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On hyperbolic 3-orbifolds of small volume

Tyler Gaona, PhD

University of Pittsburgh, 2022

This thesis is concerned with hyperbolic 3-orbifolds of small volume. An n-orbifold is a

space which locally, i.e. in a neighborhood of any point, looks like a quotient of Euclidean

space Rn. We are interested in those spaces which may be equipped with hyperbolic geom-

etry, i.e. are locally modeled on the quotient Hn by a discrete subgroup of its isometries.

Following the work of Meyerhoff and Adams we classify minimal volume orbifolds with

one rigid and one nonrigid cusp.

We then discuss joint work with J. DeBlois, A. H. Ekanayake, M. Fincher, A. Gharago-

zlou, and P. Mondal on establishing a census of orbifolds commensurable with the figure

eight knot complement.
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1.0 Introduction

By Mostow Rigidity, each homeomorphism class of 3-orbifolds supports a unique hy-

perbolic metric. In this setting, geometric invariants of a hyperbolic 3-orbifold are also

topological invariants. The Thurston-Jørgenson theory (extended to the orbifold case by

Dunbar & Meyerhoff in [17]) may be summarized by the statement that the set of volumes

of complete hyperbolic 3-manifolds is well ordered of type ωω. In this thesis, we present re-

sults on the classification of hyperbolic 3-orbifolds in terms of increasing volume. Thurston

remarked in chapter 6 of [34] that “one gets a feeling that volume is a very good measure

of the complexity of a link complement”. We take this informal statement as the unifying

theme of this thesis.

Chapter two recalls the background necessary for the remainder of the work. We give a

brief account of hyperbolic space and its group of isometries. We give Thurston’s definition

of an orbifold in terms of an atlas of charts, and state a result about the structure of a 3-

orbifold’s singular locus. We then move on to the setting of complete hyperbolic 3-orbifolds,

which are realized as quotients of hyperbolic space by a discrete group of isometries (a

Kleinian group). We state a structure theorem for complete hyperbolic 3-orbifolds of finite

volume - the orbifold is the union of a compact part and a finite number of cusps. We then

discuss results relevant to the volumes of hyperbolic 3-orbifolds. In particular, we describe

Meyerhoff’s work [30] which uses a sphere packing result of Böröczky to obtain a lower

bound on the volume of a cusped hyperbolic 3-orbifold in terms of the volumes of its cusps.

An immediate corollary of this result is the classification of H3/PGL2(O3) as the minimal

volume cusped orientable hyperbolic 3-orbifold, where O3 denotes the ring of integers in the

number field Q(
√
−3).

Chapter three is devoted to the classification of the minimal volume orientable hyperbolic

3-orbifolds with one rigid cusp and one nonrigid cusp. We prove two results that fit into a

tradition in three dimensional hyperbolic geometry of classifying the least volume element of

some family of spaces. As we mentioned earlier, Meyerhoff proved H3/PGL2(O3) to be the

minimal volume orientable cusped hyperbolic 3-orbifold in [29]. Our work here continues a
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trail of thought investigated by Colin Adams, over a series of papers, which we now describe.

The cusp neighborhoods (see Definition 2.2.6) of an orbifold lift to H3 as a collection

of horoballs. By studying the horoball packing in H3, one can obtain information about

the volume of the cusp, hence about the volume of the orbifold. In [1], Adams uses an

argument about the density of circle packings in the plane to prove that the volume of a

cusp in a finite volume hyperbolic 3-manifold is at least
√

3/2. He uses this to prove that

the Gieseking manifold, which is double covered by the figure eight knot complement, has

minimum volume among all (orientable or not) cusped hyperbolic 3-manifolds. In [3], Adams

makes a detailed analysis of the horoball diagrams which correspond to a rigid cusp in an

orbifold and classifies the six noncompact orbifolds of least volume. In [4], Adams extends

his results to the setting of multiple cusps. He proves that an orbifold with more than one

cusp, at least one of which is nonrigid, has volume at least 7v0/12. Here, v0 ≈ 1.01494146 is

the volume of a regular ideal tetrahedron in H3.

In section 3.1, we construct examples O(6,3,2) and O(4,4,2) of orbifolds with one nonrigid

cusp and one rigid cusp of type (6, 3, 2) and (4, 4, 2) respectively. The corresponding Kleinian

groups are generated by rotations in the edges of polyhedra in H3. We also prove

Theorem 3.1. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (3, 3, 3). Then vol(O) > v0.

We make a conjecture about the minimal orbifold with one nonrigid and one (3, 3, 3)-

cusp. We expect this conjecture can be proven using the tools developed in sections 3.2 -

3.5

We have the following improvements on Adams’ bound of 7v0/12.

Theorem 3.2. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (6, 3, 2). Then either O = O(6,3,2) or vol(O) > 5v0/6.

Theorem 3.3. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (4, 4, 2). Then either O = O(4,4,2) or vol(O) > v1,

where v1 ≈ 0.91596544 . . . is the volume of an ideal tetrahedron with dihedral angles π/4, π/4,

and π/2.

Section 3.2 collects a variety of results which are used repeatedly in the proofs of the above

2



theorems. Section 3.3 gives a general overview of the classification argument, independent of

the type of the rigid cusp. The remainder of the chapter is devoted to the proofs of Theorems

3.2 and 3.3.

Chapter four focuses on mapping out the category C3 of orbifolds commensurable (that

share a common finite degree covering space) with H3/PGL2(O3), by enumerating such orb-

ifolds and determining the covering relations between them. The practice of enumerating

objects in 3-dimensional topology has a long history. For those interested in hyperbolic geom-

etry or knot diagrams, the most famous example is probably the SnapPea census [9] of cusped

hyperbolic 3-manifolds with a geometric ideal triangulation with at most 9 tetrahedra. This

project’s most direct inspiration comes from the work of Fominkyh, Garoufalidis, Goerner,

Tarkaev, and Vesnin [19], in which they construct a census of hyperbolic 3-manifolds which

can be decomposed into regular ideal tetrahedra.

The figure eight knot complement (see example 4.3.3), along with its “sister”, is the

minimal volume orientable cusped hyperbolic 3-manifold [12]. Thurston showed how it may

be obtained by face pairing on two regular ideal tetrahedra in H3. It is a 24-fold cover

of H3/PGL2(O3) (since this orbifold is the quotient of a regular ideal tetrahedron by its

orientation preserving symmetry group). Since commensurability is an equivalence relation,

this links up our census with that of [19].

Chapter four begins with a broad overview of the steps involved in describing the cate-

gory C3. We focus on those elements whose volume is at most 4v0, where v0 ≈ 1.01494146

is the volume of a regular ideal tetrahedron. A key step is describing the subcategory

Cmain whose objects are the orbifolds which cover H3/PGL2(O3). Any orbifold which covers

H3/PGL2(O3) is triangulated by copies of a certain tetrahedron which is a fundamental

domain for the action of PGL2(O3) on H3. In section 4.2 we adapt an algorithm of [19] to

enumerate these triangulations. In section 4.3 we describe algorithms for computing geo-

metric data, namely the cusps and singular locus, of such an orbifold from its triangulation.

Some of the interesting structure of C3 arises from the fact that H3/PGL2(O3) is arith-

metic. Margulis’ arithmeticity criterion implies that there are infinitely many minimal ele-

ments, in the sense that they cover no other orientable orbifold, in C3. We close this chapter

by describing how one may find the other minimal elements in C3, as well as how to identify

3



their canonical covers in Cmain.

The background material in chapter two is either well known or a relatively easy exer-

cise. General references are given at the end of each section. The results of section 3.2, with

the exception of Proposition 3.2.1, are either stated in Adams’ work or would have been no

surprise to him. The remainder of this chapter is original, with the caveat that some details

are fairly direct applications of Adams’ tools. Estimating the volume of a cusp’s Voronoi

cell is novel to the best of our knowledge. The project of chapter four is a joint work with

my advisor Jason DeBlois, my fellow students Anuradha Ekanayake, Arshia Gharagozlou,

Mark Fincher, and recently minted Ph.D. Priyadip Mondal. The enumeration algorithm 1

is adapted from [19]. In section 4.2, we describe the nontrivial aspects of porting the algo-

rithm to our setting. Using ideas and code of Mathias Goerner [22], we wrote a concurrent

implementation of the algorithm to improve its performance. The remaining algorithms in

this section are original. The theorems of section 4.4 are due to my advisor’s reading of [26]

and [6].
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2.0 Background in Hyperbolic Geometry

In this chapter we give a brief summary of hyperbolic space and its isometries. We recall

some general theory of orbifolds, before focusing on complete hyperbolic 3-orbifolds and

their cusps. Finally we discuss some results relevant to the volumes of cusped hyperbolic

3-orbifolds.

2.1 Hyperbolic Geometry

The origins of hyperbolic geometry lie in attempts to prove Euclid’s parallel postulate

from his first four postulates. Many great mathematicians since antiquity have failed at this

task, and it wasn’t until the 19th century that J. Bolyai and N. I. Lobachevsky examined

the consequences of an alternative parallel postulate and found the resulting geometry to be

consistent. The modern point of view erects hyperbolic geometry upon the foundations laid

by Riemann. In this thesis, we adopt this point of view, if only for reasons of economy. The

reader who is interested in investigating hyperbolic geometry from the axiomatic perspective

is encouraged to consult [32] or [15]

Let Hn be a complete, simply connected Riemannian n-manifold with constant sectional

curvature equal to −1. It is a theorem of Killing and Hopf that such a manifold is unique up

to isometry (see Theorem 12.4 of [25]). One representative of this isometry class is Poincaré’s

upper half space model

Hn = {(x1, . . . , xn−1, t) ∈ Rn | t > 0}

with Riemannian metric given in global coordinates by

ds2 =
dx21 + . . .+ dx2n−1 + dt2

t2

There are other useful models of hyperbolic space and one may consult [11] for a nice account

of them, but in this thesis we work exclusively in upper half space, and when we refer to Hn

5



we mean this model. A nice feature of this model is that is conformal, i.e. the metric is a

pointwise rescaling of the Euclidean metric. Therefore angles between vectors in Hn are just

Euclidean angles.

We will mostly concern ourselves with H3. The geodesics of H3 are Euclidean lines and

semicircles orthogonal to R2×{0}. Hyperbolic space has an intrinsic notion of a boundary, or

sphere at infinity. Define an equivalence relation on (oriented, parametrized by arclength s)

geodesics by declaring two geodesics to be equivalent if they remain within bounded distance

of each other as s→∞. Such an equivalence class is called an asymptotic pencil of geodesics,

and each asymptotic pencil determines an ideal point on ∂H3. In the upper half space model,

we can just think of ∂H3 as the set of “endpoints” of geodesics, namely C∪ {∞}. Here C is

R2×{0} and visually we think of∞ as being the “endpoint” of the vertical geodesics which

is not contained in C.

The totally geodesic subspaces of H3 are Euclidean planes and hemispheres orthogonal

to C. We refer to these as planes in H3, as they are isometric to H2.

By analogy with Euclidean geometry, one might expect that the isometries of hyperbolic

space can be generated by “reflections” in its planes. This is true if we take reflection in a

plane to mean reflection in vertical half planes and inversion in Euclidean hemispheres. For

a fixed Euclidean sphere of radius r centered at C, the inverse of a point P 6= C is defined

to be the point P ′ on the ray
−→
CP which satisfies

|CP ||CP ′| = r2.

From this definition, one sees that inversion in the unit hemisphere is given by the map

x 7→ x

|x|2
.

For the general sphere S(a, r) centered at a ∈ Rn of radius r, conjugating inversion in the

unit hemisphere by the composition of translation and dilation which sends S(a, r) onto

S(0, 1), we see that inversion in S(a, r) is given by

x 7→ a+ r2
x− a
|x− a|2

.

6



Since reflection in a vertical half plane is a Euclidean isometry which preserves the t-

coordinate of (x, t) ∈ Hn, it preserves the hyperbolic metric and hence is a hyperbolic

isometry.

Lemma 2.1.1. Inversion in the sphere S(a, r) is an isometry of Hn

Proof. Let σ denote inversion in S(a, r) and let x, y ∈ Hn. Here |y − x| is the Euclidean

distance between x and y. Using the identity |x|2 = 〈x, x〉, we have

|y − x|2 = |(y − a) + (a− x)|2 = |y − a|2 − 2〈y − a, x− a〉+ |x− a|2

and

|σ(y)− σ(x)|2 = r4
(

1

|y − a|2
− 2
〈y − a, x− a〉
|x− a|2|y − a|2

+
1

|x− a|2

)
Therefore

|σ(y)− σ(x)|2 = r4
|y − x|2

|x− a|2|y − a|2

Since an+1 = 0, we have

σ(x)n+1 = an+1 + r2
(x− a)n+1

|x− a|2
= r2

xn+1

|x− a|2

and we compute

|σ(y)− σ(x)|2

σ(x)n+1σ(y)n+1

=

r4|x−y|2
|x−a|2|y−a|2

r2xn+1·r2yn+1

|x−a|2|y−a|2
=
|x− y|2

xn+1yn+1

It follows that σ preserves the metric on Hn.

Define the group of Möbius transformations on Rn as the group M(Rn) generated by

reflections in planes or spheres. The restriction of any σ ∈M(Rn) maps Hn to itself, and we

have just proven that M(Rn) ⊂ Isom(Hn). Let M+(Rn) ≤ M(Rn) denote the subgroup of

Möbius transformations which can be written as the product of an even number of reflections.

Then M+(Rn) acts on Hn by orientation preserving isometries. Conversely, any orientation

preserving isometry of Hn is in M+(Rn) (compare pg. 10 of [27] or 7.4 of [5]).

Example 2.1.1. We may recognize some familiar transformations as Möbius transforma-

tions and hence as isometries of hyperbolic space.
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• For a vector v ∈ Rn−1×{0}, the translation x 7→ x+ v is a product of reflections in two

vertical half planes.

• Inversion in the sphere S(a, 1) followed by inversion in S(a, r) is the dilation x 7→ r2x.

• The product of reflections in two vertical half planes which intersect with a dihedral

angle of θ is a rotation about the axis defined by the intersection of the planes through

an angle of 2θ.

The orientation preserving Möbius transformations on R3 which preserve H3 may be

identified with the group of fractional linear transformations acting on C ∪∞. This is the

set of all maps of the form

z 7→ az + b

cz + d
where a, b, c, d ∈ C and ad− bc 6= 0

The Poincaré extension for φ ∈ M(R2) is defined as follows. It relies on the embedding

ι : R2 → R3 defined by ι(x, y) = (x, y, 0). Reflection in a line l in R2 extends to reflection

in the vertical half plane above the line ι(l). Inversion in a circle centered at C of radius r

extends to inversion in the hemisphere centered at ι(C) of radius r. The extension of φ is the

product of the extensions of its constituent reflections. Any orientation preserving Möbius

transformation which preserves H3 is the Poincaré extension of some φ ∈M(R2).

Some fractional linear transformations are dilations z 7→ az for a ∈ R, translations

z 7→ z + b, and rotations z 7→ eiθz. Moreover, reflection in the real axis is given by z 7→ z

and inversion in the unit circle is given by z 7→ 1/z. After conjugating by an appropriate

composition of the maps above, we may represent reflection in any line or inversion in any

circle by a map of the form

z 7→ az + b

cz + d

and any product of an even number of such maps is a fractional linear transformation.

We have proven that any φ ∈M+(R2)) is a fractional linear transformation. Conversely,

one may prove that any fractional linear transformation is a composition of dilations, rota-

tions, translations and the map z 7→ 1/z (compare II.7 of [20]). Therefore any fractional

linear transformation is a Möbius transformation.
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The mapping GL2(C)→M+(R2) defined bya b

c d

→ z 7→ az + b

cz + d

is a surjective group homomorphism. We say the matrix represents the transformation. Its

kernel is K = {aI | a 6= 0}, so we have

Isom+(H3) uM+(R2) u PGL2(C) = GL2(C)/K

For A ∈ GL2(C), the function tr(A)2/ det(A) is constant on the coset AK, so induces a

well defined function on PGL2(C). Moreover, this function is invariant under conjugation.

For a fractional linear transformation g, define tr(g)2 to be tr(A)2/ det(A) for any matrix

A ∈ GL2(C) which represents g.

The isometries of H3 may be classified up to conjugacy by their trace and by their fixed

points. We summarize the results below.

Proposition 2.1.1. Let g 6= I be an isometry of H3. Then g satisfies exactly one of the

following three lists of equivalent properties

(i) g is parabolic

• g is conjugate to z 7→ z + 1

• g has exactly one fixed point on C ∪∞

• tr2(g) = 4

(ii) g is loxodromic

• g is conjugate z 7→ kz for some k ∈ C, |k| 6= 1

• g has exactly two fixed points on C ∪∞

• tr2(g) 6∈ [0, 4]

(iii) g is elliptic

• g is conjugate to z 7→ eiθz for some θ ∈ (0, 2π)

• g has infinitely many fixed points in H3

• tr2(g) ∈ [0, 4)
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An elliptic transformation has an invariant axis in H3, fixed pointwise. A loxodromic

transformation also has an invariant axis in H3, but it only fixes the endpoints of the axis.

A parabolic transformation has no axis, but a family of invariant surfaces which we now

describe.

Given an asymptotic pencil of oriented geodesics, terminating in an ideal point p ∈

C∪{∞}, a surface orthogonal to every geodesic in the pencil is called a horosphere centered

at p. If p ∈ C, then a horosphere centered at p is a Euclidean sphere tangent to p. A

horosphere centered at ∞ has the form {(z, t) | t = const.}. We call this a horosphere at

height t. For p ∈ C, a horoball centered at p is the solid region bounded by a horosphere

centered at p. The horoballs centered at ∞ have the form {(z, t) | t ≥ const.}.

A parabolic transformation with fixed point p ∈ C∪{∞} leaves any horosphere centered

at p invariant.

Notes: The information in this section can be found in many books on hyperbolic

geometry. For instance, consult chapter 1 of [27] or chapters 3 and 4 of [5].

2.2 Orbifolds

An orbifold is a space locally modeled on Rn modulo a finite group action.

Definition 2.2.1. A local model is a pair (Ũ , G) where Ũ ⊂ Rn is open and G is a finite

group of diffeomorphisms of Ũ .

An orbifold map between local models (Ũ , G), (Ũ ′, G′) is a pair (ψ̃, γ) where ψ̃ : Ũ → Ũ ′

is smooth, γ : G → G′ is a homomorphism, and ψ̃ is equivariant in the sense that ψ̃(g ·

x) = γ(g) · ψ̃(x). The equivariance requirement implies that ψ̃ induces a smooth map

ψ : Ũ/G→ Ũ ′/G′. When γ, ψ̃ and ψ are injective, we say the orbifold map is a local orbifold

isomorphism.

