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Xihui Xie, PhD
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My research is directed at accurate predictions of the flow of fluids and what the fluid

transports. This is essential for many critical engineering and scientific applications, includ-

ing climate change and energy efficiency optimization. For example, 85% of the energy in the

US is generated by combustion, for which accurate simulation of turbulent mixing is critical

for energy efficiency optimization. To address these, my research develops algorithms that

have the potential to break current barriers in accuracy, reliability and efficiency in CFD,

and a rigorous mathematical foundation addressing when they work and how they fail, at

the crossroads of theory and practical computation.

My research considers the adaptivity of the penalty parameter ϵ both in space and in

time. In the first project, I consider the ϵ−adaptive penalty methods for the Navier-Stokes

equation. The unconditional stability is proven for velocity when adapting ϵ. The stability of

the velocity time derivative under conditions on the rate of change of the penalty parameter

is also analyzed. The analysis and tests show that adapting ϵ in response to ∥∇ ·u∥ removes

the problem of picking ϵ and yields good approximations for the velocity. The adaptive

penalty parameter method is supplemented by also adapting the time-step. The penalty

parameter ϵ and time-step are adapted independently.

The second project proposes and analyzes a new adaptive penalty scheme, which picks

the penalty parameter ϵ element by element small where ∥∇·u∥ is large. The research starts

by analyzing and testing the new scheme in the most simple but interesting setting, the

Stokes problem. Finally, this adaptive method is extended and tested on the incompressible

Navier-Stokes equation on complex flow problems. The scheme is developed in the penalty

method but also can be used to pick a grad-div stabilization parameter.
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1.0 Introduction

My research considers the adaptivity of the penalty parameter ϵ both in space and in

time. The penalty method on NSE decouples velocity and pressure and makes it easier

to solve the system. However, the penalty method is sensitive to the penalty parameter ϵ

value and also has some accuracy issues throughout the time. We want to find an automatic

epsilon self-adaptive algorithm that is time efficient and also costs low storage of memory.

The method with the lowest space and computational complexity is based on penalization

of incompressibility and elimination of the pressure. This method has difficulties with its

high sensitivity to the precise choice of the penalization parameter. My research is inspired

by the observation of von Neumann that sensitivity makes prediction hard but control easy.

I thus consider the penalty parameter as a control for the incompressibility error, so the

algorithms act like an AI system which automatically selects near-optimal epsilons.

In the first project, I consider the ϵ−adaptive penalty methods for the Navier-Stokes

equation (NSE).

Let u denote the fluid velocity, p pressure, ν viscosity and f the external force:

ut − ν∆u+ u · ∇u+∇p = f, ∇ · u = 0. (1)

The velocity and pressure are coupled together by the incompressibility constraint ∇·u = 0.

Coupled systems require more memory to store and are more expensive to solve. Penalty

methods replace ∇ · u = 0 with ∇ · u + ϵ(t)p = 0 where 0 < ϵ ≪ 1. The pressure can be

eliminated using ∇p = −∇(1/ϵ(t)∇ · u). This results in a system of u only, which takes less

computing time and less storage memory to solve than (1):

uϵ,t − ν∆uϵ + uϵ · ∇uϵ +
1

2
(∇ · uϵ)uϵ −∇(

1

ϵ(t)
∇ · uϵ) = f. (2)

Here uϵ · ∇uϵ + 1
2
(∇ · uϵ)uϵ is the modified bilinear term introduced by Temam [63]. This

bilinear term ensures the dissipativity of the system (28). The unconditional stability is

proven for velocity when adapting ϵ. The stability of the velocity time derivative under

conditions on the rate of change of the penalty parameter is also analyzed. The stability

1



conditions on ϵ that are derived from the linear Stokes problem are necessary for the case of

nonlinear NSE. The analysis shows that we could increase ϵ arbitrarily in each time step but

could not decrease too much. The analysis and tests also show that adapting ϵ in response

to the norm of ∥∇ · u∥ removes the problem of picking ϵ and yields good approximations for

the velocity. The adaptive penalty parameter method is supplemented by also adapting the

time-step with the help of time-filter [26, 48]. The penalty parameter ϵ and time-step are

adapted independently.

In the second project, a new adaptive penalty scheme is proposed and analyzed, which

picks the penalty parameter ϵ element by element small where the norm of ∥∇ · u∥ is large.

The research starts by analyzing and testing the new scheme in the most simple but inter-

esting setting, the Stokes problem.

Let u denote the fluid velocity, p pressure, ν viscosity and f the external force:

−ν∆u+∇p = f(x), ∇ · u = 0. (3)

On a bounded, open polyhedral domain Ω subject to no-slip boundary conditions u = 0 on

∂Ω. Penalty methods replace ∇ · u = 0 with ∇ · u+ ϵp = 0 where 0 < ϵ≪ 1. The pressure

can be eliminated using ∇p = −∇(1/ϵ∇ · u). Here we consider ϵ as a function of finite

elements ∆.

Hence, the penalty approximation we considered is: find uh ∈ Xh such that

ν(∇uhϵ ,∇vh) +
∑
∆

∫
∆

ϵ−1
∆ ∇ · u

h
ϵ∇ · vh dx = (f, vh). (4)

Next, we localize the global tolerance TOL for ∥∇ · uhϵ ∥ and define the local tolerance as

LocTol∆ :=
1

2

TOL2

|Ω|
|∆|.

And here we have two options for ϵ∆:

Option 1. Elementwise Penalty (EP)

ϵ∆ :=
LocTol∆
∥∇ · uhϵ ∥2∆

.

2



Such that the variational form becomes: find uhϵ ∈ Xh such that∫
Ω

ν∇uhϵ : ∇vh dx+
∑
∆

1

LocTol∆
∥∇ · uhϵ ∥2∆

∫
∆

∇ · uhϵ∇ · vh dx =

∫
Ω

f · vh dx. (5)

Option 2. Pointwise Penalty (PP)

ϵ∆(x) :=
LocTol∆
|∇ · uhϵ (x)|2

.

Such that the variational form becomes: find uhϵ ∈ Xh such that∫
Ω

ν∇uhϵ : ∇vh dx+
∑
∆

1

LocTol∆

∫
∆

|∇ · uhϵ |2∇ · uhϵ∇ · vh dx =

∫
Ω

f · vh dx. (6)

We focus herein on the analysis of option 2 (PP) and the numerical results of option 1 (EP).

In option 2 (PP), the resulting nonlinearity is both strongly monotone and locally Lipschitz

continuous, sharing structures with the p-Laplacian. Then, there is a well-trodden analytical

path to be adapted here. We proved the stability for both PP and EP. Also, error analysis

of PP using strong monotonicity and local Lipschitz continuity is given in Chapter 3.

Finally, this adaptive method is extended and tested on the incompressible time-dependent

Navier-Stokes equation on complex flow problems. The scheme is developed in the penalty

method but also can be used to pick a grad-div stabilization parameter.

In the following few sections of Chapter 1, the Navier-Stokes equations, notations and

preliminaries are introduced. Chapter 2 is based on paper A Doubly Adaptive Penalty Method

for the Navier-Stokes Equations [42]. In Chapter 2, we present an overview of penalty

methods and our results of time-adaptive penalty methods. Chapter 3 is based on paper

On Adaptive Grad-Div Parameter Selection [65]. In Chapter 3, a new space-adaptive was

developed and tested on the Stokes and the Navier-Stokes equations. Finally, conclusions

and future perspectives are presented in Chapter 4.
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1.1 The Incompressible Navier-Stokes Equations

There have been plenty of work on details of derivation of the Navier-Stokes equations

[60, 64, 25, 37, 22, 30, 10, 24, 57, 19]. We refer the reader to [39, 47] for a more comprehensive

explanation. The derivation herein is derived from these two books.

Let Ω be an open domain in Rd (d = 2, 3) with boundary ∂Ω. We denote by x the spatial

variable, ρ the density of the fluid, u is the velocity, and p is the pressure of the flow. The

equation describing the conservation of mass is called the continuity equation. We let the

mass of the fluid equal

m(t) =

∫
Ω

ρ dx.

If mass is conserved, the rate of change of mass in Ω equal the net mass flux across ∂Ω:

d

dt

∫
Ω

ρ dx = −
∫
∂Ω

(ρu) · n dS.

The Divergence Theorem then implies:

−
∫
∂Ω

(ρu) · n dS = −
∫
Ω

∇ · (ρu) dx.

Rearranging, we have ∫
Ω

∂ρ

∂t
+∇ · (ρu) dx = 0.

Shrinking Ω to a point yields
∂ρ

∂t
+∇ · (ρu) = 0.

If the fluid is incompressible and homogeneous, ρ(x, t) ≡ ρ0 and conservation of mass reduces

to:

∇ · u = 0, (7)

which is the incompressible condition on the fluid velocity u we used for the rest of our thesis.

Conservation of momentum states that the rate of change of linear momentum equals

the net forces acting on a collection of fluid particles, i.e., force = mass×acceleration. Let

us consider a fluid particle. At position x, time t and after ∆t it moved to (x+u∆t, t+∆t).

The acceleration is therefore:

lim
∆t→0

u(x+ u∆t, t+∆t)− u(x, t)
∆t

= ut + (u · ∇)u.

4



Then, mass× acceleration in Ω is ∫
Ω

ρ(ut + u · ∇u) dx,

and by the conservation of momentum this need to be balanced by forces (both internal and

external).

Let f be the external forces acting on the fluid. Internal forces of a fluid are contact

forces that act on the surface of the fluid. Then the net contribution of the external force

on Ω is ∫
Ω

f dx.

Let t⃗ denote the internal force called Cauchy stress vector or traction vector, then the net

contribution of the internal forces on Ω is∫
∂Ω

t⃗ dS.

Thus, the equation for conservation of momentum is∫
Ω

ρ(ut + u · ∇u) dx =

∫
Ω

f dx+

∫
∂Ω

t⃗ dS.

Cauchy proved that if linear momentum is conserved then t⃗ is a linear function of the normal

vector n. Thus,

t⃗(n) = n · Π,

where Π is a matrix called the stress tensor. Rearranging,∫
Ω

ρ(ut + u · ∇u)−∇ · Π dx =

∫
Ω

f dx.

Shrinking Ω to a point yields

ρ(ut + u · ∇u)−∇ · Π = f.

There are two main types of internal forces: pressure forces and viscous forces. The pressure

forces act on a surface purely normal to the surface. Therefore we define the pressure in

5



an incompressible flow is p := 1
3
(Π11 + Π22 + Π33). Thus the pressure force is −pIn. The

non-pressure part of the stress tensor is the viscous tress tensor V:

V := Π + pI.

The system is not closed until V is related to the fluid velocity. The internal force depends

on local velocity differences, so V depends on some combination of derivatives of u. The

combination is denoted by D, called the deformation tensor. We assume here the fluid

follows the linear stress-deformation relation: D = 1
2
(∇u + ∇ut). And considering here

we are dealing with the incompressible flow, the relation between Cauchy stress tensor and

deformation tensor is given by

V = 2µD,

where µ is the viscosity coefficient. The momentum equation then becomes,

ρ(ut + u · ∇u)−∇ · (2µD− pI) = f.

Here ∇ · (pI) = ∇ · p and ∇ · (2µD) = µ∆u. Dividing by the density ρ, the momentum

equation then reduce to

ut + u · ∇u− µ

ρ
∆u+∇

(
p

ρ

)
=
f

ρ
.

Now redefine the pressure p, f to be p/ρ, f/ρ respectively and let µ/ρ =: ν the kinematic

viscosity. Coupling with the incompressible condition (7), we then have the incompressible

Navier-Stokes Equation: ∇ · u = 0 and

ut + u · ∇u− ν∆u+∇p = f.

6



1.2 The Penalty Method

Consider the incompressible Navier-Stokes Equations,

ut − ν∆u+ u · ∇u+∇p = f, ∇ · u = 0. (8)

The velocity and pressure are coupled together by the incompressibility constraint ∇ ·

u = 0. Coupled systems require more memory to store and are more expensive to solve.

There are many strategies to overcome this difficulty; one popular approach is to relax

the incompressible constraint. Among these are the penalty method and the artificial

compressibility method, the pressure stabilization method and the projection method, see

[14, 15, 62, 63, 61, 11, 58, 59, 55, 43, 44]. Here we consider the Penalty method.

Penalty methods replace ∇·u = 0 with ∇·u+ ϵ(t)p = 0 where 0 < ϵ≪ 1. The pressure

can be eliminated using ∇p = −∇(1/ϵ∇ · u). This results in a system of u only, which is

easier to solve than (8):

uϵ,t − ν∆uϵ + uϵ · ∇uϵ +
1

2
(∇ · uϵ)uϵ −∇(

1

ϵ
∇ · uϵ) = f. (9)

Here uϵ · ∇uϵ + 1
2
(∇ · uϵ)uϵ in the modified nonlinear term introduced by Temam [63].

1.3 Notation and preliminaries

We denote by ∥ · ∥ and (·, ·) the L2(Ω) norm and inner product, respectively. We denote

by ∥ · ∥Lp the Lp(Ω) norm. The velocity space X and pressure space Q are:

X := (H1
0 (Ω))

d, where H1
0 (Ω) = {v ∈ L2(Ω) : ∇v ∈ L2(Ω) and v = 0 on ∂Ω},

Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0}.

7



Let Xh ⊂ X be the finite element velocity space and Qh ⊂ Q be the finite element pressure

space. We assume that (Xh, Qh) are conforming and satisfy the following approximation

properties and Condition 1.3.1:

inf
v∈Xh

∥u− v∥ ≤ Chm+1|u|m+1, u ∈ Hm+1(Ω)d,

inf
v∈Xh

∥∇(u− v)∥ ≤ Chm|u|m+1, u ∈ Hm+1(Ω)d,

inf
q∈Qh
∥p− q∥ ≤ Chm|p|m, p ∈ Hm(Ω).

(10)

Condition 1.3.1. (The Ladyzhenskaya-Babuska-Brezzi Condition (LBBh) see [22], p.62

[47]).

Suppose (Xh, Qh) satisfies:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
∥∇vh∥∥qh∥

≥ βh > 0, (11)

where βh is bounded away from zero uniformly in h.

The (LBBh) condition is equivalent to:

βh∥qh∥ ≤ sup
vh∈Xh

(qh,∇ · vh)
∥∇vh∥

, ∀q ∈ Qh.

The space H−1(Ω) denotes the dual space of bounded linear functional defined on H1
0 (Ω).

This space is equipped with the norm:

∥f∥−1 = sup
0 ̸=v∈X

(f, v)

∥∇v∥
.

Let Ih denote the interpolation in the space of C0 piecewise linears, suppose the following

interpolation estimate in H−1(Ω) holds (see p.160 [47], p.146 of Theorem of Brenner and

Scott [9])

∥u− Ih(u)∥H−1(Ω) ≤ Ch∥u− Ih(u)∥. (12)

Denote by b∗(u, v, w), the skew-symmetric trilinear form, is

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) ∀u, v, w ∈ [H1(Ω)]d.

A weak formulation of the penalty NSE is: find u : (0, T ]→ X such that

(ut, v) + b∗(u, u, v) + ν(∇u,∇v) + 1

ϵ
(∇ · u,∇ · v) = (f, v), ∀v ∈ X,

u(x, 0) = u0(x).
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Lemma 1.3.2. (skew-symmetry see p.123 p.155 [47], upper bound for the product of three

functions see p.11 [47]) There exists C1 and C2 such that for all u, v, w ∈ X, b∗(u, v, w)

satisfies

b∗(u, v, w) = (u · ∇v, w) + 1

2
((∇ · u)v, w),

b∗(u, v, w) ≤ C1∥∇u∥∥∇v∥∥∇w∥,

b∗(u, v, w) ≤ C2

√
∥u∥∥∇u∥∥∇v∥∥∇w∥.

Moreover, if v ∈ H2(Ω), then there exists C3 such that

b∗(u, v, w) ≤ C3

(
∥u∥∥v∥2∥∇w∥+ ∥∇ · u∥∥∇v∥∥∇w∥

)
.

Further, if v ∈ H2(Ω) ∩ L∞(Ω), then

b∗(u, v, w) ≤
(
C3∥v∥2 + ∥v∥∞

)
∥u∥∥∇w∥.

Lemma 1.3.3. (The Poincaré-Friedrichs’ inequality see [46], p.9 [47]) There is a positive

constant CPF = CPF (Ω) such that

∥u∥ ≤ CPF∥∇u∥ ∀u ∈ X. (13)

Lemma 1.3.4. (A Sobolev inequality see [2], [47]) Let Ω be a bounded open set and suppose

∇u ∈ Lp(Ω) with u = 0 on a subset of ∂Ω with positive measure. Then there is a C = C(Ω, p)

such that for 1 ≤ p <∞,

∥u∥Lp⋆
≤ C∥∇u∥Lp ,

where
1

p⋆
=

1

p
− 1

dim(Ω)
if p < dim(Ω).

