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Real-time Reduced Order Modeling of High-dimensional Partial Differential

Equations via Time Dependent Subspaces

Prerna Patil, PhD

University of Pittsburgh, 2022

We present a new methodology for the real-time reduced-order modeling of stochas-

tic partial differential equations (SPDEs) called the Dynamically/Bi-Orthonormal (DBO)

decomposition. In this method, the stochastic fields are approximated by a low-rank decom-

position to spatial and stochastic subspaces. Each of these subspaces is represented by a set

of orthonormal time-dependent modes. We derive exact evolution equations of these time-

dependent modes and the evolution of the factorization of the reduced covariance matrix.

We show that DBO is equivalent to the Dynamically Orthogonal (DO) [1] and Bi-Orthogonal

(BO)[2] decompositions via linear and invertible transformation matrices that connect DBO

to DO and BO. We study the convergence properties of the method and compare it to the

DO and BO methods. Overall we observe improvements in the numerical accuracy of DBO

compared against DO and BO.

In the second part of this work we direct our attention towards solving SPDEs with non-

homogenous stochastic boundary conditions. A crucial question in this application is how

do we determine the distribution of random boundary conditions among spatial bases. The

DBO methodology is applied for determining the boundary conditions for time-dependent

bases at no additional computational cost beyond that of solving similar SPDEs with ho-

mogeneous boundary conditions. The boundary conditions are determined by forming a

variational principle whose minimization leads to the evolution of time-dependent bases

at the boundary as well as the interior points. The formulation is applied for stochastic

Dirichlet, Neumann and Robin boundary conditions and the performance of the method is

assessed.

In the third part of this work, the focus is shifted towards application of this method-

ology and development of techniques to solve deterministic partial differentiation equations.

A multi-dimensional variable is represented by a set of one-dimensional time-dependent or-

iv



thonormal modes in each dimension and a core tensor. We derive evolution equations for

these modes and the core tensor. Due to low rank representation of the solution at every

time instant, the method also provides advantages in data storage for a large number of time

steps. This advantage is notably evident in higher dimensions (d > 2).
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above. Column 1: The ūy(x, t) for different time instants. Column 2, 3 & 4: The

three dominant spatial modes for the DBO and KL simulation. Rows 1 and 2

correspond to the DBO and KL spatial modes for t = 1 respectively. Rows 3 and

4 correspond to the DBO and KL spatial modes at t = 2 respectively. Finally,

rows 5 and 6 correspond to the DBO and KL spatial modes at t = 3 respectively. 32

12 Linear advection-diffusion equation (i) Dirichlet boundary condition: The first

row shows the singular value comparison for KL, DBO and DO methods. The

values are compared for three model reduction orders, r = 5, 7 & 9. The evolution

of the values of the modes at the stochastic left boundary are compared in the

second row for the three aforementioned methods. . . . . . . . . . . . . . . . . 39

13 Linear advection-diffusion equation (i) Dirichlet boundary condition: The global

and boundary error comparison is shown in (a) and (b) respectively. The lowest

error is obtained using DBO method for r = 9. The singular values obtained

from DO method for r = 9 are riddled with errors. The L2-error for the third,

sixth and ninth singular values is compared in (c) for DO and DBO. . . . . . . 40

14 Linear advection-diffusion equation (ii) Neumann boundary condition: The first

row shows the singular value comparison for KL, DBO and DO methods, The

values are compared for three reduction orders, r = 5, 7 and 9. The evolution

of the values of the modes at the left stochastic boundary are compared in the

second row for the three methods. . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 Linear advection-diffusion equation (ii) Neumann boundary condition: Error

comparison for DBO and DO as compared with the KL solution. The global

error, Eg and the boundary error, Eb are shown in (a) and (b) respectively. The

lowest error is obtained using DBO method for r = 9. The L2-error in the third,

sixth and ninth singular value is compared in (c) for DO and DBO. . . . . . . 45

xiii



16 Linear advection-diffusion equation (iii) Robin boundary condition: The first row

shows the singular value comparison for KL, DBO and DO methods. The values

are compared for three reduction orders, r = 5, 7 & 9. The evolution of the

values of the modes at the left stochastic boundary are compared in the second

row for the three methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

17 Linear advection-diffusion equation (iii) Robin boundary condition: Error com-

parison for DBO and DO as compared with the KL solution. The global and

boundary error comparison are shown in (a) and (b) respectively. Lowest error

is obtained using DBO method for r = 9. L2-error in the third, sixth and ninth

singular value is compared in (c) for DO and DBO. . . . . . . . . . . . . . . . 47

18 Burgers’ equation: The first row shows the singular value comparison for KL,

DBO and DO methods. The values are compared for three orders of reduction

r = 4, 6 and 8. The evolution of the values of the modes at the left stochastic

boundary are compared in the second row for the three methods. . . . . . . . . 50

19 Burgers’ equation: Error comparison for DBO and DO as compared with the KL

solution. The global error i.e., Eg and the boundary error i.e., Eb are shown in

(a) and (b) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

20 2D linear case: The figure shows the computational domain for the Nektar com-

putations. The Nektar simulations are used to compute the velocity field used to

solver for the temperature equations using the DBO and DO methods. The dot-

ted lines shows the computational domain used for the DBO computations. An

inflow boundary condition is enforced at y = 5. Outflow boundary is enforced at

x = 5 and x = −5. All other boundaries are taken to be wall boundary (u, v = 0). 53

21 2D linear case: The singular value comparison for KL, DBO and DO methods is

shown. The values are compared for three orders of reduction r = 3, 5 & 7. . . . 53

22 2D linear case: The evolution of the values of the modes at the stochastic Dirichlet

boundary at y = 0 are compared for DBO and KL. . . . . . . . . . . . . . . . . 54

23 2D linear case: Error comparison for DBO and DO as compared with the KL

solution. The figure on the left shows the comparison in the Eg, i.e., global error.

The figure on the right shows the comparison for the Eb, i.e., boundary error. . 55

xiv



24 2D linear case: Evolution of the first three spatial modes is shown for t =

2.5, 5, 7.5, 10. The first column shows the solution obtained for different time

snapshots for the tenth sample. The next three columns show the evolution of

the spatial modes as the flow field evolves. . . . . . . . . . . . . . . . . . . . . . 55

25 2D nonlinear case: Error comparison for DBO and DO as compared with the KL

solution. The figure on the left shows the comparison in the Eg, i.e., global error.

The figure on the right shows the comparison for the Eb, i.e., boundary error. . 57

26 2D nonlinear case: The singular value comparison for KL, DBO and DO methods

is shown. The values are compared for three orders of reduction r = 5, 7 and 9 . 57

27 2D nonlinear case: The evolution of the values of the modes for the stochastic

Dirichlet boundary at y = 0 are compared for DBO and KL. . . . . . . . . . . . 58

28 The evolution of the L2-error is plotted for three different reduction orders: r =

3, 5 and 7. We observe that as the reduction order increases and as the modes

capture lower singular values, the L2 error reduces. . . . . . . . . . . . . . . . . 69

29 The above figure show the evolution of the flow field and the evolution of the x1

and x2 modes at t = 5 and 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

30 The vorticity field at t = 0 is shown. The vortex centers lie at (0.1, 0.47) and

(0.1, 0.53). The vortices have equal and opposite strengths. This vortex dipole

configuration induces a velocity to the right on both the vortices and we will see

them move to the right as time evolves. . . . . . . . . . . . . . . . . . . . . . . 78

31 The figure shows the structure of the POD modes for the two cases. The first

row shows the shape of the modes for Tobserved = 5.5. The second row shows the

shape of the modes for Tobserved = 11. The first column shows the mean of the

snapshots taken. Column 2,3 and 4 show the modes in the order of decreasing

energy. We observe that the modes in row 2, occupy more area as compared

to the modes in row 1 due to the increase in the time for which the solution is

observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xv



32 The TDB evolution of the vortex dipole at t = 4, 6, 8, 10 is shown in the figure

above. We observe that the dipole convects to the right as time evolves. We also

observe the diffusion of the vortices as seen by the increase in the area of the

vortices and the decreasing strength of the vortices. . . . . . . . . . . . . . . . . 79

33 The solution obtained from POD for the case where Tobserved = 5.5 is shown in

the figure above. Since, the POD modes were exposed to the evolution of the

vortex till t = 5.5, the solution till t = 6, is observed to be correct. However, the

vortices for t = 8, 10 show distortion near x2 = 0.5. . . . . . . . . . . . . . . . . 80

34 The solution obtained from POD for the case where Tobserved = 11 is shown in the

figure above. In this case, since the POD modes were exposed to the evolution

of the vortex till t = 11, the solution is observed to match the DNS solution for

all time steps. No vortex distortion is observed. . . . . . . . . . . . . . . . . . . 80

35 Row one shows the evolution of the modes in the x1 direction. It is observed that

as time progressed the modes convect to the right. The second row shows the

evolution of the x2 modes for t = 2, 4, 6, 8, 10. It is observed that the modes in

the x2 direction change in amplitude as the diffusion causes the vortices to lose

their strength and increase in area. This change in the structure of the vortices

is observed from the modes in the x2 direction. . . . . . . . . . . . . . . . . . . 81

36 The above figure shows the reduction error vs time for four different reduction

orders r = 5, 10, 15, 20. It is observed that as the reduction order increases the

L2 error of the solution decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

37 The initial condition for the vorticity is shown in the figure above. The vortex

centers lie at (0.1, 0.47) and (0.1, 0.53). The vortex at the bottom has strength

which is −1.1 times the strength of the vortex at the top. Due to this difference

in the strength of the vortices, we expect the evolution of the flow field to be

asymmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xvi



38 The figure shows the structure of the POD modes for the two cases. The first

row shows the shape of the modes for Tobserved = 5.5. The second row shows the

shape of the modes for Tobserved = 11. The first column shows the mean of the

snapshots taken. Column 2,3 and 4 show the modes in the order of decreasing

energy. We observe that the modes in row 2, occupy more area as compared

to the modes in row 1 due to the increase in the time for which the solution is

observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

39 The evolution of the flow field of the vortex dipole is shown in the figure above.

We observe that the dipole convects to the right as time evolves and diffuses.

Due to asymmetry in the strength of the vortices, we also observe an upwards

drift of the vortices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

40 The solution obtained from POD for the case where Tobserved = 5.5 is shown in

the figure above. Since, the POD modes were exposed to the evolution of the

vortex till t = 5.5, the solution till t = 6, is observed to be correct. However, the

vortices for t = 8, 10 show distortion. . . . . . . . . . . . . . . . . . . . . . . . . 87

41 The solution obtained from POD for the case where Tobserved = 11 is shown in the

figure above. In this case, since the POD modes were exposed to the evolution

of the vortex till t = 11, the solution is observed to match the DNS solution for

all time steps. No vortex distortion is observed. . . . . . . . . . . . . . . . . . . 87

42 The above figure shows the evolution of the first mode in the x1 and x2 direction

as time is evolved. As the vortex convects along the x1 direction we observe that

the first mode evolves along x1. We also observe the drift in the x2 direction due

to unequal vortex strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

43 The above figure shows the reduction error vs time for four different reduction

orders r = 5, 10, 15, 20. It is observed that as the reduction order increases the

L2 error of the solution decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

44 The schematic of the temporally evolving jet is shown in the figure above. The

domain is considered periodic in both stream-wise and cross-stream directions. . 90

xvii



45 The above figure shows the density flow field at t = 2, 4 and 6 for TDB and

equivalent URDNS. We observe that for TDB (r = 40) and it equivalent URDNS

272 show the flow field matching the DNS 896. However for TDB r = 30 and

r = 25 the equivalent URDNS 212 and 232 show divergence after 4 Time Units.

The TDB solution for r = 25, also shows error in the capturing the higher modes

as can be seen in the solution at t = 4. The build up in the error in the URDNS

due to aliasing can be seen in the solution of URDNS 212×212 along the x2 = 0.5

center line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

46 The above figure shows the vorticity flow field at t = 2, 4 and 6 for DBO and

equivalent URDNS. We observe that for DBO (r = 40) and its equivalent URDNS

272 show the flow field matching the DNS 896. However for DBO r = 30 and

r = 25 the equivalent URDNS 212 and 232, show divergence after 4 Time Units.

The DBO solution for r = 25, also shows error in the capturing the higher modes

as can be seen in the solution at t = 4. The build up in the error in the URDNS

due to aliasing error can be seen in the solution of URDNS 212 along the x2 = 0.5

centerline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

47 The comparison of singular values for density is shown for different reduction

orders with the singular values obtained from the instantaneous SVD of the flow-

field.Due to the clustering of the singular values, the figures in row 1 and 2 show

the singular values with every second singular value skipped while plotting. Row

1 and 2 show the comparison between the singular values for r = 20, 30, 40, 50.

Row 3 depicts the error in the singular value Σ20 for different reduction orders.

It is observed that for lower reduction orders the accuracy of the the singular

value is low. As more modes are added to the system the accuracy of the singular

value is improved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xviii



48 The above figure shows the spectrum for the density at x2 = 0.5 for TDB (r =

50) and its equivalent URDNS 304. The spectrum for DNS 896 is plotted for

reference. The spectrums are shown for three different time steps: t = 2, 4 and

6. It can be observed that while the errors in the TDB can be attributed to the

incorrect capturing of the smaller scale structures, the errors in URDNS arise

from the aliasing errors due to deficit in the grid resolution. Both the methods

capture the large scale structures in the flow properly as can be seen in the

spectrum match for wavenumbers κ < 50 for both URDNS and TDB. . . . . . . 100

49 The above figure shows the density spectrum for TDB with different reduction

sizes: r = 30, 40, 50. The DNS spectrum is also plotted for comparison. The

spectrum is shown for three time units: t = 2, 4, 6. We observe that the spectrum

improves as the reduction size is increased. All the reduction sizes capture the

larger scale structures in the flow correctly as seen in the match of the κ < 50. . 100

50 The above figure shows the shape of the first 3 modes at t = 2, 3 and 4. The

shape of the modes adapts to the evolution of the flow field. For example, we

observe the shape of the first mode in x2-direction changes as the width of the

jet increases. This width change in the shape of the jet is reflected in the shape

of the first three x2-modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

51 The above figure shows the evolution of the shape of the first x2-mode according

to the evolution of the flow field. The first mode increases in width with the

evolution of the jet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

52 The above figure shows the evolution of the shape of the second x1-mode ac-

cording to the evolution of the flow field. As the vortices evolve and merge the

seemingly sinusoidal-type structure of the mode is disrupted for t > 4. . . . . . 102

53 The above figure shows the L2-error obtained from the DBO flow field and the

DNS solution. The time-evolution of error for four different reduction orders i.e.,

r = 20, 30, 40, 50 is plotted. It is observed that as the reduction order i.e., the

number of modes are increased the error is reduced. . . . . . . . . . . . . . . . . 103

54 The schematic of the 3D temporally evolving jet is shown in the figure above.

The domain is considered periodic in all the three directions. . . . . . . . . . . 103

xix



55 The above figure shows the density flow field at t = 5, 7 and 9 and x3 =

(0.1, 0.5, 0.9). The results are shown for DBO simulations for three different

reduction orders of r2 which are 20, 40 and 60. The top row shows the results

for the DNS simulation for the grid size 256× 256× 64.We observe that the flow

field errors are reduced as the reduction order is increased in the x2-direction.

The under-resolved DNS results are not showed for comparison as all of those

results diverge for the given reduction orders. . . . . . . . . . . . . . . . . . . . 104

56 The above figure shows the density flow field at t = 5, 7 and 9 and x1 =

(0.1, 0.5, 0.9). The results are shown for DBO simulations for three different re-

duction orders of r2 which are 20, 40 and 60 and their equivalent under-resolved

DNS. The top row shows the results for the DNS simulation for the grid size

256 × 256 × 64. We observe that the flow field errors are reduced as the reduc-

tion order is increased in the x2-direction. The under-resolved DNS results are

not showed for comparison as all of those results diverge for the given reduction

orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

57 The above figure shows a comparison between the singular values obtained from

the time dependent basis and the singular values obtained from instantaneous

SVD values of the density flow field. Due to the clustering of the singular

values, the figures show the singular values with every second singular value

skipped while plotting. The values are plotted for three different reduction or-

ders r2 = 20, 40, 60. The accuracy of the singular values in x2 direction improves

as the reduction order is increased . . . . . . . . . . . . . . . . . . . . . . . . . 106

58 The above figure shows the L2-error obtained from the DBO flow field and the

DNS solution. The figure shows the time-evolution of error for different reduction

orders. It is observed that as the reduction order i.e., the number of modes are

increased the error is reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xx



59 Dynamically bi-orthonormal decomposition for flow over a bump in a channel in

chaotic regime: (a) The growth of the small perturbations in the forcing measured

by the horizontal viscous shear force on the walls. The signals are observed to

completely diverge after t = 116. (b) The growth in the eigenvalues of the DBO

system with r = 2 and the eigenvalues of the Karhunen-Loéve decomposition. . 108
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1.0 Introduction

The pressing need of conducting verification and validation (V&V) for realistic simula-

tions in scientific and engineering applications requires propagating uncertainty in these sys-

tems. These systems are often subject to uncertainty that may come from imperfectly known

parameters — that can be modeled as random parameters — or random initial/boundary

conditions, or by systems that are characterized by inherent stochastic dynamics, such as

coarse grain models of multi-scale systems, in which the effects of unresolved scales are

modeled as stochastic processes [4]. Uncertainty quantification (UQ) in such systems can

disentangle the effects of different uncertain sources on the quantities of interest and it

can guide the decision making process and ultimately lead to more reliable predictions and

designs.

One of the fundamental challenges in performing UQ in complex engineering and scientific

systems is the computational cost associated with this task. These systems are often charac-

terized by high-dimensional ordinary/partial differential equations, whose forward simulation

can be computationally costly. There are a large number of techniques for performing UQ.

These methods are primarily either sample based such as Monte Carlo (MC) method and its

variants such as multi-level MC and quasi-MC (QMC) [5, 6, 7], or are based on polynomial

chaos expansion (PCE) [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

While PCE performs well for nearly elliptic problems or flow at low Reynolds numbers,

solving highly transient stochastic ordinary/partial differential equations (SODE/SPDE) is

particularly challenging for this method. It was shown in [19] that for the one dimensional

advection equation with a uniform random transport velocity the order of polynomial chaos

must increase with time to maintain the error below a given value. PCE also loses its

efficiency for nonlinear systems with intermittency and positive Lyapunov exponents [20].

Reduced order modeling approaches are popular tools for state prediction and control of

deterministic evolutionary dynamical systems [21, 22, 23, 24, 25, 26, 27, 28]. With the recent

developments in data-fusion and specifically multi-fidelity modeling approaches [29, 30, 31],

in which imperfect predictions can be effectively utilized when combined with high-fidelity
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data, reduced order modeling techniques will play a crucial role as a surrogate model that

generates low-fidelity data at a low computational cost. In the context of SPDEs, the

dynamically orthogonal decomposition (DO) was introduced [1] as a stochastic reduced order

modeling technique, in which the stochastic field u(x, t;ω) is approximated as:

u(x, t;ω) = ū(x, t) +
r∑
i=1

ui(x, t)yi(t;ω),

where ū(x, t) is the mean, ui(x, t) are a set of deterministic time-dependent orthonormal

modes in the spatial domain and yi(t;ω) are zero-mean random processes in the stochastic

domain and r is the reduction order. To remove the redundancy in time, the evolution of

the spatial subspace, i.e. ∂ui(x, t)/∂t, is chosen to be orthogonal to uj(x, t). By enforcing

the above constraints, one can derive closed-form evolution equations for ū(x, t), ui(x, t)

and yi(t;ω). The imposed conditions on the above decomposition are not unique. Bi-

orthogonal (BO) decomposition is one such variant, in which the spatial basis are orthogonal

and the stochastic basis are orthonormal [32]. Recently, a non-intrusive DO formulation

was introduced [33] and it was shown that the DO evolution equations are the optimality

conditions of a variational principle that seeks to minimize the distance between the rate

of change of full-dimensional dynamics and that of the DO reduction. For linear parabolic

SPDEs, the difference between the approximation error of r-term DO decomposition and

r-term Karhunen-Loéve (KL) decomposition can be bounded [34]. Independently and prior

to the development of DO/BO, the idea of using time-dependent basis had been introduced

in very different fields, namely chemistry and quantum mechanics for the approximation of

the deterministic Schrödinger equations by the Multi Configuration Time Dependent Hartree

(MCTDH) method [35, 36], and in deterministic settings [37].

It was shown in [3] that both DO and BO are equivalent: in both of these methods

ui(x, t) and yi(t;ω) span the same subspace and a linear invertible time-dependent matrix

transforms one to the other. This matrix transformation amounts to an in-subspace rotation

and stretching for ui(x, t) modes and yi(t;ω) coefficients. In contrast to PCE, BO/DO

decompositions allow the stochastic coefficients evolve with time as opposed to time-invariant

polynomial chaos basis. This relaxation allows BO/DO decompositions to “follow” the

transient dynamics. It was shown that in the limit of zero variance of yi(t;ω), the subspace
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of ui(x, t) converges exponentially fast to the most unstable subspace of the dynamical system

— associated with the r most dominant eigendirections of the Cauchy–Green tensor [38]. It

was shown that the reduction based on the time-dependent basis and coefficients can capture

the low-dimensional structure of the intermittent dynamics [39].

Although both DO and BO are mathematically equivalent, they exhibit different numer-

ical performance. When the eigenvalues of the reduced covariance matrix are close or cross

each other, the BO formulation becomes numerically unstable. On the other hand, the DO

decomposition does not have the issue of eigenvalue crossing. However, when the eigenvalues

of the reduced covariance matrix are not close, BO exhibits better numerical performance

than DO [3]. This is mainly attributed to the orthonormality of yi(t;ω) coefficients in the BO

formulation, which maintains a well-conditioned representation of the stochastic subspace

at all times. However, in the DO decomposition, the stochastic coefficients yi(t;ω) could be

highly correlated. This has inspired a hybrid DO/BO method where BO is the dominant

solver, but near the eigenvalue crossing the solver switches to DO [40].

Both DO and BO decompositions perform poorly when the covariance matrix is singular

or near singular. In the case of DO, the covariance matrix is full, while in the case of BO the

covariance matrix is diagonal. In DO the inverse of the covariance matrix is required for the

evolution of the spatial basis and in BO the inverse of the diagonal covariance matrix are

needed for the evolution of the stochastic basis. The issue of singular covariance matrix can

commonly occur in DO/BO decompositions, since one has to resolve the stochastic system

up to a small threshold eigenvalue. This necessitates adaptive DO/BO where modes are

added and removed at the threshold eigenvalue [3]. This issue has motivated using pseudo-

inverse of the covariance matrix [40], where the eigenvalue of the singular or near-singular

mode below a threshold value is replaced with a minimum tolerable value. This approach

trades the stability of the DO/BO systems with introducing errors in the system of the order

of the minimum tolerable value.

The motivation for this work is to introduce a new decomposition that resolves the

aforementioned challenges in using DO and BO. To this end, we present a new methodology

in which: (i) the spatial and stochastic bases are represented by a set of time-dependent

orthonormal modes; (ii) an additional equation for the evolution of a factorization of the
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covariance is derived; and (iii) the condition number of the decomposition is reduced to√
λmax(t)/λmin(t), where λmin(t) and λmax(t) are the minimum and maximum eigenvalues

of the covariance matrix, respectively. A brief comparison of the three methods and their

constraints are provided in Table 1.

Table 1: The equations and constraints in vector discretized form for the three methods: DO,

BO and DBO. For more details regarding the evolution equations the readers are referred to

Appendix B, C and Ref. [3].

DO BO DBO

Spatial
U̇ = (I−UUT )FYC−1

U̇ = UM + FY
U̇ = (I−UUT )FYΣ−1

Basis M = YT Ẏ

Stochastic
Ẏ = FTU

Ẏ = (FTU−YST )Λ−1

Ẏ = (I−YYT )FTUΣ−T

Basis S = UT U̇

Covariance
- - Σ̇ = UTFY

Factorization

Constraints

UTU = I UTU = Λ UTU = I

UT U̇ = 0 - UT U̇ = 0

- YTY = I YTY = I

- - ẎTY = 0

The structure of this thesis is as follows: In chapter 2, we review the formulation of the

DBO representation, its evolution equations and prove the equivalence of this method to the

DO and BO methods. We compare the performance of the presented method with DO and

BO via several benchmark problems: (i) Stochastic linear advection equation (ii) Stochastic

Burgers’ equation; and (iii) 2D stochastic incompressible Navier-Stokes equation for flow

over a bump.

In chapter 3, we explore the application of this method to solve linear and nonlinear

partial differential equations imposed with stochastic boundary conditions. Specifically, we
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use the variational principle to derive the evolution equations for the stochastic modes, spatial

modes and the factor of the covariance matrix. The variational principle also factors in the

evolution of the spatial modes at the boundary and presents evolution equations for boundary

points. The evolution equations are derived for DBO and DO. The method is then applied

for three different stochastic boundary types: Dirichlet, Neumann and Robin boundary

conditions. We consider the following benchmark problems to evaluate the performance

of the method: (i) Stochastic linear advection-diffusion equation, (ii) Stochastic Burgers’

equation, (iii) 2D stochastic advection diffusion equation. The global errors and the boundary

errors are compared for both DBO and DO.

In chapter 4 and 5, we shift gears and demonstrate the application of the current work

for solving deterministic PDEs. We derive the evolution equations for time-dependent basis

for a multi-dimensional variable. The following demonstration cases are used to illustrate

the prowess of the method in chapter 5: (i) Linear advection diffusion equation, (ii) Vortex

dipole (iii) 2D temporally evolving jet, and (iv) 3D temporally jet.

In chapter 7, we conclude this work with a brief summary and chapter 6 sets the future

directions and applications of the presented methodology.
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2.0 DBO Representation of Stochastic Fields

This chapter gives details of the notations and definitions of stochastic fields. In the

first section of this chapter, we define the properties of stochastic fields like inner product,

L2-norm, expectation, covariance operator and a quasimatrix. The second section briefly

describes the system of stochastic PDEs. We then define the DBO decomposition to derive

the evolution equations of each of the components of the DBO decomposition. It is also shown

that the DO, BO and DBO decompositions are equivalent and can be transformed from one

form to the other using the equivalence relations. We further, show the ranking of modes in

the stochastic and spatial subspace of DBO and resolve the issue of time redundancy using

the approach of constraints and degrees of freedom. A few demonstration cases are used to

study the numerical properties of this method. We first take a look at the stochastic linear

advection diffusion equation where the stochasticity is introduced in the system through the

velocity. Using the analytical solution, we can evaluate the numerical performance of this

method for DO and DBO. The stochastic Burgers’ equation with manufactured solution is

considered as the second case. The manufactured solution approach is used to verify the

numerical accuracy of codes. We use this method to control the condition number of the

matrix inversion for the DO, BO and DBO methods and study the errors for each of the

methods. Additionally, the DBO method is applied to Burgers’ equation with stochastic

forcing and to Burgers’ equation with high-dimensional random initial conditions. We also

consider the case of random initial conditions for a stochastic incompressible Navier-Stokes

equation.

2.1 Definitions and Notation

We denote a random vector field by u(x, t;ω), where x ∈ D is the spatial coordinate in

the physical domain D ⊂ Rd, where d=1,2 or 3, and t > 0 is time and ω ∈ Ω is the random

event in the sample space Ω. The inner product in the spatial domain between two random
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fields u(x, t;ω) and v(x, t;ω) is then defined as:

〈u(x, t;ω), v(x, t;ω)〉 =

∫
D

u(x, t;ω)v(x, t;ω)dx,

and the L2 norm induced by the above inner product is:∥∥u(x, t;ω)
∥∥

2
=
〈
u(x, t;ω) , u(x, t;ω)

〉1/2

.

The expectation of the random field is defined as:

ū(x, t) = E[u(x, t, ω)] =

∫
Ω

u(x, t;ω)ρ(ω)dω,

where ρ(ω) is the probability density function. The inner product in the random space is

defined as the correlation between two random fields:

E[u(x, t;ω)v(x, t;ω)] =

∫
Ω

u(x, t;ω)v(x, t;ω)ρ(ω)dω.

The covariance operator between two random fields at time t is then obtained from:

C(x, x′, t) = E
[
(u(x, t;ω)− ū(x, t))(v(x′, t;ω)− v̄(x′, t))

]
.

We introduce the quasimatrix notation as defined in [41], in which one of the dimensions is

discrete as usual but the other dimension is continuous:

U(x, t) =
[
u1(x, t) u2(x, t) · · · ur(x, t)

]
,

Y (t;ω) =
[
y1(t;ω) y2(t;ω) · · · yr(t;ω)

]
,

where U(x, t) and Y (t;ω) are quasimatrices of size∞×r. The inner product for two quasima-

trices U(x, t) =
[
u1(x, t) u2(x, t) · · · ur1(x, t)

]
and V (x, t) =

[
v1(x, t) v2(x, t) · · · vr2(x, t)

]
is defined by a matrix A such that,

A = 〈U(x, t), V (x, t)〉 ,

where

Aij = 〈ui(x, t), vj(x, t)〉 , i = 1, 2, ..., r1, j = 1, 2, .., r2. (2.1)

A is a matrix of dimensions r1 × r2. In general, for the case of r1 = r2, matrix A is not

symmetric.
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2.2 System of Stochastic PDEs

We consider the following stochastic partial differential equation (SPDE), which defines

the system evolution:

∂u(x, t;ω)

∂t
= F (u(x, t;ω)), x ∈ D,ω ∈ Ω, (2.2a)

u(x, t0;ω) = u0(x;ω), x ∈ D,ω ∈ Ω, (2.2b)

B(u(x, t;ω)) = h(x, t), x ∈ ∂D, (2.2c)

where F is, in general, a non-linear differential operator, and B is, in general, a linear

differential operator, and ∂D denotes the boundary of the domain D. In this work we

consider deterministic boundary conditions. For an algorithm to treat random boundary

conditions for time-dependent subspaces, see reference [42].

2.3 Dynamically Bi-orthonormal Decomposition

We consider the following decomposition,

u(x, t;ω) = ū(x, t) +
r∑
j=1

r∑
i=1

ui(x, t)Σij(t)yj(ω, t) + e(x, t;ω), (2.3)

which is referred to as the dynamically bi-orthonormal (DBO) decomposition. In the above

expression ui(x, t), i = 1, 2, . . . , r are a set of orthonormal spatial modes:

〈ui(x, t), uj(x, t)〉 = δij,

and they constitute the spatial basis for the DBO decomposition, and yi(ω, t), i = 1, 2, . . . , r

are a set of orthonormal stochastic modes:

E[yi(t;ω)yj(t;ω)] = δij,

that have zero mean i.e., E[yi(t;ω)] = 0, i = 1, 2, . . . , r, the Σij(t) represents a factorization

of the covariance matrix and e(x, t;ω) is the reduction error. Moreover, both the spatial and
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stochastic coefficients are dynamically orthogonal i.e., the rate of change of these subspaces

is orthogonal to the space spanned by these modes:

∂U(x, t)

∂t
⊥ U(x, t) ⇐⇒

〈
∂ui(x, t)

∂t
, uj(x, t)

〉
= 0 i, j = 1, ..., r, (2.4)

dY (t;ω)

dt
⊥ Y (t;ω) ⇐⇒ E

[
dyi(t;ω)

dt
yj(t;ω)

]
= 0 i, j = 1, ..., r. (2.5)

If the spatial and stochastic modes are orthonormal at t = 0, imposing the above constraints

ensures the orthonormality of the two bases for all time since:

d

dt
〈ui(x, t), uj(x, t)〉 =

〈
∂ui(x, t)

∂t
, uj(x, t)

〉
+

〈
ui(x, t),

∂uj(x, t)

∂t

〉
= 0 i, j = 1, ..., r,

(2.6)

and similarly,

d

dt
E[yi(t;ω)yj(t;ω)] = E[

dyi(t;ω)

dt
yj(t;ω)] + E[yi(t;ω)

dyj(t;ω)

dt
] = 0, i, j = 1, ..., r.