A (smooth) orbifold O is an underlying Hausdorff, paracompact space XO covered by

open sets Ui with diffeomorphisms φi : Ui → Ũi/Gi satisfying the property that when Ui ⊂ Uj,

the inclusion induces a local orbifold isomorphism between the local models Ũi/Gi and Ũj/Gj.
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Definition 2.2.2. A orbifold covering O → O′ is a continuous map p : XO → XO′ such

that each x ∈ XO′ has a neighborhood U u Ũ/G such that each component of p−1(U) is

isomorphic to Ũ/Gi for a subgroup Gi ≤ G. Moreover, the restriction of p to each component

of p−1(U) corresponds to the projection Ũ/Gi → Ũ/G.

Definition 2.2.3. For an orbifold O and a point x ∈ O in a local model Ũi/Gi, its local

group Gx is the stabilizer of a point x̃ ∈ Ũi which projects to x. The singular locus of O is

the set of points with non-trivial local group.

When the singular locus is empty, O is a manifold. One can prove that the local models

may be taken to be Rn/G where G is a finite subgroup of the orthogonal group O(n) (compare

Theorem 2.3 of [14]). A point in the local model has a neighborhood which is a cone on

the orbifold Sn−1/G. Combining this with the identification of finite subgroups of SO(3) as

the spherical triangle groups, we obtain the following result on the structure of the singular

locus

Theorem 2.1 (Theorem 2.5 of [14]). For an orientable 3-orbifold O, its singular locus

consists of edges of order k ≥ 2 and trivalent vertices. The three edges at a vertex have

orders (2, 2, k) for k ≥ 2, (2, 3, 3), (2, 3, 4), or (2, 3, 5).

We will not concern ourselves with the general theory of orbifolds, other than to make

use of the above result. We are primarily interested in complete hyperbolic 3-orbifolds.

Definition 2.2.4. When X = Hn,Rn, or Sn and G = Isom(X), a (G,X)-orbifold is lo-

cally modeled on X modulo finite subgroups of G. Such orbifolds are called, respectively,

hyperbolic, Euclidean, and spherical.

The main result is

Theorem 2.2 (Theorem 2.26 of [14]). Any complete (G,X)-orbifold is isometric to X/Γ,

where Γ is a discrete subgroup of G = Isom(X) that acts properly discontinuously on X

A discrete subgroup of PGL2(C) u Isom+(H3) is called a Kleinian group. When a

discrete Γ ≤ PGL2(C) acts on H3 without fixed points (in other words, Γ contains no

elliptics), H3/Γ is a hyperbolic manifold. A fundamental structure theorem for hyperbolic

3-orbifolds is the thick-thin decomposition. For Γ ≤ PGL2(C) and ε > 0, the ε-thin part of
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O = H3/Γ is

Othin(ε) = {x ∈ O | d(x̃, γx̃) ≤ ε for some lift x̃ of x to H3 and some γ of infinite order in Γ}

The ε-thick part is

Othick(ε) = {x ∈ O | d(x̃, γx̃) ≥ ε for all lifts x̃ of x to H3 and all γ of infinite order in Γ}

In general, the structure of the thin part is a consequence of the Margulis lemma:

Proposition 2.2.1 (Corollary 2.2 of [17]). There is a constant ε′ > 0, such that for any

complete oriented hyperbolic 3-orbifold O = H3/Γ and any 0 < ε < ε′, each component of

Othin(ε) is isometric to either

(1) a cusp neighborhood, the quotient of a horoball by an orientation-preserving frieze group

or wallpaper group.

(2) a solid tube, the quotient of a tubular neighborhood of a geodesic by a cocompact orientation-

preserving group of isometries.

In this thesis we only consider finite volume orbifolds, for which we have the following:

Proposition 2.2.2 (Proposition 3.2 of [17]). A complete oriented hyperbolic 3-orbifold with

finite volume is the union of a compact sub-orbifold, bounded by Euclidean 2-suborbifolds,

and a finite collection of horoballs modulo wallpaper group actions.

Notice that solid tubes belong to the compact part, while the quotient of a horoball

modulo a frieze group has infinite volume.

Convention: For the remainder of this thesis, when we say a hyperbolic 3-orbifold we

mean a complete, orientable, finite volume hyperbolic 3-orbifold.

Next, we survey the five orientation preserving wallpaper groups.

Definition 2.2.5. A wallpaper group is a discrete group of isometries of the Euclidean plane

which contains two independent translations.
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Figure 1: (a) 2222 (b) 333

Figure 2: (a) 442 (b) 632

There are seventeen wallpaper groups, the following five of which contain only orientation

preserving isometries. In figures 1 and 2, a circle labeled k indicates the center of a 2π/k-

rotation. Circles of the same color indicate rotations which are equivalent in the sense that

one may obtained from the other by pre or post composition with another rotation in the

group. The pink region is a fundamental domain for the action of the group on the plane.

We list the five orientation preserving wallpaper groups in Conway’s orbifold notation

[13].

• The group o generated by two independent translations. The corresponding orbifold (the
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quotient of the plane by o) is a Euclidean torus.

• The group 2222 containing four rotations of order two. Once three of these rotations are

specified, the remaining one is determined. The corresponding orbifold is a pillowcase and

is double covered by a torus. The lattice of rotation centers may be any parallelogram,

which is contrasted with the following three groups whose lattices are fixed (rigid).

• The group 333 containing three rotations of order 3.

• The group 442 containing two rotations of order 4 and one of order 2.

• The group 632 containing one rotation each of orders 2, 3, and 6.

We reserve H∞ for the “standard” horoball {(z, t) | t ≥ 1} centered at ∞.

Definition 2.2.6. An embedded cusp neighborhood in O is a connected open subset of O

which lifts to a collection B of disjoint horoball interiors.

Given a collection of horoballs projecting to a cusp neighborhood, one may equivariantly

expand or contract the horoballs to obtain a new cusp neighborhood which still projects to

the same topological end of the orbifold. See Example 3.1.1 for a concrete application of this

idea. We want to think of such neighborhoods as equivalent since they project to the same

cusp. We make this precise as follows.

Definition 2.2.7. Define a relation on the set of all embedded cusp neighborhoods in O in

the following manner. Given horoball collections B1 and B2 which project to cusp neighbor-

hoods C1 and C2, we say C1 and C2 are equivalent if every horoball in B1 is contained in

a horoball in B2 (in which case we abuse notation and write B1 ⊂ B2), or vice versa every

horoball in B2 is contained in B1.

Lemma 2.2.1. The relation defined above on the set of embedded cusp neighborhoods in O

is an equivalence relation.

Proof. The only condition which requires some thought is transitivity. Let B1,B2, and B3
be horoball collections projecting to cusp neighborhoods C1, C2, and C3. Suppose B1 ∼ B2
and B2 ∼ B3. If B1 ⊂ B2 and B2 ⊂ B3 then B1 ∼ B3 follows directly. Suppose instead

B1 ⊂ B2 and B3 ⊂ B2.
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If B1 = B3 then there is nothing to prove. We claim that if a horoball H1 ∈ B1 is properly

contained in a horoball H3 ∈ B3, then every horoball of B1 is contained in a horoball of B3.

For sake of contradiction, suppose there are H ′1 ∈ B1 and H ′3 ∈ B3 such that H ′3 ⊂ H ′1.

Let Γ ≤ Isom+H3 be such that O = H3/Γ. Then Γ is the group of deck transformations of

the cover H3 → H3/Γ. Since isometries of H3 send horoballs to horoballs and every horoball

in Bi projects to the same subset of O, Γ acts transitively on each collection Bi.

There is γ ∈ Γ satisfying γ(H1) = H ′1. But then H ′3 ⊂ H ′1 ⊂ γ(H3), which contradicts

the assumption that H ′3 and γ(H3) have disjoint interiors.

Definition 2.2.8. A cusp is an equivalence class of embedded cusp neighborhoods. When

we say “choose a neighborhood of a cusp”, we mean choose a representative of the equiva-

lence class. We will often elide the distinction between a cusp and one of its representative

neighborhoods.

By the homogeneity of hyperbolic space, all points on the sphere at infinity are equivalent

in the sense that an isometry carries one to another (in fact, as we remarked earlier, the

group of isometries acts simply transitively on triples in C ∪ {∞}). From the point of view

of the upper half space model however, the point ∞ is convenient to work with. Hence, we

often want to assume that H∞ covers a chosen cusp. This is no loss of generality for the

following reason.

Let O = H3/Γ and fix a cusp C ⊂ O. Let H denote a horoball covering C. There is

an isometry g ∈ Isom+H3 such that g(H) = H∞. For x ∈ H3, one observes directly that

g sends the Γ orbit of x ∈ H3 to the gΓg−1 orbit of g(x), so in fact g induces an isometry

H3/Γ u H3/gΓg−1. Thus after applying g to H3 and quotienting by gΓg−1, we have H∞

covering C.

Definition 2.2.9. For a fixed cusp C and an embedded cusp neighborhood of C, if H∞

covers C, the projection of the horoballs in B − {H∞} onto C is called a cusp diagram or

horoball diagram of C.

Definition 2.2.10. An embedded cusp neighborhood is maximal if there is a pair of horoballs

in B which are tangent.

15



A pair of embedded cusp neighborhoods C,C ′ are tangent if there is a horoball covering

C which is tangent to a horoball covering C ′.

Definition 2.2.11. A cusp is nonrigid if it is the quotient of a horoball by either o or 2222.

Otherwise, it is rigid.

Notes: References for this section are chapter 13 of [34], [14], and [17].

2.3 Volume

In this section we compute the volumes of certain regions in H3, including ideal tetrahe-

dra. We define the Voronoi cell of a cusp in a hyperbolic 3-orbifold, and discuss Böröczky’s

theorem which yields a lower bound on the volume of an orbifold in terms of the volumes of

its cusps.

In some cases, we can find the volume of a region in H3 by directly integrating the volume

form of the metric on H3.

Example 2.3.1. let C be a cusp in a hyperbolic 3-orbifold. Then C is the quotient of

a horoball H by one of the five wallpaper groups discussed above. Since all horoballs are

isometric, we may assume that H = {(z, t) | t ≥ 1}. Let F denote a fundamental domain

for the action of C’s wallpaper group on the horosphere {(z, 1) | z ∈ C}. Then

vol(C) =

∫∫
F

∫
t≥1

dt

t3
dA =

∫∫
F

−1

2t2

∣∣∣∞
1
dA =

1

2

∫∫
F

dA =
area(F )

2

By an ideal tetrahedron, we mean a tetrahedra in H3 with all of its vertices on the sphere

at infinity.

Fact 2.3.1. Opposite dihedral angles of an ideal tetrahedron are equal.
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Figure 3: An ideal tetrahedron with dihedral angles labeled α = α′, β = β′, γ = γ′.

Proof. Label the dihedral angles α, β, γ and their opposites α′, β′, γ′ as in Figure 3. Since

the link of each ideal vertex is an Euclidean triangle, we obtain four equations

α + β + γ = π

α + β′ + γ′ = π

α′ + β′ + γ = π

α′ + β + γ′ = π
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Subtracting the second equation from the first, and the fourth from the third yields

β + γ = β′ + γ′

β′ + γ = β + γ′

Subtracting these two equations yields

β − β′ = β′ − β ⇐⇒ β = β′

Back substitution yields γ = γ′ and α = α′.

In fact, an ideal tetrahedron is determined up to isometry by its dihedral angles.

The volumes of tetrahedra in H3 are closely related to Lobachevsky’s function L(θ),

defined by

L(θ) = −
∫ θ

0

log |2 sinu|du.

Fact 2.3.2. Lobachevsky’s function L(θ) is odd and π-periodic. For n ∈ Z

L(nθ) = n

|n−1|∑
j=0

L(θ + jπ/n).

The Lobachevsky function has a series representation

L(θ) = θ

(
1− log |2θ|+

∞∑
n=1

B2n

2n

(2θ)2n

(2n+ 1)!

)

where the B2n are Bernoulli numbers. This is what we use when we compute L(θ) numeri-

cally.

Definition 2.3.1. For our purposes, an orthoscheme is a hyperbolic tetrahedron (whose

vertices may be ideal or not) with a sequence x0x1, x1x2, x2x3 of three mutually perpendicular

edges. The orthoscheme Sα,β,γ has three right dihedral angles and is determined by its

remaining dihedral angles α, β and γ.

In our applications, we will frequently encounter orthoschemes with an ideal vertex. The

link of an ideal vertex is a Euclidean triangle with angles α, β, π/2, so we obtain β = π/2−α.

The following computation of the volume of such an orthoscheme is due to Lobachevsky.
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Fact 2.3.3 (Lemma 7.2.2 of [34]).

vol(Sα,π/2−α,γ) = 1/4[L(α + γ) + L(α− γ) + 2L(π/2− α)].

In the special case where α = γ, this reduces to

vol(Sα,π/2−α,α) = (1/2)L(α)

We record a basic observation that allows us to compute γ.

Lemma 2.3.1. Consider an Euclidean hemisphere of radius R and a vertical half plane that

is perpendicular to a diameter of the sphere and is a distance 0 ≤ l ≤ R away from the

sphere’s center. The dihedral angle γ of the sphere and the plane satisfies

cos γ =
l

R

Proof. Without loss of generality, center the sphere at the origin and let the half plane by

determined by x = l. The dihedral angle is constant, so we may compute it at the point

(l, y, z) on the sphere and the half plane. Then a normal to the sphere is n1 = (l, y, z) with

|n1| = R and a normal to the plane is n2 = (1, 0, 0). Therefore

cos γ = cos∠n1, n2 =
n1 · n2

|n1||n2|
=

l

R

The volume of an ideal tetrahedron Tα,β,γ with dihedral angles α, β, γ follows easily from

the formula for the volume of an orthoscheme. Assume one of the vertices of the tetrahedron

is ∞, and drop a perpendicular from ∞ to the plane containing its opposite face: let O

denote the base of the perpendicular. Connect O to the other vertices of Tα,β,γ by geodesics,

and drop perpendiculars from O to the vertical faces of Tα,β,γ.

When the perpendicular from ∞ is in the interior of the opposite face, the result is

illustrated in figure 4 with our eye looking down from ∞. We see that Tα,β,γ decomposes as

the union of two copies each of Sα,π/2−α,α, Sβ,π/2−β,β, and Sγ,π/2−γ,γ, so

vol(Tα,β,γ) = L(α) + L(β) + L(γ)

This also holds in the case that Figure 4 is not accurate (the perpendicular from ∞ is not

in the interior of the opposite face).
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Figure 4: Projection onto the plane of the decomposition of Tα,β,γ into six orthoschemes

Definition 2.3.2. We define v0 = 3L(π/3) ≈ 1.01494 . . . to be the volume of a regular ideal

tetrahedron, and v1 = 2L(π/4) ≈ 0.915966 . . . to be the volume of a (π/2, π/4, π/4) ideal

tetrahedron.

We record the volumes of a few different orthoschemes in terms of v0 and v1.

Fact 2.3.4.

(α, γ) vol(Sα,π/2−α,γ)

π/3, π/3 v0/6

π/6, π/6 v0/4

π/6, π/3 v0/24

π/4, π/4 v1/4

π/4, π/3 v1/12

Proof. The first and fourth claims are apparent from the formula vol(Sα,π/2−α,α) = 1/2L(α).
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For the second claim, observe

L(π/3) = L(2 · π/6) = 2(L(π/6) + L(2π/3)) = 2(L(π/6)−L(π/3))

which implies

vol(Sπ/6,π/3,π/6) =
1

2
L(π/6) =

3

4
L(π/3) =

v0
4

The relation L(π/6) = 3
2
L(π/3) implies

vol(Sπ/6,pi/3,pi/3) =
1

4
(L(π/2) + L(−π/6) + 2L(π/3))

=
1

4
(2L(π/3)− 3

2
L(π/3))

=
1

8
L(π/3)

=
v0
24

For the final claim, begin by observing

L(π/4) = L(3 · π/12) = 3(L(π/12) + L(5π/12) + L(3π/4))

Since L(3π/4) = −L(π/4), we have

L(π/4) =
3

4
(L(π/12) + L(5π/12)) = −3

4
(L(−π/12) + L(7π/12))

Then

vol(Sπ/4,π/4,π/3) =
1

4
(L(7π/12) + L(−π/12) + 2L(π/4))

=
1

4
· 2

3
L(π/4)

=
v1
12
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We end this discussion of volume with two simple formulas which will be useful in chapter

3. Given a subset A of C whose area is well defined, the flat chimney Πf (A, h) with base A

and height h > 0 is A× [h,∞). We define a spherical chimney Πs(r, h) of radius 0 < r and

height 0 < h < r in H3 as follows. Consider a Euclidean hemisphere in H3 centered at p ∈ C

with radius r and a Euclidean cylinder concentric with the hemisphere and intersecting the

hemisphere at height h. The spherical chimney is the intersection of the (solid) cylinder with

the complement of the (solid) hemisphere.

Fact 2.3.5.

vol(Πf (A, h)) =
area(A)

2h2

and

vol(Πs(r, h)) = π log(r/h)

Proof. The first computation was already given in Example 2.3.1.

For the spherical chimney, with p ∈ C the center of the hemisphere, let D = {ω ∈

C||ω − p| ≤
√
r2 − h2}. Notice D × (0,∞) is the cylinder intersecting the hemisphere at

height h. Then the volume of the spherical chimney is given by∫∫
D

∫
z≥
√
r2−|ω|2

dz

z3
dA =

∫∫
D

−1

2z2

∣∣∣∞√
R2−|ω|2

dA =
1

2

∫∫
D

1

R2 − |ω|2
dA

Convert to polar coordinates ρ = |ω|, θ = argω, then make the substitution u = r2 − ρ2:

1

2

∫ 2π

0

∫ √r2−h2
0

ρ

r2 − ρ2
dρdθ =

−π
2

∫ h2

r2

du

u
=
π

2
log |u|

∣∣∣r2
h2

= π log(r/h)

Next we discuss how a horosphere-packing result of Böröczky yields a lower bound on

the volume of a cusped orbifold O = H3/Γ in terms of the volumes of its cusps.

Choose an embedded cusp neighborhood for each cusp Ci in O and lift each neighborhood

to a collection of horoballs Bi such that the horoball collections are pairwise disjoint. Let

B =
⋃
i Bi.

Definition 2.3.3. For a horoball H, we define the distance d(x,H) from a point x ∈ H3−H

to H by the length of the perpendicular segment from x to ∂H.
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For any horoball H ∈ B, define the region

D(H,B) = {x ∈ H3 | d(x,H) ≤ d(x,H ′) for any H ′ ∈ B}

Let F0 be a fundamental domain for the action of Γ∞ on H∞ where Γ∞ is the stabilizer of

∞ in Γ. Let F = F0 × (0,∞).