For example, with p = 2, for 1 ≤ p⋆ <∞ in 2d and 1 ≤ p⋆ ≤ 6 in 3d,

∥u∥Lp⋆
≤ C∥∇u∥. (14)
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Lemma 1.3.5. (Useful inequalities see [7], p.7 [47], polarization identity) The L2 inner

product satisfies the Hölder’s and Young’s inequalities: for any u, v ∈ X, for any δ, 0 < δ <

∞ and 1
p
+ 1

q
= 1, 1 ≤ p, q ≤ ∞,

(u, v) ≤ ∥u∥Lp∥v∥Lq , and (u, v) ≤ δ

p
∥u∥pLp +

δ−q/p

q
∥v∥qLq . (15)

Further, for any u, v, w ∈ X, for any p, q, r, 1 ≤ p, q, r ≤ ∞, with 1
p
+ 1

q
+ 1

r
= 1,∫

Ω

|u||v||w|dx ≤ ∥u∥Lp∥v∥Lq∥w∥Lr . (16)

Polarization identity: for any u, v ∈ X

(u, v) =
1

2
∥u∥2 + 1

2
∥v∥2 − 1

2
∥u− v∥2. (17)

Proposition 1.3.6. (see p.173 of [8]) Let Wm,p(Ω) denote the Sobolev space, d denote the

dimension of space Ω, let p ∈ [1,+∞] and q ∈ [p, p∗]. There is a C > 0 such that

∥u∥Lq ≤ C∥u∥1+d/q−d/p
Lp ∥u∥d/p−d/q

W 1,p , ∀u ∈ W 1,p(Ω) (18)

Lemma 1.3.7. (A Lp−L2 type inverse inequality see Lemma 2.1 of Layton [53] also similar

result of p.112 Theorem of Brenner and Scott [9]) Let θ0 be the minimum angle in the

triangulation and Mk = {v(x) : v(x)|e ∈ Pk(e) ∀ e ∈ T h(Ω)}, Pk being the polynomials of

degree ≤ k. Then, for ∇h the elementwise defined gradient operator, there is a C = C(θ0, p, k)

such that for 2 ≤ p <∞, d = 2, 3 and all v ∈Mk,

∥∇hv∥Lp(Ω) ≤ Ch
d
2
( 2−p

p
)∥∇hv∥. (19)

Proposition 1.3.8. (The continuous inf-sup condition see p.58 [47]) There is a constant

β > 0 such that

inf
q∈Q

sup
v∈X

(q,∇ · v)
∥∇v∥∥q∥

≥ β > 0. (20)
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Lemma 1.3.9. (A Discrete Gronwall lemma see Lemma 5.1 p.369 [31]) Let ∆t, B, an, bn, cn, dn

be non-negative numbers such that for l ≥ 1

al +∆t
l∑

n=0

bn ≤ ∆t
l−1∑
n=0

dnan +∆t
l∑

n=0

cn +B, for l ≥ 0,

then for all ∆t > 0,

al +∆t
l∑

n=0

bn ≤ exp(∆t
l−1∑
n=0

dn)
(
∆t

l∑
n=0

cn +B
)
, for l ≥ 0.

We will use the next lemma in Chapter 3 to analyze the space-adaptive penalty method.

On each mesh element ∆ denote (ϕ, ψ)∆ =
∫
∆
ϕ · ψ dx. The nonlinear term satisfies the

following, often called Strong Monotonicity, and Local Lipschitz continuity.

Lemma 1.3.10. (Strong Monotonicity and Local Lipschitz continuity) Let u, v, w ∈ X, on

each mesh element ∆, then there exist constants C1, C2 such that the following inequalities

hold:

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · (u− w))∆ ≥ C1∥∇ · (u− w)∥4L4(∆), (21)

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · v)∆ ≤ C2r
2∥∇ · (u− w)∥L4(∆)∥∇ · v∥L4(∆), (22)

where r = max{∥∇ · u∥L4(∆), ∥∇ · w∥L4(∆)}.

Proof. (of Local Lipschitz continuity)

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · v)∆

= (|∇ · u|2∇ · u− |∇ · u|2∇ · w,∇ · v)∆ + (|∇ · u|2∇ · w − |∇ · w|2∇ · w,∇ · v)∆

=

∫
∆

|∇ · u|2∇ · (u− w)∇ · v dx+
∫
∆

∇ · w(∇ · u+∇ · w)(∇ · u−∇ · w)∇ · v dx

=

∫
∆

∇ · (u− w)∇ · v(|∇ · u|2 +∇ · u∇ · w + |∇ · w|2) dx

≤
∫
∆

|∇ · (u− w)||∇ · v|(|∇ · u|+ |∇ · w|)2 dx

≤ ∥∇ · (u− w)∥L4(∆)∥∇ · v∥L4(∆)

(∫
∆

(|∇ · u|+ |∇ · w|)4 dx
)1/2

,

Denote r = max(∥∇ · u∥L4(∆), ∥∇ · w∥L4(∆)), then we have

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · v)∆ ≤ C2r
2∥∇ · (u− w)∥L4(∆)∥∇ · v∥L4(∆).
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The proof of Strong Monotonicity follows similarly to the p-Laplacian in Barrett and Liu

[3], Glowinski and Marroco [23], so we omit the part here.
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2.0 Adapting ϵ in time

We develop, analyze and test adaptive penalty parameter methods. We prove uncondi-

tional stability for velocity when adapting the penalty parameter, ϵ, and stability of the veloc-

ity time derivative under a condition on the change of the penalty parameter, ϵ(tn+1)− ϵ(tn).

The analysis and tests show that adapting ϵ(tn+1) in response to ∇·u(tn) removes the prob-

lem of picking ϵ and yields good approximations for the velocity. We provide error analysis

and numerical tests to support these results. We supplement the adaptive-ϵ method by also

adapting the time-step. The penalty parameter ϵ and time-step are adapted independently.

We further compare first, second, and variable order time-step algorithms. Accurate recovery

of pressure remains an open problem.

2.1 Introduction

The velocity and pressure of an incompressible, viscous fluid are given by the Navier-

Stokes equations. Let u denote the fluid velocity, p the pressure, ν the kinematic viscosity

and f an external force:

ut − ν∆u+ u · ∇u+∇p = f, ∇ · u = 0, ∀(x, t) ∈ Ω× (0, T ]. (23)

The velocity and pressure are coupled together by the incompressibility constraint ∇·u = 0.

Coupled systems require more memory to store and are more expensive to solve. Penalty

methods and artificial compression methods relax the incompressibility condition and result

in a pseudo-compressible system. This allows us to uncouple velocity and pressure, which will

reduce storage space and computational complexity. Penalty methods that allow complete

elimination of the pressure variable are the simplest and fastest and will be studied herein.

Penalty methods replace ∇ · u = 0 with ∇ · u + ϵp = 0 where 0 < ϵ ≪ 1. The pressure

can be eliminated using ∇p = −∇(1/ϵ∇ · u). As the pressure is entirely eliminated from

the system, we do not need to solve for it at every time-step, leading to further increases
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in speed. The accuracy of penalty methods is known to be very sensitive to the choice of ϵ

(see Fig. 6.1). This sensitivity suggests considering ϵ as a control and picking ϵ through a

self-adaptive algorithm. This problem of determining ϵ self-adaptively is considered herein.

When adapting the parameter, ϵ, ∥∇·u∥ is monitored and used to adjust ϵ. The stability

of the standard penalty method with variable ϵ is examined in Section 2.2. No condition on

the rate of change of ϵ is required for the stability of ∥u∥. However, the stability of ∥ut∥ is

not unconditional. There is no restriction on the increase of ϵ, however decreasing ϵ quickly

will lead to growth in ∥ut∥. In Section 2.2.2, we derive condition (34)

(1− kα)ϵn ≤ ϵn+1 for some α > 0,

where k is the step-size. This condition is required for stability of ∥ut∥. Figure 13 of Sec-

tion 2.5.2.2 confirms that violating this condition leads to spikes of catastrophic growth in

∥ut∥.

The utility of penalty methods lies in accurate velocity approximation at low cost by

simple methods. Consistent with this intent, we couple the adaptive ϵ algorithm with sim-

ple, low-cost time-stepping methods based on the backward Euler method. Simple time

filters allow us to implement an effective variable order, variable time-step adaptive scheme,

developing further an algorithm of [26]. The self-adaptive ϵ penalty method can be easily

implemented for both constant time-step and variable time-step methods. We develop, ana-

lyze and test these new algorithms that independently adapt the time-step k and the penalty

parameter ϵ.

In addition to adapting the time-step, we adapt the order of the method between the

first and second order. This variable time-step variable order (VSVO) method performed

better than both first and second-order methods in our tests (see Figure 12).

2.1.1 Review of a Common Penalty Method

Recall the incompressible Navier-Stokes equations,

ut − ν∆u+ u · ∇u+∇p = f, ∇ · u = 0, ∀(x, t) ∈ Ω× (0, T ], (24)

u = 0 ∀(x, t) ∈ ∂Ω× (0, T ], u(x, 0) = u0(x) ∀x ∈ Ω. (25)
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Perturbing the continuity equation by adding a penalty term to the incompressibility

condition and explicitly skew-symmetrizing the nonlinear term in the momentum equation

in (24) results in the penalty Navier-Stokes equations:

ut − ν∆u+ u · ∇u+ 1

2
(∇ · u)u+∇p = f, (26)

∇ · u+ ϵp = 0. (27)

Here u ·∇u+ 1
2
(∇·u)u is the modified bilinear term introduced by Temam [61]. This bilinear

term ensures the dissipativity of the system (26)-(27). By (27), p = (−1/ϵ)∇ · u. Inserting

this into (26) results in a system of u only, which is easier to solve than (24):

uϵ,t − ν∆uϵ + uϵ · ∇uϵ +
1

2
(∇ · uϵ)uϵ −∇(

1

ϵ
∇ · uϵ) = f. (28)

From Theorem 1.2 p.120 of Temam [61] we know limϵ→0(uϵ(t), pϵ(t)) = (u(t), p(t)). And

later the error bound of (uϵ, pϵ) to (u, p) provided by Shen [59] indicates:

sup
0≤t≤T

(τ 1/2(t))∥u(t)− uϵ(t)∥L2 + τ(t)∥u(t)− uϵ(t)∥H1) +

(∫ T

0

τ 2(t)∥p− pϵ∥2L2 dt

)1/2

≤ κϵ,

where τ(t) = min(t, 1) and κ is a positive constant depending on data (ν,Ω, u0, f, T ).

Consider the first-order discretization of (26)-(27). kn is the nth time-step, ϵn is the

parameter ϵ at nth time-step, t0 = 0, tn = tn−1 + kn. Let u∗ denote the standard (second

order) linear extrapolation of u at tn+1:

u∗ =

(
1 +

kn+1

kn

)
un − kn+1

kn
un−1.

The backward Euler time discretization gives us

un+1 − un

kn+1

+ u∗ · ∇un+1 +
1

2
(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = fn+1, (29)

∇ · un+1 + ϵn+1p
n+1 = 0. (30)

As before, we use pn+1 = ((−1/ϵn+1)∇ · un+1), to uncouple (29)-(30) into the following time

discrete, velocity only equation

un+1 − un

kn+1

+ u∗ · ∇un+1 +
1

2
(∇ · u∗)un+1 − ν∆un+1 −∇( 1

ϵn+1

∇ · un+1) = fn+1. (31)

For constant ϵn+1 = ϵ, kn+1 = k, (31) is unconditionally stable by Theorem 4.1 of He and Li

[28]. The analysis of the stability of the variable ϵ, constant k method see Theorem 2.2.1.

Analysis of stability of acceleration ut for linear Stokes problem can be found in Section 2.2.2.

15



2.1.2 Related work

Penalty methods were first introduced by Courant in 1943 [16]. They were first applied

to the unsteady Navier-Stokes equations by Temam [61]. Error estimates for continuous

time, constant ϵ, (28) were proved by Shen in Theorem 4.1 p.395 [59]. In Theorem 5.1

p.397, Shen further proved error estimates for the backward Euler time discretization of the

penalty Navier-Stokes equations. This analysis suggests a choice of ϵ = k. Shen [58] studied

higher-order projection schemes in the semi-discrete form and proposed a penalty-projection

scheme with improved error estimates. Prohl [56] suggested a new analytical approach to

the penalty method. He [27], He and Li [28] studied fully discrete penalty finite element

methods and proved optimal error estimates with conditions on ϵ,∆t and mesh size h.

Bercovier and Engelman showed that the velocity error of penalty methods is sensitive

to the choice of ϵ, see [4]. If ϵ is too large, it will poorly model incompressible flow. Choosing

ϵ too small will cause numerical conditioning problems, see Hughes, Liu and Brooks [32].

The optimal choice of the penalty parameter also varies depending on the time and space

discretization schemes used, see Shen [59]. [32] introduced a theory for determining the

penalty parameter, which only depends on the Reynolds number Re and viscosity ν.

The penalty method gives inaccurate pressure (see Table 2 and Table 3), and we focus on

the velocity accuracy in this thesis. However, pressure recovery is essential when calculating

quantities based on stresses, e.g., lift and drag coefficients. The easiest way is by using

∇·u+ ϵp = 0 and solving for pressure. There are also other possibilities to recover pressure,

e.g., Pressure Poisson equations and momentum equations, see Kean and Schneier [41].

2.1.3 Motivation For Choice of Estimator for ϵ

We choose an estimator to control the residual in the continuity equation, ∥∇ · uϵ∥. The

immediate choice is to adapt ϵ based on the size of ∥∇·uϵ∥. However, controlling the relative,

not the absolute error, is a more logical choice.

Taking L2 inner product of (28) with uϵ, we get:

1

2

d

dt
∥uϵ∥2 + ν∥∇uϵ∥2 +

1

ϵ
∥∇ · uϵ∥2 = (f, uϵ).
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We aim to ensure ν∥∇uϵ∥2 does not dominate 1
ϵ
∥∇ · uϵ∥2. This suggests an upper bound for

ϵ:

1

ϵ
∥∇ · uϵ∥2 ≥ ν∥∇uϵ∥2 =⇒ ϵ ≤ 1

ν

(
∥∇ · uϵ∥
∥∇uϵ∥

)2

.

This motivates the choice of the estimator to be ∥∇ · uϵ∥/∥∇uϵ∥, the relative residual. This

has the additional benefits of being non-dimensional and independent of the size of uϵ. Since

ν is constant, scaling by 1/ν is just a change of adaptive tolerance. The comparison of

absolute and relative residual estimators is presented in Section 2.5.3.

The rest of this chapter is organized as follows. In Section 2.2, stabilities of ∥u∥ and

∥ut∥ for the variable ϵ penalty method with constant time-step are presented. Section 2.3

presents an error estimate of the semi-discrete, variable ϵ method. Using this, we develop an

effective algorithm that adapts ϵ and k independently, presented in Section 2.4. We introduce

four different algorithms, including the constant time-step and variable time-step variable ϵ

method. Numerical tests are shown in Section 2.5.

2.2 Stability of Backward Euler

This section establishes conditions for stability for the variable ϵ first-order method with

constant time-step:

un+1 − un

k
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 − ν∆un+1 −∇( 1

ϵn+1

∇ · un+1) = fn+1. (32)

We prove that the velocity is unconditionally stable, but ∥ut∥ is stable with restrictions on

the change of ϵ.
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2.2.1 Stability of the velocity

Theorem 2.2.1. (Stability of variable ϵ penalty method). The variable ϵ first-order method

(31) is stable. For any M > 0, the energy equality holds:

1

2

∫
Ω

|uM |2dx+
M−1∑
n=0

∫
Ω

(
1

2
|un+1 − un|2 + kν|∇un+1|2 + k

ϵn+1

|∇ · un+1|2
)
dx

=
1

2

∫
Ω

|u0|2dx+
M−1∑
n=0

k

∫
Ω

un+1 · fn+1dx,

and the stability bound holds:

1

2

∫
Ω

|uM |2dx+
M−1∑
n=0

∫
Ω

(
1

2
|un+1 − un|2 + kν

2
|∇un+1|2 + k

ϵn+1

|∇ · un+1|2
)
dx

≤ 1

2

∫
Ω

|u0|2dx+
M−1∑
n=0

k

2ν
∥fn+1∥2−1.

Proof. Consider (32) the constant time-step first-order method, let T denote the final time,

set M = T/k. Take the L2 inner product of (32) with un+1. We obtain

1

k

(
||un+1||2 − (un, un+1)

)
+ ν||∇un+1||2 + 1

ϵn+1

||∇ · un+1||2 = (fn+1, un+1).

Apply the polarization identity (17) to the term (un, un+1)

1

2k
(||un+1||2 − ||un||2 + ||un+1 − un||2) + ν||∇un+1||2 + 1

ϵn+1

||∇ · un+1||2 = (fn+1, un+1).

Sum from n = 0, ...,M − 1 and multiply by k, we will have the energy equality. By the

definition of the dual norm and Young’s inequality,

1

2k
(||un+1||2−||un||2+||un+1−un||2)+ν||∇un+1||2+ 1

ϵn+1

||∇·un+1||2 ≤ 1

2ν
||fn+1||2−1+

ν

2
||∇un+1||2.

Sum from n = 0, ...,M − 1

1

2k
||uM ||2+

M−1∑
n=0

(
1

2k
||un+1−un||2+ν

2
||∇un+1||2+ 1

ϵn+1

||∇·un+1||2) ≤ 1

2k
||u0||2+

M−1∑
n=0

1

2ν
||fn+1||2−1.

Multiply by 2k and drop positive terms on the left hand side

||uM ||2 ≤ ||u0||2 + 2k
M−1∑
n=0

1

2ν
||fn+1||2−1.
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2.2.2 Stability of ∥ut∥ for the linear Stokes problem

As ∇ · u = −ϵp, in order to ensure ∇ · u→ 0 as ϵ→ 0, we need to bound ∥pϵ∥ following

the idea in Fiordilino [21]. By using the LBB inf-sup condition (20):

β∥p∥ ≤ sup
v∈X

(p,∇ · v)
∥∇v∥

= sup
v∈X

−(f, v) + (ut, v) + (u · ∇u, v) + ν(∇u,∇v)
∥∇v∥

≤ ∥f∥−1 + ∥ut∥−1 + C∥∇u∥2 + ν∥∇u∥,

this implies we must begin with a bound of ∥ut∥−1.

