

h unβ − unβ‖2
U ≤ Ch2‖unβ‖2

2 ≤ Ch2‖unβ − u(tn,β)‖2
2 + Ch2‖u(tn,β)‖2

2. (4.43)

Applying Lemma 6 again to (4.43),

C(θ)
N−1∑
n=1

(kn + kn−1)‖ξnβ‖2
U ≤ C(θ)h2 max

1≤n≤N−1

{
(kn + kn−1)4

}
‖utt‖2

2,2 + C(θ)h2‖|uβ|‖2
2,2.

(4.44)

58

Combining (4.36), (4.40), (4.41), (4.42) and (4.44), we obtain

N−1∑
n=1

(α2kn − α0kn−1)‖u(tn,β)− unh,β‖2
U

≤ C(θ) max
1≤n≤N−1

{
(kn + kn−1)4

}(
‖ptt‖2

2,L2 + ‖uttt‖2
2,0 + ‖utt‖2

2,U + ‖Ftt‖2
2,U′

)
+C(θ, T)h4‖ut‖2

2,2 + C(θ)h2 max
1≤n≤N−1

{
(kn + kn−1)4

}
‖utt‖2

2,2 + C(θ)h2‖|uβ|‖2
2,2,

which leads to (4.25).

4.6 Numerical Tests

In this section, we use two numerical experiments to verify two distinct properties of

the DLN algorithm (stability and consistency). Both numerical tests are implemented by

FreeFEM++. The first test confirms that the variable time-stepping DLN algorithm is stable

with different values of parameter θ ∈ [0, 1]. In the second experiment, we apply the DLN

algorithm with constant time step to check the second-order convergence of the approximate

solutions as well as compare it with the BDF2 scheme.

4.6.1 Test of Variable Time-stepping DLN algorithm

In this experiment, we use the example mentioned in [19, 73]. Considering the model

problem on Ωf = [0, π]× [0, 1] and Ωp = [0, π]× [−1, 0] with the interface Γ = [0, π]× [0]:

u =
[

1
π

sin(2πy) cos(x)et, (−2 + 1
π2 sin2(πy)) sin(x)et

]tr

,

p = 0, φ = (ey − e−y) sin(x)et.

For this test, we set the physical parameters ρ, g, ν, K, S0 and µBJS all equal to 1 and

consider the cases of parameters θ = 0.2, 0.5, 0.7 in DLN scheme. The initial conditions,

boundary conditions, and the source terms follow from the exact solution. We use the

well-known Taylor-Hood element (P2-P1) for the fluid equation and the piecewise quadratic

59

polynomials (P2) for the porous equation. To see the effect on the results by change of time

steps, we set the diameters h = 1/100 for space triangulation. We apply the DLN algorithm

to this test problem for 40 time steps and refer to the time step size kn similar to that in [23]:

kn =

0.1 0 ≤ n ≤ 10,

0.1 + 0.05 sin(10tn) n > 10.

(4.45)

The graph of the time step function (4.45) are given in Figure 19. Figure 20 shows speed

0 0.5 1 1.5 2 2.5 3 3.5 4

T

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

k
n

Figure 19: Change of step size kn.

contours and velocity streamlines with parameter θ = 0.2, 0.5, 0.7 respectively. From the

graphs, we observe that good performance can be obtained for all three cases. Figure 21(a)

and Figure 21(b) respectively show the comparison between the approximate solutions and

the true solutions of the incompressible fluid velocity uf and porous media fluid hydraulic

head φ with different θ. The variable time-stepping DLN algorithm approximates exact

solutions well, which confirms the stability of the DLN algorithm.

4.6.2 Test of constant Time-stepping DLN algorithm

For the constant step test, we refer to the numerical example in [97]. Let the compu-

tational domain Ω be composed of Ωf = (0, 1) × (1, 2) and Ωp = (0, 1) × (0, 1) with the

60

X

Y

0 0.5 1 1.5 2 2.5 3
­1

­0.5

0

0.5

1

1.5
speed: 10 20 30 40 50 60 70 80 90 100 110

(a) θ = 0.2

X

Y

0 0.5 1 1.5 2 2.5 3
­1

­0.5

0

0.5

1

1.5
speed: 10 20 30 40 50 60 70 80 90 100 110

(b) θ = 0.5

X

Y

0 0.5 1 1.5 2 2.5 3
­1

­0.5

0

0.5

1

1.5
speed: 10 20 30 40 50 60 70 80 90 100 110

(c) θ = 0.7

Figure 20: Speed contours and velocity streamlines with θ = 0.2, 0.5, 0.7.

0 0.5 1 1.5 2 2.5 3 3.5 4

T

0

10

20

30

40

50

60

70

80

90

100

|u
| L2

=0.2
=0.5
=0.7

u

(a) Comparison for velocity uf

0 0.5 1 1.5 2 2.5 3 3.5 4

T

0

10

20

30

40

50

60

|
| L2

=0.2
=0.5
=0.7

(b) Comparison for hydraulic head φ

Figure 21: Comparison between approximate solutions and exact solutions with different

parameter θ.

61

interface Γ = (0, 1)× {1}. We set the total time T = 1. The exact solution is:

u =
[
(x2(y − 1)2 + y) cos(t),−2

3
x(y − 1)3 cos(t) + (2− π sin(πx)) cos(t)

]tr

,

p =
(
2− π sin(πx)

)
sin
(1

2
πy
)

cos(t),

φ = (2− π sin(πx))(1− y − cos(πy)) cos(t).

For this test, MINI (P1b-P1) space and piecewise linear polynomials (P1) space are used

for the approximation of the incompression fluid and the porous equation respectively. To

confirm the consistency of the DLN algorithm, we set h = ∆t and calculate the errors and

convergence rates for the functions u, p, and φ. The rate of convergence r is calculated by

r = ln(e(∆t1)/e(∆t2))/ ln(∆t1/∆t2),

where e(∆t) is the error computed by the DLN algorithm with time stepsize ∆t.

Table 10, Table 11, and Table 12 show the fluid velocity u, hydraulic head φ and pressure

p errors of DLN algorithm when θ = 0.2, 0.5, 0.7. By comparison, the results are almost

the same, but as θ increases, the errors of u decrease slightly, while the errors of φ increase.

Thus how to choose the best parameters leaves an open question. Moreover Table 13, Table

14, and Table 15 show the convergence rate of velocity u, pressure p and hydraulic head

φ with different θ and therefore verify the second-order convergence of DLN algorithm.

Finally, Table 16 shows the corresponding errors obtained by the common BDF2 method.

By comparison, we can see that the DLN algorithm obtains a better hydraulic head φ than

the BDF2 method.

4.7 Conclusions

This chapter has shown that the DLN algorithm has advantages in variable time-stepping

analysis for the unsteady Stokes/Darcy model due to unconditional, long timeG-stability and

second-order accuracy under variable time steps. The stability of the approximate solutions

comes from G-stability of the DLN algorithm and the second-order accuracy of the numerical

62

Table 10: The errors for DLN scheme with θ = 0.2.

∆t = h ‖|eu|‖2,0 ‖|eu|‖2,1 ‖|eφ|‖2,0 ‖|eφ|‖2,1 ‖|ep|‖2,0

1/10 0.0163655 0.599657 0.0143625 0.552125 0.175753

1/16 0.00657067 0.354318 0.00587243 0.359717 0.0785158

1/22 0.00353871 0.255182 0.00317754 0.268333 0.0490189

1/28 0.00218857 0.191492 0.00198363 0.2117 0.0306542

1/34 0.00150194 0.160602 0.00135819 0.177254 0.0213342

Table 11: The errors for DLN scheme with θ = 0.5.

∆t = h ‖|eu|‖2,0 ‖|eu|‖2,1 ‖|eφ|‖2,0 ‖|eφ|‖2,1 ‖|ep|‖2,0

1/10 0.01615 0.506002 0.0146238 0.551755 0.138243

1/16 0.00652393 0.311263 0.00599802 0.359655 0.0637115

1/22 0.00351853 0.22917 0.00324735 0.268314 0.04083

1/28 0.00218086 0.176397 0.00202875 0.211693 0.0260884

1/34 0.00149633 0.148517 0.0013883 0.177249 0.0184629

Table 12: The errors for DLN scheme with θ = 0.7.

∆t = h ‖|eu|‖2,0 ‖|eu|‖2,1 ‖|eφ|‖2,0 ‖|eφ|‖2,1 ‖|ep|‖2,0

1/10 0.0161161 0.488013 0.0150263 0.551591 0.128276

1/16 0.00652022 0.30443 0.00616699 0.359622 0.0604363

1/22 0.00351759 0.225303 0.00333733 0.268301 0.0393132

1/28 0.00218125 0.174198 0.00208573 0.211687 0.0252779

1/34 0.00149674 0.14679 0.00142616 0.177246 0.0179642

63

Table 13: The convergence order of errors for DLN scheme with θ = 0.2.

∆t = h ru,0 ru,1 rφ,0 rφ,1 rp,0

1/10 - - - - -

1/16 1.9416 1.11949 1.90286 0.911604 1.71441

1/22 1.94331 1.03066 1.92857 0.920353 1.47931

1/28 1.99249 1.19062 1.95378 0.982976 1.94657

1/34 1.93911 0.906045 1.9509 0.914669 1.86683

Table 14: The convergence order of errors for DLN scheme with θ = 0.5.

∆t = h ru,0 ru,1 rφ,0 rφ,1 rp,0

1/10 - - - - -

1/16 1.92895 1.03382 1.8962 0.910541 1.64818

1/22 1.93885 0.961447 1.92678 0.920035 1.39722

1/28 1.98342 1.08527 1.95063 0.982834 1.85737

1/34 1.94019 0.886068 1.9538 0.914617 1.78066

Table 15: The convergence order of errors for DLN scheme with θ = 0.7.

∆t = h ru,0 ru,1 rφ,0 rφ,1 rp,0

1/10 - - - - -

1/16 1.92532 1.00404 1.89485 0.910111 1.60126

1/22 1.93791 0.945172 1.92819 0.919886 1.35037

1/28 1.98157 1.06674 1.94911 0.982746 1.83126

1/34 1.93971 0.881715 1.95786 0.914595 1.75915

64

Table 16: The errors for BDF2 scheme.

∆t = h ‖|eu|‖2,0 ‖|eu|‖2,1 ‖|eφ|‖2,0 ‖|eφ|‖2,1 ‖|ep|‖2,0

1/10 0.0160291 0.450396 0.0165148 0.551278 0.116047

1/16 0.00650765 0.290462 0.00680715 0.359553 0.0561277

1/22 0.00351566 0.2176 0.0036845 0.268273 0.0373131

1/28 0.00218218 0.169732 0.00230674 0.211677 0.024088

1/34 0.00149872 0.143413 0.00157485 0.177236 0.0171673

simulations is derived from the combination of G-stability and consistency properties of the

DLN algorithm. The complexity of the DLN method prevents its testing in flow models in

which a method with DLN’s excellent properties should be valued. Refactorization with time

filters would be a natural way to simplify the implementation of the method and propel its

common use in computational fluid dynamics. For simulations of variable time-stepping DLN

algorithm, it is favorable to adapt time steps based on the criterion of minimum numerical

dissipation or allowed local truncation error. To deal with the coupling problem of different

regions (like the Stokes/Darcy model), we may consider decoupling the problem, applying the

DLN algorithm with different time steps and corresponding adaptivity in each sub-domain.

65

5.0 The DLN Algorithm for the Navier-Stokes equations

5.1 Introduction

In [33] Dahlquist, Liniger, and Nevanlinna give a family of one-leg 2-step methods that

are G-stable for any sequence of time steps. Consider the differential equation y′(t) = g(t, y),

with t ∈ [0, T], where y(t) ∈ X, a Banach space, and g : [0, T] × X → X ′ is a sufficiently

smooth function. The family of one-leg, 2-step methods proposed by Dahlquist, Liniger, and

Nevanlinna (DLN) takes the form

2∑
`=0

α`yn−1+` = k̂ng
(2∑
`=0

β
(n)
` tn−1+`,

2∑
`=0

β
(n)
` yn−1+`

)
, n = 1, . . . , N − 1, (DLN)

where k̂n is an weighted average of the time steps kn, kn−1, and the generating polynomials

are ρ(ζ) =
∑2

`=0 α`ζ
`, σn(ζ) =

∑2
`=0 β

(n)
` ζ` (see (5.1) in Section 5.2).

Let Ω be the flow domain in Rd (d = 2 or 3), and denote by u(x, t) the fluid velocity,

p(x, t) the pressure, and f (x, t) body force. Herein we give an analysis of the (DLN) method

for the Navier-Stokes Equations:

ut + u · ∇u− ν∆u+∇p = f, x ∈ Ω, 0 < t ≤ T, (NSE)

∇ · u = 0, x ∈ Ω for 0 < t ≤ T, u(x, 0) = u0(x), x ∈ Ω,

u = 0 on ∂Ω,

∫
Ω

p dx = 0 for 0 < t ≤ T.

Section 5.2 presents (DLN)’s critical property of variable step G-stability with the G-

matrix independent of the time step ratio. Notations and preliminaries are presented in

Section 5.3. Section 5.4 gives a proof of variable time step, unconditional, long time, bound

of the energy for the one-leg (DLN) method for (NSE). This analysis shows that the natural

kinetic energy, E(tn), and numerical dissipation rate, D(tn), of the DLN approximation are

E(tn) =
1

4
(1 + θ)‖uhn‖2 +

1

4
(1− θ)‖uhn−1‖2, θ= method parameter,

D(tn) =
1

k̂n

∥∥∥ 2∑
`=0

a
(n)
` uhn−1+`

∥∥∥2

, where the coefficients a
(n)
` are given in (5.2),

66

where ‖ · ‖ denotes the L2(Ω) norm.

Section 5.5 provides the variable step error analysis. The DLN method is proven second-

order for any sequence of time steps. Numerical tests are presented in Section 5.6. The first

example confirms the theoretical prediction of second-order accuracy. The second test shows

that DLN has stability advantages over BDF2 for variable time steps. There is a recent idea

by Capuano, Sanderse, De Angelis, and Coppola [20] to adapt the time step to control the

ratio of numerical to physical dissipation. Rather than testing a standard approach to error

estimation and adaptivity, we also test this idea, which uses the above explicit formula for

the method’s numerical dissipation, in Section 5.6.