(2.7)

We show in Section 2.7, that imposing the above constraints leads to a unique decomposition.

The covariance operator is approximated from the DBO decomposition as in the following:

C(x, x′, t) = E[ui(x, t)Σij(t)yj(t;ω)um(x′, t)Σmn(t)yn(t;ω)]

= ui(x, t)um(x′, t)Σij(t)Σmn(t)E[yj(t;ω)yn(t;ω)]

= ui(x, t)um(x′, t)Σij(t)Σmn(t)δjn

= ui(x, t)um(x′, t)Σij(t)Σmj(t), (2.8)

where we have used the orthonormality condition imposed on the stochastic basis. The

matrix Σ(t) ∈ Rr×r is a factorization of the reduced covariance matrix C(t) ∈ Rr×r as in the

following:

C(t) = Σ(t)Σ(t)T , (2.9)

and it is related to the covariance matrix in the full-dimensional space with:

C(x, x′, t) = U(x, t)C(t)UT (x′, t). (2.10)

9



2.4 DBO Field Equations

In this section, we present closed-form evolution equations for ū(x, t), Σ(t), Y (t;ω) and

U(x, t) for the DBO decomposition.

Theorem 2.4.1. Let Eq.(2.3) represent the DBO decomposition of the solution of SPDE

given by Eq.(2.2). Then, under the assumptions of the DBO decomposition, the closed-form

evolution equations for the mean, covariance factorization, stochastic and spatial bases are

expressed by:

∂ū(x, t)

∂t
= E[F (u(x, t;ω))], (2.11a)

dΣij(t)

dt
=
〈
ui(x, t),E[F̃ (u(x, t;ω))yj(t;ω)]

〉
, (2.11b)

dyi(t;ω)

dt
=
[〈
uj(x, t), F̃ (u(x, t;ω))

〉
−
〈
uj(x, t),E[F̃ (u(x, t;ω))yk(t;ω)]

〉
yk(t;ω)

]
Σji(t)

−1,

(2.11c)

∂ui(x, t)

∂t
=
[
E[F̃ (u(x, t;ω))yj(t;ω)]− uk(x, t)

〈
uk(x, t),E[F̃ (u(x, t;ω))yj(t;ω)]

〉]
Σij(t)

−1,

(2.11d)

where F̃ (x, t;ω) is a mean-subtracted quantity

F̃ (u(x, t;ω)) = F (u(x, t;ω))− E[F (u(x, t;ω))].

The associated boundary conditions are given by:

B[u(x, t)] = h(x, t), x ∈ ∂D, (2.12a)

B[ui(x, t)] = 0, x ∈ ∂D. (2.12b)

The proof for the above theorem is given in Appendix A. We note that the inverse

of the factorization of the covariance matrix Σ(t) appears in the DBO evolution equations,

as opposed to the inverse covariance matrix C(t) or inverse of the matrix of covariance

eigenvalues that appear in the DO and BO equations, respectively. As a result the DBO

systems has the condition number of
√
λmax(t)/λmin(t) as opposed to DO and DBO that

have condition numbers of λmax(t)/λmin(t), where the minimum and maximum eigenvalues

of the covariance matrix.
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2.5 Equivalence of DO, BO and DBO Methods

Two decompositions are equivalent if they represent the same random fields for all

times. The spatial subspaces of two equivalent decompositions are identical and there-

fore, one can find invertible transformation matrices that maps one subspace to the other.

This amounts to an in-subspace rotation. The same is true for stochastic subspaces of two

equivalent decompositions. The equivalence of DO and BO was first shown in [3]. In this

section, we show that DBO is equivalent to DO and BO. We first show that DBO is equiv-

alent to DO and BO and then derive the equivalence relations. In the following section,

{UDO(x, t), YDO(t;ω)}, {UBO(x, t), YBO(t;ω)} and {UDBO(x, t),ΣDBO(t), YDBO(t;ω)} repre-

sent the DO, BO and DBO decomposition of the SPDE in Eq.(2.2), respectively.

Lemma 2.5.1. Let DO and DBO be equivalent via the transformations: UDO = UDBORu

and YDO = YDBOWy, where Ru ∈ Rr×r and Wy ∈ Rr×r. Then: (i) Ru is an orthogonal

matrix (ii) Wy = ΣT
DBORu, and (iii)

dRu

dt
= 0.

The proof for Lemma (2.5.1) is given in Appendix B.

Theorem 2.5.1. Let UDO(x, t), YDO(t;ω) represent the DO decomposition of SPDE in

Eq.(2.2) and let UDBO(x, t), ΣDBO(t) and YDBO(t;ω) represent its DBO decomposition. Sup-

pose that at t = 0 the two bases are equivalent i.e., UDO(x, t0) = UDBO(x, t0)Ru(t0) and

YDO(t0;ω) = YDBO(t0;ω)Wy(t0). Then the two subspaces remain equivalent for all t > 0.

The proof for Theorem (2.5.1) is given in Appendix B.

Lemma 2.5.2. Let DBO and BO be equivalent via the transformations: UDBO = UBOWu

and YDBO = YBORy, where Wu ∈ Rr×r and Ry ∈ Rr×r. Then: (i) Ry is an orthogonal

matrix (ii) ΣDBO = W−1
u Ry(iii) dWu

dt
= −(M + Λ−1G)Wu (iv)

dRy

dt
= (ST − GT )Λ−1Ry;

where M = E
[
Y T
BO

dYBO

dt

]
, S =

〈
UBO,

∂uBO
∂t

〉
and G =

〈
UBO,E[F̃YBO]

〉
.

The proof for Lemma (2.5.2) is given in Appendix C.

Theorem 2.5.2. Let UBO(x, t), YBO(t;ω) represent the BO decomposition of SPDE in

Eq.(2.2) and let UDBO(x, t), ΣDBO(t) and YDBO(t;ω) represent its DBO decomposition. Sup-

pose that at t = 0 the two bases are equivalent i.e., UDBO(x, t0) = UBO(x, t0)Wu(t0) and
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YDBO(t0;ω) = YBO(t0;ω)Ry(t0). Then the two subspaces remain equivalent for all t > 0.

The proof for Theorem (2.5.2) is given in Appendix C.

Remark 2.5.1. Based on the equivalence relation between BO and DBO, and that between

DBO and DO; it can be easily shown that the equivalence between BO and DO obtained from

[3] would be equal to UDO = UBOWuRu and YDO = YBORyWy.

In Fig.(1) we summarize the equivalence relations between DBO, DO and BO. The

equivalence relation between BO and DO and the definition of matrices: M,G, S and Σ are

taken from [3].

DOBO

DBO
UDO = UDBORu

YDO = YDBOWy

dRu

dt
= 0

dWy

dt
=

dΣT
DBO

dt
Ru

UDBO = UBOWu

YDBO = YBORy

dRy

dt
= (S T −GT )Λ−1Ry

dWu

dt
= −(M + Λ−1G)Wu

UBO = UDOPT Λ1/2

YBO = YDOPT Λ−1/2

dP
dt

= −Λ−1/2ΣΛ−1/2P

Figure 1: Equivalence relations between the three methods. The equivalence between DO

and BO and the definitions of matrices S, G, M , Σ are taken from reference [3].
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2.6 Mode Ranking

In this section, we determine the ranking of the modes in the stochastic and spatial

subspace of DBO as performed in [43]. The spatial and stochastic DBO modes are ranked in

the direction of the most energetic modes i.e., the modes are ranked based on the variance

captured by each mode. To this end, we perform a singular value decomposition (SVD) of

the ΣDBO matrix given by:

ΣDBO(t) = ΨU(t)Λ(t)1/2ΨT
Y (t),

where ΨU(t) and ΨY (t) are the left-singular vectors and the right-singular vectors of ΣDBO,

respectively. Λ(t) is a diagonal matrix containing the eigenvalues of the covariance matrix.

The eigenvalues are ranked such that λ1(t) ≥ λ2(t) ≥ · · · ≥ λr(t). The ranked DBO modes

based on the variance i.e., λi(t), are obtained by an in-subspace rotation as in the following:

ŨDBO(t) = UDBO(t)ΨU(t),

ỸDBO(t) = YDBO(t)ΨY (t).

2.7 Redundancy in Time

All three components of the DBO decomposition i.e., U(x, t), Y (x, t) and Σ(t) are time

dependent. The issue of time redundancy also exists in both BO and DO decompositions. We

present a simple but insightful and unifying approach to clarify the constraints and degrees of

freedom (DOF) in devising new time-dependent decompositions. For simplicity, we consider

a finite-dimensional example. In particular, we consider the full-dimensional decomposition

of a time-dependent matrix A(t) ∈ Rn×s. In this simplification A(t) can be considered as

a discrete representation of the mean subtracted random field, where n is the number of

discrete points in spatial domain and s is the number of samples of the random field. In this

section, we determine the degrees of freedom and the number of constraints imposed by a

decomposition, and we show that in DBO decompositions the total number of constraints
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is equal to the number of degrees of freedom — leading to a unique decomposition. In the

following analysis we drop the explicit dependence on t for brevity.

We consider the DBO decomposition, which is given by: A = UΣY T , where the spatial

modes and stochastic modes are a set of orthonormal bases. The total DOF for DBO are

given by the total number of elements in each of the matrices in the decomposition i.e.,

n × s entries in U matrix, s × s entries in the Σ matrix and s × s entries in the Y matrix.

Thus, the total DOF is: NDOF = n × s + s × s + s × s. The constraints imposed by the

DBO decomposition are as follows: (i) There are Nc1 = n × s constraints imposed by the

compatibility conditions Aij = UikΣkmYjm. (ii) The orthonormality of stochastic and spatial

modes (〈ui, uj〉 = δij and E[yiyj] = δij) imposes s(s + 1)/2 constraints each, which in total

imposes Nc2 = s(s + 1). Note that we only need to count the constraints for for j < i,

because for j > i the constraints are equivalent to those of i < j, since 〈ui, uj〉 = 〈uj, ui〉 and

E[yiyj] = E[yjyi], and therefore they are not independent constraints and thus not counted.

(iii) The dynamically orthogonal constraints for spatial and stochastic modes (〈u̇i, uj〉 = 0

and E[ẏiyj] = 0) imposes s(s − 1)/2 constraints each. Note that 〈u̇i, ui〉 = 0, i = 1, 2, . . . , s

does not impose independent constraints as 〈ui, ui〉 = 1 already enforces this condition. This

can be seen by taking the time derivative of the orthonormality constraints:

d

dt
〈ui, ui〉 = 〈u̇i, ui〉+ 〈ui, u̇i〉 = 2 〈u̇i, ui〉 = 0.

Similarly, E[ẏiyi] = 0, i = 1, 2, . . . , s does not impose independent constraints. Thus, the

total constraints from the dynamically orthogonal condition are Nc3 = s(s− 1).

The total number of constraints for the DBO decomposition is n×s+s(s+1)+s(s−1),

which is equal to the number of degrees of freedom, and this results in a fully determined

DBO decomposition for matrix A. A similar breakdown of constraints and degrees of freedom

can be performed for DO and BO and is summarized in in Table 2.

We conclude that to obtain a unique time-dependent decomposition, the number of de-

grees of freedom and the number of constraints need to be equal. Introducing additional

degrees of freedom requires additional constraints to keep the system fully determined and

thus unique. In the light of the above analysis, DBO allows for s × s additional degrees of

freedom compared to DO by adding the matrix Σ to the decomposition. These additional
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Table 2: Number of constraints and degrees of freedom for BO, DO and DBO decompositions.

Each decomposition imposes n× s compatibility constraints, which are not listed.

Method Matrix Decomposition Degrees of Freedom Constraints

BO An×s = Un×sY
T
s×s ns+ s2

〈U,U〉 = Λ : s(s−1)
2

Λ is diagonal matrix

E[Y TY ] = I : s(s+1)
2

DO An×s = Un×sY
T
s×s ns+ s2

〈U,U〉 = I : s(s+1)
2〈

U̇ , U
〉

= 0 : s(s−1)
2

DBO An×s = Un×sΣs×sY
T
s×s ns+ s2 + s2

〈U,U〉 = I : s(s+1)
2

E[Y TY ] = I : s(s+1)
2〈

U̇ , U
〉

= 0 : s(s−1)
2

E[Ẏ TY ] = 0 : s(s−1)
2

constraints are then utilized to enforce the orthonormality and dynamically orthogonal con-

ditions on the stochastic coefficients Y . The orthonormality of Y coefficients in the DBO

decomposition cannot be enforced in the DO decomposition. As we will demonstrate this

loss of orthonormality of Y in the DO decomposition can lead to degradation of accuracy in

highly ill-conditioned problems.
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2.8 Demonstration Cases

2.8.1 1D Stochastic Linear Advection Equation

We consider linear advection governed by:

∂u

∂t
+ V (ω)

∂u

∂x
= 0, x ∈ [0, 2π] and t ∈ [0, tf ], (2.13a)

u(x, 0) = sin(x), x ∈ [0, 2π], (2.13b)

with periodic boundary condition. The randomness in the system comes from the advection

velocity V (ω). The random velocity is specified by V (ω) = v̄ + σξ(ω), where v̄ = 1.0,

σ = 1.0 and ξ(ω) is a uniform random variable in the interval of ξ ∼ U [−1, 1] with variance

1/3. The physical domain is discretized using the Fourier spectral method with Ns = 512

Fourier modes. The random space is one dimensional and is discretized with the probabilistic

collocation method (PCM) with Nr = 256 Legendre-Gauss points. The third-order Runge-

Kutta scheme is used for the time integration with ∆t = 10−3. At t = 0, the stochastic

fluctuations are zero, and therefore, the simulation is initialized at t = ∆t to avoid singularity

of the covariance matrix. The system is numerically evolved till tf = 10. The linear advection

Eq.(2.13) has a closed-form solution as follows:

u(x, t;ω) = g(x− V (ω)t) = sin(x− (v̄ + σξ(ω))πt). (2.14)

This system can be expressed exactly with KL modes and the reduction order of r = 2 as

follows:

u(x, t;ω) = ū(x, t) +
r∑
i=1

√
λi(t)ui(x, t)yi(t, ω),

where,

ū(x, t) = sin(x− v̄tπ)
sin(σπt)

σπt
,

u1(x, t) =
1√
π

sin(x− v̄πt), u2(x, t) =
−1√
π

cos(x− v̄πt),

y1(t;ω) =

√
π√

λ1(t)

(
cos(σξπt)− sin(σπt)

σπt

)
, y2(t;ω) =

√
π√

λ2(t)
sin(σξπt),

λ1(t) = 1− sin(2σπt)

2σπt
, λ2(t) = 1 +

sin(2σπt)

2σπt
− 2 sin2(σπt)

(σπt)2
.
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The mean, spatial and stochastic bases of the DBO decomposition are initialized with KL

modes given above. The covariance factorization is initialized by:

Σ(t) =

√λ1(t) 0

0
√
λ2(t)

 . (2.15)

In Fig.(2a-2b), the L2 error of the mean and variance for both DO and DBO methods

are shown, respectively. The L2 norm of the error of the mean (εm(t)) is computed as in the

following:

εm(t) =

(∫
D

(ū(x, t)− ūDBO(x, t))2dx

)1/2

, (2.16)

where ū(x, t) represents the mean of the analytical solution and ūDBO(x, t) represents the

mean obtained from the DBO evolution equations.The error of the variance (εv(t)) is calcu-

lated using the L2-norm in both the spatial and stochastic dimensions:

E(x, t;ω) = u(x, t;ω)− ū(x, t)−
r∑
j=1

r∑
i=1

uDBOi
(x, t)ΣDBOij

(t)yDBOj
(ω, t), (2.17a)

εv(t) =

(∫
D

E[E(x, t;ω)2]dx

)1/2

, (2.17b)

where u(x, t;ω) represents the analytical stochastic field, ū(x, t) represents the mean of the

analytical stochastic flow field, whereas uDBOi
(x, t), ΣDBOij

(t) and yDBOj
(ω, t) represent the

solutions of the components of the DBO decomposition obtained from the DBO evolution

equations.

Since the solution of this problem can be exactly expressed with two DBO modes, the

errors in the mean and variance come from the temporal, spatial and the PCM discretization

of the random space. To the end, we present mean and variance errors for two values of

∆t = 10−3 and 2× 10−4, in which the smaller ∆t shows smaller errors. We also refined the

resolution for spatial and random discretizations, and we did not, however, observe noticeable

change in the mean and variance errors. This demonstrates that the temporal discretization

is the main source of error. For long time integration, the resolution of solving Eq.(2.11c)

must increase in time i.e., higher number of samples of ξ, to maintain a desired level of

accuracy as increasing time increases the wave number of yi(t;ω) modes. However, in the

DBO decomposition, the computational cost of increasing resolution in the random space is
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Figure 2: Stochastic linear advection equation: The L2 errors for the mean and the variance

are compared with the DO method.

insignificant, as we solve the stochastic ODE of small order (here r = 2) given by Eq.(2.11c).

This is in contrast to the PCM method, in which to maintain the desired level of accuracy

the PCE order must increase with time, which results in solving larger system of PDEs. See

reference [19] for detailed error analysis of the stochastic linear advection equation using

PCM. The BO method for this case would diverge because of eigenvalue crossing. It is clear

that both DBO and DO show similar errors as they are equivalent. However, the DBO shows

slightly smaller errors in both mean and the variance.

2.8.2 Stochastic Burgers’ Equation With Manufactured Solution

We consider the stochastic Burgers’ equation governed by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f(x, t;ω), x ∈ [0, 2π] and t ∈ [0, tf ]. (2.18a)

u(x, 0;ω) = g(x), x ∈ [0, 2π]. (2.18b)
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We consider the following manufactured solution expressed by the KL decomposition with

r = 2 modes:

ū(x, t) = sin(x− t),

u1(x, t) =
1√
π

cos(x− t), u2(x, t) =
1√
π

cos(2x− 3t),

y1(t;ω) = sin(πξ1(ω)− t), y2(t;ω) = cos(πξ2(ω)− t),

λ1(t) = (4.5 + sin(t))2, λ2(t) = ε2 · (1.5 + cos(3t))2.

We initialize the DBO systems with KL modes similar to the previous example. The stochas-

tic forcing f(x, t;ω) is calculated accordingly such that the above decomposition satisfies

Eq.(2.18). In the above equation ν = 0.05 and ξd ∼ U [−1, 1]. Here, d is the dimension of the

random space, which for this case is taken to be d = 2. The parameter ε scales the smaller

eigenvalue i.e., λ2(t), which in turn controls the condition number of the covariance matrix.

The physical domain is considered to be periodic. We discretize the spatial domain using the

Fourier spectral method with Ns = 128 modes. The random space is two-dimensional and is

discretized with the ME-PCM (Multi-Element Probabilistic Collocation Method) [9] with 8

elements each containing 4 points in each random direction. Thus, the total points in every

random direction is 32, which results in Nr = 1024. The third-order Runge-Kutta method

is used for the time integration with ∆t = 10−3. Since at t = 0 the stochasticity is zero,

the numerical computation is started from ts = 0.01. The system is numerically evolved till

tf = 3π.

The purpose of this case is to compare the performance of DO, BO and DBO methods

for cases with ill-conditioned covariance matrices. We also compare the performance of DBO

with pseudo-inverse DO (PI-DO) [40], where the authors proposed using pseudo inverse in

the presence of singular or near-singular covariance matrices. Two values of ε are considered

and the evolution of the system for DO, PI-DO, BO and the DBO methods are studied. We

use the L2 error for evaluation of the mean and variance errors i.e., Eq.(2.16) and Eq.(2.17)

between the four methods.

In Fig.(3), the evolution of the eigenvalues, mean and variance error are shown for two

values of ε = 10−3 and ε = 10−5. Fig.(3c) and Fig.(3d) show a comparison between the
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mean errors for ε values 10−3 and 10−5, respectively. Similarly, Fig.(3e) and Fig.(3f) show

the variance error for ε values 10−3 and 10−5 respectively. The PI-DO case is studied only

for the case with ε = 10−5, since for the case with ε = 10−3 the covariance matrix does not

become singular. Two threshold values are used for the inversion of the covariance matrix in

the PI-DO method: σth = 10−9 and σth = 10−10. See reference [40] for more details on the

threshold values. As shown in [40], the choice of the threshold value can play a significant

role in the performance of PI-DO. Based on the formulation of the eigenvalues, lower values

of ε creates an ill-conditioned covariance matrix for DO, BO as well as an ill-conditioned Σ

matrix for DBO. However, in both DO and BO the condition number for the inversion of

the covariance matrix is κDO,BO = λ1(t)/λ2(t), which scales with 1/ε2, while the condition

number for the inversion of Σ in the DBO decomposition is κDBO =
√
λ1(t)/λ2(t), which

scales with 1/ε. Since DO, BO and DBO are equivalent, it is expected that they all perform

similarly for the well-conditioned covariance matrix, i.e., ε = 10−3. This can be seen in

Fig.(3a), Fig.(3c) and Fig.(3e), where all three methods exhibit the same levels of error in

mean and variance and the eigenvalues of the covariance matrix match well with the true

eigenvalues. However, for the case with ε = 10−5, it is expected that DBO performs better

than BO and DO and this can be seen in Fig.(3b), Fig.(3d) and Fig.(3f). For this case

neither DO, BO nor PI-DO can capture the smallest eigenvalue i.e., λ2(t) correctly. As a

result they introduce error of the order of
√
λ2(t) ∼ O(ε), which can be observed in Fig.(3d)

and Fig.(3f). As seen in Fig.(3d) and Fig.(3f), the threshold value of σth = 10−9 for pseudo-

inverse introduces higher order errors than that of the σth = 10−10. The pseudo-inverse

method introduces O(σth) in the simulation whenever the lowest eigenvalue attains a value

lower than the threshold σth.

We have also investigated the effect of the condition number of the system on the spatial

and stochastic modes. In Fig.(4), the two spatial modes and the phase space i.e., y1(t;ω)

vs. y2(t;ω), are shown for four different times: t = 0.2, 1.2, 3.2 and 5.2. For the purpose

of comparison, the DO and DBO stochastic and spatial modes are transformed to the BO

subspace using the transformation relations obtained in Section 2.5. At t = 0.2, the spatial

modes and stochastic coefficients match well with those of the KL decomposition as shown

in Fig.(4a-4c). However, as time progresses to t = 1.2 and t = 3.2 the ability of the BO,
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DO, and PI-DO to retain the near-singular mode deteriorate as shown in Fig.(4e-4f) and

Fig.(4h-4i). At time t = 5.2, BO, DO, and PI-DO completely fail to capture the lowest

variance mode. Moreover, for both DO and PI-DO, the inability to accurately resolve the

low-variance mode adversely affects first mode. See Fig.(4g) and Fig.(4j).

2.8.3 1D Burgers’ Equation with Stochastic Forcing

In this section, we consider Burgers’ equation subject to random forcing where a large

number of modes are needed to resolve the system accurately due to nonlinear interaction

between the modes. We investigate the effect of low eigenvalues on the accuracy of the

solution and the effect of long time integration on the solution for both DO and the DBO

methods. The governing equation is given by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+

(1 + ξ)

2
sin(2πt), x ∈ [0, 2π] and t ∈ [0, tf ], (2.19a)

u(x, 0;ω) = g(x) x ∈ [0, 2π], (2.19b)

where ν = 0.04 and ξ ∼ U [−1, 1] is a one-dimensional uniform random variable and the

initial condition is taken to be:

g(x) = 0.5(exp(cos(x))− 1.5) sin(x+ 2π · 0.37). (2.19c)

We use the Fourier spectral method for space discretization with Ns = 128 Fourier modes,

and PCM is used for the discretization of the one-dimensional random space ξ. We use

Nr = 64 Legendre-Gauss collocation points. The third-order Runge-Kutta scheme is used

for evolving the discrete systems in time with ∆t =10−3. At t = 0 the system is deterministic,

hence the covariance matrix is singular. Therefore, neither DO nor DBO decompositions can

be initialized at t = 0. To this end, we evolve the stochastic systems up to ts = 2 using PCM

and the KL decomposition of the solution at this time is taken as the initial condition. This

is in accordance to methodology presented in [44].

This case is used to study two properties of an ill-conditioned system on the overall

accuracy of the mean and variance: (i) effect of low eigenvalues resulting in an ill-conditioned

covariance matrix, (ii) effect of unresolved modes on long term integration. To study the
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Figure 3: Burgers’ equation with manufactured forcing: A comparison between two values of

ε, which controls the condition number of the system, is shown. The left column:(a),(c) and

(e) correspond to the eigenvalues, mean error and variance error for the case with ε = 10−3,

respectively. The right column:(b),(d) and (f) correspond to the eigenvalues, mean error and

variance error for the case with ε = 10−3, respectively. It is observed that as the system

becomes ill-conditioned for ε = 10−5, the errors for the DO, PI-DO and the BO method

increase whereas the DBO maintains the same accuracy for both the ε values.
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Figure 4: Burgers’ equation with manufactured forcing: The two physical modes and the

phase space for the stochastic basis are shown at different times as the simulations progresses.

All the methods start from the same initial condition. Each row corresponds to the system

at t = 0.1, 1.2, 3.2 and 5.2. It is observed that the low variance mode is affected first and

subsequently as the evolution continues the higher variance mode loses its accuracy as well.
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effect of low eigenvalues we consider two reduction sizes of r = 7 and r = 9 and the system

is evolved till tf = 3. Fig.(5) shows the eigenvalues for this case as extracted from the PCM

solution. It is observed that modes 8 and 9 (shown in red) have eigenvalues which are the

order of 10−15, rendering the covariance matrix C highly ill-conditioned. The mean error

for reduction sizes r = 7 and r = 9 can be seen in Fig.(6a-6b), respectively. The variance

error is plotted in Fig.(6c-6d). It can be seen that the lower modes affect the accuracy of

the solution for DO. The error affects the solution of the higher modes and we observe an

increased error for the DO method in case of reduction order r = 9. The DBO method,

on the other hand, resolves the lower mode accurately without affecting the accuracy of the

higher modes. In fact adding additional modes, improves the accuracy of the DBO solution

as seen from the variance error plots in Fig.(6d). The solutions for the long time integration

Figure 5: Burgers’ equation with stochastic forcing: Growth in the eigenvalues as the system

evolves. The modes shown in red dotted lines are the unresolved modes i.e., modes which are

not included in the simulations. These eigenvalues are obtained by performing Karhunen-

Loéve decomposition on the instantaneous samples.

case for the stochastic Burgers’ equation is shown in Fig.(7). Between t = 2 and t = 3, we

observe that the DO has higher error as the lower modes affect the accuracy of the higher

modes. This result is same as seen from the previous case Fig.(6). As the lower modes start

gaining energy, the error from the unresolved modes dominates the error of the effect of lower

modes and hence, we observe that the error for both the DO and the DBO methods is the

same as time progresses.
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Figure 6: Burgers’ equation with stochastic forcing (effect of low variance modes on the

accuracy of the solution): It is observed that effectively resolving the modes with lower

variance improves the numerical accuracy of the solution. The DO method fails to resolve

the lower eigenvalues and hence the error for DO is higher than that of the DBO method.
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Figure 7: Burgers’ equation with stochastic forcing (long time integration effects): The 9

dominant modes are used to resolve the system. The mean error and variance error for DBO

and DO as compared with PCM are shown in (a) and (b). It is observed that DBO performs

better for short time (i.e., till 4 time units). After 4 time units the lower unresolved modes

gain variance and the effect of these unresolved modes dominate the error which is equal for

both DO and DBO methods.
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2.8.4 1D Stochastic Burgers’ Equation With 10-Dimensional Random Initial

Condition

In this example, we apply the DBO decomposition to solve stochastic Burgers’ equation

subject to high dimensional perturbations in the initial conditions. The purpose of this

example is to demonstrate that for systems that are low-dimensional when expressed in time-

dependent basis, the DBO decomposition does not suffer from the curse of dimensionality.

To this end we consider:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [0, 2π] and t ∈ [0, tf ],

where, ν = 0.05. The mean for the initial condition is taken to be:

g(x) = 0.5(exp(cos(x))− 1.5) sin(x+ 2π · 0.37). (2.20)

The velocity field at t = 0 is given by;

u(x, 0;ω) = g(x) +
d∑

n=1

σ
sin(nx)

n
√
π
ξn, (2.21)

where σ = 0.5 and ξn ∼ U [−1, 1] is a uniform random variable in each direction in the random

space. The total dimension of the random space is given by d = 10. The random samples

are obtained from the ME-PCM code for high dimensional anchored ANOVA [16, 11, 12].

These samples are used to solve the SODE for the evolution of the stochastic coefficients.

We use the Fourier spectral method to discretize the space with Ns = 128. The third-order

Runge-Kutta scheme is used for evolving the discrete system in time with ∆t = 10−3. This

case is used to study the effect of high dimensional random space on the solution of the

system. We also study the convergence properties of the solution as the number of modes

is increased as well as the convergence properties of the solution with the increase in the

number of samples in the random space.

We investigate the convergence of the DBO low-rank approximation by increasing the

size of the reduction. In Fig.(8a), the eigenvalues for reduction sizes r = 5, 7 and 9 and

a sample size of Nr = 2880 are shown. However, the most dominant modes, i.e. modes

with largest eigenvalues, are accurately resolved. We observe that the accuracy of the lower
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energy modes improves as the number of modes is increased. We also increase the sample

size to Nr = 11520 and the values of the eigenvalues for the two samples sizes are compared

in Fig(8b). It is clear that increasing the sample size improves the accuracy of the lower

modes. In all cases considered, i.e. cases with different r and different Nr, the three most

dominant modes with highest variance are captured correctly. These three modes capture

more than 99% of the total variance of the system. This example demonstrates that the first

three DBO modes can capture the intrinsic dimensionality of this problem in the presence

of a 10-dimensional random input space.

(a) Convergence for increased modes (b) Convergence for increased samples

Figure 8: Burgers’ equation with high dimensional stochastic forcing: (a) Convergence of

the eigenvalues as the number of modes is increased keeping the sample size (Nr = 2880)

same. (b) Convergence of eigenvalues for Nr = 2880 and Nr = 11520 keeping the number of

modes (r = 9) same.