Remark 2.2.2. The linear Stokes problem is NSE without the nonlinear term u · ∇u. The

stability conditions on ϵ that are derived from the linear Stokes problem are essential for the

case of nonlinear NSE. The stability analysis of the nonlinear term of NSE will be more

involved but not alter the fundamental approach of this proof. Hence, this case shall be

omitted.

Consider the first-order method with penalty:

un+1 − un

k
− ν∆un+1 −∇

(
1

ϵn+1

∇ · un+1

)
= fn+1. (33)

Theorem 2.2.3. (0-stability of linear Stokes) For any 0 ≤ n ≤ M − 1, if there is some

constant α such that 0 ≤ αk < 1 and (1 − kα)ϵn ≤ ϵn+1 holds , then the following stability

bound holds

M−1∑
n=0

(
k

2
∥u

n+1 − un

k
∥2 + ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1

∥∇ · (un+1 − un)∥2
)

+
ν

2
∥∇uM∥2 + 1

2ϵM
∥∇ · uM∥2

≤ exp(αT )

{
ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2

}
.

Remark 2.2.4. If α = 0 in (34), i.e., if ϵn+1 ≥ ϵn for all n, then we have unconditional

stability.
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Proof. Take the L2 inner product of (33) with un+1 − un,

1

k
∥un+1−un∥2+ν

(
∇un+1,∇(un+1 − un)

)
+

1

ϵn+1

(
∇ · un+1,∇ · (un+1 − un)

)
= (fn+1, un+1−un).

We will address terms successively. Denote γn+1 = 1/ϵn+1 and apply the polarization identity

(17) to the second and the third terms on the left,

ν
(
∇un+1,∇(un+1 − un)

)
=
ν

2

(
∥∇un+1∥2 − ∥∇un∥2 + ∥∇(un+1 − un)∥2

)
,

1

ϵn+1

(
∇ · un+1,∇ · (un+1 − un)

)
=
γn+1

2

(
∥∇ · un+1∥2 − ∥∇ · un∥2 + ∥∇ · (un+1 − un)∥2

)
.

By adding and subtracting γn∥∇ · un∥2/2, we have

γn+1

2

(
∥∇ · un+1∥2 − ∥∇ · un∥2 + ∥∇ · (un+1 − un)∥2

)
=
γn+1

2
∥∇ · un+1∥2 − γn

2
∥∇ · un∥2 + γn+1

2
∥∇ · (un+1 − un)∥2 + γn − γn+1

2
∥∇ · un∥2.

By Cauchy-Schwarz and Young’s inequalities (15)

(fn+1, un+1 − un) ≤ k

2
∥fn+1∥2 + 1

2k
∥un+1 − un∥2.

By combining similar terms, we have

1

2k
∥un+1 − un∥2 +

[(ν
2
∥∇un+1∥2 + γn+1

2
∥∇ · un+1∥2

)
−
(ν
2
∥∇un∥2 + γn

2
∥∇ · un∥2

)]
+
ν

2
∥∇(un+1 − un)∥2 + γn+1

2
∥∇ · (un+1 − un)∥2 + γn − γn+1

2
∥∇ · un∥2 ≤ k

2
∥fn+1∥2.

Moving (γn − γn+1)/2∥∇ · un∥2 to the right. We obtain

1

2k
∥un+1 − un∥2 +

[(ν
2
∥∇un+1∥2 + γn+1

2
∥∇ · un+1∥2

)
−
(ν
2
∥∇un∥2 + γn

2
∥∇ · un∥2

)]
+
ν

2
∥∇(un+1 − un)∥2 + γn+1

2
∥∇ · (un+1 − un)∥2 ≤ k

2
∥fn+1∥2 + γn+1 − γn

2
∥∇ · un∥2,

=
k

2
∥fn+1∥2 + k

(
γn+1 − γn

kγn

)(γn
2
∥∇ · un∥2

)
.
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For each fixed constant α ≥ 0, we need (γn+1 − γn)/kγn ≤ α to avoid catastrophic growth.

This leads to

γn+1 − γn ≤ kαγn,

(
1

ϵn+1

− 1

ϵn

)
ϵnϵn+1 ≤ kα

1

ϵn
ϵnϵn+1,

ϵn ≤ (1 + kα)ϵn+1,
1

1 + kα
ϵn ≤ ϵn+1.

If kα < 1, we approximate with the first two terms of the Taylor expansion

1

1 + kα
≥ 1− kα.

Thus we have the stability condition on ϵ

(1− kα)ϵn ≤ ϵn+1. (34)

Under condition (34)

1

2k
∥un+1 − un∥2 +

[(
ν

2
∥∇un+1∥2 + 1

2ϵn+1

∥∇ · un+1∥2
)
−
(
ν

2
∥∇un∥2 + 1

2ϵn
∥∇ · un∥2

)]
+
ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1

∥∇ · (un+1 − un)∥2 ≤ k

2
∥fn+1∥2 + kα

(
1

2ϵn
∥∇ · un∥2

)
.

(35)

Sum from n = 0, 1, . . . ,M − 1

M−1∑
n=0

(
1

2k
∥un+1 − un∥2 + ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1

∥∇ · (un+1 − un)∥2
)

+
ν

2
∥∇uM∥2 + 1

2ϵM
∥∇ · uM∥2

≤ ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2 + k

M−1∑
n=0

α

(
1

2ϵn
∥∇ · un∥2

)
.

Apply the Gronwall inequality (1.3.9)

M−1∑
n=0

(
1

2k
∥un+1 − un∥2 + ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1

∥∇ · (un+1 − un)∥2
)

+
ν

2
∥∇uM∥2 + 1

2ϵM
∥∇ · uM∥2

≤ exp(k
M−1∑
n=0

α)

{
ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2

}
,

= exp(αT )

{
ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2

}
.
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Thus we proved that, if (1− kα)ϵn ≤ ϵn+1 for some α ≥ 0 and αk < 1, stability of discrete

ut holds.

Remark 2.2.5. When ϵ decreases, (34) is needed to ensure the boundedness of discrete ∥ut∥;

If (34) does not hold, ∥ut∥ may have catastrophic growth see Figure 13.

Theorem 2.2.6. Let u be the solution to penalized NSE (26)-(27), then ut ∈ L4/3(0, T ;H−1),

equivalently ∫ T

0

∥ut∥4/3−1 dt < C(u0, f, k, ν, T, min
t∗∈[0,T ]

ϵ(t∗)).

Proof. Recall

∥ut∥−1 = sup
v∈X

(ut, v)

∥∇v∥
.

By skew-symmetry

(ut, v) = −
∫
Ω

b∗(u, u, v)dx− ν(∇u,∇v)− 1

ϵ(t)
(∇ · u,∇ · v) + (f, v),

≤ C(∥u∥1/2∥∇u∥1/2)∥∇v∥∥∇u∥+ ν∥∇u∥∥∇v∥+ 1

ϵ(t)
∥∇ · u∥∥∇v∥+ ∥f∥−1∥∇v∥.

Thus,

(ut, v)

∥∇v∥
≤ C∥u∥1/2∥∇u∥3/2 + ν∥∇u∥+ 1

ϵ(t)
∥∇ · u∥+ ∥f∥−1.

∥u∥ is bounded by the problem data and initial condition from the stability of the velocity

Theorem 3.1.

∥ut∥−1 ≤ C(u0, f, k, ν)∥∇u∥3/2 + ν∥∇u∥+ 1

ϵ(t)
∥∇ · u∥+ ∥f∥−1.

Then ∫ T

0

∥ut∥4/3−1 dt ≤ C(u0, f, k, ν)

∫ T

0

∥∇u∥2 dt+ C(ν)

∫ T

0

∥∇u∥4/3 dt

+C

∫ T

0

(
1

ϵ(t)
∥∇ · u∥

)4/3

dt+ C

∫ T

0

∥f∥4/3−1 dt.

From Theorem 2.2.1 the stability bound∫ T

0

∥∇u∥2 dt < C(u0, f, k, ν), and

∫ T

0

1

ϵ(t)
∥∇ · u∥2 dt < C(u0, f, k, ν).
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By Hölder’s inequality (15)∫ T

0

∥∇u∥4/3 dt ≤
(∫ T

0

13 dt

)1/3(∫ T

0

(∥∇u∥4/3)3/2 dt
)2/3

= C(T )

(∫ T

0

∥∇u∥2 dt
)2/3

,

∫ T

0

(
1

ϵ(t)
∥∇ · u∥

)4/3

dt ≤ max
t∗∈[0,T ]

(
1

ϵ(t∗)

)2/3(∫ T

0

13 dt

)1/3
(∫ T

0

(
1

ϵ(t)2/3
∥∇ · u∥4/3

)3/2

dt

)2/3

,

= C(T, min
t∗∈[0,T ]

ϵ(t∗))

(∫ T

0

1

ϵ(t)
∥∇ · u∥2 dt

)2/3

.

Then the result follows.

2.3 Error Analysis

Next, we will prove an error estimate for the semi-discrete, variable-ϵ penalty method.

Find (uhϵ , p
h
ϵ ) ∈ (Xh, Qh) such that

(uhϵ,t, v
h) + b∗(uhϵ , u

h
ϵ , v

h) + ν(∇uhϵ ,∇vh)− (phϵ ,∇ · vh) + (qh,∇ · uhϵ ) + ϵ(t)(phϵ , q
h) = (f, vh),

(36)

for all (vh, qh) ∈ (Xh, Qh).

Definition 2.3.1. (Stokes Projection [45]) The Stokes projection operator

PS : (X,Q)→ (Xh, Qh), PS(u, p) = (ũ, p̃), satisfies

ν(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0,

(∇ · (u− ũ), qh) = 0,
(37)

for any vh ∈ Xh, qh ∈ Qh.

Proposition 2.3.2. (Error estimate for the Stokes Projection) Suppose the discrete inf-sup

condition (11) holds. Let C1 be a constant independent of h and ν and C2 = C(ν,Ω). If Ω is

a convex polygonal/polyhedral domain, then the error in the Stokes Projection (37) satisfies

∥p− p̃∥ ≤ inf
qh∈Qh

(1 +
1

βh
)∥p− qh∥+ ν

βh
∥∇(u− ũ)∥,

ν∥∇(u− ũ)∥2 ≤ C1[ν inf
vh∈Xh

∥∇(u− vh)∥2 + ν−1 inf
qh∈Qh

∥p− qh∥2],

and ∥u− ũ∥ ≤ C2h

(
inf

vh∈Xh
∥∇(u− vh)∥+ inf

qh∈Qh
∥p− qh∥

)
.
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Proof. From the first equation of (37),

(p− p̃,∇ · vh) = ν(∇(u− ũ),∇vh).

Let qh ∈ Qh, by the discrete inf-sup condition (11),

βh∥qh − p̃∥ ≤ sup
vh∈Xh

(qh − p̃,∇ · vh)
∥∇vh∥

= sup
vh∈Xh

(qh − p,∇ · vh) + (p− p̃),∇ · vh)
∥∇vh∥

,

= sup
vh∈Xh

(qh − p,∇ · vh) + ν(∇(u− ũ),∇vh)
∥∇vh∥

,

≤ sup
vh∈Xh

∥qh − p∥∥∇vh∥+ ν∥∇(u− ũ)∥∥∇vh∥
∥∇vh∥

,

= ∥p− qh∥+ ν∥∇(u− ũ)∥.

Then,

∥p− p̃∥ ≤ inf
qh∈Qh

(∥p− qh∥+ ∥qh − p̃∥) ≤ inf
qh∈Qh

(1 +
1

βh
)∥p− qh∥+ ν

βh
∥∇(u− ũ)∥.

For detailed proof of the last two inequalities, see Proposition 2.2 and Remark 2.2 of [45].

We also need an estimator for ∥∇(u − ũ)t∥. Take the partial derivative with respect to

time t of (37) to yield

ν(∇(u− ũ)t,∇vh)− ((p− p̃)t,∇ · vh) = 0,

(∇ · (u− ũ)t, qh) = 0,

for all vh ∈ Xh, qh ∈ Qh.

Let vh = ϕh
t , q

h = (p̃− I(p))t, by a similar argument as in Proposition 2.3.2, we have

ν∥∇(u− ũ)t∥2 ≤ C[ν inf
vh∈Xh

∥∇(u− vh)t∥2 + ν−1 inf
qh∈Qh

∥(p− qh)t∥2], (38)

where C is a constant independent of h and ν.
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Theorem 2.3.3. (Error Analysis of semi-discrete variable ϵ penalty method) Let (Xh, Qh)

be the finite element spaces satisfying (10) and (11). Let uϵ be a solution of (26). Suppose

the interpolation estimate (12) in H−1(Ω) holds and ∥∇uϵ∥ ∈ L4(0, T ), then we have the

following error estimate:

sup
0≤t≤T

∥(uϵ − uhϵ )(t)∥2 +
∫ T

0

ν

4
∥∇(uϵ − uhϵ )∥2 dt ≤

e
∫ T
0 a(t)dt

{
∥(uϵ − uhϵ )(0)∥2 + inf

vh(t)∈Xh
max
0≤t≤T

∥(uϵ − vh)(t)∥2

+

∫ T

0

C(ν, βh)ϵ(t)h2m
(
∥uϵ∥2Hm+1(Ω) + ∥pϵ∥2Hm(Ω)

)
dt
}

+C(ν,Ω)
[
(h−d/3 + h2−d/3 + h2−d/2)h2m

(
∥uϵ∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ∥2L2(0,T ;Hm(Ω))

)
+h2m+2

(
∥uϵ,t∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ,t∥2L2(0,T ;Hm(Ω))

) ]}
,

where a(t) = C(ν)∥∇uϵ∥4 +
1

4
.

Proof. We denote (uϵ, pϵ) as penalty solutions to (26).

Multiplying first equation of (26) by vh ∈ Xh and second equation of (26) by qh ∈ Qh gives

(uϵ,t, v
h) + b∗(uϵ, uϵ, v

h) + ν(∇uϵ,∇vh)− (pϵ,∇ · vh) + (qh,∇ · uϵ) + ϵ(t)(pϵ, q
h) = (f, vh).

(39)

Subtract (36) from (39) and denote e = uϵ − uhϵ ,

(et, v
h) + b∗(uϵ, uϵ, v

h)− b∗(uhϵ , uhϵ , vh) + ν(∇e,∇vh)

−(pϵ − phϵ ,∇ · vh) + (qh,∇ · e) + ϵ(t)(pϵ − phϵ , qh) = 0.

Denote η = uϵ − ũ, ϕh = uhϵ − ũ, e = η − ϕh and ũ ∈ Xh, λh ∈ Qh,

(ϕh
t , v

h) + ν(∇ϕh,∇vh)− (phϵ − λh,∇ · vh) + (qh,∇ · ϕh) + ϵ(t)(phϵ − λh, qh)

= (ηt, v
h) + ν(∇η,∇vh)− (pϵ − λh,∇ · vh) + (qh,∇ · η) + ϵ(t)(pϵ − λh, qh)

+b∗(uϵ, uϵ, v
h)− b∗(uhϵ , uhϵ , vh).
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Pick ũ ∈ Xh, λh ∈ Qh to be the Stokes Projection (37) of (uϵ, pϵ) such that

ν(∇(uϵ − ũ),∇vh)− (pϵ − λh,∇ · vh) = 0 for all vh ∈ Xh,

(∇ · (uϵ − ũ), qh) = 0 for all qh ∈ Qh.

Set vh = ϕh, qh = phϵ − λh. We obtain,

1

2

d

dt
∥ϕh∥2 + ν∥∇ϕh∥2 + ϵ(t)∥phϵ − λh∥2 = (ηt, ϕ

h) + b∗(uϵ, uϵ, ϕ
h)− b∗(uhϵ , uhϵ , ϕh)

+ ϵ(t)(pϵ − λh, phϵ − λh).

Consider the nonlinear terms

b∗(uϵ, uϵ, ϕ
h)− b∗(uhϵ , uhϵ , ϕh) = b∗(uϵ, uϵ, ϕ

h)− b∗(uhϵ , uϵ, ϕh) + b∗(uhϵ , uϵ, ϕ
h)− b∗(uhϵ , uhϵ , ϕh)

= b∗(e, uϵ, ϕ
h) + b∗(uhϵ , e, ϕ

h) = b∗(η, uϵ, ϕ
h)− b∗(ϕh, uϵ, ϕ

h) + b∗(uhϵ , η, ϕ
h).

Thus we have

1

2

d

dt
∥ϕh∥2 + ν∥∇ϕh∥2 + ϵ(t)∥phϵ − λh∥2 = (ηt, ϕ

h) + b∗(η, uϵ, ϕ
h)− b∗(ϕh, uϵ, ϕ

h) + b∗(uhϵ , η, ϕ
h)

+ ϵ(t)(pϵ − λh, phϵ − λh).

Consider the right hand side terms of the equation

|(ηt, ϕh)| ≤ 1

2ν
∥ηt∥2−1 +

ν

2
∥∇ϕh∥2,

|ϵ(t)(pϵ − λh, phϵ − λh)| ≤
ϵ(t)

2
∥pϵ − λh∥2 +

ϵ(t)

2
∥phϵ − λh∥.

Apply the trilinear inequality (16) to the first nonlinear term b∗(η, uϵ, ϕ
h) to obtain

|b∗(η, uϵ, ϕh)| = 1

2

∣∣(η · ∇uϵ, ϕh)− (η · ∇ϕh, uϵ)
∣∣ ≤ 1

2
[∥η∥L4∥∇uϵ∥∥ϕh∥L4 + ∥η∥L4∥∇ϕh∥∥uϵ∥L4 ].

