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With the rapid advances in computing and information technologies, traditional access

control models have become inadequate in terms of capturing fine-grained, and expressive

security requirements of newly emerging applications. An attribute-based access control

(ABAC) model provides a more flexible approach to addressing the authorization needs of

complex and dynamic systems. An ABAC model grants access to a requester based on

attributes of entities in a system and an authorization policy; however, its generality and

flexibility come with higher costs: the costs of policy development, enforcement, and mainte-

nance. Hence, while organizations are interested in employing newer authorization models,

migrating to such models poses a significant challenge. Many large-scale businesses need

to grant authorizations to their user populations that are potentially distributed across dis-

parate and heterogeneous computing environments. Each of these computing environments

may have its own access control (AC) model. The manual development of a single policy

framework for an entire organization is tedious, costly, and error-prone. Further, the in-

creasing complexities of organizational systems and the need for federated access to their

resources make the task of AC enforcement and management much more challenging. In

addition, policy misconfigurations that hinder the effectiveness of AC systems expose an

organization to various security threats.

In this dissertation, we propose approaches and methods that facilitate ABAC policy

Design and management. In particular, (i) we propose a methodology for automatically

learning ABAC policy rules from access logs of a system to simplify the policy development

process. The proposed approach employs a clustering-based algorithm for detecting patterns

in access logs and extracting ABAC authorization rules from these patterns. In addition, we

propose two policy improvement algorithms, including rule pruning and policy refinement

algorithms to generate a higher quality mined policy. Further, (ii) we propose an adaptive
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ABAC policy learning approach to automate the authorization management task. We model

ABAC policy learning as a reinforcement learning problem. In particular, we propose a

contextual bandit system, in which an authorization engine adapts an ABAC model through

a feedback control loop; it relies on interaction with users/administrators of the system to

receive their feedback that assists the model in making authorization decisions. We propose

four methods for initializing the learning model and a planning approach based on attribute

value hierarchy to accelerate the learning process. In addition, (iii) we propose a machine

learning based approach for detecting ABAC policy misconfiguration and refining ABAC

policy rules in order to enhance the quality of policy and prevent system exploitation. We

then evaluate our proposed methods and approaches by implementing a prototype of the

ABAC policy extraction method, the adaptive ABAC policy learning framework, and the

ABAC policy misconfiguration detection and tuning approach.
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1.0 Introduction

Access control systems are critical components of information systems that help protect

information resources from unauthorized access. Various access control models and ap-

proaches have been proposed in the literature including Discretionary Access Control (DAC)

[53] [25], Mandatory Access Control (MAC) [9] [51], and Role-Based Access Control (RBAC)

[52]. However, with the rapid advances in newer computing and information technologies

(e.g., social networks, Internet of Things (IoT), cloud/edge computing, etc.), existing access

control (AC) approaches have become inadequate in providing flexible and expressive autho-

rization services [20]. For example, a healthcare environment requires a more expressive AC

model that meets the needs of patients, healthcare providers as well as other stakeholders in

the healthcare ecosystem [32, 34]. Attribute Based Access Control (ABAC) models present

a promising approach that addresses newer challenges in emerging applications [28].

An ABAC approach grants access rights to users based on attributes of entities in the

system (i.e., user attributes, object attributes, and environmental conditions) and a set of

authorization rules. An ABAC model provides an increased level of flexibility that promotes

information system security [28]. It has been considered as a recommended AC model in the

federal identity credential and access management roadmap and implementation guidance

[15]. However, an ABAC approach comes with some costs: the costs of policy development,

enforcement, and maintenance. In this dissertation, we aim to provide solutions to such

complex issues.

In this dissertation, we propose an ABAC policy design and management framework

shown in Figure 1 that can be employed by organizations by integrating it with their infor-

mation systems. We assume that, when migrating to an ABAC model, there is an access log

available from the former AC model of the system which will be used for extracting ABAC

policy rules. In such access logs, each access tuple corresponds to an access request and the

authorization decision of the system for this request based on the former policy. Using the

available access log, we will extract the corresponding policy rules. The extracted policy

rules will be pruned/refined in multiple rounds to reach the desired policy quality.

1
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Figure 1: Overview of ABAC Policy Design and Management Framework
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Emerging and modern computing and information systems are dynamic and highly in-

terconnected. The authorization needs of the users and the attributes of the entities in the

environment evolve rapidly. An established ABAC authorization system can become out-

dated quickly in such a dynamic environment requiring continuous maintenance. Manual

revision and modification of policy rules is a cumbersome and error-prone task. To address

such challenges, a system needs to employ an adaptive access control approach that learns

to revise/modify authorization rules based on the feedback provided by the users. Such an

authorization framework shows promise in providing a usable and effective access control so-

lution for complex environments. To accelerate the learning process, the system may utilize

a knowledge base including hierarchies over attribute values and apply a planning method

exercising such hierarchies.

A dynamic and complex system can not completely rely on users’ feedback for revising

and modifying the outdated/defective ABAC policy authorization rules. It is also important

to have a comprehensive mechanism for automatically detecting and correcting misconfig-

urations in an AC policy. Such a system can employ AI/ML based approaches to discover

anomalies in an access log and amend ABAC policy rules accordingly.

1.1 Challenges and Motivations

In this section, we discuss the motivation for this dissertation and present the challenges

that need to be addressed and the problem statement. Although organizations and de-

velopers are interested in employing the next-generation AC models, adopting such policy

frameworks poses a significant challenge. Many large organizations need to grant authoriza-

tions to their huge user populations distributed across different policy domains, including

legacy systems. Each of these policy domains may have its own AC model. The man-

ual development of a single policy for the entire organization is a tedious and error-prone

process. Policy Mining techniques have been proposed in the literature to address such

challenges to help organizations cut the cost, time, and errors during policy development

and management. Policy mining algorithms ease the migration to more recent/appropriate

3



authorization models by completely (or partially) automating the process of constructing

AC policies. However, the existing research suffers from several limitations, as follows:

• First, the existing approaches do not support mining authorization rules with negative

filters. An ABAC policy rule can be comprised of a set of positive and negative filters.

Negative filters are useful in scenarios when an exception needs to be expressed. For

example, a healthcare provider can express the following rule using a negative attribute

filter: “A nurse can read a patient’s record except for payment purposes." Using negative

filters in rule expressions helps create a more concise authorization policy.

• Secondly, some proposed approaches such as in [68, 29] are unable to mine a high-

quality policy when the given access log is not complete in the sense that every possible

combination of attribute values is not included in the access log.

• Third, the proposed approaches are unable to mine a policy from noisy access logs con-

taining over-assignments and under-assignments [41, 14]. Having noisy access records is

a common problem in evolving domains such as IoT or social networks [40]. It is essential

that an ABAC policy miner should be capable of handling a reasonable amount of noise

to be applicable to real-world applications.

• Last but not least, the existing approaches do not include techniques for improving the

mined policy after the first round of policy extraction. In addition, in scenarios where

the authorization policies may change over time (such as in social networks with the

addition and removal of various features), these approaches do not provide any guidelines

for adjusting the policy. This makes the practical deployment of these approaches very

difficult.

Furthermore, none of the existing work addresses these issues in an integrated way.

Hence, some key challenges are

challenge 1. How can an ABAC policy learning approach extract ABAC policy rules that

contain both positive and negative attribute filters and relation conditions/constraints?

challenge 2. How can an ABAC policy learning approach be effective even with an incom-

plete set of access logs and in presence of noise?

4



challenge 3. How to measure the quality of the extracted ABAC policy in terms of its

correctness and conciseness?

challenge 4. How to refine the extracted ABAC policy based on the available false positive

and false negative records to improve its quality?

Although ABAC has been shown to be superior to other existing models in many respects,

its generality and flexibility come at a higher cost. ABAC models can be much more complex

than other AC models. Furthermore, the increasing complexities of organizational systems

and the need for federated access to their resources make the adoption of ABAC and related

AC management tasks much more challenging.

Recent research efforts have been focused on exploring Artificial Intelligence (AI) and

Machine Learning (ML) based approaches for developing and managing ABAC authorization

systems, ranging from mining ABAC policies from access logs [35, 29, 33] to extracting such

policies using deep learning (DL) algorithms [43] and employing natural language processing

(NLP) tools for automating policy development and enforcement [4]. While supervised

learning algorithms seem to be an option for ABAC policy development and management,

they suffer from several limitations. First of all, supervised learning algorithms, especially DL

algorithms, require a huge amount of labeled data showing which access requests should be

permitted and which ones should be denied. Acquiring such labeled data is time-consuming

and expensive and in some situations may not even be possible. Second, emerging and

future computing and information systems are dynamic and highly interconnected. The

authorization needs of the users and the attributes of the entities in the environment evolve

rapidly. A supervised learning approach is incapable of adjusting to such dynamic settings

or it needs a new set of labeled data to restart the learning process. Last but not the least, in

most situations, the available access logs are often sparse and/or contain only partial activity

logs, and hence, lack information about all possible access requests and the authorization

decisions of the system for them. As a result, an ABAC model learned by a supervised

learning algorithm over such data performs poorly in a real, constantly evolving system

when encountering a new type of access request. We believe that an adaptive access control

approach that learns authorization rules from feedback provided by the users is a promising
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solution. Reinforcement Learning (RL) provides a suitable infrastructure for such adaptive

authorization. Here, the key challenges are as follows:

challenge 5. How can an RL-Based ABAC policy development and management approach

adapt itself in a very dynamic and complex environment where the authorization needs of

users and other system characteristics evolve rapidly?

challenge 6. How can an ABAC policy learning approach effectively learn policy rules given

appropriate feedback from the users of the system?

challenge 7. How can an RL-Based ABAC policy development approach accelerate the learn-

ing process?

In addition, the complexity of the ABAC model makes the manual detection and res-

olution of policy misconfiguration a very challenging task. ABAC policy misconfigurations

have been a focus of several recently proposed approaches [27, 18, 19]. Such approaches

aim to detect different types of anomalies in ABAC policy configuration by analyzing either

the ABAC policy rules or the corresponding access logs. However, these approaches have

several key limitations. The approach proposed in [27] only focuses on ABAC policy rules

for detecting anomalies and they do not consider access logs in their analysis. Analyzing

ABAC policy rules on their own and without considering the generated access logs may not

reveal all possible misconfigurations. On the other hand, methods proposed in [18, 19] only

focus on access logs for detecting policy anomalies. Access logs are often huge and analyzing

them without considering the corresponding authorization rules is computationally expen-

sive. In addition, all the existing solutions are designed for one-time anomaly detection of

authorization policies. They do not account for updates in policy rules or the attributes

of entities in the system. However, modern information systems evolve rapidly, from the

addition of new attributes and attribute values to the updates in authorization rules. Hence,

the anomaly detection process needs to be an ongoing procedure in current systems. Here,

the key challenges are as follows:

challenge 8. What are run-time policy misconfigurations and how are they different from

design-time policy misconfigurations?

challenge 9. How can we efficiently detect run-time policy misconfigurations?
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challenge 10. How can we refine the ABAC policy rules to prevent run-time policy miscon-

figurations?

1.2 Organization

The rest of the dissertation proposal is organized as follows. In Chapter 2, we review

the closely work related to the dissertation. In Chapter 3, we present the proposed auto-

matic ABAC policy extraction method from access logs and compare it against the proposed

approaches in the literature. In Chapter 4, we propose an adaptive ABAC policy learn-

ing approach using a Reinforcement Learning framework. In Chapter 5, we propose the

ABAC policy misconfiguration discovery and resolution framework. Finally, in Chapter 6,

we present the conclusions and future work.
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2.0 Related Work

In this chapter, we present the related work relevant to this dissertation. We begin by

presenting background on policy learning approaches (section 2.1). Then, we present adaptive

authorization models (section 2.2). Finally, we introduce some background information on

ABAC policy misconfiguration detection and resolution (section 2.3).

2.1 Policy Learning Approaches

As RBAC became popular, many organizations decided to equip their information sys-

tems with a more recent access control model, however, migrating to RBAC from legacy

access control systems was a huge obstacle for such environments. As a result, several

researchers have addressed such a challenge by introducing automated role extraction algo-

rithms [46, 65, 36, 54, 61, 62, 69, 24, 45, 59, 48]. Role engineering or role mining are the

terms that have been used to refer to procedures to extract an optimal set of roles given

user-permission assignments.

Xu and Stoller are the first to propose various algorithms for mining ABAC policies

from different given input data including RBAC policy [66], access logs [67], and access

control list [68] plus attribute information. Their policy mining algorithms iterate over

access control tuples (generated from available information, e.g., user permission relations

and attributes) and construct candidate rules. They then generalize the candidate rules by

replacing conjuncts in attribute expressions with constraints. The main limitation of these

algorithms is that as they are based on heuristic approaches, the proposed techniques work

well for simple and small-scale AC policies, however, as the number of rules in the policy

and the number of elements in each rule increases, they do not perform well (The analysis

of their proposed algorithm is discussed in Section 3.4 in more details).