Remark 9. We focus herein on the variable step DLN time discretization. It is impossi-

ble to draw clear conclusions when varying more than one thing. Thus, at each non-time

discretization decision, we select the most classical one, e.g. standard Galerkin, well-known

finite element spaces, standard nonlinearity, no stabilizations, no turbulence models, and so

on. Each of these can be further optimized using the properties of DLN, developed here.

5.1.1 Related work

The number of papers studying time-stepping methods for flow problems is very large.

The general (2 parameter two-legs) linear 2-step A-stable method was analyzed for the NSE

for constant time steps in Girault and Raviart [48], and developed further in [72]. Time

adaptive discretizations of the NSE have been limited by the Dahlquist barrier, storage

limitations, and the cognitive complexity of extending to the NSE many of the standard

methods for systems of ordinary differential equations [12,15,125]. One early and important

work is Kay, Gresho, Griffiths, and Silvester [75]. It presents an adaptive algorithm based

on the trapezoid scheme / linearized midpoint rule (with error estimation done using an

explicit AB2 type method) that is memory and computation efficient. It is well-known [80]

for systems of ODEs that variable step, variable order (VSVO) methods are efficient choices,

and have been considered for the NSE in [37,63].

67

5.2 The Variable Step DLN method

The (DLN) method is a 1-parameter (0 ≤ θ ≤ 1) family of A-stable, one-leg 2-step

G-stable methods. When θ = 1, (DLN) reduces to the one-step, one-leg implicit midpoint

scheme [15], in which case is also symplectic, and conserves all linear and quadratic Hamil-

tonians. The (DLN)’s key property is that its G-matrix depends on the parameter θ, but

not on the timestep ratio. For a comparison in terms of stability regions, in the constant

time step case, Figure 22 shows the DLN with θ = 0.5 and the BDF2 root locus curves. Let

Figure 22: Boundaries of Stability Region for constant DLN (θ = 0.5) and BDF2.

{tn}n≥0 denote the time mesh points, kn = tn+1− tn the timestep, and εn = kn−kn−1

kn+kn−1
the step

size variability (notice εn ∈ (−1, 1)). Then the {α`, β`}`=0,1,2 coefficients in (DLN) are
α2 β

(n)
2

α1 β
(n)
1

α0 β
(n)
0

 =


1
2
(θ + 1) 1

4

(
1 + 1−θ2

(1+εnθ)2
+ εn

2 θ(1−θ2)
(1+εnθ)2

+ θ
)

−θ 1
2

(
1− 1−θ2

(1+εnθ)2

)
1
2
(θ − 1) 1

4

(
1 + 1−θ2

(1+εnθ)2
− εn2 θ(1−θ2)

(1+εnθ)2
− θ
)

 , (5.1)

and the averaged time step k̂n is

k̂n = α2kn − α0kn−1 =
1

2
(1 + θ)kn +

1

2
(1− θ)kn−1 = θ

kn − kn−1

2
+
kn + kn−1

2
.

The α`-coefficients are independent of the time-step ratio, but β` depend on the time-step

ratios via the variability coefficients εn. For expression of the numerical dissipation, we also

define

68

a
(n)
1 = −

√
θ (1− θ2)√
2(1 + εnθ)

, a
(n)
2 = −1− εn

2
a

(n)
1 , a

(n)
0 = −1 + εn

2
a

(n)
1 , (5.2)

which correspond to {γ(n)
` }2

`=0 in the Proposition 2 and depend on the time-step ratios

through the variability coefficients εn.

5.3 Preliminaries and Notations

The discussion of the DLN method connects to stability theory in numerical ODEs. Much

of this theory addresses the response of the method when applied to y′ = λy, y(0) = 1,

e.g., [56]. Recall that a method is 0-stable if, when applied to y′ = 0, the approximate

solution does not grow. For more general problems, 0-stability allows exponential growth

but excludes rate constants that blow up as ∆t→ 0. A method is A-stable if, when applied

to y′ = λy, y(0) = 1, the constant time step approximation yn → 0 as n → ∞ for any ∆t

and any λ with Re(λ) < 0. A-stability addresses time asymptotics (tn → ∞) and is thus

stronger than 0− stability. A method is L-stable if it is A-stable and satisfies the additional

condition that yn → 0 for n fixed for any ∆t as (real) λ→ −∞. L-stability means that the

method will not experience the ±1 type oscillation (called ringing) of the trapezoid rule for

constant ∆t and large, negative λ. G-stability is an extension of A-stability to unconditional,

long time, energetic stability of nonlinear problems.

Let Ω be any domain in Rd (d = 2 or 3). For 1 ≤ p <∞ and r ∈ N, ‖ · ‖Lp and ‖ · ‖W r
p

are norms on function spaces Lp (Ω) and W r
p (Ω) respectively. When p = 2, we denote ‖ · ‖

be L2(Ω) norm, and the L2(Ω) inner product (·, ·). Moreover, Hr (Ω) denotes the Sobolev

space W r
2 (Ω) with norm ‖ · ‖r. For the velocity u and pressure p, we define the spaces

X =
{
v : Ω→ Rd : v ∈ L2 (Ω) ,∇v ∈ L2 (Ω) and v = 0 on ∂Ω

}
,

Q =
{
q : Ω→ R : v ∈ L2 (Ω) and

∫
Ω

q dx = 0
}
.

69

The space of divergence-free functions is denoted

V =
{
v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q

}
.

The space X∗ is the dual space of X with the dual norm

‖f‖∗ = sup
v∈X
v 6=0

(f,∇v)

‖∇v‖
, ∀f ∈ X∗.

For convenience, we denote

‖v‖p,r = ‖v‖Lp(0,T,Hr) ,

for any function v(t, x) and 1 ≤ p ≤ ∞. For u, v, w ∈ X, we define the explicitly skew

symmetrized trilinear form

b (u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) .

This is the most common form of nonlinearity in use so it is selected herein. In passing, we

note that the momentum and angular momentum conserving (EMAC) form of the nonlinear-

ity from Olshanskii and Rebholz [102], although less common, provides better results. Obvi-

ously we have b (u, v, v) = 0 and by the divergence theorem, we have b (u, v, w) = (u · ∇v, w)

for all u ∈ V and v, w ∈ X. Moreover, b (u, v, w) satisfies the bounds (see e.g., [122])

b (u, v, w) ≤ C (Ω) ‖∇u‖‖∇v‖‖∇w‖, b (u, v, w) ≤ C (Ω) ‖u‖1/2‖∇u‖1/2‖∇v‖‖∇w‖.

(5.3)

For spatial discretization, we use the finite element method (FEM). The approximate so-

lutions for the velocity and pressure are in the finite element spaces Xh ⊂ X,Qh ⊂ Q,

based on an edge to edge triangulation Ω (with maximum triangle diameter h). We assume

that Xh and Qh satisfy the usual discrete inf-sup condition (LBBh condition). The Taylor-

Hood elements, which satisfy the condition, are used in the numerical tests. The discretely

divergence-free subspace of Xh is

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ Qh} .

70

We also assume that Xh and Qh have degree r and s respectively (r, s ∈ N), and the following

interpolation error estimate for the velocity u and pressure p holds (see e.g., [9, p.108]):

‖u− Ihu‖m ≤ Chr+1−m‖u‖r+1, u ∈ Hr+1 (Ω)
d
, 0 ≤ m ≤ r

‖p− Ihp‖m ≤ Chs+1−m‖p‖s+1, p ∈ Hs+1 (Ω) , 0 ≤ m ≤ s, m ∈ N, (5.4)

where Ihu and Ihp are the L2 projection of u and p into V h and Qh respectively. (These

estimates can follow, for example, from standard ones for the Stokes projection for H2 regular

domains.)

For any given sequence {zn}n≥1, we denote by

zn,β = β
(n)
2 zn+1 + β

(n)
1 zn + β

(n)
0 zn−1

the convex combination of the three adjacent terms in the sequence. For example, {tn,β} is

the set of time-values and un,β are the implicit values where the equation is evaluated

tn,β = β
(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1, un,β = β

(n)
2 un+1 + β

(n)
1 un + β

(n)
0 un−1.

The variational formulation of the one-leg (DLN) method for the NSE is as follows. Given

uhn, u
h
n−1 ∈ Xh and phn, p

h
n−1 ∈ Qh, find uhn+1 and phn+1 satisfying

1

k̂n

(
α2u

h
n+1 + α1u

h
n + α0u

h
n−1, v

h
)

+ ν(∇uhn,β,∇vh) + b(uhn,β, u
h
n,β, v

h)

−(phn,β,∇ · vh) = (f(tn,β), vh), (5.5)

(∇ · uhn+1, q
h) = 0,

for all vh ∈ Xh, qh ∈ Qh. Under the discrete inf-sup condition, (5.5) is equivalent to

1

k̂n
(α2u

h
n+1 + α1u

h
n + α0u

h
n−1, v

h) + ν(∇uhn,β,∇vh) + b(uhn,β, u
h
n,β, v

h) (5.6)

=
(2∑
`=0

β
(n)
` f(tn−1+`), v

h
)
, ∀vh ∈ V h.

71

5.4 Stability of DLN Method for the NSE

In this section, we prove the unconditional, long time, variable time step bound of the

energy for (5.5), using the G-stability property in (2.7) of the method.

Theorem 10 (Unconditional, Long Time Stability). The one-leg 2-step (DLN) algorithm

(5.5) satisfies unconditionally the following long-time energy bounds: for any integer M > 1,

1

4
(1 + θ)‖uhM‖2 +

1

4
(1− θ)‖uhM−1‖2 +

M−1∑
n=1

∥∥∥∥∥
2∑
`=0

a
(n)
` uhn−1+`

∥∥∥∥∥
2

+
ν

2

M−1∑
n=1

k̂n‖∇uhn,β‖2

≤ 1

2ν

M−1∑
n=1

k̂n‖f(tn,β)‖2
∗ +

1

4
(1 + θ)‖uh1‖2 +

1

4
(1− θ)‖uh0‖2,

where {a(n)
i }i=0,1,2 are defined in (5.2).

Proof. For n ≥ 1, set vh = uhn,β in (5.5). Using the skew-symmetry property of b

1

k̂n

(2∑
`=0

α`u
h
n−1+`, u

h
n,β

)
+ ν‖∇uhn,β‖2 = (f(tn,β),∇uhn,β).

Using definition of ‖ · ‖∗ norm and Young’s inequality

(
f (tn,β) ,∇uhn,β

)
≤ ‖f (tn,β) ‖∗‖∇uhn,β‖ ≤

ν

2
‖∇uhn,β‖2 +

1

2ν
‖f (tn,β) ‖2

∗ .

Thus for n = 1, 2, · · ·M − 1 and the Cauchy-Schwarz inequality we obtain(2∑
`=0

α`u
h
n−1+` , u

h
n,β

)
+
ν

2
k̂n‖∇uhn,β‖2 ≤ 1

2ν
k̂n‖f(tn,β)‖2

∗.

Then the G-stability relation (2.7) implies∥∥∥∥∥∥u
h
n+1

uhn

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ uhn

uhn−1

∥∥∥∥∥∥
2

G(θ)

+

∥∥∥∥∥
2∑
`=0

a
(n)
` uhn−1+`

∥∥∥∥∥
2

+
ν

2
k̂n‖∇uhn,β‖2 ≤ 1

2ν
k̂n‖f(tn,β)‖2

∗.

Finally, summation over n from 1 to M − 1, the G-stability equality in (2.7) and (5.2) yield∥∥∥∥∥∥ uhM

uhM−1

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥u
h
1

uh0

∥∥∥∥∥∥
2

G(θ)

+
M−1∑
n=1

∥∥∥∥∥
2∑
`=0

a
(n)
` uhn−1+`

∥∥∥∥∥
2

+
M−1∑
n=1

ν

2
k̂n
∥∥∇uhn,β∥∥2 ≤

M−1∑
n=1

1

2ν
k̂n‖f (tn,β) ‖2

∗ .

The above inequality results in the proof.

72

The above energy equality result identifies the DLN method’s kinetic energy and numer-

ical energy dissipation rates:

En =
1

4
(1 + θ)‖uhn‖2 +

1

4
(1− θ)‖uhn−1‖2, Dn =

1

k̂n

∥∥∥ 2∑
`=0

a
(n)
` uhn−1+`

∥∥∥2

.

5.5 Variable Time-Step Error Analysis

In this section, we analyze the error in the approximate solutions by the one-leg DLN

method for variable time steps. The discrete-time error analysis requires norms that are

discrete-time analogs of the norms used in the continuous-time case. As before, let [0, T]

denote the whole time interval, P = {tn}Mn=0 be a partition on [0, T] and {kn}M−1
n=0 be the set

of time step sizes. For a function v (x, t) and 1 ≤ p <∞, r ∈ N, we define

‖|v|‖∞,r = max
0≤n≤M

‖v (tn) ‖r, ‖|v|‖β,∞,r = max
1≤n≤M−1

‖v (tn,β) ‖r,

‖|v|‖β,p,r =
(M−1∑
n=1

(kn−1 + kn)‖v(tn,β)‖pr
)1/p

, ‖|v|‖β,p,∗ =
(M−1∑
n=1

(kn−1 + kn)‖v(tn,β)‖p∗
)1/p

.

(5.7)

In the above definitions, ‖|v|‖β,p,r and ‖|v|‖β,p,∗ are forms of Riemann sums in which the

function v is evaluated at point tn,β ∈ [tn−1, tn+1].

Now we introduce the main theorem about error analysis under the following timestep

condition:

2∑
`=0

(C(θ)

ν3

(
k7

max‖∇utt‖4
4,0 + ‖|∇u|‖4

β,∞,0
)

+ 1
)
k̂n−1+` ≤ 1, for all 2 ≤ n ≤M − 2.