Definition 2.3.4. With notation as above, the Voronoi cell V (C) of the cusp C covered by

H∞ is

V (C) = D(H∞,B) ∩ F

Another useful characterization of V (C) is as follows. For each horoball H ∈ B centered

in the plane, the bisecting plane between H and H∞ is

P(H) = {x ∈ H3 | d(x,H) = d(x,H∞)}

If H is centered at z ∈ C and has Euclidean radius r ≤ 1/2, then P(H) is a Euclidean

hemisphere centered at z of radius
√

2r. By the exterior extP(H) of the bisecting plane, we

mean the unbounded component of H3 − P(H). Then

D(H∞,B) =
⋂

H∈B−{H∞}

extP(H)

and

V (C) =

 ⋂
H∈B−{H∞}

extP(H)

 ∩ F
In fact, we need not take the intersection over the entire collection B − {H∞}. It is

sufficient to take the intersection over the visible planes. For H ∈ B − {H∞}, we say P(H)

is visible if there is x ∈ P(H) so the vertical geodesic connecting x to H∞ does not meet any

other P(H ′). We say P(H) is visible above height h, if we can choose x so its t-coordinate is

h. The terminology is meant to reflect that, if we are looking out from the cusp centered at

∞, the visible planes are the only faces of V (Cr) we would see.

Definition 2.3.5. For a cusped orbifold O with cusps C1, . . . , Cn, its Voronoi cell V (O)

is the union of the Voronoi cells for each of its cusps. V (O) depends on the choice of

neighborhood for each cusp and the choice of fundamental domain F0 for the action of Γ∞

on H∞ for each cusp neighborhood.
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Independent of these choices we have the following (compare Theorem 3.6.1, Lemma

3.5.2, and Theorem 3.5.1 of [27])

Proposition 2.3.1. For a finite volume cusped orbifold O = H3/Γ, a Voronoi cell for O is

a fundamental domain for the action of Γ on H3. If each fundamental domain F0 is a finite

sided polygon, then V (O) is a polyhedron with finitely many faces, and O is the quotient of

V (O) by face pairing isometries.

Let H∞ cover the cusp C. The density of H∞ with respect to V (C) is

vol(H∞ ∩ V (C))

volV (C)
=

vol(C)

vol(V (C))

The following theorem is a restatement of Böröczky’s theorem on the density of horoball

packings found in [7]

Theorem 2.3. The density of H∞ with respect to V (C) is no greater than the density of 4

mutually tangent horoballs with respect to the ideal tetrahedron spanned by the centers of the

horoballs. This bound is sharp when the ideal tetrahedron is regular.

Here, the density of the collection of horoballs S with respect to the ideal tetrahedron

T is vol(S ∩ T )/ vol(T ). We compute this directly when T is regular. For an ideal regular

tetrahedron T , the horoballs of Euclidean radius 1/2 centered at its vertices in C and H∞

are all mutually tangent. The region T ∩H∞ is a chimney above an equilateral triangle of

side length 1, hence vol(T ∩H∞) =
√

3/8. Since T has a symmetry exchanging any pair of

its vertices, vol(T ∩ H) =
√

3/8 for any of the other three horoballs. Thus the density of

these horoballs with respect to T is
√

3/2v0.

From Böröczky’s theorem we obtain the following lower bound on the volume of a cusped

orbifold

Proposition 2.3.2. For an orbifold O with pairwise disjoint embedded cusp neighborhoods

C1, . . . , Cn,

vol(O) ≥ 2v0√
3

n∑
i=1

vol(Ci)
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Proof. Böröczky’s theorem implies that

vol(Ci)

vol(V (Ci))
≤
√

3

2v0
⇐⇒ vol(V (Ci)) ≥

2v0√
3

vol(Ci)

Then

vol(O) = vol(V (O)) =
n∑
i=1

vol(V (Ci)) ≥
2v0√

3

n∑
i=1

vol(Ci)

We refer to this lower bound as Meyerhoff’s bound.

In [29], Meyerhoff uses this to prove

Theorem 2.4. Q = H3/PGL2(O3) has minimum volume among all orientable cusped hy-

perbolic 3-orbifolds.

Proof. Let O be any orbifold with at least one cusp C. We may choose an embedded cusp

neighborhood of C to be maximal, one that intersects itself on its boundary. Lifting this

neighborhood to H3, we see at least one full-sized horoball H in C’s cusp diagram, i.e., H

has Euclidean radius 1/2 and is tangent to H∞.

By considering the different cusp types and locations for the center of H, one sees that

the least volume cusp is a (2, 3, 6) cusp with H centered at the order 6 singularity. Then the

volume of the cusp is at least
√

3/24, and the lower bound implies that

vol(O) ≥ 2v0√
3
·
√

3

24
=
v0
12

= vol(H3/PGL2(O3))

where the last equality will be established in chapter 3 by constructing a fundamental domain

for H3/PGL2(O3).

Notes: An excellent reference for the computation of volume in hyperbolic space is

John W. Milnor’s contribution of chapter 7 to [34]. Böröczky’s result appears in a more

general context in [7]. Meyerhoff applied this result to obtain bounds on the volume of cusp

neighborhoods in [30] and [29].
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3.0 Minimal orbifolds with one rigid and one nonrigid cusp

In this chapter we classify the minimal volume orbifolds with one rigid cusp of type

(6, 3, 2) or (4, 4, 2) and one nonrigid cusp. We begin by constructing the minimal volume

examples O(6,3,2) and O(4,4,2) and study their cusp diagrams for a particular choice of cusp

neighborhoods. We prove that these cusp diagrams uniquely determine these orbifolds in

section 3.3. Section 3.2 collects a number of basic geometric results that are essential for our

classification arguments. Finally we prove the following theorems.

Theorem 3.1. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (3, 3, 3). Then vol(O) > v0.

Theorem 3.2. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (6, 3, 2). Then either O = O(6,3,2) or vol(O) > 5v0/6.

Theorem 3.3. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (4, 4, 2). Then either O = O(4,4,2) or vol(O) > v1,

where v1 ≈ 0.91596544 . . . is the volume of an ideal tetrahedron with dihedral angles π/4, π/4,

and π/2.

In this chapter, when proving statements about a non-rigid cusp, we only prove it for a

(2, 2, 2, 2)-cusp. The assumptions made in these statements will always yield a larger volume

in a torus cusp than in a (2, 2, 2, 2)-cusp. The reader may wish to review the definitions

of cusp neighborhood, cusp diagram, and Voronoi cell of a cusp from section 2.3 before

proceeding. For a cusp C in an orbifold H3/Γ, given as the quotient of a horoball centered

at p ∈ ∂H3 by a wallpaper group action, the cusp subgroup Γ(C) is the stabilizer of p in Γ.

When we refer to a point in C as a singularity, we mean the vertical geodesic above this

point is the axis of an elliptic element of Γ(C) for the cusp C covered by H∞.

For a horoball centered in C, when we say its radius we mean its Euclidean radius. Such

a horoball is full-sized if its radius is 1/2 (it is tangent to H∞). If we refer to the distance

between a pair of horoballs, we mean the Euclidean distance between their centers, not the

hyperbolic distance between their boundaries.
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3.1 The minimal volume orbifolds

A polyhedron in H3 is a Coxeter polyhedron if the dihedral angle at each edge divides π.

For a Coxeter polyhedron P , let Γ be the isometry group generated by reflections in the faces

of P . Then Γ is a discrete group and P is a fundamental domain for Γ (compare Theorem

3.4.7 of [28]). In our examples, Γ will contain an index two subgroup Γ′ ≤ Γ generated

by rotations in the edges of P . Then H3/Γ′ will be an orientable orbifold with double the

volume of H3/Γ.

Figure 5: Singular loci diagrams for O(4,4,2) (left) and O(6,3,2) (right)

Figure 5 contains diagrams for the singular loci of orbifolds with one rigid and one non-

rigid cusp. An open circle denotes a cusp. The label k on an edge indicates that the local

model for a point on the interior of the edge is the quotient of a ball by a 2π/k rotation

about that edge. The labels on the edges running into a cusp determine the cusp’s type. For

example, the diagram on the right of Figure 5 contains a nonrigid (2,2,2,2) cusp and a rigid

(6,3,2) cusp. The juncture of three edges represents a finite vertex, whose local group is the

spherical triangle group determined by the labels on the three edges incident to the vertex

(recall Theorem 2.1).

For each diagram, we explicitly describe Coxeter polyhedra in H3 whose 1-skeleta are

isomorphic with the singular graphs by a mapping which sends an edge labeled k in the

singular graph to an edge of dihedral angle π/k in the polyhedron.

Let z0 = 1
2

+ i
√
3
2

. Consider an ideal polyhedron P(6,3,2) in the upper half space model

of H3 with two ideal vertices at ∞ and z0, and finite vertices lying on the unit hemisphere

directly above the ideal points 0, 1/2, and i
√

3/2. Join the vertices by edges as indicated by

Figure 6. One can verify the correspondence between edges in the graph at right of figure 5
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with label α and edges in P(6,3,2) with dihedral angle π/α.

Consider the group generated by reflections in the faces of P(6,3,2). Let Γ(6,3,2) be the

index two subgroup generated by rotations in the edges of P(6,3,2), where an edge labeled

π/k is the axis of a rotation of order k.

Definition 3.1.1. Define O(6,3,2) to be H3/Γ(6,3,2).

The union of P(6,3,2) and its image under one of the π-rotations about a vertical edge

constitutes a fundamental domain for O(6,3,2). The singular locus of O(6,3,2) is as specified by

the right side of Figure 5.

We construct a fundamental domain for the orientable orbifold O(4,4,2) with a (4, 4, 2)

rigid cusp by repeating the above construction with z1 = 1√
2

+ i 1√
2

in place of z0.

Subdivide P(6,3,2) along the vertical half plane containing the ideal points 0 and z0, and

observe that P(6,3,2) is the union of Sπ/3,π/6,π/3 and Sπ/6,π/3,π/6 identified along the faces

contained in this half plane. Therefore Fact 2.3.4 implies

vol(O(6,3,2)) = 2 vol(P(6,3,2)) = 2(vol(Sπ/3,π/6,π/3) + vol(Sπ/6,π/3,π/6)) = 2(
v0
6

+
v0
4

) =
5

6
v0

A similar construction applied to the polyhedron for O(4,4,2) shows that a fundamental

domain can be constructed from four copies of Sπ/4,π/4,π/4 so

vol(O(4,4,2)) = 4 vol(Sπ/4,π/4,π/4) = v1,

We now choose cusp neighborhoods in O(6,3,2), study their cusp diagrams, and compute

the cusp volumes.

Notation: Let [z, w] denote the geodesic in H3 with ideal endpoints z and w in C ∪∞,

oriented from z to w.

We choose cusp neighborhoods explicitly by declaring which horoballs in H3 project to

the corresponding cusp. Choose H∞ to cover the nonrigid cusp CN , and choose a full-sized

horoball Hz0 centered at z0 to cover the rigid cusp CR. Letting Γ(6,3,2) act on these horoballs

generates the cusp diagram in figure 7 (a). In particular, we obtain a full-sized nonrigid

horoball centered at the origin by applying the π-rotation about the axis [−1, 1] to H∞.

The remaining full-sized horoballs are obtained by applying the π-rotations in the vertical
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Figure 6: P(6,3,2) with labels at an edge indicating its dihedral angle.

geodesics to the full-sized horoballs centered at 0 and z0. In this diagram and the subsequent

ones, we make the convention that blue horoballs cover the nonrigid cusp and red horoballs

cover the rigid cusp. Notice that in this example both cusps are simultaneously maximized,

i.e. are both self-tangent and tangent to each other.

The volume of the nonrigid cusp is half the area of a fundamental domain for the cusp

subgroup. In this case, the fundamental domain consists of two copies of a rectangle with
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Figure 7: (632 rigid cusp) Diagrams of CN and CR, with fundamental domain for Γ∞ in

yellow.

side lengths 1/2 and
√

3/2, giving a cusp volume of
√

3/4. In fact, Lemma 3.2 of [2] says

this is the least possible cusp volume for a maximal nonrigid cusp in an orbifold with more

than one cusp.

To determine the volume of the rigid cusp, we change perspective (apply an isometry)

so that H∞ covers CR. One way to accomplish this is to translate the horoball H centered

at z0 to the origin and apply an elliptic isometry exchanging the origin with infinity. This is

given by

ρ(z) =
1

z0 − z
The geodesics [∞, z0], [−z0, z0], [z0, z0] all run into the rigid cusp. They pass through the

vertices of the Euclidean triangle ∂Hz0 ∩ P(6,3,2). Their images under ρ will be vertical

geodesics running to infinity which pass through the vertices of a Euclidean triangle giving

(half of) the fundamental domain of the rigid cusp subgroup. We calculate the images of

30



these geodesics under ρ by the formula ρ[z, w] = [ρ(z), ρ(w)].

ρ(z0) =
1

−z0 + z0
=∞

ρ(∞) = lim
z→∞

1

−z + z0
= 0

ρ(−z0) =
1

z0 + z0
= 1

ρ(z0) =
1

−z0 + z0
=

1

i
√

3
=
−1√

3
i

As an aside, these calculations give us rigid horoballs centered at 1 and − 1√
3
i and a

nonrigid horoball centered at the origin. Applying the isometries in the rigid cusp subgroup

gives us figure 7(b).

We see that the geodesics running into H in the original picture are sent to:

ρ([∞, z0]) = [0,∞]

ρ([−z0, z0]) = [1,∞]

ρ([z0, z0]) = [− i√
3
,∞]

Then the fundamental domain is two copies of an Euclidean right triangle with side

lengths 1 and 1/
√

3. This gives a cusp volume of 1
2
√
3

=
√
3
6
. According to Meyerhoff’s

bound, we have

vol(O(6,3,2)) ≥
2v0√

3

(√
3

4
+

√
3

6

)
=

5v0
6

= vol(O(6,3,2))

We could have deduced this without any calculation by noting that the horoball pack-

ings corresponding to the cusp diagrams are the densest possible, according to Böröczky’s

theorem. As an exercise, the reader may wish to choose cusp neighborhoods for O(4,4,2) and

compute their volumes.

We summarize the results obtained from similar investigations for O(4,4,2). Again we

start by considering the polyhedron we constructed for O(4,4,2) and choose H∞ to cover the

nonrigid cusp and the full-sized ball Hz1 centered at z1 to cover the rigid cusp. The cusp
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diagrams are illustrated in figure 8. We obtain a disjoint cusp volume β = 1
2

+ 1
4

and a

Meyerhoff bound of

vol(O(4,4,2)) ≥
2v0√

3

(
1

2
+

1

4

)
≈ 0.878965

whereas vol(O(4,4,2)) = v1 ≈ 0.915966. Notice that CN is maximal, and CR is tangent to CN

but not itself.

Figure 8: (442 rigid cusp) Diagrams of CN and CR, with a fundamental domain for Γ∞ in

yellow.

The following example indicates an extra factor of complexity that arises when analyzing

multi-cusped orbifolds. An orbifold with a single cusp has a unique maximal cusp neighbor-

hood. Our choice of cusp neighborhoods above is not unique. Could there be another choice

of cusp neighborhoods with greater disjoint cusp volume?

Example 3.1.1. For O(4,4,2), we construct a one-parameter family of cusp neighborhoods,

varying from the neighborhoods above to a choice of neighborhoods for which CR is maximal.

Begin with the choice of cusp neighborhoods given above. From the point of view of

the nonrigid cusp at ∞, we can simultaneously raise the height of the horoball centered at

∞ and increase the diameter of the horoball covering the rigid cusp at z1. The rigid cusp

will be maximized when the horoballs centered at z1 and −z1 become tangent, i.e. when

their Euclidean diameters are equal to
√

2. We can explicitly parametrize the disjoint cusp
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volume in terms of the height h of the horoball {t ≥ h} centered at∞ by β[1,
√

2]→ (0,∞),

β(h) =
h2

4
+

1

2h2

To derive this formula, let {t ≥ h} be the horoball centered at ∞ covering the nonrigid

cusp. Since a fundamental domain for the nonrigid cusp subgroup consists of two squares

of side length 1√
2
, we have that the volume of the nonrigid cusp is 1

2h2
. Next, apply the

isometry

z 7→ h2

z1 − z
,

which sends the horoball centered at z1 to a horoball centered at ∞. Since this isometry

preserves the plane {t = h}, and the horoballs centered at z1 and∞ are tangent at this plane,

it maps the horoball centered at z1 to the horoball centered at ∞ of height h. Moreover, it

maps z1 and −z1 to − h2√
2
i and h2√

2
respectively. Then a fundamental domain for the rigid

cusp subgroup is a square with area h4/2, so the rigid cusp has volume h2

4
.

It’s interesting to note that the maximum value of β is obtained by both endpoints of

the one-parameter family of cusp neighborhoods.

The example above raises a natural question for further research (which we do not at-

tempt to answer in this thesis), namely, given a cusped orbifold O, what choice of cusp

neighborhoods maximizes the disjoint cusp volume?

3.2 Geometric Lemmas

In this section we record some useful facts which are used throughout our classification

arguments. The first is a simple criterion that determines when two horoballs centered in

the plane overlap (intersect in their interiors).

Lemma 3.2.1. Tangent horoballs of Euclidean radii r1 and r2 have centers a distance 2
√
r1r2

apart.
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Proof. Project onto the plane spanned by the vector pointing from one center to the other

and the z-direction, so we are looking at a pair of tangent circles with centers (x1, r1), (x2, r2).

Two circles are tangent exactly when the distance between their centers is equal to the sum

of their radii: √
(x1 − x2)2 + (r1 − r2)2 = r1 + r2

Equivalently,

|x1 − x2| =
√

(r1 + r2)2 − (r1 − r2)2 =
√

4r1r2.

The following result of Adams [3] allows us to deduce the existence of isometries in the

orbifold group from points of tangency between horoballs.

Lemma 3.2.2 (Lemma 2.1 of [3]). Fix a cusp C and let H∞ cover C (recall that the remark

following Definition 2.2.8 states there is no loss of generality in assuming this). If Γ∞(C)

identifies all of the full-sized horoballs which cover C, then every point of tangency between

two such horoballs lies on the axis of an order two elliptic isometry in Γ(O) such that the

axis is tangent to both horoballs.

Remark: Throughout we will assume the hypothesis of this theorem. If there are

multiple equivalence classes of full-sized horoballs in a diagram, the cusp volume will be

sufficiently large that we may ignore those cases.

We will be interested in how such order two elliptics act on other horoballs in the cusp

diagram. We can understand such isometries geometrically as being inversion in a hemisphere

centered in the plane followed by reflection in a vertical half plane.

Lemma 3.2.3. Let g be an order two elliptic isometry whose axis is a Euclidean semicircle

of radius R. If H is a horoball of radius r whose center is a distance c away from the center

of g’s axis, then g(H) is a horoball of radius R2

c2
· r whose center is a distance R2

c
away from

the center of g’s axis.

Proof. The action of g on H3 ∪ ∂H3 is that of inversion σ in the hemisphere containing

g’s axis followed by reflection in the vertical half plane containing g’s axis. Note g is a

composition of two reflections in perpendicular hyperbolic planes.
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Figure 9: Red and blue horoballs are inverse to each other with respect to the dashed

hemisphere

Reflection in the vertical half plane preserves both the distance from the center of σ(H)

to the center of g’s axis and the radius of σ(H), so it is enough to consider the effect of σ

on H.