Following Xu and Stoller’s proposed method, Medvet et al. in [41] propose a multi-

objective evolutionary algorithm for extracting ABAC policies. The proposed approach is
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a separate and conquer algorithm, in each iteration of which, a new rule is learned and the

set of access log tuples becomes smaller. Their algorithm employs several search-optimizing

features to improve the quality of the mined rules. Although their approach is a multi-

objective optimization framework which incorporates requirements on both correctness and

expressiveness, it suffers from the same issue as the approach proposed in [68].

Iyer and Masoumzadeh [29] propose a more systematic, yet heuristic ABAC policy mining

approach which is based on the rule mining algorithm called PRISM. Although their proposed

approach is the first to extract both positive and negative authorization rules, it inherits

shortcomings associated with PRISM that includes dealing with a large dimensionality of

the search space of attribute values and generation of a huge number of rules. Further, their

proposed algorithm needs a complete dataset as the given input, meaning that every possible

combination of attribute values has to be included in the access log which is not feasible in

real-world scenarios.

Cotrini et al. propose an algorithm called Rhapsody for mining ABAC rules from sparse

logs [14]. Their proposed approach is built upon subgroup discovery algorithms. They

define a novel metric, reliability which measures how overly permissive an extracted rule is.

In addition, they propose a universal cross-validation metric for evaluating the mined policy

when the input log is sparse. However, their algorithm is not capable of mining policies from

logs with a large number of attributes as the number of extracted rules grow exponentially

with respect to the number of available attributes.

Jabal et al. in [30] first employ an association rule mining (ARM) algorithm called Apriori

[2] to extract the associations between users and resources in the access log and extract the

ground rules based on these associations. In the next step, they propose a statistical-based

approach for generalizing such policy rules. They also employ an ML classifier to classify

the records that were not covered by the extracted rules. Their proposed approach tries to

generate ABAC policies that are complete and correct, however, they do not bring the size of

such extracted policies into consideration. Hence, their method generates complex policies

for real-world scenarios where a typical system contains a large number of users, resources,

and corresponding attributes.
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2.2 Adaptive Authorization Models

With rapid advances in computing systems, there is an increasing demand for more

effective and efficient access control (AC) approaches. Further, the increasing complexities

of organizational systems and the need for federated access to their resources make the task

of AC management much more challenging. The manual management and maintenance of

authorization systems are time-consuming and error-prone. There has been a number of

studies on adaptive access control models in which the access control models are adjusted

based on users’ activity and other changes in the system.

Frias-Martinez et al. [22] are the first to introduce behavior-based access control (BB-

NAC) policy where authorization mechanism is based on users’ behavior profiles. The au-

thorization policies are automatically generated and updated over time in order to adapt to

behavioral changes. However, BB-NAC is based on manually pre-defined clusters of behavior

that requires human intervention. Later, Frias-Martinez et al. in [21] present an enhanced

version of the BB-NAC mechanism that automatically creates clusters of behaviors and pro-

pose an incremental learning algorithm to update the behavior-based access control policies.

However, the generated models do not appropriately distinguish the behavioral patterns of

different types of users.

Baracaldo and Joshi [7] incorporate risk and trust assessment in RBAC so the framework

adapts to suspicious shifts in users’ behavioral patterns by removing privileges when users’

trust score is lower than a threshold. Such threshold is calculated based on a risk assessment

process. They compute the risk values associated with permissions and roles by modeling

a Coloured Petri-net. In their proposed approach, a user can activate a role if he has the

minimum trust score that is required for that role.

Marinescu et al. [40] propose an approach for detecting authorization bugs in an online

social network system and blocking access attempts that try to exploit such bugs. Their

proposed approach learns authorization rules from data manipulation patterns and enforces

such rules to prevent unauthorized access before code fixes are deployed.

Argento et al. [6] propose an adaptive access control model that exploits users’ behavioral

patterns to narrow their permissions when anomalous behavior is detected. Their approach
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is based on Machine Learning techniques that dynamically refine ABAC policies to prevent

exploitation of policy misconfigurations.

Al-Ali et al. [3] propose a self-adaptive authorization architecture in which a dynamic

security adaptation controller updates the security rules of the system to adjust to the current

system’s situation.

2.3 ABAC Policy Misconfiguration Detection and Resolution

Policy misconfigurations may lead to a compromise of a system by permitting unau-

thorized access or denying legitimate ones. Moffett and Sloman in [44] analyze different

kinds of overlap between policies which correspond to several types of policy conflicts. The

main four categories include conflict of modality (positive/negative conflict), conflict between

imperative and authority, conflict of priorities, and conflict of duties. Existing studies on ac-

cess control policy misconfigurations focus on two types of anomalies in policy specification:

policy rules conflicts and policy redundancy.

Hu et al. in [27] propose a policy-based segmentation technique that identifies policy

anomalies and resolves them. Based on this technique, they divide the authorization space

defined by an XACML policy into a set of disjoint segments. They identify an overlap

relation (either conflicting or redundant) between XACML components associated with each

segment. They also propose a policy conflict resolution strategy to resolve the identified

anomalies.

El Hadj et al. in [18] propose a clustering-based approach for analyzing ABAC policy

rules for detecting redundancy and conflicts between them. They first cluster authorization

rules based on a rule similarity measure and then check for conflicting and redundant rules

in each cluster.

El Hadj et al. in [19] propose a clustering-based approach for analyzing access logs to

detect ABAC policy rules conflicts. Their proposed method first decomposes access logs into

clusters and then analyzes each cluster separately. For each cluster, they find a cluster repre-

sentative which later will be used for detecting contradicting access records (contradictions).
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To detect conflicting policy rules, they first obtain a set of suspicious rules by analyzing

contradictions and then find the conflicting rules from such set.
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3.0 An Automatic Attribute-Based Access Control Policy Extraction from

Access Logs

In this chapter, we present our clustering-based approach to extracting ABAC policy

rules that contain both positive and negative attribute filters as well as positive and neg-

ative relation conditions. The proposed policy learning approach is effective even with an

incomplete set of access logs and in presence of noise. As part of the proposed ABAC policy

learning approach, we propose the rule pruning and policy refinement algorithms to enhance

the quality of the mined policy and ease its maintenance. Finally, we propose a policy quality

metric based on policy correctness and conciseness to be able to compare different sets of

mined policy rules and select the best one based on the given criteria.

The rest of the chapter is organized as follows. In Section 3.1, we overview the ABAC

model and its policy language as well as the unsupervised learning algorithm. In Section 3.2,

we define the ABAC policy extraction problem, discuss the related challenges, and introduce

the metrics for evaluating the extracted policy. In Section 3.3, we present the proposed

ABAC policy extraction approach. In Section 3.5, we present the evaluation of the proposed

approach on various sets of policies. Finally, Section 3.6 concludes the chapter.

3.1 Background

In this section, we overview ABAC, the ABAC policy language, and the unsupervised

learning algorithm.

3.1.1 ABAC Model

In 2013, NIST published a “Guide to ABAC Definition and Consideration" [28], accord-

ing to which, “the ABAC engine can make an access control decision based on the assigned

attributes of the requester, the assigned attributes of the object, environment conditions, and a

13



set of policies that are specified in terms of those attributes and conditions.” Throughout the

paper, we use user attributes, object attributes, and session attributes to refer to the attributes

of the requester, attributes of the object, and the environmental attributes/conditions, re-

spectively.

Accordingly, U , O, S, OP are sets of users, objects, sessions, and operations in a system,

and user attributes (Au), object attributes (Ao), and session attributes (As) are mappings

of subject attributes, object attributes, and environmental attributes as defined in the NIST

Guide [28]. E = U ∪O∪S and A = Au∪Ao∪As are the sets of all entities and all attributes

in the system, respectively.

Definition 1. (Attribute Range [68]). Given an attribute a ∈ A, the attribute range Va

is the set of all valid values for a in the system.

Definition 2. (Attribute Function [68]). Given an entity e ∈ E, an attribute function

fa_e is a function that maps an entity to a specific value from the attribute range. Specifically,

fa_e(e, a) returns the value of attribute a for entity e.

Example 1. fa_e(John, position) = faculty indicates that the value of attribute position for

user John is faculty.

Example 2. fa_e(dep1, crs) = {cs101, cs601, cs602} indicates that the value of attribute crs

for object dep1 is a set {cs101, cs601, cs602}.

Each attribute in the system can be a single-valued (atomic) or multi-valued (set). In

Example 8 position is a single-valued attribute while crs is a multi-valued attribute in Ex-

ample 9. For simplicity, we only consider atomic attributes in this work. Actually, the

process of extracting ABAC policy with multi-valued attributes is exactly the same as that

with atomic attributes, however, we need to pre-process data to convert each multi-valued

attribute to a set of atomic attributes. This can be done using various techniques such as

defining dummy variables [56], 1-of-K scheme [10], etc. At the end of the process and when

policy rules are extracted, we need one more step to convert back atomic attribute filters to

the corresponding multi-valued attribute filters.

Attribute filters are used to denote the sets of users, objects, and sessions to which an

authorization rule applies.
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Definition 3. (Attribute Filter). An attribute filter is defined as a set of tuples F =

{⟨a, v|!v⟩| a ∈ A and v ∈ Va}. Here ⟨a, v⟩ is a positive attribute filter tuple that indicates a

has value v, and ⟨a, !v⟩ is a negative attribute filter tuple that indicates a has any value in

its range except v.

Example 3. Tuple ⟨label, !top-secret⟩ points to all entities in the system that do not have

“top-secret" as their security label “label".

Definition 4. (Attribute Filter Satisfaction). An entity e ∈ E satisfies an attribute

filter F , denoted as e |= F , iff

∀⟨ai, vi⟩ ∈ F : fa_e(e, ai) = vi ∧

∀⟨ai, !vi⟩ ∈ F : fa_e(e, ai) ̸= vi.

Example 4. Suppose Au = {dept, position, courses}. The set of tuples FU = {⟨dept, CS⟩,

⟨position, grad⟩} denotes a user attribute filter. Here, the graduate students in the CS de-

partment satisfy FU .

Definition 5. (Relation Condition). A relation condition is defined as a set of tuples

R = {⟨a, b|!b⟩| a, b ∈ A ∧ a ̸= b}. Here ⟨a, b⟩ is a positive relation condition tuple that

indicates a and b have the same values, and ⟨a, !b⟩ is a negative relation condition tuple that

indicates a and b do not have the same values.

A relation is used in a rule to denote the equality condition between two attributes of

users, objects, or sessions. Note that the two attributes in the relation condition must have

the same range.

Definition 6. (Relation Condition Satisfaction). An entity e ∈ E satisfies a relation

condition R, denoted as e |= R, iff

∀⟨ai, bi⟩ ∈ R : fa_e(e, ai) = fa_e(e, bi)

∀⟨ai, !bi⟩ ∈ R : fa_e(e, ai) ̸= fa_e(e, bi).

Definition 7. (Access Request). An access request is a tuple q = ⟨u, o, s, op⟩ where user

u ∈ U sends a request to the system to perform operation op ∈ OP on object o ∈ O in session

s ∈ S.
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Definition 8. (Authorization Tuple/Access Log). An authorization tuple is a tuple

t = ⟨q, d⟩ containing decision d made by the access control system for request q. An Access

Log L is a set of such tuples.

The decision d of an authorization tuple can be permit or deny. The tuple with permit

decision means that user u can perform an operation op on an object o in session s. The

authorization tuple with deny decision means that user u cannot perform operation op on

object o in session s.

An access log is a union of Positive Access Log, L+, and Negative Access Log, L−, where:

L+ = {⟨q, d⟩|⟨q, d⟩ ∈ L ∧ d = permit},

and

L− = {⟨q, d⟩|⟨q, d⟩ ∈ L ∧ d = deny}.

Definition 9. (ABAC Rule [68]). An access rule ρ is a tuple ⟨F ,R, op|!op⟩, where F is an

attribute filter, R is a relation condition, and op is an operation. !op is a negated operation

that indicates the operation can have any value except op.

Example 5. Consider rule ρ1 = ⟨{⟨position, student⟩, ⟨location, campus⟩, ⟨type, article⟩},

{⟨deptu, depto⟩}, read⟩. It can be interpreted as “A student can read an article if he/she is

on campus and his/her department matches the department of the article".

Definition 10. (Rule Satisfaction) An access request q = ⟨u, o, s, op⟩ is said to satisfy a

rule ρ, denoted as q |= ρ, iff

⟨u, o, s⟩ |= F ∧ ⟨u, o, s⟩ |= R∧ opq = opρ.

