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Quantifying Uncertainty in context of Natural Language Processing

Taehee Jung, PhD

University of Pittsburgh, 2022

Despite recent advances in statistical machine learning that significantly improve per-

formance, the uncertainty behind models remains largely underexplored. We identify two

sources of uncertainty in this dissertation, one coming from learning sources such as al-

gorithms or datasets and the other from the model’s predicted output. In order to better

understand or even improve the model’s results, we then quantify two uncertainties. In par-

ticular, we study three topics of uncertainty quantification in the context of natural language

processing (NLP). Firstly, we quantify model and corpus biases in text summarization based

on three sub-aspects; position, importance, and diversity. Secondly, we develop a simple but

effective end-to-end procedure for improving the performance of text classification tasks and

the quality of the model calibration. Finally, we propose a new framework of model calibra-

tion to interpret individual point estimations with confidence and show less-biased relative

frequency approximation in classification.

Keywords: Model Uncertainty, Model Calibration, Confidence Interval, Natural Language

Processing, Text Summarization, Text Classification.
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1.0 Introduction

Uncertainty quantification is the study of mathematically characterizing and reducing

uncertainties for any computational and real world applications. Specifically for statistical

machine learning models, defining the source of uncertainties and quantifying them is an

important as it helps improve the model performance and better understand the result

correctly. For example, Kennedy and O’Hagan [2001] categorize the source of uncertainty

of computer models into six groups, such as parameter uncertainty, model inadequacy, and

residual variability and so on. However, how to define the source of uncertainties can vary

according to the purpose of study.

In this work, we simply consider two sources of uncertainties, the uncertainty by the

learning source and the uncertainty of predicted outputs as described in Figure 1 and show

how to quantify them. In particular, we explore three topics of uncertainty quantification,

mainly on natural language processing tasks.

In Chapter 2, we first explore the uncertainty by learning source, such as model algorithm

and/or datasets in text summarization. Here we define three sub-aspects for text summa-

rization; position, importance, and diversity and analyze how existing corpora and models

are biased toward certain aspects differently. We find that news articles tend to be summa-

rized with the first few sentences (position) while academic papers consider more about a

coverage of contents (diversity). In addition, neural models are well-balanced on sub-aspects

by yielding a better performance. Understanding such biases on model and corpus plays an

important role to discover a source of uncertainties in the text summarization.

We then focus on the model uncertainty of predicted outputs or confidence, which is

called “model calibration" in Chatper 3 and 4. Here, a model calibration generally refers

to the study to show how predicted probabilities align to the actual relative frequencies in

classification.

Specifically in Chapter 3, we propose a new method to improve model calibration in

text classification. Unlike previous methods which are post-hoc and can not improve a task

performance, our method directly applies an auxiliary loss on the classical objective (e.g.,

1



Data
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(a) Uncertainty by learning source

Data

Model
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Output

Perfect
Calibration

(b) Uncertainty of model outputs

Figure 1: Description of two source of uncertainties we explore in this work.

cross-entropy) while training models and improves both the quality of model calibration and

the task performance at the end. We conduct an extensive experiments over a variety of text

classification tasks (e.g., ≥ 20) and show our method consistently works on them.

In Chapter 4, we first emphasize that for classification task, current metric to quantify

model calibration which is a simple statistic, can not capture the level of uncertainty of a

single relative frequency estimation, as well as the estimation itself is ad-hoc. We propose a

less-biased method for the relative frequency approximation using a simple nearest neighbor

method and provide an interval-based evidence to interpret them properly. Our work show

a new framework of model calibration for an individual point, which we call customized

calibration, thus, can be of tremendous practical use of human decision makers, especially

for the sensitive cases such as a recidivism or a medical diagnosis.

2



2.0 Quantifying Corpus and System Bias in Text Summarization

Despite the recent developments on neural summarization systems, the underlying logic

behind the improvements from the systems and its corpus-dependency remains largely unex-

plored. Position of sentences in the original text, for example, is a well known bias for news

summarization. Following in the spirit of the claim that summarization is a combination of

sub-functions, we define three sub-aspects of summarization: position, importance, and

diversity and conduct an extensive analysis of the biases of each sub-aspect with respect

to the domain of nine different summarization corpora (e.g., news, academic papers, meet-

ing minutes, movie script, books, posts). We find that while position exhibits substantial

bias in news articles, this is not the case, for example, with academic papers and meeting

minutes. Furthermore, our empirical study shows that different types of summarization sys-

tems (e.g., neural-based) are composed of different degrees of the sub-aspects. Our study

provides useful lessons regarding consideration of underlying sub-aspects when collecting a

new summarization dataset or developing a new system. The following sections are mainly

from Jung et al. [2019].

2.1 Introduction

Despite numerous recent developments in neural summarization systems [Narayan et al.,

2018b, Nallapati et al., 2016, See et al., 2017, Kedzie et al., 2018, Gehrmann et al., 2018,

Paulus et al., 2017] the underlying rationales behind the improvements and their dependence

on the training corpus remain largely unexplored. Edmundson [1969] put forth the position

hypothesis: important sentences appear in preferred positions in the document. Lin and Hovy

[1997] provide a method to empirically identify such positions. Later, Hong and Nenkova

[2014] showed an intentional lead bias in news writing, suggesting that sentences appearing

early in news articles are more important for summarization tasks. More generally, it is well

known that recent state-of-the-art models [Nallapati et al., 2016, See et al., 2017] are often

3



marginally better than the first-k baseline on single-document news summarization.

In order to address the position bias of news articles, Narayan et al. [2018a] collected

a new dataset called XSum to create single sentence summaries that include material from

multiple positions in the source document. Kedzie et al. [2018] showed that the position bias

in news articles is not the same across other domains such as meeting minutes [Carletta

et al., 2005].

In addition to position, Lin and Bilmes [2012] defined other sub-aspect functions of

summarization including coverage, diversity, and information. Lin and Bilmes [2011]

claim that many existing summarization systems are instances of mixtures of such sub-aspect

functions; for example, maximum marginal relevance (MMR) [Carbonell and Goldstein, 1998]

can be seen as an combination of diversity and importance functions.

Following the sub-aspect theory, we explore three important aspects of summarization

(§2.3): position for choosing sentences by their position, importance for choosing relevant

contents, and diversity for ensuring minimal redundancy between summary sentences.

We then conduct an in-depth analysis of these aspects over nine different domains of

summarization corpora (§2.5) including news articles, meeting minutes, books, movie scripts,

academic papers, and personal posts. For each corpus, we investigate which aspects are most

important and develop a notion of corpus bias (§2.6). We provide an empirical result show-

ing how current summarization systems are compounded of which sub-aspect factors called

system bias (§2.7). At last, we summarize our actionable messages for future summarization

researches (§2.8). We summarize some notable findings as follows:

• Summarization of personal post and news articles except for XSum [Narayan et al., 2018a]

are biased to the position aspect, while academic papers are well balanced among the three

aspects (see Figure 2 (a)). Summarizing long documents (e.g. books and movie scripts) and

conversations (e.g. meeting minutes) are extremely difficult tasks that require multiples

aspects together.

• Biases do exist in current summarization systems (Figure 2 (b)). Simple ensembling of

multiple aspects of systems show comparable performance with simple single-aspect sys-

tems.

• Reference summaries in current corpora include less than 15% of new words that do not
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Figure 2: Corpus and system biases with the three sub-aspects, showing what portion of

aspect is used for each corpus and each system. The portion is measured by calculating

ROUGE score between (a) summaries obtained from each aspect and target summaries or

(b) summaries obtained from each aspect and each system. For system bias, we show for

CNNDM. Other corpora are in Appendix E.

appear in the source document, except for abstract text of academic papers.

• Semantic volume [Yogatama et al., 2015] overlap between the reference and model sum-

maries is not correlated with the hard evaluation metrics such as ROUGE [Lin, 2004].

2.2 Related Work

We provide here a brief review of prior work on summarization biases. Lin and Hovy [1997]

studied the position hypothesis, especially in the news article writing [Hong and Nenkova,

2014, Narayan et al., 2018a] but not in other domains such as conversations [Kedzie et al.,

2018]. Narayan et al. [2018a] collected a new corpus to address the bias by compressing
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multiple contents of source document in the single target summary. In the bias analysis of

systems, Lin and Bilmes [2012, 2011] studied the sub-aspect hypothesis of summarization

systems. Our study extends the hypothesis to various corpora as well as systems. With a

specific focus on importance aspect, a recent work [Peyrard, 2019a] divided it into three sub-

categories; redundancy, relevance, and informativeness, and provided quantities of each to

measure. Compared to this, ours provide broader scale of sub-aspect analysis across various

corpora and systems.

We analyze the sub-aspects on different domains of summarization corpora: news articles

[Nallapati et al., 2016, Grusky et al., 2018, Narayan et al., 2018a], academic papers or journals

[Kang et al., 2018, Kedzie et al., 2018], movie scripts [Gorinski and Lapata, 2015], books

[Mihalcea and Ceylan, 2007], personal posts [Ouyang et al., 2017], and meeting minutes

[Carletta et al., 2005] as described further in §2.5.

Beyond the corpora themselves, a variety of summarization systems have been developed:

[Mihalcea and Tarau, 2004, Erkan and Radev, 2004] used graph-based keyword ranking al-

gorithms. [Lin and Bilmes, 2010, Carbonell and Goldstein, 1998] found summary sentences

which are highly relevant but less redundant. Yogatama et al. [2015] used semantic volumes

of bigram features for extractive summarization. Internal structures of documents have been

used in summarization: syntactic parse trees [Woodsend and Lapata, 2011, Cohn and Lap-

ata, 2008], topics [Zajic et al., 2004, Lin and Hovy, 2000], semantic word graphs [Mehdad

et al., 2014, Gerani et al., 2014, Ganesan et al., 2010, Filippova, 2010, Boudin and Morin,

2013], and abstract meaning representation [Liu et al., 2015]. Concept-based Integer-Linear

Programming (ILP) solver [McDonald, 2007] is used for optimizing the summarization prob-

lem [Gillick and Favre, 2009, Banerjee et al., 2015, Boudin et al., 2015, Berg-Kirkpatrick

et al., 2011]. Durrett et al. [2016] optimized the problem with grammatical and anarphorcity

constraints.

With a large scale of corpora for training, neural network based systems have recently

been developed. In abstractive systems, Rush et al. [2015] proposed a local attention-based

sequence-to-sequence model. On top of the seq2seq framework, many other variants have

been studied using convolutional networks [Cheng and Lapata, 2016, Allamanis et al., 2016],

pointer networks [See et al., 2017], scheduled sampling [Bengio et al., 2015], and reinforce-
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ment learning [Paulus et al., 2017]. In extractive systems, different types of encoders [Cheng

and Lapata, 2016, Nallapati et al., 2017, Kedzie et al., 2018] and optimization techniques

[Narayan et al., 2018b] have been developed. Our goal is to explore which types of systems

learns which sub-aspect of summarization.

2.3 Sub-aspects of Summarization

We focus on three crucial aspects : Position, Diversity, and Importance. For each

aspect, we use different extractive algorithms to capture how much of the aspect is

used in the oracle extractive summaries1. For each algorithm, the goal is to select k

extractive summary sentences (equal to the number of sentences in the target summaries for

each sample) out of N sentences appearing in the original source. The chosen sentences or

their indices will be used to calculate the various evaluation metrics described in §2.4

For some algorithms below, we use vector representation of sentences. We parse a docu-

ment x into a sequence of sentences x = x1..xN where each sentence consists of a sequence

of words xi = w1..ws. Each sentence is then encoded:

E(xi) = BERT(wi,1..wi,s) (1)

where BERT [Devlin et al., 2019] is a pre-trained bidirectional encoder from transformers

[Vaswani et al., 2017]2. We use the last layer from BERT as a representation of each token,

and then average them to get final representation of a sentence. All tokens are lower cased.

2.3.1 Position

Position of sentences in the source has been suggested as a good indicator for choosing

summary sentences, especially in news articles [Lin and Hovy, 1997, Hong and Nenkova, 2014,

See et al., 2017]. We compare three position-based algorithms: First, Last, and Middle, by

simply choosing k number of sentences in the source document from these positions.
1See §2.4 for our oracle set construction.
2The other encoders such as averaging word embeddings [Pennington et al., 2014] show comparable

performance.
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(a) Default (b) Heuristic (c) ConvexFall

Figure 3: Volume maximization functions. Black dots are sentences in source document, and

red dots are chosen summary sentences. The red-shaded polygons are volume space of the

summary sentences.

2.3.2 Diversity

[Yogatama et al., 2015] assume that extractive summary sentences which maximize the

semantic volume in a distributed semantic space are the most diverse but least redundant

sentences. Motivated by this notion, our goal is to find a set of k sentences that maximizes

the volume size of them in a continuous embedding space like the BERT representations in

Eq 1. Our objective is to find the optimal search function S that maximizes the volume size

V of searched sentences: arg max1..k V (S1..c (E(x1), . . . ,E(xN))).

If k=N , we use every sentence from the source document. (Figure 3 (a)). However, its

volume space does not guarantee to maximize the volume size because of the non-convex

polygonality. In order to find a convex maximum volume, we consider two different algorithms

described below.

Heuristic. [Yogatama et al., 2015] heuristically choose a set of summary sentences using

a greedy algorithm: It first chooses a sentence which has the farthest vector representation

from the centroid of whole source sentences, and then repeatedly finds sentences whose

representation is farthest from the centroid of vector representations of the chosen sentences.

Unlike the original algorithm in [Yogatama et al., 2015] restricting the number of words, we

constrain the total number of selected sentences to k. This heuristic algorithm can fail to find

the maximum volume depending on its starting point and/or the farther distance between
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two points detected (Figure 3 (b)).

ConvexFall. Here we first find the convexhull3 using Quickhull [Barber et al., 1996],

implemented by Qhull library4. It guarantees the maximum volume size of selected points

with minimum number of points (Figure 3 (c)). However, it does not reduce a redundancy

between the points over the convex-hull, and usually choose larger number of sentences than

k. Marcu [1999] shows an interesting study regarding an importance of sentences: given

a document, if one deletes the least central sentence from the source text, then at some

point the similarity with the reference text rapidly drops at sudden called the waterfall

phenomena. Motivated by his study, we similarly prune redundant sentences from the set

chosen by convex-hull search. For each turn, the sentence with the lowest volume reduction

ratio is pruned until the number of remaining sentences is equivalent to k.