In Figure 9, let H denote the blue horoball. Connect the center of H to the center of

g’s axis by a geodesic l. Then g(l) is a vertical geodesic through a point a distance R2/c

away from the center of g’s axis. The point (x, y) at which l intersects ∂H may be found by

solving the equations

(x− c/2)2 + y2 = c2/4

(x− c)2 + (y − r)2 = r2

Thus we obtain

x =
c3

c2 + 4r2
, y =

2c2r

c2 + 4r2
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By similarity of triangles, we have

2r(σ(H))

y
=

R2

c

x

so

r(σ(H)) =
y

2x

R2

c
=

2c2r

2c3
R2

c
=
R2

c2
r

Corollary 3.2.1. Let H be a full-sized horoball, H ′ a horoball tangent to H with centers

a distance c apart, and g an order 2 elliptic which exchanges H with H∞. Then g(H ′) is

full-sized and its center is a distance 1/c away from the center of g(H∞).

Corollary 3.2.2. Suppose that H∞ and a full-sized horoball H cover the same cusp. The

horoball of largest Euclidean radius among all non full-sized horoballs which cover a different

cusp is either tangent to H or its center is a distance at least 1 from the center of H.

Proof. By Lemma 3.2.2, there is an order 2 elliptic g whose axis goes through the point

of tangency of H and H∞. Let H ′ denote a horoball of largest Euclidean radius less than

1/2 which covers a different cusp. If the center of H ′ has distance less than 1 to the center

of H, then 3.2.3 implies that g(H ′) has larger radius than H ′. In order that we do not

contradict the maximality of H ′’s radius, g(H ′) must be a full-sized ball, which implies that

H ′ is tangent to H.

Next we give a lower bound for the volume of the nonrigid cusp in the presence of another

cusp in terms of lower bounds on the distances between different classes of full-sized horoballs

in the nonrigid cusp diagram. The following results are used in the case of the classification

arguments in which the nonrigid cusp is tangent to the rigid cusp, but the rigid cusp does

not meet itself.

Proposition 3.2.1. Let CN be a maximal nonrigid cusp and C another cusp which is tangent

to CN (recall from Definition 2.2.10 this means a pair of horoballs, one covering each cusp,

are tangent). Then either vol(CN) ≥
√

3/2 or

vol(CN) ≥ vn(a, b) :=


ab
2

√
1− b2

4a2
if b <

√
2a

ab
2
√
2

if b ≥
√

2a
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where a ≥ 1 is a lower bound on the distance between two full-sized horoballs in CN ’s diagram

which cover different cusps, and b ≥ 1 is a lower bound on the distance between two full-sized

horoballs in CN ’s diagram which both cover CN .

Notice that when a = b = 1 we get the apriori bound vol(CN) ≥
√
3
4

obtained by Adams,

and when a = 1, b =
√

2 we obtain vol(CN) ≥ 1/2 as is seen in the case of O(4,4,2).

Proof. Our assumptions imply that we have full-sized horoballs covering CN and C in the

cusp diagram of CN . If there is any full-sized horoball which is not centered at an order 2

singularity, the density argument that Adams uses to obtain the bound
√
3
4

(compare Lemma

3.1 and Lemma 3.2 of [2]) can be applied to obtain vol(CN) ≥
√
3
2

. Let us briefly recall this

argument.

Looking down on the plane from∞, the full-sized horoballs are disks of radius 1/2 which

do not overlap in their interiors. Consider the density of this collection of disks with respect

to a parallelogram P which is a fundamental domain for Γ∞(CN). Each equivalence class

of disks contributes an area of π/4. Supposing there are n equivalence classes of full-sized

horoballs, comparing the density with the density of a hexagonal packing yields

n · π
4

area(P )
≤ π

2
√

3
⇐⇒ area(P ) ≥ n ·

√
3

2
.

In the case of a (2,2,2,2) cusp, in the worst case the area of the parallelogram is reduced

by a factor of 2. Compare Figure 10 when there are order 2 rotations about the red vertices.

Thus when there is an additional full-sized horoball not centered at an order 2 singularity,

we obtain

vol(CN) =
area(P )

2
≥ 2

√
3

4
=

√
3

2
.

So we will assume that any full-sized horoball in the diagram is centered at an order 2

singularity. Let A denote the center of a full-sized horoball HA covering CN . Let B denote

the center of a full-sized horoball HB which covers CN and is nearest to HA. Finally, let C

denote the center of a full-sized horoball HC which covers the other cusp and is the nearest

such center to A such that AC and AB are linearly independent vectors. Let ρA denote the

order two rotation about A, and likewise for ρB and ρC .
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Figure 10: The setting of Proposition 3.2.1. The fixed point of ρCρAρB is the final vertex of

the parallelogram with vertices A,B,C.

We may obtain a fundamental domain F for Γ(CN) in the following manner. Choose a

parallelogram P in the cusp diagram of minimal area which has order 2 singularities only

at its vertices. Then we may take F to be the union of P with one of its images under

translation along a side of P . It follows that the volume of CN is the area of P .

Let θ = ∠CAB, so without loss of generality 0 < θ < π by the assumption that AC and

AB are independent. Moreover, we may assume 0 < θ ≤ π/2, for if θ > π/2 replace HB by

its image under the order 2 rotation centered at A. Finally, we assume that θ ≥ θ′ := ∠CBA,

for otherwise we just exchange the roles of HB and HA.

Let B′ be the image of B under the order 2 rotation centered at C. By the assumption

about HB, we must have |AB′| ≥ |AB|. Consider that the triangles ACB and ACB′ have

side AC in common, and CB, CB′ are congruent. The greater side is opposite the greater

included angle, so

|AB′| ≥ |AB| ⇐⇒ ∠ACB′ ≥ ∠ACB ⇐⇒ ∠ACB ≤ π/2

This latter condition is equivalent to θ + θ′ ≥ π/2. Therefore

2θ ≥ θ + θ′ ≥ π/2 ⇐⇒ θ ≥ π/4
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We claim there are no order singularities on the interior of the segment AC, for the

horoballs HA and HC cover different cusps, thus cannot be exchanged by an isometry of the

orbifold group. If there is any order 2 singularity not at the midpoint of AC, but on its

interior, then the image of HC under this rotation will be closer to HA than HC is. This

contradicts the choice of HC .

The same argument shows that the only possible location of an order 2 singularity on

the interior of AB is at its midpoint. The order 2 singularities at A, C, and B or (A+B)/2

determine the parallelogram P described above. Then

area(P ) ≥ |AC| |AB|
2

sin θ ≥ ab

2
sin θ

We now determine the minimal angle θ. We must have |CB| ≥ a. If b ≥
√

2a, then

the best that can be done is the apriori bound of θ ≥ π/4, resulting in area(P ) ≥ ab
2
√
2
. If

b <
√

2a, then θ must be greater than π/4, otherwise the law of cosines implies

|CB|2 = a2 + b2 − 2ab cos π/4 = a2 + b2 −
√

2ab = a2 + b(b−
√

2a) < a2

contradicting |CB| ≥ a.

The law of cosines shows that the minimal value of θ for which |CB| ≥ a occurs when

cos θ = b/2a. Equivalently, sin θ =
√

1− b2/4a2, and this yields our result.

To apply the previous result, we need some way of obtaining the lower bounds on dis-

tances between full-sized horoballs in the nonrigid cusp diagram. These may be obtained

from the rigid cusp diagram thanks to the following lemma.

Lemma 3.2.4. Let C1, C2 be cusps covered respectively by H∞ and a full-sized horoball H.

Let e denote the maximum distance between the center of H and the center of any horoball

H ′ which is tangent to H and covers Ci, where i ∈ {1, 2}.

Assuming that there is a single equivalence class of full-sized horoballs covering each cusp,

1/e is the minimum distance between the centers of full-sized horoballs in the diagram of C2

which cover C1 and Ci respectively.
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Proof. An isometry g which exchanges H∞ with H sends H ′ to a full-sized horoball whose

center is a distance at least 1/e away from g(H∞). Any full-sized ball closer to g(H∞) is

sent by g to a horoball tangent to H with centers a distance greater than e apart.

The next result is a minor generalization of Adams’ idea of a disk of no tangency. This

is a (spherical) disk on the boundary of a horoball containing no points of tangency with

other horoballs. Its radius is its Euclidean radius, measured with respect to the Euclidean

metric on the horosphere.

Lemma 3.2.5. Let H be a horoball of Euclidean radius r < 1/2. Suppose the largest Eu-

clidean radius of any horoball tangent to H is r′. Then H has a disk of no tangency on its

boundary of radius
√
r/r′.

Proof. An order two elliptic g which exchanges H with H∞ will have axis an Euclidean

semicircle of radius
√

2r. A horoball H ′ of radius r′ and tangent to H must have its center a

distance 2
√
rr′ away from the center of H. Then g(H ′) is a full-sized horoball whose center

is a distance
(
√

2r)2

2
√
rr′

=

√
r

r′

away from the point directly above the center of H on ∂g(H). Any full-sized horoball closer

to this point correpsonds under g to a horoball tangent to H of radius larger than r′, so

there are no points of tangency within this disk.

3.3 Classification

The cusp diagrams of O(6,3,2) and O(4,4,2) computed in section 3.1 contain enough infor-

mation to recover the orbifolds themselves. Each cusp diagram determines the combinatorics

of the cusp’s Voronoi cell. We can also deduce enough information (see Lemma 3.2.2) to

determine the face pairings of each cell, hence the orbifold is determined.

Theorem 3.4. An orbifold O with a nonrigid cusp and a rigid cusp of type (6, 3, 2) or

(4, 4, 2) with cusp diagrams as in Figures 7 or 8 is isometric to O(6,3,2) or O(4,4,2).
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Figure 11: Combinatorics of V (CN) and V (CR) with rigid (6,3,2) cusp.

Proof. Suppose an orbifold O has a nonrigid cusp and rigid (6, 3, 2) cusp with diagrams as

in Figure 7. In Figure 11, we see V (CN) and V (CR) from the viewpoint of ∞. The faces of

a Voronoi cell which are contained in vertical half planes have their pairings determined by

the cusp subgroup. In V (CR), the faces denoted F0 are identified by an order two elliptic

isometry which exchanges the full-sized ball centered at the order 6 singularity and H∞.

The face pairing isometry exists by Lemma 3.2.2, and it makes an angle of π/6 with the

horizontal, as it needs to act as a reflective symmetry on the union of the two faces F0.

The faces labeled F1 in the Voronoi diagram of CR intersects the faces labeled F1 in the

Voronoi diagram of CN . In the diagram of V (CN), the faces labeled F2 are identified by an

order two elliptic which exchanges the full-sized ball whose bisecting plane contains F2 with

H∞.

If instead O has a rigid (4, 4, 2) cusp, we see the Voronoi diagrams in 12. The faces labeled

F0 in V (CR) intersect V (CN) in the faces labeled F0 there. In V (CN), consider the order

2 elliptics which exchange the full-sized ball whose plane contains F1 with ∞. In principle,

elliptics whose axes make an acute angle of π/4 with the horizontal are symmetries of the

horoball packing. But then the rigid cusp would have distinct order two axes running into

it, which is not possible. So there is an order 2 elliptic whose axis is perpendicular to the

horizontal, and this isometry identifies the two faces labeled F1, and the two faces labeled
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Figure 12: Combinatorics of V (CN) and V (CR) with rigid (4,4,2) cusp.

F0.

We remark that the perspective of obtaining the orbifold via face pairings of its Voronoi

cells gives another way to compute the orbifold’s volume. By looking at the diagrams in

Figure 11, for O(6,3,2), V (CR) can be decomposed into eight orthoschemes Sπ/6,π/3,π/3 while

V (CN) can be decomposed into twelve such orthoschemes, and we recover

vol(O(6,3,2)) = 20 vol(Sπ/6,π/3,π/3) = 20 · v0
24

=
5

6
v0.

Likewise, the Voronoi cells of O(4,4,2) decompose into twelve orthoschemes Sπ/4,π/4,π/3 and

we obtain

vol(O(4,4,2)) = 12 vol(Sπ/4,π/4,π/3) = 12 · v1
12

= v1.

Finally, we remark that this perspective led us to wonder what is the minimal volume

orbifold with one nonrigid cusp and one rigid (3, 3, 3) cusp?

Conjecture. The minimal volume orbifold with one nonrigid cusp and one rigid (3, 3, 3)

cusp has volume 5v0/3 and cusp diagrams given in Figure 13.

Now we aim to prove theorems 3.1, 3.2, and 3.3. Before proceeding with the details, we

give a general outline of the argument without regard to the type of the rigid cusp.

Assume O is an orbifold with one non-rigid and one rigid cusp. Let CN be a maximal

non-rigid cusp, and choose the rigid cusp CR to be maximal with respect to CN . There are

three qualitatively different ways in which the two cusps may interact.
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Figure 13: (333 rigid cusp) Diagrams of CN and CR, with fundamental domain for Γ∞ in

yellow.

(i) Both CN and CR may be “simultaneously maximized”, i.e. they are tangent to each

other as well as being self tangent.

(ii) CN and CR are tangent, but CR is not tangent to itself.

(iii) CN and CR are disjoint, in which case CR is tangent to itself.

In our examples, the cusp choices for O(6,3,2) and O(4,4,2) exhibit cases (i) and (ii) respectively.

Once the cusp interaction has been determined, we study horoball diagrams. We say a

horoball is rigid (resp. non-rigid) if it covers CR (resp. CN). Our goal is to either prove

that the horoball diagrams match those of our examples, or vol(O) is sufficiently large.. The

tools for increasing volume we use are slightly different in each case.

Case (i) is typically the easiest to handle, since we may assume the presence of two

different classes of full-sized horoballs in CR’s diagram. Lemma 2.3 of [2] implies that any

non-rigid horoball may only be centered at a singularity if it’s order is 2. Any full-sized rigid

horoballs give rise to an order 2 elliptic isometry via Lemma 3.2.2. With the exception of

highly symmetric diagrams, these elliptic isometries are used to show that vol(CR) must be

sufficiently large in order that different horoballs do not overlap.
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In case (ii), we only have the presence of a full-sized nonrigid horoball Hn in CR’s dia-

gram. Without the order 2 elliptics present in case (i), it is not clear how to force vol(CR)

to be larger. By asking what are the largest horoballs tangent to Hn, we are able to lever-

age Proposition 3.2.1 to improve the lower bound on vol(CN) beyond the apriori bound

vol(CN) ≥
√

3/4 from Lemma 3.2 of [2].

In case (iii), we see a dichotomy in CR’s diagram. If full-sized horoballs are far apart,

then vol(CR) is large. If full-sized horoballs are close together, then the remaining horoballs

in the diagram must have small Euclidean radii. In the latter case, we directly estimate

volume in the compact part of O by computing the volume of a model of the truncated

Voronoi cell (see section 3.4.3.4 for definitions).

We hope this outline helps the reader follow the thread of the argument without being

lost in the forest of technical details.

Real work is required when the rigid cusp has type (6, 3, 2) or (4, 4, 2). First we dispense

with the case of a (3, 3, 3) rigid cusp, which is simpler since this type of cusp has a larger fun-

damental domain for Γ(CR), namely a rhombus with order 3 singularities only at its vertices,

with one pair of opposite vertices being equivalent (compare section 2.3). In coordinates, we

may assume there are order 3 singularities (0, 0), (±
√

3d/6, d/2), (0, d), with (0, 0) and (0, d)

being identified by the other two order 3 rotations, then the rhombus has area
√

3d2/6 and

vol(CR) =
√

3d2/12.

Theorem 3.1. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (3, 3, 3). Then vol(O) > v0.

Proof. In cases (i) and (ii) described above, there is a full-sized nonrigid horoball Hn in

CR’s diagram. Hn cannot be centered at any singularity. In order that it does not overlap

with any of its translates, Hn must stay a distance at least 1/
√

3 away from each order 3

singularity. Without loss of generality, assume that Hn is closer to (0, 0) than it is to (0, d).

Then disks of radius 1/
√

3 centered at (0, 0) and (±
√

3d/6, d/2) must not cover the bottom

half of the rhombus.

We see that the circles centered at (±
√

3d/6, d/2) intersect when x = 0 and

y =
d

2
±
√

1

3
− d2

12
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Then the minimal value of d required for the disks to not cover the bottom half of the

rhombus satisfies
d

2
−
√

1

3
− d2

12
=

1√
3

Solving this equation yields d =
√

3. So d ≥
√

3 which implies vol(CR) ≥
√

3/4.

Therefore,

vol(O) ≥ 2v0√
3

(√
3

4
+

√
3

4

)
= v0.

In case (iii), there is a full-sized rigid horoball Hr in CR’s diagram. There is also a

nonrigid horoball H of largest Euclidean radius. By Corollary 3.2.2 the distance between

the centers of H and Hr must be at least one. Since H cannot be centered at an order 3

singularity, this implies that d/
√

3 > 1, i.e. d >
√

3. Applying Meyerhoff’s bound as above,

we obtain

vol(O) ≥ v0

3.4 Proof of Theorem 3.2

Theorem 3.2. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (6, 3, 2). Then either O = O(6,3,2) or vol(O) > 5v0/6.

Throughout, let d denote the distance between two order 6 singularities in the rigid cusp

diagram. A fundamental domain for the cusp subgroup is a flat chimney above a quadrilateral

with vertices at order 6, 3, and 2 singularities (see Figure 2). Introduce coordinates so that

the order 6 singularity is at (0, 0), there are order 2 singularities at (d/2, 0) and (d/4,
√

3d/4),

and the order 3 singularity is at (d/2,
√

3d/6). Let ρ6 denote the π/3 rotation about (0, 0),

ρ2 denote the π rotation about (d/2, 0), and ρ3 denote the 2π/3 rotation about (d/2,
√

3d/6).

We see that vol(CR) =
√
3d2

24
.
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3.4.1 Simultaneously maximized cusps

The first case implies the existence of a full-sized rigid horoball Hr and a full-sized

nonrigid horoball Hn in the rigid cusp’s diagram. In what follows, we consider the least

volume cusp diagram that occurs depending on where Hr is centered.

In order to obtain vol(O) ≥ 5v0/6, it is sufficient to prove d ≥ 2.

(Aside: Figures of the cusp diagrams have been included for the more complex cases,

but the reader is encouraged to sketch their own figures in each case. It will make the lower

bounds obtained on d more apparent.)

3.4.1.1 Hr is not centered at any singularity

The least volume diagram has Hn centered at the order 2 singularity. Since Hn must be a

distance at least one away from Hr, the center of Hr is a distance at least one away from the

order 2 singularity. In order that Hr not overlap with ρ6(Hr), its center must be a distance

at least one away from the order 6 singularity. Hence the equilateral triangle with vertices

at the order 6 and order 2 singularities has distance from any vertex to its orthocenter at

least 1. Therefore d > 2
√

3.