Using the Sobolev inequality (14), we have ∥ϕh∥L4 ≤ C∥∇ϕh∥ and ∥uϵ∥L4 ≤ C∥∇uϵ∥,

|b∗(η, uϵ, ϕh)| ≤ C∥η∥L4∥∇uϵ∥∥∇ϕh∥ ≤ ν

4
∥∇ϕh∥2 + C(ν)∥∇uϵ∥2∥η∥2L4

.

Apply Lemma 1.3.2 to the term |b∗(ϕh, uϵ, ϕ
h)|,

|b∗(ϕh, uϵ, ϕ
h)| ≤ C(Ω)∥ϕh∥1/2∥∇ϕh∥3/2∥∇uϵ∥.
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Using Hölder’s and Young’s inequality (15) with p = 4/3, q = 4,

|b∗(ϕh, uϵ, ϕ
h)| ≤ ν

16
∥∇ϕ∥2 + C(ν)∥ϕh∥2∥∇uϵ∥4.

Next, we bound the nonlinear term b∗(uhϵ , η, ϕ
h) and use the trilinear inequality (16)

|b∗(uhϵ , η, ϕh)| = 1

2

∣∣(uhϵ · ∇η, ϕh)− (uhϵ · ∇ϕh, η)
∣∣

≤ 1

2
[∥uhϵ ∥L6∥∇η∥L3∥ϕh∥+ ∥uhϵ ∥L6∥∇ϕh∥∥η∥L3 ]

≤ 1

4
∥ϕh∥2 + 1

4
∥uhϵ ∥2L6

∥∇η∥2L3
+

ν

16
∥∇ϕh∥2 + C(ν)∥uhϵ ∥2L6

∥η∥2L3
.

Collect all the terms, combine similar terms and multiply through by 2, we have

d

dt
∥ϕh∥2 + ν

4
∥∇ϕh∥2 + ϵ(t)∥phϵ − λh∥2 ≤ (C(ν)∥∇uϵ∥4 +

1

2
)∥ϕh∥2

+C(ν)
[
∥ηt∥2−1 + ∥∇uϵ∥2∥η∥2L4

+ ∥uhϵ ∥2L6
∥η∥2L3

]
+

1

2
∥uhϵ ∥2L6

∥∇η∥2L3
+ ϵ(t)∥pϵ − λh∥2.

Denote a(t) = C(ν)∥∇uϵ∥4 + 1
2
and its antiderivative

A(T ) :=

∫ T

0

a(t)dt <∞ for ∥∇uϵ∥ ∈ L4(0, T ).

Multiply through by the integrating factor e−A(t)

d

dt
[e−A(T )∥ϕh∥2] + e−A(T )

[ν
4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2

]
≤

e−A(T )
{
C(ν)

[
∥ηt∥2−1 + ∥∇uϵ∥2∥η∥2L4

+ ∥uhϵ ∥2L6
∥η∥2L3

]
+

1

2
∥uhϵ ∥2L6

∥∇η∥2L3
+ ϵ(t)∥pϵ − λh∥2

}
.

Integrate over [0, T ] and multiply through by eA(T ) gives

∥ϕh(T )∥2 +
∫ T

0

ν

4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2 dt ≤ eA(T )

{
∥ϕh(0)∥2

+

∫ T

0

C(ν)
[
∥ηt∥2−1 + ∥∇uϵ∥2∥η∥2L4

+ ∥uhϵ ∥2L6
∥η∥2L3

]
+

1

2
∥uhϵ ∥2L6

∥∇η∥2L3
+ ϵ(t)∥pϵ − λh∥2 dt

}
.

Applying Hölder’s inequality (15) gives∫ T

0

∥uhϵ ∥2L6
∥η∥2L3

dt ≤ ∥uhϵ ∥2L6(0,T ;L6)∥η∥2L3(0,T ;L3),∫ T

0

∥∇uϵ∥2∥η∥2L4
dt ≤ ∥∇uϵ∥2L4(0,T ;L2)∥η∥2L4(0,T ;L4),∫ T

0

∥uhϵ ∥2L6
∥∇η∥2L3

dt ≤ ∥uhϵ ∥2L6(0,T ;L6)∥∇η∥2L3(0,T ;L3).
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∥uhϵ ∥L6(0,T ;L6) and ∥∇uϵ∥L4(0,T ;L2) are bounded by problem data by the stability bound. Using

the Sobolev inequality (18), Lp −L2 type inverse inequality (19), the interpolation estimate

(12) and the Poincaré-Friedrichs’ inequality (13)

∥η∥L3 ≤ C∥η∥1−d/6∥∇η∥d/6, ∥η∥L4 ≤ C∥η∥1−d/4∥∇η∥d/4,

∥∇η∥L3 ≤ Ch−d/6∥∇η∥, ∥ηt∥−1 ≤ Ch∥ηt∥ ≤ Ch∥∇ηt∥.

By Proposition 2.3.2 and (38)

∥∇(uϵ − ũ)∥2 ≤ C(ν)[ inf
vh∈Xh

∥∇(uϵ − vh)∥2 + inf
qh∈Qh

∥pϵ − qh∥2],

∥uϵ − ũ∥2 ≤ C(ν,Ω)h2[ inf
vh∈Xh

∥∇(uϵ − vh)∥2 + inf
qh∈Qh

∥pϵ − qh∥2],

∥∇(uϵ − ũ)t∥2 ≤ C(ν)[ inf
vh∈Xh

∥∇(uϵ − vh)t∥2 + inf
qh∈Qh

∥(pϵ − qh)t∥2],

∥pϵ − λh∥2 ≤ C(ν, βh)[ inf
vh∈Xh

∥∇(uϵ − vh)∥2 + inf
qh∈Qh

∥pϵ − qh∥2].

Thus,

∥ϕh(T )∥2 +
∫ T

0

ν

4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2 dt ≤

eA(T )
{
∥ϕh(0)∥2 +

∫ T

0

C(ν, βh)ϵ(t)

(
inf

vh∈Xh
∥∇(uϵ − vh)∥2 + inf

qh∈Qh
∥pϵ − qh∥2

)
dt

+C(ν,Ω)
[
(h−d/3 + h2−d/3 + h2−d/2)

(
inf

vh∈Xh
∥∇(uϵ − vh)∥2L2(0,T ;L2) + inf

qh∈Qh
∥pϵ − qh∥2L2(0,T ;L2)

)
+h2

(
inf

vh∈Xh
∥∇(uϵ − vh)t∥2L2(0,T ;L2) + inf

qh∈Qh
∥(pϵ − qh)t∥2L2(0,T ;L2)

)]}
.

Using the approximation properties (10) of the spaces (Xh, Qh)

∥ϕh(T )∥2 +
∫ T

0

ν

4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2 dt ≤

eA(T )
{
∥ϕh(0)∥2 ++

∫ T

0

C(ν, βh)ϵ(t)h2m
(
∥uϵ∥2Hm+1(Ω) + ∥pϵ∥2Hm(Ω)

)
dt

+C(ν,Ω)
[
(h−d/3 + h2−d/3 + h2−d/2)h2m

(
∥uϵ∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ∥2L2(0,T ;Hm(Ω))

)
+h2m+2

(
∥uϵ,t∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ,t∥2L2(0,T ;Hm(Ω))

) ]}
.

Drop the pressure term on the left-hand side and apply triangle inequality, then we have the

error estimate.
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2.4 Algorithms

The backward Euler method was chosen as our method of time discretization. A time

filter to increase the accuracy from first to second order was added [26], and later used to

implement time adaptivity easily.

We use the time discretization in [26]: for y′ = f(t, y), select τ = kn+1/kn, α = τ(1 +

τ)/(1 + 2τ), then

y1n+1 − yn
kn+1

= f(tn+1, yn+1),

yn+1 = y1n+1 −
α

2

(
2kn

kn + kn+1

yn+1 − 2yn +
2kn+1

kn + kn+1

yn−1

)
,

EST = |yn+1 − y1n+1|.

(40)

This step uses the information of the previous two time-steps.

This above algorithm is second-order accurate for α = 2/3 with constant time-step

τ = 1. Apply this time filter to our adaptive penalty method; we get the following variable

ϵ, constant time-step Algorithm 1.

Next, we extend the algorithm to variable time-step methods based on the previous work

by Guzel and Layton [26] and Layton and McLaughlin [48]. We summarize as follows. In the

variable time-step, the first-order and second-order method, the next time-step is adapted

based on the following:

first-order prediction knew = kold

(
tTOL

tEST1

)1/2

,

second-order prediction knew = kold

(
tTOL

tEST2

)1/3

.

Let D2 denote the difference

D2(n+ 1) =
2kn

kn + kn+1

u1n+1 − 2un +
2kn+1

kn + kn+1

un−1.
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Algorithm 1: Variable ϵ, constant time-step, second-order penalty method

Given un, un−1, ϵn, ϵn+1, tolerance TOL, lower tolerance minTOL, ϵmin, ϵmax, and α.

Set u⋆ = 2un − un−1 Solve for u1n+1

u1n+1 − un
k

+ u∗ · ∇u1n+1 +
1

2
(∇ · u∗)u1n+1 −∇

(
1

ϵn+1

∇ · u1n+1

)
− ν∆u1n+1 = fn+1.

Apply time filter, Compute estimator EST

un+1 = u1n+1 −
1

3
{u1n+1 − 2un + un−1},

ESTn+1 = ∥∇ · un+1∥/∥∇un+1∥.

Adapt ϵ using the standard decision tree:

if ESTn+1 ≥ TOL then

if ϵn+1 = ϵmin then
CONTINUE

end

else

ϵn+1 ← max{(1− αk)ϵn+1, 0.5ϵn+1, ϵmin} ;

REPEAT step

end

end

if ESTn+1 ≤ minTOL then

ϵn+2 ← min{2ϵn+1, ϵmax} ;

CONTINUE ;

end

Recover pressure pn+1 if needed by: pn+1 = − 1
ϵn+1
∇ · un+1.

A simple estimate of the local truncation error in the first-order estimation is taken to be
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the difference between un+1 and u1n+1

α1 =
τ(1 + τ)

1 + 2τ
,

tEST1 = ∥un+1 − u1n+1∥ =
α1

2
∥D2(n+ 1)∥.

And the local truncation error of the second-order method is given by

α2 =
τn(τn+1τn + τn + 1)(4τ 3n+1 + 5τ 2n+1 + τn+1)

3(τnτ 2n+1 + 4τnτn+1 + 2τn+1 + τn + 1)
,

tEST2 =
α2

6

∥∥∥∥ 3kn−1

kn+1 + kn + kn−1

D2(n+ 1)− 3kn+1

kn+1 + kn + kn−1

D2(n)

∥∥∥∥ .
For both first-order and second-order variable time-step methods, ϵ is still adapted indepen-

dently using the same decision tree as in Algorithm 1.

Remark 2.4.1. The estimator ∥∇ · un+1∥/∥∇un+1∥ is chosen over ∥∇ · un+1∥ as it is di-

mension free and removes dependence on the size of u.

Next, we consider the variable time-step variable order method. This algorithm computes

two velocity approximations. u1 is first-order, and u is second-order by applying the time

filter. The first-order variable time-step method is unconditionally stable, while the second-

order variable time-step method is A-stable, which would require a time-step condition for

stability. Combining both first and second-order methods increases accuracy and efficiency

by adapting the method order .

The following Algorithm 4 gives the variable ϵ, variable time-step variable order (VSVO)

penalty method. First (n=1) and second (n=2) order variable time-step method can be also

obtained from this following algorithm by using corresponding time-step estimator tESTn

and time-step STEPn. In order to use first-order method, u1n+1 is used and for second-

order method, un+1 is used instead. For detailed variable ϵ, variable time-step, first and

second-order algorithms, see Algorithm 2 and Algorithm 3.
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Algorithm 2: Variable ϵ, variable time-step, first-order penalty method

Given un, un−1, ϵn+1, ϵn, tolerance for ϵ: TOL=10−6 and lower tolerance

minTOL=TOL/10, lower and upper bound of

ϵ : ϵmin = 10−8, ϵmax = 10−5, α = 2,tolerance for ∆t: tTOL=10−5 and lower

tolerance mintTOL=tTOL/10

Compute τ = kn+1

kn
and α1 =

τ(1+τ)
1+2τ

Solve for u1n+1

Set u⋆ = (1 + τ)un − τun−1

u1n+1 − un
kn+1

+ u∗ · ∇u1n+1 +
1

2
(∇ · u∗)u1n+1 −∇

(
1

ϵn+1

∇ · u1n+1

)
− ν∆u1n+1 = fn+1.

Compute estimator EST and difference D2

D2(n+ 1) =
2kn

kn + kn+1

u1n+1 − 2un +
2kk+1

kn + kn+1

un−1,

ESTe(n+ 1) = ∥∇ · un+1∥/∥∇un+1∥,

tEST1(n+ 1) =
α1

2
∥D2(n+ 1)∥.

Adapt ϵ and k using the standard decision tree:

if ESTe(n+ 1) > TOL or tEST1(n+ 1) > tTOL then

ϵn+1 ← max{(1− αkn+1)ϵn+1, 0.5ϵn+1, ϵmin};

kn+1 ← max

{
0.9kn

(
tTOL

tEST1(n+1)

)1/2
, 0.5kn+1

}
;

REPEAT step

else

if ESTn+1 < minTOL or tESTn+1 < mintTOL then

ϵn+2 ← min{2ϵn+1, ϵmax} ;

kn+2 ← max

{
min

{
0.9kn+1

(
tTOL

tEST1(n+1)

)1/2
, 2kn+1

}
, 0.5kn+1

}
;

CONTINUE ;

end

end

Recover pressure pn+1 if needed by: pn+1 = − 1
ϵn+1
∇ · un+1.
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Algorithm 3: Variable ϵ, variable time-step, second-order penalty method

Given un, un−1, ϵn+1, ϵn, tolerance for ϵ TOL=10−6 and lower tolerance

minTOL=TOL/10, lower and upper bound of

ϵ : ϵmin = 10−8, ϵmax = 10−5, α = 2,tolerance for ∆t: tTOL=10−5 and lower

tolerance mintTOL=tTOL/10

Compute τ = kn+1

kn
and α1 =

τ(1+τ)
1+2τ

, α2 =
τn(τn+1τn+τn+1)(4τ3n+1+5τ2n+1+τn+1)

3(τnτ2n+1+4τnτn+1+2τn+1+τn+1)

Set u∗ = (1 + τ)un − τun−1

Solve for u1n+1

u1n+1 − un
kn+1

+ u∗ · ∇u1n+1 +
1

2
(∇ · u∗)u1n+1 −∇

(
1

ϵn+1

∇ · u1n+1

)
− ν∆u1n+1 = fn+1.

Compute estimator EST and difference D2 and apply time filter

D2(n+ 1) =
2kn

kn + kn+1

u1n+1 − 2un +
2kk+1

kn + kn+1

un−1,

un+1 = u1n+1 −
α1

2
D2(n+ 1),

ESTe(n+ 1) = ∥∇ · un+1∥/∥∇un+1∥,

tEST2(n+ 1) =
α2

6

∥∥∥∥ 3kn−1

kn+1 + kn + kn−1

D2(n+ 1)− 3kn+1

kn+1 + kn + kn−1

D2(n)

∥∥∥∥ .
if ESTe(n+ 1) > TOL or tEST2(n+ 1) > tTOL then

ϵn+1 ← max{(1− αkn+1)ϵn+1, 0.5ϵn+1, ϵmin};

kn+1 ← max

{
0.9kn

(
tTOL

tEST1(n+1)

)1/3
, 0.5kn+1

}
;

REPEAT step

else

if ESTn+1 < minTOL or tESTn+1 < mintTOL then

ϵn+2 ← min{2ϵn+1, ϵmax} ;

kn+2 ← max

{
min

{
0.9kn+1

(
tTOL

tEST1(n+1)

)1/3
, 2kn+1

}
, 0.5kn+1

}
;

CONTINUE ;

end

end

Recover pressure pn+1 by: pn+1 = − 1
ϵn+1
∇ · un+1.
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Algorithm 4: Variable ϵ, variable time-step, variable order penalty method

Given un, un−1, ϵn+1, ϵn, tolerance for ϵ: TOL=10−6 and lower tolerance

minTOL=TOL/10, lower and upper bound of ϵ : ϵmin = 10−8, ϵmax = 10−5, α = 2,

tolerance for ∆t: tTOL=10−5 and lower tolerance mintTOL=tTOL/10

Compute τ = kn+1

kn
and α1 =

τ(1+τ)
1+2τ

, α2 =
τn(τn+1τn+τn+1)(4τ3n+1+5τ2n+1+τn+1)

3(τnτ2n+1+4τnτn+1+2τn+1+τn+1)

Set u∗ = (1 + τ)un − τun−1

Solve for u1n+1 ,

u1n+1 − un
kn+1

+ u∗ · ∇u1n+1 +
1

2
(∇ · u∗)u1n+1 −∇

(
1

ϵn+1

∇ · u1n+1

)
− ν∆u1n+1 = fn+1.