Definition 11. (ABAC Policy [68]). An ABAC policy is a tuple π = ⟨E,OP,A, fa_e,P⟩

where E, OP , A, and P are sets of entities, operations, attributes, and ABAC rules in the

system and fa_e is the attribute function.

Definition 12. (ABAC Policy Decision). The decision of an ABAC policy π for an

access request q denoted as dπ(q) is permit iff:

∃ρ ∈ π : q |= ρ
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otherwise, the decision is deny.

If an access request satisfies a rule of the access control policy, then the decision of the

system for such access request is permit. If the access request does not satisfy any rule in

the access control policy then the decision of the system for such access request is deny.

Table 1 summarizes the notations used in this chapter.

3.1.2 Policy Learning Algorithm

Policy learning algorithms try to infer a function that describes the structure of au-

thorization data. In particular, given a set of authorization tuples, we employ a learning

approach to mine and extract an ABAC policy that has high quality. ABAC policy extrac-

tion, in this case, can be considered as a mapping between authorization tuples to a set of

clusters that are representative of the desired ABAC rules. Such a mapping can be expressed

as a function, h : X → Y , where:

1. X is a set of authorization tuples (i.e., access log).

2. Y is a set of numbered labels (i.e., cluster labels, each cluster corresponding to a rule of

the ABAC policy π).

The goal is then to learn the function h with low clustering error and mine the desired

policy that has high quality.

3.2 Problem Definition

3.2.1 ABAC Policy Extraction Problem

Although organizations are interested in employing an ABAC model, adopting it is a big

challenge for them. The manual development of such a policy is tedious and error-prone.

Policy Mining techniques have been proposed to address such challenges in order to reduce

the cost, time, and error of policy development/maintenance. ABAC policy mining algo-
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Table 1: Notations

Notation Definition

U ,O, S, OP Sets of users, objects, sessions, and operations
Au, Ao, and As Sets of user attributes, object attributes, and

session attributes
E = U ∪O ∪ S Set of all entities

A = Au ∪Ao ∪As Set of all attributes
Va Attribute Range: set of all valid values for a ∈ A

fa_e(e, a) Attribute Function: a function that maps an entity e ∈ E
to a value from Va

F = {⟨a, v|!v⟩| a ∈ A ∧ v ∈ Va} Attribute Filter
R = {⟨a, b⟩| a, b ∈ A ∧ a ̸= b ∧ Va = Vb} Relation Condition

q = ⟨u, o, s, op⟩ Access Request
t = ⟨q, d⟩ Authorization Tuple, showing decision d made by the system

for request q
L Access Log, set of authorization tuples

L+ = {⟨q, d⟩|⟨q, d⟩ ∈ L ∧ d = permit} Positive Access Log
L− = {⟨q, d⟩|⟨q, d⟩ ∈ L ∧ d = deny} Negative Access Log

ρ = ⟨F ,R, op|!op⟩ ABAC Rule
P Set of all policy rules

π = ⟨E,OP,A, fa_e,P⟩ ABAC Policy
dπ(q) The decision of an ABAC policy π for an access request q

TPπ|L, FPπ|L, TNπ|L, and FNπ|L Relative True Positive, False Positive, True Negative, and
False Negative Rates

ACCπ|L Relative Accuracy Rate
F -scoreπ|L Relative F-score
WSC(π) Weighted Structural Complexity of policy π
Qπ Policy Quality Metric
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rithms ease the migration to the ABAC framework by completely (or partially) automating

the development of ABAC policy rules.

The primary input to a policy mining algorithm is the log of authorization decisions in

the system. The log indicates authorization decision (i.e., permit or deny) for any given

access request by a user of the system. For ABAC policy mining, such a log is accompanied

by attributes of entities involved in the log entries. The goal of a policy mining algorithm is

to extract ABAC policy rules from access logs that have high quality with respect to some

quality metrics (e.g., policy size and correctness).

We define the ABAC policy extraction problem formally as follows:

Definition 13. (ABAC Policy Extraction Problem). Let I =< E,OP,A, fa_e,L >,

where the components are as defined earlier, then the ABAC policy extraction problem is to

find a set of rules R such that the ABAC policy π =< E,OP,A, fa_e,R > has high quality

with respect to L.

3.2.2 Challenges and Requirements

For an ABAC policy extraction approach to be applicable to a wide range of real-world

scenarios, we identify the following challenges and requirements:

1. Correctness of Mined Policy : The mined policy must be consistent with the original

authorization log in that the access decision of the mined policy must result in the same

access decision of the log entry. An inconsistent extracted policy may result in situa-

tions in which an originally authorized access is denied (more restrictive) or originally

unauthorized access is permitted (less restrictive) by the system.

2. Complexity of Mined Policy : The policy mining algorithm should endeavor to extract a

policy that is as concise as possible. Since the policy rules need to be manipulated by

human administrators, the more concise they are, the more manageable and easier to

interpret they would be. In addition, succinct rules are desirable as they are easier to

audit and manage.

3. Negative Attribute Filters : The ABAC policy mining solution should support both posi-

tive and negative attribute filters which will result in more concise and manageable mined
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policy.

4. Relation Conditions : The solution should support the extraction of relation conditions

for policy mining in order to generate a more concise and manageable mined policy.

5. Sparse Logs : In the real world, the access log that is input to the policy mining algorithm

may be sparse, representing only a small fraction of all possible access requests. The

policy mining algorithm must be able to extract useful rules even from a sparse log.

6. Mining Negative Authorization Rules : An ABAC policy can contain both positive and

negative rules which permit or deny access requests, respectively. The use of negative

rules is helpful in situations where specifying exceptions to more general rules is impor-

tant. Including negative policy rules would help in generating a more concise ABAC

policy. Thus, the policy mining algorithm should be able to extract both positive and

negative authorization rules.

7. Noisy Authorization Log : In the real world and with complex and dynamic information

systems, it is possible to have a noisy authorization log consisting of over-assignments

and under-assignments. These issues occur either due to a wrong configuration of the

original authorization system or improper policy updates by administrators. The policy

mining algorithm should be capable of extracting meaningful rules even in presence of

an acceptable amount of noise in the input access log.

8. Dynamic and Evolving Policies : Modern information systems are often dynamic. The

authorization needs of these systems and the attributes of the entities in the environment

evolve rapidly. These changes will result in over-assignments or under-assignments. The

proposed method should employ a mechanism to support the dynamicity of the infor-

mation systems and their authorization policies and ease the maintenance of evolving

systems.

Our proposed approach addresses all the requirements except the sixth one. Meaning

that, for simplicity, we only focus on positive authorization rules, although, the proposed

framework can be extended to extract both positive and negative AC rules. Positive AC rules

are extracted from the permitted access requests and negative AC rules are extracted from

the denied ones. However, the important step is to distinguish between the requests that
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Table 2: State-of-the-art ABAC Rule Mining Techniques

Xu et al. [68] Medvet et al. [41] Iyer et. al [29] Cotrini et al. [14] Proposed Approach

Policy Correctness ✓ ✓ ✓ ✓ ✓
Policy Complexity ✓ ✓ ✓ ✓ ✓
Negative Attribute Filters ✗ ✗ ✗ ✗ ✓
Relation Conditions ✓ ✓ ✓ ✗ ✓
Sparse Logs ✗ ✓ ✗ ✓ ✓
Negative Authorization Rules ✗ ✗ ✓ ✗ ✗
Noisy Authorization Log ✓ ✗ ✗ ✗ ✓
System Dynamicity ✗ ✗ ✗ ✗ ✓

were denied by an AC rule and the ones that were denied because they were not permitted

by any rule.

Table 2 shows the challenges that are addressed by our proposed approach and how it

improves upon the state-of-the-art policy mining techniques.

3.2.3 Evaluation Metrics

One of the main metrics for evaluating the quality of an extracted policy is how accurately

it matches the original policy. That means the authorization decisions made by the extracted

policy for a set of access requests should be similar to the decisions made by the original

policy for that set of requests. As an example, if the decision of the original policy for an

access request q is permit, then the decision of the mined policy for the same access request

must be permit as well. If the mined policy denies the same access request, then we record

this authorization tuple as a False Negative. We define Relative True Positive, Relative False

Positive, Relative True Negative, and Relative False Negative rates, respectively, as follows:

Definition 14. (Relative True Positive Rate). Given an access log L and an ABAC

policy π, the relative true positive rate of π regarding L denoted as TPπ|L is the portion of

positive access logs for which the decision of π is permit:

TPπ|L =
|{⟨q, d⟩ ∈ L+|dπ(q) = permit}|

|L+|

Here, |s| is the cardinality of set s.
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Definition 15. (Relative False Positive Rate). The relative false positive rate of π

regarding L denoted as FPπ|L is the portion of negative access logs for which the decision of

π is permit:

FPπ|L =
|{⟨q, d⟩ ∈ L−|dπ(q) = permit}|

|L−|
Similarly, we calculate the relative true negative rate and false negative rate of π regarding

L, denoted as TNπ|L and FNπ|L, respectively, as follows:

TNπ|L =
|{⟨q, d⟩ ∈ L−|dπ(q) = deny}|

|L−|

FNπ|L =
|{⟨q, d⟩ ∈ L+|dπ(q) = deny}|

|L+|
The relative precision and relative recall are calculated as follows:

Precisionπ|L =
TPπ|L

TPπ|L + FPπ|L

Recallπ|L =
TPπ|L

TPπ|L + FNπ|L

The relative accuracy metric, ACCπ|L, measures the accuracy of mined policy π with

regards to the decisions made by the original policy indicated by L and is defined formally

as follows:

Definition 16. (Relative Accuracy). Given the relative true positive and negative rates,

the relative accuracy of π regarding L denoted as ACCπ|L is calculated as follows:

ACCπ|L =
TPπ|L + TNπ|L

TPπ|L + TNπ|L + FPπ|L + FNπ|L

As accuracy may be misleading in unbalanced data sets [64] (which is very probable in

case of access logs), we use relative F-score to better evaluate the mined policy:

F -scoreπ|L = 2 ·
Precisionπ|L ·Recallπ|L
Precisionπ|L +Recallπ|L

Policies with higher relative F-scores are better as they are more consistent with the

original access log.
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On the other hand, as the number of filters in each rule and the number of rules in an

access control policy increases, policy intelligibility would decrease and maintenance of the

policy would become harder. Hence, complexity is another key metric for evaluating the

quality of a policy.

Weighted Structural Complexity (WSC) is a generalization of policy size and was

first introduced for RBAC policies [46] and later extended for ABAC policies [68]. WSC is

consistent with usability studies of access control rules, which indicates that the more concise

the policies are the more manageable they become [8]. Informally, for a given ABAC policy,

its WSC is a weighted sum of its elements. Formally, for an ABAC policy π with rules P ,

its WSC is defined as follows:

WSC(π) = WSC(P)

WSC(P) =
∑
ρ∈P

WSC(ρ)

WSC(ρ = ⟨FU ,FO,FS ,R, op, d⟩) = w1WSC(FU)+

w2WSC(FO) + w3WSC(FS) + w4WSC(R)

∀s ∈ {FU ,FO,FS ,R} : WSC(s) =
∑
|s|

where |s| is the cardinality of set s and each wi is a user-specified weight.

Van Rijsbergen proposes an effectiveness measure for combining two different metrics P

and R in [49] as follows :

E = 1− 1
α

P
+

1− α

R

Given relative F-score and WSC measures for various mined policies resulting from run-

ning different mining algorithms over access log, it may not be straightforward to select the

best algorithm and, hence, the mined policy with the highest quality. So, to be able to

compare the quality of different mined ABAC policies, we combine the two metrics based

on Van Rijsbergen’s effectiveness measure [49] and define the Policy Quality Metric as

follows:

Qπ = (
α

F -scoreπ|L
+

1− α

∆WSCπ

)−1
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Here α =
1

1 + β2
where β determines the importance of relative F-score over policy

complexity and ∆WSCπ shows the relative reduction in the complexity with regards to the

complexity of the most complex mined policy. ∆WSCπ is calculated as follows:

∆WSCπ =
WSCmax −WSC(π) + 1

WSCmax

WSCmax is the weighted structural complexity of the most complex mined policy.

Definition 17. (Most Complex Mined Policy). The most complex mined policy is the

mined policy with the highest weighted structural complexity. It is extracted by iterating

through positive access log L+ and adding an access control rule for each authorization tuple

if it’s not already included in the mined policy. The corresponding rule for each authorization

tuple includes all attributes of the user, object, and subject of that authorization tuple.

Considering the equal importance of relative F-score and relative loss of complexity of

the policy, we calculate the quality measure as follows:

Qπ =
2 · F -scoreπ|L ·∆WSCπ

F -scoreπ|L +∆WSCπ

A mined policy with a higher F-score would have a higher policy quality. On the other

hand, as the complexity of a policy increases, its quality will decrease. The intuition here is

that once an extracted policy reaches a high F-score, adding additional rules will lead to a

decrease in Qπ.