(5.8)

73

Theorem 11. Let (u(t), p(t)) be a sufficiently smooth, strong solution of the (NSE). Under

the timestep condition (5.8), there exists a constant C > 0 such that the solution to the DLN

algorithm (5.5) satisfies the following error estimates

‖|u− uh|‖∞,0 ≤ Chr+1‖|u|‖∞,r+1 + F (h, kmax), (5.9)

and (
ν

M−1∑
n=1

k̂n
∥∥∇(u(tn,β)− uhn,β

)∥∥2
) 1

2 ≤ C(θ)
√
νk2

max‖∇utt‖2,0 + F (h, kmax), (5.10)

where kmax = max{kn}M−1
n=0 and

F (h, kmax) = C(θ)
√
νhrk2

max‖utt‖2,r+1 + C(θ)
√
νhr‖|u|‖β,2,r+1 (5.11)

+ C(θ)
hr+1/2

√
ν

{
k4

max(‖utt‖2
4,r+1 + ‖∇utt‖2

4,0) + ‖|u|‖2
β,4,r+1 + ‖|∇u|‖2

β,4,0

}
+
C(θ)√
ν

(k2
max‖ptt‖2,0 + hs+1‖|p|‖β,2,s+1) +

C(θ)√
ν
k4

max‖∇utt‖2
4,0

+ C(θ)
hr√
ν

(1

ν
‖|f |‖β,2,∗ +

1√
ν
‖uh1‖+

1√
ν
‖uh0‖+ k4

max‖utt‖2
4,r+1 + ‖|u|‖2

β,4,r+1

)
+ C(θ)k2

max

{
‖uttt‖2,0 + ‖ftt‖2,0 +

1√
ν
‖ptt‖2,0 +

√
ν‖∇utt‖2,0 +

1√
ν
‖|∇u|‖2

β,4,0

+
1√
ν
‖∇utt‖2

4,0

}
.

Remark 12. Time step restrictions (5.8) like ∆t ≤ O(ν−3) arise from the discrete Gronwall

inequality in the analysis of fully implicit methods. To bound the error above the discrete

Gronwall inequality requires the linearized discrete problem to be positive definite. If a suitable

linearly implicit (semi-implicit) method is used instead, the discrete problem automatically

satisfies this and no similar time step restriction occurs, see the treatment of Crank-Nicolson

in Ingram [68] for details. We comment below in Remark 13 on what this linearly implicit

realization is for DLN.

Proof. For θ = 1, the one-leg 2-step (DLN) method becomes the implicit rule and the

conclusions of the theorem have been proved in many places, hence we will examine the case

θ ∈ [0, 1). The proof is relative long, thus we separate the proof in the following steps

74

1. Combining NSE at time tn,β and the DLN algorithm (5.6) to derive the equation of

pointwise error en := u(tn)− uhn and the truncation error τ in (5.13).

2. Decomposing en by sum of ηn (the difference of u(tn) and its L2 projection onto Vh) and

φhn and then transfering the error equation derived in step 1 into the equation of ηn and

φhn.

3. Giving bound for φhn in the error equation obtained in step 2

4. Combining interpolant approximation theorem in (5.4) and conclusion in step 3 to obtain

the convergence of the DLN solution in L2-norm and H1-norm.

Step 1. Consider (NSE) at time tn,β (1 ≤ n ≤M − 1). For any vh ∈ V h, we have

(ut (tn,β) , vh) + ν(∇u(tn,β),∇vh) + b(u(tn,β), u(tn,β), vh)− (p(tn,β),∇ · vh) = (f(tn,β), vh),

and equivalently

1

k̂n

(2∑
`=0

α`u(tn−1+`), v
h
)

+ b
(2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), v

h
)
− τ(u, p, vh) (5.12)

+ν
(
∇

2∑
`=0

β
(n)
` u(tn−1+`),∇vh

)
−
(2∑
`=0

β
(n)
` p(tn−1+`),∇ · vh

)
=
(2∑
`=0

β
(n)
` f(tn−1+`), v

h
)
,

where τ(u, p, vh) is the truncation error

τ(u, p, vh) =
(1

k̂n

(2∑
`=0

α`u(tn−1+`)
)
− ut (tn,β) , vh

)
+ ν
(
∇
(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)
,∇vh

)
+ b
(2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), v

h
)
− b(u(tn,β), u(tn,β), vh) (5.13)

−
(2∑
`=0

β
(n)
` p(tn−1+`)− p(tn,β),∇ · vh

)
+
(
f(tn,β)−

2∑
`=0

β
(n)
` f(tn−1+`), v

h
)
.

Next by the definition of pointwise error en, we subtract (5.12) from the fully discrete one-leg

2-step DLN equation (5.6) to obtain

1

k̂n

(2∑
`=0

α`en−1+`, v
h
)

+ b
(2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), v

h
)
− b
(
uhn,β, u

h
n,β, v

h
)

(5.14)

+ν(∇en,β,∇vh) = (
2∑
`=0

β
(n)
` p(tn−1+`),∇ · vh) + τ(u, p, vh), ∀vh ∈ V h.

75

Step 2. As usual, let Un be L2 projection of u(tn) onto V h, and we decompose en as

en = u(tn)− Un − (uhn − Un) := ηn − φhn.

Setting vh = φhn,β ≡
∑2

`=0 β
(n)
` φhn−1+`, then (5.14) writes(∑2

`=0 α`φ
h
n−1+`

k̂n
, φhn,β

)
+ ν‖∇φhn,β‖2 + b(uhn,β, u

h
n,β, φ

h
n,β)

−b
(2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β)

=
(∑2

`=0 α`ηn−1+`

k̂n
, φhn,β

)
+ ν(∇ηn,β,∇φhn,β)−

(2∑
`=0

β
(n)
` p(tn−1+`),∇ · φhn,β

)
− τ(u, p, vh).

Using (qh,∇·φhn,β) = 0 for any qh ∈ Qh and multiplying the above equation by k̂n, we obtain

(2∑
`=0

α`φ
h
n−1+` , φ

h
n,β

)
+ νk̂n‖∇φhn,β‖2 (5.15)

=
(2∑
`=0

α`η
h
n−1+` , φ

h
n,β

)
+ νk̂n(∇ηn,β,∇φhn,β) + k̂nb(

2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β)

− k̂nb(uhn,β, uhn,β, φhn,β)− k̂n
(2∑
`=0

β
(n)
` p(tn−1+`)− qh,∇ · φhn,β

)
− k̂nτ(u, p, φhn,β), ∀qh ∈ Qh.

Now we analyze the terms on the right-hand side of (5.15). By the property of projection

operators and the linearity of inner products, we have

(2∑
`=0

α`ηn−1+`, φ
h
n,β

)
= 0.

Using the skew-symmetry of the trilinear form b, using (5.3), the Cauchy-Schwarz and Young

inequalities, and the G-stability relation (2.7), we obtain in a typical manner

k̂nb
(2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
− k̂nb(uhn,β, uhn,β, φhn,β)

=k̂nb
(2∑
`=0

β
(n)
`

(
u(tn−1+`)− uhn−1+`

)
,

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
+ k̂nb

(
uhn,β,

2∑
`=0

β
(n)
`

(
u(tn−1+`)− uhn−1+`

)
, φhn,β

)
=k̂nb

(
ηn,β,

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
− k̂nb

(
φhn,β,

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
+ k̂nb(u

h
n,β, ηn,β, φ

h
n,β).

76

For any ε > 0, using (5.3),

k̂nb
(
ηn,β,

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
≤ C(Ω)k̂n‖ηn,β‖

1
2‖∇ηn,β‖

1
2

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)

)∥∥‖∇φhn,β‖
≤ ενk̂n‖∇φhn,β‖2

+ C(ε,Ω)k̂nν
−1‖ηn,β‖‖∇ηn,β‖

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)

)∥∥2
,

k̂nb
(
φhn,β,

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
≤ C(Ω)k̂n‖φhn,β‖

1
2‖∇φhn,β‖

1
2

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)

)∥∥‖∇φhn,β‖
≤ ενk̂n‖∇φhn,β‖2

+ C(ε,Ω)k̂nν
−3‖φhn,β‖2

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)

)∥∥4
,

k̂nb(u
h
n,β, ηn,β, φ

h
n,β) ≤ C(Ω)k̂n‖uhn,β‖

1
2‖∇uhn,β‖

1
2‖∇ηn,β‖‖∇φhn,β‖

≤ ενk̂n‖∇φhn,β‖2 + C(ε,Ω)k̂nν
−1‖uhn,β‖‖∇uhn,β‖‖∇ηn,β‖2.

Now using the Cauchy-Schwarz and Young inequalities gives

νk̂n(∇ηn,β,∇φhn,β) ≤ νk̂n‖∇ηn,β‖‖∇φhn,β‖

≤ ενk̂n‖∇φhn,β‖2 + C(ε)νk̂n‖∇ηn,β‖2,

k̂n
(2∑
`=0

β
(n)
` p(tn−1+`)− qh,∇ · φhn,β

)
≤ k̂n

∥∥ 2∑
`=0

β
(n)
` p(tn−1+`)− qh

∥∥‖∇ · φhn,β‖
≤ ενk̂n‖∇φhn,β‖2 + C(ε)k̂nν

−1
∥∥ 2∑
`=0

β
(n)
` p(tn−1+`)− qh

∥∥2
.

Now we set ε = 1/16, combine the analysis above and apply the G-stability relation (2.7) to

(5.15). This becomes∥∥∥∥∥∥φ
h
n+1

φhn

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥ φhn

φhn−1

∥∥∥∥∥∥
2

G(θ)

+
11ν

16
k̂n‖∇φhn,β‖2 +

∥∥∥ 2∑
`=0

a
(n)
` φhn−1+`

∥∥∥2

≤ C
k̂n
ν3
‖φhn,β‖2

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4
+ C

k̂n
ν
‖ηn,β‖‖∇ηn,β‖

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2

+ Cνk̂n‖∇ηn,β‖2 + C
k̂n
ν
‖uhn,β‖‖∇uhn,β‖‖∇ηn,β‖2 + C

k̂n
ν

∥∥ 2∑
`=0

β
(n)
` p(tn−1+`)− qh

∥∥2

+ k̂n|τ(u, p, φhn,β)
∣∣.

77

Summing up from n = 1 to n = M − 1, we get∥∥∥∥∥∥ φhM

φhM−1

∥∥∥∥∥∥
2

G(θ)

−

∥∥∥∥∥∥φ
h
1

φh0

∥∥∥∥∥∥
2

G(θ)

+
M−1∑
n=1

∥∥∥ 2∑
`=0

a
(n)
` φhn−1+`

∥∥∥2

+
ν

2

M−1∑
n=1

k̂n‖∇φhn,β‖2 (5.16)

≤
M−1∑
n=1

C
k̂n
ν
‖ηn,β‖‖∇ηn,β‖

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2
+

M−1∑
n=1

C
k̂n
ν
‖uhn,β‖‖∇uhn,β‖‖∇ηn,β‖2

+
M−1∑
n=1

Cνk̂n‖∇ηn,β‖2 +
M−1∑
n=1

C
k̂n
ν3
‖φhn,β‖2

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4

+
M−1∑
n=1

C
k̂n
ν
‖

2∑
`=0

β
(n)
` p(tn−1+`)− qh‖2 +

M−1∑
n=1

k̂n|τ(u, p, φhn,β)|.

We set the approximate solution of u at two initial time-steps t0 and t1 to be L2 projection

of u into V h:

φhi = uhi − Ui = 0, i = 0, 1.

Using the definition of the G-norm (2.8), the estimate (5.16) becomes

1

4
(1 + θ)‖φhM‖2 +

1

4
(1− θ)‖φhM−1‖2 +

M−1∑
n=1

∥∥ 2∑
`=0

a
(n)
` φhn−1+`

∥∥2
+
ν

2

M−1∑
n=1

k̂n‖∇φn,β‖2 (5.17)

≤
M−1∑
n=1

C
k̂n
ν
‖ηn,β‖‖∇ηn,β‖

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2
+

M−1∑
n=1

C
k̂n
ν
‖uhn,β‖‖∇uhn,β‖‖∇ηn,β‖2

+
M−1∑
n=1

C
k̂n
ν3
‖φhn,β‖2

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4
+

M−1∑
n=1

C
k̂n
ν
‖

2∑
`=0

β
(n)
` p(tn−1+`)− qh‖2

+
M−1∑
n=1

Cνk̂n‖∇ηn,β‖2 +
M−1∑
n=1

k̂n|τ(u, p, φhn,β)|.

Step 3. We now bound each term in the right-hand side.

1. For the first term, we use the linearity of the L2 projection, the interpolation error

estimates (5.4) and Young’s inequality to obtain

M−1∑
n=1

C
k̂n
ν
‖ηn,β‖‖∇ηn,β‖

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2
(5.18)

≤ C(θ)
h2r+1

ν

M−1∑
n=1

(kn−1 + kn)
∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2

r+1

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2

≤ C(θ)
h2r+1

ν

M−1∑
n=1

(kn + kn−1)
(∥∥ 2∑

`=0

β
(n)
` u(tn−1+`)

∥∥4

r+1
+
∥∥∇ 2∑

`=0

β
(n)
` u(tn−1+`)

∥∥4
)
.

78

By the triangle inequality

∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4

r+1
≤ C

(∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

∥∥4

r+1
+ ‖u(tn,β)‖4

r+1

)
.

Then by Lemma 6 and Hölder’s inequality

∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

∥∥4

r+1
≤C(θ)(kn + kn−1)6

(∫ tn+1

tn−1

1 · ‖utt‖2
r+1dt

)2

(5.19)

≤C(θ)(kn + kn−1)7

∫ tn+1

tn−1

‖utt‖4
r+1dt.