2.3.3 Importance

We assume that contents that repeatedly occur in one document contain important in-

formation. We find sentences that are nearest to the neighbour sentences using two distance

measures: N-Nearest calculates an averaged Pearson correlation between one and the rest

for all source sentence vector representations. k sentences having the highest averaged cor-

relation are selected as final extractive summaries. On the other hand, K-Nearest chooses

the K nearest sentences per each sentence, and then averages distances between each near-

est sentence and the selected one. The one has the lowest averaged distance is chosen. This

calculation is repeated k times and the selected sentences are removed from the remaining

pool.

2.4 Metrics

In order to determine the aspects most crucial to the summarization task, we use three

evaluation metrics:
3Definition: a set of points is defined as the smallest convex set that includes the points.
4http://www.qhull.org/
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ROUGE is Recall-Oriented Understudy for Gisting Evaluation [Lin and Hovy, 2000] for

evaluating summarization systems. We use ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L

(RL) F-measure scores which corresponds to uni-gram, bigrams and longest common subse-

quences, respectively, and their averaged score (R).

Volume Overlap (VO) ratio. Hard metrics like ROUGE often ignore semantic similar-

ities between sentences. Based on the volume assumption in Yogatama et al. [2015], we

measure overlap ratio of two semantic volumes calculated by the model and target sum-

maries. We obtain a set of vector representations of the reference summary sentences Ŷ

and the model summary sentences Y predicted by any algorithm algo in §2.3 for the i-th

document:

Ŷi = ( ŷi,1 .. ŷi,k ), Y algo
i = ( yalgoi,1 .. yalgoi,k ) (2)

Each volume V is then calculated using the convex-hull algorithm and their overlap (u) is

calculated using a shapely package56. The final VO is then:

VOalgo =
N∑
i=1

V(E(Y algo
i )) u V (E(Ŷi))

V (E(Ŷi))
(3)

where N is the total number of input documents, E is the BERT sentence encoder in Eq

1, and E(Ŷi) and E(Y algo
i ) are a set of vector representations of the reference and model

summary sentences, respectively. The volume overlap indicates how two summaries are se-

mantically overlapped in a continuous embedding space.

Sentence Overlap (SO) ratio. Even though ROUGE provides a recall-oriented lexical

overlap, we don’t know the upper-bound on performance (called oracle) of the extractive

summarization. We extract the oracle extractive sentences (i.e. a set of input sentences)

which maximizes ROUGE-L F-measure score with the reference summary. We then measure

sentence overlap (SO) which determines how many extractive sentences from our algorithms

are in the oracle summary. The SO is:

SOalgo =
n∑
i=1

C(Y algo
i ∩ Ŷi)
C(Ŷi)

(4)

5https://pypi.org/project/Shapely/
6Due to the lack of overlap calculation between two polygons of high dimensions, we reduce it to 2D PCA

space.
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CNNDM Newsroom Xsum PeerRead PubMed Reddit AMI BookSum MScript

Source News News News Papers Papers Post Minutes Books Script

Multi-sents. X X X X X X X X X

Data size 287K/11K 992K/109K 203K/11K 10K/550 21K/2.5K 404/48 98/20 - /53 - /1K

Avg src sents. 40/34 24/24 33/33 45/45 97/97 19/15 767/761 - /6.7K - /3K

Avg tgt sents. 4/4 1.4/1.4 1/1 6/6 10/10 1/1 17/17 - /336 - /5

Avg src tokens 792/779 769 /762 440/442 1K/1K 2.4K/2.3K 296/236 6.1K/6.4K - /117K - /23.4K

Avg tgt tokens 55/58 30/31 23/23 144/146 258/258 24/25 281/277 - /6.6K - /104

Table 1: Data statistics on summarization corpora. Source is the domain of dataset. Multi-

sents. is whether the summaries are multiple sentences or not. All statistics are divided by

Train/Test except for BookSum and MScript.

where C is a function for counting the number of elements in a set. The sentence overlap

indicates how well the algorithm finds the oracle summaries for extractive summarization.

2.5 Summarization Corpora

We use various domains of summarization datasets to conduct the bias analysis across

corpora and systems. Each dataset has source documents and corresponding abstractive

target summaries. We provide a list of datasets used along with a brief description and our

pre-processing scheme:

• CNNDM [Nallapati et al., 2016]: contains 300K number of online news articles. It has mul-

tiple sentences (4.0 on average) as a summary.

• Newsroom [Grusky et al., 2018]: contains 1.3M news articles and written summaries by

authors and editors from 1998 to 2017. It has both extractive and abstractive summaries.

• XSum [Narayan et al., 2018a]: has news articles and their single but abstractive sentence

summaries mostly written by the original author.
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• PeerRead [Kang et al., 2018]: consists of scientific paper drafts in top-tier computer science

venues as well as arxiv.org. We use full text of introduction section as source document

and of abstract section as target summaries.

• PubMed [Kedzie et al., 2018]: is 25,000 medical journal papers from the PubMed Open

Access Subset.7 Unlike PeerRead, full paper except for abstract is used as source docu-

ments.

• MScript [Gorinski and Lapata, 2015]: is a collection of movie scripts from ScriptBase

corpus and their corresponding user summaries of the movies.

• BookSum [Mihalcea and Ceylan, 2007]: is a dataset of classic books paired to summaries

from Grade Saver8 and Cliff’s Notes9. Due to a large number of sentences, we only choose

the first 1K sentences for source document and the first 50 sentences for target summaries.

• Reddit [Ouyang et al., 2017]: is a collection of personal posts from reddit.com. We use

a single abstractive summary per post. The same data split from Kedzie et al. [2018] is

used.

• AMI [Carletta et al., 2005]: is documented meeting minutes from a hundred hours of

recordings and their abstractive summaries.

Table 1 summarizes the characteristics of each dataset. We note that the Gigaword [Graff

et al., 2003], New York Times10, and Document Understanding Conference (DUC)11 are also

popular datasets commonly used in summarization analyses, though here we exclude them

as they represent only additional collections of news articles, showing similar tendencies to

the other news datasets such as CNNDM.

2.6 Analysis on Corpus Bias

We conduct different analyses of how each corpus is biased with respect to the sub-

aspects. We highlight some key findings for each sub-section.
7https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
8http://www.gradesaver.com
9http://www.cliffsnotes.com/

10https://catalog.ldc.upenn.edu/LDC2008T19
11http://duc.nist.gov
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CNNDM NewsRoom XSum PeerRead PubMed Reddit AMI BookSum MScript

R VO SO R VO SO R VO SO R VO SO R VO SO R VO SO R VO SO R VO SO R VO SO

Random 19.1 18.6 14.6 10.1 2.1 9.0 9.3 - 8.4 27.9 42.5 26.2 30.1 46.9 13.0 11.8 - 11.3 12.0 39.3 2.4 29.4 85.8 4.9 8.1 25.2 0.1

Oracle 42.8 - - 48.1 - - 19.6 - - 46.3 - - 47.0 - - 30.0 - - 32.0 - - 38.9 - - 24.2 - -

P
os
it
io
n First 30.7 13.1 30.7 32.2 4.4 37.8 9.1 - 8.7 32.0 40.7 30.3 27.6 44.3 13.8 15.3 - 19.9 11.4 48.0 3.8 29.1 85.1 7.4 6.9 12.4 0.7

Last 16.4 18.6 8.2 7.7 1.9 4.4 8.3 - 7.0 28.9 38.5 27.0 28.9 45.2 14.0 11.2 - 10.7 7.8 42.1 2.0 26.5 85.3 3.3 8.8 19.5 0.2

Middle 21.5 18.7 11.8 12.4 1.9 5.6 9.1 - 9.1 29.7 40.7 22.8 28.9 45.9 12.3 11.5 - 7.1 11.1 36.4 2.3 27.9 83.0 4.9 8.0 23.9 0.1

D
iv
er
s. ConvFall 21.6 57.7 15.0 10.6 4.2 7.3 8.4 - 8.0 29.8 77.5 25.9 28.2 93.5 11.2 11.6 - 7.5 14.0 98.6 2.4 16.9 99.7 2.2 8.5 59.2 0.2

Heuris. 21.4 19.8 14.6 10.5 2.4 7.6 8.4 - 8.1 29.2 36.6 24.8 27.5 59.7 10.5 11.5 - 7.1 10.7 66.0 2.4 26.9 99.7 4.5 6.4 5.7 0.2

Im
p
or
t. NNear. 22.0 3.3 16.6 13.5 0.5 10.0 9.8 - 10.1 30.6 8.4 26.7 31.8 9.3 15.5 13.8 - 12.2 1.3 0.2 0.1 27.9 1.5 5.1 8.7 0.9 0.3

KNear. 23.0 3.9 17.7 14.0 0.7 10.9 9.3 - 9.1 30.6 9.9 27.0 29.6 10.5 15.0 10.4 - 8.5 0.0 0.1 0.0 21.8 1.4 3.7 0.6 0.0 0.1

Table 2: Comparison of different corpora w.r.t the three sub-aspects: position, diversity,

and importance. We averaged R1, R2, and RL as R (See Appendix C for full scores). Note

that volume overlap (VO) doesn’t exist when target summary has a single sentence. (i.e.,

XSum, Reddit)

2.6.1 Multi-aspect analysis

Table 2 shows a comparison of the three aspects for each corpus where we include random

selection and the oracle set. For each dataset metrics are calculated on a test set except for

BookSum and AMI where we use train+test due to the smaller sample size.

Earlier isn’t always better. Sentences selected early in the source show high ROUGE

and SO on CNNDM, Newsroom, Reddit, and BookSum, but not in other domains such as medial

journals and meeting minutes, and the condensed news summaries (XSum). For summarization

of movie scripts in particular, the last sentences seem to provide more important summaries.

XSum requires more importance than other corpora. Interestingly, the most power-

ful algorithm for XSum is N-Nearest. This shows that summaries in XSum are indeed collected

by abstracting multiple important contents into single sentence, avoiding the position bias.

First, ConvexFall and N-Nearest tend to work better than the other algo-

rithms for each aspect. First is better than Last or Middle in new articles except for

XSum and personal posts, while not in academic papers (i.e., PeerRead, PubMed) and meeting
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minutes. ConvexFall finds the set of sentences that maximize the semantic volume overlap

with the target sentences better than the heuristic one.

ROUGE and SO show similar behavior, while VO does not. In most evaluations,

ROUGE scores are linear to SO ratios as expected. However, VO has high variance across

algorithms and aspects. This is mainly because the semantic volume assumption maximizes

the semantic diversity, but sacrifices other aspects like importance by choosing the outlier

sentences over the convex hull.

Social posts and news articles are biased to the position aspect while the

other two aspects appear less relevant. (Figure 2 (a)) However, XSum requires all aspects

equally but with relatively less relevant to any of aspects than the other news corpora.

Paper summarization is a well-balanced task. The variance of SO across the three

aspects in PeerRead and PubMed is relatively smaller than other corpora. This indicates that

abstract summary of the input paper requires the three aspects at the same time. PeerRead

has relatively higher SO than PubMed because it only summarizes text in Introduction sec-

tion, while PubMed summarize whole paper text, which is much difficult (almost random

performance).

Conversation, movie script and book summarization are very challenging.

Conversation of spoken meeting minutes includes a lot of witty replies repeatedly (e.g., ‘okay.’

, ‘mm -hmm.’ , ‘yeah.’), causing importance and diversity measures to suffer. MScript and

BookSum which include very long input document seem to be extremely difficult task, showing

almost random performance.

2.6.2 Intersection between the sub-aspects

Averaged ratios across the sub-aspects do not capture how the actual summaries overlap

with each other. Figure 4 shows Venn diagrams of how sets of summary sentences chosen by

different sub-aspects are overlapped each other on average.

XSum, BookSum, and AMI have high Oracle Recall. If we develop a mixture model of

the three aspects, the Oracle Recall means its upper bound, meaning that another sub-aspect

should be considered regardless of the mixture model. This indicates that existing procedures
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(a) CNNDM (49.4%) (b) XSum (76.8%) (c) PeerRead (37.6%)

(d) Reddit (68.1%) (e) AMI (94.1%) (f) BookSum (87.1%)

Figure 4: Intersection of averaged summary sentence overlaps across the sub-aspects. We

use First for Position, ConvexFall for Diversity, and N-Nearest for Importance. The

number in the parenthesis called Oracle Recall is the averaged ratio of how many the oracle

sentences are NOT chosen by union set of the three sub-aspect algorithms. Other corpora

are in Appendix B with their Oracle Recalls: Newsroom(54.4%), PubMed (64.0%) and MScript

(99.1%).

are not enough to cover the Oracle sentences. For example, AMI and BookSum have a lot of

repeated noisy sentences, some of which could likely be removed without a significant loss of

pertinent information.

Importance and Diversity are less overlapped with each other. This means

that important sentences are not always diverse sentences, indicating that they should be
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Figure 5: PCA projection of extractive summaries chosen by multiple aspects of algorithms

(CNNDM). Source and target sentences are black circles and cyan triangles, respectively. The

blue, green, red circles are summary sentences chosen by First, ConvexFall, NN, respectively.

The yellow triangles are the oracle sentences. Shaded polygon represents a ConvexHull vol-

ume of sample source document. Best viewed in color. More examples are in Appendix D

considered together.

2.6.3 Summaries in an embedding space

Figure 5 shows two dimensional PCA projections of a document in CNNDM on the em-

bedding space. Source sentences are clustered on the convexhull border, not in

the middle. . We conjecture that sentences are not uniformly distributed in the embedding

space but their positions gradually move over the convexhull. Target summaries reflect dif-

ferent sub-aspects according to the sample and corpora. For example, many target sentences

in CNNDM are near by First-k sentences.
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CNNDM NewsRoom XSum PeerRead PubMed Reddit AMI BookSum MScript

(a) Position

(b) Diversity

(c) Importance

Figure 6: Sentence overlap proportion of each sub-aspect (row) with the oracle summary

across corpora (column). y-axis is the frequency of overlapped sentences with the oracle

summary. X-axis is the normalized RANK of individual sentences in the input document

where size of bin is 0.05. E.g., the first / the most diverse / the most important sentence is

in the first bin. If earlier bars are frequent, the aspect is positively relevant to the corpus.

2.6.4 Single-aspect analysis

We calculate the frequency of source sentences overlapped with the oracle summary where

the source sentences are ranked differently according to the algorithm of each aspect (See

Figure 6). Heavily skewed histograms indicate that oracle sentences are positively (right-

skewed) or negatively (left-skewed) related to the sub-aspect.