For the most complex mined policy πw, ∆WSCπw ≈ 0, so its policy quality Qπw is very

close to zero. For an empty mined policy πe (a policy without any rule), while ∆WSCπe ≈ 1,

as it denies all the access requests, its false negative rate is one and its true positive rate is

zero. So its precision is zero and as a result, its F-score is zero as well. So the quality of the

empty policy Qπe is zero, too.

The most complex mined policy and the empty mined policy are the two extreme cases

with policy quality equal to zero. Other mined policies between these two cases have higher

policy quality than zero.
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3.3 The Proposed Learning-based Approach

Our proposed learning-based ABAC policy extraction pro-cedure consists of the steps

summarized in Figure 2.

1. Data Pre-processing

Handling missing
values, Converting to
categorical values 2. Parameter Tuning

Finding best number of clusters,
best cluster initialization, and
appropriate thresholds 

3. Clustering

Clustering data using
k-mean/k-mode
algorithm

4. Rule Extraction

Finding effective
attributes and
relations, Building
Rules

5. Rule Pruning

Removing duplicate
rules, Finding similar
rules and eliminating
them

6. Policy Refinement

Refining policy rules
based on FP and FN
records

Figure 2: Overview of the Proposed Approach.

3.3.1 Data Pre-processing

As features of our learning algorithm are categorical variables, the first step in pre-

processing the access log is to convert all numerical variables to their corresponding cate-

gorical values. For example, in ABAC, environmental attributes deal with time, location,

or dynamic aspects of the access control scenario. Hence, we need to pre-process and dis-
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cretize such continuous variables to categorical ones (e.g. time of access to working hours

and non-working hours) so our proposed algorithm is applicable to them.

We also need to handle missing values in this step. As the frequency of each attribute

value is an important factor in our rule extraction algorithm (Section 3.3.4) for deciding if

an attribute is effective or not, it is important to replace missing values in a way that it

doesn’t mess up with the original frequency of each attribute value. For this purpose, we

replace each missing value by UNK (i.e., unknown).

3.3.2 Selection of Learning Algorithm

We use the K-modes algorithm [13], which is a well-known unsupervised learning algo-

rithm used for clustering categorical data. K-modes has been proved effective in mining

ABAC policies [35]; this algorithm uses an initialization method based on both the distance

between data points and the density of data points. Using both density and distance when

initializing clusters helps avoid two problems: (i) clustering outliers as new clusters are based

only on the distances; and (ii) creating new clusters surrounding one center based only on the

density. Compared to a random initialization method, this method provides more robustness

and better accuracy in the clustering process[13].

3.3.3 Parameter Tuning

In the next step, we tune the learning parameters. There are several challenges that need

to be addressed in this step, which include the following:

3.3.3.1 Number of Clusters (k)

One of the main challenges in unsupervised learning is determining the number of clusters,

k. In our sample policies, as we know the number of rules in each policy, we can set the

number of clusters beforehand but in a real situation as we do not know the size of the

rules in advance, making the correct choice of k is difficult. One of the popular methods for

determining the number of clusters in an unsupervised learning model is the Elbow Method
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[60, 23]. This method is based on the total within group sum of squares. k will be chosen

as the number of clusters if adding another cluster doesn’t give much better modeling of the

data (i.e., the elbow point of the graph).

As a second approach, we choose a number of clusters (k) which gives the best modeling

of the data in terms of the policy quality metric. For this purpose, we run our clustering

algorithm for different values of k and calculate the accuracy of the corresponding model

using 10-fold cross-validation. The value of k that maximizes the accuracy of the model is

selected as the final number of clusters.

Note that increasing k will ultimately reduce the amount of clustering error or it will

increase the accuracy of the model, but by increasing the number of clusters, the number of

extracted rules will also increase resulting in more complexity (i.e., higher WSC ). So it is

important to find an optimal k that balances policy accuracy and WSC.

3.3.3.2 Cluster Initialization & Local Optima

Different cluster initializations can lead to a different set of clusters as k -means/k -modes

may converge to local optima. To overcome this issue, for a given number of clusters, k, we

train multiple models with different cluster initializations and then select the partition with

the smallest clustering error.

3.3.4 Policy Rules Extraction

The main phase in our proposed approach is the extraction of ABAC policy rules. In the

first step, we need to collect all the authorization tuples related to each rule of the policy. We

use data clustering for this purpose. We divide the access log into clusters where the records

in each cluster correspond to one AC rule in the system. This is done based on finding

similar patterns between features (i.e., attribute values) of the records (i.e., access control

tuples). In the second step, we extract the attribute filters of such a rule. We adapt the rule

extraction algorithm in [35] and extend it to extract both positive and negative attribute

filters. We define effective positive attribute and effective negative attribute as follows:

Definition 18. (Effective Positive (Negative) Attribute). Let S = {⟨a, v⟩} be the set
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of all possible attribute-value pairs in a system; we define ⟨aj, vj⟩ ∈ S (⟨aj, !vj⟩ ∈ S) as

an effective positive (negative) attribute pair of ρi corresponding to cluster Ci, where the

frequency of occurrence of vj in the set of all the records of cluster Ci is much higher (lower)

than its frequency of occurrence in the original data; this is determined based on a threshold

TP (TN). The attribute expression ⟨aj, vj⟩ (⟨aj, !vj⟩) is added to the attribute filters of the

extracted rule ρi for Ci .

Example 6. Assume that A = {dept, position, isChair, type, course, time, location} is the

set of all possible attributes in a university information system. Here, these attributes are

the features in the unsupervised learning algorithm. The training model clusters the training

records into four different clusters. The centroid of the first cluster is shown in Table 3. In the

university information system, the type has four possible values: application, gradebook,

roster, and transcript. If this attribute has a normal distribution in the original data,

then we expect the frequency of each of its values to be around 25% through all records.

In the members of the first cluster, the frequency of application as the value of type is

60% which is 35% higher than the normal distribution. Having T = 30% for the university

data set, type becomes an effective positive attribute and application is its effective value

in the corresponding rule. The attribute expression < type, application > will be added to

the extracted rule corresponding to this cluster. In the same way, dept and its value CS,

time and its value BH and location and its value onCampus are other effective positive

attributes and their effective values, respectively. Eventually, the extracted rule from the first

cluster is as follows:

ρ1 = ⟨{⟨dept, CS⟩, ⟨type,application⟩, ⟨time,BH⟩,

⟨location,onCampus⟩}, read⟩

In the final step, we extract the relation conditions for AC rules for each cluster. This

will be done based on the frequency of equality between pairs of attributes in the records of

each cluster. We define effective positive relation and effective negative relation as follows:

Definition 19. (Effective Positive (Negative) Relation). Let R = {⟨a, b⟩} be the set of

all possible relations between pairs of attributes in the system; we define ⟨aj, bj⟩ as an effective

positive (negative) relation pairs of ρi corresponding to cluster Ci, where the frequency of aj
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Table 3: An Example of a Cluster Centroid

dept position isChair type course time location

CS staff false application cs101 BH onCampus

equals bj in all the records of cluster Ci is much higher (lower) than their frequency in the

original data; this is determined based on a threshold θP (θN). The relation ⟨aj, bj⟩ (⟨aj, !bj⟩)

is added to the relation conditions of the extracted rule ρi for this cluster.

We note that the values of the thresholds TP , TN , θP , and θN will be different for each

data set. To find the best threshold values for each data set, we run the rule extraction

algorithm for different values of thresholds, and the values which result in the maximum

accuracy over the cross-validation data set will be selected.

Algorithms 1 and 2 show effective attribute and effective relation extraction procedures,

respectively.

3.3.5 Policy Enhancement

After the first phase of policy rule extraction, we get a policy which may not be as

accurate and concise as we desire. We enhance the quality of the mined policy through

iterations of policy improvement steps that include: rule pruning and policy refinement.

3.3.5.1 Rule Pruning

During the rule extraction phase, it’s possible to have two clusters that correspond to

the same rule. As a result, the extracted rules of these clusters are very similar to each

other. Having two similar rules in the final policy increases the complexity of the mined

policy while it may not help the accuracy of the policy and as a result, it hurts the policy

quality. To address such an issue, in the rule pruning step, we identify similar rules and

eliminate the ones whose removal improves the policy quality more. If eliminating neither
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Algorithm 1: Effective Attribute Extraction Algorithm
Input: Ci, A, V , L, TP , TN
Output: F

1 procedure Extract_Attribute_Filters

2 F ← ∅;

3 forall a ∈ A do

4 forall vj ∈ Va do

5 if Freq(vj, Ci)− Freq(vj,L) > TP then

6 F ← F ∪ ⟨a, vj⟩;

7 end

8 if Freq(vj,L)− Freq(vj, Ci) > TN then

9 F ← F ∪ ⟨a, !vj⟩;

10 end

11 end

12 end

13 return F

of the two rules improves the policy quality, we keep both the rules. This may happen when

we have two very similar AC rules in the original policy. We measure the similarity between

two rules using Jaccard similarity [31] as follows:

J(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|

Based on this, we calculate the similarity between two rules ρ1 and ρ2 as follows:

J(ρ1, ρ2) =[ ∑
F∈{FU ,FO,FS}

|Fρ1 ∩ Fρ2|+ |Rρ1 ∩Rρ2|+ |opρ1 ∩ opρ2|
]

[ ∑
F∈{FU ,FO,FS}

|Fρ1 ∪ Fρ2|+ |Rρ1 ∪Rρ2|+ |opρ1 ∪ opρ2|
]

We consider two rules to be similar if their Jaccard similarity score is more than 0.5,

which means that the size of their common elements is more than half of the size of the

union of their elements. Algorithm 3 shows the rule pruning procedure.
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Algorithm 2: Effective Relation Extraction Algorithm
Input: Ci, A, L, θP , θN

Output: R

1 procedure Extract_Relations

2 R ← ∅;

3 forall a ∈ A do

4 forall b ∈ A and b ̸= a do

5 if Freq(a = b, Ci) - Freq(a = b,L) > θP then

6 R ← R ∪ ⟨a, b⟩;

7 end

8 if Freq(a = b,L) - Freq(a = b, Ci) > θN then

9 R ← R ∪ ⟨a, !b⟩;

10 end

11 end

12 end

13 return R

3.3.5.2 Policy Refinement

During the rule extraction phase, it is possible to extract rules that are either too re-

stricted or too relaxed compared to the original policy rules. A rule is restricted if it employs

more filters than the original rule.

Example 7. Consider the following two rules:

ρ1 = ⟨{⟨position, faculty⟩, ⟨type, gradebook⟩}, setScore⟩

ρ2 = ⟨{⟨position, faculty⟩, ⟨deptu, EE⟩, ⟨type, gradebook⟩}, setScore⟩

Here ρ2 is more restricted than ρ1 as it imposes more conditions on the user attributes.

Having such a restricted rule in the mined policy would result in a larger number of

FNs as an access request that would be permitted by the original rule will be denied by the

restricted rule.
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Algorithm 3: Rule Pruning Algorithm
Input: P

Output: P

1 procedure Rule_Pruning

2 q ← Calc_Quality(P);

3 forall ρi ∈ P do

4 forall ρj ∈ P and ρi ̸= ρj do

5 if Similarity(ρi, ρj) > 0.5 then

6 Pi ← P/ρi;

7 Pj ← P/ρj;

8 qi ← Calc_Quality(Pi);

9 qj ← Calc_Quality(Pj);

10 if qi >= q and qi >= qj then

11 P ← Pi;

12 end

13 if qj >= q and qj >= qi then

14 P ← Pj;

15 end

16 end

17 end

18 end

19 return P

On the other hand, an extracted rule is more relaxed compared to the original rule if it

misses some of the filters. In Example 7, ρ1 is more relaxed than ρ2. Such a relaxed rule

would result in more FPs as it permits access requests that should be denied as per the

original policies.

To address these issues, we propose a policy refinement procedure which is shown in

Algorithm 4. Here, we try to refine the mined policy (πm) based on the patterns discovered
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in the FN or FP records. These patterns are used to eliminate extra filters from restricted

rules or append missing filters to relax the rules.

To extract patterns from the FN or FP records, we apply our rule extraction procedure

on these records to get the corresponding policies πFN and πFP . Here our training data are

FN and FP records, respectively. We compare the extracted FN or FP rules with the mined

policy and remove the extra filters or append the missed ones to the corresponding rules.

As an example, consider the FP records. Here, our goal is to extract the patterns that are

common between access requests that were permitted based on the mined policy while they

should have been denied based on the original policy.

In each step of refinement, a rule from πm that is similar to a rule from πFN or πFP

based on the Jaccard similarity (Section 3.3.5.1) is selected and then refined in two ways as

discussed below.