Thus by the definition of the discrete norm (5.7)

M−1∑
n=1

(kn + kn−1)
∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4

r+1
≤ C(θ)k8

max‖utt‖4
4,r+1 + C‖|u|‖t4β,4,r+1. (5.20)

Similarly

M−1∑
n=1

(kn + kn−1)
∥∥∇ 2∑

`=0

β
(n)
` u(tn−1+`)

∥∥4 ≤ C(θ)k8
max‖∇utt‖4

4,0 + C‖|∇u|‖4
β,4,0. (5.21)

Combining (5.18), (5.20) and (5.21), we obtain

M−1∑
n=1

C
k̂n
ν
‖ηn,β‖‖∇ηn,β‖

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2
(5.22)

≤ C(θ)
h2r+1

ν

{
k8

max

(
‖utt‖4

4,r+1 + ‖∇utt‖4
4,0

)
+ ‖|u|‖4

β,4,r+1 + ‖|∇u|‖4
β,4,0

}
.

79

2. For the second term we use the linearity of the L2 projection, the interpolation error

estimates (5.4), to yield

M−1∑
n=1

k̂n‖∇ηn,β‖2 ≤ Ch2r

M−1∑
n=1

k̂n
∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2

r+1

≤ C (θ)h2r

M−1∑
n=1

(kn−1 + kn)
(∥∥ 2∑

`=0

β
(n)
` u(tn−1+`)− u (tn,β)

∥∥2

r+1
+ ‖u (tn,β)‖2

r+1

)
.

By Lemma 6, and the definition of the discrete norm (5.7), we have

Cν
M−1∑
n=1

k̂n‖∇ηn,β‖2 ≤ C (θ) νh2r

M−1∑
n=1

(kn−1 + kn)4

∫ tn+1

tn−1

‖utt‖2
r+1 dt

+ C (θ) νh2r

M−1∑
n=1

(kn−1 + kn) ‖u (tn,β)‖2
r+1

≤ C (θ) νh2rk4
max ‖utt‖

2
2,r+1 + C (θ) νh2r ‖|u|‖2

β,2,r+1 .

Cν
M−1∑
n=1

k̂n‖∇ηn,β‖2 ≤ νCh2r

M−1∑
n=1

k̂n
∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥2

r+1
(5.23)

≤ νC(θ)h2r

M−1∑
n=1

(kn−1 + kn)
(∥∥ 2∑

`=0

β
(n)
` u(tn−1+`)− u(tn,β)

∥∥2

r+1
+ ‖u(tn,β)‖2

r+1

)
.

≤ C(θ)νh2r

M−1∑
n=1

(kn−1 + kn)4

∫ tn+1

tn−1

‖utt‖2
r+1dt+ C(θ)νh2r

M−1∑
n=1

(kn−1 + kn)‖u(tn,β)‖2
r+1

≤ C(θ)νh2rk4
max‖utt‖2

2,r+1 + C(θ)νh2r‖|u|‖2
β,2,r+1.

3. Using the a priori bounds from Theorem 10, we have

M−1∑
n=1

k̂n
ν
‖uhn,β‖‖∇uhn,β‖‖∇ηn,β‖2 ≤Ch

2r

ν

M−1∑
n=1

k̂n
∥∥∇uhn,β∥∥∥∥ 2∑

`=0

β
(n)
` u(tn−1+`)

∥∥2

r+1

≤Ch
2r

ν

M−1∑
n=1

k̂n

(∥∥∇uhn,β∥∥2
+
∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4

r+1

)
.

Also by Theorem 10

M−1∑
n=1

k̂n
∥∥∇uhn,β∥∥2 ≤ C(θ)

ν2
‖|f |‖2

β,2,∗ +
1

ν

∥∥uh1∥∥2
+

1

ν

∥∥uh0∥∥2
. (5.24)

80

By (5.20), (5.26) and (5.24),

M−1∑
n=1

C
k̂n
ν
‖uhn,β‖‖∇uhn,β‖‖∇ηn,β‖2 (5.25)

≤ C (θ)
h2r

ν

(C(θ)

ν2
‖|f |‖2

β,2,∗ +
1

ν
‖uh1‖2 +

1

ν
‖uh0‖2 + C(θ)k8

max‖utt‖4
4,r+1 + C‖|u|‖4

β,4,r+1

)
.

M−1∑
n=1

k̂n
ν
‖uhn,β‖‖∇uhn,β‖‖∇ηn,β‖2 (5.26)

≤ Ch2r

ν

M−1∑
n=1

k̂n
∥∥∇uhn,β∥∥∥∥ 2∑

`=0

β
(n)
` u(tn−1+`)

∥∥2

r+1

≤ Ch2r

ν

M−1∑
n=1

k̂n

(∥∥∇uhn,β∥∥2
+
∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4

r+1

)
≤ C (θ)

h2r

ν

(C(θ)

ν2
‖|f |‖2

β,2,∗ +
1

ν
‖uh1‖2 +

1

ν
‖uh0‖2 + C(θ)k8

max‖utt‖4
4,r+1 + C‖|u|‖4

β,4,r+1

)
.

4. Recall that inequality derived for the first term,

∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4

r+1
≤ C

(∥∥ 2∑
`=0

β
(n)
` u(tn−1+`)− u (tn,β)

∥∥4

r+1
+ ‖u(tn,β)‖4

r+1

)
,

hence similarly

∥∥ 2∑
`=0

β
(n)
` ∇u(tn−1+`)

∥∥4 ≤ C
(∥∥ 2∑

`=0

β
(n)
` ∇u(tn−1+`)−∇u(tn,β)

∥∥4
+ ‖∇u(tn,β)‖4

)
,

which like for (5.19) gives

∥∥ 2∑
`=0

β
(n)
` ∇u(tn−1+`)

∥∥4

r+1
≤
∥∥ 2∑
`=0

β
(n)
` ∇u(tn−1+`)−∇u(tn,β)

∥∥4

r+1
+ ‖∇u(tn,β)‖4

r+1

≤ C(θ)(kn + kn−1)7

∫ tn+1

tn−1

‖∇utt‖4
r+1 dt+ ‖∇u(tn,β)‖4

r+1.

We bound the fourth term in a similar way to the derivation of (5.22)

M−1∑
n=1

C
k̂n
ν3
‖φhn,β‖2

∥∥∇ 2∑
`=0

β
(n)
` u(tn−1+`)

∥∥4
(5.27)

≤
M−1∑
n=1

C
k̂n
ν3
‖φhn,β‖2

(
(kn + kn−1)7

∫ tn+1

tn−1

‖∇utt‖4dt+ ‖∇u(tn,β)‖4
)

≤
M−1∑
n=1

C(θ)
k̂n
ν3
‖φhn,β‖2

(
k7

max‖∇utt‖4
4,0 + ‖|∇u|‖4

β,∞,0
)
.

81

5. Using the triangle inequality again

∥∥ 2∑
`=0

β
(n)
` p(tn−1+`)− qh

∥∥2 ≤ C
(∥∥ 2∑

`=0

β
(n)
` p(tn−1+`)− p (tn,β)

∥∥2
+
∥∥p (tn,β)− qh

∥∥2
)
.

Using the interpolation error estimate in (5.4) and the consistency errors Lemma 6 for

pressure p, we have

M−1∑
n=1

C
k̂n
ν

∥∥ 2∑
`=0

β
(n)
` p(tn−1+`)− qh

∥∥2 ≤ C(θ)

ν

(
k4

max‖ptt‖2
2,0 + h2s+2‖|p|‖2

β,2,s+1

)
. (5.28)

6. Let us now treat the truncation error |τ(u, p, φhn,β)|. Using the Cauchy-Schwarz inequality,

we have(1

k̂n

2∑
`=0

α`u(tn−1+`)− ut (tn,β) , φhn,β

)
≤ 1

2
‖φhn,β‖2 +

1

2

∥∥∥ 1

k̂n

2∑
`=0

α`u(tn−1+`)− ut(tn,β)
∥∥∥2

,

and applying again Lemma 6, for θ ∈ [0, 1) to the last term above

M−1∑
n=1

k̂n

∥∥∥∑2
`=0 α`u(tn−1+`)

k̂n
− ut(tn,β)

∥∥∥2

≤ C(θ)k4
max‖uttt‖2

2,0.

Thus we have

M−1∑
n=1

k̂n

(∑2
`=0 α`u(tn−1+`)

k̂n
− ut(tn,β), φhn,β

)
≤ 1

2

M−1∑
n=1

k̂n‖φhn,β‖2 + C(θ)k4
max‖uttt‖2

2,0.

Similarly,

M−1∑
n=1

k̂n
(
f(tn,β)−

2∑
`=0

β
(n)
` f(tn−1+`), φ

h
n,β

)
≤ 1

2

M−1∑
n=1

k̂n‖φhn,β‖2 + C(θ)k4
max‖ftt‖2

2,0,

and also

M−1∑
n=1

k̂n
(2∑
`=0

β
(n)
` p(tn−1+`)− p(tn,β),∇ · φhn,β

)
≤ εν

M−1∑
n=1

k̂n‖∇φhn,β‖2 +
C(ε, θ)

ν
k4

max‖ptt‖2
2,0,

M−1∑
n=1

νk̂n
(
∇
(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)
,∇φhn,β

)
≤ εν

M−1∑
n=1

k̂n‖∇φhn,β‖2

+ C(ε, θ)νk4
max‖∇utt‖2

2,0.

82

Moreover

b
(2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
− b
(
u (tn,β) , u (tn,β) , φhn,β

)
= b
(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β),

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
+ b
(
u(tn,β),

2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β), φhn,β

)
≤ C

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)∥∥‖∇φhn,β‖(‖∇ 2∑
`=0

β
(n)
` u(tn−1+`)‖+ ‖∇u(tn,β)‖

)
≤ εν‖∇φhn,β‖2 +

C(ε)

ν

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)∥∥2(‖∇ 2∑
`=0

β
(n)
` u(tn−1+`)‖2

+ ‖∇u(tn,β)‖2
)
.

Then by triangle inequality again

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)∥∥2(‖∇ 2∑
`=0

β
(n)
` u(tn−1+`)‖2 + ‖∇u(tn,β)‖2

)
≤ C

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)∥∥4

+ C
∥∥∇(2∑

`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)∥∥2‖∇u(tn,β)‖2.

Similar to (5.19) we have that

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)∥∥4 ≤ C(θ)(kn + kn−1)7

∫ tn+1

tn−1

‖∇utt‖4dt,

and also using Lemma 6 and Young’s inequality we obtain

∥∥∇(2∑
`=0

β
(n)
` u(tn−1+`)− u(tn,β)

)∥∥2‖∇u(tn,β)‖2

≤ C(θ)(kn + kn−1)3

∫ tn+1

tn−1

‖∇u(tn,β)‖2‖∇utt‖2dt

≤ C(θ)(kn + kn−1)3

∫ tn+1

tn−1

(
‖∇u(tn,β)‖4 + ‖∇utt‖4

)
dt

≤ C(θ)(kn + kn−1)4‖∇u(tn,β)‖4 + C(θ)(kn + kn−1)3

∫ tn+1

tn−1

‖∇utt‖4dt.

83

Thus

M−1∑
n=1

k̂n

(
b
(2∑
`=0

β
(n)
` u(tn−1+`),

2∑
`=0

β
(n)
` u(tn−1+`), φ

h
n,β

)
− b
(
u(tn,β), u(tn,β), φhn,β

))
≤ εν

M−1∑
n=1

k̂n‖∇φhn,β‖2 +
C(ε, θ)

ν
k8

max‖∇utt‖4
4,0 +

C(ε, θ)

ν
k4

max

(
‖|∇u|‖4

β,4,0 + ‖∇utt‖4
4,0

)
.

Setting ε = 1/16, we obtain the following estimate for the truncation error term

M−1∑
n=1

k̂n|τ(u, p, φhn,β)| ≤
M−1∑
n=1

k̂n‖φhn,β‖2 +
3ν

16

M−1∑
n=1

k̂n‖∇φhn,β‖2 +
C(θ)

ν
k8

max‖∇utt‖4
4,0

(5.29)

+ C(θ)k4
max

{
‖uttt‖2

2,0 + ‖ftt‖2
2,0 +

1

ν
‖ptt‖2

2,0 + ν‖∇utt‖2
2,0 +

1

ν
‖|∇u|‖4

β,4,0 +
1

ν
‖∇utt‖4

4,0

}
.

Now collecting the terms from (5.22), (5.23), (5.26), (5.27), (5.28) and (5.29), the inequality

(5.17) becomes

1

4
‖φhM‖2 +

ν

4

M−1∑
n=1

k̂n‖∇φhn,β‖2 ≤
M−1∑
n=1

(C
ν3

(k7
max‖∇utt‖4

4,0 + ‖|∇u|‖4
β,∞,0) + 1

)
k̂n‖φhn,β‖2

+ F̃ (h, kmax), (5.30)

where

F̃ (h, kmax) = C(θ)νh2rk4
max‖utt‖2

2,r+1 + C(θ)νh2r‖|u|‖2
β,2,r+1 +

C(θ)

ν
k8

max‖∇utt‖4
4,0

+ C(θ)
h2r+1

ν

{
k8

max

(
‖utt‖4

4,r+1 + ‖∇utt‖4
4,0

)
+ ‖|u|‖4

β,4,r+1 + ‖|∇u|‖4
β,4,0

}
+
C(θ)

ν

(
k4

max‖ptt‖2
2,0 + h2s+2‖|p|‖2

β,2,s+1

)
+ C(θ)

h2r

ν

(1

ν2
‖|f |‖2

β,2,∗ +
1

ν
‖uh1‖2 +

1

ν
‖uh0‖2 + k8

max‖utt‖4
4,r+1 + ‖|u|‖4

β,4,r+1

)
+ C(θ)k4

max

{
‖uttt‖2

2,0 + ‖ftt‖2
2,0 +

1

ν
‖ptt‖2

2,0 + ν‖∇utt‖2
2,0 +

1

ν
‖|∇u|‖4

β,4,0

+
1

ν
‖∇utt‖4

4,0

}
.