In most cases, some oracle sentences are overlapped to the first part of the source sen-

tences. Even though their degrees are different, oracle summaries from many corpora (i.e,

CNNDM, NewsRoom, PeerRead, BookSum, MScript) are highly related to the position. Com-

pared to the other corpora, PubMed and AMI contain more top-ranked important sentences

in their oracle summaries. News articles and papers tend to find oracle sentences without

diversity (i.e., right-skewed), meaning that non-diverse sentences are frequently selected as

part of the oracle.
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R(O,T) O∩T T\S

Unigram Bigram Unigram Bigram

CNNDM 42.8 66.0 36.4 14.7 5.7

Newsroom 48.1 60.7 43.4 7.8 3.4

XSum 19.6 30.4 6.9 8.4 1.2

PeerRead 46.3 48.5 27.2 20.1 8.8

PubMed 47.0 52.1 27.7 16.7 6.7

Reddit 30.0 41.0 16.4 13.8 3.8

AMI 32.0 28.1 8.5 10.6 1.5

BookSum 38.9 25.6 8.9 6.7 1.7

MScript 38.9 13.9 4.0 0.3 0.1

Table 3: ROUGE of oracle summaries and averaged N-gram overlap ratios. O, T and S

are a set of N-grams (Unigram and Bigram) from Oracle, Target and Source document,

respectively.R(O,T) is the averaged ROUGE between oracle and target summaries, showing

how similar they are. O∩T shows N-gram overlap between oracle and target summaries.

The higher the more overlapped words in between. T\S is a proportion of N-grams in target

summaries not occurred in source document. The lower the more abstractive (i.e., new words)

target summaries.

We also measure how many new words occur in abstractive target summaries, by com-

paring overlap between oracle summaries and document sentences (Table 3). One thing to

note is that XSum and AMI have less new words in their target summaries. On the other hand,

paper datasets (i.e., PeerRead and PubMed) include a lot, indicating that abstract text in

academic paper is indeed “abstract”.
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CNNDM XSum PeerRead PubMed Reddit AMI BookSum MScript

R SO R(P/D/I) R SO R(P/D/I) R SO R(P/D/I) R SO R(P/D/I) R SO R(P/D/I) R SO R(P/D/I) R SOR(P/D/I) R SOR(P/D/I)

ex
tr
ac
ti
ve

KMeans 22.2 16.3 14/22/34 9.8 10.0 14/8/90 30.9 28.3 24/28/38 30.6 14.2 31/40/46 14.0 12.5 10/2/82 12.3 2.5 9/6/7 27.2 4.6 5/2/14 9.1 0.3 0/0/9

MMR 21.6 15.2 12/24/30 9.8 10.0 14/8/97 29.6 24.9 26/29/35 30.2 12.9 33/35/42 13.6 11.5 10/3/88 12.3 2.5 9/6/7 29.1 6.1 4/0/13 9.5 0.2 0/0/28

TexRank 19.6 10.3 34/27/27 9.9 8.5 19/11/16 23.9 12.4 32/32/32 18.0 1.7 19/21/20 17.7 16.7 13/9/15 11.1 0.0 17/20/6 6.7 0.0 8/14/8 8.2 0.2 5/9/8

LexRank 29.3 29.5 71/29/32 11.2 11.9 61/15/19 29.0 24.6 66/35/38 26.3 7.7 56/27/28 18.7 18.8 46/11/19 8.0 0.2 36/21/12 10.5 0.8 20/20/13 12.7 0.5 20/9/9

wILP 23.1 15.6 27/28/29 11.1 2.1 28/19/21 20.2 16.0 23/27/26 15.6 6.0 14/20/18 17.4 13.5 42/16/20 5.1 0.6 17/18/17 4.3 1.3 5/12/7 6.8 0.1 6/8/6

CL 31.2 30.0 86/29/31 11.8 14.3 25/13/19 31.3 21.8 55/35/38 26.3 9.2 41/26/26 19.4 24.0 23/14/23 23.1 10.3 19/23/5 - - -/-/- 14.0 0.2 6/8/7

SumRun 30.5 27.1 68/29/31 11.6 13.1 14/13/19 34.0 20.5 38/36/37 29.4 10.8 27/28/27 20.2 19.8 23/12/21 23.8 11.4 21/23/6 - - -/-/- 14.4 0.0 5/9/9

S2SExt 30.4 28.3 74/28/31 12.0 14.2 17/13/19 33.9 21.1 43/35/37 29.6 10.8 26/28/28 21.5 34.4 27/12/26 23.4 11.9 21/24/6 - - -/-/- 14.3 0.0 7/9/8

ab
st
ra
ct
iv
e cILP 27.8 x 43/31/32 10.9 x 49/15/18 28.2 x 35/36/38 27.8 x 23/29/30 17.7 x 53/15/17 12.5 x 22/33/10 7.9 x 9/19/12 10.6 x 5/7/7

S2SAbs 16.3 x 4/4/4 10.4 x 8/7/8 9.9 x 9/9/9 10.2 x 10/10/10 11.9 x 11/7/8 20.3 x 9/12/1 - -x -/-/- 14.0 x 6/8/8

+Pointer 23.9 x 20/13/14 15.6 x 12/11/12 13.6 x 13/13/13 11.2 x 11/12/11 14.3 x 14/10/12 23.0 x 11/13/1 - -x -/-/- 10.0 x 6/7/7

+Teacher 29.7 x 33/21/22 17.0 x 12/10/12 8.7 x 8/8/8 11.3 x 12/12/11 15.3 x 15/10/11 20.2 x 9/13/1 - -x -/-/- 16.0 x 7/10/8

+RL 30.2 x 34/23/24 18.1 x 12/11/12 30.1 x 30/29/28 12.9 x 13/14/13 16.7 x 1/1/14 23.6 x 11/13/2 - -x -/-/- 16.2 x 7/10/8

en
se
m
bl
e

asp(rand) 23.3 19.5 40/38/38 9.0 9.0 40/39/38 29.6 25.5 54/49/52 29.5 13.5 49/47/51 12.5 5.2 21/11/22 8.9 0.9 44/50/20 29.8 6.4 57/33/55 8.4 0.4 32/36/37

asp(topk) 29.1 30.4 71/31/31 9.0 8.8 43/39/38 30.5 28.2 63/54/57 29.7 14.0 55/48/52 12.3 15.6 41/41/38 9.9 1.5 99/24/11 29.6 6.2 58/34/56 8.3 0.5 30/37/38

ext(rand) 24.2 20.2 39/25/27 10.2 10.9 17/13/23 29.4 23.5 42/37/39 31.7 16.0 37/34/38 14.2 17.7 22/12/13 18.7 5.1 21/28/8 28.6 5.4 37/24/42 6.7 0.0 5/9/13

ext(topk) 29.4 30.3 58/25/28 11.0 11.8 18/10/37 33.0 33.0 54/39/44 34.1 20.5 41/35/40 16.4 20.8 21/11/52 23.8 13.4 23/27/6 28.5 5.2 37/24/43 7.4 0.0 6/8/11

Table 4: Comparison of different systems using the averaged ROUGE scores (1/2/L) with

target summaries (R) and averaged oracle overlap ratios (SO, only for extractive systems).

We calculate R between systems and selected summary sentences from each sub-aspect

(R(P/D/I)) where each aspect uses the best algorithm: First, ConvexFall and NNearest.

R(P/D/I) is rounded by the decimal point. - indicates the system has too few samples to

train the neural systems. x indicates SO is not applicable because abstractive systems have

no sentence indices. The best score for each corpora is shown in bold with different colors.

2.7 Analysis on System Bias

We study how current summarization systems are biased with respect to three sub-

aspects. In addition, we show that a simple ensemble of systems shows comparable perfor-

mance to the single-aspect systems.

Existing systems. We compare various extractive and abstractive systems: For extrac-

tive systems, we use K-Means [Lin and Bilmes, 2010], Maximal Marginal Relevance (MMR)

[Carbonell and Goldstein, 1998], cILP [Gillick and Favre, 2009, Boudin et al., 2015], TexRank

[Mihalcea and Tarau, 2004], LexRank [Erkan and Radev, 2004] and three recent neural sys-

tems; CL [Cheng and Lapata, 2016], SumRun [Nallapati et al., 2017], and S2SExt [Kedzie
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et al., 2018]. For abstractive systems, we use WordILP Banerjee et al. [2015] and four neu-

ral systems; S2SAbs [Rush et al., 2015], Pointer [See et al., 2017], Teacher [Bengio et al.,

2015], and RL [Paulus et al., 2017]. The detailed description and experimental setup for each

algorithm are in Appendix A.

Proposed ensemble systems. Motivated by the sub-aspect theory [Lin and Bilmes,

2012, 2011], we combine different types of systems together from two different pools of

extractive systems: asp from the three best algorithm from each aspect and ext from all

extractive systems. For each combination, we choose the sumary sentences randomly among

the union set of the predicted sentences (rand) or the most frequent unique sentences (topk).

Results. Table 4 shows a comparison of existing and proposed summarization systems

on the set of corpora in §2.5 except for Newsroom12. Neural extractive systems such as CL,

SumRun and S2SExt outperform the others in general. LexRank is highly biased toward the

position aspect. On the other hand, MMR is extremely biased to the importance aspect on

XSum and Reddit. Interestingly, neural extractive systems are somewhat balanced compared

to the others. Ensemble systems seem to have the three sub-aspects in balance, compared to

the neural extractive systems. They also outperform the others (either ROUGE or SO) on five

out of eight datasets.

2.8 Conclusion

In this chapter, we first define three sub-aspects of text summarization: position, diversity,

and importance. We analyze how different domains of summarization dataset are biased

to these aspects. We observe that news articles strongly reflect the position aspect, while

the others do not. In addition, we investigate how current summarization systems reflect

these three sub-aspects in balance. Each type of approach has its own bias, while neural

systems rarely do. Simple ensembling of the systems shows more balanced and comparable

performance than single ones.

Our bias study provides meaningful observations for future summarization researches,
12We exclude it because of its similar behavior as CNNDM.
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especially when collecting a dataset and developing a new system. We summarize actionable

messages for future summarization research:

• Different domains of datasets except for news articles pose new challenges to the appro-

priate design of summarization systems. For example, summarization of conversations

(e.g., AMI) or dialogues (MSCript) need to filter out repeated, rhetorical utterances. Book

summarization (e.g., BookSum) is very challenging due to its extremely large document

size. Here current neural encoders suffer from computation limits.

• Summarization systems to be developed should clearly state their computational limits

as well as effectiveness in each aspect and in each corpus domain. A good summariza-

tion system should reflect different kinds of the sub-aspects harmoniously, regardless of

corpus bias. Developing such bias-free or robust models can be very important for future

directions.

• Nobody has clearly defined the deeper nature of meaning abstraction yet. A more theoret-

ical study of summarization, and the various aspects, is required. A recent notable exam-

ple is Peyrard [2019a]’s attempt to theoretically define different quantities of importance

aspect, and demonstrate the potential of the framework on an existing summarization

system. Similar studies can be applied to other aspects and their combinations in various

systems and different domains of corpora.

• One can repeat our bias study on evaluation metrics. Peyrard [2019b] showed that widely

used evaluation metrics (e.g., ROUGE, Jensen-Shannon divergence) are strongly mis-

matched in scoring summary results. One can compare different measures (e.g., n-gram

recall, sentence overlaps, embedding similarities, word connectedness, centrality, impor-

tance reflected by discourse structures), and study bias of each with respect to systems

and corpora.
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3.0 Calibrating Model Uncertainty in Text Classification

In this chapter, we explore how to improve both classifier’s performance and calibration

quality by using an auxiliary loss in training. The code for this work is publicly available

in https://github.com/THEEJUNG/PosCal/. Note that he following sections are mainly

from Jung et al. [2020].

3.1 Introduction

Classification systems, from simple logistic regression to complex neural network, typi-

cally predict posterior probabilities over classes and decide the final class with the maximum

probability. The model’s performance is then evaluated by how accurate the predicted classes

are with respect to out-of-sample, ground-truth labels. In some cases, however, the quality

of posterior estimates themselves must be carefully considered as such estimates are often

interpreted as a measure of confidence in the final prediction. For instance, a well-predicted

posterior can help assess the fairness of a recidivism prediction instrument [Chouldechova,

2017] or select the optimal number of labels in a diagnosis code prediction [Kavuluru et al.,

2015b].

Guo et al. [2017] showed that a model with high classification accuracy does not guar-

antee good posterior estimation quality. In order to correct the poorly calibrated posterior

probability, existing calibration methods [Zadrozny and Elkan, 2001, Platt et al., 1999, Guo

et al., 2017, Kumar et al., 2019] generally rescale the posterior distribution predicted from

the classifier after training. Such post-processing calibration methods re-learn an appropriate

distribution from a held-out validation set and then apply it to an unseen test set, causing

a severe discrepancy in distributions across the data splits. The fixed split of the data sets

makes the post-calibration very limited and static with respect to the classifier’s performance.

We propose a simple but effective training technique called Posterior Calibrated (PosCal

) training that optimizes the task objective while calibrating the posterior distribution in
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training. Unlike the post-processing calibration methods, PosCal directly penalizes the dif-

ference between the predicted and the true (empirical) posterior probabilities dynamically

over the training steps.

PosCal is not a simple substitute of the post-processing calibration methods. Our experi-

ment shows that PosCal can not only reduce the calibration error but also increase the task

performance on the classification benchmarks: compared to the baseline MLE (maximum

likelihood estimation) training method, PosCal achieves 2.5% performance improvements

on GLUE [Wang et al., 2018] and 0.5% on xSLUE [Kang and Hovy, 2019], and at the same

time 16.1% posterior error reduction on GLUE and 13.2% on xSLUE.

3.2 Related Work

Our work is primarily motivated by previous analyses of posterior calibration on modern

neural networks. Guo et al. [2017] pointed out that in some cases, as the classification per-

formance of neural networks improves, its posterior output becomes poorly calibrated. There

are a few attempts to investigate the effect of posterior calibration on natural language pro-

cessing (NLP) tasks: Nguyen and O’Connor [2015] empirically tested how classifiers on NLP

tasks (e.g., sequence tagging) are calibrated. For instance, compared to the Naive Bayes clas-

sifier, logistic regression outputs well-calibrated posteriors in sentiment classification task.

Card and Smith [2018] also mentioned the importance of calibration when generating a

training corpus for NLP tasks.