2.8.5 2D Stochastic Incompressible Navier-Stokes: Flow Over a Bump

In this example, we apply the DO and DBO decompositions to solve stochastic incom-

pressible Navier-Stokes equations. The governing equations are given by:

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p+ ν∇2u + f , (2.22a)
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∇ · u = 0. (2.22b)

where: u = (ux, uy) is the velocity vector field, f = (fx, fy) = (1, 0) is the forcing and p is the

pressure field. We solve the flow over a bump in a channel as shown in Fig.(9a), where flow

is from left to right. Periodic boundary condition is imposed in the streamwise direction and

no-slip boundary condition is imposed at the bottom and top walls. We consider ν = 0.04

and ρ = 1 and the Reynolds number is based on the channel height and time-averaged

centerline horizontal velocity which is roughly equal to Re = 1500. For these parameters the

flow is not chaotic, but it is time dependent due to constant shedding of separated region

behind the bump. The stochasticity is introduced in the flow via random initial conditions

given by the following equation:

u(x, y, 0;ω) = u0(x, y) +
d∑
i=1

σξi(ω)Φi(x, y), (2.23)

where u0(x, y) is the solution of a deterministic simulation at t = 50. The deterministic

solution at this time has reached the statistically steady state. The spectral element solver

Nektar is used for the simulations. In the above initial condition Φi = (Φxi ,Φyi) are the

proper orthogonal decomposition (POD) modes obtained from the deterministic simulation

of the flow over a bump at Re = 1500. We consider d = 2 and the Φy component of

the two corresponding POD modes are shown in Fig.(9b-9c). For the spatial discretization

of the mean flow and the spatial basis, we use spectral/hp element solver method with

quadrilateral elements for Ne = 1451 and polynomial order 5. The spectral element mesh

is shown in Fig.(9a). A first-order time-splitting scheme is used for the evolution of mean

and the spatial basis, in which the nonlinear terms are treated explicitly and the diffusion

terms are treated implicitly. The time-integration step of ∆t = 10−4 is used. The random

space is two-dimensional and discretization of the stochastic coefficients in the random space

is performed using ME-PCM with 4 elements in each random direction and 4 quadrature

points in each element. Therefore, the total number of quadrature points in every direction

of the random space is 16 and hence, the total number of quadrature points in the two

dimensional random space is Nr = 162 = 256. We solved both DO and DBO systems with
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Figure 9: Flow over a bump in a channel flow: (a) The schematic of the problem and the

mesh for the spectral/hp element. (b) and (c) The y-velocity component of the two dominant

POD modes.

identical discretization schemes as described above till tf = 5, which amounts to 20 flow

through periods.

To compare the performance of DO and DBO we performed simulations for two reduction

sizes: r = 2 and r = 3. For the reference solution, we performed 256 non-intrusive direct

numerical simulation (DNS) at the same ME-PCM quadrature points. We then performed

KL decomposition of the 256 sample at each time step. The eigenvalues of the covariance

matrix of DO, DBO for the case of r = 2 and the two largest KL eigenvalues are shown in

Fig.(10a). It is clear that both methods perform well and match the two most energetic KL

modes, although the eigenvalues of DBO are more accurate than that of the DO.

In the case of r = 3, the eigenvalue associated with the third mode has very small

values. In fact at t = 0 the third eigenvalue is zero. This eigenvalue gradually grows due

to nonlinearity of Navier-Stokes equations. To avoid an exact singularity, the DO and DBO

simulations for r = 3 are initialized at t = 1 from the solution of the corresponding KL

decomposition. The system is ill-conditioned for r = 3 due to the low variance of the third

mode. At t = 1, the third eigenvalue is roughly equal to 10−10 as shown in Fig.(10b). The

third eigenvalue of the DO decomposition deviates from the truth due to the near singularity

and it eventually leads to the divergence of the DO system, while DBO performs accurately
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and all three eigenvalues match those of the KL.

Fig.(11) shows evolution of the uy of the mean and three dominant spatial modes of the

DBO and KL system at t = 1, 2 and 3. By visual comparison we can observe that the KL and

DBO modes are similar at every time step. Mode 1 and 2 of the system are the POD modes

we have used as an initialization for the stochastic random conditions, convected through

the channel by the mean velocity, ūx(x, y, t) of the flow. It is necessary to consider the lower

eigenvalues into the flow field as we observe that overtime the lower eigenvalues can gain

energy and alter the system dynamics.
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Figure 10: Flow over a bump in a channel: A comparison between eigenvalues for two

reduction orders r = 2, 3 between KL, DO and DBO. For r = 3, it is observed that the

DO method is not able to resolve lower modes when the condition number for inverting the

covariance matrix is high and it eventually diverges, whereas the DBO does not have the

aforementioned issue due to a better condition number for Σ inversion hence can resolve low

variance modes with better accuracy.
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D

B
O

(t
=

1
) ūDBO
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Figure 11: Flow over a bump in a channel flow: The spatial modes of DBO and KL for the

stochastic flow in a channel with bump are visualized for comparison in the figure above.

Column 1: The ūy(x, t) for different time instants. Column 2, 3 & 4: The three dominant

spatial modes for the DBO and KL simulation. Rows 1 and 2 correspond to the DBO and

KL spatial modes for t = 1 respectively. Rows 3 and 4 correspond to the DBO and KL

spatial modes at t = 2 respectively. Finally, rows 5 and 6 correspond to the DBO and KL

spatial modes at t = 3 respectively.
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3.0 DBO Formulation for Random Boundary

Conditions

The focus of this chapter is to formulate a method to solve linear and nonlinear par-

tial differential equations imposed with stochastic boundary conditions. The main challenge

in solving problems with stochastic boundaries lies in the determining how the value of the

stochastic function at the boundary will be distributed across spatial modes whilst maintain-

ing orthonormality condition of the spatial modes. The DO method [1] introduced equations

to solve for stochastic boundary equations given by:

B[ui(ξ, t)]|ξ∈∂D = E [Yj(t;ω)h(ξ, t;ω)]C−1
Yi(t;ω)Yj(t;ω),

where C represents the covariance matrix. The boundary modes consist of projecting the

Dirichlet boundary condition on the stochastic modes at each time step. Another method

called the dual Dynamically Orthogonal (or dual-DO) [45] was recently introduced for the

imposition of the stochastic Dirichlet boundary conditions using the dynamical low rank

(DLR) variational principle.

In this chapter, we look at the variational principle approach to derive the evolution

equations for the stochastic and spatial modes for the DBO method.A few demonstration

cases are considered to evaluate the numerical performance of the method. We first apply

the DBO equations for the stochastic linear advection-diffusion equation. For this case,

we apply three different boundary conditions: Dirichlet, Neumann and Robin. We further

apply stochastic boundary to the Burgers’ equation. The evolution of the singular values,

boundary errors and global errors are evaluated. We then consider a two dimensional domain

with a jet impingement. The stochastic boundary is considered for the temperature equation.

The propagation of uncertainty in the domain is studied for this problem for two cases: a)

constant Prandtl number b) temperature dependent Prandtl number.
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3.1 Variational Principle

Let the Dynamically Bi-Orthonormal decomposition defined in [46] to denote a random

field be written as:

Φ(x, t;ω) =
r∑
i=1

r∑
j=1

ui(x, t)Σij(t)yj(t;ω) + e(x, t;ω), (3.1)

where ui(x, t), i = 1, 2, · · · , r are the spatial modes, yj(t;ω), j = 1, 2, · · · , r are the stochastic

modes and Σij(t) is the factorization of the covariance matrix.

Note: The decomposition considered here is different from the decomposition in [46], in

the sense that the mean is not subtracted from the solution.

We consider the following stochastic partial differential equation (SPDE), which defines

the system evolution:

∂u(x, t;ω)

∂t
= N (u(x, t;ω)) x ∈ D,ω ∈ Ω, (3.2)

au(x, t;ω) + b
∂u(x, t;ω)

∂n
= g(u(x, t;ω)) x ∈ ∂D, ω ∈ Ω, (3.3)

u(x, t0;ω) = u0(x;ω) x ∈ D,ω ∈ Ω, (3.4)

where N is in general, a nonlinear differential operator, D denotes the interior domain

and ∂D denotes the boundary and D = D ∪ ∂D. Our strategy to determine the boundary

conditions for the spatial modes is based on the realization that the DBO evolution equations

are the optimality conditions of a variational principle. An analogous variational principle

was recently introduced in [47] for the reduced order modeling of deterministic reactive

species transport equation. Our approach is to define a unified evolutionary differential

operator that encompasses both the interior domain as well as the boundary as shown below:

M(u(x, t;ω)) =

N (u(x, t;ω)), if x ∈ D, ω ∈ Ω,

B(u(x, t;ω)), if x ∈ ∂D, ω ∈ Ω.

where B(u(x, t;ω)) =
∂

∂t

[
g(u)

a
− b

a

∂u

∂n

]
. Here, we consider the Dirichlet and Robin bound-

ary conditions, i.e., b = 0, a 6= 0 and b 6= 0, a 6= 0 respectively. For the special case of
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Neumann boundary condition see Remark 3.1.3. The variational principle for stochastic

DBO seeks to minimize the following functional:

F(U̇(x, t), Σ̇(t), Ẏ (t)) =

∥∥∥∥ ∂∂t(ui(x, t)Σij(t)y
T
j (t))−M(u)

∥∥∥∥2

F
, x ∈ D, (3.5)

subject to the orthonormality of the spatial and stochastic bases i.e.,
〈
ui(x, t), uj(x, t)

〉
= δij

and E[yi(t)yj(t)] = δij. For the sake of brevity, in the rest of this section ui(x, t) is denoted

as ui, yi(t) is denoted as yi, Σij(t) is denoted as Σij and M(u) is denoted as M. Here,

M∈ R∞×s is a quasimatrix, where s represents the number of discrete samples in the random

space. Taking time derivative of these constraints, we obtain the dynamic orthogonality of

the modes given by, 〈
u̇i, uj

〉
= Φij,

E[ẏiyj] = Ψij,

where Φ and Ψ are skew-symmetric matrices i.e., Φij = −Φji and Ψij = −Ψji. Incorporating

the orthonormality constraints using Lagrange multipliers in the functional (3.5) results in:

G(U̇ , Σ̇, Ẏ ) =

∥∥∥∥ ∂∂t(uiΣijy
T
j )−M

∥∥∥∥2

F
+ λ1ij

(〈
u̇i, uj

〉
− Φij

)
+ λ2ij (E[ẏiyj]−Ψij) , (3.6)

where λ1ij(t), λ2ij(t),i, j = 1, . . . , r are Lagrangian multipliers. It is shown in [47], that

any choice of the skew-symmetric matrices Φ and Ψ lead to equivalent decompositions which

correspond to an in-subspace rotation. The equations for the subsequent theorem, are derived

by taking Φ = Ψ = 0

Theorem 3.1.1. Let Eq.(3.1) represent the DBO decomposition of the solution of SPDEs

given in Eq.(3.2-3.4). Then using the variational principle in Eq.(3.6) and first order opti-

mality conditions the evolution equations of spatial modes, stochastic modes and the factor-

ization of the variance for DBO are given by:

∂ui
∂t

=
[
E[N yj]− uk

〈
uk,E[Myj]

〉]
Σ−1
ij , x ∈ D, (3.7)

∂ui
∂t

=
[
E[Byj]− uk

〈
uk,E[Myj]

〉]
Σ−1
ij , x ∈ ∂D, (3.8)

dyi
dt

=
[〈
M, uj

〉
− ykE[yk

〈
M, uj

〉
]
]

Σ−1
ji , (3.9)

dΣij

dt
= 〈ui,E[Myj]〉 . (3.10)
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The proof of the above theorem is given in Appendix D.

Remark 3.1.1. Although the evolution equations in Theorem 3.1.1 have been derived without

subtracting the mean from the stochastic field, the variational principle can be easily extended

to mean subtracted form of equations.

Remark 3.1.2. Similar variational principles for the DO and BO modes can be obtained by

changing the constraints on the spatial and stochastic modes in the variational principle. The

variational principle for DO formulation as given in [33], leads to the following equations

for evolution of spatial and stochastic modes:

∂ui
∂t

=
[
E[N yj]− uk

〈
uk,E[Myj]

〉]
C−1
ij , x ∈ D, (3.11)

∂ui
∂t

=
[
E[Byj]− uk

〈
uk,E[Myj]

〉]
C−1
ij , x ∈ ∂D, (3.12)

dyi
dt

=
〈
M, ui

〉
. (3.13)

Remark 3.1.3. For the Neumann boundary condition, i.e., when a = 0, we get
∂g(u)

∂t
=

b
∂

∂t

[
∂u

∂n

]
. This boundary condition is enforced by obtaining a discrete equivalent form of

the derivative at the boundary and using this discrete nodal equation to determine the value

at the boundary point.

3.2 Demonstration cases

3.2.1 Linear Advection-Diffusion Equation

As the first demonstration, we consider a linear advection-diffusion equation governed

by:

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [0, 5] and t ∈ [0, tf ], (3.14)

u(x, 0;ω) = cos(2πx) +
d∑
i=1

σx
√
λxiui(x)ξi, x ∈ [0, 5], ξi ∼ U [−1, 1], (3.15)

au+ b
∂u

∂n
= g(u), x = 0, (3.16)

∂u

∂x
= 0, x = 5. (3.17)
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Here, ν is taken to be 0.05 and c = 1. Neumann boundary condition is imposed at x = 5.

The randomness in the system comes from the stochastic left boundary (x = 0) and random

initial conditions. We consider three types of stochastic boundaries at x = 0: (i) Dirichlet

boundary, (b = 0, a 6= 0) (ii) Neumann boundary (a = 0, b 6= 0) and (iii) Robin boundary

(a 6= 0, b 6= 0). The results for these cases are presented in the subsequent sections.

The SPDE given by Eq.(3.14-3.17) is solved using two methods: (i) DBO method according

to Eq.(3.7-3.10), (ii) DO method according to Eq.(3.11-3.13) and (iii) KL decomposition

obtained from the solutions of all samples. For spatial discretization of the domain, the

spectral/hp element method is used with Ne = 101 and polynomial order 4. Uniform dis-

tribution is taken in all directions of the random space and the space is discretized using

Multi-Element Probabilistic Collocation Method (ME-PCM). The sparse grid construction

[10, 13] is used for obtaining all the samples for random space. We use d = 8, level(k) = 3

and 1 element per random dimension which gives the total samples s = 333. The same sam-

ples are used for all the three cases of boundaries in the linear advection-diffusion equation.

The Karhunen Loéve (KL) decomposition is used to obtain the spatial, stochastic modes

and eigenvalues from the solution of all samples obtained from ME-PCM. The DBO and DO

solutions are compared with the KL solution and the global error between the two fields is

defined as,

eg(x, t;ω) = uDBO(x, t;ω)− uKL(x, t;ω), (3.18)

Eg = E [〈eg(x, t;ω), eg(x, t;ω)〉] . (3.19)

Similarly, the boundary error is computed as,

eb(x|∂D , t;ω) = uDBO(x|∂D , t;ω)−
[
g(u(x, t;ω))

a
− b

a

∂u(x, t;ω)

∂n

]
, (3.20)

Eb = E [〈eb(x|∂D , t;ω), eb(x|∂D , t;ω)〉] . (3.21)
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3.2.2 Stochastic Dirichlet Boundary Condition

Dirichlet boundary condition is imposed at x = 0 as,

u(0, t;ω) = g1(t;ω).

where g1(t;ω) is assumed to be a random process with a squared exponential temporal kernel

given by:

K(t, t′) = exp

(
−(t− t′)2

2l2t

)
,

where, lt is the temporal correlation length, which is taken to be 1.0. The eigen-decomposition

of the above kernel results in: ∫ tf

0

K(t, t′)ϕi(t
′)dt′ = λtiϕi(t),

where ϕi(t) and λti are the eigenfunctions and eigenvalues of the temporal kernel respectively.

The boundary condition is approximated with a a truncated Karhunen-Loéve decomposition

as given in the following equation:

g1(t;ω) = 0.5 cos(2πt) + σt

d∑
i=1

√
λtiϕi(t)ξi.

Here, ξi are the discrete points in a d-dimensional random space obtained by using ME-

PCM sparse grid construction. For this case, d = 8 is taken as this approximation captures

99.99% of the random process. σt is taken to be 1.0. Similarly to initialize the stochastic

initial conditions, we take a squared exponential kernel in the spatial domain,

K(x, x′) = exp

(
−(x− x′)2

2l2x

)
,

where, lx is the spatial correlation length which is taken to be 1.0.∫ xr

xl

K(x, x′)ψi(x
′)dx′ = λxiψi(x),
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Figure 12: Linear advection-diffusion equation (i) Dirichlet boundary condition: The first

row shows the singular value comparison for KL, DBO and DO methods. The values are

compared for three model reduction orders, r = 5, 7 & 9. The evolution of the values of

the modes at the stochastic left boundary are compared in the second row for the three

aforementioned methods.

39



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
-10

10
-5

10
0

DBO r=5

DO    r=5

DBO r=7

DO    r=7

DBO r=9

DO    r=9

(a) Global Error

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
-10

10
-5

10
0

DBO r=5

DBO r=7

DBO r=9

DO    r=5

DO    r=7

DO    r=9

KL

(b) Boundary Error

0 1 2 3 4 5

10
-10

10
-5

10
0 DBO 

i=3

DO    
i=3

DBO 
i=6

DO    
i=6

DBO 
i=9

DO    
i=9

(c) Singular Values Error

Figure 13: Linear advection-diffusion equation (i) Dirichlet boundary condition: The global

and boundary error comparison is shown in (a) and (b) respectively. The lowest error is

obtained using DBO method for r = 9. The singular values obtained from DO method for

r = 9 are riddled with errors. The L2-error for the third, sixth and ninth singular values is

compared in (c) for DO and DBO.

where ψi(t) and λxi are the eigenfunctions and eigenvalues of the spatial kernel and xl =

0, xr = 5 are the left and right boundaries of the spatial domain respectively. The initial

conditions are taken to be,

u(x, 0;ω) = 0.5 cos(2πx) + σx

d∑
i=1

√
λxiψi(x)ξi.

We take σx = 1.0. The fourth-order Runge-Kutta method is used for time integration with

∆t = 5 × 10−4. The system is numerically evolved till tf = 5 using the three methods: (i)

DBO, (ii) DO and (iii) KL. The obtained results are compared and presented in Fig.(12-13).

The first row of Fig.(12) shows the comparison of singular values for three different orders

of model reduction, r = 5, 7 & 9 for DBO, DO and KL. We observe that the singular values

improve in comparison as the order of model reduction is improved. The second row shows

the comparison of the value of the modes at the stochastic Dirichlet boundary i.e., x = 0.

The solution is exactly represented by r = 9. Hence, for the lower model reduction orders i.e.,

r = 5 and 7, the last mode of DBO and DO solution shows noticeable differences from the KL
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both in the singular values and the evolution of the modes at the boundary. The error in the

solution for r = 5, 7 can be attributed to the unresolved modes. The error comparison for the

two methods as compared to KL is shown in Fig.(13). The global error in the representation

of the solution i.e., Eg is shown in Fig.(13a). The error at the stochastic boundary i.e., Eb
is shown in Fig.(13b). For r = 9, when the solution is represented exactly, DBO and DO

show the lowest errors of all model reduction order. However, between DBO and DO, DBO

shows the highest accuracy for r = 9 whereas the DO error for the same reduction order is

a few orders of magnitude higher than the DBO error. The DBO boundary error for r = 9

shows the same value as the KL error. We observe high error in DO for r = 9 despite the

seemingly equal singular value comparison. The source of the error can be traced back to the

error in the singular values as shown in the Fig.(13c). The errors in third, sixth and ninth

singular values for the case r = 9 are shown. The L2-errors are computed by comparing the

DBO and DO singular values with KL values. We observe that the DO solution is riddled

with error, which makes the error in solution for r = 9 higher than that of DBO. This can

be attributed to the better condition number for matrix inversion in DBO leading to lower

errors. The DO method has a condition number λmax/λmin (where λmin and λmax represent

the smallest and largest eigenvalues of the covariance matrix), whereas the DBO method

has a condition number
√
λmax/λmin since the factorization of the covariance matrix i.e., Σ

is inverted.

3.2.3 Stochastic Neumann Boundary Condition

The stochastic Neumann boundary condition is imposed on the left boundary, x = 0 as,

∂u(0, t;ω)

∂x
= g2(t;ω).

To enforce this condition, we construct the discretized form of the boundary condition, given

by:

D11u1 +D12u2 + · · ·+D1pup = g2(t;ω),

u1 =
g2(t;ω)− [D12u2 + · · ·+D1pup]

D11

.
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Here, D represents the differentiation matrix, p represents the number of points in the

element used to evaluate the derivative. Similar discretized equations can be derived for

finite difference method as well. Similar to the problem setup as the Dirichlet boundary

case, the function g2(t;ω) is taken as a function of eigenvectors and singular values of the

squared exponential kernel and the initial conditions are taken as a function of eigenvectors

and singular values of the spatial squared exponential kernel. The temporal correlation

length, lt is taken to be 1.0 and the spatial correlation length lx is taken to be 1.0. The

boundary conditions are taken to be,

g2(t;ω) = 2π sin(2πt) + σt

d∑
i=1

√
λtiϕi(t)ξi,

and the initial conditions are taken to be,

u(x, 0;ω) = cos(2πx) + σx

d∑
i=1

√
λxiψi(x)ξi.

Here, σt = 0.1 and σx = 0.5. Similar to the Dirichlet boundary condition case, ξi ∈ U [−1, 1]

are discrete points in a 8-dimensional random space obtained by using ME-PCM. The fourth-

order Runge-Kutta method is used for time integration with ∆t = 5× 10−4. The system is

numerically evolved till tf = 5 using the KL, DBO and DO methods. The results for the three

methods are compared in Fig.(14-15). The first row in Fig.(14), shows comparison between

singular values for model reduction orders, r = 5, 7 & 9. The singular values improve in

comparison as the model reduction order is improved. The second row, shows the comparison

of the value of modes at the stochastic Neumann boundary at x = 0. Fig.(15a-b) show the

global error and boundary error comparison for the three reduction orders. Similar to the

previous case, when the solution is exactly represented by r = 9, DBO and DO show the

lowest errors of all reduction orders. Between DBO and DO, DBO shows higher accuracy

for r = 9. This can be seen in the errors for r = 9 for DBO and DO in Fig.(15a-b). DBO

boundary error for r = 9 shows the same value as the KL error. The error comparison

between individual singular values is shown in Fig.(15c) for third, sixth and ninth singular

values. This error in the DO solution causes the global and boundary error for r = 9 to be

higher that of DBO error. This lower error for DBO method, can be attributed to the fact
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that the DBO method has a better condition number for inversion of Σ matrix than DO

method which inverts the covariance matrix.

3.2.4 Stochastic Robin Boundary Condition

The stochastic Robin boundary condition is imposed on the left boundary at x = 0 as,

au(0, t;ω) + b
∂u(0, t;ω)

∂x
= g3(t;ω).

To enforce this condition, we construct the discretized form of the boundary condition, given

by:

au1 + b [D11u1 +D12u2 + · · ·+D1pup] = g3(t;ω),

u1 =
g3(t;ω)− b [D12u2 + · · ·+D1pup]

a+ bD11

.

Here, D represents the differentiation matrix and p represents the number of points in the

element used to compute the derivative. Similar equation can be derived for the finite

difference method as well. Similar to the problem setup as the previous cases, the function

g3(t;ω) is taken as a function of eigenvectors and singular values of the squared exponential

kernel and a = 0.1, b = 1. The temporal correlation length, lt is taken to be 1 and the spatial

correlation length lx is taken to be 1. The boundary conditions are taken to be,

g3(t;ω) = − cos(2πt) + 2π sin(2πt) + σt

d∑
i=1

√
λtiϕi(t)ξi,

and the initial conditions are taken to be,

u(x, 0;ω) = cos(2πx) + σx

d∑
i=1

√
λxiψi(x)ξi.

Similar to the Dirichlet boundary condition case, ξi ∈ U [−1, 1] are discrete points in a

8-dimensional random space obtained by using ME-PCM. The samples are drawn from a

uniform distribution. Here, σt = −0.1 and σx = 0.01. The fourth-order Runge-Kutta method

is used for time integration with ∆t = 5×10−4. The system is numerically evolved till tf = 5

using the KL, DBO and the DO methods. The singular value evolution, evolution of modes

at the boundary and error comparison for this case are shown in Fig.(16-17). The first
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Figure 14: Linear advection-diffusion equation (ii) Neumann boundary condition: The first

row shows the singular value comparison for KL, DBO and DO methods, The values are

compared for three reduction orders, r = 5, 7 and 9. The evolution of the values of the modes

at the left stochastic boundary are compared in the second row for the three methods.
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Figure 15: Linear advection-diffusion equation (ii) Neumann boundary condition: Error

comparison for DBO and DO as compared with the KL solution. The global error, Eg and

the boundary error, Eb are shown in (a) and (b) respectively. The lowest error is obtained

using DBO method for r = 9. The L2-error in the third, sixth and ninth singular value is

compared in (c) for DO and DBO.

row in Fig.(16), shows comparison between singular values for the model reduction orders,

r = 5, 7& 9. The singular values improve in comparison as the model reduction order is

improved. The second row, shows the comparison of the modes at the stochastic boundary

x = 0. Fig.(17a-b) show the global and boundary error comparison for the three reduction

orders. Similar to the previous case, when the solution is exactly represented by r = 9 for

DBO and DO, show the lowest errors of all reduction orders. Between DBO and DO, DBO

shows higher accuracy for r = 9. This can be seen in the errors for r = 9 for DBO and DO

in Fig.(17a-b). The boundary error for r = 9 for DBO shows the same error as the KL. The

error comparison between individual singular values is shown in Fig.(17c) for third, sixth

and ninth singular values for the case r = 9. This error in the individual singular values in

the DO solution causes the global and boundary error for r = 9 to be higher than that of

DBO error.
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Figure 16: Linear advection-diffusion equation (iii) Robin boundary condition: The first

row shows the singular value comparison for KL, DBO and DO methods. The values are

compared for three reduction orders, r = 5, 7 & 9. The evolution of the values of the modes

at the left stochastic boundary are compared in the second row for the three methods.
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Figure 17: Linear advection-diffusion equation (iii) Robin boundary condition: Error com-

parison for DBO and DO as compared with the KL solution. The global and boundary

error comparison are shown in (a) and (b) respectively. Lowest error is obtained using DBO

method for r = 9. L2-error in the third, sixth and ninth singular value is compared in (c)

for DO and DBO.

3.2.5 Burgers’ Equation

As a demonstration for the nonlinear one-dimensional equation, we consider the Burgers’

equation governed by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [0, 1] and t ∈ [0, tf ], (3.22)

u(x, 0;ω) = sin(2πx) + σx

d∑
i=1

√
λxiψi(x)ξi, x ∈ [0, 1], (3.23)

with Dirichlet boundary condition at x = 0 and Neumann boundary condition at x = 1.

Here, ν is taken to be 0.05. We impose random Dirichlet stochastic boundary at x = 0 given

by,

u(0, t;ω) = g4(t;ω).

Similar to the problem setup as the previous cases, the random process g4(t;ω) is taken as

a function of the eigenvectors and singular values of the squared exponential kernel. The
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temporal correlation length is taken to be 3. The boundary conditions are taken to be,

g4(t;ω) = − sin(2πt) + σt

d∑
i=1

√
λtiϕi(t)ξi.

Here, σt = 0.01. The eigenvectors and eigenvalues of the spatial squared exponential kernel

are used to determine the random initial conditions. The spatial correlation length, lx is

taken to be 3. The initial conditions are given by,

u(x, 0;ω) = sin(2πx) + σx

d∑
i=1

√
λxiψi(x)ξi.

The random space is taken to be d = 4 dimensional and σx = 0.005. For spatial discretization

of the domain, the spectral/hp element method is used with Ne = 101 and polynomial order

4. The 4 dimensional random space is discretized with the ME-PCM tensor product rule

[12, 48] with 1 element each containing 4 points in each random direction which give the

total samples to be s = 44 = 256. The fourth-order Runge-Kutta method is used for time

integration with ∆t = 2.5 × 10−4. We use the technique of switching time at ts = 0.3 to

initialize the spatial and stochastic modes. Although the switching time is used in cases

where the initial conditions are deterministic, in this case for r = 8, the singular values for

r > 6 have negligible values and give rise to computational issues for inversion of the Σ

matrix. The system is evolved till ts = 0.3 using PCM method to let the lower eigenvalues

gain energy. The computed KL modes and eigenvalues are used to initialize the DBO and

DO spatial and stochastic modes at this time step. The system is then numerically evolved

till tf = 5 using the KL, DBO and DO methods. The results for three reduction orders

r = 4, 6 & 8 are shown in Fig.(18-19). The comparison of singular values is shown in first

row of Fig.(18). The evolution of the modes at the stochastic boundary is shown in the

second row of Fig.(18). For lower reduction orders, i.e., r = 4, 6, the singular values and the

evolution of the boundary modes show deviation from the KL solution. This error can be

attributed to the unresolved modes in the solution. Although the random dimension is 4, the

system cannot be exactly represented by 5 modes, due to the non-linearity of the equation.

The global and boundary error in the solution are shown in Fig.(19a-b). We observe that as

the model reduction order is increased the error reduces for both DO and DBO. Since the
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solution cannot be represented exactly for r = 8, the KL and DBO show discrepancy in the

boundary error as seen in Fig.(19b).

3.2.6 2D Linear Advection-Diffusion Equation

The effect of stochastic boundary conditions is further demonstrated on a two dimensional

physical domain. We consider the linear advection-diffusion equation governed by:

∂T

∂t
+ (v · ∇)T =

1

RePr
∇2T. (3.24)

The velocity field v = (u, v) is obtained by solving the 2D incompressible Navier-Stokes

equation:
∂v

∂t
+ (v · ∇)v = −∇p+

1

Re
∇2v, (3.25)

where p is the pressure field, Re is the Reynolds number of the incompressible flow and Pr

is the Prandtl number. For this case, the value of the Reynolds number and Prandtl number

are taken to be Re = 3000 and Pr = 1/300 respectively. The schematic of the domain for

this problem is shown in Fig.(20). The length of the bottom boundary is L = 10. The height

of the domain is H = 5. The left and right boundary at x = −5 and x = 5 are taken to

be outflow boundaries, i.e.,
∂T

∂x
= 0. The velocity at the top inflow boundary is taken to

be (u, v) = (0,−(1 − x2/0.0625) exp(−x4/0.175
4
) + 0.01 sin(πx)). The incompressible flow

is solved using spectral/hp method with Ne = 4080 and polynomial order 5. The (u, v)

data from the incompressible solver is used for the solving Eq.(3.24). A stochastic Dirichlet

boundary is introduced at the bottom wall with the temperature profile given by,

T (x, y = 0, t;ω) = g5(x, t;ω).