For convenience, we define the sequence {Dn}M−1
n=1

Dn :=
(C(θ)

ν3
(k7

max‖∇utt‖4
4,0 + ‖|∇u|‖4

β,∞,0) + 1
)
k̂n, 1 ≤ n ≤M − 1,

84

and the sequence {dn}Mn=0 to be

dn =



D1 if n = 0

D1 +D2 if n = 1∑2
`=0 Dn−1+` if 2 ≤ n ≤M − 2

DM−2 +DM−1 if n = M − 1

DM−1 if n = M

We use triangle inequality in (5.30) to obtain

‖φhM‖2 + ν

M−1∑
n=1

k̂n‖∇φhn,β‖2 ≤ C(θ)
M∑
n=0

dn‖φhn‖2 + F̃ (h, kmax).

Step 4. Under the timestep condition (5.8), using the discrete Gronwall inequality (see

e.g., [65]), the inequality (5.30) yields

‖φhM‖2 + ν
M−1∑
n=1

k̂n‖∇φn,β‖2 ≤ exp
(M−1∑
n=1

C(θ)
dn

1− dn
)
F̃ (h, kmax). (5.31)

From (5.31), we have

‖φhM‖ ≤ C(θ)

√
F̃ (h, kmax). (5.32)

Finally, combining (5.4) and (5.31), we obtain (5.9)

‖|u− uh|‖∞,0 := max
0≤n≤M

‖u(tn)− uhn‖ ≤ max
0≤n≤M

‖ηn‖+ max
0≤n≤M

‖φhn‖

≤ max
0≤n≤M

Chr+1‖un‖r+1 + C(θ)

√
F̃ (h, kmax) ≤ Chr+1‖|u|‖∞,r+1 + F (h, kmax),

concluding the proof of the first part of the theorem. For the second part, in order to prove

(5.10), we begin by noticing that

M−1∑
n=1

k̂n
∥∥∇(u(tn,β)− uhn,β

)∥∥2 ≤
M−1∑
n=1

k̂n‖∇
(
u(tn,β)−

2∑
`=0

β
(n)
` u(tn−1+`)

)
‖2

+
M−1∑
n=1

k̂n
∥∥∇(uhn,β − 2∑

`=0

β
(n)
` u(tn−1+`)

)∥∥2
.

85

We then apply Lemma 6 to the first term in the right-hand side

ν
M−1∑
n=1

k̂n‖∇
(
u(tn,β)−

2∑
`=0

β
(n)
` u(tn−1+`)

)
‖2 ≤ C(θ)νk4

max‖∇utt‖2
2,0 ,

and use the triangle inequality,

ν

M−1∑
n=1

k̂n
∥∥∇(uhn,β − 2∑

`=0

β
(n)
` u(tn−1+`)

)∥∥2 ≤ Cν

M−1∑
n=1

k̂n‖∇ηn,β‖2 + Cν

M−1∑
n=1

k̂n‖∇φn,β‖2 .

The last term inhere can be bounded by (5.31), while for the first term we use (5.23). Thus

ν
M−1∑
n=1

k̂n
∥∥∇(uhn,β−

2∑
`=0

β
(n)
` u(tn−1+`))

∥∥2 ≤ Cν
M−1∑
n=1

k̂n(‖∇ηn,β‖2+‖∇φn,β‖2) ≤ C(θ)F̃ (h, kmax),

which implies (5.10) and complete the proof.

Remark 13. For the linearly implicit method, we need the following second-order approxi-

mation for uhn,β

ũhn =



(
1 +

tn,β−tn−1,β

tn−1,β−tn−2,β

)
uhn−1,β −

tn,β−tn−1,β

tn−1,β−tn−2,β
uhn−2,β if n ≥ 3

[
β

(n)
2

(
1 + kn

kn−1

)
+ β

(n)
1

]
uhn +

(
β

(n)
0 − β(n)

2
kn
kn−1

)
uhn−1 if n = 1, 2

. (5.33)

Then we replace the non-linear term b(uhn,β, u
h
n,β, v) by b(ũhn, u

h
n,β, v) in the DLN algorithm

(5.5) and (5.6). One issue behind the linear DLN algorithm is that we need (tn,β−tn−1,β) > 0

for all n. For θ = 0, 1, this condition always holds and it’s easy to check that for θ ∈ (0, 1),

there exist upper bound K1(θ) ≥ 3 and lower bound 0 < K2(θ) ≤ 1
3

for ratio of steps kn/kn−1

such that tn,β − tn−1,β > 0 for all n. Under this simple step restriction, we have stability and

second order accuracy (in time) of the solutions. Moreover for constant time-stepping case,

(tn,β − tn−1,β) > 0 for all θ ∈ [0, 1] and thus no time step restriction is needed for stability

and error analysis.

86

5.6 Numerical Tests

For numerical tests we use FreeFem++ and Taylor-Hood (P2−P1) finite elements. We

verify the second-order convergence and stability of the DLN algorithm with variable time

steps through three numerical experiments.

5.6.1 Convergence Test (constant time step size)

The second-order convergence of the DLN algorithm is verified on the Taylor-Green

benchmark problem, see e.g., [121]. In the domain Ω = (0, 1)× (0, 1), the true solution is

u1(x, y, t) = − cos(wπx) sin(wπy) exp(−2w2π2t/τ),

u2(x, y, t) = sin(wπx) cos(wπy) exp(−2w2π2t/τ),

p(x, y, t) = −1

4
(cos(2wπx) + cos(2wπy)) exp(−4w2π2t/τ),

and we take the final time T = 1, w = 1 and τ = Re = 100. The body force f , initial

condition, and boundary condition are determined by the true solution. Setting ∆t = h to

calculate the convergence order R by the error e at two successive values of ∆t via

R = ln(e(∆t1)/e(∆t2))/ ln(∆t1/∆t2).

Tables 17, 18, Tables 19, 20 and Tables 21, 22 correspond to θ = 0.2, 0.5, 0.7, respectively.

The results illustrate that the DLN algorithm has second-order convergence for both velocity

and pressure. In the tests, the convergence of velocity is better. It’s quite common to observe

higher rate of convergence for velocity than for velocity gradient. However proving this result

requires a fairly long additional duality argument and its details are open.

87

Table 17: The errors and convergence order of the DLN scheme at time T = 1 for the velocity

and pressure of L2-norm with θ = 0.2.

h = ∆t ‖|eu|‖2,0 R ‖|∇eu|‖2,0 R ‖|ep|‖2,0 R

1
16

0.000740428 - 0.0610604 - 0.00169375 -

1
32

8.89412e-05 3.05 0.0141961 2.10 0.000359889 2.33

1
64

1.25455e-05 2.82 0.00382655 1.89 8.33864e-05 2.11

1
128

1.47688e-06 3.09 0.000897414 2.09 4.47778e-06 2.12

1
256

1.63539e-07 3.17 0.000199742 2.17 0.000152877 2.09

Table 18: The errors and convergence order of the DLN scheme at time T = 1 for the velocity

and pressure of L∞-norm with θ = 0.2.

h = ∆t ‖|eu|‖∞ R ‖|∇eu|‖∞ R ‖|ep|‖∞ R

1
16

0.00122596 - 0.101825 - 0.00254809 -

1
32

0.000162022 2.92 0.025876 1.98 0.000638476 1.99

1
64

0.000162022 2.72 0.00757327 1.77 0.000164576 1.96

1
128

2.45897e-05 3.00 0.00187049 2.02 4.04611e-05 2.02

1
256

3.50466e-07 3.13 0.000427984 2.13 9.95382e-06 2.02

Table 19: The errors and convergence order of the DLN scheme at time T = 1 for the velocity

and pressure of L2-norm with θ = 0.5.

h = ∆t ‖|eu|‖2,0 R ‖|∇eu|‖2,0 R ‖|ep|‖2,0 R

1
16

0.000700594 - 0.0570129 - 0.00134003 -

1
32

8.53722e-05 3.04 0.0135313 2.07 0.000305539 2.13

1
64

1.22744e-05 2.80 0.00373636 1.86 7.58267e-05 2.01

1
128

1.45834e-06 3.07 0.000885626 2.08 1.8122e-05 2.06

1
256

1.6236e-07 3.16 0.000198276 2.16 4.3458e-06 2.06

88

Table 20: The errors and convergence order of the DLN scheme at time T = 1 for the velocity

and pressure of L∞-norm with θ = 0.5.

h = ∆t ‖|eu|‖∞ R ‖|∇eu|‖∞ R ‖|ep|‖∞ R

1
16

0.00110053 - 0.0898315 - 0.00236018 -

1
32

0.000147375 2.90 0.0241532 1.89 0.000595252 1.99

1
64

2.3207e-05 2.67 0.00716777 1.75 0.000153932 1.95

1
128

2.91792e-06 2.99 0.00178222 2.01 3.79152e-05 2.02

1
256

3.34876e-07 3.12 0.000409336 2.12 9.32863e-06 2.02

Table 21: The errors and convergence order of the DLN scheme at time T = 1 for the velocity

and pressure of L2-norm with θ = 0.7.

h = ∆t ‖|eu|‖2,0 R ‖|∇eu|‖2,0 R ‖|ep|‖2,0 R

1
16

0.000689478 - 0.0560293 - 0.00127634 -

1
32

8.45301e-05 3.03 0.0133912 2.06 0.000296992 2.10

1
64

1.22087e-05 2.79 0.00371588 1.85 7.46964e-05 1.99

1
128

1.45411e-06 3.07 0.000883034 2.07 1.79769e-05 2.05

1
256

1.62107e-07 3.17 0.000197972 2.16 4.32679e-06 2.05

Table 22: The errors and convergence order of the DLN scheme at time T = 1 for the velocity

and pressure of L∞-norm with θ = 0.7.

h = ∆t ‖|eu|‖∞ R ‖|∇eu|‖∞ R ‖|ep|‖∞ R

1
16

0.00101829 - 0.0878696 - 0.00241273 -

1
32

0.000146272 2.80 0.0240831 1.87 0.000611728 1.98

1
64

2.32681e-05 2.65 0.00720402 1.74 0.000158518 1.95

1
128

2.94608e-06 2.98 0.00180182 2.00 3.91189e-05 2.02

1
256

3.39458e-07 3.12 0.000415227 2.12 9.63668e-06 2.02

89

5.6.2 2D Offset Circles Problem (with preset variable time step size)

This is a test problem from Jiang and Layton [71] that is inspired by the flow between

offset cylinders. The domain is a disk with a smaller off-center obstacle inside. Let Ω1 =

{(x, y) : x2 + y2 ≤ 1} and Ω2 = {(x, y) : (x − 1
2
)2 + y2 ≥ 0.01}. The flow is driven by a

rotational body force:

f(x, y, t) = (−4y(1− x2 − y2), 4x(1− x2 − y2))T .

with no-slip boundary conditions imposed on both circles. The body force f = 0 is on the

outer circle. The flow rotates about (0, 0) and the inner circle induces a von Kármán vortex

street which re-interacts with the immersed circle creating more complex structures. Figure

23 and Figure 24 show this situation.

For this test, we set Re = 200, the number of mesh points around the inner circle and

the mesh points around the outer circle to be 10 and 40 respectively. The parameter θ = 0.5

in DLN scheme, for the variable time step size, the number of computations is n = 1000.

We let the time step size change as the function used in Chen, Layton, and Mclaughlin [23]

to test the stability of different methods:

kn =

0.05 0 ≤ n ≤ 10,

0.05 + 0.002 sin(10tn) n > 10.

For comparison, we also solve this problem with standard (variable step) BDF2, BDF3, and

BDF4 time discretization. We calculate the 1
2
‖u‖2(energy), ‖u‖ and ‖∇u‖ using BDF2,

BDF3, BDF4 and DLN algorithms respectively. Here, let the number of mesh points on

boundary of outside circle and inner circle be 160 and 40 respectively and time step be

k0 = 0.05 and kn = kn−1 +0.001. We stop the simulation when the time step size reaches 0.5

since the time step size greater than that value will result in the inaccuracy of computation.

In Figure 25(b) and Figure 25(c), energy and ‖u‖ by BDF2 have the trend to increase with

increasing time step, while the energy and ‖u‖ by DLN remain at low level. BDF3 and BDF4

(more accurate in time) have energy and ‖u‖ value between those of BDF2 and DLN. For

H1-norm, Figure 25(d) shows that ‖∇u‖ by the four algorithms are at the same level while

90

DLN and BDF4 have larger oscillations than BDF2 and BDF3 as time step size increases.

In summary, this test verifies that the DLN algorithm has greater stability for energy than

BDF2.

(a) (b)

(c) (d)

Figure 23: Speed Contours of DLN.

5.6.3 Adapting the time step

Finally, we use this example to perform a simple adaptivity experiment. For this test,

we adapt the time step using the minimum dissipation criterion of Capuano, Sanderse,

De Angelis and Coppola [20]. Our goal is to test if adapting the time step produces a

significant difference in the solution. Other criteria/estimators are under study. Their idea

is to adapt the time step to keep the numerical dissipation, εDLN from the dominating

physical dissipation, εν . Thus we adapt for

χ =

∣∣∣∣εDLNεν
∣∣∣∣ < δ.

91

(a) (b)

(c) (d)

Figure 24: Velocity Streamlines of DLN.

Here εDLN is the numerical dissipation and εν is the viscous dissipation. These are given by:

εDLN =

∥∥∥∥∥
∑2

`=0 a
n
` u

h
n−1+`√

k̂n

∥∥∥∥∥
2

, εν = ν
∥∥∇uhn,β∥∥2

.

In the test, we set the tolerance for the dissipation ratio δ to be 0.002. The time step size is

then adapted by the simplest strategy of halving or doubling according to

∆tn+1 = min{2 ∗∆tn, 0.5}; if χ < δ, ∆tn = max{0.5 ∗∆tn, 0.01}; if χ ≥ δ.

We adapted the next time step when the dissipation ratio was out of range. Naturally,

other strategies for varying ∆t could be tested, such as formula (16) in p.2317 of Capuano,

Sanderse, De Angelis and Coppola [20] (which is ∆tn+1 = ∆tn|δ/χ|1/2). We select the

final time T = 60, minimal time step size and maximal time step size to be 0.01 and 0.5

respectively. The adaptive algorithm completed in 5687 steps. Figure 26 and Figure 27 are

line diagrams of time step size kn, energy 1
2
‖u‖2, numerical dissipation

√
εDLN and ratio χ

changing with time t, respectively.