As noted above, numerous post-processing calibration techniques have been developed:

traditional binning methods [Zadrozny and Elkan, 2001, 2002] set up bins based on the

predicted posterior p̂, re-calculate calibrated posteriors q̂ per each bin on a validation set,

and then update every p̂ with q̂ if p̂ falls into the certain bin. On the other hand, scaling

methods [Platt et al., 1999, Guo et al., 2017, Kull et al., 2019] re-scale the predicted posterior

p̂ from the softmax layer trained on a validation set. Recently, Kumar et al. [2019] pointed

out that such re-scaling methods do not actually produce well-calibrated probabilities as

reported since the true posterior probability distribution can not be captured with the often
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low number of samples in the validation set1 To address the issue, the authors proposed a

scaling-binning calibrator, but still rely on the validation set.

3.3 Posterior Calibrated Training

In general, most of existing classification models are designed to maximize the likelihood

estimates (MLE). Its objective is then to minimize the cross-entropy (Xent) loss between the

predicted probability and the true probability over k different classes.

During training time, PosCal minimizes the cross-entropy as well as the calibration error

as a multi-task setup. While the former is a task-specific objective, the latter is a statistical

objective to make the model to be statistically well-calibrated from its data distribution.

Such data-oriented calibration makes the task-oriented model more reliable in terms of its

data distribution. Compared to the prior post-calibration methods with a fixed (and often

small) validation set, PosCal dynamically estimates the required statistics for calibration

from the train set during training iterations.

Given a training set D = {(x1, y1)..(xn, yn)} where xi is a p-dimensional vector of input

features and yi is a k-dimensional one-hot vector corresponding to its true label (with k

classes), our training minimizes the following loss:

LPosCal = Lxent + λLcal (5)

where Lxent is the cross-entropy loss for task objective (i.e., classification) and Lcal is the

calibration loss on the cross-validation set. λ is a weighting value for a calibration loss Lcal.

In practice, the optimal value of λ can be chosen via cross-validation. More details are given

in §3.4.
1§3.4 shows that the effectiveness of re-calibration decreases when the size of the validation set is small.
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Each loss term can be then calculated as follows:

Lxent = −
n∑
i=1

k∑
j=1

y
(j)
i log(p̂

(j)
i ) (6)

Lcal =
n∑
i=1

k∑
j=1

d(p̂
(j)
i , q

(j)
i ) (7)

where Lxent is a typical cross-entropy loss with p̂ as an updated predicted probability while

training. Lcal is our proposed loss for minimizing the calibration loss: q is an true (empirical)

probability and d is an function to measure the difference (e.g., mean squared error or

Kullback-Leibler divergence) between the updated p̂ and true posterior q probabilities. The

empirical probability q can be calculated by measuring the ratio of true labels per each bin

split by the predicted posterior p̂ from each update. We sum up the losses from every class

j ∈ {1, 2..k}.

We show a detailed training procedure of PosCal in Algorithm 1. While training, we

update the model parameters (i.e., weight matrices in the classifier) as well as the empirical

posterior probabilities by calculating the predicted posterior with the recently updated pa-

rameters. For Q, we exactly calculate a label frequency per bin B. Since it is time-consuming

to update Q at every step, we set up the number of Q updates per each epoch so as to only

update Q at each batch.

3.4 Experiment

We investigate how our end-to-end calibration training produces better calibrated pos-

terior estimates without sacrificing task performance.

3.4.1 Task: NLP classification benchmarks

We test our models on two different benchmarks on NLP classification tasks: GLUE [Wang

et al., 2018] and xSLUE [Kang and Hovy, 2019]. GLUE contains different types of general-

purpose natural language understanding tasks such as question-answering, sentiment analysis
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Algorithm 1 Posterior Calibrated Training
Inputs :
Train set D, Bin B, Number of Classes K

Number of epochs e, Learning rate η

Number of updating empirical probabilities u
Output Θ: Model Parameters

1: Let Q : Empirical Probability Matrix ∈ RB×K

2: Random initialization of Θ

3: for i ∈ {1, 2, 3, ...e} do

4: Break D into random mini-batches b

5: Find a set of steps S for updating Q by dividing total number of steps into u equal

parts

6: for b from D do

7: Θ← Θ− η∇ΘLPosCal (Θ,Q)

8: if current step ∈ S then

9: p̂ = softmax(Θ,D)

10: Q ← CalEmpProb(p̂, B)

11: end if

12: end for

13: end for

and text entailment. Since true labels on the test set are not given from the GLUE bench-

mark, we use the validation set as the test set, and randomly sample 1% of train set as a

validation set. xSLUE [Kang and Hovy, 2019] is yet another classification benchmark but

on different types of styles such as a level of humor, formality and even demographics of

authors. For the details of each dataset, refer to the original papers.

3.4.2 Metrics

In order to measure the task performance, we use different evaluation metrics for each

task. For GLUE tasks, we report F1 for MRPC, Matthews correlation for CoLA, and accuracy

26



for other tasks followed by Wang et al. [2018]. For xSLUE, we use F1 score.

To measure the calibration error, we follow the metric used in the previous work [Guo

et al., 2017]; Expected Calibration Error (ECE) by measuring how the predicted posterior

probability is different from the empirical posterior probability: ECE = 1
K

∑K
k=1

∑B
b=1

|Bkb|
n
|qkb−

p̂kb|, where p̂kb is an averaged predicted posterior probability for label k in bin b, qkb is a

calculated empirical probability for label k in bin b, Bkb is a size of bin b in label k, and n is

a total sample size. The lower ECE, the better the calibration quality.

3.4.3 Models

We train the classifiers with three different training methods: MLE, L1, and PosCal

. MLE is a basic maximum likelihood estimation training by minimizing the cross-entropy

loss, L1 is MLE training with L1 regularizer, and PosCal is our proposed training by

minimizing LPosCal (Eq 5). For PosCal training, we use Kullback-Leibler divergence to

measure Lcal. We also report ECE with a temperature scaling [Guo et al., 2017] (tScal),

which is considered the state-of-the-art post-calibration method. For our classifiers, we fine-

tuned the pre-trained BERT classifier [Devlin et al., 2019]. Details on the hyper-parameters

used are given in Appendix F.

3.4.4 Results

Table 5 and 6 show task performance and calibration error on two benchmarks: GLUE

and xSLUE, respectively. In general, PosCal outperforms the MLE training and MLE with

L1 regularization in GLUE for both task performance and calibration, though not in xS-

LUE. Compared to the tScal, PosCal shows a stable improvement over different tasks on

calibration reduction, while tScal sometimes produces a poorly calibrated result (e.g., CoLA,

MRPC).
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Task Perf. (↑) Calib. ECE (↓)

Dataset MLE L1 PosCal MLE L1 tScal PosCal

CoLA 56.7 55.3 58.0 .242 .234 .565 .231

SST-2 92.1 91.4 92.4 .144 .155 .143 .106

MRPC 88.2 88.2 88.9 .228 .229 .400 .177

QQP 88.8 88.9 89.1 .121 .122 .054 .107

MNLI 84.0 83.7 83.5 .158 .160 .080 .165

MNLImm 83.7 84.0 84.2 .153 .153 .062 .149

QNLI 89.9 89.7 90.0 .138 .124 .159 .176

RTE 61.7 62.4 62.8 .422 .441 .175 .394

WNLI 38.0 38.0 56.9 .287 .287 .269 .083

total 75.9 75.6 78.4 .210 .212 .252 .176

Table 5: Task performance (left; higher better) and calibration error (right; lower better) on

GLUE. We do not include STS-B; a regression task. Note that tScal is only applicable for

calibration reduction, because the post-calibration does not change the task performance,

while PosCal can do both.

3.4.5 Analysis

We visually check the statistical effect of PosCal with respect to calibration. Figure 7

shows how predicted posterior distribution of PosCal is different fromMLE. We choose two

datasets where PosCal improves both accuracy and calibration quality compared with the

basic MLE: RTE from GLUE and Stanford’s politeness dataset from xSLUE. We then draw

two different histograms: a histogram of p̂ frequencies (top) and a calibration histogram,

p̂ versus the empirical posterior probability q (bottom). Figure 7(c,d) show that PosCal

spreads out the extremely predicted posterior probabilities (0 or 1) from MLE to be more

well calibrated over different bins. The well-calibrated posteriors also help correct the skewed

predictions in Figure 7(a,b).
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Task Perf.(↑) Calib. ECE(↓)

DatasetMLE L1 PosCal MLE L1 tScalPosCal

GYAFC 89.1 89.4 89.5 .178 .170 .783 .118

SPolite 68.7 70.0 70.9 .451 .431 .133 .238

SHumor 97.4 97.6 97.6 .050 .047 .037 .044

SJoke 98.4 98.1 98.3 .032 .037 .019 .029

SarcGhosh 42.5 42.5 42.6 .912 .912 .898 .910

SARC 71.3 71.5 71.4 .372 .375 .079 .186

SARC_pol 72.7 72.8 73.8 .434 .435 .070 .383

VUA 80.9 80.8 81.4 .268 .276 .687 .238

TroFi 76.7 78.8 77.4 .278 .239 .345 .265

CrowdFlower 22.0 22.7 22.6 .404 .413 .261 .418

DailyDialog 48.3 47.8 48.7 .225 .227 .117 .222

HateOffens 93.0 93.6 93.5 .064 .059 .100 .055

SRomance 99.0 99.0 100.0 .020 .020 .023 .010

SentiBank 96.7 97.0 96.6 .061 .057 .037 .054

PASTEL_gender 47.9 48.1 47.9 .336 .305 .185 .143

PASTEL_age 23.5 23.4 22.9 .354 .365 .222 .369

PASTEL_country 56.1 56.6 58.3 .054 .055 .019 .046

PASTEL_politics 46.6 47.0 46.8 .394 .379 .160 .413

PASTEL_education 24.4 25.2 24.7 .314 .332 .209 .323

PASTEL_ethnic 25.3 24.8 24.8 .245 .243 .163 .250

total 64.0 64.3 64.5 .272 .269 .227 .236

Table 6: Task performance (left; higher better) and calibration error (ECE; lower better) on

xSLUE. We do not include EmoBank; a regression task.

To better understand in which case PosCal helps correct the wrong predictions from

MLE, we analyze how prediction p̂ is different between MLE and PosCal in test set. Table 7
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(a) Predictions in RTE (b) Predictions in SPolite

(c) Calibrations in RTE (d) Calibrations in SPolite

Figure 7: Histogram of predicted probabilities (top) and their calibration histograms (bot-

tom) between MLE ( blue-shaded ) and PosCal ( red-shaded ) on RTE in GLUE and

SPoliteness in xSLUE. The overlap is purple-shaded . X-axis is the predicted posterior, and

Y-axis is its frequencies (top) and empirical posterior probabilities (bottom). The diago-

nal, linear line in (c,d) means the expected (or perfectly calibrated) case. We observe that

PosCal alleviate the posterior probabilities with the small predictions toward the expected

calibration. Best viewed in color.

shows the number of correct/incorrect predictions and its corresponding label distributions

grouped by the two models. For example, COR by MLE and INCOR by PosCal in the

fourth row of Table 7 means that there are three test samples that MLE correctly predicts

while PosCal not.

We find that in most of cases, PosCal corrects the wrong predictions from MLE by
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MLE → PosCal Size MLE PosCal label dist.

Data predictions (%) avg(p̂) avg(p̂) 0 1

RT
E

COR → COR 164(59.2) 79.2 78.6 42.8 47.2

COR → INCOR 3(1.1) 59.7 39.0 0 100

INCOR → COR 9(3.3) 40.6 56.7 100 0

INCOR → INCOR 101(36.4) 23.6 24.9 27.7 72.3
SP

ol
it

e.

COR → COR 342(60.3) 95.0 82.6 58.8 41.2

COR → INCOR 54(9.5) 82.1 26.8 96.3 3.7

INCOR → COR 60(10.6) 16.9 73.9 15.0 85.0

INCOR → INCOR 111(19.6) 9.8 21.7 54.0 46.0

Table 7: Size of correct (COR) and incorrect (INCOR) prediction labels with their averaged

p̂(%) of true labels for MLE and PosCal on RTE and Stanford’s politeness (SPolite)

dataset. Each has two labels : entail(0) / not entail(1) for RTE, and polite(0) / impolite(1)

for SPolite. PosCal improves 2.2%/1.1% accuracy than MLE for RTE/SPolite.

re-scaling p̂ in a certain direction. In RTE, most inconsistent predictions between MLE and

PosCal have their posterior predictions near to the decision boundary (i.e., 50% for binary

classification) with an averaged predicted probability about 40%. This is mainly because

PosCal does not change the majority of the predictions but helps correct the controversial

predictions near to the decision boundary. PosCal improves 3.3% of accuracy but only

sacrifices 1.1% by correctly predicting the samples predicted as ’not entailment’ by MLE to

’entailment’.

On the other hand, SPolite has more extreme distribution of p̂ from MLE than RTE.

We find a fair trade-off between two models (-9.5%, +10.6%) but still PosCal outperforms

MLE.

Table 8 shows examples that only PosCal predicts correctly, with corresponding p̂ of true

label from MLE and PosCal (INCOR → COR cases in Table 7). The predicted probability
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Data Sentence True
label

MLE
p̂

PosCal
p̂

RT
E

(S1) Researchers at the Harvard School of Public Health say that
people who drink coffee may be doing a lot more than keeping
themselves awake - this kind of consumption apparently also can
help reduce the risk of diseases.
(S2) Coffee drinking has health benefits.

entail 49.7 51.3
INCOR → COR

(S1) The biggest newspaper in Norway, Verdens Gang, prints a
letter to the editor written by Joe Harrington and myself.
(S2) Verdens Gang is a Norwegian newspaper.

entail 43.9 61.9
INCOR → COR

SP
ol

it
e. Not at all clear what you want to do. What is the full expected

output?
impolite 10.5 74.9

INCOR → COR

Are you sure that it isn’t due to the error that the compiler is
thrown off, and generating multiple errors due to that one error?
Could you give some example of this?

polite 6.9 57.9
INCOR → COR

Table 8: Predicted p̂(%) of true label from MLE and PosCal with corresponding sentences

in RTE and SPolite dataset. True label is either entail or not entail for RTE, and polite or

impolite for SPolite. Provided examples are the cases only PosCal predicts correctly, which

correspond to INCOR → COR in table 7.

p̂ should be greater than 50% if models predict the true label.