The random boundary condition is taken as;

g5(x, t;ω) = 1 + σx

d∑
n=1

1

n3

1√
Lx

cos

(
nπx

Lx

)
sin

(
nπt

Lt

)
ξn,

here, Lx and Lt are taken to be 5 and σx = 0.05. The choice of the spatial modes depends

on the boundary at (x, y) = (−5, 0) and (5, 0). The spatial function cos
(
nπx
Lx

)
ensures

that the boundary at those points satisfy the Neumann boundary conditions imposed at the
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Figure 18: Burgers’ equation: The first row shows the singular value comparison for KL,

DBO and DO methods. The values are compared for three orders of reduction r = 4, 6 and

8. The evolution of the values of the modes at the left stochastic boundary are compared in

the second row for the three methods.
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Figure 19: Burgers’ equation: Error comparison for DBO and DO as compared with the KL

solution. The global error i.e., Eg and the boundary error i.e., Eb are shown in (a) and (b)

respectively.

vertical outflow boundaries. The random space is taken to be d = 6 dimensional. The 6

dimensional random space is discretized with the ME-PCM tensor product rule [12, 48] with

1 element containing 3 points in each random direction which gives the total samples to be

s = 36 = 729. All the other boundaries are taken to be wall boundaries. The temperature

for all the boundaries is set to be T = 0. The fourth order Runge-Kutta method is used for

time integration with ∆t = 5 × 10−4. The system is evolved for tf = 11 Time Units and

the ts = 1, is the switching time. Since, the initial conditions at t = 0 are deterministic and

the stochasticity has not evolved in the system, the code is evolved till the switching time

with the ME-PCM samples and the KL decomposition of the solution at t = ts is taken as

the initial condition for the DBO and DO solver. The singular values and the error of the

solution are compared with the solution obtained by solving for the ME-PCM samples. The

singular value comparison for three different reduction orders i.e., r = 3, 5 & 7 is shown in

Fig.(21). The global and boundary errors for this case are plotted in Fig.(23). We observe

that the errors decrease as the reduction order is increased. As can be seen from the global
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and boundary errors for r = 9, DBO gives better accuracy than the DO due to the better

condition number of the Σ inversion. We also observe that the DBO boundary error for

r = 9 is equal to the KL error. The evolution of the flow field for t = 2.5, 5, 7.5, 10 of the

tenth sample of the ME-PCM solution and the evolution of the spatial modes of the DBO

solution are shown in Fig.(24). The values of the boundary modes for different time instances

are represented in a surface plot in Fig.(22). Visual comparison shows that there is a good

match between the KL and the DBO solution.

3.2.7 2D Nonlinear Advection-Diffusion Equation

We lastly demonstrate the effect of stochastic boundary conditions on a two dimensional

nonlinear equation. We consider the 2D advection-diffusion equation governed by:

∂T

∂t
+ (v · ∇)T =

1

RePr
∇2T. (3.26)

The velocity field v = (u, v) is obtained by solving the 2D incompressible Navier-Stokes

equation i.e, Eq.(3.25). The Prandtl number for this case however, is taken to be temperature

dependent: Pr = f(T ), which makes the governing equation weakly nonlinear. Here, we

take Prandtl number to be Pr = 1
300(α+βT )

. For this case, α = 1 and β = 0.9. The Reynolds

number is Re = 3000. The schematic of the problem is same as the previous case. The

bottom boundary is taken to be Dirichlet boundary and the temperature profile at this

boundary is given by,

T (x, y = 0;ω) = g6(x;ω)

g6(x;ω) = 1 + σx

d∑
n=1

1

n

1√
Lx

cos

(
nπx

Lx

)
ξn,

here, Lx and Lt are taken to be 5 and σx = 0.5. The Dirichlet boundary conditions for this

case are taken to be time-independent. The boundaries at x = −5 and x = 5 are taken to

be outflow boundaries i.e.,
∂T

∂x
= 0. The choice of spatial modes is made to ensure that the

points (x, y) = (−5, 0) and (5, 0) satisfy the Neumann boundary condition imposed at the

outflow boundary. The random space is taken to d = 6. The samples for the random space

are same as those taken in the linear case. The inflow condition at y = 5 is the same as the
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Figure 20: 2D linear case: The figure shows the computational domain for the Nektar

computations. The Nektar simulations are used to compute the velocity field used to solver

for the temperature equations using the DBO and DO methods. The dotted lines shows the

computational domain used for the DBO computations. An inflow boundary condition is

enforced at y = 5. Outflow boundary is enforced at x = 5 and x = −5. All other boundaries

are taken to be wall boundary (u, v = 0).
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Figure 21: 2D linear case: The singular value comparison for KL, DBO and DO methods is

shown. The values are compared for three orders of reduction r = 3, 5 & 7.
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Figure 22: 2D linear case: The evolution of the values of the modes at the stochastic Dirichlet

boundary at y = 0 are compared for DBO and KL.
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Figure 24: 2D linear case: Evolution of the first three spatial modes is shown for t =

2.5, 5, 7.5, 10. The first column shows the solution obtained for different time snapshots for

the tenth sample. The next three columns show the evolution of the spatial modes as the

flow field evolves.
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previous case. The incompressible flow is solved using spectral/hp method with Ne = 4080

and polynomial order 5. The (u, v) data obtained from the incompressible solver is used for

solving Eq.(3.26). All the other boundaries are taken to be wall boundaries. The temperature

of all the other boundaries is set to T = 0. The fourth-order Runge-Kutta scheme is used

for time integration with ∆t = 5 × 10−4. The system is evolved for tf = 11 Time Units

and the ts is the switching time. Since the initial conditions at t = 0 are deterministic

and the stochasticity has not evolved in the system, the code is evolved till switching time

with ME-PCM samples and the KL decomposition at t = ts is taken as the initial condition

for DBO and DO modes. The singular values for this case are compared in Fig.(26). The

singular values are compared for three different reduction orders, r = 5, 7 and 9. The error

comparison for this case is plotted in Fig.(25). We observe that the errors improve for both

DBO and DO as the order of reduction is increased. For the linear case, when d = 6 we

observe that r = 7 can define the system exactly. However for the nonlinear case, we observe

that modes 8 and 9 also have non-negligible singular values and that these values pick up

energy as the system is evolved. The values of the boundary modes are for different time

instances are shown in a surface plot in Fig.(27). The DBO shows a good match with the

KL solution for the boundary modes.
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Figure 25: 2D nonlinear case: Error comparison for DBO and DO as compared with the KL

solution. The figure on the left shows the comparison in the Eg, i.e., global error. The figure

on the right shows the comparison for the Eb, i.e., boundary error.
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Figure 26: 2D nonlinear case: The singular value comparison for KL, DBO and DO methods

is shown. The values are compared for three orders of reduction r = 5, 7 and 9
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Figure 27: 2D nonlinear case: The evolution of the values of the modes for the stochastic

Dirichlet boundary at y = 0 are compared for DBO and KL.
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4.0 Application of Time-dependent Basis for

Solving Deterministic PDEs

4.1 Introduction

The choice of basis is a fundamental decision in the representation of complex dynamical

systems in the discrete numerical format. Partial differential equations (PDEs) defining the

physical world systems can be expressed as a low dimensional encoding by exploiting the

correlations in the complex dynamics and flow evolution. Using these correlations we can

construct an optimal reduced order basis which is uniquely defined for the PDE we wish to

solve. This perhaps, is a generalizable way to beat the ‘curse of dimensionality ’(exponential

increase in computational cost with dimensions) for high dimensional PDEs. The goal of

these reduced order models is two-fold: simplicity of representations and faster and cheaper

computations. Proper Orthogonal Decomposition (POD) is a seminal technique in this area

which was developed to analyse turbulent flows and obtain a low order representation which

seeks to capture maximum energy-ranked modes of the system [49, 21, 22, 23]. The method

consists of an offline computations stage, where the covariance matrix of the DNS snapshots

is computed and the basis are extracted by eigenvector decomposition. During the online

stage the evolution of the flow-physics is computed by performing a Galerkin projection

of the basis on the model to obtain the time dependent coefficients. The POD technique

has found applications in image processing, extracting coherent structure in turbulence [50],

bifurcation analysis [51], flow control [52, 53] and complex geometry flows [54]. The POD

method belongs to a larger class of projection based-techniques [52, 55] and incurs a high I/O

storage cost and computational cost in generation of representation basis. Besides the defined

basis are restricted by the snapshots of the solution and find it difficult to extrapolate the

solution to different operating conditions (eg., Reynolds number, Mach number) and long

time integration. Other techniques have been developed to overcome the aforementioned

limitations: Least squares Petrov-galerkin [56], nonlinear model reduction techniques [57, 58],

Koopman operators [59, 60, 61, 62] and Dynamic mode decomposition [24, 27].
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Recently developments in area of deep neural networks (DNNs) for extracting low di-

mensional feature space has found applications in solving PDEs. The DNNs can be thought

of as non-intrusive nonlinear reduced basis obtained through training the hyper-parameters

for a particular dataset. Recent works include physics informed neural networks (PINNs)

[63, 64, 65], DeepONet [66, 67], Deep Galerkin method (DGM) [68], autoencoders [69, 70, 71,

72, 73] which can be expressed as nonlinear extension of POD/SVD [74], Visual Interaction

Networks [75], multi-layer convolution framework [76, 77], latent space physics [78]. The

goal of the aforementioned techniques is to generate nonlinear representation functions for

the PDEs by observing a series of snapshots of the evolution of the flow and minimizing

the corresponding residual by computing the hyper-parameters of the neurons. As these

techniques are highly data driven, they suffer from data generation cost and storage issues

especially for high dimensional PDEs. Since these basis are static, they also suffer from the

inability to represent transient dynamics in the flow.

Most reduced order models aim at finding a separation of variables form of the primary

variable given by, V (x, t) = αi(t)Φi(x), where V (x, t) denotes the primary variable, αi(t)

represents the time-dependent coefficients and Φi(x) are the low dimensional basis obtained

from the offline computations of snapshots. In this work, we seek to find time-dependent

reduced basis of the form Φi(x, t). This allows the basis to “chase ”the solution wherever it

evolves and is useful in capturing transient dynamics. The concept of time-dependent basis

is not new and has been developed in the context of uncertainty quantification [1, 79] for

fluid flows. The method has previously existed in quantum mechanics [35], chemistry [36],

dynamical low rank approximations [37] and dynamical tensor approximations [80]. The

imposed conditions of orthonormality and dynamic orthogonality on the spatial basis need

not be unique. Variants of the above method are bi-orthogonal decomposition (BO) [2, 32],

hybrid BO-DO [40], dynamically bi-orthonormal (DBO) [46, 81]. The time-dependent basis

(TDB) techniques have been adopted to problems in transient dynamics [33, 39, 82, 38], flow

control[83], extreme events [84], computing sensitivities [85], skeletal model reduction [86],

passive and reactive species transport [47], data compression in turbulent flows [87]. The

method shows a few similarities to the evolutional DNN approach of setting the parameters

for t = 0 and evolving them sequentially as time progresses [88, 89]. The dynamically bi-
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orthonormal decomposition has a form which can be readily expanded to higher dimensions.

The motivation of this chapter is to introduce the application of time-dependent basis for (i)

deterministic PDEs (ii) derive the evolution equations of the one dimensional basis in each

spatial directions and (iii) demonstrate the structure resolving capabilities of the method for

incompressible and compressible Navier-Stokes equations.

4.2 Methodology

4.2.1 Definitions and notation

We consider a partial differential equation given by,

∂V (x, t)

∂t
=M(V,x, t), x ∈ D, t > 0, (4.1)

V (x, t0) = V0(x), t = 0. (4.2)

Here M is in general, a linear or non-linear differential operator, D denotes the domain,

x = {x1, x2, ..., xd} are d-dimensional independent variables. V0(x) represents the initial

condition for the variable V (x, t). We introduce the L2 inner-product norm as,

〈V (x), U(x)〉x =

∫
xd

· · ·
∫
x1

V (x)U(x)ρ(x1) · · · ρ(xd)dx1 · · · dxd,

‖U‖x = 〈U,U〉1/2 .

Here, ρ(x1), · · · ρ(xd) are the density weights in each direction. Similarly, an inner product

for xn is given by,

〈V (x), U(x)〉xn =

∫
xn

V (x)U(x)ρ(xn)dxn,

‖u‖xn = 〈U,U〉1/2xn
.
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We also introduce the following inner-product notation for inner-product with respect to all

spatial dimensions except xn as,

〈V (x), U(x)〉xrxn =∫
xd

· · ·
∫
xn+1

∫
xn−1

· · ·
∫
x1

V (x)U(x)ρ(x1) · · · ρ(xn−1)ρ(xn+1) · · · ρ(xd)dx1 · · · dxn−1dxn+1 · · · dxd

4.2.2 Time Dependent Basis

We decompose a given variable V (x, t) as a set of time-dependent orthonormal basis

(TDB) according to the equation,

V (x, t) =

rd∑
id=1

· · ·
r2∑
i2=1

r1∑
i1=1

Ti1,i2,...,id
(t)u

(1)
i1

(x1, t)u
(2)
i2

(x2, t) · · ·u(d)
id

(xd, t) + e(x, t) (4.3)

Here Ti1,i2,...,id
(t) ∈ Rr1×r2×···rd is a time-dependent core tensor and

U(n)(xn, t) = [u
(n)
1 (xn, t)|u(n)

2 (xn, t)| · · · |u(n)
rn (xn, t)] are the set of orthonormal modes in the

n-direction. e(x, t) is the error obtained due to the reduced order modeling approximation.

We define the unfolding of a tensor T ∈ Rr1×r2×···×rd along a direction n is a matrix T(n) ∈

Rrn×rn+1···rdr1···rn−1

4.2.3 Evolution Equations

We derive close form equation for the evolution of the core tensor and the orthonormal

modes in each direction. For simplicity, we derive the evolution equations for a three dimen-

sional field which can be easily extended to higher dimensions. The decomposition is given

by,

V (x, t) =

r3∑
i3=1

r2∑
i2=1

r1∑
i1=1

Ti1,i2,i3
(t)u

(1)
i1

(x1, t)u
(2)
i2

(x2, t)u
(3)
i3

(x3, t)

The orthornormality condition of the modes is enforced through the inner product of the

modes, 〈
u

(n)
i (xn, t), u

(n)
j (xn, t)

〉
= δij, i, j = 1, 2, · · · rn, n = 1, 2, · · · d. (4.4)
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For the purpose of this section d = 3. To obtain the evolution equations for the time-

dependent bases we take a time derivative of the decomposition as,

V̇ (x, t) =Ṫi1,i2,i3
u

(1)
i1
u

(2)
i2
u

(3)
i3

+ Ti1,i2,i3
u̇

(1)
i1
u

(2)
i2
u

(3)
i3

+ Ti1,i2,i3
u

(1)
i1
u̇

(2)
i2
u

(3)
i3

+ Ti1,i2,i3
u

(1)
i1
u

(2)
i2
u̇

(3)
i3

(4.5)

Taking time derivative of the orthonormality condition,

d

dt

〈
u

(n)
i (xn, t), u

(n)
j (xn, t)

〉
=
〈
u̇

(n)
i (xn, t), u

(n)
j (xn, t)

〉
+
〈
u

(n)
i (xn, t), u̇

(n)
j (xn, t)

〉
= 0

Let φ
(n)
ij =

〈
u̇

(n)
i (xn, t), u

(n)
j (xn, t)

〉
, where φ(t)(n) ∈ Rrn×rn . We can see that φ(t)(n) is a skew-

symmetric matrix i.e., φij(t)
(n) = −φji(t)(n). To obtain the evolution equation for the core

tensor, we take inner product
〈
•, u(1)

i′1
u

(2)

i′2
u

(3)

i′3

〉
x

on Eq.(4.5) and using the orthonormality

condition of the modes we obtain,

Ṫi′1,i
′
2,i
′
3

=
〈
V̇ , u

(1)

i′1
u

(2)

i′2
u

(3)

i′3

〉
x
−Ti1,i′2,i

′
3
φ

(1)

i1i′1
−Ti′1,i2,i

′
3
φ

(2)

i2i′2
−Ti′1,i

′
2,i3
φ

(3)

i3i′3
. (4.6)

To obtain the evolution of the orthonormal basis u
(1)
i1

, we take the inner product
〈
•, u(2)

i′2
u

(3)

i′3

〉
xrx1

of Eq.(4.5)〈
V̇ , u

(2)

i′2
u

(3)

i′3

〉
xrx1

= Ṫi1,i′2,i
′
3
u

(1)
i1

+ Ti1,i′2,i
′
3
u̇

(1)
i1

+ Ti1,i2,i′3
u

(1)
i1
φ

(2)

i2i′2
+ Ti1,i′2,i3

u
(1)
i1
φ

(3)

i3i′3
.

Substituting the value of Ṫi1,i′2,i
′
3

from Eq.(4.6) in the above equation,〈
V̇ , u

(2)

i′2
u

(3)

i′3

〉
xrx1

=
[〈
V̇ , u

(1)
i1
u

(2)

i′2
u

(3)

i′3

〉
x
−Tj1,i′2,i

′
3
φ

(1)
j1i1
−Ti1,i2,i′3

φ
(2)

i2i′2
−Ti1,i′2,i3

φ
(3)

i3i′3

]
u

(1)
i1

+

Ti1,i′2,i
′
3
u̇

(1)
i1

+ Ti1,i2,i′3
u

(2)
i1
φ

(2)

i2i′2
+ Ti1,i′2,i3

u
(3)
i1
φ

(3)

i3i′3

The equation becomes,〈
V̇ , u

(2)

i′2
u

(3)

i′3

〉
xrx1

=
[〈
V̇ , u

(1)
i1
u

(2)

i′2
u

(3)

i′3

〉
x
−Tj1,i′2,i

′
3
φ

(1)
j1i1

]
u

(1)
i1

+ Ti1,i′2,i
′
3
u̇

(1)
i1

Rearranging the above terms we obtain,

Ti1,i′2,i
′
3
u̇

(1)
i1

=
〈
V̇ , u

(2)

i′2
u

(3)

i′3

〉
xrx1
− u(1)

i1

[〈
V̇ , u

(1)
i1
u

(2)

i′2
u

(3)

i′3

〉
x
−Tj1,i′2,i

′
3
φ

(1)
j1i1

]
The above equation can be considered as an under-determined systems with respect to the

unknowns u̇
(1)
i1

if r1 > r2r3 and it could be an over-determined system otherwise. We find the
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least squares solution to the above problem by multiplying the above equation by TT
(1) and

computing the pesudo-inverse term given by T(1)† = TT
(1)

(
T(1)T

T
(1)

)−1

. Thus the evolution

equation for the orthonormal modes u
(1)
i1

is given by,

u̇
(1)
i1

=

[〈
V̇ , u

(2)

i′2
u

(3)

i′3

〉
xrx1
− u(1)

i1

〈
V̇ , u

(1)
i1
u

(2)

i′2
u

(3)

i′3

〉
x

]
T

(1)†
i1,i′2i

′
3

+ u
(1)
i1
φ

(1)

i′1i1
.

Similarly, the evolution equations for u
(2)
i2

and u
(3)
i3

are given by,

u̇
(2)
i2

=

[〈
V̇ , u

(1)

i′1
u

(3)

i′3

〉
xrx2
− u(2)

i2

〈
V̇ , u

(1)
i1
u

(2)

i′2
u

(3)

i′3

〉
x

]
T

(2)†
i2,i′1i

′
3

+ u
(2)
i2
φ

(2)

i′2i2
.

u̇
(3)
i3

=

[〈
V̇ , u

(1)

i′1
u

(2)

i′2

〉
xrx3
− u(3)

i3

〈
V̇ , u

(1)
i1
u

(2)

i′2
u

(3)

i′3

〉
x

]
T

(3)†
i3,i′1i

′
2

+ u
(3)
i3
φ

(3)

i′3i3
.

4.3 Variational Principle

It is shown in [47, 81] that the evolution equations for time dependent modes for reduced

order modeling of stochastic fields in uncertainty quantification and species concentration

in passive/reactive transport equations are obtained as optimal conditions of a variational

principle. In this section we formulate the variational principle for the evolution of the time

dependent basis for a n-dimensional tensor. The variational principle for the time dependent

basis seeks to minimize the functional:

F (u̇
(1)
i1
, u̇

(2)
i2
, · · · , u̇(n)

in
, Ṫi1,i2,...,in) =

∥∥∥∥ ddt (u̇(1)
i1
, u̇

(2)
i2
, · · · , u̇(n)

in
, Ṫi1,i2,...,in

)
−M

∥∥∥∥
F

,

subject to the orthonormality conditions of the bases
〈
u

(n)
i (xn, t), u

(n)
j (xn, t)

〉
= δij. Here,

M represents the linear/nonlinear differential operator. Simply put, the variational principle

seeks to minimize the distance between the time derivative of the time dependent basis de-

composition and the right hand size of the partial differential equation by optimally updating

the bases and the core tensor.
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5.0 Demonstration Cases: Time-dependent Basis

5.1 2D Linear Advection Diffusion Equation

This case demonstrates the application of the TDB method for solving linear partial dif-

ferential equations and the computational speed up obtained using this method as compared

to the evolution of the DNS system.

5.1.1 Problem Statement

A periodic two dimensional domain is considered with Lx1 = Lx2 = 2π. V (x1, x2, t) is a

scalar whose evolution is given by the linear advection diffusion equation,

∂V

∂t
+ c1

∂V

∂x1

+ c2
∂V

∂x2

= ν

(
∂2V

∂x2
1

+
∂2V

∂x2
2

)
, x1, x2 ∈ [0, 2π], t ∈ [0, Tf ], (5.1)

where c1 and c1 denote the velocities in the x1- and x2-directions respectively. These velocities

are taken to be constant and c1 = 0.5, c2 = 1.0. The diffusion coefficient is denoted by ν

and we take the value to be 0.01. The initial condition for the scalar V (x1, x2, t) for which

the equation is solved is given by,

V (x1, x2, t = 0) = exp(− sin(x1)3 cos(2x2)3). (5.2)
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5.1.2 Evolution Equations Using The Time Dependent Basis Formulation

For the derivation of the evolution equations of the modes, we consider the time depen-

dent basis decomposition,

V (x1, x2, t) =
r∑
i=1

r∑
j=1

u
(1)
i (x1, t) Tij(t) u

(2)
j (x2, t),+ε,

where u
(1)
i (x1, t), u

(2)
j (x2, t) are the time dependent orthonormal modes in the x1 and x2

direction respectively, r denotes the reduction order and ε represents the residual error due

to the reduction. T is a matrix which denotes the factor of the covariance matrix. For easy

readability and sake of brevity in notation for the subsequent section, we denote u
(1)
i (x1, t) as

u
(1)
i , u

(2)
j (x2, t) as u

(2)
j and Tij(t) as Tij. Thus, we can write the low rank form of Vr(x1, x2, t)

as,

Vr(x1, x2, t) =
r∑
i=1

r∑
j=1

u
(1)
i (x1, t) Tij(t) u

(2)
j (x2, t). (5.3)

To obtain the evolution equations for each of the components of the decomposition, we

substitute Eq.(5.3) in Eq.(5.1) to obtain,

∂

∂t

(
u

(1)
i Tiju

(2)
j

)
= −c1

∂u
(1)
i

∂x1

Tiju
(2)
j − c2u

(1)
i Tij

∂u
(2)
j

∂x2

+ ν

(
∂2u

(1)
i

∂x2
1

Tiju
(2)
j + u

(1)
i Tij

∂2u
(2)
j

∂x2
2

)
.

(5.4)

The u(1) and u(2) modes are orthonormal and dynamically orthogonal i.e.,

〈
u

(1)
i , u

(1)
j

〉
= δij,

〈
∂u

(1)
i

∂t
, u

(1)
j

〉
= 0, (5.5)

〈
u

(2)
i , u

(2)
j

〉
= δij,

〈
∂u

(2)
i

∂t
, u

(2)
j

〉
= 0. (5.6)

Remark 5.1.1.
〈
u̇

(2)
i , u

(2)
j

〉
is a skew symmetric matrix. It has been shown in [47], that

any choice of skew symmetric matrix leads to an equivalent low rank-approximation of the

solution. Without the loss of generality, we assume the matrix to be a zero matrix.
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Taking inner product of Eq.(5.4) with u
(1)
k and using the orthonormality and dynamic

orthogonality condition from Eq.(5.5) we obtain,

dTkj

dt
u

(2)
j + Tkj

∂u
(2)
j

∂t
= −c1

〈
u

(1)
k ,

∂u
(1)
i

∂x1

〉
Tiju

(2)
j − c2Tkj

∂u
(2)
j

∂x2

+

ν

(〈
u

(1)
k ,

∂2u
(1)
i

∂x2
1

〉
Tiju

(2)
j + Tkj

∂2u
(2)
j

∂x2
2

)
. (5.7)

To obtain the evolution equation for Tij, we take an inner product of the above equation

with u
(2)
m and apply the orthonormality and dynamic orthogonality condition from Eq.(5.6).

Thus, we obtain,

dTij

dt
= −c1

〈
u

(1)
i ,

∂u
(1)
k

∂x1

〉
Tkj − c2Tik

〈
∂u

(2)
k

∂x2

, u
(2)
j

〉
+

ν

(〈
u

(1)
i ,

∂2u
(1)
k

∂x2
1

〉
Tkj + Tik

〈
∂2u

(2)
k

∂x2
2

, u
(2)
j

〉)
. (5.8)

To obtain the evolution equation of u(2) modes, we substitute the value of Ṫ from Eq.(5.8)

in Eq.(5.7). Thus, we obtain,

Tkj

∂u
(2)
j

∂t
= −c1

〈
u

(1)
k ,

∂u
(1)
i

∂x1

〉
Tiju

(2)
j − c2Tkj

∂u
(2)
j

∂x2

+ ν

(〈
u

(1)
k ,

∂2u
(1)
i

∂x2
1

〉
Tiju

(2)
j + Tkj

∂2u
(2)
j

∂x2
2

)

+ c1

〈
u

(1)
k ,

∂u
(1)
m

∂x1

〉
Tmju

(2)
j + c2Tki

〈
∂u

(2)
i

∂x2

, u
(2)
j

〉
u

(2)
j

− ν

(〈
u

(1)
k ,

∂2u
(1)
m

∂x2
1

〉
Tmju

(2)
j + Tkm

〈
∂2u

(2)
m

∂x2
2

, u
(2)
j

〉
u

(2)
j

)
. (5.9)

We observe that term 1 and term 5 can be cancelled as well as term 3 and term 7. Simplifying

the above equation and multiplying the equation by T−1
kj on both sides we obtain,

∂u
(2)
i

∂t
= −c2

[
∂u

(2)
i

∂x2

−

〈
∂u

(2)
i

∂x2

, u
(2)
j

〉
u

(2)
j

]
+ ν

[
∂2u

(2)
i

∂x2
2

−

〈
∂2u

(2)
i

∂x2
2

, u
(2)
j

〉
u

(2)
j

]
. (5.10)
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Now to obtain the evolution equation for u(1) modes, we take inner product of Eq.(5.4) with

u
(2)
k and using the orthonormality and dynamic orthogonality condition from Eq.(5.6) we

obtain,

∂u
(1)
i

∂t
Tik + u

(1)
i

dTik

dt
= −c1

∂u
(1)
i

∂x1

Tik − c2u
(1)
i Tij

〈
∂u

(2)
j

∂x2

, u
(2)
k

〉

+ ν

(
∂2u

(1)
i

∂x2
1

Tik + u
(1)
i Tij

〈
∂2u

(1)
j

∂x2
2

, u
(2)
k

〉)
.

We sustitute the value of Ṫ from Eq.(5.8) in the above equation. Thus, we obtain,

∂u
(1)
i

∂t
Tik = −c1

∂u
(1)
i

∂x1

Tik − c2u
(1)
i Tij

〈
∂u

(2)
j

∂x2

, u
(2)
k

〉

+ ν

(
∂2u

(1)
i

∂x2
1

Tik + u
(1)
i Tij

〈
∂2u

(1)
j

∂x2
2

, u
(2)
k

〉)

+ c1u
(1)
i

〈
u

(1)
i ,

∂u
(1)
j

∂x1

〉
Tjk + c2u

(1)
i Tij

〈
∂u

(2)
j

∂x2

, u
(2)
k

〉

− ν

(
u

(1)
i

〈
u

(1)
i ,

∂2u
(1)
j

∂x2
1

〉
Tjk + u

(1)
i Tij

〈
∂2u

(2)
j

∂x2
2

, u
(2)
k

〉)
.

We observe that term 2 and term 6 can be cancelled as well as term 4 and term 8. Simplifying

the above equation and multiplying the equation by T−1
ij on both sides we obtain,

∂u
(1)
i

∂t
= −c1

[
∂u

(1)
i

∂x1

− u(1)
j

〈
u

(1)
j ,

∂u
(1)
i

∂x1

〉]
+ ν

[
∂2u

(1)
i

∂x2
1

− u(1)
j

〈
u

(1)
j ,

∂2u
(1)
i

∂x2
1

〉]
. (5.11)

Thus, Eq.(5.8), Eq.(5.11) and Eq.(5.10) describe the evolution equations of the modes and

the factor of covariance matrix.
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Error r=3

Error r=5

Error r=7

Figure 28: The evolution of the L2-error is plotted for three different reduction orders:

r = 3, 5 and 7. We observe that as the reduction order increases and as the modes capture

lower singular values, the L2 error reduces.

5.1.3 Computational Details

We discretize the domain using Fourier spectral methods with N = 256. The system is

evolved using the evolution equations for the time dependent basis till Tf = 10. The fourth

order Runge-Kutta method is used for time integration with ∆t = 0.0005. The results of

the TDB method are compared with the DNS solution for three different reduction orders

r = 3, 5, 7. Fig.(28) shows the evolution of L2 error for the three different reduction orders.

We observe that as the reduction order is increased i.e., the modes capture lower singular

values, the L2 error decreases. Fig.(29) shows the evolution of the modes and the flow field for

two different time step t = 5 and 10. The first column shows the evolution of the flow field.

The second and the third column show the evolution of the x1 and x2 modes respectively.

We observe that as the flow field evolves, the modes adapt to the solution as well.
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(a)

(b)

Figure 29: The above figure show the evolution of the flow field and the evolution of the x1

and x2 modes at t = 5 and 10.
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5.1.4 Computational Cost

The computational cost associated with solving the evolution of T i.e., Eq.(5.8) is neg-

ligible as it as r × r matrix (where r is the order of reduction). As r � N and the right

hand side of Eq.(5.8) consists of computing matrices of size r × r, this equation is compu-

tationally inexpensive. The equations for the evolution of the time dependent modes i.e,

Eq.(5.10,5.11) consist of solving one dimensional partial differential equations of the size

N × r. This compressed form of the equations offers a massive computational speed-up as

compared to the DNS solver which computes the solution of the partial differential equation

of size N × N . Table.(??) shows a comparison of the computational cost for the TDB and

DNS solutions. We observe that the solution obtained from the evolution of the TDB modes

is computationally cheaper than the DNS solution for a linear equation. The computations

were performed on a Apple M1 processor.

The compressed form of the solution at every time step also offers memory storage advan-

tages. The compressed form can be used to obtain the solution for entire flow-field without

incurring the full storage cost. Considering N � r, the compression ratio can be given

by CR ≈ N/r. These computational and storage savings can be important for high per-

formance computing problems where the bottle neck is generally memory limitations and

computational cost of solving for the full domain.

5.2 Computational Cost: 2D Nonlinear Advection Diffusion
Reaction Equation

In this case, we discuss the application of the TDB method for solving nonlinear partial

differential equations and the challenges associated with the computational cost of nonlinear

terms.
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Table 3: The table shows the computational cost for the TDB and the DNS solutions. We

see that the solution obtained from the evolution of the TDB modes is computationally

cheaper than the DNS solution for a linear equation. The computational time for each of

the simulations is evaluated on an Apple M1 processor.