Compute estimators for ∆t and ϵ and difference D2 and apply time filter

D2(n+ 1) =
2kn

kn + kn+1

u1n+1 − 2un +
2kk+1

kn + kn+1

un−1, un+1 = u1n+1 −
α1

2
D2(n+ 1),

ESTe(n+ 1) = ∥∇ · un+1∥/∥∇un+1∥, tEST1(n+ 1) =
α1

2
∥D2(n+ 1)∥,

tEST2(n+ 1) =
α2

6

∥∥∥∥ 3kn−1

kn+1 + kn + kn−1

D2(n+ 1)− 3kn+1

kn+1 + kn + kn−1

D2(n)

∥∥∥∥ .
Adapt ϵ and k using the standard decision tree:

(continue in next page)
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(Algorithm 4 continued)

if ESTe(n+ 1) > TOL or min{tEST1(n+ 1), tEST2(n+ 1)} > tTOL then

ϵn+1 ← max{(1− αkn+1)ϵn+1, 0.5ϵn+1, ϵmin};

STEP1 = max

{
0.9kn

(
tTOL

tEST1(n+1)

)1/2
, 0.5kn+1

}
;

STEP2 = max

{
0.9kn

(
tTOL

tEST2(n+1)

)1/3
, 0.5kn+1

}
;

kn+1 ← max{STEP1, STEP2} ;

REPEAT step

else

if ESTn+1 < minTOL or min{tEST1(n+ 1), tEST2(n+ 1)} < mintTOL then

ϵn+2 ← min{2ϵn+1, ϵmax} ;

STEP1← max

{
min

{
0.9kn+1

(
tTOL

tEST1(n+1)

)1/2
, 2kn+1

}
, 0.5kn+1

}
;

STEP2← max

{
min

{
0.9kn+1

(
tTOL

tEST2(n+1)

)1/3
, 2kn+1

}
, 0.5kn+1

}
;

kn+2 ← max{STEP1, STEP2};

CONTINUE

end

end

Pick method with larger time-step for next step:

if STEP1>STEP2 then

un+1 = u1n+1

end

Recover pressure pn+1 if needed by: pn+1 = − 1
ϵn+1
∇ · un+1.

Remark 2.4.2. In this algorithm, 0.9 is used as a standard safety factor [48].
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2.5 Numerical Experiments

2.5.1 Modified Taylor-Green vortex, taken from [18]

First we verify the adaptive ϵ penalty method does better than normal constant ϵ penalty

method by comparing the adaptive ϵ tests (Algorithm 1) with two different constant ϵ options:

1) constant ϵ = 10−8ν and 2) constant ϵ = k. Here option 1) is usually the approach used

by engineering people, and option 2) is derived from a previous penalty paper by Shen [59].

2.5.1.1 Modified test 1

This test is a modified version of the historically used problem Taylor-Green vortex. The

exact solution is given by

u(x, y, t) = F (t)(cosx sin y,− sinx cos y),

p(x, y, t) = −1

4
F (t)2(cos 2x+ cos 2y).

Here F (t) can be any differentiable function of t. With velocity and pressure defined as

above, the body force is therefore

f(x, y, t) = (2νF (t) + F ′(t))(cosx sin y,− cos y sinx).

To construct F (t), first we construct a sharp transition function between 0 and 1 as follows

g(t) =

0 if t ≤ 0,

exp(− 1
(10t)10

) if t > 0.

A differentiable function F (t) therefore can be constructed with shifts and reflections of this

function g(t). The plot of F (t) are shown as follows in Figure 1. This is a periodic function

with sharp increase and decrease. The test was done with 100 nodes per side of the square

[0, 2π]× [0, 2π] using P2 elements, and with final time of T = 25.

The result shown in Figure 2 is done with 100 mesh points on each side and ∆t = 0.005.

The three different methods are: 1) constant epsilon penalty method with ϵ = 10−8ν, 2)

constant epsilon penalty method with ϵ = k and 3) variable penalty method (Algorithm 1).
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Figure 1: plot of the differentiable function F (t) over time interval [0, 25]

All three methods are accomplished with a time-filter. The result shown in Figure 2 are plots

of ∥∇ · u∥, discrete ∥ut∥, evolution of ϵ, velocity error ∥u− uh∥ and pressure error ∥p− ph∥.

In the fourth plot of velocity error ∥u − uh∥, the adaptive ϵ penalty method has a smaller

error. In the third plot of ϵ, ϵ of the adaptive penalty method does change periodically, and

these changes correspond to the sharp change of F (t) in Figure 1. When there is a sharp

decrease of ϵ in the third plot, there is a sharp increase in ∥ut∥ in the second plot. Moreover,

this verifies the necessity of epsilon restriction condition (34).

There are some spikes of pressure error of scale O(102) for all three different penalty

methods from the last plot of Figure 2. To further see difference of the pressure error, we

zoomed in and get Figure 3. The pressure error are all of scale O(10−2) except for those

spikes. And among the three penalty methods, adaptive ϵ has comparable smaller pressure

error and constant ϵ = 10−8ν has bigger pressure error.

Next, we check the time accumulated velocity error over the time interval [0, 25]. The

velocity error ∥|u− uh|∥L2,L2 is shown in Table 1. The error of adaptive penalty is O(10−2)

while for the other two constant penalty methods errors are O(10−1). Thus, we see there is

an advantage in applying the adaptive penalty method.
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Figure 2: Test1: Comparison between adaptive penalty (Algorithm 1) and two constant

penalty methods, tests are done with 100 mesh points per side and ∆t = 0.005.
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Figure 3: Test1: Pressure error comparison between adaptive penalty (Algorithm 1) and two

constant penalty methods, tests are done with 100 mesh points per side and ∆t = 0.005.

k constant ϵ = 10−8ν constant ϵ = k variable ϵ

0.005 0.246098 0.255838 0.0570719

Table 1: Comparison of velocity error ∥|u− uh|∥L2L2

2.5.1.2 Modified test 2

This test is also a modified version of Taylor-Green vortex and the exact solution is given

by

u(x, y, t) = e−2νt(cosx sin y,− sinx cos y),

p(x, y, t) = −1

4
e−4νt(cos 2x+ cos 2y) + x(sin 2t+ cos 3t) + y(sin 3t+ cos 2t).

This is inserted into the NSE and the body force f(x, y, t) calculated.
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The test was done using uniform meshes with 100 nodes per side of the square [0, 2π]×

[0, 2π]. We solve using P2 elements and calculate up to time T = 25. Here we still compare

three different methods: 1) constant epsilon penalty method with ϵ = 10−8ν, 2) constant

epsilon penalty method with ϵ = k and 3) variable penalty method (Algorithm 1). All three

methods are calculated with ∆t = 0.005 with time-filter. The results are shown in Figure 4,

Figure 5, Figure 7 and Figure 8.

Figure 4: Test2: Comparison of ∥∇ · u∥ and discrete ∥ut∥ between adaptive penalty (Algo-

rithm 1) and two constant penalty methods, tests are done with 100 mesh points per side

and ∆t = 0.005.

Figure 4 shows the evolution of ∥∇ · u∥ and discrete ∥ut∥. Constant penalty ϵ = k has

much more larger ∥∇ · u∥ and ∥ut∥ than both constant penalty ϵ = 10−8ν and adaptive

penalty methods. The results of constant ϵ = k is inaccurate as ∥∇ · u∥ = O(10−1).
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To further see the difference between constant penalty ϵ = 10−8ν and adaptive penalty.

We zoomed in to get Figure 5 and further zoomed in to get a plot of ∥∇ · u∥ of constant

ϵ = 10−8ν only see Figure 6. Constant ϵ = 10−8ν and adaptive penalty has comparable ∥ut∥

values, both of order O(10−2). But adaptive penalty has larger ∥∇ ·u∥ values than constant

penalty ϵ = 10−8ν. ∥∇ · u∥ of adaptive penalty is O(10−5) from Figure 5 and ∥∇ · u∥ of

constant penalty ϵ = 10−8ν is O(10−9) from Figure 6.

Figure 5: Test2: Zoomed in comparison of ∥∇·u∥ and discrete ∥ut∥ between adaptive penalty

(Algorithm 1) and constant penalty ϵ = 10−8ν, tests are done with 100 mesh points per side

and ∆t = 0.005.

The second plot of Figure 7 is the velocity error ∥u−uh∥, adaptive ϵ has a much smaller

error compared to the other two constant penalty methods. The first plot of Figure 7 is the

evolution of ϵ of 1) constant ϵ = 10−8ν and 3) adaptive penalty. The evolution of ϵ of 2)
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Figure 6: Test2: Evolution of ∥∇ ·u∥ of constant penalty ϵ = 10−8ν, tests are done with 100

mesh points per side and ∆t = 0.005.

constant ϵ = k is not shown in this plot due to the limitation of y−axis. ϵ of 3) adaptive

penalty changes with time and gradually becomes stable over time. This shows that the

adaptive penalty method does pick a good ϵ automatically. Because the penalty method is

very sensitive to the choice of ϵ as we see in Figure 9, a good choice of ϵ is not easy at the

beginning. Furthermore, by using the adaptive penalty method, we could eventually find

that good ϵ with a little more calculation.

The behavior of pressure is not good as seen in Figure 8. Both pressure and pressure

error fluctuate. Accurate pressure recovery remains an open question.

As a conclusion, there are three main advantages of the adaptive penalty method over

the usual constant penalty method:

1. The errors of adaptive ϵ and constant ϵ are comparable. Finding a good, constant ϵ value

can require an exhaustive search.

2. Constant ϵ = 10−8ν behaves better than constant ϵ = k in our tests. But as in the

previous two tests, with ν = 0.01, ϵ = 10−8ν = 10−10 leads to an extremely ill conditioned

42



Figure 7: Test2: Evolution of ϵ and ∥u − uh∥ between adaptive penalty (Algorithm 1) and

two constant penalty methods, tests are done with 100 mesh points per side and ∆t = 0.005.

linear system. While adaptive ϵ levels out with ϵ ≈ 10−5 and gives ∥∇ · u∥ = O(10−5).

Adaptive ϵ controls ∥∇ · u∥ better than ϵ = k and controls ∥∇ · u∥ almost as well as

ϵ = 10−8ν but leads to a much better conditioned system. Further, adaptive ϵ has smaller

velocity error than ϵ = 10−8ν. Overall, adaptive ϵ performed better.

3. The only way to find the best ϵ is by exhaustive search for problems with an already

known solution. This is not possible for new problems but is not needed with the adaptive

penalty.
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Figure 8: Test2: Comparison of ∥p − ph∥ and discrete ∥ph∥ between adaptive penalty (Al-

gorithm 1) and two constant penalty methods, tests are done with 100 mesh points per side

and ∆t = 0.005.

2.5.2 A test with exact solution, taken from [17]

This exact solution experiment tests the accuracy of the adaptive penalty algorithm.

The following test has the exact solution for the 2D Navier-Stokes problem(ν = 1).

Let the domain Ω = (−1, 1)× (−1, 1). The exact solution is as follows:

u(x, y, t) = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy)

p(x, y, t) = sin t cos πx sin πy
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This is inserted into the NSE and the body force f(x, t) calculated.

Uniform meshes were used with 270 nodes per side on the boundary. The mesh is fine

enough that the error resulting from the meshsize is relatively smaller than that from the

step-size. Taylor-Hood elements (P2-P1) were used in this test. We ran the test up to

T = 10.

(a) ∆t = 0.05, minimum error occurs at ϵ = 10−6 (b) ∆t = 0.02, minimum error occurs at ϵ = 5 ∗
10−9

Figure 9: ∥(u− uh)(10)∥ with constant time-step and different values of penalty parameter

ϵ

Figure 9 indicates that velocity error is very sensitive to the choice of ϵ. This sensitivity

is a known effect, motivating the ϵ−adaptive algorithm of the penalized NSE (28). It also

suggests that ϵ too large is safer than ϵ too small.

2.5.2.1 Constant time-step, variable ϵ test

First, we tested the constant time-step, variable ϵ test based on Algorithm 1. The error

at final time T=10 is in Table 2. We observe that the velocity error is good, but the pressure

approximation is poor. The recovery of pressure still remains a big problem. Also, when ∆t

gets smaller, the velocity error reached a plateau.
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dt # steps ∥(u− uh)(10)∥ rate ∥(u− uh)(10)∥L∞ rate ∥(p− ph)(10)∥L∞ rate

0.1 100 0.00965699 - 0.00869 - 0.268895 -

0.05 200 0.00203366 2.2475 0.002075 2.0662 0.229891 0.2261

0.02 500 0.000332169 1.9775 0.0004969 1.5599 0.222597 0.0352

0.01 1000 0.000324625 0.0331 0.00043955 0.1769 0.196683 0.1786

Table 2: Constant time-step variable ϵ error comparison

Figure 10: Comparison of results with different ∆t of variable ϵ, constant time-step method

(Algorithm 1)

∥∇ ·u∥ in Figure 10 is well controlled for all three different time-steps. ∥ut∥ in Figure 10

is very close to the true value of problem. Decreasing the time-step improves accuracy of

the pressure at origin (0, 0). The oscillations in the errors of p(0, 0) and ∥∇ · u∥ arise from
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the multiplier sin(t) in the exact solution.

This test has a smooth solution, ∥∇u∥ does not vary too much in the whole test. And

this result in the estimator EST = ∥∇ · u∥/∥∇u∥ is also very smooth. So ϵ does not vary

too much in this test. Both ∥ut∥ and ∥∇ · u∥ are well controlled. The values of ∥ut∥ are

very close to the true value. The values of ∥∇ · u∥ are very close to 0 (up to 10−4) which is

the incompressibility condition. One surprising effect we see from the plot of ∥∇ · u∥ is that

smaller ∆t leads to larger ∥∇ · u∥, which contradicts expectations from theory. This is due

to for smaller ∆t, this adaptive ϵ algorithm suggests larger ϵ. ∇ · u and p need to satisfy the

relation ∇ · u+ ϵp = 0 and this implies ∥∇ · u∥ = ϵ∥p∥.

Figure 11: log-log plot, log of velocity error at final step T=10 ∥(u − uh)(10)∥ v.s. log∆t

using variable ϵ constant time-step method (Algorithm 1). Slope of plot ∥(u − uh)(10)∥ is

close to 2.

Figure 11 is the log-log plot of velocity error at final time T=10 versus the time-step k.

We see the curve of log(∥(u−uh)(10)∥)− log(k) has slope close to 2. This constant time-step,

variable ϵ, backward Euler algorithm with time filter (Algorithm 1) is second-order accurate.
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The error does not change too much when the time-step gets too small. This is due to the

choice of tolerance, TOL, for algorithm here is 10−6 and at this time-step reached the error

plateau.

2.5.2.2 Double Adaptive

Next, we test the same problem using the variable time-step algorithm (Algorithm 2,

Algorithm 3 and Algorithm 4). The errors of variable time-step, variable ϵ method are

presented at Table 3. From the table, the variable order method gives slightly better results

than the first-order and second-order methods. The velocity error is of order 10−3 using

VSVO and is of order 10−2 for both first and second-order algorithms. The pressure error of

VSVO is approximately 50% smaller than first and second-order algorithms.

method # steps ∥(u− uh)(10)∥ ∥(u− uh)(10)∥L∞ ∥(p− ph)(10)∥L∞

first 3450 0.0609278 0.0512269 0.348461

second 447 0.0567343 0.0476828 0.344317

vsvo 566 0.00364638 0.00314834 0.190205

Table 3: Variable time-step error comparison

For the variable time-step methods, in Figure 12 we track the evolution of ϵ and ∆t,

the pressure at the origin, ∥∇ · u∥ and ∥ut∥. The last plot of Figure 12 shows that the

second-order method consistently chooses a larger time-step than the first-order method. In

the beginning, VSVO picks the second-order method, and after some time, VSVO picks the

first-order method. The VSVO algorithm takes larger time-steps than both the first and

second-order methods.

From Figure 13, the plot of ∥ut∥, we see some spikes. The time where we see spikes is

exactly ϵ is decreased a lot (see Figure 12.) From the analysis of stability of ∥ut∥, when we

decrease ϵ, (34) must be satisfied to avoid catastrophic growth of ∥ut∥. When adapting ϵ

and k to ensure EST < TOL, we may reject due to EST exceeding TOL and redo the step

several times. This may result in the sudden decrease of ϵ, as in Figure 12. This kind of
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Figure 12: Comparison of variable time-step, variable ϵ method (Algorithm 2,3,4)

sudden decrease of ϵ violates (34) and results in the spikes as in Figure 13. This illustrates the

necessity of controlling the change in ϵ using the method we derived from stability analysis

and decreasing ϵ using (34): (1− kα)ϵn ≤ ϵn+1.

2.5.3 Flow Between Offset Circles, taken from [48]

The domain is a disk with a smaller off center obstacle inside. Let r1 = 1, r2 = 0.1, c =

(c1, c2) = (1/2, 0), then the domain is given by

Ω = {(x, y) : x2 + y2 < r21 and (x− c1)2 + (y − c2)2 > r22}.
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Figure 13: ∥ut∥ plot of variable time-step, variable ϵ method (Algorithm 2,3,4) The spikes

show at the time when ϵ decrease too fast (violation of (34))

The flow is driven by a counterclockwise rotational body force

f(x, y, t) = min{t, 1}(−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T , for 0 ≤ t ≤ 10,

with no-slip boundary conditions on both circles. We discretize in space using P 2 − P 1

Taylor-Hood elements. There are 200 mesh points around the outer circle and 50 mesh

points around the inner circle. The finite element discretization has a maximal mesh width

of hmax = 0.048686. The flow is driven by a counterclockwise force (f=0 on the outer circle).

The flow rotates about the origin and interacts with the immersed circle.

To better compare the results, tests is also done using the following algorithm:

Backward Euler with grad-div stabilization parameter γ = 1 see Jenkins, John, Linke and

Rebholz [34]

un+1 − un

k
+ un · ∇un+1 +

1

2
(∇ · un)un+1 +∇pn+1 − ν∆un+1 − γ∇∇ · un+1 = fn+1,

∇ · un+1 = 0.