In the first example of RTE dataset, two expressions from S1 and S2 (e.g, “reduce the risk

of disease” in S1 and “health benefits” in S2) make MLE confusing to predict, so p̂ of true

label becomes slightly less than the borderline probability (e.g., p̂ = 49.7% < 50%), making

incorrect prediction. Another example of RTE shows how the MLE fails to predict the true

label since the model cannot learn the connection between the location of newspaper (e.g.,

“Norway”) and its name (e.g., “Verden Gang”). In the two cases from SPolite dataset, the

level of politeness indicated on phrases (e.g., “Not at all” in the first case and “Could you”

in the second case) is not captured well by MLE, so the model predicts the incorrect label.

From our manual investigation above, we find that statistical knowledge about posterior

probability helps correct p̂ while training PosCal , so making p̂ switch its prediction. For

further analysis, we provide more examples in Appendix G.
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3.5 Conclusion

In this chapter, we propose a simple yet effective training technique called PosCal for

better posterior calibration. Our experiments empirically show that PosCal can improve

both the performance of classifiers and the quality of predicted posterior output compared

to MLE-based classifiers. The theoretical underpinnings of our PosCal idea are not explored

in detail here, but developing formal statistical support for these ideas constitutes interesting

future work. Currently, we fix the bin size at 10 and then estimate q by calculating accuracy

of p per bin. Estimating q with adaptive binning can be a potential alternative for the fixed

binning.
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4.0 Quantifying Uncertainty of Individual Observations in Classification

We expect a probabilistic model should be calibrated; that is, predicted probabilities

from the model need to be well aligned with their relative frequencies. From the most of

studies, a model calibration is “examined" by simple statistics (e.g., expected calibration

error), or even by an interval from a rough estimation of relative frequencies. In this paper,

we switch a framework of a model calibration in terms of a single point estimation. Now, our

main question is how to “interpret" a relative frequency of a single point prediction given.

We especially focus on two important issues in this framework; first, how to estimate less

biased relative frequencies and second, how to build a robust confidence interval on it. We

borrow classical procedures that require weaker assumptions, nearest neighbor estimate and

subsampling interval. From the simulations of synthetic and real data settings, we empirically

show that (1) nearest neighbor is less biased than existing methods for relative frequency

estimation, and (2) subsamling based confidence interval shows tighter bound than the other

baselines across various settings. Our framework can be widely used for any classification

problem. In particular for high-stakes decision making like a recidivism or a medical diagnosis,

such a customized calibration confidence interval can provide a better understanding of a

connection between predicted probability and its empirical observation.

4.1 Introduction

As statistical and machine learning models become more ubiquitous, humans are increas-

ingly often tasked with making high-stakes decisions based on model outputs. In the context

of binary decision making, they are generally understood as predicted probabilities that an

event, such as a outbreak of disease [Kavuluru et al., 2015a] or a recidivism [Chouldechova,

2017], occurs. It is natural decision-makers trust that relative frequencies 1 match predicted
1Here, a relative frequency indicates how often a event occurs within the total number of observations

under the given predicted probability.
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probabilities. For example, in recidivism predictions if a model predicts the probability that

a criminal defendant will re-offend at a future point in time as 0.6, then eventually 60% of

criminal defendants who assigned probability 0.6 should commit a crime in the future.

Measuring a validity of predicted probabilities was widely studied in meteorology, partic-

ularly as concerns weather forecasting. The concept was differently called as a validity [Miller,

1962] or a reliability [Murphy, 1973]. A term ‘calibration’ was used in the same sense [De-

Groot and Fienberg, 1983]. Formally, a model is perfectly-calibrated if relative frequencies

in the long run equal to all possible predicted probabilities paired. Note that here a model

calibration cannot be evaluated by common metrics for classification tasks since it differs

from a model performance. In other words, well-calibrated model does not guarantee a highly

accurate classification, and/or vice versa. For instance, applying a Bayes classifier to a model

which assigns 0.51 to all events that happen and 0.49 to all events that do not happen is

perfectly discriminated, but poorly-calibrated since their relative frequencies are 1 and 0

respectively.

In general, a model calibration can be measured in two different ways. A reliability

plot [DeGroot and Fienberg, 1983, Guo et al., 2017] is a visual representation. In the plot,

predicted probabilities are plotted against corresponding observed relative frequencies. Ide-

ally, histogram bars in plot should align along the diagonal if a model is well-calibrated.

More convenient way is to get a statistic summary of calibration; Expected Calibration Er-

ror [Naeini et al., 2015] - or ECE- is an expected difference between predicted probabilities

and observed relative frequencies.

For many real-world statistical models with a discrete probability distribution (e.g.,

weather forecasters only predicting 0%, 10%, ... 100% chances to rain), such relative fre-

quencies can be easily approximated since multiple observations exist in general for each of

possible probabilities as we have enough samples. For infinite forecasters that can output

any predicted probabilities in [0, 1], however, it is unlikely the case that for every single pre-

dicted probabilities, more than one observations are found. In this case, relative frequencies

are approximated using observations in a certain interval of predicted probabilities. There-

fore, choosing optimal intervals that minimize a bias of relative frequency approximation is

crucial to measure a model calibration.
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Figure 8: Frequency histogram of predicted probabilities (top) and Reliability plot (bottom)

of logistic regression (8a) and neural network (8b) in our synthetic setup but with smaller

test set (m=50). Note that estimated ECE of both models are very close, 0.0127 for Logit

and 0.0123 for NN.

In terms of a calibration measure, even ECE is a simple and statistically reasonable

representation for validating overall quality of a model calibration, one of the major pitfalls

is that this type of statistics cannot capture the variability of observations. It is often the

case that predictions in certain ranges may be better- or worse- calibrated than others; see

reliability plots (bottom) in Figure 8 for a logistic regression (left) and a neural network

(right) trained with a synthetic data described in Section 4.6. Here we use the 50 test

samples for both plots and ECE. ECEs for both logistic regression and neural network are

around 0.012, indicating that generally two models are similarly calibrated. However, this
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result actually does not align well with our general understanding from the plots; while the

logistic regression seems better-calibrated across most of ranges, the neural network does not

even have relative frequency estimations in some ranges. It is because neural network tends

to predict more extreme probabilities than logistic regression by the nature [Guo et al., 2017];

see Histograms (top) in Figure 8 for a logistic regression (left) and a neural network (right).

For neural network, most of predictions are located in the extreme probabilities, range of

[0.0, 0.1] and [0.9, 1.0], and assign more weight to the better-calibrated bins.

In practice, humans are often tasked with making distinct individual decisions one at a

time. In such cases, the question is not whether overall predictions are biased in estimating

long run outcome frequencies, but rather, given a particular circumstance (set of features;

individual), how likely is the event to occur given the prediction made. Obviously we can

not answer that specific question exactly since we do not know the true probability that the

event will occur, but we can provide a plausible range of probabilities based on historical

data.

Our research aims to provide interval-based estimations of relative frequencies for given

predicted probabilities from models. In particular, we first propose the better way to esti-

mate relative frequencies by using non-parametric statistical methods (e.g, nearest neighbor)

instead of widely-used binning methods. We then construct confidence intervals for an in-

dividual relative frequency with subsampling. The theoretical proof is simple and highly

depending on existing works with some weaker assumption; for example, Biau and Devroye

[2015] for nearest neighbor algorithm and Politis and Romano [1994] for subsampling. How-

ever, it can be of tremendous practical use for human decision makers, especially for the case

that probabilities provided by the prediction has more important meaning than predicted

labels in decision making. Also, our work can be easily extended to multi classification tasks

and applicable with different non-parametric or sampling methods.
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4.2 Related Work

4.2.1 Model Calibration

Model calibration has been widely studied in meteorology, especially for verifying weather

forecasting on finite forecasters [Cooke, 1906, Brier et al., 1950, Miller, 1962, Murphy,

1973, DeGroot and Fienberg, 1983, Murphy and Winkler, 1984]. Recently, as it turned out

that state-of-the-art neural models are poorly calibrated [Guo et al., 2017], it has been re-

spotlighted in machine learning and deep learning studies and extended to explore on infinite

forecasters. In particular, most recent works propose methods to improve model calibration;

by post-hoc rescaling [Platt et al., 1999, Zadrozny and Elkan, 2001, Guo et al., 2017, Ma

and Blaschko, 2021] or training with different loss [Mukhoti et al., 2020, Jung et al., 2020].

In this paper, we do not focus on developing recalibration method, but do explore how to

interpret relative frequency estimates on individual points.

ECE is a widely used metric to measure the overall quality of model calibration. A quality

of ECE estimates heavily depends on how to approximate relative frequencies. In general, it

is estimated with binning based methods by using equally spaced bin [Naeini et al., 2015] or

alternatively bins with an equal number of examples [Nguyen and O’Connor, 2015]. Instead

of binning method, non parametric estimation such as kernel density estimation was also

proposed [Zhang et al., 2020]. Some works have pointed out that such ECE methods are

sensitive to parameters. For example, Kumar et al. [2019] showed that for equally-spaced

binning method, estimated ECE increases as a number of bin increases. Nixon et al. [2019]

also argued that binning based ECE estimates are sensitive to the binning techniques. Arrieta-

Ibarra et al. [2022] even pointed out that both binning and kernel density based ECE estimates

have trade-offs between statistical confidence for the ability and the variation of functions.

In this work, we propose to use nearest neighbor method to estimate relative frequencies

which is a simpler version of non parametric estimation. Even though nearest neighbor based

ECE estimates still need to choose an optimal parameter k, we empirically show that it is

much less sensitive than other parameters such as bin size for binning based ECE estimates.

Recently, Roelofs et al. [2022] compared existing ECE methods to find the least biased one,
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treating nearest neighbor estimates as a “true" calibration error. We instead argue that the

nearest neighbor method itself should be considered as the least-biased ECE estimates. In this

work, we provide a theoretical background and empirically show how it works on various data

setups in Section 4.4.

Meanwhile, a model calibration sometimes identifies with a model specification in Statis-

tics. Classical goodness-of-fit testing method by Hosmer and Lemesbow [1980] and its mod-

ifications are still actively used. Since such hypothesis testing results in rejecting calibration

rather than showing how model is calibrated, and even well-calibrated models are rejected

in large samples [Paul et al., 2013] , alternatively constructing confidence bands on calibra-

tion curve is proposed for the purpose of overall model assessment. However, a calibration

curve in general assumes a monotonically increasing function, thus, it is approximated with

a parametric function [Nattino et al., 2014] or an isotonic regression [Yang and Barber, 2019,

Dimitriadis et al., 2022] which can be heavily biased on single observations. 2 Unlike previ-

ous works, our work rather aims to construct a calibration interval for a single observation,

which we call “customized" interval, to provide an evidence of relative frequency estimates

using subsampling method. We continue to provide a theoretical background of customized

calibration confidence interval and its applications.

4.2.2 Confidence Interval

As we estimate relative frequencies with a nearest neighbor method, our calibration

interval basically becomes a confidence interval of k nearest neighbor regression estimates.

Several works studied to build a confidence band for k nearest neighbor regression estimates.

For example, Bjerve et al. [1985] applied a uniform confidence bound for k nearest neighbor

regression estimates; Eubank and Speckman [1993] considered a bias-corrected method.

Bootstrap is a commonly used technique for building confidence interval of non para-

metric regression estimates [Härdle and Mammen, 1991, Hall, 1992, Neumann and Polzehl,

1998, Hall and Horowitz, 2013]. On the other hand, subsampling is another statistical method

for constructing confidence bands on nonparametric regression estimates. Compared to the
2For example, it is not always guaranteed that examples with higher predicted probability align to higher

relative frequency.
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bootstrap procedure, subsampling requires more weaker assumptions [Bickel and Sakov, 2008]

and computationally less expensive if a sample size gets larger [Politis, 2021]. In this work,

we mainly use a subsampling method to construct calibration confidence interval which is

extended from Politis et al. [1999]. We provide a theoretical background of subsampling

method and comparison with other baselines (e.g., bootstrap from Hall and Horowitz [2013]

and simultaneous calibration band from Dimitriadis et al. [2022]).

4.3 Model Calibration

Suppose we have train and test sets Dtrain = {Z1, ...Zn} and Dtest = {Zn+1, ...Zn+m}

containing n and m observations for each, of the form (Xi, Yi) where Yi denotes the response

and Xi denotes a corresponding vector of d covariates (Xi1, ...Xid). Here we assume that

the response is binary where Yi ∈ {0, 1}. For most framework, Dtrain is first used to fit a

model (forecaster) F̂ that maps from the covariate space to the probability space p ∈ [0, 1]

where p = P (Y = 1|X) is the posterior probability that the response is positive (=1) given

a particular set of covariates X. In terms of the classification, the predicted label Ŷ = 1 if

F̂ (X) > 0.5 in general.

Definition 1 (Model calibration). A predicted forecaster F̂ is well calibrated if

P (y = 1|F̂ (X) = p) ' p

holds at least approximately across a range of probabilities p.

Here, we define Cal(p) to a calibration probability P (y = 1|F̂ (X) = p) for given

p. Most common way to quantify the calibration of model F̂ (X) is measuring an ECE by

averaging differences between predicted probabilities (p) and their corresponding calibration

probabilities (Cal(p), equally relative frequencies)

ECE(F̂ ) = EX(Cal(p)− p)2. (8)
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In general, ECE(F̂ ) is estimated on Dtest. Suppose P̂test = {p̂n+1, ...p̂n+m} is the set of

predicted probabilities from F̂ using the covariates Xtest = (Xn+1, ...Xn+m) from Dtest. Then,

ECE(F̂ ) can be estimated as

ÊCE(F̂ ) =
1

m

m∑
i=1

(Cal(p̂n+i)− p̂n+i)
2. (9)

Here, Cal(p̂n+i) needs to be approximated since we cannot get the true calibration prob-

ability. Finally, ECE(F̂ ) can be estimated as

ÊCE(F̂ ) =
1

m

m∑
i=1

(Ĉal(p̂n+i)− p̂n+i)
2. (10)

where Ĉal(p̂) is an estimated calibration probability given p̂. In general, Ĉal(p̂) cannot be

approximated by simply calculating relative frequencies conditioned on a single p̂ since mostly

p̂ is a continuous random variable in [0, 1] except the case of finite forecaster 3. Thus, we use

empirical approximations such that

Ĉal(p̂) =
m∑
i=1

1(Yn+i = 1)1(p̂n+i ∈ B̃p̂)

‖B̃p̂‖
(11)

where B̃p̂ = {p̂i : p̂i ∈ P̂test ∧ (p̂i ∈ Np̂)} and Np̂ is an interval or bin, including p̂ such that

[p̂− Ilb, p̂+ Iub] ⊂ [0, 1], assuming that the points in Np̂ are close enough to p̂ for estimating

Cal(p̂).