3.4.1.2 Hr is centered at the order 2 singularity

Then Hn is not centered at any singularity. By swapping the roles of Hr and Hn in the

argument above, we have d > 2
√

3.

3.4.1.3 Hr is centered at the order 3 singularity

The least volume diagram has Hn centered at the order 2 singularity. Then the distance

between the order 3 and order 2 singularities is at least 1, which implies d ≥ 6/
√

3 = 2
√

3.
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3.4.1.4 Hr is centered at the order 6 singularity

The least volume diagram has Hn centered at the order 2 singularity, and d ≥ 2. Observe

that when d = 2 we have the rigid cusp diagram of O(6,3,2), and by changing perspective

(apply an isometry sending a full-sized rigid horoball to H∞) we also have its nonrigid cusp

diagram, so Theorem 3.4 implies that O = O(6,3,2)

Lemma 3.4.1. If d > 2, then d > 2 4
√

3

Proof. Suppose d > 2. Let gθ be the order two elliptic which exchanges Hr with H∞, where

θ denotes the angle between the projection of gθ’s axis and the x-axis. The point of tangency

between Hr and H∞ is a lift of a (6,2,2) finite vertex of the singular locus, so there is another

order two elliptic whose axis makes an angle of π/6 with gθ’s axis, hence we may assume

0 ≤ θ < π/6.

Then gθ(Hn) is a horoball of radius 2/d2 whose center is a distance 2/d away from the

center of Hr. Let a(θ) and b(θ) denote the distance from the center of gθ(Hn) to the center

of Hn and of ρ6(Hn) respectively. Then the law of cosines implies

a(θ)2 =
d2

4
+

4

d2
− 2 cos 2θ

b(θ)2 =
d2

4
+

4

d2
− 2 cos(π/3− 2θ)

One calculates that a(θ) ≤ b(θ if and only if θ ≤ π/12. If θ > π/12, the distance between

the centers of gθ(Hn) and ρ6(Hn) equals the distance between the centers of gπ/12−θ(Hn) and

Hn, so without loss of generality we assume θ ≤ π/12. Observe that b(θ) ≤ b(π/12) for all

θ ∈ [0, π/12]. In order that gθ(Hn) and Hn do not overlap, we must have

2

√
2

d2
· 1

2
≤ b(θ) ≤ b(π/12)

The left hand side reduces to 2/d, so we have

4

d2
≤ b(π/12)2 =

d2

4
+

4

d2
−
√

3.

It follows that d ≥ 2 4
√

3.

We observe that either O = O(6,3,2) or d > 2 4
√

3 which implies that

vol(O) ≥ 2v0√
3

(√
3

4
+

1

2

)
=

(
2 +
√

3

2
√

3

)
v0 > v0
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3.4.2 Rigid cusp is not self-tangent

Consider the second case, in which CN and CR are tangent, but CR does not touch itself.

Then we only have a full-sized horoball Hn covering CN in the rigid cusp’s diagram. The

least volume case occurs when Hn is centered at the order 2 singularity and is tangent to its

translates by the order 3 rotation, so d ≥ 2.

We obtain inputs to Proposition 3.2.1 by asking: what is the maximum distance between

the centers of Hn and a horoball H which is tangent to Hn? If H covers CN and d = 2, then

clearly the maximum distance is 1. It is less than 1 if d > 2 or H covers CR.

Suppose H is a rigid horoball. By assumption, H is not full-sized, so it cannot be

centered at the order six singularity. Let c denote the distance between the center of H and

the nearest full-sized nonrigid horoball. Let a denote the distance from the center of H to

the nearest order 6 singularity. Note a > 0. We observe that c will be maximized when H

is on the equidistant line between the points (d/2, 0) and (d/4,
√

3d/4).

The maximum c corresponds to the minimal a. In order that H not overlap with its

translates by ρ6, we must have a ≥ 2r(H). Since H is tangent to Hn, we must have r = c2/2,

so the maximum value of c occurs when c2 = a.

The law of cosines implies that a and c are related by

c2 = a2 +
d2

4
−
√

3

2
ad

= c4 +
d2

4
−
√

3d

2
c2

equivalently,

c4 − (

√
3d

2
+ 1)c2 +

d2

4
= 0

We obtain the following upper bound on c:

c ≤ c(d) :=

√√√√ √
3d
2

+ 1−
√

(
√
3d
2

+ 1)2 − d2

2

According to Lemma 3.2.4, in CN ’s diagram we have a minimum distance 1/c(d) between

full-sized horoballs covering different cusps. The distance b between full-sized horoballs

covering the same cusp is 1 when d = 2 or 1/c(d) if d > 2.
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Figure 14: The maximum distance between H and Hn

By Proposition 3.2.1 we calculate, when d = 2,

vol(O) ≥ 2v0√
3

(
vn(1/c(d), 1) +

√
3

6

)
≈ 1.17662 > v0

and for 2 < d ≤
√

6 we have

vol(O) ≥ 2v0√
3

(
vn(1/c(d), 1/c(d)) +

√
3d2

24

)
> v0

as can be seen in figure 15
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Figure 15: A plot of the lower bound for vol(O) versus v0

3.4.3 Disjoint cusps

We are left with the remaining case in which CR and CN are disjoint, hence CR is self

tangent.

We have a full-sized rigid horoball Hr in the rigid cusp diagram. Let Hn be a nonrigid

horoball of largest Euclidean radius. Note r(Hn) < 1/2. Hr and Hn are not tangent, since

the cusps are assumed to be disjoint, so the corollary to Lemma 3.2.3 implies that the center

of Hn is a distance at least one away from the center of Hr. As in (i), we consider the least

volume cusp diagram depending on the center of Hr.

3.4.3.1 Hr is not centered at any singularity

Then the center of Hr must stay a distance at least 1 away from the order 6 singularity,

at least 1/
√

3 away from the order 3 singularity, and at least 1/2 away from the order 2

singularity, so that the translates of Hr by these rotations do not overlap with Hr. When

d <
√

7, the disks just defined cover the quadrilateral in which the center of Hr must lie.

Therefore d ≥
√

7 and vol(O) > v0.
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3.4.3.2 Hr is centered at the order 2 singularity

Since Hn must be a distance at least 1 away from the center of Hr, we must have d/2 > 1,

i.e. d > 2. Consider the order two elliptic isometry g which exchanges Hr at (d/2, 0) with

H∞. Then g’s axis is either parallel to or perpendicular to the x-axis. If not, g’s axis meets

the interior of the face of V (CR) bounded by two vertical half planes and the intersection of

P(Hr) and P(ρ3(Hr)). But g cannot act as a reflective symmetry of this triangle.

If g’s axis is parallel or perpendicular to the x-axis, then g sends a full-sized horoball a

distance d/2 away from Hr to a horoball of radius 2/d2 which is a distance 2/d away from

Hr. See figure 16. This horoball is a distance d/2− 2/d away from a full-sized horoball, so

for them to not overlap we must have (as in section 3.4.1.4) d ≥
√

8.

Figure 16: The purple horoball is the image under g of a full-sized red horoball
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3.4.3.3 Hr is centered at the order 3 singularity

For this case only, change coordinates so that Hr is centered at (0, 0), there is a π rotation

ρ2 about the point (d/4,
√

3d/12), a π/3 rotation ρ6 about the point (d/2,−
√

3d/6).

We have d >
√

3. Consider the order 2 elliptic exchanging Hr with H∞, gθ, where θ is

the angle the line of reflection makes with the x-axis.

There is an upper bound on θ arising from the fact that the axis of gθ cannot in-

tersect ρ2(Hr). Let C denote the intersection of the horosphere ∂ρ2(Hr) with the verti-

cal plane above the line making an angle of θ with the x-axis. C is a circle of radius√
1/4− d2/3 sin2(π/6− θ) with center a distance

√
1/4 + d2/3 cos2(π/6− θ) away from the

origin (the center of gθ’s axis). These circles do not intersect provided√
1

4
+
d2

3
cos2(π/6− θ) < 1 +

√
1

4
− d2

3
sin2(π/6− θ)

Setting these quantities equal to one another, we may solve for

θu(d) :=
π

6
− arccos

√
d2 + 6

12

and we have that θ ≤ θu(d).

On the other hand, there is a lower bound on θ arising from the fact that H := gθ(ρ2(Hr))

cannot overlap with its translates by ρ6. Let a(d, θ) denote the distance from the center of

H to (d/2,−
√

3d/6). One can verify that θ1(d) < π/12 for all
√

3 < d ≤ 2, so the center of

H lies below the x-axis and makes an angle of π/6− 2θ with it. H has radius 3/2d2 and its

center is a distance
√

3/d away from the origin. Hence the law of cosines implies

a2(d, θ) =
d2

3
+

3

d2
− 2 cos 2θ

In order that H not overlap with ρ6(H), we must have r(H) ≤ a(d, θ)/2, which implies

9

d4
≤ d2

3
+

3

d2
− 2 cos 2θ

and solving for θ, we have

θ ≥ θl(d) :=
1

2
arccos

(
d2

3
+

3

d2
− 9

d4

)
But as the plot in Figure 17 below verifies, for

√
3 < d ≤ 2, we have θl(d) > θu(d). So

d > 2 which implies vol(O) > 5v0/6.
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Figure 17: For
√

3 < d ≤ 2, θu(d) < θl(d) is a contradiction

3.4.3.4 Hr is centered at the order 6 singularity

A priori we have d >
√

3, in order for the center of Hn to be a distance at least one away

from Hr.

It is not clear what we can leverage to make d be larger, since in principle the radius

of Hn can be arbitrarily small. There is a tradeoff. If r(Hn) is large, then it forces d to be

larger. If r(Hn) is small, then there is more “empty space” between this horoball and H∞.

We make this notion precise by defining the Voronoi cell truncated at height h of CR by

Vh(CR) = V (CR) ∩ {(z, t) | t ≥ h} for 0 < h ≤ 1

We may simply refer to this as the truncated Voronoi cell.

A few observations are immediate:

• volV1(CR) = volCR

• volVh(CR) = volV (CR) for sufficiently small h

• volVh(CR) ≤ volV (CR) for 0 < h ≤ 1
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Let B denote the entirety of the horoballs in H3 which project to either cusp. Recall

from section 2.3 that V (CR) may be characterized by taking the intersection of exteriors of

visible planes which separate horoballs of B centered in the plane from H∞ (and taking a

fundamental domain for Γ(CR) acting on this region).

We can obtain Vh(CR) by making the above construction with planes visible above height

h, and intersecting with the horoball {(z, t) | t ≥ h}.

We define a model of the truncated Voronoi cell by making the above construction with

only a subset of the planes visible above height h. This model will be accurate, meaning

modelVh(CR) = Vh(CR) as sets, for all h greater than or equal to some hmin > 0. When there

is H ∈ B − {H∞} visible above height h not included in our model, then modelVh(CR) 6=

Vh(CR), and the model ceases to be accurate.

Our model for the truncated Voronoi cell modelVh(CR) includes P(Hr). We

(1) Compute vol(modelVh(CR)) for all hmin ≤ h ≤ 1 for some hmin > 0.

(2) Prove that the only bisecting planes that are visible above height hmin are the ones

included in our model. In this way we prove that the model is accurate, and hence in

step (1) we are actually describing vol(Vh(CR)).

In figure 18, we are looking down on the model with our eye at ∞.

When

0 <
√

1− h2 ≤ d

2
⇐⇒

√
1− d2/4 ≤ h < 1

we see a portion of a spherical chimney and a flat chimney. Hence

vol(modelVh(CR)) =
1

6
vol(Πs(1, h)) + vol(Πf (A, h))

where A = quadrilateral \ one sixth of a circle of radius
√

1− h2.

When
d

2
<
√

1− h2 < d√
3
⇐⇒ 0 < h ≤

√
1− d2/4

we see the picture on the right. The model now decomposes into a portion of a spherical

chimney, two congruent orthoschemes, and a flat chimney. We obtain

vol(modelVh(CR)) =
π/6− 2α

2π
vol(Πs(1, h)) + 2 vol(Sα,π/2−α,γ) + vol(Πf (A, h))
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Figure 18: View of modelVh(CR) with our eye at ∞

where α = arccos d
2
√
1−h2 , γ = arccos d

2
and A is the quadrilateral minus the area already

accounted for, namely two congruent triangles and a sector of a circle.

One can observe that when d =
√

3, in the limit as h → 0 the model consists of two

orthoschemes Sπ/6,π/3,π/6. We utilize the computer algebra system Mathematica to compute

vol(modelVh(CR)) numerically according to these formulas.

In order to verify that modelVh(CR) = Vh(CR) for a range of h-values, we need to

compute an upper bound on the radius of horoballs whose bisecting planes are not included

in our model.

Let Hz denote a horoball covering the nonrigid cusp with largest Euclidean radius less

than 1/2. In order that gθ(Hz) does not have larger radius than Hz, we must have |z| ≥ 1.

Also z 6= (d/2,
√

3d/6), since a nonrigid cusp cannot have an order 3 axis running into it.

Likewise, let Hw denote a horoball covering the rigid cusp with largest Euclidean radius

less than 1/2. If |w| < 1, then gθ(Hw) must be a full-sized ball. Assuming
√

3 < d ≤ 2 and a

disk of no tangency of radius 1 on ∂H∞, the only full-sized balls are at order six singularities,

i.e. Hw is a 1/d-ball. For 0 < θ < π/6, P(Hw) is visible at height
√

4− d2/2. Keeping this

in mind, we now assume that Hw is a horoball covering CR with largest Euclidean radius

less than 1/2 and is not a 1/d-ball. Therefore |w| ≥ 1. Now the only difference between w
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and z is that w can possibly be the order 3 singularity at (d/2,
√

3d/6).

Lemma 3.4.2. For
√

3 < d ≤ 2 define

r1(d) =


d−
√
3
√
4−d2

4
if
√

3 < d ≤
√

2 +
√

3
√

3+d2−
√
12d2−3

2
if
√

2 +
√

3 < d ≤ 2

Let H stand for Hz or Hw when w 6= (d/2,
√

3d/6) in the notation above. Then r(H) ≤ r1(d).

Proof. Let z denote the center of H. Let a and b denote the distances between z and the

order 3 and nearest order 2 singularities respectively. In order that ρ3(H) does not overlap

with H, we must have r(H) ≤
√

3a/2. Likewise, if ρ2(H) does not overlap with H, we have

r(H) ≤ b. Then

r(H) ≤ min

{√
3a

2
, b

}
Geometrically it is clear that a is maximized when z = (d/2,

√
1− d2/4), and that for d

close to
√

3 we have
√

3α/2 < β. Setting these two quantities equal yields
√

3

2

(√
3d

6
−
√

1− d2/4

)
=
√

1− d2/4

which has the solution d =
√

2 +
√

3.

Therefore, for d ≤
√

2 +
√

3, we have

r(H) ≤
√

3

2

(√
3d

6
−
√

4− d2
2

)
=
d−
√

3
√

4− d2
4

When d >
√

2 +
√

3, consider the locus of points

{ζ ∈ C |
√

3a

2
= b}

This locus is a line, and as a function on this line, b is continuous and convex. It will be

maximized at either (d/2, d/(4 + 2
√

3)) or the point where the line meets the circle |ζ| = 1.

With the assistance of Mathematica we compute the value of b at the intersection of the

line and the circle |ζ| = 1 to be √
3 + d2 −

√
12d2 − 3

2

and verify that for
√

3 < d < 2 this quantity is at least as large as d/(4 + 2
√

3), the value of

b at the point (d/2, d/(4 + 2
√

3)).
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Figure 19: The setting of Lemma 3.4.2

Lemma 3.4.3. For
√

3 < d ≤ 2 and 0 ≤ θ ≤ π/12 define

a(d, θ) =

√
3

d2
+
d2

4
−
√

3 cos(π/6− 2θ)

b(d, θ) =

√
3

d2
+
d2

3
− 2 cos(2θ)

and define θ(d) implicitly by a(d, θ(d)) =
√
3

2d
b(d, θ(d)).
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Let H be the horoball centered at the order 3 singularity. Except in the special case when

d =
√

2
√

3 and θ = π/12, we have r(H) ≤ r2(d), where

r2(d) =
d

2
√

3
b(d, θ(d))

Proof. Recall that 0 ≤ θ < π/6 is the angle gθ’s axis makes with the x-axis. If 0 ≤ θ ≤ π/12,

we will compare gθ(H) with ρ2(H) centered at (d/2,−
√

3d/6) or with the order 2 singularity

at (d/2, 0). If π/12 < θ < π/6, the distance between gθ(H) and H is equal to the distance

between gπ/6−θ(H) and ρ2(H), so we may assume that 0 ≤ θ ≤ π/12 in the subsequent

calculations.

Figure 20: The setting of Lemma 3.4.3

We see that the center of gθ(H) is a distance
√

3/d away from the origin, lies on or below

the x-axis at an angle of π/6−2θ. Let a(d, θ) and b(d, θ) denote the distance from the center

of gθ(H) to (d/2, 0) and (d/2,−
√

3d/6) respectively. From the law of cosines we have

a2(d, θ) =
3

d2
+
d2

4
−
√

3 cos(π/6− 2θ)

b2(d, θ) =
3

d2
+
d2

3
− 2 cos 2θ

Observe that b(d, θ) is increasing and a(d, θ) is decreasing for fixed d and increasing θ.
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From Lemma 3.2.3, we have r(gθ(H)) = 3
d2
r(H). In order that gθ(H) does not overlap

with ρ2(H), we must have

2
√
r(gθ(H)) · r(H) ≤ b(d, θ)⇔ r(H) ≤ d

2
√

3
b(d, θ)

In order that gθ(H) does not overlap with its translate by ρ2, we must have

r(gθ(H)) ≤ a(d, θ)⇔ r(H) ≤ d2

3
a(d, θ)

Therefore

r(H) ≤ min

{
d2

3
a(d, θ),

d

2
√

3
b(d, θ)

}
Let θ(d) be defined implicitly by the relation

a(d, θ) =

√
3

2d
b(d, θ)

which follows from setting the two quantities in the upper bound for r(H) equal to one

another. For θ < θ(d) we have a(d, θ) >
√
3

2d
b(d, θ).

Therefore

r(H) ≤ d

2
√

3
b(d, θ(d))

proving the claim.

The special case for which the above radius bound does not apply occurs when gθ(H)

is centered at the order 2 singularity. In order for gθ(H) to lie on the x-axis we must have

θ = π/12 and in order that gθ(H) is a distance d/2 away from the origin, we have

d

2
=

√
3

d
⇐⇒ d =

√
2
√

3

Ignoring this case for the moment, we may conclude that if H is the largest non-rigid

horoball or the largest rigid horoball which is neither full-sized nor a 1/d-ball, then

r(H) ≤ r∗(d) := max {r1(d), r2(d)}

Let

h∗(d) = max
{√

2r1(d),
√

2r2(d),
√

4− d2/2
}
,

where
√

4− d2/2 is the visible height of the bisecting planes contributed by a 1/d-ball. 1
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Figure 21: Plotting volVh∗(d) vs. v0/3

Thus our model of the Voronoi cell is accurate for all h∗(d) ≤ h ≤ 1.