Policy refinement based on πFN : In the case of FN records, two situations are possible:

a rule is missing from the mined policy (πm) or one of the rules in πm is more restrictive. To

resolve this issue, for each rule ρi ∈ πFN :

• if there is a similar rule ρj ∈ πm then we refine ρj as follows:

∀f ∈ F : Fρj = Fρj/(Fρj/Fρi)

where F = FU ∪FO ∪FS ∪R. So, the extra filters are removed from the restricted rule

(ρj).

• if there is no such rule, then ρi is the missing rule and we add it to πm.

Policy refinement based on πFP : In the case of FP records, some filters might be missing

in an extracted rule in the mined policy (πm); so for each rule ρi ∈ πFP , we refine the mined

policy as follows:

∀f ∈ F : Fρj = Fρj ∪ (Fρi/Fρj)

where F = FU ∪ FO ∪ FS ∪ R includes all the filters in the rule. So, the missing filters are

added to the relaxed rule (ρj).

These refinements can be done in multiple iterations until further refinement does not

give a better model in terms of policy quality Qπ.
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Algorithm 4: Policy Refinement Algorithm
Input: A, L
Output: πm

1 procedure Refine_Policy
2 FN ← Get_FNs(πm,L);
3 πFN ← Extract_Policy(FN );
4 forall ρi ∈ πFN .P do
5 Rs ← Get_Similar_Rules(πFN .P, πm.P);
6 if |Rs| = 0 then
7 πm.P ← πm.P ∪ ρi;
8 end
9 else

10 forall ρj ∈ Rs do
11 forall F ∈ FU ∪ FO ∪ FS ∪R do
12 Fρj ← Fρj\(Fρj\Fρi);
13 end
14 end
15 end
16 end
17 FP ← Get_FPs(πm,L);
18 πFP ← Extract_Policy(FP);
19 forall ρi ∈ πFP .P do
20 Rs ← Get_Similar_Rules(πFP .P, πm.P);
21 if |Rs| ! = 0 then
22 forall ρj ∈ Rs do
23 forall F ∈ FU ∪ FO ∪ FS ∪R do
24 Fρj ← Fρj ∪ (Fρi\Fρj );
25 end
26 end
27 end
28 end
29 return πm

3.4 Time Complexity

In this section, we analyze the time complexity of our proposed approach. Our proposed

approach starts with clustering the access log using a k-mode algorithm. K-mode algorithm

has O(n2) time complexity where n is the size of the input data (here n = |L|). We then

analyze the Effective Attribute Extraction algorithm (Algorithm 1). The most time consum-

ing part of Algorithm 1 is the calculation of the frequency of the attribute-value pairs in the
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original data. Let n be the number of records (n = |L|) and d be the number of attributes

(d = |A|) in the access log, the time complexity of Algorithm 1 is O(nd). The nested loops

in Algorithm 1 compare the frequency of each attribute-value pair in a given cluster with

its frequency in the original data, so the time complexity of these loops is O(md) where m

is the number of values each attribute has in the system (m = |Va| where a ∈ A). So, the

total running time of Algorithm 1 is O(nd+md). Similarly, the running time of the Effective

Relation Extraction algorithm (Algorithm 2) is O(nd+md).

The main part of the Rule Pruning algorithm (Algorithm 3) compares each pair of

extracted rules and calculates their similarity. So, the running time is O(r2d), where r is the

number of rules (r = |P|). The algorithm also calculates the quality of each subset of policy

rules over the access log which results in O(nr) time complexity. So, the overall running

time of Algorithm 3 is O(r2d+ nr).

The Policy Refinement algorithm (Algorithm 4) first extracts the rules (effective at-

tribute/relation pairs) corresponding to FP and FN records, so its time complexity is O(n′d)

where n′ is the size of FP/FN records. In the second part of the algorithm, each extracted

rule is compared with FP/FN rules and its attribute-value pairs are updated. Hence, the

time complexity of this part is O(r′rd) where r′ is the size of FP/FN rules. So the overall

time complexity of Algorithm 4 is O(n′d + r′rd). In practice, the size of FP/FN records

and their corresponding rules is significantly smaller than the size of original records and the

corresponding extracted rules. So, in the worst case, the time complexity of Algorithm 4 is

O(nd+ r2d).

K-mode algorithm is the most time consuming part of the proposed ABAC policy mining

framework, therefore, the running time of the proposed ABAC policy mining algorithm is

O(n2). In worst case and in case of a complete access log (where every combination of

attribute values are presented in the log), size of the input records are exponential to the

number of attributes (n = md). On the other hand, the size of the extracted rules is much

smaller than the input size. Hence, the overall time complexity of the proposed algorithm is

O(m2d).

Table 4 compares the time complexity of the state-of-the-art policy mining techniques

with our proposed algorithm.
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Table 4: Comparison of Time Complexity of the State-of-the-art ABAC Rule Mining Tech-

niques

Proposed Approach Xu et al. [68] Medvet et al. [41] Iyer et. al [29] Cotrini et al. [14]

O(m2d) O(m3d) O(m3d) O(m2dd5) O(m4d)

3.5 Experimental Evaluation

We have implemented a prototype of our proposed approach. Here, we present our

experimental evaluation.

3.5.1 Datasets

We perform our experiments on multiple datasets including synthesized and real ones.

The synthesized access logs are generated from two sets of ABAC policies. The first one is a

manually written set of policies that is adapted from [68] to be compatible with our policy

language. The second one includes a completely randomly generated set of policies. To

synthesize our input data, for each ABAC policy (i.e., University Policy, Healthcare Policy,

etc.), a set of authorization tuples is generated and the outcome of the ABAC policy for

each access right is evaluated. The authorization tuples with permit as their outcomes are

the inputs to our unsupervised learning model.

Our real datasets are built from access logs provided by Amazon in Kaggle competition

[5] and available in the UCI machine learning repository [47].

Manual Policy - University: This policy is adapted from [68] and it controls access

of different users including students, instructors, teaching assistants, etc., to various objects

(applications, gradebooks, etc.).

Manual Policy - Healthcare: This policy is adapted from [68] and is used to control

access by different users (e.g. nurses, doctors, etc.) to electronic health records (EHRs) and

EHR items.
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Table 5: Details of the Synthesized and Real Policies

# π |P| |A| |V | |L| |L+| |L−|
π1 UniversityP 10 11 45 2,700K 231K 2,468K
π2 HealthcareP 9 13 40 982K 229K 753K
π3 ProjectManagementP 11 14 44 5,900K 505K 5,373K
π4 UniversityPN 10 11 45 2,700K 735K 1,964K
π5 HealthcarePN 9 13 40 982K 269K 713K
π6 ProjectManagementPN 11 14 44 5,900K 960K 4,918K
π7 Random Policy 1 10 8 27 17K 2,742 14K
π8 Random Policy 2 10 10 48 5,250K 245K 5,004K
π9 Random Policy 3 10 12 38 560K 100K 459K
π10 Amazon Kaggle - 10 15K 32K 30K 1897
π11 Amazon UCI - 14 7,153 70K 36K 34K

Manual Policy - Project Management: This policy is adapted from [68] and it

controls access by different users (e.g. department managers, project leaders, employees,

etc.) to various objects (e.g. budgets,schedules and tasks).

Random Policies: The authorization rules for this policy are generated completely

randomly from random sets of attributes and attribute values. These randomly generated

policies provide an opportunity to evaluate our proposed algorithm on access logs with vari-

ous sizes and with varying structural characteristics. However, we note that, the performance

of our algorithm on random policies might not be representative of its performance in real

scenarios and over real policies.

Real Dataset - Amazon Kaggle: The Kaggle competition dataset [5] includes access

requests made by Amazon’s employees over two years. Each record in this dataset describes

an employee’s request to a resource and whether the request was authorized or not. A record

consists of the employee’s attribute values and the resource identifier. The dataset includes

more than 12,000 users and 7,000 resources.

Real Dataset - Amazon UCI: This dataset is provided by Amazon in the UCI machine

learning repository [47]. It includes more than 36,000 users and 27,000 permissions. Since

the dataset contains over 33,000 attributes, our focus in this experiment is narrowed only to
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the most requested 8 permissions in the dataset.

Partial Datasets: To check the efficiency of the proposed algorithm over sparse datasets,

we generate sparse datasets (partial datasets) by randomly selecting authorization tuples

from the complete dataset. For example, a 10% sparse (partial) dataset is generated by

randomly selecting 10% of tuples from the complete access logs.

Noisy Datasets: To check the efficiency of the proposed algorithm over noisy datasets,

we generate noisy datasets by randomly reversing the decision of authorization tuples. For

instance, a 10% noisy dataset is generated by randomly reversing the decision of 10% of

authorization tuples in the complete access logs.

For each of the manual policies, we consider two different sets of policy rules; the first

one only contains positive attribute filters and relations while the second one includes both

positive and negative attribute filters and relations. We have included these policies in

Appendix A.

Table 10 shows the details of the manual and random access log datasets. In this table, |P|

shows the number of rules in the original policy, |A| and |V | show the number of attributes

and attribute values and |L|, |L+|, |L−| show the number of access control tuples, the

number of positive access logs, and the number of negative access logs in the given dataset,

respectively.

3.5.2 Experimental Setup

To evaluate our proposed method, we use a computer with 2.6 GHz Intel Core i7 and 16

GB of RAM. We use Python 3 in the mining and the evaluation process. The algorithms

were highly time-efficient (e.g., maximum time consumption is less than half an hour).

We use kmodes library [17] for clustering our data. The initialization based on density

(CAO) [13] is chosen for cluster initialization in kmodes algorithm.

To find optimal k, we apply various methods to test different values of k. Figure 3 shows

the Elbow Method graphs for three different sample policies as well as the actual value of k.

As we can see in the figure, for these sample policies the curves are ambiguous and there are

no clear elbows. So it seems that elbow method may not necessarily help in ABAC policy
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extraction.

Figure 4 shows the accuracy of models as a function of the number of clusters for three

different datasets. The approach works perfectly for University Policy as the selected k and

the actual k are both equal. For Healthcare Policy the selected k (i.e., 8) is one level smaller

than the actual k (i.e., 9). For Project Management Policy, the selected k (i.e., 12) based

on the policy accuracy is one level higher than the actual k (i.e 11). After pruning (Sectin

3.3.5.1), the final policy has 9 rules. Again, using the technique of policy refinement (Section

3.3.5.2), we can revive the remaining rules and improve the model accuracy.

To generate the synthesized access log L, we brute force through all attributes A and

their values Va to produce all possible combinations for the tuples. This method was used

to generate a complete access log for the random and manual policy datasets. We generate

two sets of partial datasets; the 10% partial datasets are used to check the efficiency of the

proposed approach over sparse datasets (Table 6) and the 0.1% partial datasets are used to

compare the proposed approach with previous work (Table 7). We also generate a set of

noisy datasets to check the efficiency of the proposed algorithm over noisy access log. The

results of such experiments are reported in Table 6.

For all experiments, the optimal thresholds for selecting effective attributes and relations

are between 0.2 and 0.3.

3.5.3 Results

We first evaluate the performance of our policy mining algorithm on complete datasets.

Table 6 shows the results of these experiments.

Our second set of experiments is on partial datasets. The algorithm proposed by Xu

and Stoller [68] and the approach presented by Cotrini et al. [14] are not able to handle

complete datasets as these datasets are huge. To be able to compare the performance of our

proposed algorithm with their work, we generated 0.1% sparse (partial) datasets and run all

algorithms over these partial datasets. The results of these experiments are shown in Table

7 and Figures 8, 9, and 10.

The algorithm proposed by Xu and Stoller [68] and the approach presented by Cotrini et
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Figure 3: Elbow Method: K-means Clustering SSE vs. Number of Clusters for three different

case studies
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Figure 5: The F-Score of Our Proposed Approach over Complete Datasets
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Figure 6: The Complexity (WSC) of Our Proposed Approach over Complete Datasets
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Figure 7: The Policy Quality of Our Proposed Approach over Complete Datasets

al. [14] do not generate policy rules with negative attribute filters and relations, however, we

report the results of their algorithms over datasets related to policy rules including negations

(policies π4, π5, π6) to show how the quality of mined policies would be impacted if the mining

algorithm does not extract rules that include negation.

3.5.3.1 The F-Score of the Mined Policies

Table 6 shows the final F -scoreπ|L of our proposed approach after several rounds of

refinement over all complete datasets. As we can see in Table 6, the proposed approach

achieves a high F-score across all experiments except for π6. π6 is a very complex dataset

with both positive and negative attributes and relation filters including 14 attributes, 44

attribute values, and around six million access records. The final policy quality for this

dataset is around 0.63, which is acceptable considering the complexity of the policy.

Table 7 and Figure 8 show the comparison of the F-Scores of policies mined by our pro-

posed approach with that of previous work over partial datasets (with 0.1% of the complete
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datasets). As we can see, the F-Score of policies mined by our algorithm is very close to the

one done by the approach proposed by Cotrini et al. [14]. Actually, our proposed approach

outperforms theirs in half of the experiments.