Simulation Computational cost

TDB N = 256, r = 3 1483.7 iter/sec

TDB N = 256, r = 5 1419.4 iter/sec

TDB N = 256, r = 7 1217.3 iter/sec

DNS 256× 256 85.7 iter/sec

TDB N = 512, r = 3 1009 iter/sec

TDB N = 512, r = 5 898.9 iter/sec

TDB N = 512, r = 7 751.9 iter/sec

DNS 512× 512 19.6 iter/sec
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5.2.1 Problem Statement

Adding a nonlinear reaction terms to Eq.(5.1) we obtain the following equation,

∂V

∂t
+c1

∂V

∂x1

+c2
∂V

∂x2

= ν

(
∂2V

∂x2
1

+
∂2V

∂x2
2

)
+S(V ), x1, x2 ∈ [0, 2π], t ∈ [0, Tf ], (5.12)

where S(V, t) is a time dependent nonlinear reaction term. The S(V ) term acts as a forcing

term for this equation. For the ease of notation, let us consider,

L(V ) = −c1
∂V

∂x1

− c2
∂V

∂x2

+ ν

(
∂2V

∂x2
1

+
∂2V

∂x2
2

)
,

=⇒ ∂V

∂t
= L(V ) + S(V ), (5.13)

where L(V ) is the linear term for the above equation.

5.2.2 Evolution Equations

The derivation of the evolution equation for the linear terms L(V ) is similar to the

previous section. Let us consider the nonlinear term S(V ) which is a time dependent function

of the scalar V (x1, x2, t) to take the quadratic form i.e., S(V ) = f(V 2). The quadratic

nonlinearity is a part of the Navier-Stokes equation through the term: vi
∂vi
∂xj

. Considering

a discretized form of V (x1, x2, t) at a given time instant, we obtain a matrix VN×N . Where

N represents the number of discretized points in the x1- and x2- directions of the domain.

The f(V2) term now represents a Hadamard product (element-wise multiplication) of the

matrix V with itself. Due to the Hadamard product the rank of the nonlinear term changes.

rank(V2) ≤ rank(V)rank(V)

This expansion/contraction in the rank needs to be taken into account while computing the

evolution equations of the modes. Consider two square matrices A,B ∈ RN×N with the

singular value decompositions given by,

A = UAΣAVT
A, B = UBΣBVT

B.

Assuming a low rank representation of the matrices i.e., rA, rB < N , where rA is the low

rank of A and rB is the low rank of B. UA ∈ RN×rA ,UB ∈ RN×rB are the left eigenvectors
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of A and B respectively. VA ∈ RN×rA ,VB ∈ RN×rB are the right eigenvectors of A and B

respectively. ΣA ∈ RrA×rA ,ΣB ∈ RrB×rB represent the diagonal singular value matrix of A

and B respectively. The Hadamard product of two matrices can be written in the following

representation,

A ◦B =
(
UT

A �UT
B

)T
N×rArB

(ΣA ⊗ΣB)rArB×rArB
(
VT

A �VT
B

)
rArB×N

.

Here, ◦ represents the Hadamard product of two matrices, � represents the Khatri-Rao

product and ⊗ represents the Kronecker product. In case of rA � N, rB � N the equa-

tions can be computed in a low rank format or the compressed form. The size of the ma-

trices and the computational cost associated with computing the
(
UT

A �UT
B

)T
N×rArB

and(
VT

A �VT
B

)
rArB×N

can increase significantly for rArB > N . This cost increase in the low

rank form can exceed the cost of the DNS simulation.

Besides the computational cost associated with the nonlinear term, the low rank format for

other nonlinearities cannot be easily computed. Hence, for nonlinear simulations we com-

pute the equations in the decompressed form, wherein the right hand side of the equations

are computed pointwise at every grid point in the domain. This makes the computational

cost of the TDB simulations of nonlinear equations equivalent to the computational cost

of the DNS simulations. Effective techniques for cost reduction of the TDB simulations of

nonlinear equations will be explored in future work.

To compute the evolution equations of the nonlinear term, we substitue the Eq.(5.3) in the

nonlinear part of Eq.(5.13),

∂

∂t

(
u

(1)
i Tiju

(2)
j

)
= S(u

(1)
i (x1, t) Tij(t) u

(2)
j (x2, t)). (5.14)

In numerical computations, the reconstructed form of Vr(x1, x2, t) from the low rank form

is used to compute S(Vr). Taking inner product of the above equation (nonlinear terms)

with u
(1)
k and using the orthonormality and dynamic orthogonality condition from Eq.(5.5)

we obtain,

dTkj

dt
u

(2)
j + Tkj

∂u
(2)
j

∂t
=
〈
u

(1)
k , S(Vr)

〉
. (5.15)
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To obtain the nonlinear terms in the evolution equation of Tij we take an inner product

of the above equation wiht u
(2)
m and apply the orthonormality and dynamic orthogonality

condition from Eq.(5.6). Thus, we obtain,

dTij

dt
=
〈〈
u

(1)
i , S(Vr)

〉
, u

(2)
j

〉
. (5.16)

Rewriting Eq.(5.15) and substituting the value of Tkj from Eq.(5.16) we get,

∂u
(2)
j

∂t
=
〈
u

(1)
k , S(Vr)

〉
−
〈〈
u

(1)
k , S(Vr)

〉
, u

(2)
j

〉
u

(2)
j ,

∂u
(2)
j

∂t
=
(〈
u

(1)
k , S(Vr)

〉
−
〈〈
u

(1)
k , S(Vr)

〉
, u

(2)
j

〉
u

(2)
j

)
T−1
kj . (5.17)

To obtain evolution equation of u(1) modes, we take the inner product of Eq.(5.14) with u
(2)
k

and using the orthonormality and dynamic orthogonality condition from Eq.(5.6) we obtain,

∂u
(1)
i

∂t
Tik =

〈
S(Vr), u

(2)
k

〉
− u(1)

i

dTik

dt
.

Substituting the value of Tik in the baove equation we obtain

∂u
(1)
i

∂t
=
(〈
S(Vr), u

(2)
k

〉
− u(1)

i

〈〈
u

(1)
i , S(Vr)

〉
, u

(2)
k

〉)
T−1
ik . (5.18)

Thus, Eq.(5.16), Eq.(5.17) and Eq.(5.18) show the evolution of the nonlinear terms of the

linear advection diffusion equations for T, u(2), u(1) respectively.
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5.3 Vortex Dipole

In this case, we demonstrate the ability of the time-dependent basis for solving incom-

pressible Navier-Stokes equations and the property of the modes to adapt according to the

evolution of the flow-field. The case has been referred from [90]. We also demonstrate the

advantage of using time dependent basis over static basis obtained from Proper Orthogo-

nal decomposition (POD). Due to the localization of the vortices in the domain at a given

time instant, static basis need to observe the solution for all the time steps to obtain the

appropriate basis. Static basis find it difficult to extrapolate the solution based on a few

observations. The POD solution in this example is shown for two cases: (i) POD basis are

extracted from solution at a few time steps (ii) POD basis are extracted from solution at all

time steps. We also study the error convergence properties of the two methods with different

reduction orders.

5.3.1 Problem Statement

A periodic to dimensional domain is considered with Lx1 = Lx2 = 1. ω(x1, x2, t) is the

vorticity in the x3 direction and ψ(x1, x2, t) is the streamfunction whose evolution is given

by the vorticity-streamfunction equations,

∂ω

∂t
+ v1

∂ω

∂x1

+ v2
∂ω

∂x2

=
1

Re

(
∂2ω

∂x2
1

+
∂2ω

∂x2
2

)
,

∇2ψ = −ω.

Here, Re denotes the Reynolds number which is taken to be 2000. The streamfunction is

used to compute the velocities in the x1 and the x2- directions i.e., v1 and v2 using the

following equations,

v1 =
∂ψ

∂x2

, v2 = − ∂ψ
∂x1

.

We use the TDB formulation to solve for the vorticity equation using the decomposition,

ω(x1, x2, t) = u
(1)
i (x1, t)Tij(t)u

(2)
j (x2, t).
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5.3.2 Computational Details

At t = 0, we consider two vortices with Gaussian profile and opposite circulation. The

vorticity field at t = 0 is taken to be superposition of the two vortices given by,

ω(x1, x2, t = 0) =
Γ1

πr2
1

exp

(
−(x1 − 0.1)2 + (x2 − 0.47)2

r2
1

)
+

Γ2

πr2
2

exp

(
−(x1 − 0.1)2 + (x2 − 0.53)2

r2
2

)
.

Here we take, Γ1 = −Γ2 = −π/20, r2
1 = r2

2 = 1/1000. The vorticity at t = 0 is shown

in Fig.(30). We discretize the space with 256 Fourier spectral modes in both x1 and x2

directions. The fourth order Runge-Kutta method is used for evolving the system in time

with ∆t = 0.0005. The system is evolved till Tfinal = 11. For the TDB solution, the

system is evolved till Ti = 1 using the DNS evolution equations. We take the singular

value decomposition of the solution at t = Ti time instant and the modes are initialized

using the eigenvectors obtained from the SVD. Similarly the T matrix is initialized using

the singular values. For t > 1 the TDB formulation is used for the evolution of the vorticity.

The streamfunction at every step for both methods is computed by taking the inverse of the

Laplacian computed in the 2D Fourier transform space.

ψ̂ = −
(
∇2
)−1

ω̂

For the POD solution, the system is initialized for the coefficients of the POD modes at

Ti = 1 using the DNS solution. The POD modes are obtained by taking eigenvectors of

covariance matrix obtained by taking snapshots of the DNS solution till Tobserved at every

500th time step. The value of Tobserved taken for forming the POD modes affects the accuracy

of the solution. To demonstrate the effect of Tobserved on the solution, we take two cases: (i)

Tobserved = 5.5 (ii)Tobserved = 11. The POD modes for both the cases are shown in Fig.(31).

The first row shows the shape of the modes for Tobserved = 5.5. The second row shows the

shape of the modes for Tobserved = 11. The first column shows the mean of the snapshots

for the respective cases. Column 2,3 and 4 show the structure of the modes in order of

decreasing energy. The modes in row 2, can be seen to extend to more area as that case has

been exposed to more snapshots of the solution.
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Figure 30: The vorticity field at t = 0 is shown. The vortex centers lie at (0.1, 0.47) and

(0.1, 0.53). The vortices have equal and opposite strengths. This vortex dipole configuration

induces a velocity to the right on both the vortices and we will see them move to the right

as time evolves.

Figure 31: The figure shows the structure of the POD modes for the two cases. The first

row shows the shape of the modes for Tobserved = 5.5. The second row shows the shape of the

modes for Tobserved = 11. The first column shows the mean of the snapshots taken. Column

2,3 and 4 show the modes in the order of decreasing energy. We observe that the modes in

row 2, occupy more area as compared to the modes in row 1 due to the increase in the time

for which the solution is observed.
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The evolution of the vorticity flow field as time evolves is shown in Fig.(32) for the TBD

solution. The two vortices induces velocity in x1 direction on each other and the vortices

convect towards right as seen at t = 4, 6, 8, 10. Along with convection, we also observe that

the vortices diffuse as seen with the increasing area of the vortices and decreasing strength of

the vorticity field. Fig.(33) and Fig.(34) show the evolution of the vorticity solution with the

POD modes. The POD modes are constructed based on snapshots of a reference solution.

Since the snapshots of the reference solution are taken till Tobserved = 5.5 for Fig.(33), the

vortices in the figure show distortion for t > 6. Extrapolation of the solution is one of the

drawbacks of the POD method. Extrapolation and the localized nature of the solution cause

the flow field to incorrectly evolve beyond Tobserved.

(a) t = 4 (b) t = 6 (c) t = 8 (d) t = 10

Figure 32: The TDB evolution of the vortex dipole at t = 4, 6, 8, 10 is shown in the figure

above. We observe that the dipole convects to the right as time evolves. We also observe the

diffusion of the vortices as seen by the increase in the area of the vortices and the decreasing

strength of the vortices.

Fig.(35) shows the evolution of the first two modes time dependent modes at t =

2, 4, 6, 8, 10. The first row shows the evolution of the modes in the x1 direction. It is

observed that as the vortex convects to the right the localized mode convects to the right as

well. We also observe the decreasing strength of the vortices as seen in the reduction of the

amplitude of the first and second modes as time evolves. The second row show the evolution

of the modes in the x2 direction. We observe a change in the amplitude of the mode due to

diffusion as time progresses. Since, there is no drift of the vortices in the x2 direction, the

point of inflection of the modes stays constant at x2 = 0 for all times.
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(a) t = 4 (b) t = 6 (c) t = 8 (d) t = 10

Figure 33: The solution obtained from POD for the case where Tobserved = 5.5 is shown in

the figure above. Since, the POD modes were exposed to the evolution of the vortex till

t = 5.5, the solution till t = 6, is observed to be correct. However, the vortices for t = 8, 10

show distortion near x2 = 0.5.

(a) t = 4 (b) t = 6 (c) t = 8 (d) t = 10

Figure 34: The solution obtained from POD for the case where Tobserved = 11 is shown in

the figure above. In this case, since the POD modes were exposed to the evolution of the

vortex till t = 11, the solution is observed to match the DNS solution for all time steps. No

vortex distortion is observed.
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t=2

t=4

t=6

t=8
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Figure 35: Row one shows the evolution of the modes in the x1 direction. It is observed that

as time progressed the modes convect to the right. The second row shows the evolution of

the x2 modes for t = 2, 4, 6, 8, 10. It is observed that the modes in the x2 direction change

in amplitude as the diffusion causes the vortices to lose their strength and increase in area.

This change in the structure of the vortices is observed from the modes in the x2 direction.
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We perform the analysis of the time-dependent basis for three different reduction orders

r = 5, 10, 15, 20. The evolution of the error is plotted in Fig.(36) for both POD and TDB

solution. The figure on the left shows the comparison of error for TDB solution with the

POD case where Tobserved = 5.5. We observe that TDB solution has an overall lower error

as compared to POD. We also jump in the error beyond Tobserved. The solution is not able

to extrapolate the solution for t > 5.5. The figure on the right shows the error comparison

for Tobserved = 11. Since no extrapolation of the solution is performed the solution does not

show a sudden jump in the error. The TDB solution shows a lower error than the POD

solution for the same reduction order. For both the cases we observe that as the reduction

order increases, the error decreases.

r=5 TDB

r=5 POD

r=10 TDB

r=10 POD

r=15 TDB

r=15 POD

r=20 TDB

r=20 POD

(a) Tobserved = 5.5

r=5 TDB

r=5 POD

r=10 TDB

r=10 POD

r=15 TDB

r=15 POD

r=20 TDB

r=20 POD

(b) Tobserved = 11

Figure 36: The above figure shows the reduction error vs time for four different reduction

orders r = 5, 10, 15, 20. It is observed that as the reduction order increases the L2 error of

the solution decreases.

5.3.3 Asymmetric Vortex Dipole

In this case, we demonstrate the ability of the method for solving incompressible Navier-

Stokes equations and the property of the modes to adapt according to the evolution of the

flow-field. We also demonstrate the advantage of using time-dependent basis over static basis
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obtained from Proper Orthogonal Decomposition (POD). Due to the localized nature of the

vortices in the domain at any given time instant, static basis need to observe the solution

for all time steps to obtain the appropriate basis. Static basis are unable to extrapolate

the solution based on a few observations. The POD solution in this example is shown for

two cases: (i) POD basis are extracted form solution at a few time steps (ii) POD basis are

extracted from solution at all time steps. We also study the error convergence properties of

the two methods with different reduction orders.

5.3.4 Problem Statement

A periodic two dimensional domain is considered with Lx1 = Lx2 = 1. ω(x1, x2, t) is

the scalar vorticity field in the x3 direction and ψ(x1, x2, t, t) is the streamfunction whose

evolution is given by the vorticity-streamfunction equations,

∂ω

∂t
+ v1

∂ω

∂x1

+ v2
∂ω

∂x2

=
1

Re

(
∂2ω

∂x2
1

+
∂2ω

∂x2
2

)
∇2ψ = −ω

Here Re denotes the Reynolds number which is taken to be 2000. The streamfunction is

used to compute the velocities in the x1 and x2 directions i.e., v1 and v2 using the following

equations,

v1 =
∂ψ

∂x2

, v2 = − ∂ψ
∂x1

.

We use the TDB formulation to solve for the vorticity equation using the decomposition,

ω(x1, x2, t) = u
(1)
i (x1, t)Tij(t)u

(2)
j (x2, t).
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5.3.5 Computational Details

At t = 0, we consider two vortices with Gaussian vorticity profile and opposite circulation.

The vorticity at t = 0 is taken to be superposition of two vortices given by,

ω(x1, x2, t = 0) =
Γ1

πr2
1

exp

(
−(x1 − 0.1)2 + (x2 − 0.4)2

r2
1

)
+

Γ2

πr2
2

exp

(
−(x1 − 0.1)2 + (x2 − 0.6)2

r2
2

)
.

Here we take, Γ1 = −π/20, Γ2 = −1.1Γ1 r
2
1 = r2

2 = 1/1000. The strength of Γ2 is 1.1 times

in strength of Γ1 which induces asymmetry to the solution as the vortex dipole evolves. The

vorticity at t = 0 is shown in Fig.(37). We discretize the space with 256 Fourier spectral

modes in both x1 and x2 directions. The fourth order Runge-Kutta method is used for

evolving the system in time with ∆t = 0.0005. The system is evolved till Tfinal = 11. For

the TDB solution, we evolve the equations till Ti = 1 using the DNS evolution equations. At

t = Ti, the singular values decomposition of the DNS solution is taken and the eigenvectors

are used to initialize the TDB in the x1 and x2 direction. Similarly, the T matrix is initialized

using the singular values. For t > 1, the TDB formulation is used for the evolution of the

vorticity equation. The streamfunction at every step for both methods is computed by taking

the inverse of the Laplacian computed in the 2D Fourier transformed space,

ψ̂ = −
(
∇2
)−1

ω̂.

For the POD solution, the system is initialized for the coefficients of the POD modes at

Ti = 1 using the DNS solution. The POD modes are obtained by taking eigenvectors of

covariance matrix obtained by taking snapshots of the DNS solution till Tobserved at every

500th time step. The value of Tobserved taken for forming the POD modes for affects the

accuracy of the solution. To demonstrate the effect of Tobserved on the solution, we take two

cases: (i) Tobserved = 5.5 (ii) Tobserved = 11. The POD modes for both the cases are shown

in Fig.(38). The first row shows the shape of the modes for Tobserved = 5.5. The second row

shows the shape of the modes for Tobserved = 11. The first column shows the mean of the

snapshots for the respective cases. column 2,3 and 4 show the structure of the modes in order

of decreasing energy. The modes in row 2 can be seen to extend to more area as comapred

to the modes in row 1, since that has been exposed to more snapshots of the solution.
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Figure 37: The initial condition for the vorticity is shown in the figure above. The vortex

centers lie at (0.1, 0.47) and (0.1, 0.53). The vortex at the bottom has strength which is −1.1

times the strength of the vortex at the top. Due to this difference in the strength of the

vortices, we expect the evolution of the flow field to be asymmetric.

Figure 38: The figure shows the structure of the POD modes for the two cases. The first

row shows the shape of the modes for Tobserved = 5.5. The second row shows the shape of the

modes for Tobserved = 11. The first column shows the mean of the snapshots taken. Column

2,3 and 4 show the modes in the order of decreasing energy. We observe that the modes in

row 2, occupy more area as compared to the modes in row 1 due to the increase in the time

for which the solution is observed.
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The evolution of the vorticity flow field as time evolves is shown in Fig.(39) for the TDB

solution. The two vortices induce velocity in x1 direction on each other and the vortices

convect towards right as seen at t = 4, 6, 8, 10. Due to the unequal strength of the vortices

we also observe a drift of the vortices upwards. Along with convection, we also observe that

the vortices diffuse as seen with the increasing area of the vortices and decreasing strength of

the vorticity field. Fig.(40) and Fig.(41 show the evolution of the vorticity solution with the

POD modes. The POD modes are constructed based on snapshots of a reference solution.

Since the snapshots of the reference solution are taken till Tobserved = 5.5 for Fig.(40), the

vortices in the figure show distortion for t > 6. Extrapolation of the solution is one of the

drawbacks of the POD method. Extrapolation and the localized nature of the solution cause

the flow field to incorrectly evolve beyond Tobserved. Fig.(42) shows the evolution of the

(a) t = 4 (b) t = 6 (c) t = 8 (d) t = 10

Figure 39: The evolution of the flow field of the vortex dipole is shown in the figure above. We

observe that the dipole convects to the right as time evolves and diffuses. Due to asymmetry

in the strength of the vortices, we also observe an upwards drift of the vortices.

first two time dependent modes at t = 2, 4, 6, 8, 10. The first row shows the evolution of the

modes in the x1 direction. It is observed that as the vortex convects to the right the localized

time dependent mode convects to the right as well. We also observe the decreasing strength

of the vortices as seen in the reduction of the amplitude of the first and second modes as

time evolves. The second row shows the evolution of the modes in the x2 direction. We

observe a change in the amplitude of the modes due to diffusion as time progresses. Due to

unequal vortex strength we also observe a drift of the inflection point of the modes in the

positive x2 direction.
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(a) t = 4 (b) t = 6 (c) t = 8 (d) t = 10

Figure 40: The solution obtained from POD for the case where Tobserved = 5.5 is shown in

the figure above. Since, the POD modes were exposed to the evolution of the vortex till

t = 5.5, the solution till t = 6, is observed to be correct. However, the vortices for t = 8, 10

show distortion.

(a) t = 4 (b) t = 6 (c) t = 8 (d) t = 10

Figure 41: The solution obtained from POD for the case where Tobserved = 11 is shown in

the figure above. In this case, since the POD modes were exposed to the evolution of the

vortex till t = 11, the solution is observed to match the DNS solution for all time steps. No

vortex distortion is observed.
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Figure 42: The above figure shows the evolution of the first mode in the x1 and x2 direction

as time is evolved. As the vortex convects along the x1 direction we observe that the first

mode evolves along x1. We also observe the drift in the x2 direction due to unequal vortex

strength.

88



We perform the analysis of the time-dependent basis for three different reduction orders

r = 5, 10, 15, 20. The evolution of the error is plotted in Fig.(43) for both POD and TDB

solution. The figure on the left shows the comparison of error for TDB solution with the

POD case where Tobserved = 5.5. We observe that TDB solution has an overall lower error

as compared to POD. We also jump in the error beyond Tobserved. The solution is not able

to extrapolate the vorticity for t > 5.5. The figure on the right shows the error comparison

for Tobserved = 11. Since no extrapolation of the solution is performed the solution does not

show a sudden jump in the error. The TDB solution shows a lower error than the POD

solution for the same reduction order. For both the cases we observe that as the reduction

order increases, the error decreases.

r=5 TDB

r=5 POD

r=10 TDB

r=10 POD

r=15 TDB

r=15 POD

r=20 TDB

r=20 POD

(a) Tobserved = 5.5

r=5 TDB

r=5 POD

r=10 TDB

r=10 POD

r=15 TDB

r=15 POD

r=20 TDB

r=20 POD

(b) Tobserved = 11

Figure 43: The above figure shows the reduction error vs time for four different reduction

orders r = 5, 10, 15, 20. It is observed that as the reduction order increases the L2 error of

the solution decreases.

5.4 Compressible Flow Solver

In this section the capability of using time dependent basis is demonstrated for solving

compressible Navier-Stokes cases. In the first case, we solve for a two dimensional temporally
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evolving jet with periodic domain. The solutions obtained from the time dependent basis

are compared with the results obtained from direct numerical simulations. The errors for

different reduction orders are compared for both the time dependent basis and equivalent

DNS.

5.4.1 2D Temporally Evolving Jet

This case demonstrates the application of the DBO method for solving the two-dimensional

compressible Navier-Stokes equations for a temporally evolving jet. The schematic of the

problem is given in Fig.(44). The domain is considered to be periodic in both stream-wise

and cross-stream directions. The length of the domain is taken to be 2L and the height is

taken to be L.

The primary variables considered here are, density ρ(x1, x2, t), velocity vector v(x, t) =

Figure 44: The schematic of the temporally evolving jet is shown in the figure above. The

domain is considered periodic in both stream-wise and cross-stream directions.

[v1(x1, x2, t), v2(x1, x2, t)], pressure p(x1, x2, t), total energy Et(x1, x2, t) and temperature

T (x1, x2, t). The equations for the evolution of the variables are given by,

∂V

∂t
+
∂E

∂x1

+
∂F

∂x2

= 0, (5.19)
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where U,E,F are the vectors given by,

V =


ρ

ρv1

ρv2

Et

 ,E =


ρv1

ρv2
1 + p− τ11

ρv1v2 − τ12

(Et + p)v1 − v1τ11 − v2τ12 + q1

 ,F =


ρv2

ρv1v2 − τ12

ρv2
2 + p− τ22

(Et + p)v2 − v1τ12 − v2τ22 + q2

 .

Here Et is the total energy per unit volume and e is the internal energy per unit mass. τij

represents the components of viscous stress tensor and qi are the heat flux vectors. Further

details about the computations and initial conditions are given in Appendix E.

The time dependent basis decomposition is employed for the ρ, ρv1, ρv2 and Et variables

in the following manner,

ρ(x1, x2, t) =
r∑
j=1

r∑
i=1

ρ2i(x2, t)Σρij(t)ρ1j(x1, t).

We investigate how well the evolution of the vortices in the jet flow are captured by the time

dependent basis formulation by comparing the results to a fully resolved DNS. The fully

resolved DNS is computed on a grid of size 896 × 896. In addition, the solution obtained

from time dependent basis for different reduction orders is compared to an equivalent DNS

where the degrees of freedom for the two methods are taken to be same. The equivalent

DNS or referred to as URDNS (under-resolved DNS) in the subsequent text is computed as,

N2
URDNS = 2rNDNS + r2.

The NDNS in this case is taken to the resolution of the grid in the x1 and x2 directions from

the DNS simulation, which in this case is taken to be 896. Table.(??) shows the values of

the URDNS grid for different reduction orders.

The results obtained from TDB are compared against the results obtained from DNS and

URDNS. Fig.(45) shows the comparison for the results for the density field. The results

are compared for three different time snapshots, t = 2, 4 and 6 for TDB and equivalent

URDNS grids. It is observed that the TDB solution for reduction order r = 40 and its

equivalent URDNS 272 × 272 show the flow field matching the DNS solution. However for

TDB r = 30 and r = 25, the equivalent URDNS 232 × 232 and 212 × 212 show divergence
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Table 4: The table shows the size of the URDNS grid i.e, NURDNS for different TDB reduction

orders (r).

Reduction order(r) NURDNS

25 212

30 232

40 272

50 304

after 4 Time Units. The build-up in the error due to aliasing can be seen in the solution of

URDNS 212 × 212 along x2 = 0.5 center line. This error buildup in the solution results in

the divergence of the solution at t = 6 for URDNS.

The TDB solution on the other hand, is not susceptible to this aliasing and shows the

flow field matching with the structures visualized in the DNS solution. However, the error

depends on the number of modes resolved or the reduction order of the solution (denoted

by r in these cases). The error caused by ignoring the higher modes in the solution can be

visualized in the TDb solution for r = 25 for t = 4 and 6. For t = 2, as the solution has

a lower number of modes r = 25 is able to resolve the solution accurately. As the system

evolves, the lower modes of the system gain energy the error in the solution in much more

visible as seen at t = 4 and 6. We can observe salt and pepper type error in the solution as

compared to the DNS solution.

A comparison between the singular values obtained from instantaneous SVD of DNS solution

and TDB solution (Σρ) for density is shown in Fig.(47). The figure shows the error incurred

in the solution for lower reduction orders r = 20, 30. This is the cause of the salt and pepper

error mentioned in the previous figure. For r = 20 and 30 while the lower singular values

(higher energy) are captured accurately we observe large errors in the higher singular values

(lower energy) as can be observed from large deviations between those modes and their
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DNS counterparts. For r = 40 and 50 as more higher modes (lower energy) are resolved,

the errors will reduce and we observe that the accuracy of the lower singular modes is also

improved. The improvement in the accuracy of the singular value (Σ20) as reduction order

is increased is seen in row 3 of Fig.(47). Fig.(48) shows a comparison between the density

spectrum obtained for reduction order r = 50, DNS solution for grid size 896 × 896 and

URDNS solution for grid of size 304× 304. The spectrum is plotted for three different time

units: t = 2, 4 and 6. At t = 2 the spectrum extends till 10−15. The TDB solution is able to

capture the spectrum accurately. However, the URDNS solution only captures the spectrum

till values up to 10−7. Due to the under resolved grid, the lower values are not captured.

While these errors are small (O(10−6), the URDNS also has difficult capturing the values of

the lower wavenumbers. The errors introduced in capturing the lower wavenumbers introduce

higher inaccuracy than that in capturing the higher wavenumbers. At t = 4, we observe that

the spectrum is captured correctly by the TDB solution and the errors in the URDNS solution

come from under resolution of the grid and inaccuracies in capturing lower wavenumbers.

At t = 6, we now observe an error in the TDB solution for the higher wavenumbers. This

error in capturing the higher wavenumbers can be attributed to fact that more reduction

orders are required to accurately capture the lower energy (high wavenumber) modes. As

the system evolves beyond t > 4, the modes with negligible energy (r > 50) at the beginning

of the simulation start gaining energy and need to be resolved to keep the errors low.

A similar density spectrum comparison is shown for three reduction orders r = 30, 40, 50

with DNS spectrum in Fig.(49). This figure shows the behaviour of the spectrum for different

reduction orders. The behaviour of the spectrum depends on the energy of the modes in the

unresolved modes. At t = 2, we observe that since the unresolved modes have low energy

the spectrum is correctly resolved by all the reduction orders. At t = 4 modes 20 < r < 50

gain energy and are no longer negligible. Hence, the spectrum obtained for r = 20, 30 show

higher deviation from the DNS spectrum. Since, r = 50 accurately resolves the modes up to

the fiftieth mode; the spectrum for reduction order 50 follows the DNS spectrum. At t = 6,

modes r > 50 start to gain energy and hence we now observe a deviation of reduction order

50 from the DNS spectrum.
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An important quality of the time dependent modes is the adaptivity of the modes to the

evolution of the flow field. Figs.(50,51,52) demonstrate this property of the time dependent

modes. In Fig.(50) the evolution of the first three modes in x1 and x2 directions are shown

at t = 2, 4, 6. The modes in the x1 direction follow the evolution and merging of the vortices.

The modes obtained in the x2 direction can be seen to be following the width of the jet. As

time evolves and the jet widens the modes in the x2 direction evolve to reflect this change.

The evolution of the first mode in the x2 direction is shown in Fig.(51). The width of the

jet widens as the flow evolves and the vortices in the flow merge together. Fig.(52) shows

the evolution of the second mode in the x1 direction. As the flow evolves the seemingly

sinusoidal-type structure of the mode is disrupted as the vortices merge for t > 4.

Finally, the errors in the TDB solution for different reduction orders is plotted in Fig.(53).