In figure 21, we plot vol modelVh∗(d)(CR) = volVh∗(d)(CR) for
√

3 < d ≤ 2 against v0/3.

We remark that for
√

3 < d <≈ 1.90574,
√

2r2(d) exceeds both
√

2r1(d) and
√

4− d2/2.

For larger values of d,
√

2r1(d) dominates. The second non-smooth point on the graph is

due to the fact r1(d) is not differentiable at d =
√

2 +
√

3.

Since we proved the models are accurate (other than in the exceptional case mentioned

above), we may conclude that volV (CR) > volVh∗(d)(CR) > v0/3 for
√

3 < d ≤ 2. Since

Vh∗(d)(CR) ∩ V (CN) = ∅, we may separately apply Meyerhoff’s bound to the nonrigid cusp

and obtain

vol(O) ≥ 2v0√
3
·
√

3

4
+ volV (CR) >

v0
2

+
v0
3

=
5v0
6

We return to consider the exceptional case, namely when d =
√

2
√

3, θ = π/12, Hw is

centered at the order 3 singularity, and gπ/12(Hw) is centered at the order 2 singularity. The

radius of gπ/12(Hw) is equal to
√

3r(Hw)/2 < r(Hw). If r(Hw) ≤ r2(
√

2
√

3), then our model

1In fact, when θ = 0, the 1/d-balls do not contribute a visible plane, but we may think of this as a worst
case estimate.
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is still valid and there is nothing to prove.

Suppose r(Hw) > 0.2 > r2(
√

2
√

3) ≈ 0.188. We claim this contradicts the fact that

P(Hz) contributes a face to the Voronoi cell. Let (ω, t) ∈ H3 denote the point of intersection

of the planes P(Hr),P(Hw), and P(gπ/12(Hw)). In order that P(Hz) is visible at least above

height t, we must have

(
√

2r(Hz))
2 ≥ t2 + δ2 where δ = |ω − z|

As a function of z, δ is minimized for some z on the circle |z| = 1. The distance from a

point to a circle is attained at the radial projection of the point onto the circle. The radial

projection of ω onto |z| = 1 is outside of the fundamental domain F∞, so the minimal value

of δ is attained at z = (d/2,
√

4− d2/2).

Using Mathematica, we compute the minimal value for 1/2(t2 + δ2) and show that if

r(Hw) > 0.2, this exceeds r1(
√

2
√

3), which yields the contradictory inequality r(Hz) >

r1(
√

2
√

3). Then r(Hw) ≤ 0.2. Then we compute

volV√0.4(CR) > v0/3 which implies that vol(O) > 5v0/6

This concludes the proof that an orbifold with one rigid (6, 3, 2) cusp and one nonrigid

cusp is either O(6,3,2) or has volume greater than 5v0/6. Let us remark that we actually

have vol(O) > v1 in all except the final two cases. The methods used to obtain vol(O) >

5v0/6 in the final case may be extended to obtain vol(O) > v1. First, one can verify that

Vh∗(d)(CR) > v1 − v0/2 except for d very close to
√

3. The case of d very close to
√

3 may

be dispensed with as in the exceptional case above, namely, if the horoball centered at the

order 3 singularity is too large then the nonrigid horoballs will not contribute to the Voronoi

cell V (CR). The main challenge to is to compute a radius bound on non full-sized horoballs

for 2 < d <
√

5. We omit these details, as they add no more clarity to an already long and

technical argument.
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3.5 Proof of Theorem 3.3

Theorem 3.3. Let O be a complete, orientable, finite-volume hyperbolic 3-orbifold with one

nonrigid cusp and one rigid cusp of type (4, 4, 2). Then either O = O(4,4,2) or vol(O) > v1,

where v1 ≈ 0.91596544 . . . is the volume of an ideal tetrahedron with dihedral angles π/4, π/4,

and π/2.

Introduce coordinates on the plane so there are order 4 singularities at the origin and

(d, d) and equivalent order 2 singularities at (d, 0) and (0, d). Then vol(CR) = d2/2.

3.5.1 Cusps are simultaneously maximized

There are full-sized balls Hr and Hn in the rigid cusp diagram. The minimal volume

diagram has Hr centered at an order 4 singularity and Hn centered at an order 2 singularity.

Then d ≥ 1, so vol(CR) ≥ 1/2. Meyerhoff’s bound yields

vol(O) ≥ 2v0√
3

(√
3

4
+

1

2

)
=

(√
3 + 2

2
√

3

)
v0 > v0

since
√

3 + 2 >
√

3 +
√

3 = 2
√

3.

3.5.2 Rigid cusp is not self tangent

There is a full-sized ball Hn in the rigid cusp diagram. Since Hn cannot be centered at an

order 4 singularity, the minimal volume diagram has Hn centered at the order 2 singularity.

Thus d ≥ 1/
√

2.

First suppose that d = 1/
√

2, and let H be a (rigid cusp) horoball centered at an order

4 singularity. Then we claim that r(H) = 1/4 and H is tangent to Hn.

Let ρ4 denote the elliptic isometry which acts as π/2 rotation around a vertical order 4

axis. Since d = 1/
√

2, Hn is tangent to ρ4(Hn), and therefore there is an order 2 elliptic

isometry g whose axis passes through the point of tangency between these two balls. Notice

the axis terminates at order 4 singularities. The action of g can be described geometrically

as inversion in the hemisphere of radius 1/2 centered directly below the point of tangency
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Figure 22: Least volume rigid cusp diagrams when (a) cusps are simultaneously maximized

(b) rigid cusp is not self tangent

between Hn and ρ4(Hn), followed by reflection in the vertical half plane which contains the

order 4 singularities.

Proposition 3.5.1. When d = 1/
√

2, H is tangent to Hn, equivalently, r(H) = 1/4.

Proof. Suppose that r(H) < 1/4. Then H is not tangent to Hn, and it must be tangent

to some (nonrigid) horoball H ′ of radius r′. If r′ < r, then there is a disk of no tangency

on H (hence also on H∞) of Euclidean radius greater than 1. This contradicts d = 1/
√

2,

since there are points of tangency on H∞ with distance between them equal to 1. So we may

assume that r′ ≥ r.

Let ρ4 denote the elliptic isometry which acts as π/2 rotation around the order 4 singu-

larity at (d, d) (the same argument below works if instead we consider the order 4 singularity

at the origin). Since d = 1/
√

2, Hn is tangent to ρ4(Hn), and therefore there is an order

2 elliptic isometry g whose axis passes through the point of tangency between these two

balls. Notice the axis terminates at order 4 singularities. The action of g can be described

geometrically as inversion in the hemisphere of radius 1/2 centered directly below the point

of tangency between Hn and ρ4(Hn), followed by reflection in the vertical half plane which
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contains the order 4 singularities.

Figure 23: Computing the distance between H ′ and ρ24(g(H ′)).

In figure 23, O is the center of the hemisphere of inversion, Q is the order 4 singularity

at (d, d), and P is the center of H ′. S is the inverse of P , P ′ = g(P ) is the reflection of S,

and P ′′ = ρ24(P
′). Let α = ∠OQP, β = ∠QOP, e = |OP |, c = |PQ|, and c′ = |SQ|. Observe

that |SQ| = |P ′Q| = |P ′′Q|.

We want to compute the distance |PP ′′|.

The triangles POQ and QOS are similar, since

S is the inverse of P in the circle centered at O of radius |OQ| ⇐⇒ |OP ||OS| = |OQ|2

⇐⇒ |OP |
|OQ|

=
|OQ|
|OS|

and ∠POQ = ∠QOS = β.
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Then ∠OSQ = ∠OQP = α. If γ = ∠Q′SQ then by considering the right triangle

OQ′S we have γ = π/2 − (α + β). If x = ∠PQP ′′, then equality of the vertical angles

∠OQP ′′ = ∠P ′QQ′ implies x+ α = α + β, i.e. x = β. Similarity of POQ and QOS yields

c′

c
=
|OS|
|OQ|

=
1
4e
1
2

⇐⇒ c′ =
1

2e
c

Now the law of cosines gives

|PP ′′|2 = c2 + (c′)2 − 2cc′ cos β

= c2
(

1 +
1

4e2
− 1

e
cos β

)
Recall that the horoballs centered at P and P ′′ have radii r′ and r′

4e2
respectively. In

order that these horoballs do not overlap, we must have

2

√
r′ · r

′

4e2
≤ c

√
1− 1

e
cos β +

1

4e2
⇐⇒

r′

c
≤
√
e2 − e cos β +

1

4

Since H ′ is tangent to H, we have r′ = c2

4r
. Moreover, the assumption r′ ≥ r is equivalent

to c ≥ 2r, so
r′

c
=

c

4r
≥ 2r

4r
=

1

2

and we must have
1

2
≤
√
e2 − e cos β +

1

4
⇐⇒ cos β ≤ e

For fixed β ∈ [0, π/2] the maximum value of e, denoted e0 occurs when P is on the

segment joining Q to the center of Hn.

Then the law of sines yields

e0
sin π/4

=

√
2(1/2− e0 cos β)

sin β
⇐⇒ e0 =

1

2(sin β + cos β)
.

Observe

e0 − cos β =
1− 2 cos2 β − 2 cos β sin β

2(sin β + cos β)
= −cos(2β) + sin(2β)

2(cos β + sin β)
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Figure 24: (a) the maximum value of e (b) if β ≥ π/4, the maximum distance from P to the

center of Hn.

The denominator is positive for 0 ≤ β ≤ π/2 and the numerator is positive for 0 ≤ β ≤ 3π/8,

so if β ≤ 3π/8 we have

e ≤ e0 < cos β

contradicting our previous requirement.

But in fact if β ≥ π/4, H ′ is already too close to Hn. For in this case, c ≥ 1
2
√
2

= 2−3/2

and r′ ≥ c
2
≥ 2−5/2. Since g(H ′) cannot have radius larger than 1/2 we must have

1

2
≥ r′

4e2
⇐⇒ e2 ≥ r′

2
≥ 2−7/2 ⇐⇒ e ≥ 2−7/4

Then the distance from P to the center of Hn is at most√
(2−3/2)2 + (2−3/2 − 2−7/4)2 ≈ .358

In order for H ′ to not overlap with Hn, this distance be greater than or equal to

2

√
1

2
· r′ =

√
2r′ ≥

√
2−3/2 = 2−3/4 > 1/2

but

1/2 < distance between centers of Hn and H ′ ≤ .358

is a contradiction. The only way this contradiction is avoided is if H ′ = Hn, and the

conclusion of the proposition follows.
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The above proposition implies that when d = 1/
√

2, we have the cusp diagrams for

O(4,4,2) computed earlier, so Theorem 3.4 implies that O = O(4,4,2).

One can also observe that the order 2 elliptic g mentioned above, when combined with

the isometries stabilizing ∞, generates a group with fundamental domain a (π/4, π/4, π/2)

ideal tetrahedron - i.e. O has volume at least v1.

Now suppose that d > 1√
2
. Then Hn is no longer tangent to ρ4(Hn), and the isometry g

is not necessarily an element of the group. A priori, it seems we cannot force the rigid cusp

to have more volume, so instead we use Proposition 3.2.1 to get a better lower bound on

vol(CN).

We inquire what is the maximum distance between the center of Hn and the center of

H, a horoball tangent to Hn.

Lemma 3.5.1. Let H be any horoball tangent to Hn, and let e be the distance between their

centers. If H covers the rigid cusp, then e ≤ d, and if H covers the nonrigid cusp then

e ≤ a(d) :=

√
1 + d−

√
1 + 2d− d2

Proof. The first claim is clear, since H can be centered at an order 4 singularity, a distance

d away from the center of Hn. If H covers CN , then H cannot be centered at an order

4 singularity. The maximum distance will be attained when the center of H lies on the

equidistant line between the order 2 singularities (otherwise, H is closer to one of Hn or

ρ4(Hn) than the other).

Let a denote the distance between the centers of H and Hn and b denote the distance

between the center of H and the nearest order 4 singularity. Since H is tangent to Hn,

its radius r = a2

2
is determined. Geometrically, it is clear that the minimum value for b

corresponds to the maximum value for a, so we seek a lower bound on b.

In order that H does not overlap its translates by the π/2-rotation, we must have

r ≤ b√
2
⇐⇒ a2 ≤

√
2b

The law of cosines implies that

√
2b ≥ a2 = d2 + b2 −

√
2db
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Figure 25: The maximum distance between H and Hn

so

b2 − (
√

2(d+ 1))b+ d2 ≤ 0

In order for this inequality to be true, the value of b must be between the two roots of the

polynomial on the left hand side. This implies that

b ≥ d+ 1−
√

1 + 2d− d2√
2

This lower bound on b corresponds to the following upper bound on a

a ≤
√√

2b ≤
√

1 + d−
√

1 + 2d− d2

Now we apply Proposition 3.2.1 to obtain

vol(O) ≥ 2v0√
3

(
vn(1/d, 1/a(d)) +

d2

2

)
We conclude from figure 26 that vol(O) > v0 for 1/

√
2 < d ≤ 4

√
3/
√

2. Notice if

d ≥ 4
√

3/
√

2, the apriori bound of vol(CN) ≥
√

3/4 is sufficient to guarantee vol(O) ≥ v0 by

Meyerhoff’s bound.
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Figure 26: Plot of v0 versus the lower bound on vol(O)

3.5.3 Disjoint cusps

There is a full-sized ball Hr in the rigid cusp diagram. If Hr is not centered at any

singularity, then d ≥ 1, so vol(CR) ≥ 1/2.

If Hr is centered at the order 2 singularity, then the center of the largest horoball covering

CN must be a distance at least one away from the order 2 singularities. This implies d > 1,

so vol(CR) > 1/2.

The least volume case occurs when Hr is centered at an order 4 singularity. In principle,

the horoball at the other order 4 singularity need not be full-sized. A priori, this gives

d ≥ 1/2, but if one considers that the horoball Hz of largest Euclidean radius which covers

CN must be a distance at least 1 away from Hr, we have d > 1/
√

2.

We handle this case by the same methods applied in the (6, 3, 2) case of disjoint cusps, by

estimating the volume of V (CR). Our model includes the plane P(Hr). See the Figure 3.5.3

for the decompositions of Vh(CR) into spherical chimneys, orthoschemes, and flat chimneys

depending on the value of h.
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The resulting volume formula is

vol modelVh(CR) =


1
4

vol Πs(1, h) + vol Πf (A, h) if
√

1− d2 ≤ h < 1

π/2−2α
2π

vol Πs(1, h) + 2 volSα,π/2−α,γ + vol Πf (A, h) if 0 < h ≤
√

1− d2

where

α = arccos
d√

1− h2
and γ = arccos d

Next, we bound the radius of horoballs not included in our model.

There is an order 2 elliptic isometry gθ ∈ Γ whose axis passes through the point of

tangency of Hr and H∞, where θ denotes the angle that the projection of gθ’s axis makes

with the x-axis.

The point of tangency between Hr and H∞ is a lift of a finite vertex in the singular locus

of O. There is a third axis through this vertex of order m, where m ∈ {2, 3}. Since the order

2 and order 4 axes are perpendicular, we must have m = 2 due to spherical trigonometry. In

a (2, 3, 4) spherical triangle group, the angle between the order 2 and order 4 axes must be

π/4, as can be seen using the spherical law of cosines (compare Theorems 2.5.3 and 2.5.4 of

[33]). So there is another order 2 elliptic g′ whose axis goes throught the point of tangency

and makes an angle of π/4 with the axis of gθ. Without loss of generality, we may assume

0 ≤ θ < π/4, for otherwise we exchange the roles of gθ and g′.
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Let Hz and Hw be horoballs covering CN and CR respectively of largest Euclidean radius

among all such horoballs which are not full-sized. Since the center of Hz must satsify |z| ≥ 1,

we must have d > 1√
2
. If d ≥ 1

4√2 , then Meyerhoff’s bound yields

2v0√
3

(√
3

4
+

1

2

)
=

(√
6 + 2

2
√

6

)
v0 ≈ .921819 . . . > v1

So we shall consider 1/
√

2 < d < 1/ 4
√

2.

If |w| < 1, then gθ(Hw) must be a full-sized horoball. As we shall see, the horoball at

(d, d) cannot be full-sized, so Hw is the image under gθ of a full-sized horoball centered at

one of the points (±2d, 0), (0,±2d). In analogy with the 1/d-balls in the (6, 3, 2) case, we

say Hw is a 1/2d-ball, as this is its distance from Hr. For 0 < θ < π/4, P(Hw) is visible at

height
√

1− h2. Keeping this in mind, we now assume |w| ≥ 1.

Lemma 3.5.2. For 1/
√

2 < d < 1/ 4
√

2, define

r1(d) =
d−
√

1− d2√
2

Let H stand for Hz or Hw when w 6= (d, d) and in the notation above. Then r(H) ≤ r1(d).

Proof. Let z denote the center of H and let a be the distance from z to (d, d). Then

0 < a ≤ d −
√

1− d2, noting that H is not centered at (d, d). In order that H does not

overlap with ρ4(H), we must have

r(H) ≤
√

2a

2
≤ 1√

2
(d−

√
1− d2)

Now we bound r(Hw) when w = (d, d).

Lemma 3.5.3. Let H be centered at the order 4 singularity at (d, d). For 1/
√

2 < d < 1/ 4
√

2,

there is a function r2(d) for which r(H) ≤ r2(d).
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Proof. We will compare gθ(H) to ρ2(gθ(H)) centered at (d,−d), to its translate by ρ2, and

to the full-sized horoball centered at (2d, 0). When π/8 < θ < π/4, the distance between

the centers of gθ(H) and H is equal to the distance between the centers of gπ/4−θ(H) and

ρ2(H), so without loss of generality we assume 0 ≤ θ ≤ π/8.

Let a(d, θ) be the distance from the center of gθ(H) to (d, 0), let b(d, θ) be the distance

between the centers of gθ(H) and ρ2(H)) centered at (d,−d), and let c(d, θ) be the distance

between the centers of gθ(H) and ρ2(Hr) centered at (2d, 0). Applying the law of cosines

yields

a2(d, θ) = d2 +
1

2d2
−
√

2 cos(π/4− 2θ)

b2(d, θ) = 2d2 +
1

2d2
− 2 cos(2θ)

c2(d, θ) = 4d2 +
1

2d2
−
√

8 cos(π/4− 2θ)

Figure 27: The setting of Lemma 3.5.3

Comparing gθ(H) to ρ2(gθ(H)), ρ2(H), and ρ2(Hr) respectively yields the following in-

equalities which must be satisfied.

r(gθ(H)) ≤ a(d, θ)

2
√
r(gθ(H)) · r(H) ≤ b(d, θ)

2
√
r(gθ(H)) · 1/2 ≤ c(d, θ)
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Recalling from Lemma 3.2.3 that r(gθ(H)) = r(H)/2d2, we obtain from these inequalities

the upper bound

r(H) ≤ min

{
2d2a(d, θ),

d√
2
b(d, θ), (d · c(d, θ))2

}
Define θ1(d) and θ2(d) implicitly by the relations

2d2a(d, θ1(d)) =
d√
2
b(d, θ1(d))

(dc(d, θ2(d)))2 =
d√
2
b(d, θ2(d))

and set θ(d) = min{θ1(d), θ2(d)}.