The algorithm proposed by Xu and Stoller [68] does not extract any policy rules in the

four experiments. In two out of the four experiments that produced results, the F-Score of

their approach is higher than those of other works.

3.5.3.2 The Complexity of the Mined Policies

In Table 6, we can see the final WSC of the policies mined by our proposed approach.

All extracted policies have a complexity lower than 100 which is much lower than those

of the most complex policies for individual datasets. According to Definition 17, the most

complex policy for each dataset has the same complexity as the original positive access log

(L+). Given numbers in Tables 10 and 6, the most complex policies for these scenarios are

thousands of times more complex than the extracted policies by our approach.

We compare the complexity of the policies mined by different ABAC mining algorithms

in Figure 9. Among three different approaches, the Cotrini et al. algorithm extracts the

most complex policies with WSC greater than 1000 for some cases. The complexity of the

policies mined by our algorithm is very close to the one extracted by the approach proposed

by Xu and Stroller [68].

3.5.3.3 The Policy Quality of the Mined Policies

Finally, Table 6 shows the quality of the extracted policies through our proposed ap-

proach. We can see that out of all datasets that our proposed algorithm was applied on,

around 75% of the cases reached the policy quality of more than 0.8, which is significant,

considering the huge size of original access logs (each more than 30K records).

According to Figure 10, in most cases, the policy quality of the policies mined by our

proposed approach is higher than those of the policies extracted by other ABAC mining

algorithms.
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Table 6: Results of Our Proposed Approach on Various Synthesized and Real Policy Datasets

π Total Running Time (s) Optimal k Pmined ACCπ|L F -scoreπ|L WSCorig WSCmined Qπ

π1 9376.556 15 20 97.5% 83.6% 33 91 0.91
Partial π1 (10%) 1994.769 15 13 97.29% 82.21% 33 54 0.90
Noisy π1 (10%) 4979.56 10 8 96.94% 80% 33 28 0.90

π2 2180.745 18 18 85.49% 75.93% 33 71 0.86
Partial π2 (10%) 4787.98 10 8 96.94% 85.33% 33 28 0.92
Noisy π2 (10%) 7339.91 8 15 72.22% 82.13% 33 27 0.90

π3 7795.44 15 17 95.6% 65.63% 44 55 0.80
Partial π3 (10%) 1347.29 6 10 95.2% 62.24% 44 56 0.77
Noisy π3 (10%) 1912.72 15 15 94.47% 62.66% 44 81 0.77

π4 13662.62 7 16 86.7% 71.58% 33 40 0.83
π5 8681.64 15 15 78.11% 62% 33 67 0.76
π6 12905.78 20 17 88.05% 46.28% 44 80 0.63
π7 24.63 8 20 93% 78.33% 33 65 0.88
π8 13081.20 10 14 99.12% 91.28% 33 51 0.95
π9 2266.68 8 16 92.17% 79.66% 33 46 0.89
π10 265.3 15 20 94% 97% - 44 0.98
π11 1010.43 24 25 98.49% 99% - 92 0.82

3.5.4 Discussion and Limitations

Our proposed approach is able to achieve a practical level of performance when applied

to both synthesized and real datasets. In the case of synthesized datasets, the proposed

approach is capable of mining policies containing both positive and negative attribute filters

from complete datasets. On the other hand, our proposed approach shows potential for

use in sparse datasets. In addition, the real datasets contain a large number of attributes

and attribute values as shown in Table 10. The ability of our proposed approach in mining

high-quality policies for these datasets shows that the size of attributes and attribute values

have minimal impact on the effectiveness of our approach.

The proposed approach is based on an unsupervised clustering algorithm. Since finding

the proper number of clusters is a challenge related to clustering algorithms, our approach is

affected by this issue as well. The same issue will also be valid in finding the best thresholds

to extract effective attributes and relations.

We note that, as the proposed algorithm is based on tuning multiple parameters, it is

possible that it gets stuck in minimum optima. For this reason, we do not claim that it will

extract the policy with the highest quality in every scenario, nor do we claim that extracting
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Table 7: Comparison of Our Proposed Approach with Previous Work on Various

Synthesized and Real Policy Datasets

Mining Alg. π Time (s) ACCπ|L F -scoreπ|L Pπmined
WSC(π) Qπ

Xu and Stoller [68] Partial π1 (0.1%) 348 96.1% 70.9% 7 23 0.83
Cotrini et al. [14] 126 80.74% 45.3% 132 508 0.58
Proposed Approach 7.3 96% 74.2% 7 29 0.85
Xu and Stoller [68] Partial π2 (0.1%) 3015 96.74% 95.47% 9 33 0.81
Cotrini et al. [14] 529 72.72% 64% 65 272 0.75
Proposed Approach 7.9 79.78% 68.23% 13 49 0.81
Xu and Stoller [68] Partial π3 (0.1%) −∗ −∗ −∗ −∗ −∗ −∗

Cotrini et al. [14] 3587 91.57% 54.124% 24 77 0.70
Proposed Approach 11.44 94.96% 51.31% 12 55 0.78
Xu and Stoller [68] Partial π4 (0.1%) 2897 74.19% 19.3% 7 23 0.32
Cotrini et al. [14] 204 93.55% 88.5% 385 1389 0.86
Proposed Approach 15 89.3% 80% 10 40 0.89
Xu and Stoller [68] Partial π5 (0.1%) 6740 93.26% 86.72% 9 33 0.92
Cotrini et al. [14] 3587 86.46% 79.2% 123 462 0.83
Proposed Approach 8.8 87.2% 76.3% 15 66 0.86
Xu and Stoller [68] Partial π6 (0.1%) −∗ −∗ −∗ −∗ −∗ −∗

Cotrini et al. [14] 2848 82.75% 62.66% 31 100 0.77
Proposed Approach 22.67 81.2% 49.4% 12 44 0.66
Xu and Stoller [68]

π10
−∗ −∗ −∗ −∗ −∗ −∗

Cotrini et al. [14] 237 84.25% 91.39% 1055 2431 0.92
Proposed Approach 265.3 94% 97% 20 44 0.98
Xu and Stoller [68]

π11
−∗ −∗ −∗ −∗ −∗ −∗

Cotrini et al. [14] 1345 70.93% 75.64% 466 1247 0.85
Proposed Approach 1010.43 98.49% 99% 24 92 0.99

∗ Xu and Stoller [68] did not terminate nor produced any output for these datasets even after
running for more than 24 hours.
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Figure 10: The Quality of the Policies Mined by ABAC Mining Algorithms

rules with negative attribute filters and relations would always result in policy with higher

quality; however, by trying more randomization in cluster initialization and a wider range

of parameters, we can get one that is closer to global optima.

In our evaluation, we used random selection to create noisy and sparse datasets from

complete datasets. Although we ensured the same percentage of randomly selected tuples

from permitted and denied logs, guaranteeing the quality of the sampling is difficult.

3.6 Conclusion

We propose an unsupervised learning based approach to automating an ABAC policy

extraction process. The proposed approach is capable of discovering both positive and nega-

tive attribute expressions as well as positive and negative relation conditions while previous

approaches in access control policy extraction had only focused on positive expressions.
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Furthermore, our work is capable of improving the extracted policy through iterations of

proposed rule pruning and policy refinement algorithms. Such refinement algorithms are

based on false positive and false negative records and they help in increasing the quality of

the mined policy.

Most importantly, we propose the policy quality metric which considers both the con-

ciseness and correctness of the mined policy and is important for comparing the extracted

policy with the original one and for improving it as needed.

51



4.0 Adaptive ABAC Policy Learning: A Reinforcement Learning Approach

In this chapter, we present our RL-based approach for adapting an ABAC policy in a

system. We utilize RL and, more specifically, contextual bandit, to establish a mapping

between access requests and the appropriate authorization decisions for such requests. The

authorization engine (AE) is considered as an agent in our proposed framework and its

authorization decision (permit or deny) is an action according to the state of the system.

Attributes of entities involved in an access request as well as the contextual factors form the

state of the system. The AE learns authorization policies by interacting with the environment

without having explicit knowledge of the original access control policy rules. We propose four

methods for initializing the learning model and a planning approach based on hierarchies

over attribute values to accelerate the learning process. We develop the proposed adaptive

ABAC policy learning model, using a home IoT environment as a running example.

The rest of the chapter is organized as follows. In Section 4.1, we overview the Attribute

Based Access Control, Reinforcement Learning, Home IoT, and its authorization framework.

In Section 4.2, we propose the reinforcement learning based framework for adaptive attribute

based authorization learning while focusing on Home IoT as a running example. In Section

4.3, we evaluates the proposed approach. Finally, Section 4.5 concludes the chapter.

4.1 Background

In this section, we overview Attribute Based Access Control (ABAC), Reinforcement

Learning (RL), Home IoT, and its authorization framework. Table 8 summarizes the nota-

tions used in this chapter.

4.1.1 Attribute Based Access Control

In this section, we consider the ABAC model that has the following components:
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U , O, and OP represent sets of users, objects, and operations in a system, and UA,

OA, and EA correspond to sets of user attributes, object attributes, and environmental

attributes, respectively. E = U ∪O and ATTR = UA∪OA∪EA are the sets of all entities

and all attributes in the system.

Definition 20. (Attribute Range). Given an attribute attr ∈ ATTR, the attribute range

V (attr) is the set of all valid values for attr in the system.

Definition 21. (Attribute Filter). An attribute filter is defined as a set of tuples F =

{⟨attr, v⟩| attr ∈ ATTR and v ∈ V (attr)}. Here ⟨a, v⟩ is an attribute filter tuple that

indicates attr has value v.

Definition 22. (Access Request). An access request q is a tuple q = ⟨u, o, op, ea⟩ where

user u ∈ U is the requester requesting to perform operation op ∈ OP on object o ∈ O while

environmental attributes ea ∈ EA holds.

Definition 23. (Authorization Tuple/Access Log). An authorization tuple is a tuple

l = ⟨q, d⟩ containing the final decision d made by the authorization engine for request q. An

Access Log L is a set of such tuples.

The decision d of an authorization tuple can be permit or deny. The tuple with permit

decision means that user u can perform operation op over an object o under environmental

attributes ea. The authorization tuple with deny decision means the user cannot get such

access.

Definition 24. (ABAC Rule). An ABAC rule ρ is a tuple ρ = ⟨uaf, oaf, eaf, op, d⟩,

where uaf , oaf , and eaf are user attribute filter, object attribute filter and environmental

attribute filter, respectively, op is a corresponding operation, and d shows the decision of the

ABAC rule for such combination of attributes and requested operation.

Definition 25. (ABAC Policy). An ABAC policy πABAC is a tuple πABAC = ⟨E,ATTR,

OP,P⟩ where E, ATT , OP , and P are sets of entities, attributes, operations, and ABAC

rules in the system, respectively.
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Table 8: Notations

Notation Definition

U , O, and OP Sets of users, objects, and operations
UA, OA, and EA Sets of user attributes, object attributes, and

environmental attributes
E = U ∪O Set of all entities in the system
ATTR = UA ∪OA ∪ EA Set of all attributes in the system
V (attr) Set of all valid values for attr in the system
F = {⟨attr, v⟩| attr ∈ ATTR and v ∈ V (attr)} Attribute Filter
q = ⟨u, o, op, ea⟩ An access request where user u is the requester requesting

to perform operation op over object o while environmental
conditions ea holds

AE Authorization Engine (i.e. RL agent)
l = ⟨q, d⟩ Authorization tuple including decision d made by the AE

for request q
L Access log (i.e. set of authorization tuples)
ρ = ⟨uaf, oaf, eaf, op, d⟩ ABAC policy rule
P Set of all ABAC policy rules in the system
πABAC = ⟨E,ATTR,OP,P⟩ ABAC policy
S, A, and π RL state space, action space, and policy
st = [uat, oat, eat, op] system state at time step t
at and rt chosen action and reward (feedback) at time step t
TPw, TNw, FPw and FNw reward function items, showing agreement or

disagreement between owner and agent decision
λTP , λTN , λFP and λFN weight of reward function items
dw and dAE decision of owner of an object and the authorization agent

for an access request, respectively
owner(o) a function that returns owners of object o
V Hattr Attribute Value Hierarchy
get_state(qt) a function that returns a state st corresponding to an

access request qt
get_request(s) a function that returns an access request qs corresponding

to a state s
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4.1.2 Reinforcement Learning

Reinforcement Learning (RL) refers to a set of algorithms that train an agent to make

a sequence of decisions through an interaction with an unknown environment to attain a

goal (i.e., maximize the expected cumulative discounted reward) [57, 42, 63, 58, 16]. The

environment is modeled as a Markov decision process (MDP). At each time step t, the agent

observes the current state st of the environment from the state space S. The agent takes an

action at from the action space A according to a policy π. Following the action, the agent

receives a reward signal rt, and the state of the environment transits to st+1. The goal of the

agent is to attain a policy that maximizes the expected return R which is the sum of future

discounted rewards

R =
∞∑
t=0

γtrt

where γ ∈ [0, 1] is a discount rate that determines the significance of future rewards.