92

(a) (b)

(c) (d)

Figure 25: Energy, ‖u‖ and ‖∇u‖ of DLN, BDF2, BDF3 and BDF4 with variable time step

size.

93

Then we select the same final time T = 60, the same calculated steps 5687 and use the

constant time step k = T/5687 to calculate to obtain the line diagram of energy 1
2
‖u‖2,

numerical dissipation
√
εDLN and ratio χ changing with time t, see Figure 28 and Figure

29. We now compare the constant time step size results in Figure 28 and Figure 29 with

(a) (b)

Figure 26: The time step size kn and ratio χ changing with adaptive time step size.

(a) (b)

Figure 27: The energy 1
2
‖u‖2 and numerical dissipation

√
εDLN changing with adaptive time

step size.

the adaptive results in Figure 26 and Figure 27. Time step size under adaptivity reaches

the maximum value 0.5 in a few steps then goes down sharply to the minimum step size

0.01 thereafter. In the test represented in Figure 26(a), the time step alternates between the

minimum step size and twice the minimum. This is due to the preset algorithmic choice.

94

(a) (b)

Figure 28: The time step size k and ratio χ changing with constant time step size.

(a) (b)

Figure 29: The energy 1
2
‖u‖2 and numerical dissipation

√
εDLN changing with constant time

step size.

95

DLN under constant step size takes 777 time steps to reach kinetic energy of approximately

23, a level which adaptive DLN algorithm reaches in 544 time steps. In the comparison of

numerical dissipation, Figure 27(b) and 29(b) show the numerical dissipation with adaptive

time step size evolves smoothly with a peak value below 0.35. Similarly the ratio χ has a

order of magnitude smaller for adaptive time step size, Figure 26(b), than constant time

step size, Figure 29(b). Comparing Figure 27 and Figure 29, we can see that energy pattens

are similar for both variable and constant step algorithms but numerical dissipation by the

variable step DLN algorithm is much smaller than that of constant case.

5.7 Conclusions

Based on the theory and the simple numerical tests for time discretization of flow prob-

lems the 2-step DLN method is to be preferred over the common BDF2 method. It is

second-order, unconditionally, long-time, and nonlinearly stable. For increasing step sizes,

BDF2 injects nonphysical kinetic energy in the discrete solution (disrupting long time be-

havior and statistical equilibrium) while DLN does not. Important open questions include

how to select the DLN parameter θ. At this point, we have no systematic (either universal

or application-specific) method to choose an optimal DLN parameter θ balancing stability

and accuracy. How to perform error estimation in a memory and computationally efficient

(and effective) way is also an important open problem. In particular, finding a memory

efficient estimator, as was done in Gresho, Sani, and Engelman [51] for the trapezoid rule,

is a necessary step. It would be useful if the DLN method could be embedded in a family

of different orders with good properties or if it could be induced from simpler methods by

added time filters. Both are open problems.

96

6.0 Conclusion and Future Work

Well-developed finite element methods for spatial discretization, accompanied by time

discretization of low accuracy, are employed in most CFD simulations. Easily implement-

ed time-accurate algorithms with low storage, little-explored but highly expected, would

strengthen the reliability of CFD simulation. Time step adaptivity is an effective way of

balancing time accuracy and computational efficiency, which results in great interest in vari-

able time-stepping analysis for fluid problems. Dahlquist, Liniger, and Nevanlinna [33] have

proposed a one-parameter family, which is G-stable (nonlinearly, energetically stable) and

second-order accurate for any arbitrary sequence of time steps. To my knowledge, this

method is the unique one that possesses such two excellent properties. My work is to

analyze the method of Dahlquist, Liniger, and Nevanlinna (the DLN method),

unearthing the properties of the method and applying it to fluid models.

The complicated form of the DLN method deters its testing in CFD where its excellent

properties should be valued. To solve this issue, I refactorize the DLN method by adding

pre-filter and post-filter on the backward Euler method and obtain the following algorithm

for each step computation [84]

Algorithm: Refactorization of the DLN Method

Input: yn, yn−1 ;

yold
n ⇐ a

(n)
1 yn + a

(n)
0 yn−1 ;

knew
n ⇐ b(n)k̂n ;

tnew
n+1 ⇐ β

(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1 ; // pre-filter for yn, kn and tn+1

Solve for ytemp
n+1 :

ytemp
n+1 −yoldn
knewn

= f
(
tnew
n+1, y

temp
n+1

)
; // backward Euler algorithm

yn+1 ⇐ ytemp
n+1 +

(
c

(n)
2 ytemp

n+1 + c
(n)
1 yn + c

(n)
0 yn−1

)
; // post-filter for ytempn+1

To further develop the DLN method, I have obtained the expressions of numerical dissi-

pation in G-stability identity and local truncation error (LTE) for the DLN algorithm, two

important criteria for measuring the effect of time-stepping algorithms on fluid models. To

adapt time steps, I extend Gresho’s idea [18, 47, 50] to derive some estimators of LTE for

variable time-stepping DLN method with aid of some explicit methods and the general time

97

step controller proposed by Söderlind [116].

Equipped with these detailed properties, I have applied the variable time-stepping

DLN method to some flow problems (unsteady Stokes/Darcy model and Navier

Stokes equations (NSE)) and performed a completed stability and error analysis

of approximate solutions in Chapter 4 and 5, see also [83,107]. The approximate solutions

are unconditionally, long-time stable, and second-order accurate under variable time steps. I

have implemented the DLN method to Taylor-Green benchmark problem [121] to confirm the

second-order convergence rate and adjusted time step using the minimum-dissipation criteria

of Capuano, Sanderse, De Angelis and Coppola [20] for the variable step test problem from

Jiang [71] that is inspired by the flow between offset cylinders. The minimum-dissipation

strategy, adding only a few lines of code, can be implemented simply to suppress the time-

integration error with desired tolerance and increase efficiency dramatically.

6.1 Future Work

6.1.1 The DLN-ensemble Algorithm for Navier Stokes equations

To solve J (J > 1) NSEs simultaneously, Jiang and Layton [71] combine backward Euler

method and ensemble averaging technique to obtain the following algorithm for each jth

NSE (j = 1, 2, · · · , J)

uj,hn+1 − uj,hn
kn

+
〈
uhn
〉
· ∇uj,hn+1 +

(
uj,hn −

〈
uhn
〉)
· ∇uj,hn − ν∆uj,hn+1 +∇pj,hn+1 = f jn+1,

∇ · uj,hn+1 = 0,

where uj,hn and pj,hn are the approximate solutions to jth NSEs at time tn and
〈
uhn
〉

:=

1
J

(∑J
j=1 u

j,h
n

)
is the ensemble average. The above algorithm at each step is equivalent to the

following block linear system 1
kn
Mu + νSu +Nu(

〈
uhn
〉
) BT

B 0

uj,hn+1

pj,hn+1

 =

f jn+1 +
(

1
kn
Mu +Nu(u

j,h
n −

〈
uhn
〉
)
)
uj,hn

0

 ,
(6.1)

98

where Mu is the mass matrix, Su is the diffusion matrix, Nu is the convection matrix and

B is the continuity matrix. The resulting coefficient matrix in (6.1), denoted by A, is

independent of j. Denote the solution vector and the vector on the right hand side by xj

and bj respectively, the ensemble algorithms of J NSE is reduced to[
A
] [
x1|x2| · · · |xJ

]
=
[
b1|b2| · · · |bJ

]
,

which solves J NSE at the same time as well as significantly reduces the storage due to the

shared coefficient matrix.

Applying the DLN algorithm to NSEs, we have the DLN-ensemble algorithm

α2u
j,h
n+1 + α1u

j,h
n + α0u

j,h
n−1

k̂n
+
〈
ũhn
〉
· ∇uj,hn,β +

(
ũj,hn −

〈
ũhn
〉)
· ∇ũj,hn − ν∆uj,hn,β +∇pj,hn,β = f jn,β,

∇ · uj,hn+1 = 0,

where

ũj,hn :=
[
β

(n)
2

(
1 +

kn
kn−1

)
+ β

(n)
1

]
uj,hn +

(
β

(n)
0 − β(n)

2

kn
kn−1

)
uj,hn−1

is the second-order approximation (in time) to uj,hn,β.

We expect the unconditional stability of the solution and second-order convergence under

certain time step condition.

6.1.2 The Semi-implicit DLN Algorithm for Navier Stokes equations

The error estimate in DLN algorithm in (5.5) or (5.6) involves the time step condition

∆t < O
(1

ν3

)
which is prohibitively restrictive in practice if the flow is highly viscous. In addition, the

non-linear system solver in the DLN algorithm in (5.5) or (5.6) keeps the computation cost

relatively high.

We replace the non-linear term uhn,β · ∇uhn,β by ũhn · ∇uhn,β, ũhn is the second-order approx-

imation (in time) to uhn,β, i.e.

ũhn :=
[
β

(n)
2

(
1 +

kn
kn−1

)
+ β

(n)
1

]
uhn +

(
β

(n)
0 − β(n)

2

kn
kn−1

)
uhn−1.

99

Thus we have the semi-implicit DLN Algorithm for NSEs

α2u
h
n+1 + α1u

h
n + α0u

h
n−1

k̂n
+ ũhn · ∇uhn,β − ν∆uhn,β +∇phn,β = fn,β,

∇ · uhn+1 = 0. (6.2)

We expect that the approximate solution by the semi-implicit DLN algorithm in (6.2) is

unconditionally stable. Moreover, we would like to obtain the second-order error estimate

without the time step restriction.

100

Bibliography

[1] M. AKBAŞ. An adaptive time filter based finite element method for the velocity-
vorticity-temperature model of the incompressible non-isothermal fluid flows. Gazi
University Journal of Science, pages 1–1, 2020.

[2] T. Arbogast and M. S. M. Gomez. A discretization and multigrid solver for a Darcy–
Stokes system of three dimensional vuggy porous media. Computational Geosciences,
13(3):331–348, 2009.

[3] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential E-
quations and Differential-Algebraic Equations. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1st edition, 1998.

[4] R. Asselin. Frequency filter for time integrations. Monthly Weather Review,
100(6):487–490, 1972.

[5] L. Badea, M. Discacciati, and A. Quarteroni. Numerical analysis of the Navier–
Stokes/Darcy coupling. Numerische Mathematik, 115(2):195–227, 2010.

[6] S. Badia, F. Nobile, and C. Vergara. Robin–Robin preconditioned Krylov methods for
fluid–structure interaction problems. Computer Methods in Applied Mechanics and
Engineering, 198(33-36):2768–2784, 2009.

[7] G. A. Baker, V. A. Dougalis, and O. A. Karakashian. On a higher order accurate
fully discrete Galerkin approximation to the Navier-Stokes equations. Mathematics
of Computation, 39(160):339–375, 1982.

[8] B. Boutelje and A. Hill. Nonautonomous stability of linear multistep methods. IMA
Journal of Numerical Analysis, 30(2):525–542, 4 2010.

[9] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods. Texts
in Applied Mathematics. Springer New York, 2007.

[10] M. Bristeau, R. Glowinski, and J. Periaux. Numerical methods for the Navier-Stokes
equations. applications to the simulation of compressible and incompressible viscous
flows. Computer Physics Reports, 6(1):73 – 187, 1987.

101

[11] M. Bukač, A. Seboldt, and C. Trenchea. Refactorization of Cauchy’s method: A
second-order partitioned method for fluid–thick structure interaction problems. Jour-
nal of Mathematical Fluid Mechanics, 23(3):1–25, 2021.

[12] M. Bukač and C. Trenchea. Adaptive, second-order, unconditionally stable partitioned
method for fluid-structure interaction. Technical report, University of Pittsburgh,
2020.

[13] M. Bukač and C. Trenchea. Boundary update via resolvent for fluid–structure inter-
action. Journal of Numerical Mathematics, 29(1):1–22, 2021.

[14] M. Bukač and C. Trenchea. Adaptive, second-order, unconditionally stable partitioned
method for fluid–structure interaction. Computer Methods in Applied Mechanics and
Engineering, 393:114847, 2022.

[15] J. Burkardt and C. Trenchea. Refactorization of the midpoint rule. Applied Mathe-
matics Letters, 107:106438, 2020.

[16] E. Burman and M. A. Fernández. Stabilization of explicit coupling in fluid–structure
interaction involving fluid incompressibility. Computer Methods in Applied Mechanics
and Engineering, 198(5-8):766–784, 2009.

[17] J. C. Butcher. A stability property of implicit Runge-Kutta methods. BIT Numerical
Mathematics, 15(4):358–361, Dec 1975.

[18] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley &
Sons, 2016.

[19] Y. Cao, M. Gunzburger, X. He, and X. Wang. Parallel, non-iterative, multi-physics
domain decomposition methods for time-dependent Stokes-Darcy systems. Mathe-
matics of Computation, 83(288):1617–1644, 2014.

[20] F. Capuano, B. Sanderse, E. De Angelis, and G. Coppola. A minimum-dissipation
time-integration strategy for large-eddy simulation of incompressible turbulent flows.
In AIMETA 2017 Proceedings of the XXIII Conference of the Italian Association of
Theoretical and Applied Mechanics, pages 2311–2323, sep 2017.

[21] A. Çeşmeliouglu and B. Rivière. Analysis of time-dependent Navier–Stokes flow cou-
pled with Darcy flow. Journal of Numerical Mathematics, 16(4):249–280, 2008.

102

[22] A. Çeşmeliouglu and B. Rivière. Primal discontinuous Galerkin methods for time-
dependent coupled surface and subsurface flow. Journal of Scientific Computing,
40(1-3):115–140, 2009.

[23] R. Chen, W. J. Layton, and M. McLaughlin. Analysis of variable-step/non-
autonomous artificial compression methods. Journal of Mathematical Fluid Mechan-
ics, 21, 06 2019.

[24] W. Chen, M. Gunzburger, D. Sun, and X. Wang. Efficient and long-time accurate
second-order methods for the Stokes–Darcy system. SIAM Journal on Numerical
Analysis, 51(5):2563–2584, 2013.