Then for θ < θ(d), we have

d√
2
b(d, θ) ≤ min

{
2d2a(d, θ), (d · c(d, θ))2

}
Since b increases with fixed d and increasing θ, we define

r2(d) =
d√
2
b(d, θ(d))

and we have r(H) ≤ r2(d).

Remark: There are no special cases in the above lemma as there were in the corre-

sponding lemma of the (6, 3, 2) case, since gθ(H) is centered at an order 4 singularity only if

d = 1/
√

2 and gθ(H) is centered at the order 2 singularity only if d = 1/ 4
√

2.

Now define

h∗(d) = max
{√

2r1(d),
√

2r2(d),
√

1− d2
}

and the lemmas above prove that modelVh(CR) is accurate for all h∗(d) ≤ h ≤ 1.

In figure 28, we plot volVh∗(d)(CR) + v0/2 against v1 for 1/
√

2 < d < 1/ 4
√

2 and observe

that

vol(O) ≥ volVh∗(d)(CR) + v0/2 > v1

for .73 < d < 1/ 4
√

2.

We rule out the case 1/
√

2 < d ≤ .74 in the following

Lemma 3.5.4. If 1/
√

2 < d ≤ .74, the nonrigid cusp makes no contribution to V (CR).
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Figure 28: The lower bound for vol(O) vs. v1

Proof. Let Hz denote the nonrigid horoball of largest Euclidean radius, centered at z. Recall

|z| ≥ 1 and r(Hz) ≤ r1(d).

Let H denote the image of the full-sized horoball centered at (2d, 0) under gθ. Then H

is a horoball of radius 1/8d2. Its center is a distance 1/2d away from the origin and makes

an angle of 2θ with the x-axis. Since d > 1/
√

2, H is not centered at the order 2 singularity

at (d, 0). In order that H does not intersect this axis, we must have(
1

8d2

)2

≤ 1

4d2
+ d2 − cos 2θ,

equivalently

cos 2θ ≤ d2 +
1

4d2
− 1

64d4

which implies that

θ ≥ 1

2
arccos

(
d2 +

1

4d2
− 1

64d4

)
Define θmin(d) to be the right hand side of the above inequality.
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The smallest visible height on P(H) within the fundamental domain for Γ∞(CR) is above

the order 4 singularity at (d, d). Let t(d, θ) denote this height, and a(d, θ) denote the distance

from the center of H to (d, d). Then

a2(d, θ) = 2d2 +
1

4d2
−
√

2 cos(π/4− 2θ)

and

a2(d, θ) + t2(d, θ) =
1

4d2

For fixed d, t(d, θ) increases as θ increases. Hence

t(d, θ) ≥ t(d, θmin) =

√
1

4d2
− a2(d, θmin) =

√√
2 cos(π/4− 2θmin)− 2d2

So on the one hand, the visible height of P(Hz) is bounded below by t(d, θ), and on the

other hand the visible height is bounded above by
√

2r1(d). As we see in figure 29, t(d, θmin)

exceeds
√

2r1(d) for all 1/
√

2 < d < .74.

Figure 29: t(d, θmin) ≤ visible height of P(H) ≤
√

2r1(d) is not satisfied for 1/
√

2 < d < .74

This concludes the proof of Theorem 3.3
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4.0 Orbifolds commensurable with the figure eight knot complement

In this chapter, we describe a joint work [16] with J. DeBlois, H. A. Ekanayake, M.

Fincher, A. Gharagozlou, and P. Mondal on constructing a census of small volume orbifolds

commensurable with the figure eight knot complement. We first give a broad overview of

the project, and then describe our main contributions in greater detail.

Throughout this section, we assume all orbifolds to be oriented and all maps (isometries,

covers) to be orientation preserving.

Definition 4.0.1. Orbifolds Q1 and Q2 are commensurable if there is a covering orbifold Q

so Q→ Q1 and Q→ Q2 both are finite sheeted covers.

Let M be the figure eight knot complement. Then M is a hyperbolic 3-manifold of volume

2v0 (compare example 4.3.3). M covers the minimal volume orbifold Q = H3/PGL2(O3) of

volume v0/12. Here O3 denotes the ring of integers in the number field Q(
√
−3).

Definition 4.0.2. We define the category C3 whose objects are the isometry classes of

orbifolds commensurable with M . Given orbifolds O1, O2 there is an arrow from O1 to O2

for each covering map O1 → O2.

The goal of this project is to describe the subcategory C≤2v03 of C3 whose objects have

volume at most 2v0.

4.1 Outline of the program

A number of components are required to complete the picture of C≤2v03 . The first is Cmain,

a subcategory of C≤2v03 consisting of covers of Q. As will be described in section 4.2, Q may

be obtained from face pairings on a certain tetrahedron T in H3, and covers of Q are given

by triangulations built from copies of T . We can determine when one element of Cmain covers

another, thus we have a description of this subcategory.

An orbifold in C3 is minimal if it covers no other orientable orbifold. Q ∈ Cmain is minimal,
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but C3 contains other minimal orbifolds which do not lie in Cmain. These minimal orbifolds

correspond to maximal discrete groups in the commensurability class determined by the

maximal order O = M2(O3) in the quaternion algebra A = M2(Q(
√
−3)) over the number

field Q(
√
−3). Section 6.1 of [16] gives exposition, referring to [26], on how to determine

these maximal groups. As this author was not personally involved in this aspect of the

project, we will be content to cite the results. The reader who is interested in how to obtain

them is encouraged to refer to section 6 of [16] and [26] for more background.

Theorem 4.1 (Proposition 6.3 of [16]). For distinct primes π1, . . . , πn ∈ O3 and π =

π1 . . . πn,

Γ̃π =


x πy

z w

 ∈ PGL2(O3) | x, y, z, w ∈ O3


has index

∏n
i=1(N(Pi) + 1) in PGL2(O3), where for each i, N(Pi) is the norm of the prime

ideal generated by πi.

For each 1 ≤ i < n, there are ki, li ∈ O3 such that

ki

i∏
j=1

πj + li

n∏
j=i+1

πj = 1.

Define

Mπ =

0 π

1 0

 and Ni =

∏i
j=1 πj π

li −ki
∏i

j=1 πj


Then

Γπ = 〈Γ̃π,Mπ, N1, . . . , Nn−1〉

is a maximal discrete group. Γπ is the normalizer in PGL2(C) of Γ̃π and [Γπ : Γ̃π] = 2n.

Every maximal discrete group commensurable with but not equal to PGL2(O3) is of the

form Γπ for some π ∈ O3.

As we shall see, vol(Q) = v0/12, so the above theorem implies that for a product of

distinct primes π = π1 . . . πn,

vol(Qπ) =
1

2n

(
n∏
i=1

(N(Pi) + 1)

)
v0
12
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This reduces the problem of classifying minimal orbifolds of small volume to classifying

prime ideals in O3 of small norm. We give more details in section 4.4.

Any P ∈ C3−Cmain will lie in the lattice of covers of some minimal Qπ. For π a product of

distinct primes in O3, let Qπ = H3/Γπ, and Q̃π = H3/Γ̃π. For a cover P → Qπ, represented

by a subgroup Γ ≤ Γπ, define its canonical cover as P̃ = H3/(Γ ∩ PGL2(O3)). Then (see

Corollary 8.9 of [16]) P̃ covers Q̃π and the cover P̃ → P is normal with deck transformation

group contained in (Z/2Z)n. Moreover, covers P → Qπ and P ′ → Qπ are isomorphic if

and only if P̃ → Q̃π and P̃ ′ → Q̃π are isomorphic and the group of deck transformations of

P̃ → P contains that of P̃ ′ → P ′.

In practice, to describe covers of Qπ up to a given volume bound, we enumerate covers

P̃ of Q̃π. By the work of Mark Fincher, we can compute the full group G (not just those

that preserve the triangulation) of self-isometries of P̃ and describe a cover P → Qπ as P̃ /H

for some subgroup H ≤ G. See Fincher’s thesis [18] and sections 7 and 8 of [16] for more

details.

This concludes the general outline of the program for describing the category C≤2v03 . In

the remainder of the chapter we will

(i) Describe a recursive algorithm to construct covers of the minimal orbifold H3/PGL2(O3).

(ii) Describe algorithms to compute geometric and topological information about elements

of Cmain. In particular, for such an orbifold we can determine how many cusps it has and

the type of each one, its singular locus, and whether it has a triangulation preserving

cover of another element of Cmain

(iii) Use Proposition 6.3 of [16] to list the Qπ with volume ≤ v0 and describe how to find

its canonical cover Q̃π ∈ Cmain.

4.2 Constructing covers of H3/PGL2(O3)

There is a tesselation T3 of H3 by regular ideal tetrahedra. The orientation preserving

symmetry group of this tesselation is PGL2(O3). A fundamental domain for the action of

PGL2(O3) on H3 is described as follows: For z = 1/2 +
√

3i/6, let T0 be the convex hull in
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upper half space of ∞ and the points on the unit hemisphere above 0, 1/2, and z ∈ C. Let

σ denote reflection in the vertical plane above the real axis and let T = T0 ∪ σ(T0). T is

a tetrahedron with one ideal vertex at ∞ and finite vertices on the unit hemisphere above

0, z, and z. We label the vertices of T as follows:

v ↔∞

e↔ vertex above 0

f0 ↔ vertex above z

f1 ↔ vertex above z

We follow the convention that faces are labeled with the same label as the vertex they do not

contain. For example, face f0 is contained in the vertical half plane above the line through

0 and z. See Figure 30

Reflections in the faces of T0 generate the full symmetry group PGL2(O3) of T3 (see [23]

for more details). Let σv denote reflection in the face labeled v, likewise for σf1 , σe. By taking

products of reflections in faces of T0 which meet at an edge, we obtain rotations about the

edges of T0 which pair the faces of T . In particular, ρf = σf1σ is the order 6 rotation about

the axis connecting e to v, ρe = σeσ is the order 2 rotation about the axis connecting v to

the midpoint of the segment connecting f0 to f1, and ρv = σvσ is the order 2 rotation about

the axis connecting e to the midpoint of the segment connecting f0 to f1.

Note that ρf identifies face f1 with face f0, while ρv and ρe self-identify faces v and e

respectively. Moreover, these are the unique isometries which identify the aforementioned

faces.

The following fact allows us to enumerate elements of Cmain.

Proposition 4.2.1 (Fact 2.8 of [16]). An orbifold O is a degree m covering O → Q =

H3/PGL2(O3) if and only if O is triangulated by m isometric copies of T .

In [19], the authors construct a census of cusped hyperbolic 3-manifolds which are ob-

tained by face pairings on some collection of regular ideal tetrahedra. They first define a

combinatorial tetrahedral tessellation to be an ideal triangulation where all edges have order

6. This follows since the sum of dihedral angles around an edge in a manifold must be 2π,
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Figure 30: The tetrahedron T
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and in a regular ideal tetrahedron every dihedral angle is π/3. A combinatorial tetrahedral

tesselation determines a tetrahedral manifold. The authors describe an algorithm which

enumerates all combinatorial tetrahedral tessellations with at most n tetrahedra. They then

introduce the isometry signature to determine when two combinatorially distinct tessellations

yield isometric tetrahedral manifolds.

We briefly and informally describe their algorithm to enumerate (orientable) combinato-

rial tetrahedral tessellations. One may think of the procedure as recursively constructing a

tree. The root of the tree is a single tetrahedron with none of its faces identified. Each node

of the tree is a collection of tetrahedra with some subset of their faces identified in pairs. A

leaf of the tree is a collection of tetrahedra with all faces identified in pairs.

Given a partial triangulation T at a node, the node’s children will be triangulations T ′

obtained from T in the following way

• T ′ is obtained from T by gluing a new tetrahedron to an open face of T ,

• or T ′ is obtained from T by choosing a pair of open faces in T and identifying them by

some odd permutation of their vertices.

In particular, a node should have one child for each possible way of carrying out the above

modification of its partial triangulation.

The algorithm searches the tree and records those triangulations at its leaves which are

combinatorial tetrahedral tessellations, namely those triangulations where each edge meets

six tetrahedra. In practice, the tree is not first constructed and then searched. The algo-

rithm constructs the tree recursively while keeping a lookout for combinatorial tetrahedral

tessellations.

The size of the tree grows exponentially with the maximum number of tetrahedra, but the

performance of the algorithm may be improved substantially by pruning the tree. One can

see that there will be different nodes of the tree whose triangulations are combinatorially

isomorphic. The authors avoid duplicate computation in this scenario by keeping a list

of combinatorial invariants of the partial triangulations which have already been visited

during the search. They use Burton’s isomorphism signature [8] as the complete invariant

of the combinatorial isomorphism type of a triangulation. If the recursion arrives at a
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new triangulation whose isomorphism signature has already been encountered, that node’s

subtree is not searched. The tree may also be pruned when we can guarantee that a node’s

subtree does not contain a combinatorial tetrahedral tessellation. For example, an edge may

have valence greater than six or the triangulation may have non-manifold topology.

Now we explain how to adapt this algorithm to our setting, give a pseudocode description

of it in Algorithms 1 and 2, and briefly remark on some implementation details.

Definition 4.2.1. By a triangulation T , we mean the data of n-tetrahedra T0, . . . , Tn−1,

each of which is isometric to T , and maps which identify some subset of pairs of faces. We

say a triangulation is closed if all of its faces are identified in pairs, otherwise we refer to it

as a partial triangulation.

Our situation is much more rigid than that of the authors of [19] - their regular ideal

tetrahedra are much more symmetric than our copies of T . In particular, given two tetrahedra

Ti, Tj, the face pairing between them is uniquely determined by specifying an open face of

Ti. Face f0 of Ti can only be glued to face f1 of Tj, face v of Ti may only be glued to face v

of Tj, etc.

On the other hand, our situation is more flexible in that we don’t require each edge to

have valence six. For our triangulation to represent an orbifold, we only require that the

sum of dihedral angles around each edge be an integer submultiple of 2π. We say such a

triangulation is valid

What is the appropriate combinatorial invariant which determines our triangulations (up

to a relabeling of the tetrahedra)? The isomorphism signature is not sufficient as its purpose

is to encode the combinatorial isomorphism type of an abstract simplicial complex. The

authors of [19] are able to use it with no modification since their tetrahedra are regular, but

in our tetrahedra the sets of faces {f0, f1}, {v}, {e} are geometrically distinct and different

edges have different dihedral angles. For this reason, we develop our own invariant called the

triangulation’s destination sequence. This is related to, but distinct from Burton’s notion

with the same name.

Definition 4.2.2. For a closed triangulation T of n tetrahedra T0, . . . , Tn−1, the desti-

nation sequence determined by the pair (T , T0) is an array s of length 4n whose entries
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(s0, s1, . . . , s4n−1) are determined as follows:

Label the faces of T with integers as v = 0, f0 = 1, f2 = 2, and e = 3. Write k = 4i + j

where i ∈ {0, . . . , n − 1} and j ∈ {0, 1, 2, 3}. Then sk is the index of the tetrahedron that

intersects Ti along face j, where this tetrahedron is given the next free index if it has not

yet been encountered.

From the n different choices of initial tetrahedron T0, we obtain n different sequences.

Among these, we define the destination sequence of T to be the lexicographically minimal

one.

Example 4.2.1. For the triangulation of Q = H3/PGL2(O3) with one copy of T its desti-

nation sequence is

(0000)

Example 4.2.2. It is an instructive example to try to construct all triangulations with two

copies of T . Call them Ta and Tb. Let Ta(v) denote face v of Ta, and likewise. Then

Ta(v) can be glued to itself or Tb(v)

Ta(e) can be glued to itself or Tb(e)

Ta(f0) can be glued to Ta(f1) or Tb(f1)

Once these three choices are made, the remaining identification is determined - hence there

are eight possible face pairings. One of these results in a disconnected cover of Q, which we

are not interested in. Of the remaining seven cases, six of them have an edge whose dihedral

angle sum is 4π/3. The only set of face pairings which results in a valid triangulation is

{Ta(v)↔ Tb(v), Ta(f0)↔ Tb(f1), Ta(f1)↔ Tb(f0), Ta(e)↔ Tb(e)}

Regardless of whether Ta or Tb is labeled T0, we obtain the destination sequence

(1111, 0000)
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Example 4.2.3. To see an example where the destination sequences differ depending on

which tetrahedron is labeled T0, consider the valid triangulation with three tetrahedra

Ta, Tb, Tc and face pairings

Ta(v)↔ Ta(v) Ta(f0)↔ Ta(f1) Ta(e)↔ Tb(e)

Tb(v)↔ Tc(v) Tb(f0)↔ Tc(f1) Tb(e)↔ Ta(e)

Tc(v)↔ Tb(v) Tc(f0)↔ Tb(f1) Tc(e)↔ Tc(e)

The corresponding destination sequences are

When Ta = T0 (0001, 2220, 1112)

When Tb = T0 (1112, 0001, 2220)

When Tc = T0 (1110, 0002, 2221)

The lexicographically minimal sequence arises from Ta = T0. This is the destination

sequence of the orbifold determined by this valid triangulation.

The algorithms of this section were implemented in C++1, interfacing with Regina’s [10]

rich support for triangulations. We implemented a wrapper class O3Tetrahedron which

represents a copy of T . It implements basic features of Regina’s Tetrahedron class, such as

a method to perform face pairing on two copies of T ; see O3Tetrahedron.h for more details.

The user of the class need not worry about the various bookkeeping details underlying its

implementation. For example, Regina does not allow a face to be glued to itself, but our

tetrahedra have such face pairings. We won’t explain here how such details are handled, as

the interested reader is free to examine the code. Likewise, a wrapper class O3Triangulation

represents a triangulation composed of copies of an O3Tetrahedron identified under face

pairings.

Using the resources of Pitt’s Center for Research Computing (CRC), we were able to

enumerate all triangulations of orbifolds in Cmain containing at most 36 tetrahedra in roughly

3 and a half days of computing time. To complete the enumeration of C≤2v0main , using ideas

and code of Goerner from [22] we modified the enumeration algorithm to utilize multiple

threads2.