It is observed that as the reduction order increases i.e., more lower energy modes are resolved,

the errors reduce. The reduction in the errors is a property of the singular values spectrum

and the number of modes resolved at a particular time. The L2 error norm is computed by

taking the Frobenius norm of the difference in the solution between the DNS and the TDB

solution.

5.4.2 3D Temporally Evolving Jet

This case demonstrates the application of the TDB method for solving the three-dimensional

compressible Navier-Stokes equations for a temporally evolving jet. The schematic of the

problem is given in Fig.(54). The domain is considered to be periodic in all three directions.

The lenght of the domain in all three directions is taken to be L. The primary variables con-

sidered here are, density ρ(x1, x2, x3, t), velocity vector v(x, t) = [v1(x1, x2, x3, t), v2(x1, x2, x3, t),

v3(x1, x2, x3, t)], pressure p(x1, x2, x3, t), total energyEt(x1, x2, x3, t) and temperature T (x1, x2, x3, t).

The equations for the evolution of the primary variables are given by,

∂V

∂t
+
∂E

∂x1

+
∂F

∂x2

+
∂G

∂x3

= 0. (5.20)

The definition the vectors V,E,F,G, computational details and initial conditions are given

in Appendix E. We investigate how well the evolution of the vortices in the jet flow are
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captured by the TDB formulation by comparing the results to a fully resolved DNS. The

fully resolved DNS is computed on a grid of size 256 × 256 × 64. In addition, the solution

obtained from TDB for different reduction orders is compared to an equivalent DNS where

the degrees of freedom for the two methods are taken to be same. The equivalent DNS or

referred to as URDNS (under-resolved DNS) in the subsequent text and is computed as,

N3
URDNS

4
= N1DNS

r1 +N2DNS
r2 +N3DNS

r3 + r1r2r3. (5.21)

The N1DNS
, N2DNS

in this case is taken to the resolution of the grid in the x1 and x2 direction

from the DNS simulation, which in this case is taken to be 256. N3DNS in this case is taken

to be 64. Table.(??) shows the values of the URDNS grid for different reduction orders.

Since the DNS solution is computed on a grid where N3 = N1/4, the URDNS computed in

Eq.(5.21) also follows the same criterion. The x2 direction requires a large number of modes

for correct resolution, hence the reduction order study is done by increasing the number of

modes in the x2 direction i.e., r2. For constant (r1, r3) = (30, 30), we consider three different

reduction orders for r3 = (20, 40, 60).

The results obtained from TDB are compared against the results obtained from the

DNS and URDNS. Fig.(55) shows the comparison for the results of the density field with

slices taken in the x3 direction at (0.1,0.5,0.9). The results are compared for three different

time snapshots at t = 5, 7 and 9. It is observed that the TDB solution for reduction orders

r2 = 40, 60 match the DNS solution. Whereas the URDNS solution for both these cases i.e.,

69 × 69 × 19 and 62 × 62 × 17 show large deviation from the DNS solution. The URDNS

solution for 43×43×11 diverges for t > 5. The advantages of using the time dependent basis

is visible in the 3D simulations where the TDB is able to capture the flow field correctly

whereas the equivalent DNS struggles with capturing even the larger wavenumbers in the

flow correctly.

The source of the errors in the solution of the time dependent basis formulation is the

unresolved modes in the system and the accuracy of each of the resolved singular values.

Fig.(57) shows the evolution of the resolved singular values obtained from TDB solution.

The singular values are compared with the instantaneous SVD of the solution at each time

step. The singular values are computed for the density field unfolded along the x2 direction.
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Due to the clustering of the singular values, the figures show the singular values with every

second singular value skipped while plotting. The plot on the right in row 2 shows the errors

incurred in the computation of the singular values for the different reduction orders. It is

observed that the errors in the computation of the singular values reduce as more modes are

added to the TDB decomposition. As more modes are added in the system the error from

the unresolved modes can be controlled as well.

Fig.(58) shows the error in the solution due to unresolved modes. The error is taken

to be the sum of the unresolved singular values for different reduction orders of the DNS

solution. As more modes are added to the system the error from the unresolved modes is

reduced. This method is efficient in capturing systems where the first few modes capture

99% of the total energy of the system.
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Figure 45: The above figure shows the density flow field at t = 2, 4 and 6 for TDB and

equivalent URDNS. We observe that for TDB (r = 40) and it equivalent URDNS 272 show

the flow field matching the DNS 896. However for TDB r = 30 and r = 25 the equivalent

URDNS 212 and 232 show divergence after 4 Time Units. The TDB solution for r = 25, also

shows error in the capturing the higher modes as can be seen in the solution at t = 4. The

build up in the error in the URDNS due to aliasing can be seen in the solution of URDNS

212× 212 along the x2 = 0.5 center line.

97



t = 2 t = 4 t = 6

D
N
S

8
9
6
×

8
9
6

U
R
D
N
S

2
7
2
×

2
7
2

T
D
B

r
=

4
0

U
R
D
N
S

2
3
2
×

2
3
2

1 2

0

0.5

1

-5

0

5

T
D
B

r
=

3
0

U
R
D
N
S

2
1
2
×

2
1
2

1 2

0

0.5

1

-5

0

5

T
D
B

r
=

2
5

Figure 46: The above figure shows the vorticity flow field at t = 2, 4 and 6 for DBO and

equivalent URDNS. We observe that for DBO (r = 40) and its equivalent URDNS 272 show

the flow field matching the DNS 896. However for DBO r = 30 and r = 25 the equivalent

URDNS 212 and 232, show divergence after 4 Time Units. The DBO solution for r = 25,

also shows error in the capturing the higher modes as can be seen in the solution at t = 4.

The build up in the error in the URDNS due to aliasing error can be seen in the solution of

URDNS 212 along the x2 = 0.5 centerline.
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(d) r = 50
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(e) Errors in singular values

Figure 47: The comparison of singular values for density is shown for different reduction

orders with the singular values obtained from the instantaneous SVD of the flow-field.Due to

the clustering of the singular values, the figures in row 1 and 2 show the singular values with

every second singular value skipped while plotting. Row 1 and 2 show the comparison between

the singular values for r = 20, 30, 40, 50. Row 3 depicts the error in the singular value Σ20

for different reduction orders. It is observed that for lower reduction orders the accuracy of

the the singular value is low. As more modes are added to the system the accuracy of the

singular value is improved.
99



10
0

10
1

10
2

10
3

10
-20

10
-15

10
-10

10
-5

10
0

DNS 896

URDNS 304

TDB (r50)

(a) t = 2

10
0

10
1

10
2

10
3

10
-20

10
-15

10
-10

10
-5

10
0

DNS 896

URDNS 304

TDB (r50)

(b) t = 4

10
0

10
1

10
2

10
3

10
-20

10
-15

10
-10

10
-5

10
0

DNS 896

URDNS 304

TDB (r50)

(c) t = 6

Figure 48: The above figure shows the spectrum for the density at x2 = 0.5 for TDB (r = 50)

and its equivalent URDNS 304. The spectrum for DNS 896 is plotted for reference. The

spectrums are shown for three different time steps: t = 2, 4 and 6. It can be observed that

while the errors in the TDB can be attributed to the incorrect capturing of the smaller scale

structures, the errors in URDNS arise from the aliasing errors due to deficit in the grid

resolution. Both the methods capture the large scale structures in the flow properly as can

be seen in the spectrum match for wavenumbers κ < 50 for both URDNS and TDB.
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Figure 49: The above figure shows the density spectrum for TDB with different reduction

sizes: r = 30, 40, 50. The DNS spectrum is also plotted for comparison. The spectrum

is shown for three time units: t = 2, 4, 6. We observe that the spectrum improves as the

reduction size is increased. All the reduction sizes capture the larger scale structures in the

flow correctly as seen in the match of the κ < 50.
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Figure 50: The above figure shows the shape of the first 3 modes at t = 2, 3 and 4. The

shape of the modes adapts to the evolution of the flow field. For example, we observe the

shape of the first mode in x2-direction changes as the width of the jet increases. This width

change in the shape of the jet is reflected in the shape of the first three x2-modes.
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Figure 51: The above figure shows the evolution of the shape of the first x2-mode according

to the evolution of the flow field. The first mode increases in width with the evolution of the

jet.
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Figure 52: The above figure shows the evolution of the shape of the second x1-mode according

to the evolution of the flow field. As the vortices evolve and merge the seemingly sinusoidal-

type structure of the mode is disrupted for t > 4.
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r=20

r=30

r=40

r=50

Figure 53: The above figure shows the L2-error obtained from the DBO flow field and

the DNS solution. The time-evolution of error for four different reduction orders i.e., r =

20, 30, 40, 50 is plotted. It is observed that as the reduction order i.e., the number of modes

are increased the error is reduced.

Figure 54: The schematic of the 3D temporally evolving jet is shown in the figure above.

The domain is considered periodic in all the three directions.
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Figure 55: The above figure shows the density flow field at t = 5, 7 and 9 and x3 =

(0.1, 0.5, 0.9). The results are shown for DBO simulations for three different reduction orders

of r2 which are 20, 40 and 60. The top row shows the results for the DNS simulation for the

grid size 256 × 256 × 64.We observe that the flow field errors are reduced as the reduction

order is increased in the x2-direction. The under-resolved DNS results are not showed for

comparison as all of those results diverge for the given reduction orders.
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Figure 56: The above figure shows the density flow field at t = 5, 7 and 9 and x1 =

(0.1, 0.5, 0.9). The results are shown for DBO simulations for three different reduction orders

of r2 which are 20, 40 and 60 and their equivalent under-resolved DNS. The top row shows

the results for the DNS simulation for the grid size 256 × 256 × 64. We observe that the

flow field errors are reduced as the reduction order is increased in the x2-direction. The

under-resolved DNS results are not showed for comparison as all of those results diverge for

the given reduction orders.
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(a) r = 20 (b) r = 40

(c) r = 60 (d) Error in singular values

Figure 57: The above figure shows a comparison between the singular values obtained from

the time dependent basis and the singular values obtained from instantaneous SVD values

of the density flow field. Due to the clustering of the singular values, the figures show the

singular values with every second singular value skipped while plotting. The values are plotted

for three different reduction orders r2 = 20, 40, 60. The accuracy of the singular values in x2

direction improves as the reduction order is increased
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Table 5: The table shows the size of the URDNS grid i.e, NURDNS for different TDB reduction

orders (r1, r2, r3).

Reduction order(r1, r2, r3) N1URDNS
, N2URDNS

, N3URDNS

(30,20,20) 43× 43× 11

(30,40,30) 62× 62× 17

(30,60,30) 69× 69× 19

r=(10,10,10)

r=(20,20,20)

r=(30,30,30)

r=(40,40,40)

r=(50,50,50)

r=(60,60,60)

Figure 58: The above figure shows the L2-error obtained from the DBO flow field and the

DNS solution. The figure shows the time-evolution of error for different reduction orders. It

is observed that as the reduction order i.e., the number of modes are increased the error is

reduced.

107



6.0 Future Work

6.1 Stochastic Partial Differential Equations
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Figure 59: Dynamically bi-orthonormal decomposition for flow over a bump in a channel in

chaotic regime: (a) The growth of the small perturbations in the forcing measured by the

horizontal viscous shear force on the walls. The signals are observed to completely diverge

after t = 116. (b) The growth in the eigenvalues of the DBO system with r = 2 and the

eigenvalues of the Karhunen-Loéve decomposition.

We would like to show a limitation of the presented method for solving stochastic partial

differential equations. In particular we revisit the demonstration case for stochastic Navier-

Stokes equation as presented in Section 2.8.5.

We consider the same problem setup as the previous case of Reynolds number 1500

except that the kinematic viscosity is chosen to be ν = 0.015 which changes the Reynolds

number to Re = 5000. For this Reynolds number the flow is chaotic. To ensure that the

flow is chaotic, we solved three deterministic cases by perturbing the horizontal forcing with

three values fx = 1 − ε, 1 and 1 + ε with ε = 10−3. The resulting shear viscous force in the

x-direction on the top and bottom walls is plotted in Fig.(59a). It is clear that difference
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between the three solutions due to the perturbation grows and after t > 116 becomes O(1) –

verifying that the flow is chaotic. We consider DBO reduction with r = 2. The eigenvalues

of the covariance of the DBO system and those of the KL decomposition are plotted in

Fig.(59b). We observe that for the chaotic regime a fast decay of the eigenvalues is not

observed, since the randomness in the initial condition quickly propagates on large number

of independent dimensions in the phase space of the dynamical system due to strong non-

linear interaction between the modes and fast growth of small perturbations. As a result,

the effect of unresolved modes must be accounted for.

6.2 Deterministic Partial Differential Equations

While the methodology shows a lot of promise in improving the computational cost for

linear equation, compression ratio for saving data and structure resolving properties of the

flow; the method has a major drawback in the initialization of the solution of the modes.

Currently, the equations are evolved until a time t = Ti called the initialization time, where

we take SVD or HOSVD of the DNS solution to initialize the TDB components. The solution

at t = 0 for most cases can be written as a single mode and lower modes in the system gain

energy during the evolution of the system. Hence, it is difficult to initialize the lower modes of

the system at t = 0. One solution to this problem is implementing adaptive modes strategy,

where the lower modes i.e., (r+1)th mode can be initialized as the last mode i.e., rth mode in

the system passes a certain energy threshold. However, it is difficult to determine the initial

direction of the mode which is orthogonal to the other modes currently in the system. Using

this adaptive strategy can help in minimizing the errors in the solution due to unresolved

modes during long term integration.

Another current major drawback of the the method is the computational cost for eval-

uating the nonlinear equations. We have demonstrated in the previous sections, the com-

putational advantages of using the method for compressed form of linear equations as com-

pared with the computational time for DNS solution. However, due to the expansion of

the subspace for the nonlinear terms and the inability to obtain a cost effective reduced
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order formulation for every nonlinearity withholds us from making the nonlinear equations

computationally faster. Future work in this direction would address the computational cost

which would make the method applicable to a larger set of problems.

As observed in the case of the temporally evolving jet, the method resolves the larger

coherent structures in the flow. As we consider only a limited number of modes in the

reduced order model, the smaller modes containing smaller structures in the flow and higher

wavenumbers are ignored. It is necessary to consider the dissipative effects of these small

scale structures on the time dependent modes and their evolution. Closure modeling studies

have been carried out in the context of the POD method [91, 92, 93]. Preservation of the

stability of these modes for long time integration and preventing the solution from drifting

to erroneous states is necessary to improve the accuracy and efficacy of the TDB method.
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7.0 Conclusions

In this work, we have presented a new real-time reduced order modeling methodology

called the dynamically bi-orthonormal (DBO) decomposition for solving stochastic partial

differential equations. The presented method approximates a random field by decomposing

it to a set of time-dependent orthonormal spatial basis, a set of time-dependent orthonormal

stochastic basis and a low-rank factorization of the covariance matrix. We derived closed

form evolution equations for above components of the decomposition as well as the time-

dependent mean field.

We show that the presented method is equivalent to the dynamically orthogonal and

bi-orthonormal decompositions via an invertible matrix transformation. We derive evolu-

tion equations for these transformation matrices. Although DBO is equivalent to both DO

and BO decompositions, it exhibits superior numerical performance especially in highly

ill-conditioned systems. In both BO and DO decompositions, the condition number of co-

variance matrix, whether diagonal (BO) or full (DO), is λmax(t)/λmin(t), where λmin(t) and

λmax(t) are the smallest and largest eigenvalues of the covariance matrix, respectively. How-

ever, in the DBO decomposition, a factorization of the covariance matrix (Σ(t)) is inverted,

and Σ(t) has the condition number of
√
λmax(t)/λmin(t). The improvement in the condition

number of the DBO systems compared with BO or DO is important for adaptive reduced

order modeling as the newly added or removed mode has very small eigenvalues. The DBO

decomposition tolerates significantly smaller eigenvalues compared to BO and DO without

degrading the accuracy. Moreover, in comparison with BO, DBO does not become singular in

the case of eigenvalue crossing, and in comparison with DO, the DBO stochastic coefficients

are orthonormal, resulting in better-conditioned representation of the stochastic subspace

compared to that of DO.

We demonstrated the DBO decomposition for several benchmark SPDEs: (i) linear ad-

vection equation, (ii) Burgers’ equation with manufactured solution, (iii) Burgers’ equation

with stochastic forcing, (iv) and Burgers’ equation with 10-dimensional random initial con-

dition. We also applied DBO to stochastic incompressible Navier-Stokes equation. We com-

111



pared the performance of DBO against BO and DO. We conclude that for well-conditioned

cases, the numerical accuracy of all three decompositions are similar. However, for ill-

conditioned systems, where BO and DO either diverge or show poor numerical performance,

the DBO decomposition performs well.

We further implement the DBO methodology to solve for stochastic boundary conditions

using the variational principle for the DBO decomposition. Minimization of the functional

obtained from the variational principle leads to the evolution of the time-dependent DBO

basis. The methodology assists in determining the value at a stochastic boundary for the

spatial modes. We apply the method to one dimensional linear advection-diffusion equation

for three different boundary conditions: (i) Dirichlet boundary (ii) Neumann boundary and

(iii) Robin boundary. The error comparison for the method is presented for three methods

KL, DBO and DO and three reduction orders. We observe that the DBO method performs

better in the absence of unresolved modes of the system or when the order of reduction

defines the system exactly. This can be attributed to the better condition number of the Σ

matrix or the factorization of the covariance matrix.

The method is also applied to stochastic one dimensional Burgers’ equation for stochastic

Dirichlet boundary. The results for KL, DO and DBO are presented for three different

reduction orders. In this case, due to the error from the unresolved modes being greater

than the error in DO from the inversion of the covariance matrix, both the methods show

same order of error with respect to the KL solution.

The method is applied to two dimensional linear advection-diffusion problem. We con-

sider two cases for this equation, for the first case the conduction coefficient is kept constant

making the equation linear and for the second case, the conduction coefficient has a linear

temperature dependence, making the equation weakly nonlinear. The error comparison and

the evolution of the modes at the boundary are compared. It is observed that both the DO

and DBO methods show similar levels of accuracy.

In the third part of this work, we present a reduced order approach to solving determinis-

tic partial differential equations with time dependent bases. We derived close form evolution

equations for the time dependent bases and the core tensor. The presented methodology

shows the evolution of the modes according to the evolution of the flow field.
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We demonstrate the application of the method for a linear advection diffusion equation.

We derive the compressed form of equations for the linear equation. The compressed form of

equations offer computational advantages as compared to the DNS solution. The computa-

tional expense of these two methods is compared and it is observed that the linear equations

in the compressed form offered a computational speed of around 16 times for the TDB for a

grid size of 256×256 and around 46 times for a grid size of 512×512. While a massive speed

up is obtained in computations for linear equations, the nonlinear equations are currently

begin solved at the same cost as the DNS equations due to the nonlinearity and increase in

the cost of computing nonlinear terms in a low rank form.

We solve the incompressible Navier-Stokes equation in the vorticity streamfunction for-

mulation. Two cases are considered: (i) a vortex dipole with Gaussian vortices of equal

strength, (ii) asymmetric vortex dipole where the strenght of one vortex is 1.1 times the

strength of the other. The advantages of using time dependent bases are compared with

the static basis method i.e., Proper Orthogonal Decomposition (POD). The time dependent

basis save the cost of storage of the data for the determination of the static basis obtained

through the covariance matrix of the snapshots. Besides, due to the localized nature of vor-

tices the method is unable to extrapolate the results for evolution of the vortices for extended

time periods. The method can only predict solutions within the time frame of the snapshots

which has been given as an input for construction of the basis.

We further apply the methodology for solving a compressible 2D temporally evolving jet.

We investigate how well the evolution and merging of the vortices in the jet flow are captured

by the time dependent basis formulation by comparing the results to a fully resolved DNS.

Besides, we also show a comparison in the solution obtained from the TDB method with

an equivalent under-resolved DNS solution (URDNS). The URDNS is based on the same

degrees of freedom as the TDB. The URDNS solution obtained for a low reduction order

show divergence after a few time units. The TDB show a good match in resolving larger

coherent structures in the flow as observed from the comparison of the spectrum plots with

the DNS solution. We also observe the evolution of the modes as the flow field evolves as

evident from the increase in the jet width for the x2 modes.
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The methodology is further applied to a 3D temporally evolving jet. A higher compres-

sion in the storage cost for saving the flow field at every time step is observed in higher

dimensions. We observe better performance of the TDB basis as compared to its equivalent

URDNS simulations.

114



Appendix A : Derivation of the DBO Evolution

Equations

A.1 Proof of Theorem(2.4.1)

For the sake of brevity in notation, we denote u(x, t) as u, ui(x, t) as ui, yi(t;ω) as yi

and Σij(t) as Σij. The complete stochastic field given by u(x, t;ω), will be denoted as u. To

obtain the evolution equations of each of the DBO components, we first substitute the DBO

decomposition, given by Eq.(2.3), into a general form of SPDE as given by Eq.(2.2a). This

follows:
∂u

∂t
+
∂ui
∂t

Σijyj + ui
dΣij

dt
yj + uiΣij

dyj
dt

= F (u) (A.1)

We take expectation of the above equation:

∂u

∂t
= E[F (u)], (A.2)

where we have used E[yi] = 0 and dE[yi]/dt = 0. The above equation denotes the evolution

of the mean field, which is given by the first equation in the theorem i.e, Eq.(2.11a). We

proceed further by obtaining a mean subtracted form of the original SPDE, by subtracting

the above mean evolution equation from Eq.( A.1). This follows:

∂ui
∂t

Σijyj + ui
dΣij

dt
yj + uiΣij

dyj
dt

= F̃ (u), (A.3)

where F̃ (u) = F (u) − E[F (u)]. We then project the mean-subtracted equation onto the

stochastic modes yk,

∂ui
∂t

ΣijE[yjyk] + ui
dΣij

dt
E[yjyk] + uiΣijE[

dyj
dt
yk] = E[F̃ (u)yk].

The stochastic modes are orthonormal i.e., E[yjyk] = δjk and dynamically orthogonal i.e.,

E[
dyj
dt
yk] = 0. Using these two conditions and changing index k to j, the above equation

simplifies to:
∂ui
∂t

Σij + ui
dΣij

dt
= E[F̃ (u)yj]. (A.4)
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We now project the above equation onto the spatial modes uk,〈
uk,

∂ui
∂t

〉
Σij + 〈uk, ui〉

dΣij

dt
=
〈
uk,E[F̃ (u)yj]

〉
.

By enforcing the orthonormality property i.e., 〈uk, ui〉 = δki and the dynamical orthogonality

property i.e.,

〈
∂uk
∂t

, ui

〉
= 0 of the spatial basis, we obtain the evolution equation of the Σij

corresponding to Eq.(2.11b):

dΣij

dt
=
〈
ui,E[F̃ (u)yj]

〉
. (A.5)

To obtain the evolution equations for the spatial modes, we substitute Eq.( A.5) into Eq.(

A.4) and we then multiply both sides by Σ−1
ij . This results in:

∂ui
∂t

=
[
E[F̃ (u)yj]− uk

〈
uk,E[F̃ (u)yj]

〉]
Σ−1
ij .

Similarly, to obtain the evolution equation for the stochastic modes, we project Eq.( A.3)

onto the spatial modes uk. This results in:〈
uk,

∂ui
∂t

〉
Σijyj + 〈uk, ui〉

dΣij

dt
yj + 〈uk, ui〉Σij

dyj
dt

=
〈
uk, F̃ (u)

〉
.

Once again we utilize the orthonormality and dynamical orthogonality of the spatial modes

and substitute Eq.( A.5) into the above equation. We finally swap the indices j and i to get

the form in Eq.(2.11c). The resulting equation is:

dyi
dt

=
[〈
uj, F̃ (u)

〉
−
〈
uj,E[F̃ (u)yk]

〉
yk

]
Σ−1
ji .

Since the boundary conditions are deterministic, the boundary conditions for the mean and

the spatial modes are given by:

B[u(x, t)] = h(x, t), x ∈ ∂D,

B[ui(x, t)] = 0, x ∈ ∂D.

The initial conditions for the mean are given by applying the mean value to the stochastic

field at t = 0:

u0(x, t0) = E[u0(x;ω)].

This completes the proof.
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Appendix B : Equivalence of DO and DBO Methods

B.1 Proof of Lemma (2.5.1)

(i) The transformation matrix Ru can be obtained by projecting the equivalence relation

UDO = UDBORu onto UDBO. This results in:

UDO = UDBORu,

Ru = 〈UDBO, UDO〉 , (B.1)

where we have used the orthonormality property of UDBO basis: 〈UDBO, UDBO〉 = I,

where I is the identity matrix. Similarly projecting the equivalence relation onto UDO

and using the orthonormality property of the UDO basis:〈UDO, UDO〉 = I we obtain,

〈UDO, UDBO〉Ru = I,

R−1
u = 〈UDO, UDBO〉 .

It follows from the definition of inner product of quasimatrices i.e., Eq.(2.1), that the

transpose of the inner product can be written as 〈V (x, t), U(x, t)〉 = 〈U(x, t), V (x, t)〉T .

The above equation can be re-written as the transpose of inner product of quasimatrices

in the following form:

R−1
u = 〈UDBO, UDO〉T .

Now, using the result from Eq.( B.1), the above equation can be written as,

R−1
u = RT

u ,

RT
uRu = I.

This equation shows that RT
u is an inverse of Ru, which is a property of orthogonal

matrices. Therefore, Ru is an orthogonal matrix.
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(ii) Since the two decompositions are equivalent, we have

UDBOΣDBOY
T
DBO = UDOY

T
DO.

Using the transformation definition UDO = UDBORu and YDO = YDBOWy, the DO de-

composition can be expressed as:

UDBOΣDBOY
T
DBO = UDBORuW

T
y Y

T
DBO.

Projecting the above equation on the UDBO basis and using the orthonormality property

of the DBO basis i.e., 〈UDBO, UDBO〉 = I, we get:

〈UDBO, UDBO〉ΣDBOY
T
DBO = 〈UDBO, UDBO〉RuW

T
y Y

T
DBO,

ΣDBOY
T
DBO = RuW

T
y Y

T
DBO.

We now project the above equation on the stochastic DBO basis, i.e. YDBO:

ΣDBOE[Y T
DBOYDBO] = RuW

T
y E[Y T

DBOYDBO].

The stochastic basis of DBO are orthonormal i.e., E[Y T
DBOYDBO] = I. We apply this

property to the above equation and simplify it further, which results in:

ΣDBO = RuW
T
y .

Multiplying the above equation by RT
u from left and using RT

u = R−1
u and transposing

the resulting equation yields:

Wy = ΣT
DBORu.
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(iii) We now prove that the Ru matrix does not evolve in time. The evolution equation for

UDO in a quasimatrix form can be written as:

∂UDO
∂t

=
[
E[F̃YDO]− UDOE

[〈
UDO, F̃

〉
YDO

]]
C−1
DO.

Substituting the transformation UDO = UDBORu and YDO = YDBOWy in the above

equation results in:

∂UDBO
∂t

Ru + UDBO
dRu

dt
=
[
E[F̃YDBO]− UDBORuR

T
uE[
〈
UDBO, F̃

〉
YDBO]

]
WyC

−1
DO.

Projecting the above equation on the UDBO bases, using the dynamically orthogonal

condition i.e.,
〈
U̇DBO, UDBO

〉
= 0, orthonormality property of DBO spatial modes i.e.,

〈UDBO, UDBO〉 = I and orthogonal matrix property i.e., RuR
T
u = I on the previous

equation results in:

dRu

dt
=
[〈
UDBO,E[F̃YDBO]

〉
− E[

〈
UDBO, F̃

〉
YDBO]

]
WyC

−1
DO.

The expectation operator and the spatial inner product operations commute, which

results in:
dRu

dt
= 0.

This completes the proof.

119



B.2 Proof of Theorem (2.5.1)

In this section, we prove that the DO and DBO decompositions of SPDE in Eq.(2.2)

remain equivalent for all time. We begin with the evolution equations for the stochastic and

spatial DO bases in the quasimatrix form:

∂UDO
∂t

=
[
E[F̃YDO]− UDOE

[〈
UDO, F̃

〉
YDO

]]
C−1
DO, (B.2a)

dYDO
dt

=
〈
F̃ , UDO

〉
. (B.2b)

We substitute the transformation UDO = UDBORu and YDO = YDBOWy in the evolution

equation for spatial DO modes i.e., Eq.( B.2a). The equation thus becomes:

∂UDBO
∂t

Ru + UDBO
dRu

dt
=
[
E[F̃YDBO]− UDBORuR

T
uE[
〈
UDBO, F̃

〉
YDBO]

]
WyC

−1
DO.

Using the results of (i) and (iii) from Lemma (2.5.1), the above equation can be simplified

as:
∂UDBO
∂t

Ru =
[
E[F̃YDBO]− UDBOE[

〈
UDBO, F̃

〉
YDBO]

]
WyC

−1
DO. (B.3)

The covariance matrix for DO is defined by the following equation:

CDO = E[Y T
DOYDO]. (B.4)

We can simplify the above equation by using the transformation YDO = YDBOWy and using

the orthonormality of the DBO stochastic modes:

CDO = E[Y T
DOYDO],

CDO = W T
y E[Y T

DBOYDBO]Wy,

CDO = W T
y Wy.

Thus, C−1
DO can be written as C−1

DO = W−1
y W−T

y . We now simplify the WyC
−1
DO which

appears in Eq.( B.3) and using inverse of W T
y from the property (ii) from Lemma (2.5.1).

WyC
−1
DO = WyW

−1
y W−T

y ,

= Σ−1
DBORu.
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Multiplying Eq.( B.3) by RT
u from right and using the value of WyC

−1
DO from the above

equations and using the property of orthogonal matrix Ru i.e., RT
uRu = I, the evolution

equation simplifies to:

∂UDBO
∂t

=
[
E[F̃YDBO]− UDBOE[

〈
UDBOF̃

〉
YDBO]

]
Σ−1
DBO.

The above equation is the evolution equation of the DBO spatial modes in quasimatrix

form. Similarly, substituting the transformations UDO = UDBORu and YDO = YDBOWy in

the evolution equation for YDO, i.e. Eq.( B.2b), results in:

dYDBO
dt

Wy + YDBO
dWy

dt
=
〈
F̃ , UDBO

〉
Ru. (B.5)

From parts (ii) and (iii) of Lemma (2.5.1), we have:
dWy

dt
=
dΣT

DBO

dt
Ru. Using this relation

in Eq.( B.5):

dYDBO
dt

Wy + YDBO
dΣT

DBO

dt
Ru =

〈
F̃ , UDBO

〉
Ru,

dYDBO
dt

Wy =
[〈

F̃ , UDBO

〉
− YDBOE

[
Y T
DBO

〈
F̃ , UDBO

〉]]
Ru,

where evolution of ΣT
DBO given by:

dΣT
DBO

dt
= E

[
Y T
DBO

〈
F̃ , UDBO

〉]
is substituted in the

above equation. Multiplying both sides of the equation by W−1
y from the right and using

the result of part (ii) of Lemma (2.5.1), we get:

dYDBO
dt

=
[〈

F̃ , UDBO

〉
− YDBOE

[
Y T
DBO

〈
F̃ , UDBO

〉]]
Σ−TDBO.

The above equation is the evolution equation of the DBO stochastic modes in the quasimatrix

form. Thus, we see that the equivalence between the stochastic basis is maintained ∀t > 0.