4.4 Calibration Probability Estimation

In equation 11, how to implement Np̂ is not that much explored so far. Most of previous

works use equally-based bins Np̂ = [ b
B
, b+1
B

] such that p̂ ∈ Np̂ where B is a positive integer

and b = {0, 1, . . . , B}. It is simple and intuitive, but performs poorly if there is no sufficient

number of observations for each bin. In order to use a fixed-bin scheme, we mainly assume
3We will see more details about how Cal(p̂) can be estimated for a finite forecaster in Section 4.5.1.
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Figure 9: Reliability plot of logistic regression (9a) and neural network (9b) with ECE esti-

mators using adaptive binning. For both models, we use the same test output and the bin

size as Figure 8.

a CDF from model should be uniformly distributed [Gopal, 2021]. As we have already seen

in Figure 8, however, it is not the case for many of statistical machine learning models.

Alternative way is using uniform-mass bins, called adaptive bins [Nguyen and O’Connor,

2015]. Instead of partitioning [0,1] with equal length, it assigns an equal number of p̂i, so

that size of Np̂ should he equal. However, an adaptive binning method can easily make a

very wide range of bins if p̂ is from highly-skewed distributions. Figure 9 shows a reliability

plot of adaptive binning method for two models in Figure 8. Most of bins in a neural network

are located in the two extreme and have a very wide bins in the middle (range in [0.1,0.9]),

while bins in a logistic regression seem to be evenly distributed in the range. In this case,

such wide bins in the neural network cannot be appropriate estimates for Cal(p̂) .

Note that under binning methods, Ĉal(p̂) actually means an averaged Ĉal(p̂) since it

remains the same for p̂s from the same bin. More precise approach is to build a customized

intervals for every p̂ observations. A simple way is to build nearest neighbor intervals that

for every observation in Np̂ no more than k− 1 other forecasts lie closer to p̂. Simply, Ĉal(p̂)

is a nearest neighbor regression function estimate. A main advantage of nearest neighbor

algorithm is such estimates are consistent under the weak conditions:

Theorem 1 (Universal weak pointwise consistency of Ĉal(p̂)). Let l ≥ 1. Assume that

42



k →∞ and k
m
→ 0. Then nearest neighbor regression estimate Ĉal(p̂) satisfies

E(|Ĉal(p̂)− Cal(p̂)|l)→ 0 at µ-almost all p̂ ∈ [0, 1]

In particular, Ĉal(p̂) is universally weakly consistent at µ-almost all p̂, that is,

Ĉal(p̂)→ Cal(p̂) in probability at µ-almost all p̂ ∈ [0, 1]

In other words, for given p̂, as we have infinitely many nearest points in P̂test and the

size of k diverges much slower than the size of Dtest, Ĉal(p̂) converges to the true calibration

probabilities. Note that theorem above is a simple notation change from Biau and Devroye

[2015]; see Theorem 11.1 and Corollary 11.1 in Biau and Devroye [2015] for the detailed

proof.

4.5 Customized Calibration Confidence Interval

4.5.1 Finite Forecaster

To begin, suppose that our forecaster F̂ can output only a small and finite collection

of probabilities. For example, finite forecaster F̂ can only output every 10% of probabilities

like {0.0, 0.1, 0.2, ..., 0.9, 1.0}. Actually, this is often the case in common, low-stakes settings

such as a weather forecasting. In probability of precipitation (PoP), for example, a weather

forecasting service might prefer simply forecasting a 70% chance of rain instead of providing

a detailed prediction like 73.6% since simple prediction numbers are more intuitive.

We first demonstrate how we can form the simple point estimate Cal(p̂) for finite fore-

casters. The key simplification that this setting allows for is given a large test dataset,

it is increasingly likely that many observations will receive the same forecast p̂ from F̂ .

Formally saying, let P = {p1, p2, ..., pk} be a probability outcome space of a finite fore-

caster F̂ and m = (m1,m2, ...,mk) is a sequence of observations such that p̂ = pi. Then,
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m ∼ Multinomial(m; q1, q2, ..., qk) where qi > 0 is a probability that F̂ (X′) = pi and as

m→∞, every sequence in m→∞ as well. Thus, for finite forecaster, Np̂ = [p̂− Ilb, p̂+ Iub],

both Ilb and Iub → 0 as m→∞.

Here, given a particular covariate X′ for which F̂ (X′) = p̂, we can form an estimate

Cal(p̂) by first selecting all test observations predicted exactly as p̂ and averaging their

corresponding binary response values to get an estimate of the true probability Cal(p̂).

For a confidence interval, we describe a simple theoretical background for Cal(p̂). Our

response Y is a binary variable, assumed i.i.d. in general. It is obvious that Y ∼ Bernouli(θ)

where θ ∈ [0, 1] is unknown. We first fit a model F̂ with Dtrain, and calculate Cal(p̂) = P (Y =

1|F̂ (X) = p̂) with Dtest which is independent of Dtrain. Then our test response Ytest =

{Yn+1, ...Yn+m} can be partitioned into Yp̂ = {Yi : F̂ (Xi) = p̂} and Cal(p̂) is a parameter of

distinct Bernouli trials Yp̂ for any p̂ from the finite collection of probabilities. Thus, forming

a confidence interval can then be immediately done by applying any interval estimations for

the binomial proportion with their required conditions. That is, either parametric or non-

parametric confidence interval methods can be used. For the pair comparison with infinite

forecasters, we use a subsampling confidence interval procedure that is further discussed

in 4.5.2. A summary of this procedure is given in Algorithm 2.

4.5.2 Infinite Forecaster

While simple, the key issue with the previous setup is that most modern statistical and

machine learning models do not, at least by default, output predicted probabilities from only

a small finite collection. Rather, the forecaster outputs are continuous, taking on any value

in [0, 1]. This means that given a particular point of interest X′ and forecast F̂ (X′) = p̂, we

cannot simply utilize a subset of observations with the same forecast because (depending on

how the forecaster is constructed), there may simply be no other forecasts of exactly p̂. In this

setting, we cannot replicate the procedure in Algorithm 2 exactly, but we can approximate

it by taking subsamples of a nearest neighbor set. In particular, for a user-specified choice

of k, we can define Dtest(p̂, k) = {Zi|Zi ∈ Dtest ∧ (F̂ (Xi) ∈ kNN(p̂′))} where kNN(p̂′) is a

nearest neighbor based interval Ip̂′ in Section 4.4 . Then, again, Ĉal(p̂) can be computed by
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Algorithm 2 (1− α)× 100% Calibration Confidence Intervals for Finite Forecaster
Input:
Train set Dtrain, Test set Dtest with m observations, Desired probability p̂,

Number of sub-samples S, sub-sample size d(<< m)

Output: (1− α)× 100% confidence interval for Cal(p̂)

1: Train a forecaster F̂ : X → P ∈ [0, 1] using Dtrain
2: Define Dtest(p̂) = {Zi|Zi ∈ Dtest ∧ F̂ (Xi) = p̂}

3: Form Ĉal(p̂) by averaging response values in Dtest(p̂)

4: for s ∈ {1, 2, 3, ...S} do

5: Take sub-sample D∗s by sampling d observations in Dtest without replacement

6: Form Ĉal(p̂)∗s by averaging response values in D∗s(p̂)

7: end for

8: Define cm,d(α) as α quantile from {
√
d(Ĉal(p̂)− Ĉal(p̂)∗1), ...,

√
d(Ĉal(p̂)− Ĉal(p̂)∗S)}

9: Take confidence intervals [Ĉal(p̂)−
√
m
−1
cm,d(1− α

2
), Ĉal(p̂)−

√
m
−1
cm,d(

α
2
)]

averaging response values in Dtest(p̂, k).

Unlike finite forecasters, Ĉal(p̂) in infinite forecasters is a non-parametric estimation.

Thus, only non-parametric procedures might be considered to build a confidence interval.

Here we use a subsampling confidence interval because compared to the other methods like

bootstrapping, its validity is easy to be shown under much weaker conditions:

Theorem 2 (Valid subsampling confidence interval). For P̂test with size m, let Jm(x, p̂) is

a cumulative distribution function of τm(Ĉal(p̂) − Cal(p̂)) where τm =
√
m. Let d denote a

size of subsamples, D∗i denote ith subsample, and md denote
(
m
d

)
. Then, the approximation

of Jm(x, p̂) with subsampling can be defined by

Lm,d(x) =
1

md

md∑
i=1

1{τd(Ĉal(p̂)∗i − Ĉal(p̂)) ≤ x}

where Ĉal(p̂)∗i is an averaged response values in D∗i (p̂) = {Zi|Zi ∈ D∗i ∧ F̂ (Xi) = p̂}.

Assume there exists a limiting law J(p̂) where Jm(p̂) weakly converges as m→∞. Also,
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assume d→∞ and d
m
→ 0. Define

cm,d(α) = inf{x : Lm,d(x) ≤ α}

Then, two-sided equal-tailed (1− α)× 100% confidence interval for Cal(p̂) is

[
Ĉal(p̂)− τ−1

m cm,d(1−
α

2
), Ĉal(p̂)− τ−1

m cm,d(
α

2
)
]

Furthermore, ms can be replaced with S << md if S →∞ as m→∞.

Again, we apply existing theorems which is widely used for subsampling; see Politis and

Romano [1994] and Politis et al. [2001] for more details. The conditions for both theorems

have in common; both procedures require to choose the nearest neighbor size k and the

subsample size d much smaller than the test sample size m as k, d,m → ∞. Intuitively,

k << d because in subsample at most k = d, and if k = d, Ĉal(p̂) becomes constant for all p̂.

In Section 4.6, we empirically show how to choose the optimal k for the fixed d in practice.

Once such a set Dtest(p̂′, k) is established, the procedure in Algorithm 2 can be carried out

using this as a replacement for Dtest(p̂′, k).

4.6 Simulation

In this Section, we focus on answering to two main questions under the controlled data

setup. We first show that a nearest neighbor based based method can estimate less biased

calibration probabilities than existing binning methods. We then show how customized cal-

ibration confidence intervals can be constructed for different type of forecasters in practice.

4.6.1 Data Generation

To generate a synthetic dataset, we follow the simulation setting from Hastie et al. [2017]

except for binary labels Y. Suppose that N (sample size), P (dimension size), and ρ (level

of autocorrelations among covariates) are given. Then,

• Feature matrix X ∈ RN×P is i.i.d from N(0,Σ) where Σ ∈ RP×P and Σi,j = ρ|i−j|.
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• Beta coefficients β ∈ Rp where βi = 0.5i are drawn. This is a slight modification of

beta-type 5 from Hastie et al. [2017].

• Assume there is a linear relationship between X and log-odds of the true posterior prob-

ability. In other words, P (y = 1|x) = 1
e−(βx+ε)+1

where ε is a noise and i.i.d from N(0, 1).

• Binary label is simply generated by Y = 1(P(y = 1|x) > 0.5).

For further simulations, we choose a size of train set n = 1, 000, a size of test set can vary;

for example,m = {100, 500, 1000, 5000}, dimension size P = 100 and level of autocorrelations

ρ = 0.35. Note that we generate bigger test samples to show theoretical validity of Ĉal(p̂)

estimation and subsampling procedure.

4.6.2 Optimal k for Nearest Neighbors

We mainly use a nearest neighbor approach for both calibration probability estimation

and its confidence interval. For the nearest neighbor, a number of neighbor, k, is an important

parameter to decide its performance. However, how to find an optimal k is not clearly

defined; rule of thumb is to just choose k =
√
N where N is a sample size. A toy example

provided in Chen et al. [2018] has a similar data setup, where a single predictor x ∈ [0, 1]

and x ∼ uniform(0, 1), as our predictor p̂ ∈ [0, 1] as well. In the example, k can be bounded

by

k(2k − 1)(k − 1) ≤ 6N2 ≤ k(2k + 1)(k + 1) (12)

, and thus obviously k ∼ N
2
3 for sufficiently large k and N . For example, if we have a sample

size 1000, an approximated optimal k is around 100 . Later, we define k∗ = N
2
3 as an optimal

k.

4.6.3 Calibration Probability Estimation

We empirically show that nearest neighbor based Cal(p̂) estimator is less biased than

two existing approximations; fixed-bin and adaptive-bin methods by comparing the difference

between Cal(p̂) and Ĉal(p̂) estimated by each method. Here we fix the test sample size 1,000

for experiments.
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Forecaster. We need to get true calibration probability Cal(p̂) to compare. In practice,

however, it is impossible to get it as we do not have a population dataset. Thus, we use a

simple assumption that our forecaster

Ftrue(X) = p̂ = P (Y = 1|X)

is perfectly fitted. In this setup, we even do not need to train model but rather simply use

p̂ = P (y = 1|x) = 1
e−βx+1

from the synthetic data generation results assuming that we can

predict it with Ftrue. Then Cal(p̂) = p̂ for all p̂ from Ftrue and ECE(Ftrue) = 0 as well.

Test Distributions. In order to check how Ĉal(p̂) works on different shape of test

distributions, we manipulate the test distribution of p̂ as:

• Norm: We just keep original distribution shape of P (Y = 1|X) = p̂ from the test set. In

theory, it just looks like bell-curved centered 0.5 as it follows a logit-normal distribution

and the mean and s.t.d of logit(=X) are 0 and 0.35 respectively,.

• U-shaped: We choose most of p̂ in two extremes, from (0,0.1] and (0.9,1.0] and get a

few points in mid, (0.45, 0.55]. This is what we normally get from neural models as it

tends to be overconfident on predictions.

• Uniform: We simply choose p̂ uniformly from (0,1]. This is how current calibration

methods are assuming to apply their method (e.g., isotonic regression).

Histograms of p̂ with three distributions are in Figure 10.

ÊCE(Ftrue) Comparison. In general, Cal(p̂) estimator is the least biased if ÊCE(Ftrue) > 0

is the nearest to 0. Here we first compare ÊCE(Ftrue) from Cal(p̂) estimators. For each method,

parameters determining the size of Np̂ should be optimized by minimizing ÊCE(Ftrue); for

example, number of bins (B) for fixed and adaptive bin methods and k for nearest neighbor

method. We measure ÊCE(Ftrue) across all possible B or k, from 1 to 1000 and report the

minimum ÊCE(Ftrue) in Table 9. With optimal k, nearest neighbor method is always less-

biased than the others in any types of test distributions. For bin-based methods, optimal

bin sizes are between 10 to 20 which aligns to B = 15 that is used in previous works by

convention. On the other hand, optimal k of nearest neighbor method comes from from 59
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Figure 10: Histogram of p̂ on three different distribution setups for 1,000 test sets.