1The code is available at https://github.com/tgaona22/O3Enumeration
2See threadpool.h and concurrent enumerate.cpp
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result ← {}

already seen ← {}

Function recurse(Triangulation T):

if checkClosedEdges(T) returns true then

if destSeq(T) ∈ already seen then

return

else

add destSeq(T) to already seen

if T has no open faces then

add destSeq(T) to result

return

Choose a tetrahedron t ∈ T

if size(T) < max tets then

for f ∈ {v, f0, f1, e} do

if f is open in t then
recurse(T with new tetrahedron glued to face f of t)

for f ∈ {v, f0, f1, e} do

if f is open in t then

for t̃ ∈ {t0, . . . , tsize(T )−1} do

f̃ ← the face which pairs with f

if f̃ is open in t̃ then

recurse(T with face f of t glued to face f̃ of t̃)

recurse(Triangulation with one unglued tetrahedron)

return result

Algorithm 1: Enumerating triangulations
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Data: a triangulation T

Result: returns false if there is an invalid edge in T

Function checkClosedEdges (Triangulation T):

for each edge e in T do

if e has no open adjacent faces then

if the dihedral angle around e is not an integer submultiple of 2π then

return false;

end

else if the dihedral angle around e exceeds 2π then

return false;

end

return true;

Algorithm 2: a method to test whether a triangulation has edges which cannot be made

valid by further face pairings

We summarize our data in Tables 1 and 2 in the appendix. The notation for orbifolds is

On
k , where n is the number of tetrahedra and the index k is the position of On

k ’s destination

sequence in the lexicographically sorted list of all destination sequences of triangulations

with n-tetrahedra.

4.3 Cusps and singular loci of elements of Cmain

In this section, we describe algorithms for computing topological and geometric data

from the triangulations enumerated by the methods of the previous section. For this section,

when we say orbifold we mean a triangulation of an element of C≤2v0main
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4.3.1 Cusps

First we show how to construct two dimensional triangulations of cross sections of an

orbifold’s cusps. Since T has an ideal vertex, our orbifolds all have at least one cusp. We

illustrate the method via an example.

Example 4.3.1. We will construct triangulations of the cross sections of O6
0’s cusps. Its

destination sequence is

(0001, 2330, 1442, 4113, 3225, 5554)

In T , the link of the ideal vertex is an equilateral Euclidean triangle. Each tetrahedron

Ti in the triangulation contributes an equilateral triangle ti to one of the cusp cross sections.

The edges of ti are labeled f0, f1, and e corresponding to the face of Ti which contains it.

The first step is to group triangles which belong to the same cusp cross section. Consider

T0. Across faces f0, f1, and e it meets itself and T1 respectively. T1 meets T3 across faces f1

and f0. Finally T3 meets itself across face e. By similar considerations beginning with T2,

we see that O6
0 has two cusps, and the triangles which belong to each cross section are

{t0, t1, t3} and {t2, t4, t5}

Focus on the cusp cross section containing the triangles t0, t1 and t3. The edge pairings

on this collection of triangles are induced by the face pairings of O6
0. See Figure 31, where

edges with an equal number of hash marks are identified.

Finally, we determine the cone points of the Euclidean 2-orbifold which is the quotient

of {t0, t1, t3} modulo the edge pairings. One cone point with angle π is created since edge e

of t3 is identified to itself under a π-rotation about its midpoint. By “walking around” the

four different vertex classes of the triangulation, we compute their angles. The white vertex

has angle 2π, hence is not a cone point. The red and green vertices have cone angles π/3

and 2π/3 respectively. Therefore this is the cross section of a (2, 3, 6) cusp.

Similar considerations show that the remaining cusp is of the same type. See Figure 32

for a triangulation of its cross section.

The pseudocode for this algorithm is given in Algorithm 3. This is implemented as a

method of the O3Triangulation class.
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Data: a triangulation T

Result: a collection of triangulations of cross sections of T ’s cusps

cusps ← {} /* Group triangles by cusp cross section */

while T has tetrahedra not yet visited do

cusp ← { unvisited tetrahedron of T };

while cusp has unexamined tetrahedron T do

for f ∈ {f0, f1, e} do

add tetrahedron glued to face f of T to cusp;

end

end

add cusp to cusps;

end

for each cusp in cusps do

Create a triangle ti for each tetrahedron Ti ∈ cusp;

Glue edge f of ti to tj if face f of Ti is glued to Tj;

for each vertex v ∈ cusp do

v.cone angle← 0;

for each lift ṽ of v in tti do

v.cone angle← v.cone angle+ angle around ṽ in ti;

end

end

end

return cusps;

Algorithm 3: triangulating cusp cross sections
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Figure 31: Cusp cross section determined by {t0, t1, t3}

4.3.2 Singular Locus

Next we show to construct the singular locus of a triangulation T of O ∈ Cmain. Our

starting point is the following fact.

Definition 4.3.1. For T , we define its 1-skeleton to be the union of the vertices and edges of

T along with the edges connecting the midpoint of the segment f0f1 to v and e respectively.

Fact 4.3.1. The singular locus of O ∈ Cmain lifts to a subset of the 1-skeleton of its triangu-

lation T .

Proof. A point in the interior of a tetrahedron has a neighborhood isometric to a ball which

factors through the projection to O. A point in the 2-skeleton but not in the 1-skeleton of T

89



Figure 32: Cusp cross section determined by {t2, t4, t5}

has a neighborhood which lifts via the quotient map to two half balls glued together along

their meridional disks to form a ball.

Again, we work a simple example by hand before giving the general algorithm.

Example 4.3.2. Recall O2
0 has destination sequence

(1111, 0000)

First we examine the gluing data to draw the 1-skeleton of the triangulation of O2
0. In Figure

33 (a), we label each edge with its dihedral angle. Any edge with dihedral angle 2π is not

contained in the singular locus, hence is removed in figure (b). Also, in Figure 33 (b) we

label each edge by its order, namely k if its dihedral angle is 2π/k.

Notice that the vertex labeled IV connected two edges of dihedral angle π. After removing

those edges, notice that vertex IV is just a point on an order 3 axis in the singular locus.

Thus we delete vertex IV and join vertices III and V by an edge with label 3. See Figure

34. Notice that vertex I represents a (3,3,3) rigid cusp, while the other vertices are trivalent

with labelings (p, q, r) satisfying 1/p+1/q+1/r > 1, consistent with Theorem 2.1. The cusp

itself is not part of the singular locus, and need not have edges of the singular locus running

into it. But when it does, we include it in the singular locus diagram.
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Figure 33: (a) 1-skeleton of the triangulation (b) after removing non-singular edges

Example 4.3.3. The singular locus of an orbifold need not have any vertices. In chapter 1

of [31], Purcell describes an algorithm due to Menasco which takes the diagram of a link and

produces a decomposition of its complement into ideal polyhedra identified via face pairings.

The results of applying this algorithm to the figure eight knot are illustrated in Figure 35.3

The face pairings are the unique ones implied by the coloring and direction of the arrows.

For example, the face in the background of the tetrahedron at left is identified to the face in

the right foreground of the other tetrahedron by a rotation in the back edge followed by a

one-third rotation about the middle of the right foreground face. One obtains a hyperbolic

structure on the figure eight knot complement by realizing these tetrahedra as regular ideal

tetrahedra in H3. The face pairings prescribed by Figure 35 can be realized as isometries of

H3.

If in addition, we quotient by the order two rotation about the blue axis, we obtain an

orbifold of volume v0. Its singular locus is a closed geodesic labeled two. Notice that the

order two axis is disjoint from and preserves the cusp, so this orbifold still has a torus cusp.

3This example is originally due to Thurston and can be found in the first few pages of his notes. This
author confesses that he still doesn’t understand Thurston’s pictures there.
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Figure 34: (a) the singular locus (b) output of the algorithm

Presumably a similar construction can be applied to the figure eight’s “sister”.

This is realized in our census. The manifolds O24
19 and O24

20 each have one torus cusp and

empty singular locus; these are the figure eight complement and its “sister”. They both

double cover O12
10, an orbifold with one torus cusp and singular locus a single closed geodesic

of order 2.

Example 4.3.4. Figure 36 shows the singular locus algorithm’s output for O10
0 , an orbifold

of volume 5v0/6 with one (2, 2, 2, 2) cusp and one (6, 3, 2) cusp. By Theorem 3.2, O10
0 is

isometric to O(6,3,2). Compare figures 36 and 5.

The pseudocode for computing the singular locus is presented in Algorithm 4. It is

implemented as a method in O3Triangulation. In practice, we compute an adjacency

matrix representation of the graph and pass this output to the program Graphviz [21] to

generate pictures such as Figure 36.
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Figure 35: Tetrahedral decomposition of the figure eight knot complement

Figure 36: Singular locus of O10
0
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Data: a triangulation T

Result: a graph representing the singular locus of T

locus ← 1-skeleton of T ;

Compute dihedral angle around each edge in locus;

Delete edges with angle 2π;

for each vertex v of valence 2 do

if v’s edges terminate in vertices v0 6= v1 then

Delete v;

Join v0 to v1 by an edge of the same label as those that came from v;

end

end

return locus;

Algorithm 4: computing the singular locus

4.4 Enumerating Qπ and Q̃π with small volume

Here we use Theorem 4.1 to enumerate the minimal orbifolds in C3 other than H3/PGL2(O3).

We also describe how to find their canonical covers Q̃π ∈ Cmain. For a number field K, its ring

of integers OK is the set of elements in K which satisfy a monic polynomial with coefficients

in Z. For the quadratic extension Q(
√
−3) of Q, the ring of integers is explicitly identified

as

O3 = OQ(
√
−3) = {a+ bζ | a, b ∈ Z}

where ζ = 1+
√
−3

2
.

We take the following facts about ideals in O3 for granted. Recall that the product of

ideals I1, . . . , Ik is the additive subgroup of O3 generated by {a1 . . . ak | ai ∈ Ii}.

Fact 4.4.1. Let I be a nonzero ideal in O3.

(1) O3/I is a finite ring.

(2) If I is prime, then I is maximal.

(3) I may be written as a product of prime ideals, uniquely up to ordering.
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The first two facts imply that for a nonzero prime ideal P ⊂ O3, O3/P is a finite field. For

any nonzero ideal I ⊂ O3, define its norm n(P ) to be the cardinality of O3/I. The Chinese

Remainder Theorem implies that the norm on ideals is multiplicative. This combined with

the third fact shows that it is enough for us to determine the norms of prime ideals in O3.

Let P be a prime ideal in O3. Then P ∩Z is a prime ideal in Z, hence is equal to pZ for

some prime number p ∈ Z.

Lemma 4.4.1. Let p ∈ Z be prime. Then n(pO3) = p2 and either

• pO3 = P 2 for some prime ideal P ⊂ O3

• pO3 = P1P2 for prime ideals P1, P2 ⊂ O3

• pO3 is itself prime

We say respectively that p ramifies, splits, or is inert

Proof. The map O3 → Z2 defined by

a+ bζ 7→ (a, b)

is an additive group isomorphism. It sends the ideal pO3 to pZ× pZ. Hence

O3/pO3 u (Z× Z)/(pZ× pZ) u (Z/pZ)2

Therefore n(pO3) = p2. Write pO3 = P1 . . . Pm where Pi is a prime ideal in O3. Since the

norm is multiplicative

p2 = n(P1) . . . n(Pm)

and the possibilities are constrained by the limited factorizations of p2. When pO3 = P 2 or

pO3 = P1P2, then n(P ) = n(Pi) = p.

We take for granted that the class number of Q(
√
−3) is 1, which implies that O3 is a

principal ideal domain. Hence any prime ideal in O3 has the form πO3 for some prime element

πO3. The above lemma implies that n(πO3) is either p or p2 for some p ∈ Z. The integer

primes of norm less than 48 may be classified as ramified, split, or inert by computing the

Legendre symbol (−3
p

) as in Lemma 0.3.10 of [26]. The only ramified prime is 3 = −(
√
−3)2.
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The inert primes are 2 and 5 (the primes 11, 17, 23, 41, and 47 are also inert but have norm

greater than 48). The remaining primes split as can be seen below.

7 = (2−
√
−3)(2 +

√
−3)

13 = (1− 2
√
−3)(1 + 2

√
−3)

19 = (4−
√
−3)(4 +

√
−3)

31 = (2 + 3
√
−3)(2− 3

√
−3)

37 = (5 + 2
√
−3)(5− 2

√
−3)

43 = (4 + 3
√
−3)(4− 3

√
−3)

Recall that for π = π1 . . . πn a product of distinct primes πi ∈ O3,

vol(Qπ) =
1

2n

n∏
i=1

(n(πiO3) + 1)
v0
12

Then we obtain the list of Qπ with volume at most 2v0 as in Theorem 6.1 of [16]. To identify

the canonical covers Q̃π ∈ Cmain, we rely on the following fact (see section 6.2 of [16]).

Proposition 4.4.1 (Proposition 6.5 of [16]). For π = π1 . . . πn a product of distinct primes

in O3, Qπ has one (2, 3, 6) cusp and Q̃π has 2n cusps of the same type.

Using Algorithm 3 we compute the cusp data of each element in Cmain. This is enough to

determine Q̃π for π =
√
−3, 2, 2

√
−3. For example, when π = 2

√
−3, the degree of Q̃π → Qπ

is 22 = 4. So vol(Q̃π) = 20 v0
12
, and of the 14 elements of Cmain with 20 tetrahedra, only O20

5

has four (2, 3, 6) cusps. Therefore Q̃π = O20
5

For each complex conjugate pair of primes or prime products, the cusp data narrows

the possibilities for Q̃π down to a pair of orientation-reversing isometric elements of Cmain.

For example, when π = 2 +
√
−3, vol(Q̃π) = 8 v0

12
and of the three elements of Cmain with 8

tetrahedra, both O8
0 and O8

1 have two (2, 3, 6) cusps. One of these is Q̃π and the other is Q̃π.

To distinguish between the two, we rely on the explicit description of Γ̃π given in Theorem

4.1, namely

Γ̃π =


x πy

z w

 ∈ PGL2(O3) | x, y, z, w ∈ O3


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Recall from section 4.2 that PGL2(O3) is generated by ρf , ρe, and ρv. My advisor imple-

mented algorithm which takes the destination sequence of O = H3/Γ ∈ Cmain and produces

a generating set for each subgroup in the conjugacy class of Γ. Each generator is a word in

ρf , ρe and ρv. If O = Q̃π, then one of these subgroups is Γ̃π. Algorithm 5 takes as input

O = H3/Γ ∈ Cmain and π a product of distinct primes in O3 and decides if O = Q̃π.

We implement this in Mathematica [24] where all calculations are done symbolically.

After evaluating each word as a matrix, we test if its upper right entry is divisible by π in

O3. Suppose that x = πy, where y = a + bζ ∈ O3. Then y = π
|π|2x and we may solve for a

and b via

a =
y + y − b

2
, b =

y − y√
−3

Conversely, we do not assume that x is divisible by π, but if we define y, a, and b as above,

then x is divisible by π if and only if y = a + bζ and a, b ∈ Z. Using this algorithm, we

identify theQ̃π, Q̃π with volume ≤ 2v0 which correspond to the elements of the orientation-

reversing isometric pair in Cmain determined by the cusp data. The results of this section

are summarized in Table 3 (compare Corollary 6.2 of [16]). The last four rows of Qπ have

vol(Q̃π) > 2v0.
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Data: O = H3/Γ ∈ Cmain and π a product of distinct primes in O3

Result: returns true iff Γ is conjugate to Γ̃π

subgroupGens ← a list of generators for each subgroup in the conjugacy class of Γ;

Function test (Matrix m, π):

x← upper right entry of m;

y ← π
|π|2x;

b← y−y√
−3 ;

a← y+y−b
2

;

return a, b ∈ Z&&y == a+ bζ;

for each subgroup H in the conjugacy class of Γ do

failed← false;

for each generator w of H do

m← w evaluated as a matrix;

if test (m, π) returns false then

failed ← true;

break;

end

end

if failed is false then

return true;

end

end

return false;

Algorithm 5: Determining Q̃π
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Appendix Data about Cmain

Table 1: Number s(n) of elements of Cmain triangulated by n tetrahedra

n s(n) n s(n) n s(n)

1 1 17 0 33 2

2 1 18 5 34 0

3 1 19 0 35 3

4 1 20 14 36 38

5 1 21 2 37 1

6 4 22 2 38 2

7 0 23 0 39 2

8 3 24 21 40 31

9 1 25 0 41 0

10 2 26 1 42 30

11 0 27 4 43 3

12 12 28 11 44 19

13 0 29 1 45 8

14 4 30 25 46 2

15 2 31 1 47 2

16 2 32 10 48 61
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Table 2: Destination sequences and cusp types for elements of Cmain triangulated by at most

10 tetrahedra

On
k destination sequence cusp(s)

O1
0 0000 (2, 3, 6)

O2
0 1111, 0000 (3, 3, 3)

O3
0 0001, 2220, 1112 (2, 3, 6)

O4
0 0110, 1002, 3221, 2333 (2, 3, 6)× 2

O5
0 0123, 2202, 1011, 4330, 3444 (2, 3, 6)× 2

O6
0 0001, 2330, 1442, 4113, 3225, 5554 (2, 3, 6)× 2

O6
1 0123, 2201, 1014, 5540, 4352, 3435 (2, 2, 2, 2)

O6
2 1112, 0003, 4440, 5551, 2225, 3334 (3, 3, 3)

O6
3 1112, 0003, 4550, 5441, 2335, 3224 (3, 3, 3)

O8
0 0121, 2300, 1042, 4514, 3253, 5436, 7665, 6777 (2, 3, 6)× 2

O8
1 0122, 2301, 1040, 4514, 3253, 5436, 7665, 6777 (2, 3, 6)× 2

O8
2 1221, 0330, 3004, 2115, 6552, 7443, 4777, 5666 (3, 3, 3)× 2

O9
0 0001, 2340, 1562, 6614, 5153, 4427, 3238, 8885, 7778 (2, 3, 6)

O10
0 0001, 2340, 1562, 6414, 5133, 4627, 3258, 8895, 7976, 9789 (2, 3, 6), (2, 2, 2, 2)

O10
1 1121, 0300, 3045, 2617, 6266, 8772, 4434, 9553, 5999, 7888 (3, 3, 3)× 2
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Table 3: Minimal elements of C3 − Cmain

π vol(Qπ) Q̃π

√
−3 2 v0

12
O4

0

2 5
2
v0
12

O5
0

2±
√
−3 4 v0

12
+ : O8

0,− : O8
1

1± 2
√
−3 7 v0

12
+ : O14

0 ,− : O14
1

4±
√
−3 10 v0

12
+ : O20

8 ,− : O20
7

5 13 v0
12

O26
0

2± 3
√
−3 16 v0

12
+ : O32

4 ,− : O32
5

5± 2
√
−3 19 v0

12
+ : O38

1 ,− : O38
0

4± 3
√
−3 22 v0

12
+ : O44

15,− : O44
16

2
√
−3 5 v0

12
O20

5
√
−3(2±

√
−3) 8 v0

12
+ : O32

3 ,− : O32
2

2(2±
√
−3) 10 v0

12
+ : O40

15,− : O40
14

√
−3(1± 2

√
−3) 14 v0

12

2(1± 2
√
−3) 35

2
v0
12√

−3(4±
√
−3) 20 v0

12

2
√
−3(2±

√
−3) 20 v0

12
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