Policy π is a probability distribution over actions given the states,

π : π(s, a)→ [0, 1].

Here, π(s, a) is the likelihood of action a in state s. For each MDP, there exists an

optimal policy π∗ that is at least as good as all other policies, expressed as follows:

π∗ ≥ π ∀π

The value function of policy π in state s is the expected total reward for an agent starting

at state s:

V π(s) = E[Rt | st = s]

Similarly, the Q-function of policy π is defined as the expected return from choosing

action a in state s, and the following policy π afterward:

Qπ(s, a) = E[Rt | st = s, at = a]
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The optimal Q-function denotes the maximum reward we can expect by selecting action

a in state s:

Q∗(s, a) = max
π

Qπ(s, a)

Knowing the optimal Q-function, we can easily extract the optimal policy by selecting

an action which results in the maximum Q∗(s, a) for each state:

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S

It is common to use a function approximator to estimate the function Q, especially

when there are many possible {state, action} pairs. A function approximator has a set of

adjustable parameters, θ, referred to as policy parameters.

4.1.2.1 Contextual Bandit

Contextual bandit is an extension of n-armed bandit problem which is a simplified form

of RL problems. A contextual bandit algorithm formulates a round-by-round interaction

between a learner and an environment while introducing contextual information in the inter-

action loop [38]. Actually, the contextual bandit strategy to reinforcement learning frames

choices between separate actions in a given context. In the contextual bandit problem, the

learner observes a context and uses the contextual information to select the best action in

each round. Then the learner perceives a cost/reward for the chosen action only. Contextual

bandit algorithms utilize side information (context) to help with real-world decision-making

scenarios. Contextual bandit based approaches are suitable for various real-world interactive

machine learning problems. Specifically, they operate nicely on choosing actions in dynamic

environments where options change rapidly, and the set of available actions is limited. As a

learner receives limited feedback from the environment, exploration plays an important role

in contextual bandit algorithms.

The contextual bandit approach fits the adaptive authorization policy learning problem

nicely, specially in dynamic environments, as the available set of actions (i.e. deny or permit)

is limited and each state of the environment is independent from other states. Hence, the
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perceived cost/reward in each round is based on the chosen action only. In addition, con-

textual information (i.e. attributes of involved entities) plays an important role in choosing

the appropriate action.

Considering the aforementioned properties, we propose to model the ABAC policy learn-

ing as a contextual bandit problem.

4.1.3 Home IoT and Its Authorization Framework

IoT is one of the emerging paradigms that is evolving quickly. It allows users to be

connected to various objects and exchange data across their networks. Home IoT is one

example of such an environment where users in a household interact with internet-connected

devices that include sensors and appliances in their daily routines. Home IoT devices are

usually managed through a central controller that handles the communication between de-

vices, enforces users’ authorization policies, and often allows for the execution of programs

and applications over such devices. ABAC model is a good fit as an authorization approach

for such an environment. However, despite traditional information systems with single-user

devices (e.g. computers, phones, etc.), in a home IoT environment, multiple users interact

with each device. As a result, traditional authorization frameworks fail to provide usable

and flexible access-control specification and enforcement in such settings. With numerous

IoT devices, a wide range of attributes and contextual factors, and various relationships

between users and devices, it is unthinkable to expect ordinary users to be able to manage

such complex authorization requirements and enforcement infrastructure. In this paper, we

focus on a home IoT as a running example and apply our proposed approach for adapting

an access control model for it.

We focus on a capability-centric authorization model instead of a device-centric one as

suggested by [26] where a capability is defined as an operation (e.g., play music) that can

be performed on an IoT device (e.g., Google Home). The capability-based authorization

model is more suitable for home IoT, as each home IoT device may have several capabilities

with different sensitivity levels that results in different access control policy rules for various

capabilities of an IoT device. For example, assume that a smart door lock has various ca-
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pabilities such as unlocking, locking, viewing the state of the lock, deleting logs, and so on.

In this example, unlocking the door is more sensitive than viewing a state of the lock and

hence needs a more restricted AC policy rule.

Figure 11: Overview of Home IoT Environment.

As shown in Figure 11, a home IoT environment consists of a set of users interacting

with a set of home IoT devices. Each IoT device has a set of capabilities and a set of own-

ers/administrators who manage the provisioning of such capabilities. Here, users, devices,

and capabilities are equivalent to set of users U , set of objects O, and set of operations OP ,

respectively, in the corresponding ABAC authorization model.

When a user wants to access a capability of a device (e.g. the user wants to play music

on Google Home), his access request is directed to the authorization engine (AE). The

AE evaluates the access request and sends its authorization decision back to the system to

be enforced. The authorization decision is either permit or deny, granting or preventing

requested access to the user, respectively. The AE evaluates the access requests based on

the states of the system and the policy it learned through reinforcement learning algorithm.
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4.2 Adaptive Attribute-Based Policy Learning

In this section, we introduce the ABAC-RL, an adaptive reinforcement learning based

ABAC policy learning framework. We present the key components of ABAC-RL in detail

and propose several methods for improving the model.

Agent (Authorization Engine)

State St Policy π Action at Take action at (permit/deny)

Environment

Observe State St = [uat, oat, eat, op]

Reward rt

Figure 12: Adaptive Reinforcement Learning Based ABAC Policy Learning

4.2.1 ABAC-RL Framework

Figure 12 shows the overall ABAC-RL framework. Here, an agent corresponds to the

authorization engine (AE) that adapts an ABAC model through a feedback control loop

by interacting with the environment. The environment is considered to mainly have the

users/administrators of the system. An agent begins by knowing nothing or very little

about the authorization policies of the administrators of the system and learns through rein-

forcements (i.e. rewards/penalties received through feedback from the environment showing

how well it is deciding on access requests).
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At each time step t (i.e. when an access request qt is received by the system), the AE

agent observes a state, st, from the state space, S, and accordingly takes an action, at,

from the action space, A, determining authorization decision based on the policy, π. In

our model, the state observed by an AE agent for characterizing the environment consists

of several parts: attributes uat of user ut requesting the access, attributes oat of object ot,

environmental attributes, eat, and operation opt that is requested to be performed on object

ot. Hence, the state can be shown as st = [uat, oat, eat, opt]. Accordingly, the action (i.e.,

the authorization decision) is either permit or deny, granting or preventing requested access

to the requester, respectively.

Following an action, an agent receives a reward, rt, determined by the feedback from the

users of the system showing their agreement/disagreement with the authorization decision of

the AE agent. For this purpose, the authorization decision of AE for each request is recorded.

Later on, the administrator of the requested object checks the records and submits his

feedback to the system showing his agreement/disagreement with the authorization decision

of AE. We note that administrators usually give feedback when they do not agree with the

authorization decision of AE, otherwise they may not give any feedback. Hence, we assume

no feedback from the administrator means he agreed with the decision.

The feedback provided by administrators of a requested object will be used in the re-

ward function to calculate the reward of the action that was taken by an AE agent for the

corresponding access request. The reinforcement learning algorithm will use the calculated

reward to update its policy with the goal of making better decisions in the future. We explain

the details of the reward function in the following section.

4.2.2 Reward Function

At each time step and for each access request, the AE agent takes an action (i.e. permit

or deny) according to the current state, st ∈ S and based on its policy π. The goal of the

agent is to minimize unauthorized access to the objects. In order to reach this objective,

the authorization decision of the agent should match the collective authorization decisions

of the owners/administrators of the corresponding object. Therefore, the reward function
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Table 9: Reward Function Items Based on Agent and Owner decisions for an Access Request

TPw =

{
1 if dw = permit and dAE = permit

0 otherwise
FPw =

{
1 if dw = deny and dAE = permit

0 otherwise

FNw =

{
1 if dw = permit and dAE = deny

0 otherwise
TNw =

{
1 if dw = deny and dAE = deny

0 otherwise

dw and dAE represents decision of the owner of an object and the authorization agent for an
access request, respectively.

is set up in a way to achieve this goal. The input to the reward function is the feedback

of all owners/administrators of the requested object. If the feedback shows an agreement

with AE’s decision, the agent should get a positive reward to learn that its decision was

correct. On the other hand, when the feedback shows a disagreement between an owner and

the decision of an AE, the agent should receive a negative reward so it will adjust its policy

with the goal of making better decisions in the future. Hence, we propose a reward function

as follows:
rt =∑

w∈owner(ot)

λTP · TPw + λTN · TNw − λFP · FPw − λFN · FNw

where, owner(ot) is a function that returns all owners (or administrators) of object ot

that was requested at time step t, and TPw, TNw, FPw and FNw are reward function items

that are calculated based on the decision of AE and the feedback from owner of the device

(see details in Table 9), and λTP , λTN , λFP and λFN are their corresponding weights.

Here, true positives and true negatives are represented as positive rewards as the goal of the

agent is to maximize them while both false positives and false negatives are represented as

penalties, as the goal is to minimize these measures.
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4.2.3 Policy Initialization Techniques

Reinforcement learning algorithms start with the initialization of a target policy. We

propose four different approaches for initializing an ABAC-RL policy in our framework.

These initialization methods may overlap and the real-world system can employ any of these

approaches or all of them, together. Here again, we use Home-IoT as our running example.

4.2.3.1 Initialization with General AC Policy Rules

As studied by He et al. in [26], a set of desired access control policies are typically

consistent among IoT Home users. For example, it is desirable that all users be capable of

controlling the lights and thermostats when they are at home. As another example, deleting

the lock log should be denied for all users of the system except the owners. Multiple such

candidate general policies have been suggested by He et al. in [26]. These general AC policies

are a good starting point for initializing the ABAC-RL policy.

4.2.3.2 Initialization with Default User Settings

At the beginning of employing an RL for learning authorization policies of a Home-IoT

system or when a new user (e.g. a baby sitter) is added to the Home-IoT, the owners of the

devices can define a few access control policy rules as a default setting of the authorization

framework. These settings are employed by the RL algorithm to initialize the corresponding

policies so it will converge to the desired authorization policies faster and prevent over-

privileged or under-privileged accesses. For example, the default authorization policy rule

for "neighbor" could be deny while the default policy rule for "parent" could be permit.

4.2.3.3 Default Decision for Capabilities

Different capabilities of Home IoT devices have different levels of sensitivity. For a highly

sensitive capability, any over-privileged access could result in a serious loss of security or pri-

vacy and is against the principle of least privilege [50]. The default decision (i.e., RL action)

for an access request corresponding to such a capability should be deny. On the other hand,
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for nonsensitive capabilities, an under-assignment could result in an authorized user being

denied from accessing the capability which is very inconvenient. Such under-assignments

could adversely affect the availability of an object/capability and should be avoided. Hence,

the default decision for an access request corresponding to such a capability should be per-

mit. The default decisions for such capabilities can be set as part of the initialization of the

authorization policy. For example, the default decision for "check_temperature" is permit.

4.2.3.4 Initialization with Past Access Logs

Information systems’ owners often desire to employ modern access control models and

migrate from outdated authorization models to new ones. Various policy learning meth-

ods have been proposed to automate such migration [68, 14, 29, 35, 33]. In the case of

policy learning, available access logs from former AC models can be used to form a new

refined policy. In our proposed approach, we utilize the available access logs to initialize the

corresponding RL model.

4.2.4 Policy Learning with Planning

In a reinforcement learning model, an agent improves its decision making strategy by

interacting with the environment. In each state, the agent chooses an action and receives

feedback for the chosen action. Based on the received feedback, it will update its policy

for decision making in that state. By experiencing more and more state-action-feedback

sequences, the agent policy will get close to the optimal policy. However, for a large space

of states, the agent does not have complete information for all the states. Its information is

partial as it may not visit all the states. The agent can improve its information on an unseen

state by utilizing the information of neighboring states.

In our ABAC-RL policy learning framework, we propose a planning strategy to enhance

the learned policy in presence of partial information. Such a strategy will help the agent

to make a better decision for previously unseen states. The proposed planning algorithm is

based on pre-defined hierarchies of attribute values in the system. Attribute value hierarchy

defines a quasi ordering between different values of an attribute in the model. Formally, we
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define an attribute value hierarchy as follows:

Definition 26. Attribute Value Hierarchy For each attribute attr ∈ (UA ∪ OA ∪ EA),

the attribute value hierarchy V Hattr ⊆ V (attr)×V (attr) is a partial order on V (attr) called

closeness relation, written as v1 ⪰ v2, where v1 is called the upper value and v2 is called the

lower value in the relation.