(41)
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Figure 14: Comparison between different estimators ∥∇ · u∥ and ∥∇ · u∥/∥∇u∥, Re =

100,∆t = 0.005 with Algorithm 1 (constant time-step, variable ϵ). No penalty uses Back-

ward Euler with grad-div stabilization (41) with ∆t = 0.001. Tests without penalty use 320

mesh points around the outer circle and 80 mesh points around the inner circle. The finite

element discretization has a maximal mesh width of hmax = 0.0347224.

For both estimators EST = ∥∇ · u∥ and EST = ∥∇ · u∥/∥∇u∥, we use constant time-step

variable ϵ (Algorithm 1) with the same tolerance TOL and lower tolerance minTOL. We

track the evolution of ϵ, the pressure at the origin, the evolution of ∥∇ · u∥, ∥ut∥ and the
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lift, drag coefficients. These are all shown in Figure 14.

The fourth plot in Figure 14 shows that with EST = ∥∇·u∥/∥∇u∥ chooses larger ϵ values

than with estimator EST = ∥∇ · u∥. The evolution of pressure, lift and drag coefficients

behave similarly for both estimators. ∥∇ · u∥ is smaller using adaptive ϵ penalty algorithm

(Algorithm 1) than using Backward Euler with grad-div stabilization (41). ∥∇ · u∥ from the

penalty method is at least 5 times smaller ∥∇ · u∥ from coupled Backward Euler with grad-

div stabilization (41). The adaptive penalty method has better control of ∥∇ · u∥ than the

coupled Backward algorithm with grad-div stabilization term (41). Lift coefficient calculated

from adaptive ϵ penalty method looks good.

52



3.0 Adapting ϵ in space

We propose, analyze and test a new adaptive penalty scheme that picks the penalty

parameter ϵ element by element small where ∇ · uh is large. We start by analyzing and

testing the new scheme on the most simple but interesting setting, the Stokes problem.

Finally, we extend and test the algorithm on the incompressible Navier-Stokes equation on

complex flow problems. Tests indicate that the new adaptive-ϵ penalty method algorithm

predicts flow behavior accurately. The scheme is developed in the penalty method but also

can be used to pick a grad-div stabilization parameter.

3.1 Introduction

Consider the incompressible Navier-Stokes equations (NSE) with no-slip boundary con-

dition:

ut + u · ∇u+∇p− ν∆u = f, and ∇ · u = 0, in Ω× [0, T ],

u = 0, on ∂Ω× [0, T ], and u(x, 0) = u0(x), in Ω.
(42)

Here u is the velocity, f is the known body force, p is the pressure, and ν is the viscosity. The

penalty approximation to the Navier-Stokes equations replaces ∇ · u = 0 by ∇ · u + ϵp = 0

and eliminates the pressure. This uncouples velocity and pressure, and the resulting system

is much easier to solve:

uϵ,t + uϵ · ∇uϵ +
1

2
(∇ · uϵ)uϵ − ν∆uϵ −∇(

1

ϵ
∇ · uϵ) = f in Ω× [0, T ],

uϵ = 0, on ∂Ω× [0, T ], and uϵ(x, 0) = u0(x), in Ω.

(43)

Here uϵ · ∇uϵ + 1
2
(∇ · uϵ)uϵ is the modified bilinear term introduced by Temam [61]. This

bilinear term ensures the dissipativity of the system (43). Supposing the spatial discretiza-

tion, a simple penalty method is given as follows. Given un ≈ u(x, tn), kn = tn+1 − tn the
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nth time step

un+1
ϵ − unϵ
kn

+ unϵ · ∇un+1
ϵ +

1

2
(∇ · unϵ )un+1

ϵ − ν∆un+1
ϵ −∇( 1

ϵn+1

∇ · un+1
ϵ ) = f(tn+1), in Ω,

un+1
ϵ = 0, on ∂Ω and u0ϵ = uϵ(x, 0) = u0(x), in Ω.

(44)

The term −∇(ϵ−1∇·u) also arises in artificial compression [48, 17] method and with grad-div

stabilization [34, 54, 13]. Penalty methods require less computing time and reduced storage

but still face two unsolved problems:

1. How to recover the pressure accurately, and

2. How to pick an effective value of the grad-div coefficient ϵ.

Herein we present a self-adaptive algorithm answering question 2.

Many papers are devoted to the parameter choice of grad-div term for both grad-div

stabilization and penalty problems. Jenkins, John, Linke, and Rebholz [34] found that the

grad-div parameter for Stokes problem depends on the used norm, the solution, the finite

element space, and the type of mesh used. Ainsworth, Allendes, Barrenechea and Rankin

[1] introduced an approach to select stabilization parameters for the Stokes problem.

The velocity error of penalty methods is also sensitive to the choice of ϵ, see Bercovier

and Engelman [4]. Care must be taken when choosing ϵ. If ϵ is too large, it will poorly model

incompressible flow. Choosing ϵ too small will cause numerical conditioning problems, see

Hughes, Liu and Brooks [32]. In [32], the authors introduced a theory for determining the

penalty parameter, which depends on Reynolds number Re and viscosity µ. The optimal

choice of the penalty parameter also varies according to the time discretization schemes and

space discretization schemes used, see Shen [59]. With so many dependencies, an automatic

choice of ϵ naturally becomes a problem to consider.

In Layton and McLaughlin [48] self-adaptive ϵ selection in time (but not in space) algo-

rithms were developed, analyzed and tested. The basic idea in [48] is to monitor ∥∇ · un∥

and pick ϵ = ϵ(tn) to make ∥∇ · un∥ < Tolerance in (44) in the computation of un+1.
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The natural question we answer herein is: can we let ϵ = ϵ(x, t) and pick ϵ(x, tn) pointwise

or element by element small where ∇ · uh is large to enforce in a realizable sense∫
Ω

|∇ · uh|2 dx < Tolerance2. (45)

This means ϵ is chosen small where ∇ · uh is large (and large where small). As a result, the

term (ϵ−1∇·uh,∇·vh) becomes nonlinear. To our knowledge, this natural idea has not been

considered. Picking ϵ pointwise and elementwise are two related ideas, but the resulting two

algorithms are different; see (50) and (52) below.

The idea we use is the path of many adaptive methods: monitor the residual (the left-

hand side of (45)), localize the global tolerance (45) and where the local residual
∫
∆
|∇·uh|2 dx

is large, pick ϵ∆ small (and visa versa). Picking ϵ locally in space leads to a nonlinear grad-

div term in (44) quite amenable to numerical analysis. In the next sections, we start the

detailed analysis and test of this idea using the simplest setting, the Stokes problem.

3.1.1 Previous Work

Bernardi, Girault and Hecht [5, 6] derived posterior error estimates for the Stokes problem

with penalty. They performed the tests on adaptive meshes and tested using local penalty

parameters. Falk [20] derived a new finite element method that uses the trial function,

which is not div-free. By eliminating the constraint, one can use simple finite elements,

which inspired the proof in Section 3.2.2. Heavner and Rebholz [29] considered a local

choice of grad-div stabilization parameter. Moreover, in numerical tests, they showed that

local choice of stabilization parameter provides more accurate solutions.

3.1.2 Formulation

We begin the analysis and testing of this idea for the simplest interesting setting, the

Stokes problem

−ν∆u+∇p = f(x), ∇ · u = 0. (46)

On a bounded, open polyhedral domain Ω subject to no-slip boundary conditions u = 0 on

∂Ω. Let d denote the dimension of Ω, d = dim(Ω) = 2 or 3.
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The penalty method replaces ∇ · u = 0 by ∇ · uϵ + ϵp = 0 and eliminate pressure using

p = −ϵ−1∇ · uϵ:

−ν∆uϵ −∇
(
1

ϵ
∇ · uϵ

)
= f(x) in Ω. (47)

Let Xh ⊂ X := (H0,1(Ω))d, d = 2 or 3 denote a finite element space for the fluid velocity.

(·, ·) is the L2 inner product with norm ∥·∥ and ∆ denotes a mesh element (so that
∫
Ω
ϕ dx =∑

∆

∫
∆
ϕ dx). The area/volume of a region D is denoted |D|. The L2(∆) norm on a mesh

element (
∫
∆
ϕ2 dx)1/2 is denoted as ∥ϕ∥∆.

The penalty approximation we consider to (46) is: find uh ∈ Xh such that

ν(∇uhϵ ,∇vh) +
∑
∆

∫
∆

ϵ−1
∆ ∇ · u

h
ϵ∇ · vh dx = (f, vh), ∀vh ∈ V h. (48)

The idea is the same as behind most adaptive algorithms: Monitor the residual to control

the error; localize a global residual tolerance; where the local residual ∥∇ ·uh∥2∆ is large pick

ϵ∆ small.

To develop this, we begin with the basic stability estimate. Setting vh = uh in (48) we

find

ν∥∇uhϵ ∥2 +
∑
∆

∫
∆

ϵ−1
∆ |∇ · u

h
ϵ |2 dx = (f, uhϵ ) = (f, u) + o(1),

thus
∑
∆

∫
∆

ϵ−1
∆ |∇ · u

h
ϵ |2 dx = O(1).

This sugggests that globally halving (doubling) ϵ halves (doubles) ∥∇ · uhϵ ∥2.

Next, we localize the global tolerance TOL for ∥∇ · uhϵ ∥ as follows:

We seek ∥∇ · uhϵ ∥2 ≈ 1
2
TOL2 or

∥∇ · uhϵ ∥2 =
∑
∆

∫
∆

|∇ · uhϵ |2 dx ≈
1

2
TOL2 =

1

2

∑
∆

TOL2

|Ω|
|∆|.

Thus we define the local tolerance

LocTol∆ :=
1

2

TOL2

|Ω|
|∆|,

and seek to enforce

∥∇ · uhϵ ∥2∆ ≈ LocTol∆.
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If this local tolerance is satisfied, the global tolerance is satisfied:

∥∇ · uhϵ ∥2 =
∑
∆

∫
∆

|∇ · uhϵ |2 dx ≈
∑
∆

LocTol∆ =
1

2
TOL2.

The usual procedure would be to select (on each triangle ∆) ϵold, solve for uhϵ , compute

the ratio

r =
LocTol∆
∥∇ · uhϵ ∥2∆

,

then adjust ϵ by ϵnew = r× ϵold and resolve. The first step is therefore (starting with ϵ∆ ≡ 1)

ϵ∆ = ∥∇ · uhϵ ∥−2
∆ × LocTol∆,

There are two options. Both result in a nonlinear discretization.

Option 1. Elementwise Penalty (EP)

ϵ∆ :=
LocTol∆
∥∇ · uhϵ ∥2∆

,

so that ∑
∆

∫
∆

ϵ−1
∆ ∇ · u

h
ϵ∇ · vh dx =

∑
∆

LocTol−1
∆ ∥∇ · u

h
ϵ ∥2∆

∫
∆

∇ · uhϵ∇ · vh dx. (49)

Then (48) becomes: find uhϵ ∈ Xh such that∫
Ω

ν∇uhϵ : ∇vh dx+
∑
∆

1

LocTol∆
∥∇ · uhϵ ∥2∆

∫
∆

∇ · uhϵ∇ · vh dx =

∫
Ω

f · vh dx. (50)

Option 2. Pointwise Penalty (PP)

ϵ∆(x) :=
LocTol∆
|∇ · uhϵ (x)|2

,

so that ∑
∆

∫
∆

ϵ−1
∆ ∇ · u

h
ϵ∇ · vh dx =

∑
∆

LocTol−1
∆

∫
∆

|∇ · uhϵ |2∇ · uhϵ∇ · vh dx. (51)

Then (48) becomes: find uhϵ ∈ Xh such that∫
Ω

ν∇uhϵ : ∇vh dx+
∑
∆

1

LocTol∆

∫
∆

|∇ · uhϵ |2∇ · uhϵ∇ · vh dx =

∫
Ω

f · vh dx. (52)

We focus herein on the analysis of option 2 (PP) and the numerical result of option 1

(EP). In option 2 (PP), the resulting nonlinearity is both strongly monotone and locally

Lipschitz continuous, sharing structures with the p-Laplacian. Then, there is a well-trodden

analytical path to be adapted here. Before proceeding, we address two points:
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1. Imposing the global condition locally suggests but does not imply the local condition is

satisfied. This will be tested in our experiments Section 3.4.1. We adapt based on the local

condition but aim for global TOL to be satisfied.

2. No analysis herein addresses how to pick TOL. TOL is user supplied.

Section 3.2 analyzes the stability and error for the Stokes problem of the new point-

wise penalty (PP) method. In Section 3.3, algorithmic aspects are discussed for the Stokes

problem and the Navier-Stokes problem using the elementwise penalty (EP) method. In Sec-

tion 3.4, we present three numerical tests using the elementwise penalty (EP). The first two

are for the Stokes problem, and the third one is an extension to the Navier-Stokes equations.

3.2 Analysis

In this section, we derived stability bounds for both new penalty methods (PP (52) and

EP (50)) and error estimates for the pointwise penalty (PP) method (52).

3.2.1 Stability

First, we consider the elementwise penalty (EP) method (50). Recall that LocTol∆ =

1
2
TOL2 |∆|

|Ω| .

Theorem 3.2.1. Suppose T h be a mesh of Ω and ∆ denote a mesh element in T h, the

solution to (50) is stable, and the following stability bound holds

ν

2
∥∇uhϵ ∥2 +

∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4∆ ≤

1

2ν
∥f∥2−1.

Proof. Take vh = uhϵ in (50):

ν∥∇uhϵ ∥2 +
∑
∆

1

LocTol∆
∥∇ · uhϵ ∥2∆∥∇ · uhϵ ∥2∆ =

∫
Ω

f · uhϵ dx,

As (f, uhϵ ) ≤ ∥f∥−1∥∇uhϵ ∥ and apply Hölder’s and Young’s inequalities (15):

ν∥∇uhϵ ∥2 +
∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4∆ ≤

1

2ν
∥f∥2−1 +

ν

2
∥∇uhϵ ∥2.

Combine similar terms and the claimed stability bound then follows.
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From Theorem 3.2.1, we have the following proposition.

Proposition 3.2.2. Let N denote the number of elements ∆ in mesh T h and TOL denote

the global tolerance, then the solution uhϵ to (50) satisfy

∥∇ · uhϵ ∥4 ≤
(
N ·max |∆|

4ν|Ω|

)
TOL2∥f∥2−1.

Proof. From Theorem 3.2.1, we have∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4∆ ≤

1

2ν
∥f∥2−1.

Recall LocTol∆ = 1
2
TOL2 |∆|

|Ω| , ∑
∆

2

TOL2

|Ω|
|∆|
∥∇ · uhϵ ∥4∆ ≤

1

2ν
∥f∥2−1,

∑
∆

1

|∆|
∥∇ · uhϵ ∥4∆ ≤

TOL2

4ν|Ω|
∥f∥2−1,

1

max |∆|
∑
∆

(∫
∆

|∇ · uhϵ |2 dx
)2

≤ TOL2

4ν|Ω|
∥f∥2−1,

∑
∆

(∫
∆

|∇ · uhϵ |2 dx
)2

≤ max |∆|
|Ω|

TOL2

4ν
∥f∥2−1.

Using the Cauchy Schwartz inequality:

1

N

(∑
∆

∫
∆

|∇ · uhϵ |2 dx

)2

≤
∑
∆

(∫
∆

|∇ · uhϵ |2 dx
)2

≤ max |∆|
|Ω|

TOL2

4ν
∥f∥2−1.

Then the result follows.

Next, we consider the pointwise penalty (PP) method (52). Recall that LocTol∆ =

1
2
TOL2 |∆|

|Ω| .

Theorem 3.2.3. Suppose T h be a mesh of Ω and ∆ denote the mesh element in T h, the

solution to (52) is stable, and the following stability bound holds

ν

2
∥∇uhϵ ∥2 +

∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4L4(∆) ≤

1

2ν
∥f∥2−1.
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Proof. Take vh = uhϵ in (52):

ν∥∇uhϵ ∥2 +
∑
∆

1

LocTol∆

∫
∆

|∇ · uhϵ |4 dx =

∫
Ω

f · uhϵ dx,

As (f, uhϵ ) ≤ ∥f∥−1∥∇uhϵ ∥ and apply Hölder’s and Young’s inequalities (15):

ν∥∇uhϵ ∥2 +
∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4L4(∆) ≤

1

2ν
∥f∥2−1 +

ν

2
∥∇uhϵ ∥2.

Combine similar terms and the claimed stability bound then follows.

Directly from the result of Theorem 3.2.3, we have the following proposition.

Proposition 3.2.4. Let TOL denote the global tolerance, then the solution uhϵ to (52) satisfy

∥∇ · uhϵ ∥4L4 ≤
(
max |∆|
4ν|Ω|

)
TOL2∥f∥2−1.

Proof. From Theorem 3.2.3, there holds∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4L4(∆) ≤

1

2ν
∥f∥2−1.

Recall LocTol∆ = 1
2
TOL2 |∆|

|Ω| , ∑
∆

2

TOL2

|Ω|
|∆|
∥∇ · uhϵ ∥4L4(∆) ≤

1

2ν
∥f∥2−1,

∑
∆

1

|∆|
∥∇ · uhϵ ∥4L4(∆) ≤

TOL2

4ν|Ω|
∥f∥2−1,

1

max |∆|
∑
∆

(∫
∆

|∇ · uhϵ |4 dx
)1

≤ TOL2

4ν|Ω|
∥f∥2−1.