Norm Dist. U-shaped Dist. Uniform Dist.

Fixed-bin 0.0017 (15) 0.0012 (18) 0.0022 (13)

Adaptive-bin 0.0017 (10) 0.0015 (19) 0.0025 (13)

Nearest Neighbor 0.0007 (153) 0.0009 (59) 0.0021 (115)

Table 9: Minimum ÊCE(Ftrue) for Cal(p̂) with corresponding optimal bin (k) sizes. Smaller

ÊCE(Ftrue) means less-biased in our setup. For all three test distributions, nearest neighbor

method shows significantly less biased in general.
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Figure 11: Comparison of ÊCE(Ftrue) across unique number of intervals (e.g., number of bins

(B) or N-k) with test size 1,000. Note that for any methods, ÊCE(Ftrue) should be equal in

two extreme interval sizes (1 and 1,000).

to 153. Compared to k∗ = 100, Uniform seems to have a close k. We continue to check if

ÊCE(Ftrue) of nearest neighbor method is less biased with different k.

We observe ÊCE(Ftrue) across all B or k sizes for three test distributions in Figure 11.

In graphs, x-axis corresponds to the unique number of intervals (bins), for example B for

binning methods and (N-k) for nearest neighbor method. Nearest neighbor method is in

general less-biased in terms of ÊCE(Ftrue) across number of intervals unless k is too big, for

example, bigger than around 800 for Norm and Uniform test distributions. We also mark

the range of k where nearest neighbor estimator is always less-biased than the minimum

ÊCE(Ftrue) from other methods in Table 10. For instance, with Norm test distribution, this

Norm Dist. U-shaped Dist. Uniform Dist.

Fixed-bin [81,259] [34,101] [99,134]

Adaptive-bin [81,263] [30,103] [85,149]

Table 10: Range of Ks where nearest neighbor method has smaller ÊCE(Ftrue) than minimum

ÊCE(Ftrue) from the other methods. We find that in general this range contains optimal k

100.
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Figure 12: p̃ estimators vs p̂ across test distributions. As our setup makes p̂ equals to true

p̃, this should align well to the diagonal line.

ranges are around 80 to 260, which means that even we manually choose any k between 80

to 260, nearest neighbor method is always less biased than the other two. For U-shaped

and Uniform test distribution, the range of k is much narrower. However, it still contains

k∗ = 100, indicating that nearest neighbor method not sensitive to choose an optimal k as

long as it is reasonable, and it is robust on different shapes of test distributions.

Pointwise estimators comparison. Instead of checking overall bias from methods

using ÊCE(Ftrue), we measure biases of individual Cal(p̂) approximations. Graphs of Cal(p̂)

vs. Ĉal(p̂) across test distributions are in Figure 12. For Cal(p̂) approximations, we use an

optimal B or k reported in Table 9. Like a reliability plot in Figure 8, the graph should also

align to the diagonal line if Ĉal(p̂) is close to Cal(p̂). While bin-based methods has step-

wise approximations in graphs, nearest neighbor approximations are more customized using

moving intervals for each point estimations. In particular, for Norm and U-shaped test

distributions, nearest neighbor method obviously seems to be less biased than the others.

We also compare the frequency of absolute differences between true and estimated cali-

bration probabilities (|Cal(p̂)− Ĉal(p̂)|) across test distributions in Figure 13. In this graph,

right-skewed graph means pointwise Cal(p̂) estimators are closer to true Cal(p̂), indicat-

ing that the method is less biased. In Norm and Unif test distributions, nearest neighbor
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Figure 13: Smoothed frequency graph on |p̂ − p̃|. Right-skewed graph means that p̃ is close

to p̂ in pointwise, which means less-biased estimators.

method is more right-skewed than the others. On the other hand, U-shape test distribution

has more right-skewed graph from fixed-bin method, but has long-tail frequencies between

0.2 to 0.25 that make ÊCE(Ftrue) be greater than nearest neighbor method.

4.6.4 Customized Calibration Confidence Interval

We continue to show how to build a customized confidence interval of Ĉal(p̂) approxi-

mations with nearest neighbor method on different forecasters. For baselines, we use simple

non-parametric bootstrap confidence interval from Hall and Horowitz [2013] and calibration

band proposed by Dimitriadis et al. [2022].

Model Performance and Calibration Error.We first train three different forecasters

using Dtrain; k nearest neighbor regression (KNN), logistic regression (Logit) and neural

networks (NN). For each forecaster, we use some parameters; for KNN, K = 10; for NN, hidden

layers size H = (1000× 512× 512) and activation function ‘ReLU’.

Task performance and calibration error on three different models of different test set size

are in Table 4.6.4. In general, Logit and NN outperforms to KNN since simulated datasets are

generated by linear relation of X and Y. In particular, Logit outperforms NN; this result is
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Forecaster
m=100 m=500 m=1,000 m=5,000

ÊCEfix ÊCEnn Acc. ÊCEfix ÊCEnn Acc. ÊCEfix ÊCEnn Acc. ÊCEfix ÊCEnn Acc.

KNN 0.0172 0.0151 59.0% 0.0060 0.0069 55.2% 0.0034 0.0044 56.9% 0.0016 0.0021 57.6%

Logit 0.0303 0.0255 61.0% 0.0097 0.0094 68.0% 0.0086 0.0089 65.5% 0.0081 0.0086 65.7%

NN 0.1403 0.1255 60.0% 0.0786 0.0718 67.2% 0.0933 0.0909 64.7% 0.0890 0.0896 64.5%

Table 11: Test accuracy and ECE estimations of fixed-bin (ÊCEfix) and nearest neighbor

method (ÊCEnn). For fixed-bin ECE estimation, we use bin size (B) 10. For nearest neighbor

ECE estimation, we use k =
√
m

2
3 . For each test size, best scores are bold.

not aligned with a general understanding of NN’s better performance because a true posterior

probability distribution comes from logistic function as well .

In terms of model calibration, NN is actually poor-calibrated than the other two. This

result corresponds to the visual representation in Figure 14. In reliability plots, both KNN

and Logit are almost perfectly calibrated over all ranges, while NN does not calibrate well,

even for two extremes where most of predictions are located in. Histogram plots also show

that empirical distribution of Cal(p̂) is way much different according to forecasters; while

Logit seems uniformly distributed, NN has a u-shaped distribution, highly skewed to both

extremes.

Customized Calibration Confidence Interval. Our proposed calibration confidence

intervals with different test sample sizes are in Figure 15. As mentioned in Algorithm 2, we

use a classic subsampling procedure. We simply set up a subsample size s = m
5
and the num-

ber of subsamples S = 1000, which are small/large enough to fit our weaker conditions from

Theorem 2. We then manually choose an arithmetic sequence of p̂ = {0, 1
20
, 2

20
, ..., 1} and con-

struct confidence intervals for individual points. In general, confidence interval gets narrower

as test sample size increases across different models. Especially, interval of NN actually con-

tains the conventional border line probability of 0.5 except extremes. This indicates that even

though NN shows a great task performance in general, we cannot guarantee that individual

prediction points with mid probabilities actually aligns to its actual relative frequencies.
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Figure 14: Frequency histogram of p̂ (top) and reliability plot (bottom) for KNN (14a), Logit

(14b), and NN (14c) in our synthetic data setup with m = 1, 000.

We further analyze how different subsampling size affect to the interval width in Fig-

ure 16. We test subsample sizes S ∈ {m
10
, m

5
, m

2
} where m = 1, 000. Even though bigger

subsample size tends to have tighter confidence bounds, there is no big differences as long

as subsample size is small enough.

Comparison with baseline confidence bands. We now compare our proposed cali-

bration confidence interval with two baselines discussed in Section 4.2. Again, we do point

out that baseline confidence intervals are conceptually different from our work. For exam-

ple, most existing works for calibration confidence band [Dimitriadis et al., 2022, Yang and

Barber, 2019] target model specification and it does not thoroughly care about the quality

of predicted calibration probability Ĉal(p̂) by simply drawing it with monotonic regression
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(d) Logit, m=500
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(f) Logit, m=5,000
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Figure 15: Customized calibration confidence intervals of KNN (top), Logit (center) and NN

(bottom) with different test sample size (m) 500 (left), 1000 (middle), and 5000 (right) using

subsampling method. For subsampling size, we fix m
5
for each.

techniques (e.g., isotonic regression). Here we use the recently proposed method by Dimitri-

adis et al. [2022] as a baseline. We also customize the general bootstrap approach from Hall

and Horowitz [2013] for the calibration confidence interval. See Appendix H for more details

about baseline bootstrap method for calibration confidence interval.
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Figure 16: Calibration confidence intervals for m = 1, 000 with different subsampling size.

As long as subsampling size is small enough, there exist no big difference of interval width.
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Figure 17: Comparison of calibration confidence intervals for m=1,000 on KNN (17a), Logit

(17b), and NN (17c).

Figure 17 shows a comparison of calibration confidence intervals across forecasters with

test size 1,000. Following Figure 15, we use a subsample size s = 200 and the number

of subsample S = 1, 000. We can easily check that subsampling confidence interval has

much tighter bounds compared to the other methods for all models. For example, bootstrap

confidence interval shows more bumpy bounds overall points and has wider intervals than

subsampling method. On the other hand, Dimitriadis et al. [2022]’s interval on isotonic

regression estimators show the widest intervals. In terms of point estimations, in addition,

such a monotonic function based method cannot accurately approximate the point if its
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Forecaster ÊCEfix ÊCEnn Acc.

KNN 0.0022 0.0027 66.08%

Logit 0.0023 0.0028 67.02%

NN 0.0011 0.0015 68.13%

Table 12: Test accuracy and ECE estimations of fixed-bin (ÊCEfix) and nearest neighbor

method (ÊCEnn) for COMPAS prediction. For fixed-bin ECE estimation, we use bin size (B)

10. For nearest neighbor ECE estimation, we use k = m
2
3 . Best scores are bold.

calibration probability should be lower than the former points. Therefore, for a single point,

we cannot guarantee the quality of approximation and even its confidence bound.

4.7 COMPAS application

In this section, we provide an example of a calibration confidence interval application in

the real world problem by predicting a recidivism using COMPAS data 4. Here, we predict if a

convicted criminal is likely to re-offend in two years. As Dressel and Farid [2018] showed that

simple linear models with fewer variable achieve a same accuracy with COMPAS software

trained by full (=137) features, we only use seven features following their work. 5 From 7,214

total defendants, we randomly split 80%/20% of train/test sets. We then train three models

again; KNN, Logit, and NN using the same hyper-parameters except that we use 5 hidden

layers with size 10 for NN.

Test accuracy and ECE estimations on COMPAS prediction are in Table 12. All three

models have comparable task performance and model calibration. In particular, NN shows

the best performance and model calibration.

We continue to check a visual representation of model calibration in Figure 18. We show
4https://github.com/propublica/compas-analysis/
5age, sex, number of juvenile misdemeanors, number of juvenile felonies, number of prior (nonjuvenile)
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histograms of p̂ (top), reliability plots (center), and calibration confidence intervals (bottom)

of three models. For some hyper-parameters, we keep them same as the previous sections.

We find that even if the models achieve comparable task performances, their frequency

histograms of p̂ are totally different. For NN, none of p̂ exceeds 0.8, meaning that the model

does not output higher probability on the test set given.

In the calibration confidence intervals, Logit and NN have much tighter bounds than

KNN. As NN shows the same Cal(p̂) approximation over the p̂ > 0.8, for every point estima-

tion in this range would not have any discrimination in terms of calibration probability; in

other words, we may interpret that any of convicted criminals who assign > 0.8 predicted

probability from NN would have chance to re-offend around 0.8 in the future.

4.8 Conclusion

In this chapter, we propose a new framework to understand a model calibration in terms

of a single point estimation. In particular, we borrow the classical procedures such as k nearest

neighbor regression and subsampling procedure to estimate point calibration probability and

to provide their confidence. From simple simulations on both synthetic and real world setups,

we empirically shows the validity of our proposed procedure compared to the baselines.

The big assumption behind the model calibration is that once a model is trained, it

is fixed; in other words, uncertainty from a model is not generally considered in a model

calibration. Exploring a combined framework of a customized model calibration and a model

uncertainty can be a great future work. For example, Booth et al. [1992] provided a general

framework of bootstrap estimation with conditional distribution that seems appropriate for a

combined framework. Exploring other non-parametric methodologies also can be a potential

future work; for example, we do not thoroughly explore kernel density estimation for Cal(p̂)

approximation as it requires more hyper-parameters to be tuned (e.g., bandwidth and kernel

function). Finding an optimal non-parametric method based on specific experimental setups

might be helpful to apply our ideas.
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Figure 18: Comparison of histograms (top) , reliability plots (center), and calibration confi-

dence intervals (bottom) for COMPAS prediction on KNN (18a), Logit (18b), and NN (18c).
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5.0 Conclusions

Measuring and understanding the uncertainty behind statistical models should be deeply

studied since it helps not only correct the potential bias of models, but also improve the

model performance eventually. In this work, we explore three topics to quantify uncertainty,

particularly focusing on natural language processing tasks. In detail, we measure data and

model biases from the trained model in Chapter 2. In Chapter 3 and 4, we investigate the

model calibration in classification by proposing a new framework of its practical use or

improving the quality.

In the model calibration, however, we restrict the task as a binary classification since it

has a simpler statistical assumption, i.e., target response is binomial distributed. The task

extension to the different setups can be an interesting and practical future work. For example,

many prior works [Mukhoti et al., 2020, Ni et al., 2019, Widmann et al., 2019] already

studied the model calibration in multi classification where a target response can be from

multiple candidate classes. Our two ideas can be easily extended to the multi classification

task by assuming the target to be multinomial distributed. Further applications on multi

classification can be an easy stratch from our study.