This completes the proof.
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Appendix C : Equivalence of DBO and BO Methods

C.1 Proof of Lemma (2.5.2)

(i) We begin with the transformation equation for the stochastic modes given by:

YDBO = YBORy.

We project the above equation onto the DBO stochastic modes and use the orthonor-

mality property of the DBO modes i.e., E[Y T
DBOYDBO] = I:

YDBO = YBORy,

E[Y T
DBOYDBO] = E[Y T

DBOYBO]Ry,

By using the orthonormality of the DBO stochastic coefficients, the above equation is

simplified to:

R−1
y = E[Y T

DBOYBO] (C.1)

We also project the transformation equation on the BO stochastic modes and use the

orthonormality condition of the BO modes i.e., E[Y T
BOYBO] = I:

YDBO = YBORy,

E[Y T
BOYDBO] = E[Y T

BOYBO]Ry,

which results in

Ry = E[Y T
BOYDBO].

Taking transpose of the above equation and using Eq.( C.1):

E[Y T
DBOYBO] = RT

y ,

R−1
y = RT

y ,

RyR
T
y = I.

This equation shows that RT
y is an inverse of Ry; which is a property of orthogonal

matrices. Therefore, Ry is an orthogonal matrix.
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(ii) Now, since the two decompositions are equivalent, we have

UDBOΣDBOY
T
DBO = UBOY

T
BO.

Using the transformation equations i.e., YDBO = YBORy and UDBO = UBOWu in the

above equation:

UBOWuΣDBOR
T
y Y

T
BO = UBOY

T
BO.

We now project the above equation on the UBO bases and use the BO condition, i.e.,

〈UBO, UBO〉 = Λ, which results in:

〈UBO, UBO〉WuΣDBOR
T
y Y

T
BO = 〈UBO, UBO〉Y T

BO,

ΛWuΣDBOR
T
y Y

T
BO = ΛY T

BO,

WuΣDBOR
T
y Y

T
BO = Y T

BO.

We now project the above equation onto the stochastic BO bases and use the orthonor-

mality property of the bases:

WuΣDBOR
T
y E[Y T

BOYBO] = E[Y T
BOYBO],

WuΣDBOR
T
y = I,

ΣDBO = W−1
u Ry. (C.2)

(iii) We now derive the evolution equation for Wu. We begin by using the transformation

relation for the spatial modes given by:

UDBO = UBOWu.

We project the above equation onto the DBO spatial modes and use the orthonormality

condition of the DBO modes, i.e., 〈UDBO, UDBO〉 = I:

UDBO = UBOWu,

〈UDBO, UDBO〉 = 〈UDBO, UBO〉Wu,

〈UDBO, UBO〉 = W−1
u . (C.3)
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We also project the transformation equation onto the BO spatial modes and use the BO

condition i.e., 〈UBO, UBO〉 = Λ:

UDBO = UBOWu,

〈UBO, UDBO〉 = 〈UBO, UBO〉Wu,

〈UBO, UDBO〉 = ΛWu.

Taking transpose of the above equation and using Eq.( C.3):

〈UDBO, UBO〉 = W T
u Λ,

W−1
u = W T

u Λ,

WuW
T
u = Λ−1. (C.4)

We now consider the evolution equation of UDBO given by:

∂UDBO
∂t

=
[
E[F̃YDBO]− UDBO

〈
UDBO,E[F̃YDBO]

〉]
Σ−1
DBO.

Substituting the transformation YDBO = YBORy and UDBO = UBOWu in the above

equation, we obtain:

∂UBO
∂t

Wu + UBO
dWu

dt
=
[
E[F̃YBO]Ry − UBOWuW

T
u

〈
UBO,E[F̃YBO]

〉
Ry

]
Σ−1
DBO.

We now use Eq.( C.2) to obtain Σ−1
DBO versus Wu and Ry and use Eq.( C.4) to simplify

the above equation further:

∂UBO
∂t

Wu + UBO
dWu

dt
=
[
E[F̃YBO]− UBOΛ−1

〈
UBO,E[F̃YBO]

〉]
Wu. (C.5)

The evolution equation for UBO is given by:

∂UBO
∂t

= UBOM + E[F̃YBO],

M = E[Y T
BO

dYBO
dt

].

124



We further simplify the equation by substituting the evolution equation for UBO in Eq.(

C.5):[
UBOM + E[F̃YBO]

]
Wu + UBO

dWu

dt
=
[
E[F̃YBO]− UBOΛ−1

〈
UBO,E[F̃YBO]

〉]
Wu,

UBO
dWu

dt
= −UBOMWu − UBOΛ−1

〈
UBO,E[F̃YBO]

〉
Wu.

We project the above equation onto the UBO bases and use the BO orthogonality condi-

tion of the spatial modes:

Λ
dWu

dt
= −Λ

[
M + Λ−1

〈
UBO,E[F̃YBO]

〉]
Wu.

Denoting G =
〈
UBO,E[F̃YBO]

〉
according to the notation in reference [3], the evolution

equation for Wu becomes:

dWu

dt
= −

[
M + Λ−1G

]
Wu.

(iv) We now derive the evolution equation for Ry. We begin with the evolution equation for

YDBO given by:

dYDBO
dt

=
[〈

F̃ , UDBO

〉
− YDBOE

[
Y T
DBO

〈
F̃ , UDBO

〉]]
Σ−TDBO.

The transformation equations i.e., YDBO = YBORy and UDBO = UBOWu are substituted

in the above equation. We also use Eq.( C.2) to replace Σ−TDBO versus Wu and Ry. The

equation, thus, becomes:

dYBO
dt

Ry + YBO
dRy

dt
=
[〈

F̃ , UBO

〉
Wu − YBORyR

T
y E
[
Y T
BO

〈
F̃ , UBO

〉
Wu

]]
W T
u Ry.

Using property of orthogonal of matrix Ry and Eq.( C.4) to simplify the above equation

simplifies to:

dYBO
dt

Ry + YBO
dRy

dt
=
[〈

F̃ , UBO

〉
− YBOE

[
Y T
BO

〈
F̃ , UBO

〉]]
Λ−1Ry. (C.6)
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On the other hand, the evolution equation for YBO is given by:

dYBO
dt

=
[〈

F̃ , UBO

〉
− YBOST

]
Λ−1,

S =

〈
UBO,

∂UBO
∂t

〉
.

Substituting the evolution equation for YBO in Eq.( C.6), results in:[〈
F̃ , UBO

〉
− YBOST

]
Λ−1Ry + YBO

dRy

dt
=
[〈

F̃ , UBO

〉
− YBOE

[
Y T
BO

〈
F̃ , UBO

〉]]
Λ−1Ry,

−YBOSTΛ−1Ry + YBO
dRy

dt
= −YBOE

[
Y T
BO

〈
F̃ , UBO

〉]
Λ−1Ry.

Projecting the above equation onto YBO and using the orthonormality property of the

stochastic BO modes, results in:

−STΛ−1Ry +
dRy

dt
= −E

[
Y T
BO

〈
F̃ , UBO

〉]
Λ−1Ry.

The term E
[
Y T
BO

〈
F̃ , UBO

〉]
can be expressed as GT according to the notation in refer-

ence [3]. Thus, the evolution equation for Ry can be written as:

dRy

dt
= (ST −GT )Λ−1Ry.

This completes the proof.
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C.2 Proof of Theorem (2.5.2)

In this theorem, we prove that the equivalence relation is valid for all t > 0. The DBO

evolution equations in the quasimatrix form are given by:

∂UDBO
∂t

=
[
E[F̃YDBO]− UDBOE[

〈
UDBOF̃

〉
YDBO]

]
Σ−1
DBO, (C.7a)

dYDBO
dt

=
[〈

F̃ , UDBO

〉
− YDBOE

[
Y T
DBO

〈
F̃ , UDBO

〉]]
Σ−TDBO. (C.7b)

We plug UDBO = UBOWu and YDBO = YBORy into the evolution equation for UDBO i.e., Eq.(

C.7a). The equation thus becomes:

∂UBO
∂t

Wu + UBO
dWu

dt
=
[
E[F̃YBO]Ry − UBOWuW

T
u

〈
UBO,E[F̃YBO]

〉
Ry

]
Σ−1
DBO.

Using Eq.( C.4) and Eq.( C.2) in the above equation, results in:

∂UBO
∂t

Wu + UBO
dWu

dt
=
[
E[F̃YBO]− UBOΛ−1

〈
UBO,E[F̃YBO]

〉]
Wu.

Using property (iii) of Lemma (2.5.2) and definition of G, i.e., G =
〈
UBO,E[F̃YBO]

〉
:

∂UBO
∂t

Wu − UBO
[
M + Λ−1G

]
Wu =

[
E[F̃YBO]− UBOΛ−1G

]
Wu,

∂UBO
∂t

Wu = UBOMWu + E[F̃YBO]Wu,

∂UBO
∂t

= UBOM + E[F̃YBO].

The above equation is the evolution equation for UBO. Thus, we see that the equivalence

between the spatial bases is maintained ∀t > 0. Similarly, we substitute the transformations

UDBO = UBOWu and YDBO = YBORy into the evolution equation for YDBO i.e., Eq.( C.7b).

The equation thus becomes:

dYBO
dt

Ry + YBO
dRy

dt
=
[〈

F̃ , UBO

〉
Wu − YBORyR

T
y E
[
Y T
BO

〈
F̃ , UBO

〉
Wu

]]
Σ−TDBO.

Using Eq.( C.4) and Eq.( C.2) to simplify the above equation:

dYBO
dt

Ry + YBO
dRy

dt
=
[〈

F̃ , UBO

〉
− YBOE

[
Y T
BO

〈
F̃ , UBO

〉]]
Λ−1Ry.
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Using property (iv) of Lemma (2.5.2) and definition of GT , i.e., GT = E
[
Y T
BO

〈
F̃ , UBO

〉]
:

dYBO
dt

Ry + YBO
[
ST −GT

]
Λ−1Ry =

[〈
F̃ , UBO

〉
− YBOGT

]
Λ−1Ry,

dYBO
dt

=
[〈

F̃ , UBO

〉
− YBOST

]
Λ−1.

The above equation is the evolution equation of the BO stochastic bases in the quasimatrix

form. Thus, we see that the equivalence between the stochastic basis is maintained ∀t > 0.

This completes the proof.
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Appendix D : DBO Evolution Equations Using The

Variational Principle and The First Order Optimality

Conditions

In this section we obtain the closed form evolution equations for DBO using the first

order optimality conditions on the functional in the variational principle.

We begin with the functional form of the variational principle. For simplicity of notation we

denoteM(u, x, t) asM, ui(x, t) is denoted as ui, yj(t) is denoted as yj and Σij(t) is denoted

as Σij. Here M is a quasimatrix, M ∈ R∞×s, where s is the number of discrete sample

points in the random space.

G(U̇ , Σ̇, Ẏ ) =

∥∥∥∥ ∂∂t(uiΣijy
T
j )−M

∥∥∥∥2

F
+ λ1ij

(〈
u̇i, uj

〉
− Φij

)
+ λ2ij (E[ẏiyj]−Ψij) .

The first term in the above equation can be expanded further as:∥∥∥∥ ∂∂t(uiΣijy
T
j )−M

∥∥∥∥2

F
=
〈
u̇i, u̇m

〉
ΣijΣmnE[yjyn] +

〈
ui, um

〉
Σ̇ijΣ̇mnE[yjyn]

+
〈
ui, um

〉
ΣijΣmnE[ẏj ẏn] + 2

〈
u̇i, um

〉
ΣijΣ̇mnE[yjyn]

+ 2
〈
ui, um

〉
Σ̇ijΣmnE[yj ẏn] + 2

〈
u̇i, um

〉
ΣijΣmnE[yj ẏn]

− 2E[
〈
M, ui

〉
ẏj]Σij − 2E[

〈
M, u̇i

〉
yj]Σij − 2E[

〈
M, ui

〉
yj]Σ̇ij

+ ‖M‖2
F .

The first order optimality conditions enforce δG
δu̇k

= 0, δG
δẏk

= 0 and δG
δΣ̇kl

= 0, k, l = 1, . . . , r.
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1. We take a look at the first optimality condition by taking a derivative of the above

functional w.r.t. u̇k:

δG
δu̇k

= lim
ε→0

G(U̇ + ε ˙̃U, Σ̇, Ẏ )− G(U̇ , Σ̇, Ẏ )

ε

= 2
〈

˙̃ui, u̇m
〉
ΣijΣmnE[yjyn] + 2

〈
˙̃ui, um

〉
ΣijΣ̇mnE[yjyn]

+ 2
〈

˙̃ui, um
〉
ΣijΣmnE[yj ẏn]− 2E[

〈
M, ˙̃ui

〉
yj]Σij + λ1ij

〈
˙̃ui, uj

〉
= 2

〈
˙̃ui, u̇mΣijΣmnE[yjyn] + umΣijΣ̇mnE[yjyn] + umΣijΣmnE[yj ẏn]

− E[Myj]Σij +
λ1ij

2
uj
〉

= 0

Since the variation ˙̃ui is assumed to be arbitrary, the constraint equation is,(
u̇mΣijΣmn + umΣijΣ̇mn

)
E[yjyn] + umΣijΣmnE[yj ẏn]− E[Myj]Σij +

λ1ij

2
uj = 0.

(D.1)

Projecting the above equation on the uk and using the orthonormality conditions of the

spatial and stochastic modes i.e.,
〈
ui, uj

〉
= δij and E[yiyj] = δij as well as the dynamic

orthogonality constraints of the modes i.e.,
〈
u̇i, uj

〉
= Φij and E[ẏiyj] = Ψij we obtain the

value of the Lagrangian multiplier λ1:

λ1ij = 2
[〈
uj,E[Myk]

〉
− ΦmjΣmk − Σ̇jk −ΨnkΣjn

]
Σik. (D.2)

The equation for λ1ij obtained in Eq.( D.2) is substituted in Eq.( D.1) to obtain the evo-

lution equation for u̇i. After substitution, the orthonormality condition of the stochastic

modes i.e., E[yiyj] = δij and the dynamic orthogonality constraint on the stochastic

modes i.e., E[ẏiyj] = Ψij are applied to simplify the equation further. Thus, the obtained

equation is,

u̇jΣjkΣik − E[Myk]Σik + uj
〈
uj,E[Myk]

〉
Σik − umΦjmΣjkΣik

+
(
ujΣ̇jkΣik − ujΣ̇jkΣik

)
+ (ujΣjnΨnkΣik − ujΣjnΨnkΣik) = 0.
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The final equation for evolution of the modes is obtained by multiplying Σ−1
ik Σ−1

jk on both

sides of the equation,

u̇i =
[
E[Myj]− uk

〈
uk,E[Myj]

〉]
Σ−1
ij + ujΦij, (D.3)

whereM represents the evolution at the boundary points and the interior points, defined

as,

M(u, x, t;ω) =

N (u, x, t;ω) if x ∈ Ω,

B(u, x, t;ω) if x ∈ ∂Ω,

2. We take a look at the second optimality condition by taking the derivative of the func-

tional G w.r.t. ẏk:

δG
δẏk

= lim
ε→0

G(U̇ , Σ̇, Ẏ + ε ˙̃Y )− G(U̇ , Σ̇, Ẏ )

ε

= 2
〈
ui, um

〉
ΣijΣmnE[ẏj ˙̃yn] + 2

〈
ui, um

〉
Σ̇ijΣmnE[yj ˙̃yn]

+ 2
〈
u̇i, um

〉
ΣijΣmnE[yj ˙̃yn]− 2E[

〈
M, ui

〉
˙̃yj]Σij + λ2jnE[yj ˙̃yn]

= 2E
[(〈

ui, um
〉
ΣijΣmnẏ

T
j +

〈
ui, um

〉
Σ̇ijΣmny

T
j +

〈
u̇i, um

〉
ΣijΣmny

T
j

−Σin

〈
ui,M

〉
+
λ2jn

2
yj

)
˙̃yn

]
.

Since the variation ˙̃yn is assumed to be arbitrary, the constraint equation is,

〈
ui, um

〉 (
ΣijΣmnẏ

T
j + Σ̇ijΣmny

T
j

)
+
〈
u̇i, um

〉
ΣijΣmny

T
j − Σin

〈
ui,M

〉
+
λ2jn

2
yTj = 0.

(D.4)

Projecting the above equation on yk and using the orthonormality conditions of the

spatial and stochastic modes i.e.,
〈
ui, uj

〉
= δij and E[yiyj] = δij as well as the dynamic

orthogonality constraints of the modes i.e.,
〈
u̇i, uj

〉
= Φij and E[ẏiyj] = Ψij we obtain the

value of the Lagrangian multiplier λ2:

λ2jn = 2
[
E[
〈
M, ui

〉
yj]−ΨkjΣik − Σ̇ij − ΦmiΣmj

]
Σin. (D.5)

The value obtained for λ2jn in Eq.( D.5) is substituted in Eq.( D.4) to obtain the evolution

equation for ẏi. After substitution, the orthonormality condition of the spatial modes
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i.e.,
〈
ui, uj

〉
= δij and the dynamic orthogonality constraint of the spatial modes i.e.,〈

u̇i, uj
〉

= Φij are applied to simplify the equation further. Thus, the obtained equation

is,

ΣmnΣmj ẏ
T
j − Σmn

〈
um,M

〉
+ ΣmnE

[〈
M, um

〉
yj
]
yTj − ΣmnΣmjΨjky

T
k

+
(

Σ̇mjΣmny
T
j − Σ̇mjΣmny

T
j

)
+
(
ΣmnΦimΣijy

T
j − ΣmnΦimΣijy

T
j

)
= 0.

The equation is simplified further by multiplying both sides of the above equation with

Σ−1
mn,

Σmj ẏ
T
j =

〈
um,M

〉
− E[

〈
um,M

〉
yj]y

T
j + ΣmjΨjky

T
k .

The final equation is obtained by taking the transpose of the above equation and multi-

plying both sides of the obtained equation with Σ−1
jm,

ẏi =
[〈
M, uj

〉
− ykE[yk

〈
M, uj

〉
]
]

Σ−1
ji + yjΨji. (D.6)

3. We take a look at the third optimality condition by taking the derivative of the functional

G w.r.t. Σ̇kl

δG
δΣ̇kl

= lim
ε→0

G(U̇ , Σ̇ + ε ˙̃Σ, Ẏ )− G(U̇ , Σ̇, Ẏ )

ε

= 2
(〈
u̇i, um

〉
ΣmnE[yjyn] +

〈
ui, um

〉
Σ̇mnE[yjyn]

+
〈
ui, um

〉
ΣmnE[yj ẏn]− E[

〈
M, ui

〉
yj]
) ˙̃Σij

= 0

Since the variation ˙̃Σij is assumed to be arbitrary the constraint equation is,

〈
u̇i, um

〉
ΣmnE[yjyn] +

〈
ui, um

〉
Σ̇mnE[yjyn] +

〈
ui, um

〉
ΣmnE[yj ẏn]− E[

〈
M, ui

〉
yj] = 0.

Using the orthonormality conditions of the spatial and stochastic modes i.e.,
〈
ui, uj

〉
=

δij and E[yiyj] = δij, as well as the dynamic orthogonality constraints of the modes

i.e.,
〈
u̇i, uj

〉
= Φij and E[ẏiyj] = Ψij, the equation for the evolution of the Σ̇ is,

Σ̇ij = E[
〈
M, ui

〉
yj]− ΦikΣkj + ΨjkΣik. (D.7)

132



Appendix E : Computational Details- Temporally

Evolving Jet

This appendix gives the computational details for the temporally evolving jet problem

in Chapter 5.

E.1 2D Temporally Evolving Jet

The primary variables considered here are, density ρ(x1, x2, t), velocity vector v(x, t) =

[v1(x1, x2, t), v2(x1, x2, t)], pressure p(x1, x2, t), total energy Et(x1, x2, t) and temperature

T (x1, x2, t). The equations for the evolution of the variables are given by,

∂V

∂t
+
∂E

∂x1

+
∂F

∂x2

= 0, (E.1)

where U,E,F are the vectors given by,

V =


ρ

ρv1

ρv2

Et

 ,E =


ρv1

ρv2
1 + p− τ11

ρv1v2 − τ12

(Et + p)v1 − v1τ11 − v2τ12 + q1

 ,F =


ρv2

ρv1v2 − τ12

ρv2
2 + p− τ22

(Et + p)v2 − v1τ12 − v2τ22 + q2

 .

Here Et is the total energy per unit volume, which can be written as

Et = ρ

(
e+

v2
1 + v2

2

2

)
. (E.2)

where e is the internal energy per unit mass. The components of viscous stress tensor are

given by

τij = µ

[(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
δij
∂vk
∂xk

]
. (E.3)

The heat flux vectors are given by

qi =
µ

(γ − 1)M2
∞RePr

∂T

∂xi
,
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where M∞ is the free stream Mach number and Re, Pr are the Reynolds number and the

Prandtl numbers respectively. The values of these parameters are taken to be, Re = 8000,

Pr = 1, M∞ = 0.5. The pressure and the temperature are obtained from the equations of

state,

p = (γ − 1)ρe (E.4)

T =
γM2

∞p

ρ
(E.5)

We take the value of γ to be 1.4. ρ, ρv1, ρv2 and Et are taken to be independent variables

and are expressed in the time dependent basis decomposition. The initial conditions for the

mean velocity profile are given by,

v̄1 =
Vmax

2

(
tanh

(
x2 − x2min

h

)
− tanh

(
x2 − x2max

h

)
− 1

)
v̄2 = 0

Here Vmax = 1, x2min
and x2max denote the lower and upper boundaries of the jet which are

set to 0.45 and 0.55 respectively. h represents the thickness of the jet which for this case is

taken to be 1/100. The velocity profile for v1 is shown in Fig.(44). The jet boundaries are

imposed with perturbation to trigger the transition. The perturbations are given by,

ṽ2 = 2
Lx1
h2

[
(x2 − b) exp

(
−(x2 − b)2

h2

)
+ (x2 − a) exp

(
−(x2 − a)2

h2

)]
[
sin(12π

x1

Lx1
) + sin(8π

x1

Lx1
) + sin(20π

x1

Lx1
)

]
,

ṽ2 = π

[
exp(−(x2 − b)2

h2
) + exp(−(x2 − a)2

h2
)

] [
12 cos(12π

x1

Lx1
) + 8 cos(8π

x1

Lx1
) + 20 cos(20π

x1

Lx1
)

]
A = max(

√
ṽ2

1 + ṽ2
2),

δ =
Vmax
40A

,

(ṽ1, ṽ2) = (δṽ1, δṽ2)
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Here, Lx1 = 2 and Lx2 = 1, a = 0.45, b = 0.55. The initial conditions for the other variables

is,

T (t = 0) =
1

2
+

1

4

(
tanh

(
x2 − x2min

h

)
− tanh

(
x2 − x2max

h

))
,

p(t = 0) = 1,

ρ(t = 0) =
γM2

∞p

T
,

e(t = 0) =
p

(γ − 1)ρ
,

E(t = 0) = ρ

(
e+

v2
1 + v2

2

2

)
.

E.2 3D Temporally Evolving Jet

The primary variables considered here are, density ρ(x1, x2, x3, t), velocity vector v(x, t) =

[v1(x1, x2, x3, t), v2(x1, x2, x3, t), v3(x1, x2, x3, t)], pressure p(x1, x2, x3, t), total energyEt(x1, x2, x3, t)

and temperature T (x1, x2, x3, t). The equations for the evolution of the primary variables

are given by,
∂V

∂t
+
∂E

∂x1

+
∂F

∂x2

+
∂G

∂x3

= 0, (E.6)

where U,E,F,G are the vectors given by

V =



ρ

ρv1

ρv2

ρv3

Et


,E =



ρv1

ρv2
1 + p− τ11

ρv1v2 − τ12

ρv1v3 − τ13

(Et + p)v1 − v1τ11 − v2τ12 − v3τ13 + q1


,

F =



ρv2

ρv1v2 − τ12

ρv2
2 + p− τ22

ρv2v3 − τ23

(Et + p)v2 − v1τ12 − v2τ22 − v3τ23 + q2


,G =



ρv3

ρv1v3 − τ13

ρv2v3 − τ23

ρv2
3 + p− τ33

(Et + p)v3 − v1τ13 − v2τ23 − v3τ33 + q3
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Here Et is the total energy per unit volume, which can be written as

Et = ρ

(
e+

v2
1 + v2

2 + v2
3

2

)
. (E.7)

where e is the internal energy per unit mass. The components of viscous stress tensor are

given by

τij = µ

[(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
δij
∂vk
∂xk

]
. (E.8)

The heat flux vectors are given by

qi =
µ

(γ − 1)M2
∞RePr

∂T

∂xi
,

where M∞ is the free stream Mach number and Re, Pr are the Reynolds number and the

Prandtl number respectively. The values of these parameters is taken to be, Re = 5000,

Pr = 1, M∞ = 0.5. The pressure and the temperature are obtained from the equations of

state,

p = (γ − 1)ρe (E.9)

T =
γM2

∞p

ρ
(E.10)

We take the value of γ to be 1.4. ρ, ρv1, ρv2, ρv3 and Et are taken to be independent variables

and are expressed in the TDB decomposition. The initial conditions for the mean velocity

profile are given by,

v̄1 =
Vmax

2

(
tanh

(
x2 − x2min

h

)
− tanh

(
x2 − x2max

h

)
− 1

)
v̄2 = 0

v̄3 = 0

Here Vmax = 1, x2min
and x2max denote the lower and upper boundaries of the jet which are

set to 0.45 and 0.55 respectively. h represents the thickness of the jet which for this case is

taken to be 1/200. The mean velocity profile used for initialization is shown in Fig.(54). The
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jet boundaries are imposed with perturbation to trigger the transition and the perturbations

are given by,

ṽ1 = 2
Lx1
h2

[
(x2 − b) exp

(
−(x2 − b)2

h2

)
+ (x2 − a) exp

(
−(x2 − a)2

h2

)]
[
sin(2π

x1

Lx1
) + sin(4π

x1

Lx1
) + sin(8π

x1

Lx1
)

] [
sin(2π

x3

Lx3
) + sin(4π

x3

Lx3
) + cos(6π

x3

Lx3
) + cos(8π

x3

Lx3
)

]
,

ṽ2 = π

[
exp(−(x2 − b)2

h2
) + exp(−(x2 − a)2

h2
)

] [
2 cos(2π

x1

Lx1
) + 4 cos(4π

x1

Lx1
) + 8 cos(8π

x1

Lx1
)

]
[
sin(2π

x3

Lx3
) + sin(4π

x3

Lx3
) + cos(6π

x3

Lx3
) + cos(8π

x3

Lx3
)

]
,

ṽ3 = −Lx1
h2

[
(x2 − b) exp

(
−(x2 − b)2

h2

)
+ (x2 − a) exp

(
−(x2 − a)2

h2

)]
[
2 cos(2π

x1

Lx1
) + 4 cos(4π

x1

Lx1
) + 8 cos(8π

x1

Lx1
)

]
[
−2 cos(2π

x3

Lx3
)− 4 cos(4π

x3

Lx3
) + 6 sin(6π

x3

Lx3
) + 8 sin(8π

x3

Lx3
)

]
,

A = max(
√
ṽ2

1 + ṽ2
2 + ṽ2

3),

δ =
Vmax
40A

,

ṽ1 = δṽ1,

ṽ2 = δṽ2,

ṽ3 = δṽ3.

Here, Lx1 = Lx2 = Lx3 = 1, a = 0.45, b = 0.55. The initial conditions for the other variables

are,

T (t = 0) =
1

2
+

1

4

(
tanh

(
x2 − x2min

h

)
− tanh

(
x2 − x2max

h

))
,

p(t = 0) = 1,

ρ(t = 0) =
γM2

∞p

T
,

e(t = 0) =
p

(γ − 1)ρ
,

E(t = 0) = ρ

(
e+

v2
1 + v2

2 + v2
3

2

)
.
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Appendix F : Summary of The Reduced Order

Modeling Techniques

In this appendix, we discuss the various reduced order techniques discussed in the thesis

and present a comprehensive summary and comparison of the relevant methods. The intent

of this chapter to provide the reader with a brief essence of the thesis and discuss the

important advantages and drawbacks of the different methods in a broader perspective.

F.1 Proper Orthogonal Decomposition (POD)

The proper orthogonal decomposition is a method developed by Lumley [49] in the

context of fluid dynamics to obtain ‘coherent structures ’from turbulent flow fields. The

method has been known by different names in other fields: Principal component analysis

(PCA), Hotelling transform, empirical eigenfunction decomposition, Karhunen-Loéve de-

composition.

F.1.1 POD Decomposition

We consider a random field u(x, t;ω) and subtract the time average of the DNS simulation

ū(x). The mean subtracted value can then be expressed as,

u(x, t;ω)− ū(x) =
∑
i

αi(t;ω)Φi(x). (F.1)

Here, αi(t;ω) denotes the time dependent stochastic coefficients and Φi(x) denote a gener-

alizable basis for the particular flow field. The decomposition thus seeks to obtain a low

dimensional static basis. The above decomposition performs a separation of variables in

stochastic time dependent coefficients and spatial basis. The instantaneous solution is ob-

tained by evolving the coefficients αi(t;ω) by performing a Galerkin projection of the original

governing equations to the orthonormal spatial basis ui(x).
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F.1.2 Algorithm

The POD algorithm consists of finding out the two components of the decomposition:

the static basis Φi(x) and the time dependent coefficients αi(t;ω).

F.1.2.1 Compute The Spatial Basis

To compute the spatial basis Φi(x) we take a collection of n snapshots (method of

snapshots[94, 21, 22, 23]) of the deterministic DNS solution at different time instants t =

t1, t2, ..., tn. Thus we obtain a data matrix A of size N × n where N is the number of grid

points at which the solution is evaluated and n is the number of time instants at which the

solution is collected such that n << N . We compute the eigenvectors of ATA given by Ψ:

ATAΨj = λjΨj.

The spatial basis are then computed as:

Φj = AΨj
1√
λj
, j = 1, 2, ..., r.

Here, r is the number of spatial modes considered. The spatial modes obtained using this

technique are energetically ranked and rule of thumb is to choose the reduction order such

that at least 95% energy of the total energy of the system is captured by r modes.

F.1.2.2 Compute The Time-dependent Coefficients

The obtained spatial modes are orthonormal to each other and thus, using this orthonor-

mality condition we can perform a Galerkin projection on the partial differential equation

defining the evolution of the system and obtain the evolution equation for the time-dependent

coefficients.
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F.1.3 Advantages of the Method

1. Using the method of snapshots described above we can convert a partial differential equa-

tion of a large grid size into a reduced order model evaluating only the time dependent

coefficients.

2. The POD technique is a widely used technique for data compression, flow reconstruction,

design optimization, pattern recognition.

3. The POD modes are computed with L2 optimality. The POD modes is optimal in

terms of minimizing the mean-square error between the signal and the its truncated

representation.

F.1.4 Drawbacks

1. The construction of the spatial modes require large memory for storing the data matrix

A. This memory requirement is especially significant for larger grid sizes.

2. The POD basis obtained from a particular set of operating conditions e.g., Mach number

(Ma), Reynolds number (Re) may or may not be useful when the operating conditions

are changed. POD basis are also ineffective in extrapolating solutions of localized flows.