Then the result follows.
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3.2.2 Error analysis

We consider the error between continuous Stokes problem (46) and discretized pointwise

penalized (PP) Stokes problem (52). Recall Q := {q ∈ L2(Ω) :
∫
Ω
q dx = 0}. The variational

form of the Stokes problem (46) is:

Find (u, p) ∈ (X,Q) such that∫
Ω

ν∇u : ∇v dx−
∫
Ω

p(∇ · v) dx =

∫
Ω

f · v dx for all v ∈ X,

and

∫
Ω

(∇ · u)q dx = 0 for all q ∈ Q.
(53)

Theorem 3.2.5. Let (u, p) be a solution to the Stokes problem (53) and uhϵ be the solution

of the penalty approximation (52). Let d denote the dimension of Ω and C1, C2 be two

constants defined as in (21) and (22). TOL denote the global tolerance and LocTol∆ be the

local tolerance for each element ∆ in mesh T h. Then it follows that

ν∥∇(u− uhϵ )∥2 + C1

∑
∆

LocTol−1
∆ ∥∇ · (u− u

h
ϵ )∥4L4(∆)

≤ inf
vh∈Xh

C(C1, C2)
∑
∆

LocTol−1
∆ ∥∇ · (u− v

h)∥4L4(∆)

+C(ν)h2m−2∥u∥2Hm+1(Ω) + h2∥p∥2 + Cν−1/4∥f∥1/2−1 TOL
1/2(max |∆|)1/4∥p∥2.

Remark 3.2.6. If Xh has a divergence free subspace with good approximation properties,

the first term of the RHS of the estimate in Theorem 3.2.5 vanishes.

Proof. As a(u, u, vh) =
∑

∆ LocTol
−1
∆

∫
∆
|∇·u|2∇·u∇·vh dx and∇·u = 0, so a(u, u, vh) = 0.

From (53), adding a(u, u, v) to the left-hand-side :

ν(∇u,∇v)− (p,∇ · v) + a(u, u, v) = (f, v), ∀ v ∈ X.

Subtract (52) and let v = vh:

ν(∇(u− uhϵ ),∇vh) + a(u, u, vh)− a(uhϵ , uhϵ , vh) = (p,∇ · vh).
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Denote e = u − uhϵ , let ∀ ũ ∈ Xh, η = u − ũ and ϕh = uhϵ − ũ, then e = η − ϕh, the error

equation becomes:

ν(∇η,∇vh) + a(u, u, vh)− a(ũ, ũ, vh)

= ν(∇ϕh,∇vh) + a(uhϵ , u
h
ϵ , v

h)− a(ũ, ũ, vh) + (p,∇ · vh),

Letting vh = ϕh, the error equation becomes:

ν(∇ϕh,∇ϕh)+a(uhϵ , u
h
ϵ , ϕ

h)−a(ũ, ũ, ϕh) = ν(∇η,∇ϕh)+a(u, u, ϕh)−a(ũ, ũ, ϕh)−(p,∇·ϕh).

Apply Strong Monotonicity (21) to a(uhϵ , u
h
ϵ , ϕ

h)− a(ũ, ũ, ϕh):

a(uhϵ , u
h
ϵ , ϕ

h)− a(ũ, ũ, ϕh)

=
∑
∆

1

LocTol∆

∫
∆

(|∇ · uhϵ |2∇ · uhϵ − |∇ · ũ|2∇ · ũ)∇ · (uhϵ − ũ) dx

≥
∑
∆

1

LocTol∆
C1

∫
∆

|∇ · (uhϵ − ũ)|4 dx.

Apply Local Lipschitz continuity (22) to a(u, u, ϕh)− a(ũ, ũ, ϕh):

a(u, u, ϕh)− a(ũ, ũ, ϕh)

=
∑
∆

1

LocTol∆

∫
∆

(|∇ · u|2∇ · u− |∇ · ũ|2∇ · ũ)∇ · ϕh dx

≤
∑
∆

1

LocTol∆
C2r

2
∆

(∫
∆

|∇ · (u− ũ)|4 dx
)1/4(∫

∆

|∇ · ϕh|4
)1/4

where r∆ = max{∥∇ · u∥L4(∆), ∥∇ · ũ∥L4(∆)} = ∥∇ · ũ∥L4(∆).

Then the error equation becomes

ν∥∇ϕh∥2 +
∑
∆

C1

LocTol∆
∥∇ · ϕh∥4L4(∆) ≤ ν(∇η,∇ϕh)

+
∑
∆

C2r
2
∆

LocTol∆
∥∇ · η∥L4(∆)∥∇ · ϕh∥L4(∆) − (p,∇ · ϕh).
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Apply Hölder’s and Young’s inequality (15) with p = 4, q = 4/3:

ν∥∇ϕh∥2 +
∑
∆

C1

LocTol∆
∥∇ · ϕh∥4L4(∆)

≤ ν

2
∥∇η∥2 + ν

2
∥∇ϕh∥2 − (p,∇ · ϕh)

+
∑
∆

(
C

1/4
1

LocTol
1/4
∆

∥∇ · ϕh∥L4(∆)

)(
C2r

2
∆

C
1/4
1 LocTol

3/4
∆

∥∇ · η∥L4(∆)

)
≤ ν

2
∥∇η∥2 + ν

2
∥∇ϕh∥2 − (p,∇ · ϕh)

+

(∑
∆

C1

LocTol∆
∥∇ · ϕh∥4L4(∆)

)1/4(∑
∆

C
4/3
2 r

8/3
∆

C
1/3
1 LocTol∆

∥∇ · η∥4/3L4(∆)

)3/4

≤ ν

2
∥∇η∥2 + ν

2
∥∇ϕh∥2 − (p,∇ · ϕh)

+
δ

4

(∑
∆

C1

LocTol∆
∥∇ · ϕh∥4L4(∆)

)1

+
δ−1/3

4/3

(∑
∆

C
4/3
2 r

8/3
∆

C
1/3
1 LocTol∆

∥∇ · η∥4/3L4(∆)

)1

.

Letting δ = 2 and combining similar terms gives

ν

2
∥∇ϕh∥2 + 1

2

∑
∆

C1

LocTol∆
∥∇ · ϕh∥4L4(∆)

≤ ν

2
∥∇η∥2 + 3

4 3
√
2

∑
∆

C
4/3
2 r

8/3
∆

C
1/3
1 LocTol∆

∥∇ · η∥4/3L4(∆) − (p,∇ · ϕh).

Consider the last term of the error equation inspired by the proof of Falk [20]:

(p,∇ · ϕh) = (p,∇ · (uhϵ − ũ))

= (p,∇ · uhϵ ) + (p,∇ · (u− ũ))

≤
∑
∆

∫
∆

p∇ · uhϵ dx+
h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2

≤
∑
∆

∫
∆

1

LocTol
1/4
∆

|∇ · uhϵ |LocTol
1/4
∆ |p| dx+

h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2

≤
∑
∆

(∫
∆

1

LocTol∆
|∇ · uhϵ |4 dx

)1/4(∫
∆

LocTol
1/3
∆ |p|

4/3 dx

)3/4

+
h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2
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≤

(∑
∆

∫
∆

1

LocTol∆
|∇ · uhϵ |4 dx

)1/4(∑
∆

∫
∆

LocTol
1/3
∆ |p|

4/3 dx

)3/4

+
h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2

≤

(∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4L4(∆)

)1/4(∑
∆

(∫
∆

LocTol1∆

)1/3(∫
∆

|p|2
)2/3

)3/4

+
h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2

≤

(∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4L4(∆)

)1/4
(∑

∆

∫
∆

LocTol∆

)1/3(∑
∆

∫
∆

|p|2
)2/3

3/4

+
h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2

=

(∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4L4(∆)

)1/4(∑
∆

|∆|LocTol∆

)1/4

∥p∥+ h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2.

By the stability bound,

ν

2
∥∇uhϵ ∥2 +

∑
∆

1

LocTol∆
∥∇ · uhϵ ∥4L4(∆) ≤

1

2ν
∥f∥2−1.

Thus,

(p,∇ · ϕh) ≤ Cν−1/4∥f∥1/2−1

(∑
∆

|∆|LocTol∆

)1/4

∥p∥+ h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2.

Plug back to the error equation:

ν

2
∥∇ϕh∥2 +

∑
∆

C1

2LocTol∆
∥∇ · ϕh∥4L4(∆) ≤

ν

2
∥∇η∥2 +

∑
∆

3C
4/3
2 r

8/3
∆

4 3
√
2C

1/3
1 LocTol∆

∥∇ · η∥4/3L4(∆)

+Cν−1/4∥f∥1/2−1

(∑
∆

|∆|LocTol∆

)1/4

∥p∥+ h2

2
∥p∥2 + 1

2h2
∥∇ · η∥2,

where (∑
∆

|∆|LocTol∆

)1/4

:=

(∑
∆

|∆|1
2

TOL2

|Ω|
|∆|

)1/4

=

(
TOL2

2|Ω|
∑
∆

|∆|2
)1/4

≤ TOL1/2

21/4

(
1

|Ω|
max |∆|

∑
∆

|∆|

)1/4

= TOL1/2

(
max |∆|

2

)1/4

.
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Apply triangle inequality: ∥e∥ ≤ ∥η∥+ ∥ϕh∥

ν∥∇e∥2 +
∑
∆

C1

LocTol∆
∥∇ · e∥4L4(∆) ≤ inf

vh∈Xh

{
ν∥∇(u− vh)∥2 + h−2∥∇ · (u− vh)∥2

+C(C1, C2)
∑
∆

LocTol−1
∆

(
r
8/3
∆ ∥∇ · (u− v

h)∥4/3L4(∆) + ∥∇ · (u− v
h)∥4L4(∆)

)}
+h2∥p∥2 + Cν−1/4∥f∥1/2−1 TOL

1/2(max |∆|)1/4∥p∥2,

where∑
∆

LocTol−1
∆ r

8/3
∆ ∥∇ · (u− v

h)∥4/3L4(∆) =
∑
∆

LocTol−1
∆ ∥∇ · v

h∥8/3L4(∆)∥∇ · (u− v
h)∥4/3L4(∆)

=
∑
∆

LocTol−1
∆ ∥∇ · (u− v

h)∥4L4(∆).

The error satisfies

ν∥∇e∥2 +
∑
∆

C1

LocTol∆
∥∇ · e∥4L4(∆) ≤ inf

vh∈Xh

{
ν∥∇(u− vh)∥2 + h−2∥∇ · (u− vh)∥2

+C(C1, C2)
∑
∆

LocTol−1
∆ ∥∇ · (u− v

h)∥4L4(∆)

}
+ h2∥p∥2 + Cν−1/4∥f∥1/2−1 TOL

1/2(max |∆|)1/4∥p∥2.

As ∥∇ · (u− vh)∥ ≤ ∥∇(u− vh)∥,

ν∥∇e∥2 +
∑
∆

C1

LocTol∆
∥∇ · e∥4L4(∆) ≤ inf

vh∈Xh

{
C(ν)(1 + h−2)∥∇(u− vh)∥2

+C(C1, C2)
∑
∆

LocTol−1
∆ ∥∇ · (u− v

h)∥4L4(∆)

}
+ h2∥p∥2 + Cν−1/4∥f∥1/2−1 TOL

1/2(max |∆|)1/4∥p∥2.

Using the approximation properties (10) of the spaces Xh

ν∥∇e∥2 +
∑
∆

C1

LocTol∆
∥∇ · e∥4L4(∆) ≤ inf

vh∈Xh
C(C1, C2)

∑
∆

LocTol−1
∆ ∥∇ · (u− v

h)∥4L4(∆)

+C(ν)h2m−2∥u∥2Hm+1(Ω) + h2∥p∥2 ++Cν−1/4∥f∥1/2−1 TOL
1/2(max |∆|)1/4∥p∥2.
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3.3 Algorithm

This section presents the algorithms to implement the elementwise variable ϵ elementwise

penalty (EP) method (50) introduced in Section 3.1.2. The following Algorithm 5 is for

Stokes problem.

Algorithm 5: Elementwise variable ϵ penalty (EP) method for Stokes

Given tolerance TOL, epsilon lower bound LowerEps and mesh T , MaxIter=10

Compute on each element triangle LocTol∆ = 1
2
TOL2

|Ω| |∆|

Set ϵ∆ = 1

Solve for uh using penalty method: find uh ∈ Xh such that

ν(∇uhϵ ,∇vh) +
∑
∆

∫
∆

ϵ−1
∆ ∇ · u

h
ϵ∇ · vh dx = (f, vh) ∀vh ∈ Xh

while iteration ≤ MaxIter and retry=true do
Loop over all triangle elements ∆ ∈ T

Compute estimator for each triangle

est∆ =

∫
∆

|∇ · uhϵ |2 dx

if est∆ > LocTol∆ then

r = LocTol∆
est∆

;

ϵ∆ ← max(LowerEps, r × ϵ∆);

retry=true;

end

REPEAT step;

end

Recover pressure p if needed

p∆ = − 1

ϵ∆
∇ · uhϵ

Remark 3.3.1. We need to set a maximum number of iterations MaxIter in the loop to

avoid the program running infinitely. However, this may lead to the situation that est∆ ≥
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LocTol∆ local tolerance is not satisfied. However, our ultimate goal is ∥∇ · uh∥ < TOL no

matter whether local tolerance is satisfied or not.

We also want to test the elementwise variable ϵ penalty method on the unsteady Navier-

Stokes equation. For time-dependent problem (44), there are two options:

1. use ∥∇ · uhϵ ∥∆ from the previous time step, adjust ϵ and do not repeat the current time-

step,

2. for each time-step, repeat using ϵnew and loop until tolerance or maximum iteration is

reached.

Since this is a new algorithm, we do not know which is better. We still need to do further

research, and Algorithm 6 follows.
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Algorithm 6: Elementwise variable ϵ penalty (EP) method for Navier-Stokes

Given tolerance TOL, epsilon lower bound LowerEps and mesh T h, final time Tfinal,

time-step ∆t, initial condition u0(x)

Compute on each element triangle LocTol∆ = 1
2
TOL2

|Ω| |∆|

Set ϵ∆,1 = 1, t0 = 0;

while t < Tfinal do
Update tn+1 = tn +∆t;

Given uhϵ,n, solve for uhϵ,n+1 using penalty method: find uhϵ,n+1 ∈ Xh such that

(
uhϵ,n+1 − uhϵ,n

∆t
, vh) + (uhϵ,n · ∇uhϵ,n+1, v

h) +
1

2

(
(∇ · uhϵ,n)uhϵ,n+1, v

h
)
+ ν(∇uhϵ,n+1,∇vh)

+
∑
∆

∫
∆

ϵ−1
∆,n+1∇ · u

h
ϵ,n+1∇ · vh dx = (fn+1, vh) ∀vh ∈ Xh

Loop over all triangle elements ∆ ∈ T h

Compute estimator for each triangle

est∆ =

∫
∆

|∇ · uhϵ,n+1|2 dx

Update ϵ∆:

r =
LocTol∆
est∆

,

ϵ∆,n+2 ← max(LowerEps, r × ϵ∆,n+1),

retry = false;

Recover pressure p if needed

p∆,n+1 = −
1

ϵ∆,n+1

∇ · uhϵ,n+1.

end
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3.4 Numerical Tests

In the following numerical tests Section 3.4.1 and Section 3.4.2, the problems are tested

using both elementwise penalty algorithm (Algorithm 5) and also this following coupled

system: find uh ∈ Xh, ph ∈ Qh such that

ν(∇uh,∇vh)− (ph,∇ · vh) = (f, vh) ∀vh ∈ Xh,

(∇ · uh, qh) = 0 ∀qh ∈ Qh.
(54)

3.4.1 Test 1: An exact solution problem, taken from Burman and Hansbo [12]

This model problem is constructed to test the convergence rate. The analytic solution is

given below

u(x, y) = 20xy3, v(x, y) = 5x4 − 5y4, p(x, y) = 60x2y − 20y3 − 5. (55)

on Ω = (0, 1)× (0, 1). Inserting (55) into Stokes equations (46) with Re = 100 recovers the

body force f .

In this test, take ϵ lower bound LowerEps = 10−8, global tolerance TOL = 10−5 and

LocTol∆ = 1
2
TOL2

|Ω| |∆| ≈ 1.5625 × 10−11 for the case of 40 mesh points on each side. From

Table 7 with 40 mesh points per side: ∥∇·uh∥2 = 5.49293×10−6 < TOL, the global tolerance

condition satisfied using elementwise penalty. However from Figure 17(b): max ∥∇ · uh∥2∆ ≈

1.15× 10−5|∆| ≈ 3.59× 10−9 > LocTol, the local condition does not satisfy but is very close

to the local tolerance.

Table 4, Table 5 and Table 6 present the numerical errors of Test 1 of comparison between

coupled system (54) and elementwise penalty method (Algorithm 5). The convergence rate

of the elementwise penalty is also presented in the fourth column.
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(a) Coupled Stokes problem, the scale is about
10−1

(b) Elementwise penalty method (Algorithm1) for
Stokes problem, the scale is about 10−3

Figure 15: |∇ · uh|2∆/|∆| with 10 mesh points on each side

(a) Coupled Stokes problem, the scale is about
10−3

(b) Elementwise penalty method (Algorithm1) for
Stokes problem, the scale is about 10−4

Figure 16: |∇ · uh|2∆/|∆| with 20 mesh points on each side

70



(a) Coupled Stokes problem, the scale is about
10−5

(b) Elementwise penalty method (Algorithm1) for
Stokes problem, the scale is about 10−6

Figure 17: |∇ · uh|2∆/|∆| with 40 mesh points on each side

# mesh points on each side coupled ∥u− uh∥L2 penalty ∥u− uh∥L2 rate

10 0.00520688 0.00528456 -

20 0.000327941 0.00132306 1.99790

40 2.05561e-05 0.000340571 1.95785

Table 4: numerical error ∥u−uh∥L2 and convergence rate of elementwise penalty (compared

with coupled system (54))

3.4.2 Test 2: Flow between offset cylinders, taken from Layton and McLaughlin

[48]

This test is to test Algorithm 5 on a more complex flow problem and also a comparison

between the coupled system and elementwise penalty scheme.