More practical but hard task is a multi label classification, that is, having multiple tar-

gets from the candidate classes. For example, finding a genre of movies can be a multi

label classification as a single movie can belong to multiple genres such as “fantasy", “sf"

and “romance". Unlike other classification tasks, model calibration under the multi label

classification is rarely explored even if existing state-of-the-art models show the poorly cali-

brated results. It is because the statistical assumptions behind the multi label classification

is much more complicated as candidate classes are not independent. Rather, the classes are

highly correlated in general, thus, such correlation should be thoroughly considered under

the appropriate setting. Thus, studying for a calibration method and a measurement on

multi label classification can be another interesting topic that heavily affects the real world

applications.
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Appendix A Details on Systems and Setup for text summarzation

For extractive systems, K-Means rank sentences clusters by descending order of clus-

ter sizes, and then using a greedy algorithm [Lin and Bilmes, 2010] to select the nearest

sentences to the centroid. Maximal Marginal Relevance (MMR) finds sentences which are

highly relevant to the document but less redundant with sentences already selected for a

summary. cILP [Gillick and Favre, 2009, Boudin et al., 2015] weights sub-sentences and

maximizes their coverage by minimizing redundancy globally using Integer Linear Program

(ILP). TexRank [Mihalcea and Tarau, 2004] automatically extracts keywords using Leven-

shtein distance between the text keywords. LexRank [Erkan and Radev, 2004] uses module

centrality for ranking the keywords. In addition, we also use the recent three neural extrac-

tive systems: CL [Cheng and Lapata, 2016], SumRun [Nallapati et al., 2017], and S2SExt

[Kedzie et al., 2018], where each has a little variation in their extraction architecture1.

In training CL, SumRun, and S2SExt, we use upweight positive labels to make them

proportional to the negative labels. We use 200 embedding size of GloVe [Pennington et al.,

2014] pre-trained embeddings with 0.25 dropout on embeddings, fixing it not to be trained

during training. We use CNN encoder with 6 window size as [25, 25, 50, 50, 50, 50] feature

maps. We use 1-layer of sequence-to-sequence model with 300 size of LSTM and 100 size of

MLP with 0.25 dropout. SumRun uses 16 size of segment and 16 size of position embeddings.

For abstractive systems, we use WordILP [Banerjee et al., 2015] that produces a word

graph of important sentences and then choose sentences from the word graph employing

a ILP solver. We also use incremental sequence-to-sequence models: a basic S2SAbs [Rush

et al., 2015] with Pointer network [See et al., 2017], with teacher forcing Teacher [Bengio

et al., 2015], and with reinforcement learning on the evaluation metrics, and RL [Paulus

et al., 2017].

In training S2SAbs, Pointer, Pointer, and RL, we use 150 hidden size of GRU with 300

size of GloVe embeddings. Pointer uses maximum coverage function using NLL loss. Teacher

uses 0.75 ratio of teach forcing with exponential decaying function. and RL uses 0.1 ratio of
1See Kedzie et al. [2018] for a detailed comparison.
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RL optimization after the first epoch of S2SAbs training. We use 4 size of beam searching

at decoding. We use 32 batch size with adam optimizer of 0.001 learning rate.

For MScript, the original dataset has no data split, so we randomly split it by 0.9, 0.05,

0.05 for train, valid, test set, respectively.
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Appendix B Venn Diagram for All Datasets

Sentence Venn diagrams among three aspects and oracle for all datasets are shown in

Figure 19. Newsroom has an analogous pattern to XSum. Compared to PeerRead, , PubMed

has relatively less sentence overlap between First-k and the other two aspects. MScript has

extremely small oracle sentence overlaps to all three aspects. However, it is mainly because

of the characteristics of the dataset: it has long source documents (1k sentences on average)

with short (5 sentences on average) summary.

(a) CNNDM(49.4%) (b) Newsr.(54.4%) (c) XSum(76.8%) (d) PeerRead(37.64%) (e) PubMed(64.0%)

(f) Reddit(68.1%) (g) AMI(94.1%) (h) BookSum(87.1%) (i) MScript (99.1%)

Figure 19: Venndiagram of averaged summary sentence overlaps across the the sub-aspects

for all datasets.
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Appendix C Full ROUGE F Scores for Corpus Bias Analysis

In Table 13, we provide a full list of ROUGE F scores for all datasets w.r.t three sub-

aspects. We find that in MScript, the best algorithms for each of ROUGE-1/2/L are different.

CNNDM NewsRoom XSum PeerRead PubMed

R-1/2/L R-1/2/L R-1/2/L R-1/2/L R-1/2/L

Random 26.6/6.7/23.9 15.2/2.8/12.2 14.9/1.8/11.2 38.2/11.1/34.3 41.3/11.3/37.6
Oracle 51.5/28.5/48.6 53.4/40.2/50.7 27.9/7.5/23.2 56.6/29.5/52.7 58.2/27.9/54.8

P
o
s.

First-k 39.1/17.1/35.8 36.9/25.9/33.9 14.8/1.4/11.1 41.4/16.8/37.9 37.8/10.2/34.7
Last-k 23.5/4.7/21.1 11.5/2.0/9.5 13.2/1.5/10.1 39.1/12.4/35.1 39.1/11.8/35.9

Middle-k 29.4/8.6/26.4 17.4/5.3/14.4 14.7/1.7/11.0 40.4/12.5/36.3 39.5/10.8/36.3

D
iv

. ConvexFall 29.5/8.6/26.6 15.0/4.0/12.7 13.6/1.3/10.5 40.4/12.8/36.3 39.0/10.3/35.3
Heuristic 29.2/8.7/26.3 14.9/4.1/12.7 13.6/1.3/10.5 39.7/12.4/35.6 38.1/9.8/34.5

Im
p. N-Nearest 29.7/9.3/26.9 18.9/6.1/15.7 15.7/2.0/11.7 41.4/13.2/37.3 43.1/12.7/39.5

K-Nearest 30.6/10.5/27.8 19.1/6.8/16.0 15.0/1.8/11 41.0/14.0/36.9 40.0/12.3/36.6

Reddit AMI BookSum MScript

R-1/2/L R-1/2/L R-1/2/L R-1/2/L

Random 17.6/3.7/14.2 17.4/2.2/16.3 41.6/7.0/39.6 12.2/0.7/11.3
Oracle 38.5/17.8/33.8 42.8/12.3/40.9 52.0/14.7/50.2 33.5/7.3/31.7

P
o
s.

First-k 21.8/6.2/17.8 16.4/2.3/15.5 40.8/7.6/38.9 10.3/1.1/9.4
Last-k 16.4/3.7/13.4 11.1/1.7/10.5 37.6/5.8/36.1 13.4/0.9/12.1

Middle-k 17.4/3.2/13.8 16.1/1.9/15.2 39.4/6.6/37.7 12.1/0.6/11.2

D
iv

. ConvexFall 17.3/3.2/14.2 20.4/2.5/19.1 24.3/3.9/22.6 12.8/0.7/11.9
Heuristic 17.2/3.2/14.2 15.7/1.5/15.0 38.2/6.2/36.4 9.7/0.5/9.1

Im
p. N-Nearest 20.6/4.4/16.5 1.9/0.1/1.8 39.3/6.9/37.4 13.1/0.8/12.2

K-Nearest 15.1/3.6/12.3 0.0/0.0/0.0 30.9/5.0/29.5 1.0/0.0/1.0

Table 13: Full ROUGE-1/2/L F-Scores for different corpora w.r.t three sub-aspects algo-

rithms.
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Appendix D Documents in an Embedding Space: for All Datasets

In Figure (20,21), we have more two-dimensional PCA projection examples for source

documents from all datasets. We find a weak pattern about where target sentences lie on

according to the number of them. For example, from XSum and Reddit which have a sin-

gle target sentence, we investigate that some target sentences are located in the middle of

ConvexHull, which are far from any source sentences.
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(a) CNNDM

(b) NewsRoom

(c) XSum

(d) PeerRead

Figure 20: PCA projection of extractive summaries chosen by multiple aspects of algorithms

(CNNDM, NewsRoom, XSum, PeerRead, and PubMed).
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(a) PubMed

(b) Reddit

(c) AMI

(d) BookSum

Figure 21: PCA projection of extractive summaries chosen by multiple aspects of algorithms

(Reddit, AMI, Booksum, and MScript).
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Appendix E System Biases per each corpus with the Three Sub-aspects

In Figure 22, we have more diagrams showing system biases toward each of three sub

aspects. We find that there exists a bias according to the corpus: for example in Reddit,

many systems have a importance bias in common. On the other hand, systems are biased

toward a diversity aspect in AMI. Also, some systems tend to be biased in certain aspect

across the different corpus: systems such as KMeans and MMR, many corpora are biased

toward a importance aspect.
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Figure 22: System biases with the three sub-aspects per each corpus, showing what portion

of aspect is used for each system.
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Appendix F Details on Hyper-Parameters for PosCal

All models are trained with equal hyper-parameters: learning rate 2e-5, and BERT model

size BERTBASE. Also, we set up an early stopping rule for train: we track the validation loss

for every 50 steps and then halt to train if current validation loss is bigger than the averaged

10 prior validation losses (i.e., patience 10). For L1, we use the regularization weight value

1-e8. For PosCal , we set up another weight value λ for LCal, and the number of updating

empirical probability per epoch (u). We tune these two hyper-parameters per each task. For

more details, see Table 14. As a baseline of post-calibration method, we also report ECE

with a temperature scaling [Guo et al., 2017], which is current state-of-the-art method.
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xSLUE u λ GLUE u λ

GYAFC 5 0.6 CoLA 5 0.2

SPolite 5 0.6 SST-2 10 1.0

SHumor 5 1.0 MRPC 10 1.0

SJoke 5 1.0 QQP 10 1.0

SarcGhosh 5 0.6 MNLI 2 0.2

SARC 5 0.6 MNLImm 2 0.2

SARC_pol 5 1.0 QNLI 1 0.6

VUA 2 1.0 RTE 10 1.0

TroFi 5 1.0 WNLI 2 0.2

CrowdFlower 5 0.6

DailyDialog 5 1.0

HateOffens 5 1.0

SRomance 5 1.0

SentiBank 5 1.0

PASTEL_gender 5 1.0

PASTEL_age 5 1.0

PASTEL_country 5 1.0

PASTEL_politics 5 1.0

PASTEL_education 5 1.0

PASTEL_ethnics 5 1.0

Table 14: Hyper-parameters for PosCal training across tasks : the number of updating

empirical probabilities per epoch u and weight value λ for LCal. We tune them using the

validation set.
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Appendix G Examples When MLE and PosCal Predicts Different Label

Table 15 and 16 shows some examples in StanfordPoliteness and RTE datasets with their

predicted p̂ of true label from MLE and PosCal .

Data Sentence True

label

MLE

p̂

PosCal

p̂

SP
ol

it
e.

I don’t know what page you are talking about, as this is your

only edit. Did you perhaps have another account?

impolite 47.3 65.4

INCOR → COR

Hi. Not complaining, but why did you remove the category

"high schools in california" from this article?

impolite 1.2 91.7

INCOR → COR

Hi, sorry I think I’m missing something here. Why are you

adding a red link to the vandalism page?

impolite 5.6 61.9

INCOR → COR

Can you put an NSLog to make sure it’s being called only

once? Also, can you show us where you are declaring your

int?

polite 16.5 76.5

INCOR → COR

I don’t understand the reason for <url>. Would you please

explain it to me?

polite 91.5 37.1

COR → INCOR

Another question: Does "Senn" exist in Japanese? If it does,

is it possible to render Sennin as Senn-in?

polite 88.8 45.5

COR → INCOR

@Smjg, thanks. But why did you also remove the categories I

added?

impolite 78.3 45.7

COR → INCOR

You can place islands so there is no path between points.

What should happen then?

impolite 91.7 35.8

COR → INCOR

Table 15: Predicted p̂(%) of true label fromMLE and PosCal with corresponding sentences

in Stanford’s politeness (bottom) dataset.
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Data Sentence True

label

MLE

p̂

PosCal

p̂
RT

E

(S1) Charles de Gaulle died in 1970 at the age of eighty. He

was thus fifty years old when, as an unknown officer recently

promoted to the (temporary) rank of brigadier general, he

made his famous broadcast from London rejecting the capit-

ulation of France to the Nazis after the debacle of May-June

1940.

(S2) Charles de Gaulle died in 1970.

entail 34.9 58.9

INCOR → COR

(S1) Police in the Lower Austrian town of Amstetten have

arrested a 73 year old man who is alleged to have kept his

daughter, now aged 42, locked in the cellar of his house in

Amstetten since 29th August 1984. The man, identified by po-

lice as Josef Fritzl, is alleged to have started sexually abusing

his daughter, named as Elisabeth Fritzl, when she was eleven

years old, and to have subsequently fathered seven children

by her. One of the children, one of a set of twins born in 1996,

died of neglect shortly after birth and the body was burned

by the father.

(S2) Amstetten is located in Austria.

entail 45.5 57.3

INCOR → COR

(S1) Blair has sympathy for anyone who has lost their lives

in Iraq.

(S2) Blair is sorry for anyone who has lost their lives in Iraq.

entail 31.3 50.1

INCOR → COR

(S1) The U.S. handed power on June 30 to Iraqâs interim

government chosen by the United Nations and Paul Bremer,

former governor of Iraq.

(S2) The United Nations officially transferred power to Iraq.

not

entail

59.2 44.9

COR → INCOR

Table 16: Predicted p̂(%) of true label fromMLE and PosCal with corresponding sentences

in RTE dataset.
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Appendix H Calibration confidence interval with bootstrap sampling

In this section, we describe how to apply a bootstrap confidence interval from Hall and

Horowitz [2013] to the calibration probability estimates. Following is a simple note for our

application.

• Fit the model Yi = g(Xi) + εi. In our case, Xi is predicted probability from original

model and g is KNN with k = n
2
3 . Here, calculate a variance of original set’s residual

σ̂ = 1
n

∑
(Y[i+1] − Y[i])

2 where Y[i] is corresponding response of order statistic X[i].

• Get residuals by [ε̂i : ε̃i − ε̄] where ε̄ is a mean of ε̃i. This will be used to get residual

bootstrap sample in next.

• Get bootstrap sample by keeping same Xi but modify Y ∗i = Yi + ε̂ where ε̂ is randomly

selected in [ε̂i : ε̃i − ε̄] where ε̄ with replacement.

• For each bootstrap sample, calculate bootstrap version of ĝ, σ̂ and bounds B where it

covers 95% of C.I for all bootstrap samples: [ĝ(x)−S(X)(x)σ̂z1−α
2
, ĝ(x)+S(X)(x)σ̂z1−α

2
].

Since our g(x) is a simple KNN, here S(X)(x) is just
√

1
k
, following the fact that S(X)(x)σ

refers to the variance of KNN estimators.

• Get empirical coverage rates from all bootstrap samples. Choose our optimal α as α0

quantile over all of this coverage rates. According to the paper, α0 = 0.9 generally works

well so we also apply this.

• Get final C.I with original set and original σ based on the optimal α0 above.
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