3. The POD modes are arranged in order of significance in terms of energy and not in terms

of dynamical importance. The lower energy modes which are ignored in the reduced order

model can have significant effects on the solution at later time steps which will lead to

loss of accuracy of the solution.

4. The dependence of the solution on the random parameters may significantly vary over

time. As POD uses static basis, higher number of modes are required in long time

integration to maintain the same level of accuracy which leads to larger computational

expense.
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F.2 The Need for Time-dependent Basis

The POD technique mentioned in the previous section derives static manifold based on

the visualized data from the time snapshots. A major disadvantage of this technique is the

inability of the method to predict transient behaviour. A pictorial representation is shown

in Fig.(60) which shows a 2D approximation of a 3D Rössler attractor. In the subfigure on

the left, the attractor is approximated by 2D static basis derived from POD. We observe

that the 2D plane approximates the behavior correctly in the x− y plane. Even though the

plane is slightly titled to take into the data points from the transient part, the system will

face difficulty in approximating the out-of-plane transient behaviour. The figure on the right

shows the same Rössler attractor approximated by time dependent basis. The out-of-plane

transient behaviour is captured accurately due to the evolution of the basis as the system

evolves.

F.3 Dynamically Orthogonal (DO) Method

The dynamically orthogonal technique is a time-dependent basis technique developed by

Sapsis [1, 79] in context of stochastic partial differential equations. The method performs

separation of variables similar to the POD technique but not in time.

F.3.1 DO Decomposition

We consider a random field given by u(x, t;ω) which can be expressed in DO decompo-

sition as,

u(x, t;ω)− ū(x, t) =
∑
i

Yi(t;ω)ui(x, t), (F.2)

where Yi(t;ω) are stochastic processes, ui(x, t) are the orthonormal spatial basis and the

ū(x, t) is the expected value of all random samples. In this decomposition, both the Yi(t;ω)

and ui(x, t) evolve in time. The basis thus, adapt to the stochasticity of the flow.
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F.3.2 Algorithm

The DO algorithm consists of the initializing the basis at t = 0 and evolving the stochastic

and spatial basis according to the evolution equations. The evolution equations of DO

decomposition are first order optimality conditions of its variational principle. The reader is

referred to Table.(1) and [1] for the evolution equations of DO modes.

The evolution of the spatial basis is restricted by the ‘dynamically orthogonality’condition

given by, 〈
∂ui(x, t)

∂t
, uj(x, t)

〉
= 0.

The DO decomposition provides a set of explicit equations for the evolution of the stochas-

tic and spatial modes. The original SPDE is transformed to a r-dimensional stochastic

differential equation for Yi(t;ω) and r + 1 deterministic PDEs for ū(x, t) and ui(x, t).

F.3.3 Advantages of the Method

1. The original SPDE is transformed into a system of equations for the evolution of the DO

modes which evolve according to the evolution of the flow field. This decomposition is

effective is capturing in strongly transient and non-stationary response.

2. From the DO representation the first and second order moments i.e., mean and variance

are obtained readily.

F.3.4 Drawbacks

1. The inversion of the covariance matrix in the evolution equations leads to inaccuracy in

the solution for large condition number (ratio of largest to smallest eigenvalue) of the

covariance matrix.

F.4 Bi-Orthogonal (BO) Method

The bi-orthogonal technique [2, 32] is another time-dependent basis technique developed

by Cheng et. al. The BO decomposition is similar in form to the DO decomposition however
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differs in terms of the conditions imposed on the spatial and stochastic modes. Imposition

of these different conditions affects the numerical properties of this method.

F.4.1 BO Decomposition

We consider a random field given by u(x, t;ω) which can be expressed in BO decompo-

sition as,

u(x, t;ω)− ū(x, t) =
∑
i

Yi(t;ω)ui(x, t) (F.3)

where Yi(t;ω) are stochastic processes, ui(x, t) are the spatial basis and ū(x, t) is the expected

value of all random samples.

F.4.2 Algorithm

The BO algorithm consists of the initializing the basis at t = 0 and evolving the stochas-

tic and spatial basis according to the evolution equations. The evolution equations of BO

decomposition are first order optimality conditions of its variational principle. In case of the

BO method, orthonormality of the stochastic modes and orthogonality of the spatial modes

is imposed. The constraints imposed on BO modes are static. The reader is referred to

Table.(1) and [2, 32] for the evolution equations of BO modes.

F.4.3 Advantages of the Method

1. The BO method is more stable than the DO method for higher modes in non-linear

problems.

2. A low dimensional structure is computed on-the-fly at every time instant.

F.4.4 Drawbacks

1. Due to constraints imposed on the method and the corresponding evolution equations

obtained, the method diverges when two eigenvalues are very close to each other or when

two eigenvalues cross each other.
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2. If the system is strongly transient and nonlinear a low reduction order might not be

effective in capturing the solution accurately. An increasing number of modes are needed

as time evolves to keep the error to a minimum.

F.5 Dynamically Bi-Orthonormal (DBO) Method

The dynamically bi-orthonormal technique was developed [46] to overcome some of the

limitations associated with the DO and BO method. The method adds an additional factor

of covariance matrix to the decomposition which helps in improving the numerical properties

of the time dependent basis technique.

F.5.1 DBO Decomposition

We consider a random field given by u(x, t;ω) which can be expressed in DBO decom-

position as,

u(x, t;ω)− ū(x, t) =
∑
j

∑
i

ui(x, t)Σij(t)Yj(t;ω) (F.4)

where Yi(t;ω) are stochastic processes, ui(x, t) are the spatial basis, Σij(t) is the factor of

the covariance matrix and ū(x, t) is the expected value of all random samples.

F.5.2 Algorithm

The DBO algorithm consists of the initializing the basis at t = 0 and evolving the

stochastic basis, spatial basis and Σ(t) according to the evolution equations. The evolution

equations of DBO decomposition are first order optimality conditions of its variational prin-

ciple. In this method the dynamically orthogonality condition and orthonormality condition

is imposed on both the stochastic and spatial modes. The reader is referred to Table.(1) and

[46] for the evolution equations of DBO modes.

A pictorial representation of the conditions imposed on the stochastic modes and spatial

modes are shown in Fig.(61). The figure on the left shows the spatial modes ui(x, t). We

can see that all three methods impose the orthogonality conditions on the spatial modes.
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However, the DO and DBO methods impose orthonormality condition which means that the

inner product of the modes can be written as,

〈ui(x, t), uj(x, t)〉 = δij.

The BO modes on the other hand are scaled according to the eigenvalues associated with

the modes. Similarly, the stochastic modes are represented on the subfigure on the right. In

this case, the BO and DBO methods impose the orthonormality condition such that,

E[yi(t;ω)yj(t;ω)] = δij.

The DO modes on the other hand impose neither the orthonormality condition nor the

orthogonality condition thus, the modes can be highly correlated.

F.5.3 Advantages of the Method

1. Due to the low condition number of the inversion of the factor of covariance matrix, the

method preserves accuracy in large scales of separation between singular values where

the DO and BO would be inaccurate.

F.5.4 Drawbacks

1. The three time dependent basis methods discussed before are ineffective in flow regime

where the growth of eigenvalues is swift and small perturbations lead to propagation

of uncertainty in large number of independent directions. To preserve accuracy in such

cases, the reduction order i.e., the number of modes needs to be increased. However, this

can lead to an increase in the computational expense.

2. In case of turbulent flows, lower energy modes which are discarded at an initial time can

have significant impact on the flow dynamics at a later stage. Closure models are needed

to take into account the effect of these unresolved modes.
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(a) Static basis (b) Time dependent basis

Figure 60: The above figure shows the 3D Rössler attractor approximated by a 2D basis.

In the figure on the left the attractor is approximated by a 2D static basis derived from

POD. The figure on the right approximates the attractor using the time-dependent basis.

The basis adapt according to the trajectory of the system at every time instant.

Image courtesy: Michael Donello, Hessam Babaee: “Real-Time Reduced Order Modeling

Using Time Dependent Subspaces”, 72nd Annual Meeting of the APS Division of Fluid

Dynamics, Volume 64, Number 13
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(a) Spatial basis (b) Stochastic basis

Figure 61: The above figure shows a comparison between the spatial and stochastic modes

associated with the DO, BO and the DBO method. The scaling and the orthonormal-

ity/orthogonality conditions imposed on these modes are pictorially represented in the figure.

DO modes are shown in red, BO modes are shown in green and DBO modes are depicted in

blue.
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pures et appliquées, vol. 82, no. 6, pp. 665–683, 2003.

[37] O. Koch and C. Lubich, “Dynamical low-rank approximation,” SIAM Journal on
Matrix Analysis and Applications, vol. 29, no. 2, pp. 434–454, 2007.

[38] H. Babaee, M. Farazmand, G. Haller, and T. P. Sapsis, “Reduced-order description
of transient instabilities and computation of finite-time lyapunov exponents,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 6, p. 063103, 2017.

[39] H. Babaee and T. Sapsis, “A minimization principle for the description of modes
associated with finite-time instabilities,” Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, vol. 472, no. 2186, p. 20150779, 2016.

[40] H. Babaee, M. Choi, T. P. Sapsis, and G. E. Karniadakis, “A robust bi-
orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with
application to stochastic flow problems,” Journal of Computational Physics, vol. 344,
pp. 303–319, 2017.

151



[41] Z. Battles and L. N. Trefethen, “An extension of MATLAB to continuous functions
and operators,” SIAM Journal on Scientific Computing, vol. 25, no. 5, pp. 1743–1770,
2004.

[42] E. Musharbash and F. Nobile, “Dual dynamically orthogonal approximation of in-
compressible navier stokes equations with random boundary conditions,” Journal of
Computational Physics, vol. 354, pp. 135–162, 2018.

[43] H. Babaee, “A scalable observation-driven time-dependent basis for a reduced descrip-
tion of transient systems,” 2019.

[44] M. Choi, T. P. Sapsis, and G. E. Karniadakis, “A convergence study for spdes using
combined polynomial chaos and dynamically-orthogonal schemes,” Journal of Com-
putational Physics, vol. 245, pp. 281–301, 2013.

[45] E. Musharbash and F. Nobile, “Dual dynamically orthogonal approximation of in-
compressible Navier Stokes equations with random boundary conditions,” Journal of
Computational Physics, vol. 354, pp. 135–162, 2018.

[46] P. Patil and H. Babaee, “Real-time reduced-order modeling of stochastic partial dif-
ferential equations via time-dependent subspaces,” Journal of Computational Physics,
p. 109511, 2020.

[47] D. Ramezanian, A. G. Nouri, and H. Babaee, “On-the-fly reduced order modeling
of passive and reactive species via time-dependent manifolds,” Computer Methods in
Applied Mechanics and Engineering, vol. 382, p. 113882, 2021.

[48] X. Wan and G. E. Karniadakis, “An adaptive multi-element generalized polynomial
chaos method for stochastic differential equations,” Journal of Computational Physics,
vol. 209, no. 2, pp. 617–642, 2005.

[49] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition
in the analysis of turbulent flows,” Annual review of fluid mechanics, vol. 25, no. 1,
pp. 539–575, 1993.

[50] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, coherent struc-
tures, dynamical systems and symmetry. Cambridge university press, 2012.

[51] A. Liakopoulos, P. Blythe, and H. Gunes, “A reduced dynamical model of convec-
tive flows in tall laterally heated cavities,” Proceedings of the Royal Society of Lon-

152



don. Series A: Mathematical, Physical and Engineering Sciences, vol. 453, no. 1958,
pp. 663–672, 1997.

[52] D. Rempfer, “On low-dimensional galerkin models for fluid flow,” Theoretical and
Computational Fluid Dynamics, vol. 14, no. 2, pp. 75–88, 2000.

[53] S. Y. Shvartsman and I. Kevrekidis, “Low-dimensional approximation and control of
periodic solutions in spatially extended systems,” Physical Review E, vol. 58, no. 1,
p. 361, 1998.

[54] A. Deane, I. Kevrekidis, G. E. Karniadakis, and S. Orszag, “Low-dimensional models
for complex geometry flows: application to grooved channels and circular cylinders,”
Physics of Fluids A: Fluid Dynamics, vol. 3, no. 10, pp. 2337–2354, 1991.

[55] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based model re-
duction methods for parametric dynamical systems,” SIAM review, vol. 57, no. 4,
pp. 483–531, 2015.

[56] K. Carlberg, M. Barone, and H. Antil, “Galerkin v. least-squares petrov–galerkin
projection in nonlinear model reduction,” Journal of Computational Physics, vol. 330,
pp. 693–734, 2017.

[57] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, “The gnat method for nonlinear
model reduction: effective implementation and application to computational fluid
dynamics and turbulent flows,” Journal of Computational Physics, vol. 242, pp. 623–
647, 2013.

[58] S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via discrete empir-
ical interpolation,” SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 2737–
2764, 2010.
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	(e). Variance error
	(f). Variance error
	4. Burgers' equation with manufactured forcing: The two physical modes and the phase space for the stochastic basis are shown at different times as the simulations progresses. All the methods start from the same initial condition. Each row corresponds to the system at t=0.1,1.2,3.2 and 5.2. It is observed that the low variance mode is affected first and subsequently as the evolution continues the higher variance mode loses its accuracy as well.
	(a). 
	(b). 
	(c). 
	(d). 
	(e). 
	(f). 
	(g). 
	(h). 
	(i). 
	(j). 
	(k). 
	(l). 
	5. Burgers' equation with stochastic forcing: Growth in the eigenvalues as the system evolves. The modes shown in red dotted lines are the unresolved modes i.e., modes which are not included in the simulations. These eigenvalues are obtained by performing Karhunen-Loéve decomposition on the instantaneous samples.
	6. Burgers' equation with stochastic forcing (effect of low variance modes on the accuracy of the solution): It is observed that effectively resolving the modes with lower variance improves the numerical accuracy of the solution. The DO method fails to resolve the lower eigenvalues and hence the error for DO is higher than that of the DBO method.
	(a). Mean error for r=7
	(b). Mean error for r=9
	(c). Variance error for r=7
	(d). Variance error for r=9
	7. Burgers' equation with stochastic forcing (long time integration effects): The 9 dominant modes are used to resolve the system. The mean error and variance error for DBO and DO as compared with PCM are shown in (a) and (b). It is observed that DBO performs better for short time (i.e., till 4 time units). After 4 time units the lower unresolved modes gain variance and the effect of these unresolved modes dominate the error which is equal for both DO and DBO methods.
	(a). Mean error
	(b). Variance error
	8. Burgers' equation with high dimensional stochastic forcing: (a) Convergence of the eigenvalues as the number of modes is increased keeping the sample size (Nr=2880) same. (b) Convergence of eigenvalues for Nr=2880 and Nr=11520 keeping the number of modes (r=9) same.
	(a). Convergence for increased modes
	(b). Convergence for increased samples
	9. Flow over a bump in a channel flow: (a) The schematic of the problem and the mesh for the spectral/hp element. (b) and (c) The y-velocity component of the two dominant POD modes.
	(a). Schematic of the flow 
	(b). First POD mode: y1(x,y)
	(c). First POD mode: y2(x,y)
	10. Flow over a bump in a channel: A comparison between eigenvalues for two reduction orders r=2,3 between KL, DO and DBO. For r=3, it is observed that the DO method is not able to resolve lower modes when the condition number for inverting the covariance matrix is high and it eventually diverges, whereas the DBO does not have the aforementioned issue due to a better condition number for  inversion hence can resolve low variance modes with better accuracy. 
	(a). Reduction size r=2
	(b). Reduction size r=3
	11. Flow over a bump in a channel flow: The spatial modes of DBO and KL for the stochastic flow in a channel with bump are visualized for comparison in the figure above. Column 1: The y(x,t) for different time instants. Column 2, 3 & 4: The three dominant spatial modes for the DBO and KL simulation. Rows 1 and 2 correspond to the DBO and KL spatial modes for t=1 respectively. Rows 3 and 4 correspond to the DBO and KL spatial modes at t=2 respectively. Finally, rows 5 and 6 correspond to the DBO and KL spatial modes at t=3 respectively. 
	12. Linear advection-diffusion equation (i) Dirichlet boundary condition: The first row shows the singular value comparison for KL, DBO and DO methods. The values are compared for three model reduction orders, r=5,7 & 9. The evolution of the values of the modes at the stochastic left boundary are compared in the second row for the three aforementioned methods. 
	13. Linear advection-diffusion equation (i) Dirichlet boundary condition: The global and boundary error comparison is shown in (a) and (b) respectively. The lowest error is obtained using DBO method for r=9. The singular values obtained from DO method for r=9 are riddled with errors. The L2-error for the third, sixth and ninth singular values is compared in (c) for DO and DBO. 
	14. Linear advection-diffusion equation (ii) Neumann boundary condition: The first row shows the singular value comparison for KL, DBO and DO methods, The values are compared for three reduction orders, r=5,7 and 9. The evolution of the values of the modes at the left stochastic boundary are compared in the second row for the three methods. 
	15. Linear advection-diffusion equation (ii) Neumann boundary condition: Error comparison for DBO and DO as compared with the KL solution. The global error, Eg and the boundary error, Eb are shown in (a) and (b) respectively. The lowest error is obtained using DBO method for r=9. The L2-error in the third, sixth and ninth singular value is compared in (c) for DO and DBO. 
	16. Linear advection-diffusion equation (iii) Robin boundary condition: The first row shows the singular value comparison for KL, DBO and DO methods. The values are compared for three reduction orders, r=5,7 & 9. The evolution of the values of the modes at the left stochastic boundary are compared in the second row for the three methods. 
	17. Linear advection-diffusion equation (iii) Robin boundary condition: Error comparison for DBO and DO as compared with the KL solution. The global and boundary error comparison are shown in (a) and (b) respectively. Lowest error is obtained using DBO method for r=9. L2-error in the third, sixth and ninth singular value is compared in (c) for DO and DBO. 
	18. Burgers' equation: The first row shows the singular value comparison for KL, DBO and DO methods. The values are compared for three orders of reduction r=4,6 and 8. The evolution of the values of the modes at the left stochastic boundary are compared in the second row for the three methods.
	19. Burgers' equation: Error comparison for DBO and DO as compared with the KL solution. The global error i.e., Eg and the boundary error i.e., Eb are shown in (a) and (b) respectively. 
	(a). Global Error
	(b). Boundary error
	20. 2D linear case: The figure shows the computational domain for the Nektar computations. The Nektar simulations are used to compute the velocity field used to solver for the temperature equations using the DBO and DO methods. The dotted lines shows the computational domain used for the DBO computations. An inflow boundary condition is enforced at y=5. Outflow boundary is enforced at x=5 and x=-5. All other boundaries are taken to be wall boundary (u,v=0).
	21. 2D linear case: The singular value comparison for KL, DBO and DO methods is shown. The values are compared for three orders of reduction r=3,5 & 7.
	22. 2D linear case: The evolution of the values of the modes at the stochastic Dirichlet boundary at y=0 are compared for DBO and KL.
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	(k). DBO
	(l). KL
	(l). Fourth mode
	(n). DBO
	(o). KL
	(o). Fifth mode
	(q). DBO
	(r). KL
	(r). Sixth mode
	23. 2D linear case: Error comparison for DBO and DO as compared with the KL solution. The figure on the left shows the comparison in the Eg, i.e., global error. The figure on the right shows the comparison for the Eb, i.e., boundary error.
	(a). Global Error
	(b). Boundary Error
	24. 2D linear case: Evolution of the first three spatial modes is shown for t=2.5,5,7.5,10. The first column shows the solution obtained for different time snapshots for the tenth sample. The next three columns show the evolution of the spatial modes as the flow field evolves.
	25. 2D nonlinear case: Error comparison for DBO and DO as compared with the KL solution. The figure on the left shows the comparison in the Eg, i.e., global error. The figure on the right shows the comparison for the Eb, i.e., boundary error.
	(a). Global Error
	(b). Boundary Error
	26. 2D nonlinear case: The singular value comparison for KL, DBO and DO methods is shown. The values are compared for three orders of reduction r=5,7 and 9
	27. 2D nonlinear case: The evolution of the values of the modes for the stochastic Dirichlet boundary at y=0 are compared for DBO and KL.
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	(o). Fifth mode
	(q). DBO
	(r). KL
	(r). Sixth mode
	28. The evolution of the L2-error is plotted for three different reduction orders: r=3,5 and 7. We observe that as the reduction order increases and as the modes capture lower singular values, the L2 error reduces.
	29. The above figure show the evolution of the flow field and the evolution of the x1 and x2 modes at t=5 and 10.
	(a). 
	(b). 
	30. The vorticity field at t=0 is shown. The vortex centers lie at (0.1,0.47) and (0.1,0.53). The vortices have equal and opposite strengths. This vortex dipole configuration induces a velocity to the right on both the vortices and we will see them move to the right as time evolves.
	31. The figure shows the structure of the POD modes for the two cases. The first row shows the shape of the modes for Tobserved=5.5. The second row shows the shape of the modes for Tobserved=11. The first column shows the mean of the snapshots taken. Column 2,3 and 4 show the modes in the order of decreasing energy. We observe that the modes in row 2, occupy more area as compared to the modes in row 1 due to the increase in the time for which the solution is observed.
	32. The TDB evolution of the vortex dipole at t=4,6,8,10 is shown in the figure above. We observe that the dipole convects to the right as time evolves. We also observe the diffusion of the vortices as seen by the increase in the area of the vortices and the decreasing strength of the vortices.
	(a). t=4
	(b). t=6
	(c). t=8
	(d). t=10
	33. The solution obtained from POD for the case where Tobserved=5.5 is shown in the figure above. Since, the POD modes were exposed to the evolution of the vortex till t=5.5, the solution till t=6, is observed to be correct. However, the vortices for t=8,10 show distortion near x2=0.5.
	(a). t=4
	(b). t=6
	(c). t=8
	(d). t=10
	34. The solution obtained from POD for the case where Tobserved = 11 is shown in the figure above. In this case, since the POD modes were exposed to the evolution of the vortex till t=11, the solution is observed to match the DNS solution for all time steps. No vortex distortion is observed.
	(a). t=4
	(b). t=6
	(c). t=8
	(d). t=10
	35. Row one shows the evolution of the modes in the x1 direction. It is observed that as time progressed the modes convect to the right. The second row shows the evolution of the x2 modes for t=2,4,6,8,10. It is observed that the modes in the x2 direction change in amplitude as the diffusion causes the vortices to lose their strength and increase in area. This change in the structure of the vortices is observed from the modes in the x2 direction.
	(a). 
	(b). 
	(c). 
	(d). 
	36. The above figure shows the reduction error vs time for four different reduction orders r=5,10,15,20. It is observed that as the reduction order increases the L2 error of the solution decreases.
	(a). Tobserved=5.5
	(b). Tobserved=11
	37. The initial condition for the vorticity is shown in the figure above. The vortex centers lie at (0.1,0.47) and (0.1,0.53). The vortex at the bottom has strength which is -1.1 times the strength of the vortex at the top. Due to this difference in the strength of the vortices, we expect the evolution of the flow field to be asymmetric.
	38. The figure shows the structure of the POD modes for the two cases. The first row shows the shape of the modes for Tobserved=5.5. The second row shows the shape of the modes for Tobserved=11. The first column shows the mean of the snapshots taken. Column 2,3 and 4 show the modes in the order of decreasing energy. We observe that the modes in row 2, occupy more area as compared to the modes in row 1 due to the increase in the time for which the solution is observed.
	39. The evolution of the flow field of the vortex dipole is shown in the figure above. We observe that the dipole convects to the right as time evolves and diffuses. Due to asymmetry in the strength of the vortices, we also observe an upwards drift of the vortices.
	(a). t=4
	(b). t=6
	(c). t=8
	(d). t=10
	40. The solution obtained from POD for the case where Tobserved=5.5 is shown in the figure above. Since, the POD modes were exposed to the evolution of the vortex till t=5.5, the solution till t=6, is observed to be correct. However, the vortices for t=8,10 show distortion.
	(a). t=4
	(b). t=6
	(c). t=8
	(d). t=10
	41. The solution obtained from POD for the case where Tobserved = 11 is shown in the figure above. In this case, since the POD modes were exposed to the evolution of the vortex till t=11, the solution is observed to match the DNS solution for all time steps. No vortex distortion is observed.
	(a). t=4
	(b). t=6
	(c). t=8
	(d). t=10
	42. The above figure shows the evolution of the first mode in the x1 and x2 direction as time is evolved. As the vortex convects along the x1 direction we observe that the first mode evolves along x1. We also observe the drift in the x2 direction due to unequal vortex strength. 
	(a). 
	(b). 
	(c). 
	(d). 
	43. The above figure shows the reduction error vs time for four different reduction orders r=5,10,15,20. It is observed that as the reduction order increases the L2 error of the solution decreases.
	(a). Tobserved=5.5
	(b). Tobserved=11
	44. The schematic of the temporally evolving jet is shown in the figure above. The domain is considered periodic in both stream-wise and cross-stream directions.
	45. The above figure shows the density flow field at t=2,4 and 6 for TDB and equivalent URDNS. We observe that for TDB (r=40) and it equivalent URDNS 272 show the flow field matching the DNS 896. However for TDB r=30 and r=25 the equivalent URDNS 212 and 232 show divergence after 4 Time Units. The TDB solution for r=25, also shows error in the capturing the higher modes as can be seen in the solution at t=4. The build up in the error in the URDNS due to aliasing can be seen in the solution of URDNS 212 212 along the x2=0.5 center line.
	46. The above figure shows the vorticity flow field at t=2,4 and 6 for DBO and equivalent URDNS. We observe that for DBO (r=40) and its equivalent URDNS 272 show the flow field matching the DNS 896. However for DBO r=30 and r=25 the equivalent URDNS 212 and 232, show divergence after 4 Time Units. The DBO solution for r=25, also shows error in the capturing the higher modes as can be seen in the solution at t=4. The build up in the error in the URDNS due to aliasing error can be seen in the solution of URDNS 212 along the x2=0.5 centerline.
	47. The comparison of singular values for density is shown for different reduction orders with the singular values obtained from the instantaneous SVD of the flow-field.Due to the clustering of the singular values, the figures in row 1 and 2 show the singular values with every second singular value skipped while plotting. Row 1 and 2 show the comparison between the singular values for r=20,30,40,50. Row 3 depicts the error in the singular value 20 for different reduction orders. It is observed that for lower reduction orders the accuracy of the the singular value is low. As more modes are added to the system the accuracy of the singular value is improved.
	(a). r=20
	(b). r=30
	(c). r=40
	(d). r=50
	(e). Errors in singular values
	48. The above figure shows the spectrum for the density at x2=0.5 for TDB (r=50) and its equivalent URDNS 304. The spectrum for DNS 896 is plotted for reference. The spectrums are shown for three different time steps: t=2,4 and 6. It can be observed that while the errors in the TDB can be attributed to the incorrect capturing of the smaller scale structures, the errors in URDNS arise from the aliasing errors due to deficit in the grid resolution. Both the methods capture the large scale structures in the flow properly as can be seen in the spectrum match for wavenumbers <50 for both URDNS and TDB.
	(a). t=2
	(b). t=4
	(c). t=6
	49. The above figure shows the density spectrum for TDB with different reduction sizes: r=30,40,50. The DNS spectrum is also plotted for comparison. The spectrum is shown for three time units: t=2,4,6. We observe that the spectrum improves as the reduction size is increased. All the reduction sizes capture the larger scale structures in the flow correctly as seen in the match of the < 50.
	(a). t=2
	(b). t=4
	(c). t=6
	50. The above figure shows the shape of the first 3 modes at t=2,3 and 4. The shape of the modes adapts to the evolution of the flow field. For example, we observe the shape of the first mode in x2-direction changes as the width of the jet increases. This width change in the shape of the jet is reflected in the shape of the first three x2-modes.
	51. The above figure shows the evolution of the shape of the first x2-mode according to the evolution of the flow field. The first mode increases in width with the evolution of the jet. 
	52. The above figure shows the evolution of the shape of the second x1-mode according to the evolution of the flow field. As the vortices evolve and merge the seemingly sinusoidal-type structure of the mode is disrupted for t>4.
	53. The above figure shows the L2-error obtained from the DBO flow field and the DNS solution. The time-evolution of error for four different reduction orders i.e., r=20,30,40,50 is plotted. It is observed that as the reduction order i.e., the number of modes are increased the error is reduced.
	54. The schematic of the 3D temporally evolving jet is shown in the figure above. The domain is considered periodic in all the three directions.
	55. The above figure shows the density flow field at t=5,7 and 9 and x3=(0.1,0.5,0.9). The results are shown for DBO simulations for three different reduction orders of r2 which are 20,40 and 60. The top row shows the results for the DNS simulation for the grid size 25625664.We observe that the flow field errors are reduced as the reduction order is increased in the x2-direction. The under-resolved DNS results are not showed for comparison as all of those results diverge for the given reduction orders. 
	56. The above figure shows the density flow field at t=5,7 and 9 and x1=(0.1,0.5,0.9). The results are shown for DBO simulations for three different reduction orders of r2 which are 20, 40  and  60 and their equivalent under-resolved DNS. The top row shows the results for the DNS simulation for the grid size 25625664. We observe that the flow field errors are reduced as the reduction order is increased in the x2-direction. The under-resolved DNS results are not showed for comparison as all of those results diverge for the given reduction orders. 
	57. The above figure shows a comparison between the singular values obtained from the time dependent basis and the singular values obtained from instantaneous SVD values of the density flow field. Due to the clustering of the singular values, the figures show the singular values with every second singular value skipped while plotting. The values are plotted for three different reduction orders r2=20,40,60. The accuracy of the singular values in x2 direction improves as the reduction order is increased
	(a). r=20
	(b). r=40
	(c). r=60
	(d). Error in singular values
	58. The above figure shows the L2-error obtained from the DBO flow field and the DNS solution. The figure shows the time-evolution of error for different reduction orders. It is observed that as the reduction order i.e., the number of modes are increased the error is reduced. 
	59. Dynamically bi-orthonormal decomposition for flow over a bump in a channel in chaotic regime: (a) The growth of the small perturbations in the forcing measured by the horizontal viscous shear force on the walls. The signals are observed to completely diverge after t=116. (b) The growth in the eigenvalues of the DBO system with r=2 and the eigenvalues of the Karhunen-Loéve decomposition.
	(a). Chaos test
	(b). 2 Modes eigenvalue comparison
	60. The above figure shows the 3D Rössler attractor approximated by a 2D basis. In the figure on the left the attractor is approximated by a 2D static basis derived from POD. The figure on the right approximates the attractor using the time-dependent basis. The basis adapt according to the trajectory of the system at every time instant. Image courtesy: Michael Donello, Hessam Babaee: ``Real-Time Reduced Order Modeling Using Time Dependent Subspaces'', 72nd Annual Meeting of the APS Division of Fluid Dynamics, Volume 64, Number 13
	(a). Static basis
	(b). Time dependent basis
	61. The above figure shows a comparison between the spatial and stochastic modes associated with the DO, BO and the DBO method. The scaling and the orthonormality/orthogonality conditions imposed on these modes are pictorially represented in the figure. DO modes are shown in red, BO modes are shown in green and DBO modes are depicted in blue.
	(a). Spatial basis
	(b). Stochastic basis
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