[25] W. Chen, M. Gunzburger, D. Sun, and X. Wang. An efficient and long-time accu-
rate third-order algorithm for the Stokes–Darcy system. Numerische Mathematik,
134(4):857–879, 2016.

[26] A. Cibik, F. G. Eroglu, and S. Kaya. Analysis of second order time filtered backward
Euler method for MHD equations. Journal of Scientific Computing, 82(2):1–25, 2020.

[27] G. G. Dahlquist. On stability and error analysis for stiff non-linear problems, Part I.
Department of Computation Science, Royal Institute of Technology, Report TRITA-
NA-7508, 1975.

[28] G. G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial
value problems. In G. A. Watson, editor, Numerical Analysis, pages 60–72, Berlin,
Heidelberg, 1976. Springer Berlin Heidelberg.

[29] G. G. Dahlquist. On the relation of G-stablity to other stability concepts for linear
multistep methods. Technical report, CM-P00069426, 1976.

[30] G. G. Dahlquist. G-stability is equivalent to A-stability. BIT Numerical Mathematics,
18(4):384–401, Dec 1978.

[31] G. G. Dahlquist. On one-leg multistep methods. SIAM Journal on Numerical Anal-
ysis, 20(6):1130–1138, 1983.

[32] G. G. Dahlquist. Positive functions and some applications to stability questions for
numerical methods. In Recent Advances in Numerical Analysis: Proceedings of a Sym-
posium Conducted by the Mathematics Research Center, the University of Wisconsin-
Madison, May 22-24,1978.

103

[33] G. G. Dahlquist, W. Liniger, and O. Nevanlinna. Stability of two-step methods for
variable integration steps. SIAM Journal on Numerical Analysis, 20(5):1071–1085,
1983.

[34] P. A. de Sampaio, P. H. Hallak, A. L. Coutinho, and M. S. Pfeil. A stabilized finite
element procedure for turbulent fluid–structure interaction using adaptive time–space
refinement. International Journal for Numerical Methods in Fluids, 44(6):673–693,
2004.

[35] V. DeCaria, S. Gottlieb, Z. J. Grant, and W. J. Layton. A general linear method
approach to the design and optimization of efficient, accurate, and easily implemented
time-stepping methods in CFD. Journal of Computational Physics, page 110927, 2022.

[36] V. DeCaria and M. Schneier. An embedded variable step IMEX scheme for the in-
compressible Navier–Stokes equations. Computer Methods in Applied Mechanics and
Engineering, 376:113661, 2021.

[37] V. P. DeCaria. Variable Stepsize, Variable Order Methods for Partial Differential
Equations. PhD thesis, University of Pittsburgh, 2019.

[38] M. Discacciati, E. Miglio, and A. Quarteroni. Mathematical and numerical models
for coupling surface and groundwater flows. Applied Numerical Mathematics, 43(1-
2):57–74, 2002.

[39] G. Du and L. Zuo. Local and parallel finite element method for the mixed Navier-
Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Mathematica
Scientia, 37(5):1331–1347, 2017.

[40] G. Du and L. Zuo. Local and parallel finite element methods for the coupled S-
tokes/Darcy model. Numerical Algorithms, pages 1–19, 2020.

[41] G. Du and L. Zuo. A two-grid method with backtracking for the mixed Stokes/Darcy
model. Journal of Numerical Mathematics, 1(ahead-of-print), 2020.

[42] D. R. Durran. The third-order Adams-Bashforth method: An attractive alternative
to Leapfrog time differencing. Monthly weather review, 119(3):702–720, 1991.

[43] E. Emmrich. Error of the two-step BDF for the incompressible Navier-Stokes problem.
M2AN. Mathematical Modelling and Numerical Analysis, 38(5):757–764, 2004.

104

[44] V. Ervin, E. Jenkins, and S. Sun. Coupled generalized nonlinear Stokes flow with
flow through a porous medium. SIAM Journal on Numerical Analysis, 47(2):929–952,
2009.

[45] W. Feng, X. He, Z. Wang, and X. Zhang. Non-iterative domain decomposition meth-
ods for a non-stationary Stokes–Darcy model with Beavers–Joseph interface condition.
Applied Mathematics and Computation, 219(2):453–463, 2012.

[46] C. W. Gear. Algorithm 407: DIFSUB for solution of ordinary differential equations
[D2]. Communications of the ACM, 14(3):185–190, 1971.

[47] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.
Automatic Computation Series. Prentice-Hall, 1971.

[48] V. Girault and P.-A. Raviart. Finite element approximation of the Navier-Stokes
equations, volume 749. Springer Berlin, 1979.

[49] V. Girault and B. Rivière. DG approximation of coupled Navier–Stokes and Darcy
equations by Beaver–Joseph–Saffman interface condition. SIAM Journal on Numerical
Analysis, 47(3):2052–2089, 2009.

[50] P. Gresho and R. Sani. Incompressible flow and the finite element method. Volume 2:
Isothermal Laminar Flow. John Wiley, Chichester, UK, 2000.

[51] P. Gresho, R. Sani, and M. Engelman. Incompressible flow and the finite element
method: advection-diffusion and isothermal laminar flow. Incompressible Flow & the
Finite Element Method. Wiley, 1998.

[52] P. Gresho, R. Sani, and M. Engelman. Incompressible flow and the finite element
method, Volume 2: Isothermal Laminar Flow. Incompressible Flow & the Finite
Element Method. Wiley, 1998.

[53] P. M. Gresho, D. F. Griffiths, and D. J. Silvester. Adaptive time-stepping for incom-
pressible flow part I: Scalar advection-diffusion. SIAM Journal on Scientific Comput-
ing, 30(4):2018–2054, 2008.

[54] P. M. Gresho, R. L. Lee, S. T. Chan, and R. L. Sani. Solution of the time-dependent
incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite ele-
ment method. In Approximation methods for Navier-Stokes problems, pages 203–222.
Springer, 1980.

105

[55] P. M. Gresho, R. L. Lee, R. L. Sani, and T. Stullich. Time-dependent FEM solution
of the incompressible Navier–Stokes equations in two-and three-dimensions. Technical
report, California University, 1978.

[56] D. Griffiths and D. Higham. Numerical Methods for Ordinary Differential Equations:
Initial Value Problems. Springer Undergraduate Mathematics Series. Springer London,
2010.

[57] R. D. Grigorieff. Stability of multistep-methods on variable grids. Numerische Math-
ematik, 42(3):359–377, Oct. 1983.

[58] A. Guzel and W. Layton. Time filters increase accuracy of the fully implicit method.
BIT Numerical Mathematics, 58:301–315, 2018.

[59] A. Guzel, W. Layton, M. McLaughlin, and Y. Rong. Time filters and spurious a-
coustics in artificial compression methods. Numerical Methods for Partial Differential
Equations, pages 1–21, 2021.

[60] A. Guzel and C. Trenchea. The Williams step increases the stability and accuracy of
the hoRA time filter. Applied Numerical Mathematics, 131:158–173, 2018.

[61] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I:
Nonstiff Problems. Solving ordinary differential equations. Springer, 1993.

[62] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems. Solving Ordinary Differential Equations.
Springer, 1993.

[63] A. Hay, S. Etienne, D. Pelletier, and A. Garon. hp-Adaptive time integration based
on the BDF for viscous flows. Journal of Computational Physics, 291:151–176, 2015.

[64] X. He, J. Li, Y. Lin, and J. Ming. A domain decomposition method for the steady-
state Navier–Stokes–Darcy model with Beavers–Joseph interface condition. SIAM
Journal on Scientific Computing, 37(5):S264–S290, 2015.

[65] J. G. Heywood and R. Rannacher. Finite-element approximation of the non-stationary
Navier-Stokes problem. Part IV: Error analysis for second-order time discretization.
SIAM Journal on Numerical Analysis, 27(2):353–384, 1990.

106

[66] Y. Hou. Optimal error estimates of a decoupled scheme based on two-grid finite
element for mixed Stokes–Darcy model. Applied Mathematics Letters, 57:90–96, 2016.

[67] Y. Hou and Y. Qin. On the solution of coupled Stokes/Darcy model with Beavers–
Joseph interface condition. Computers & Mathematics with Applications, 77(1):50–65,
2019.

[68] R. Ingram. Unconditional convergence of high-order extrapolations of the Crank-
Nicolson, finite element method for the Navier-Stokes equations. International Journal
of Numerical Analysis & Modeling, 10(2), 2013.

[69] N. Jiang. A higher order ensemble simulation algorithm for fluid flows. Journal of
Scientific Computing, 64(1):264–288, 2015.

[70] N. Jiang. A second-order ensemble method based on a blended backward differ-
entiation formula timestepping scheme for time-dependent Navier–Stokes equations.
Numerical Methods for Partial Differential Equations, 33(1):34–61, 2017.

[71] N. Jiang and W. Layton. An algorithm for fast calculation of flow ensembles. Inter-
national Journal for Uncertainty Quantification, 4(4), 2014.

[72] N. Jiang, M. Mohebujjaman, L. G. Rebholz, and C. Trenchea. An optimally accu-
rate discrete regularization for second order timestepping methods for naviercstokes
equations. Computer Methods in Applied Mechanics and Engineering, 310:388 – 405,
2016.

[73] N. Jiang and C. Qiu. An efficient ensemble algorithm for numerical approximation
of stochastic Stokes-Darcy equations. Computer Methods in Applied Mechanics and
Engineering, 343:249 – 275, 2019.

[74] G. Kanschat and B. Riviere. A strongly conservative finite element method for the
coupling of Stokes and Darcy flow. Journal of Computational Physics, 229(17):5933–
5943, 2010.

[75] D. A. Kay, P. M. Gresho, D. F. Griffiths, and D. J. Silvester. Adaptive time-stepping
for incompressible flow part II: Navier–Stokes equations. SIAM Journal on Scientific
Computing, 32(1):111–128, 2010.

107

[76] G. Y. Kulikov and S. K. Shindin. One-leg integration of ordinary differential equations
with global error control. Computational Methods in Applied Mathematics, 5(1):86–96,
2005.

[77] G. Y. Kulikov and S. K. Shindin. One-leg variable-coefficient formulas for ordinary dif-
ferential equations and local–global step size control. Numerical Algorithms, 43(1):99–
121, 2006.

[78] A. Labovsky, W. Layton, C. Manica, M. Neda, and L. Rebholz. The stabilized extrap-
olated trapezoidal finite-element method for the Navier-Stokes equations. Computer
Methods in Applied Mechanics and Engineering, 198(9-12):958–974, 2009.

[79] J. D. Lambert. Computational methods in ordinary differential equations. John Wiley
& Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists
and Engineers.

[80] J. D. Lambert. Numerical methods for ordinary differential systems. John Wiley &
Sons, Ltd., Chichester, 1991. The initial value problem.

[81] W. Layton, N. Mays, M. Neda, and C. Trenchea. Numerical analysis of modular reg-
ularization methods for the BDF2 time discretization of the Navier-Stokes equations.
ESAIM. Mathematical Modelling and Numerical Analysis, 48(3):765–793, 2014.

[82] W. Layton and M. McLaughlin. Doubly-adaptive artificial compression methods for
incompressible flow. Journal of Numerical Mathematics, 28(3):175–192, 2020.

[83] W. Layton, W. Pei, Y. Qin, and C. Trenchea. Analysis of the variable step method
of Dahlquist, Liniger and Nevanlinna for fluid flow. Numerical Methods for Partial
Differential Equations, pages 1–25, 2021.

[84] W. Layton, W. Pei, and C. Trenchea. Refactorization of a variable step, uncondi-
tionally stable method of Dahlquist, Liniger and Nevanlinna. Applied Mathematics
Letters, 125:107789, 2022.

[85] W. Layton, F. Schieweck, and I. Yotov. Coupling fluid flow with porous media flow.
SIAM Journal on Numerical Analysis, 40(6):2195–2218, 2002.

[86] W. Layton, H. Tran, and C. Trenchea. Numerical analysis of two partitioned methods
for uncoupling evolutionary MHD flows. Numerical Methods for Partial Differential
Equations, 30(4):1083–1102, 2014.

108

[87] W. Layton and C. Trenchea. Stability of two IMEX methods, CNLF and BDF2-
AB2, for uncoupling systems of evolution equations. Applied Numerical Mathematics,
62(2):112–120, 2012.

[88] Y. Li and Y. Hou. A second-order partitioned method with different subdomain time
steps for the evolutionary Stokes-Darcy system. Mathematical Methods in the Applied
Sciences, 41(5):2178–2208, 2018.

[89] Y. Li, Y. Hou, W. Layton, and H. Zhao. Adaptive partitioned methods for the time-
accurate approximation of the evolutionary Stokes–Darcy system. Computer Methods
in Applied Mechanics and Engineering, 364:112923, 2020.

[90] Y. Li, Y. Hou, and Y. Rong. A second-order artificial compression method for the
evolutionary Stokes-Darcy system. Numerical Algorithms, pages 1–30, 2019.

[91] Y. Li and C. Trenchea. A higher-order Robert–Asselin type time filter. Journal of
Computational Physics, 259:23–32, 2014.

[92] H.-l. Liao and Z. Zhang. Analysis of adaptive BDF2 scheme for diffusion equations.
Mathematics of Computation, 90(329):1207–1226, 2021.

[93] W. Liniger. The A-contractive second-order multistep formulas with variable steps.
SIAM Journal on Numerical Analysis, 20(6):1231–1238, 1983.

[94] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences,
20(2):130–141, 1963.

[95] M. Mayr, W. Wall, and M. Gee. Adaptive time stepping for fluid-structure interaction
solvers. Finite Elements in Analysis and Design, 141:55–69, 2018.

[96] W. E. Milne. Numerical Integration of Ordinary Differential Equations. American
Mathematical Monthly, 33(9):455–460, 1926.

[97] M. Mu and X. Zhu. Decoupled schemes for a non-stationary mixed Stokes-Darcy
model. Mathematics of Computation, 79(270):707–731, 2010.

[98] O. Nevanlinna and W. Liniger. Contractive methods for stiff differential equations. I.
BIT, 18(4):457–474, 1978.