The domain is a disk with a smaller off-center disk inside. Let r1 = 1, r2 = 0.1, c1 = 0.5
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# mesh points on each side coupled ∥∇(u− uh)∥L2 penalty ∥∇(u− uh)∥L2 rate

10 0.384253 0.433158 -

20 0.0494622 0.21608 1.00333

40 0.0062691 0.107975 1.00087

Table 5: numerical error ∥∇(u− uh)∥L2 and convergence rate of elementwise penalty (com-

pared with coupled system (54))

# mesh points on each side coupled ∥∇ · (u− uh)∥2L4 penalty ∥∇ · (u− uh)∥2L4 rate

10 0.186365 0.00049467 -

20 0.00302458 3.12998e-05 3.98224

40 4.81016e-05 1.96239e-06 3.99547

Table 6: numerical error ∥∇ · (u − uh)∥2L4 and convergence rate of elementwise penalty

(compared with coupled system (54))

# mesh points on each side coupled ∥∇ · uh∥2 penalty ∥∇ · uh∥2

10 0.135344 0.00140525

20 0.002331 8.78752e-05

40 4.23739e-05 5.49293e-06

Table 7: ∥∇ · uh∥2 numerical result of Test 1

and c2 = 0, the domain is given by

Ω = {(x, y) : x2 + y2 ≤ r21 and (x− c1)2 + (y − c2)2 ≥ r22}.

We take Re=100 and the body force is given by

f(x, y) = (−4y(1− x2 − y2), 4x(1− x2 − y2)).
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In this test, ϵ lower bound LowerEps = 10−10 and global tolerance TOL = 10−6. There

are 60 mesh points on the outer circle and 30 mesh points on the inner circle. The mesh is

denser near the inner circle. And for this mesh the shortest edge of all triangles is minehe =

0.0220132 and the longest edge maxehe = 0.141732. The smallest area of element triangle

min∆|∆| = 0.000166354 and the largest area of triangle max∆|∆| = 0.00528893. The local

tolerance LocTol∆ = 1
2
TOL2

|Ω| |∆| ranges from 10−16 to 10−17.

In this test, from Table 8: ∥∇ · uh∥2 = 1.01872× 10−19 < TOL2 and from Figure 18(b):

max ∥∇ · uh∥2∆ ≈ 8.59 × 10−17|∆| ≈ 10−20 < LocTol∆. Here local condition and global

condition are both satisfied.

method ∥∇ · uh∥2

coupled 0.255675

elementwise penalty 1.01872e-19

Table 8: numerical result ∥∇ · uh∥2 of Test 2 Stokes problem

In the test using elementwise penalty (Algorithm 5) at final iteration, ϵmax = 2.92232 ∗

10−8 and ϵmin = 10−10.

From Figure 18, the incompressibility condition is satisfied for the penalty method. For

the coupled system max ∥∇ · uh∥2∆/|∆| ≈ 30.08 which does not satisfy the incompressibility

condition.

From the velocity plot Figure 19, the coupled system and elementwise penalty system

have similar results. But the elementwise penalty method has far smaller ∥∇ · uh∥2 values.

3.4.3 Test3. Comparison test between constant penalty and elementwise penalty

see Layton and Xu [52]

In this test, we verify the adaptive elementwise penalty method (Algorithm 5) does better

than normal constant penalty method by comparison Algorithm 1 with constant ϵ = 10−8ν

for all elements. Here constant ϵ = 10−8ν is usually the approach used by engineering papers.

This comparison test problem is solved by using P1, conforming linear elements. Let the
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(a) Coupled Stokes problem (b) Elementwise penalty method (Algorithm 5) for
Stokes problem

Figure 18: ∥∇·uh∥2∆/|∆| of Test 2, comparison between coupled (54) and elementwise penalty

system (Algorithm 5) (Note the scale in two plots are different. Coupled Stokes problem

max∆ ∥∇ · uh∥2∆ = O(102), elementwise penalty method max∆ ∥∇ · uh∥2∆ = O(10−17))

body force,

f(x, y) = (sin(x+ y), cos(x+ y))T ,

on Ω = (0, 1) × (0, 1). In this test, Re = 1, global tolerance TOL = 10−6 and there are 40

mesh points on each side. The test results are shown in Table 9.

From Table 9, constant penalty ϵ = 10−8 is a ill conditioned linear system while elemen-

twise penalty with average ϵ = 6.3× 10−4 leads to a much better conditioned system. And

∥∇ · uh∥2 of adaptive elementwise penalty is smaller than constant penalty, thus adaptive

elementwise penalty controls ∥∇ · u∥ better than constant penalty method.
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(a) Coupled Stokes problem (b) Elementwise penalty method (Algorithm1) for
Stokes problem

Figure 19: velocity plot of Test 2, comparison between coupled (54) and elementwise penalty

system (Algorithm 5)

constant penalty ϵ = 10−8 elementwise penalty (Algorithm 5)

∥∇ · uh∥2 7.20178e-17 3.7741e-19

average ϵ 1e-8 0.000629366

Table 9: comparison of ∥∇ · uh∥2 and average value of ϵ between constant penalty and

elementwise penalty (Algorithm 1)

3.4.4 Test4: Flow around a cylinder, see Ingram [33], John, Matthies and Rang

[40]

This section is an extension of the elementwise penalty method test on the nonlinear

Navier-Stokes equation (Algorithm 6). Even though the local condition is only partially

satisfied in this test, the global condition is satisfied and well controlled.

The domain Ω is a [0, 2.2]× [0, 0.41] rectangle. The cylinder S centered at (0.2, 0.2) with
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the diameter 0.1 units. The external force f = 0, the final time is T = 8 and the prescribed

viscosity ν = 10−3. The flow has boundary conditions:

u(x, 0, t) = u(x, 0.41, t) = u|∂ΩS
= (0, 0)T , 0 ≤ x ≤ 2.2,

u(0, y, t) = u(2.2, y, t) = 0.41−2 sin(πt/8)(6y(0.41− y), 0)T , 0 ≤ y ≤ 0.41.

The mean inflow velocity is U(t) = sin(πt/8) such that Umax = 1.

Let the initial condition satisfy the steady Stokes problem. The following results using

P3 finite element space for velocity. The number of degrees of freedom of velocity is 5091.

The mesh is denser near cylinder S, and for this mesh, the shortest edge of all triangles is

minehe = 0.0101291 and the longest edge maxehe = 0.154404. The smallest area of element

triangle min∆|∆| = 3.46846× 10−5 and the largest area of triangle max∆|∆| = 0.00773693.

In this test, ϵ lower bound LowerEps = 10−10 and global tolerance TOL = 10−5. The local

tolerance LocTol∆ = 1
2
TOL2

|Ω| |∆| ranges from 10−13 to 10−15. Figure 20 is the speed-profile at

T = 2, 4, 5, 6, 7, 8 for flow with Re=1000. We can see the vortex shedding off the back of the

cylinder in the test result.

Figure 21 is the plot of ∥∇ · uh∥2 throughout the whole time interval. The red curve

(Algorithm 6 with step repeated) has smaller ∥∇ · uh∥2 values than the blue curve (without

repeating the step). Both global ∥∇ · u∥ values are well controlled.

In order to check the local condition, we look at the elementwise value |∇ · uh|2∆/|∆|

at the final time T=8. From Figure 22(a) without repeating the step: max ∥∇ · uh∥2∆ ≈

3 × 10−8|∆| ≈ 10−11 slightly larger than the local tolerance LocTol∆. From Figure 22(b)

with step repeated: max ∥∇ · uh∥2∆ ≈ 5× 10−11|∆| ≈ 10−14 satisfies the local tolerance. For

Algorithm 6 with step repeated, the global and local ∥∇ · uh∥ values are smaller but need

more computing time compared with Algorithm 6 without retry. For Algorithm 6 without

repeating the step, the overall result is satisfying even though the local conditions are only

partially satisfied.

76



Figure 20: magnitude of velocity field at T = 2, 4, 5, 6, 7, 8 of Test 4 Algorithm 6 for NSE,

∆t = 0.005

3.4.4.1 Comparison with constant penalty methods

This section compares Elementwise adaptive penalty (EP) method for the NSE with 1)

constant ϵ = 10−8ν and 2) constant ϵ = k penalty methods using the same flow around a
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Figure 21: Plot of ∥∇ · uh∥2 from T=0 to T=8

cylinder test.

The characteristic values of the flow are the drag coefficient cd(t), the lift coefficient cl(t)

at the cylinder, and the difference of the pressure between the front and the back of the

cylinder at the final time. These coefficients can be computed by

cd(t) = −20[(ut, vd) + ν(∇u,∇vd) + ((u · ∇)u, vd)− (p,∇ · vd)],

cl(t) = −20[(ut, vl) + ν(∇u,∇vl) + ((u · ∇)u, vl)− (p,∇ · vl)],

∆p(T ) = p(0.15, 0.2, T )− p(0.25, 0.2, T ),

for any function vd ∈ (H1(Ω))2 with (vd)|S = (1, 0)T and vd vanishes on all other boundaries

and for any test function vl ∈ (H1(Ω))2 with (vl)|S = (0, 1)T and vl vanishes on all other

boundaries.
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(a) |∇ · uh|2∆/|∆| at Tfinal = 8 without repeating
the step (Algorithm 6), the scale is about 10−8 ∼
10−9

(b) |∇ · uh|2∆/|∆| at Tfinal = 8 with step repeated (Al-
gorithm 6 with retry), the scale is about 10−11 ∼ 10−12

Figure 22: result of Test 4 Algorithm 6 for NSE, ∆t = 0.005

According to [38], the reference values for this difference and the maximal values of the

drag and lift coefficient are given by:

t(cd,max) = 3.93625, cd,max = 2.950921575,

t(cl,max) = 5.693125, cl,max = 0.47795,

∆p(8) = −0.1116.

As in the calculation of drag, lift coefficients, pressure is also an important factor. Here we

used two different methods to recover the pressure: 1) by solving the system ∇·uh+ϵ∆ph = 0

and 2) by direct calculating ph = −1/ϵ∆(∇ · uh).

Figure 23 is the comparison of ∥∇·uh∥ using different penalty methods. ∥∇·uh∥ will not

change no matter which pressure recovery methods used. As in the plot, all three penalty

methods controlled ∥∇ · uh∥ well and constant ϵ = k has larger ∥∇ · uh∥ value than both

constant penalty ϵ = 10−8ν and Elementwise adaptive penalty method (Algorithm 6).
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Figure 23: Comparison of ∥∇ · uh∥ using Algorithm 6 and constant penalty methods

Figure 24 is the plot of drag and lift coefficients calculated by solving system ∇ · uh +

ϵ∆p
h = 0 and Figure 25 is the plot of drag and lift coefficients calculated by direct calculating

ph = −1/ϵ∆(∇ · uh). These two have similar results no matter which pressure recovery

methods used. In Figure 24 and Figure 25, constant ϵ = k and Elementwise adaptive

penalty method (Algorithm 6) have similar drag, lift coefficients. The lift coefficient of

constant ϵ = 10−8ν is very different from the other two penalty methods. And the reason

for that is still unknown.

Table 10 is the comparison of values ∆p(8) calculated using different penalty methods and

two different pressure recovery methods. As pressure recovery is still an unknown problem

in the penalty method, the results are all not good and far away from the reference value

∆p(8) = −0.1116. For the elementwise adaptive penalty method, pressures recovered by

both methods are positive, which could not reflect the pressure drop phenomena we should
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Figure 24: Comparison of drag and lift coefficients, pressure recovery by solving system

∇ · uh + ϵ∆p
h = 0

Figure 25: Comparison of drag and lift coefficients, pressure recovery by direct calculating

ph = −1/ϵ∆(∇ · uh)

observe in this test. The elementwise adaptive penalty method is not accurate in this test.
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pressure recovery constant ϵ = 10−8ν constant ϵ = k Elementwise adaptive penalty

method 1) -1.20012e-23 -2.86496e-06 2.18002e-11

method 2) -1.41875e-23 -3.79273e-06 1.89583e-11

Table 10: Comparison of ∆p(8), method 1) by solving system ∇ · uh + ϵ∆p
h = 0, method 2)

by direct calculating ph = −1/ϵ∆(∇ · uh)
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4.0 Conclusions and future perspectives

The first project presents a stability and error analysis for the adaptive ϵ penalty method.

Also, four different algorithms for both constant and variable time-step were introduced.

There remain open problems and algorithmic improvements possible in the future. In this

thesis, we introduced the adaptive ϵ scheme with a condition from stability analysis that

could ensure the stability of the result. It is unclear how sharp this bound is or if the

restriction (34) is necessary for all time-steps.

Further, rejecting and repeating steps to guarantee EST<TOL results in violating the

restriction (34). The problem has a different optimal ϵ value for different time-step. An

algorithm that adapts ϵ and k independently may be inferior to one that relates the step

size to the penalty parameter. However, there is no an obvious relation between ϵ and k, so

further research may be necessary to find a more efficient doubly adaptive algorithm. The

pressure recovered directly from the continuity equation, ∇ · u + ϵp = 0 (26) is not a good

estimate compared with the pressure from the coupled system. We can look into alternate

ways to recover the pressure, such as using the Pressure Poisson equation (PPE) see Kean

and Schneier [41].

We proposed a new variable ϵ penalty method starting from the Stokes problem in the

second project. We proved the stability and derived an error approximation of the new

pointwise penalty (PP) (52) on the Stokes problem. Furthermore, at the end we test the

algorithm on the Stokes problem and extend it to test the time-dependent nonlinear Navier-

Stokes problem using elementwise penalty (EP) (50). This is just the start of this new

scheme; there are plenty of improvements possible. Picking the right global tolerance TOL

and maximum iteration MaxIter is still a problem to consider. Algorithm 6 is new, and we

currently do not know if or not we need to repeat each time-step after setting the new ϵ.

We emphasize that our target is the 3d, time-dependent NSE problem for which the method

is implemented as Algorithm 6, without appreciable complexity increase over simple, linear

constant ϵ penalty methods.

In Chapter 2 and Chapter 3, we focused on the velocity and did not pay much attention
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to the accuracy of pressure. Pressure recovery is also a big problem to consider. In Kean and

Schneier [41], two different pressure recovery methods are introduced and analyzed. As for

the time-dependent problem, only constant time-step schemes are considered in this thesis.

To further optimize the algorithm, adding a time filter Guzel and Layton [26] and adapting

the time-step is also a promising research direction in the future. Both the stability and error

analysis is given based on the assumption that the grad-div term can be replaced by the

variational form (51). The numerical analysis based on assumption (49) (i.e. elementwise

penalty) is also an interesting problem. Also, other estimators for adjusting ∥∇ · u∥ can be

considered, e.g. ∥∇·u∥/∥u∥. And here we only develop the adaptive penalty methods based

on the Backward Euler method, other higher order time-discretization schemes can be used.

Penalty combined with ensemble [36, 35], sparse grad-div [51] or DLN [49, 50] are also some

possible directions in the future.
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[11] F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of
the Stokes equations. In Efficient solutions of elliptic systems, pages 11–19. Springer,
1984.

85



[12] E. Burman and P. Hansbo. Edge stabilization for the generalized Stokes problem:
a continuous interior penalty method. Computer Methods in Applied Mechanics and
Engineering, 195(19-22):2393–2410, 2006.

[13] M. A. Case, V. J. Ervin, A. Linke, and L. G. Rebholz. A connection between Scott–
Vogelius and grad-div stabilized Taylor–Hood FE approximations of the Navier–
Stokes equations. SIAM Journal on Numerical Analysis, 49(4):1461–1481, 2011.

[14] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of
computation, 22(104):745–762, 1968.

[15] A. J. Chorin. On the convergence of discrete approximations to the Navier-Stokes
equations. Mathematics of computation, 23(106):341–353, 1969.

[16] R. Courant. Variational methods for the solution of problems of equilibrium and
vibrations. Lecture notes in pure and applied mathematics, pages 1–23, 1943.

[17] V. DeCaria, W. Layton, and M. McLaughlin. A conservative, second order, uncondi-
tionally stable artificial compression method. Computer Methods in Applied Mechanics
and Engineering, 325:733 – 747, 2017.

[18] V. DeCaria, W. Layton, and H. Zhao. A time-accurate, adaptive discretization
for fluid flow problems. International Journal of Numerical Analysis and Modeling,
17(2):254–280, 2020.

[19] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Oxford University Press,
USA, 2014.

[20] R. S. Falk. A finite element method for the stationary Stokes equations using trial
functions which do not have to satisfy div v = 0. Mathematics of Computation,
30(136):698–702, 1976.

[21] J. A. Fiordilino. On pressure estimates for the Navier-Stokes equations, 2018.

[22] V. Girault and P. A. Raviart. Finite element methods for Navier-Stokes equations:
theory and algorithms, volume 5. Springer Science & Business Media, 2012.

86



[23] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un,
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Stokes. Bulletin de la Société Mathématique de France, 96:115–152, 1968.

[62] R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par
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