109

[99] O. Nevanlinna and W. Liniger. Contractive methods for stiff differential equations.
II. BIT, 19(1):53–72, 1979.

[100] A. Nordsieck. On numerical integration of ordinary differential equations. Mathemat-
ics of computation, 16(77):22–49, 1962.

[101] O. Ø sterby. Five ways of reducing the Crank-Nicolson oscillations. BIT, 43(4):811–
822, 2003.

[102] M. A. Olshanskii and L. G. Rebholz. Longer time accuracy for incompressible Navier–
Stokes simulations with the EMAC formulation. Computer Methods in Applied Me-
chanics and Engineering, 372:113369, 2020.

[103] O. Oyekole, C. Trenchea, and M. Bukac. A second-order in time approximation of
fluid-structure interaction problem. SIAM Journal on Numerical Analysis, 56(1):590–
613, 2018.

[104] Y. Qin and Y. Hou. Optimal error estimates of a decoupled scheme based on two-
grid finite element for mixed Navier-Stokes/Darcy model. Acta Mathematica Scientia,
38(4):1361–1369, 2018.

[105] Y. Qin and Y. Hou. The time filter for the non-stationary coupled Stokes/Darcy
model. Applied Numerical Mathematics, 146:260–275, 2019.

[106] Y. Qin, Y. Hou, P. Huang, and Y. Wang. Numerical analysis of two grad–div stabiliza-
tion methods for the time-dependent Stokes/Darcy model. Computers & Mathematics
with Applications, 79(3):817–832, 2020.

[107] Y. Qin, Y. Hou, W. Pei, and J. Li. A variable time-stepping algorithm for the un-
steady Stokes/Darcy model. Journal of Computational and Applied Mathematics,
page 113521, 2021.

[108] B. Riviére. Analysis of a discontinuous finite element method for the coupled Stokes
and Darcy problems. Journal of Scientific Computing, 22(1-3):479–500, 2005.

[109] A. Robert. The integration of a spectral model of the atmosphere by the implicit
method. In Proc. WMO/IUGG Symposium on NWP, Tokyo, Japan Meteorological
Agency, volume 7, pages 19–24, 1969.

110

[110] A. Seboldt and M. Bukač. A non-iterative domain decomposition method for the
interaction between a fluid and a thick structure. Numerical Methods for Partial
Differential Equations, 37(4):2803–2832, 2021.

[111] L. F. Shampine and M. K. Gordon. Computer solution of ordinary differential equa-
tions. W. H. Freeman and Company, San Francisco, California, 1975. The initial
value problem.

[112] L. Shan and H. Zheng. Partitioned time stepping method for fully evolutionary Stokes–
Darcy flow with Beavers–Joseph interface conditions. SIAM Journal on Numerical
Analysis, 51(2):813–839, 2013.

[113] L. Shan, H. Zheng, and W. J. Layton. A decoupling method with different subdomain
time steps for the nonstationary Stokes–Darcy model. Numerical Methods for Partial
Differential Equations, 29(2):549–583, 2013.

[114] J. C. Simo, F. Armero, and C. A. Taylor. Stable and time-dissipative finite element
methods for the incompressible Navier-Stokes equations in advection dominated flows.
International Journal for Numerical Methods in Engineering, 38(9):1475–1506, 1995.

[115] R. D. Skeel. Equivalent forms of multistep formulas. Mathematics of Computation,
33(148):1229–1250, 1979.

[116] G. Söderlind. Digital filters in adaptive time-stepping. ACM Transactions on Math-
ematical Software (TOMS), 29(1):1–26, 2003.

[117] G. Söderlind, I. Fekete, and I. Farag. On the zero-stability of multistep methods on
smooth nonuniform grids. BIT Numerical Mathematics, 04 2018.

[118] G. Söderlind and L. Wang. Adaptive time-stepping and computational stability. Jour-
nal of Computational and Applied Mathematics, 185(2):225–243, 2006.

[119] H. J. Stetter. Analysis of discretization methods for ordinary differential equations.
Springer-Verlag, New York-Heidelberg, 1973. Springer Tracts in Natural Philosophy,
Vol. 23.

[120] M. Sussman. A stability example. Technical report, University of Pittsburgh, 2010.

111

[121] G. I. Taylor and A. E. Green. Mechanism of the production of small eddies from
large ones. Proceedings of the Royal Society of London. Series A-Mathematical and
Physical Sciences, 158(895):499–521, 1937.

[122] R. Temam. Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, 1995.

[123] G. Teschl. Ordinary differential equations and dynamical systems, volume 140. Amer-
ican Mathematical Soc., 2012.

[124] C. Trenchea. Second-order unconditionally stable ImEx schemes: implicit for local
effects and explicit for nonlocal effects. ROMAI Journal, 12(1):163–178, 2016.

[125] C. Trenchea. Partitioned conservative, variable step, second-order method for
magneto-hydrodynamics in Elsässer variables. ROMAI Journal, 15(2):117–137, 2019.

[126] D. S. Watanabe and Q. M. Sheikh. One-leg formulas for stiff ordinary differential
equations. SIAM journal on scientific and statistical computing, 5(2):489–496, 1984.

[127] P. D. Williams. Achieving seventh-order amplitude accuracy in leapfrog integrations.
Monthly Weather Review, 141(9):3037–3051, 2013.

[128] H. Xu, D. Baroli, F. Di Massimo, A. Quaini, and A. Veneziani. Backflow stabilization
by deconvolution-based large eddy simulation modeling. Journal of Computational
Physics, 404:109103, 2020.

[129] Y. Zeng, P. Huang, and Y. He. A time filter method for solving the double-diffusive
natural convection model. Computers & Fluids, page 105265, 2021.

[130] L. Zuo and G. Du. A multi-grid technique for coupling fluid flow with porous media
flow. Computers & Mathematics with Applications, 75(11):4012–4021, 2018.

[131] L. Zuo and G. Du. A parallel two-grid linearized method for the coupled Navier-
Stokes-Darcy problem. Numerical Algorithms, 77(1):151–165, 2018.

[132] L. Zuo and Y. Hou. A decoupling two-grid algorithm for the mixed Stokes-Darcy
model with the Beavers-Joseph interface condition. Numerical Methods for Partial
Differential Equations, 30(3):1066–1082, 2014.

112

[133] L. Zuo and Y. Hou. Numerical analysis for the mixed Navier–Stokes and Darcy
problem with the Beavers–Joseph interface condition. Numerical Methods for Partial
Differential Equations, 31(4):1009–1030, 2015.

113

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	Table 1: Second-order convergence of the constant step DLN method using "026B30D "026B30D 2,-norm
	Table 2: Second-order convergence of the constant step DLN method using "026B30D "026B30D 2,2-norm
	Table 3: Comparison of Algorithm 2 and constant DLN algorithm with the same number of time steps
	Table 4: Comparison of Algorithm 4 and constant DLN algorithm with the same number of time steps
	Table 5: Number of steps of DLN algorithms and MATLAB ode functions
	Table 6: Number of steps of DLN algorithms and MATLAB ode functions
	Table 7: Number of steps of DLN algorithms and MATLAB ode functions
	Table 8: Tolerance of DLN algorithms for Lindberg's example
	Table 9: Tolerance of Algorithm 2 for Lindberg's example starting at t=0
	Table 10: The errors for DLN scheme with =0.2.
	Table 11: The errors for DLN scheme with =0.5.
	Table 12: The errors for DLN scheme with =0.7.
	Table 13: The convergence order of errors for DLN scheme with =0.2.
	Table 14: The convergence order of errors for DLN scheme with =0.5.
	Table 15: The convergence order of errors for DLN scheme with =0.7.
	Table 16: The errors for BDF2 scheme.
	Table 17: The errors and convergence order of the DLN scheme at time T=1 for the velocity and pressure of L2-norm with =0.2.
	Table 18: The errors and convergence order of the DLN scheme at time T=1 for the velocity and pressure of L-norm with =0.2.
	Table 19: The errors and convergence order of the DLN scheme at time T=1 for the velocity and pressure of L2-norm with =0.5.
	Table 20: The errors and convergence order of the DLN scheme at time T=1 for the velocity and pressure of L-norm with =0.5.
	Table 21: The errors and convergence order of the DLN scheme at time T=1 for the velocity and pressure of L2-norm with =0.7.
	Table 22: The errors and convergence order of the DLN scheme at time T=1 for the velocity and pressure of L-norm with =0.7.

	List of Figures
	Figure 1: Refactorization of the (DLN) method as a pre- and post-processed (BE) method
	Figure 2: The estimator of LTE by the Refactorization Algorithm
	Figure 3: log-log plot of convergence rate for the constant step DLN algorithm
	(a)
	(b)
	Figure 4: Oscillations of BE, BE Plus Filter, and BDF2 solutions decrease as time grows and in contrast the oscillations of the exact solution increase.
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	Figure 5: Oscillations of Constant Step DLN (= 2/3, 2/5,1) solutions increase, which shows that the simulations approximate exact solutions well.
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	Figure 6: The constant step DLN solutions oscillate correctly to steady state while the constant step BE solutions over damp to equilibrium.
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	Figure 7: Constant step DLN solutions approach to steady state correctly.
	(a)
	(b)
	Figure 8: Periodic oscillations
	(a)
	(b)
	(c)
	(d)
	Figure 9: Lotka-Volterra System Phase Solutions by DLN Method and Matlab ODE Functions
	(a)
	(b)
	(c)
	(d)
	Figure 10: Lotka-Volterra System
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	Figure 11: Phase solutions of Kepler system by DLN with = 2/3 and MATLAB ode functions
	(a)
	(b)
	(c)
	(d)
	Figure 12: Hamiltonian Conservation of Kepler System
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	Figure 13: Van der Pol's equation by DLN with =2/3 and MATLAB ode functions
	(a)
	(b)
	Figure 14: Van der Pol's equation by DLN with =1 and MATLAB ode functions
	(a)
	(b)
	Figure 15: First and second components of Lindberg's example by Algorithm 2 and MATLAB ode functions
	(a)
	(b)
	(c)
	(d)
	Figure 16: First and second components of Lindberg's example by Algorithm 4 and MATLAB ode functions
	(a)
	(b)
	(c)
	(d)
	Figure 17: First and second components of Lindberg's example by Algorithm 2 starting from t=0.
	(a)
	(b)
	(c)
	(d)
	Figure 18: A global domain consisting of a fluid flow region f and a porous media flow region p separated by an interface .
	Figure 19: Change of step size kn.
	Figure 20: Speed contours and velocity streamlines with =0.2,0.5,0.7.
	(a) = 0.2
	(b) =0.5
	(c) =0.7
	Figure 21: Comparison between approximate solutions and exact solutions with different parameter .
	(a) Comparison for velocity uf
	(b) Comparison for hydraulic head
	Figure 22: Boundaries of Stability Region for constant DLN (=0.5) and BDF2.
	Figure 23: Speed Contours of DLN.
	(a)
	(b)
	(c)
	(d)
	Figure 24: Velocity Streamlines of DLN.
	(a)
	(b)
	(c)
	(d)
	Figure 25: Energy, "026B30D u "026B30D and "026B30D u"026B30D of DLN, BDF2, BDF3 and BDF4 with variable time step size.
	(a)
	(b)
	(c)
	(d)
	Figure 26: The time step size kn and ratio changing with adaptive time step size.
	(a)
	(b)
	Figure 27: The energy 12 "026B30D u "026B30D 2 and numerical dissipation DLN changing with adaptive time step size.
	(a)
	(b)
	Figure 28: The time step size k and ratio changing with constant time step size.
	(a)
	(b)
	Figure 29: The energy 12 "026B30D u "026B30D 2 and numerical dissipation DLN changing with constant time step size.
	(a)
	(b)

	Preface
	1.0 Introduction
	2.0 Refactorization of a variable step, unconditionally stable method of Dahlquist, Liniger and Nevanlinna
	2.1 The DLN method and its refactorization
	2.1.1 Related Work

	2.2 Convergence analysis of one-leg DLN method
	2.2.1 Consistency error
	2.2.2 G-stability

	3.0 Time step adaptivity in the method of Dahlquist, Liniger and Nevanlinna
	3.1 Introduction
	3.1.1 Related Work

	3.2 Adaptivity by Explicit Schemes
	3.3 Adaptivity by the DLN Refactorization Process
	3.4 Numerical Tests
	3.4.1 Constant Step Tests
	3.4.1.1 Quasi-periodic oscillations
	3.4.1.2 Increase of Oscillation
	3.4.1.3 The Lorenz system
	3.4.1.4 The example of Sussman

	3.4.2 Variable Step Tests
	3.4.2.1 Quasi-periodic oscillations
	3.4.2.2 Lotka-Volterra Equations
	3.4.2.3 Kepler System
	3.4.2.4 Van der Pol's equation

	3.4.3 Lindberg's Example with Step Floor

	3.5 Conclusions

	4.0 The DLN Algorithm for the Unsteady Stokes/Darcy Model
	4.1 Introduction
	4.1.1 Related Work

	4.2 The Time-dependent Stokes/Darcy Model
	4.3 Preliminaries
	4.4 Stability Analysis
	4.5 Error Analysis
	4.6 Numerical Tests
	4.6.1 Test of Variable Time-stepping DLN algorithm
	4.6.2 Test of constant Time-stepping DLN algorithm

	4.7 Conclusions

	5.0 The DLN Algorithm for the Navier-Stokes equations
	5.1 Introduction
	5.1.1 Related work

	5.2 The Variable Step DLN method
	5.3 Preliminaries and Notations
	5.4 Stability of DLN Method for the NSE
	5.5 Variable Time-Step Error Analysis
	5.6 Numerical Tests
	5.6.1 Convergence Test (constant time step size)
	5.6.2 2D Offset Circles Problem (with preset variable time step size)
	5.6.3 Adapting the time step

	5.7 Conclusions

	6.0 Conclusion and Future Work
	6.1 Future Work
	6.1.1 The DLN-ensemble Algorithm for Navier Stokes equations
	6.1.2 The Semi-implicit DLN Algorithm for Navier Stokes equations

	Bibliography