The proposed planning strategy identifies neighboring states and concludes the access

decision of one state based on another. For this purpose, we formally define the neighboring

states as follows:

Definition 27. Neighboring States Two states st1 and st2 are called neighboring states

where for all attribute attr ∈ (UA ∪ OA ∪ EA), except attr′ the two states have the same

value, attr′ = v1 in state st1 and attr′ = v2 in state st2, and attr′ has a value hierarchy where

v1 and v2 are in closeness relationship (i.e. v1 ⪰ v2 or v2 ⪰ v1).

The Upper Neighboring State and Lower Neighboring State are defined as follows to

distinguish between concluding "permit" and "deny" decisions for neighboring states.

Definition 28. Upper and Lower Neighboring States Given two neighboring states st1

and st2 where the value of all their attributes except attr′ are the same and attr′ = v1 in

state st1 and attr′ = v2 in state st2, the state st1 is called the upper neighboring state, and

state st2 is called the lower neighboring state if v1 and v2 are in a closeness relationship and

v1 ⪰ v2.

The intuition behind the planning strategy is that the authorization decision for a state

is similar to the authorization decision for its neighboring state (with higher/lower order

attribute value in the same hierarchy). In our planning process, when the AE receives

feedback for an access log, it records the decision for the access log and all its neighboring

states. For each access log, we only consider the first-level neighboring states, meaning that

we only consider the unseen states that differ in one attribute value from the given state.

Algorithm 5 shows the details of the planning process.

As an example assume that "minor" and "teenager" are two possible values of attribute

"age_range" in Home-IoT. There is a closeness relation between these two attribute values

written as teenager ⪰ minor meaning that states steenager and sminor are neighboring states

64



Algorithm 5: Planning Algorithm
Input: L

Output: L

1 procedure Planning

2 forall l = [qt, dt] ∈ L do

3 st = get_state(qt);

4 if dt == “permit” then

5 S_Upper = get_upper_neighbors(st);

6 forall s ∈ S_Upper do

7 if s /∈ L then

8 qs = get_request(s);

9 L = L ∪ [qs, “permit”];

10 end

11 end

12 end

13 if dt == “deny” then

14 S_Lower = get_lower_neighbors(st);

15 forall s ∈ S_Lower do

16 if s /∈ L then

17 qs = get_request(s);

18 L = L ∪ [qs, “deny”];

19 end

20 end

21 end

22 end

23 return L

and given that all other attribute values of these two states are equal, permitting an action

in the state with age_range = teenager is expected if authorization decision for an action
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in the state including age_range = minor is permit. So if an action is permitted for a minor

child in a home IoT environment it will be permitted for a teenager in the same situation.

On the other hand, we decide to deny an action in a state for a minor child if the action is

denied for a teenager in the same circumstances.

4.3 Experimental Evaluation

We have implemented a prototype of our proposed approach presented in Section 4.2. In

this section, we present our experimental evaluation.

4.3.1 Experiment Setup

Evaluation over real authorization data would be ideal, however, as we only have access

to one real access log from Amazon, we developed various sample policies, attribute data,

and their corresponding synthesized access logs. We have developed two sets of sample

policies, one with manually written policy rules and the other with randomly generated

policy rules. Each sample policy is the desired policy that the ABAC-RL algorithm aims

to learn. We generate a synthesized access log for each sample policy. To generate the

synthesized access log, we brute force through all attributes and their values to produce all

possible combinations for the access tuples. We use this method to generate a complete

access log for the manual and random policies. In the synthesized access logs, each access

tuple corresponds to an access request and the desired authorization decision based on the

original policy. To check the feasibility of our approach over sparse data, we also consider a

partial dataset for each sample policy. We produce the sparse dataset (partial dataset) by

randomly selecting access log records from the complete dataset. The ABAC-RL learning

algorithm is run over each dataset to see how it will learn the authorization policy gradually.

The log generation and the proposed adaptive ABAC-RL learning algorithm are written

in Python 3. We use Vowpal Wabbit (VW) 1 for implementing various contextual bandit
1https://vowpalwabbit.org
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methods (see details in Section 4.3.2) as well as a supervised learning algorithm. The su-

pervised learning algorithm is a one-against-all logistic regression method provided by VW.

The experiments were performed on a 64-bit Windows 10 machine having 8 GB RAM and

an Intel Core i7 processor.

The performance of each method on a dataset with n records is measured by the pro-

gressive validation loss (P.V.Loss) [11] that is calculated as follows:

PV L =
1

n

n∑
t=1

ctat

where at is the loss for each chosen action (at = 0 if the chosen action matches the decision

of the original access tuple and at = 1 otherwise) in time step t and ct is the corresponding

cost (ct = 1 in our experiments). In our experiments, we assume each object has one owner

and the weights of reward function items (λs) equal 1.

4.3.1.1 Datasets

To evaluate the proposed model, we perform our experiments on multiple datasets includ-

ing synthesized and real ones. The synthesized authorization records are generated based

on two sets of ABAC policies: a set of ABAC policies with manually written policy rules

and one with randomly generated policy rules. The real dataset is built from the records

provided by Amazon in the Kaggle competition [5].

Real Dataset - Amazon Kaggle: The Kaggle competition dataset [5] includes access

requests made by Amazon’s employees in a two-year period. Each access tuple in this dataset

corresponds to an employee’s request to access a resource and shows whether the access was

permitted or not. The access log consists of the employees’ attribute values and the resources’

identifier. The dataset includes more than 12,000 users and 7,000 resources.

Synthesized dataset - manually written policies: We developed a set of sample

policies including manually written rules and attribute data. We generated synthesized

access log data for each manual policy. The access log consists of access requests and the

desired decision based on the corresponding policy rules. To generate the synthesized access

log, we brute force through all attributes and attribute values to produce all of their possible
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Table 10: Details of Datasets

πABAC |P| |A| |V | |L|

Kaggle [5] - 9 15626 33K

Manual Policy 1 (πm1) 11 5 30 6K

Manual Policy 2 (πm2) 11 5 29 5K

Manual Policy 3 (πm3) 38 5 44 48K

Synthetic Policy 1 (πs1) 5 8 30 21K

Synthetic Policy 2 (πs2) 10 10 34 70K

Synthetic Policy 3 (πs3) 15 12 37 200K

combinations. This procedure generates a complete access log for each sample policy. To

check the feasibility of our approach over sparse data, we also consider partial datasets for

each sample policy. We produce each partial dataset by randomly selecting the access log

records from the complete dataset. All incomplete logs in our experiments are 20% partial

datasets that are generated by randomly selecting 20% of tuples from the complete access

logs. Appendix B shows the details of the manually written policies.

Synthesized dataset - randomly generated policies: The authorization rules for

these policies are generated completely randomly from random sets of attributes and at-

tribute values. These randomly generated policies provide an opportunity to evaluate our

proposed approach on datasets with various sizes and with varying structural characteristics.

Table 10 shows the details of the access log datasets. In this table, |P| shows the number

of ABAC rules in the original policy, |ATTR| and |V | =
∑

attr∈ATTR

|V (attr)| show the number

of attributes and attribute values, respectively, and |L| shows the size of the access log.
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4.3.2 Contextual Bandit Algorithms

We empirically evaluate four contextual bandit algorithms for our proposed model. The

algorithms are as follows:

• ϵ-greedy algorithm [37]: The algorithm greedily exploits the best action learned with

probability 1− ϵ and explore uniformly over all actions with probability ϵ.

• Explore-first: The algorithm exclusively explores the first k trials and then exploits the

best action learned afterward.

• Bagging: The algorithm trains multiple policies using bootstrapping. Given the context,

the algorithm samples from the distributions over the actions provided by these policies.

• Online cover [1]: The algorithm explores all available actions while keeping only a small

subset of policies active.

4.3.3 Experimental Results

In this section, we compare various contextual bandit algorithms for policy learning over

different databases. We also evaluate our proposed ABAC-RL framework against several

baselines. Table 11 reports the result of the best parameter settings for each algorithm over

different databases.

4.3.3.1 Kaggle Access Control Dataset

The results of different contextual bandit algorithms, as well as a supervised classifier

over the Kaggle dataset [5], are shown in Fig 13 and reported in Table 11. The graph shows

the progressive validation loss (P.V.Loss) [11] for each algorithm. We can see that under full

information and by using a supervised algorithm, we get a pretty good predictor with an

average loss rate of 5.5%. All contextual bandit algorithms show comparable performance

on this dataset. Specifically, both Online Cover (with a cover set of size 2) and Explore-first

(with first 10 records) algorithms get an average loss rate of 5.8% which is very impressive

considering the fact that compared to the full information supervised learning scenario they

only have access to partial information.
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Table 11: Progressive validation loss, best hyperparameter values, and running times of

various algorithms on different datasets

Databases Algorithms
ϵ-greedy Explore-first Bagging Online Cover Planning Supervised

Kaggle [5]
P.V.Loss 0.065 0.058 0.059 0.058 - 0.055
Best Hyperparam ϵ = 0.01 10 first 2 bags cover n = 2 - NA
Running Time (s) 0.588 0.400 0.617 0.459 - 0.351

Manual Policy 1 (πm1)
P.V.Loss 0.16 0.2 0.13 0.11 - 0.14
Best Hyperparam ϵ = 0.01 1500 first 4 bags cover n = 2 - NA
Running Time (s) 0.115 0.132 0.148 0.162 - 0.130

Manual Policy 2 (πm2)
P.V.Loss 0.13 0.17 0.11 0.08 - 0.10
Best Hyperparam ϵ = 0.02 300 first 2 bags cover n = 2 - NA
Running Time (s) 0.095 0.132 0.093 0.121 - 0.139

Manual Policy 3 (πm3)
P.V.Loss 0.07 0.1 0.04 0.03 0.02 0.05
Best Hyperparam ϵ = 0.01 10 first 2 bags cover n = 2 cover n = 2 NA
Running Time (s) 0.346 0.355 0.377 0.388 .401 0.301

Synthetic Policy 1 (πs1)
P.V.Loss 0.15 0.14 0.09 0.08 0.07 0.12
Best Hyperparam ϵ = 0.02 1500 first 10 bags cover n = 1 cover n = 1 NA
Running Time (s) 0.203 0.275 0.303 0.217 .295 0.232

Synthetic Policy 2 (πs2)
P.V.Loss 0.11 0.09 0.08 0.06 0.05 0.06
Best Hyperparam ϵ = 0.03 1500 first 6 bags cover n = 1 cover n = 1 NA
Running Time (s) 0.466 0.742 0.620 0.410 0.495 0.569

Synthetic Policy 3 (πs3)
P.V.Loss 0.12 0.11 0.07 0.06 0.05 0.07
Best Hyperparam ϵ = 0.01 1500 first 8 bags cover n = 1 cover n = 1 NA
Running Time (s) 6.2 6.1 6.1 6.1 6.1 6.1

4.3.3.2 Manual and Synthetic Policy Datasets

Figures 14 and 15 show the results of various learning algorithms over complete and

partial datasets for manually written policies as well as randomly generated ones. Interest-

ingly, in most cases, one or more contextual bandit algorithms outperform the supervised

learning algorithm. For all complete datasets, the online cover algorithm converges to the

lowest validation loss. As we expect, algorithms achieve lower loss over complete datasets

compared to partial ones as they have more data available in their training phase. In the

same way, as is shown in Fig. 15, as datasets get larger, the final losses of algorithms over

them become lower.

4.3.3.3 Comparison with Other Classification Methods

As we can see in Table 11, the Online Cover algorithm (with a cover set of size 2) per-

forms the best among other RL algorithms for almost all datasets. To compare our proposed
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Figure 13: Progressive validation loss of various algorithms on Kaggle dataset [5]
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(a) πm1 Complete Dataset
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(b) πm1 Partial Dataset

Figure 14: P.V.Loss of various algorithm on manual policies’ complete and partial datasets
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(c) πm2 Complete Dataset
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Figure 14: P.V.Loss of various algorithm on manual policies’ complete and partial datasets
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(e) πm3 Complete Dataset
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Figure 14: P.V.Loss of various algorithm on manual policies’ complete and partial datasets
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0 1000 2000 3000 4000
Data Point

0.0

0.1

0.2

0.3

0.4

0.5

Pr
og

re
ss

iv
e 

Va
lid

at
io

n 
Lo

ss

Bagging (2 bags)
Online Cover (cover n=1)

-greedy ( =0.01)
Explore-first (first 100)

Supervised

(b) πs1 Partial Dataset

Figure 15: P.V.Loss of various algorithm on synthetic policies’ complete and partial datasets
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Figure 15: P.V.Loss of various algorithm on synthetic policies’ complete and partial datasets
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approach with other classification methods, we run a set of experiments in which we evaluate

the performance of the Online Cover algorithm (with n = 2) and several classification algo-

rithms including logistic regression, support vector machine (SVM), one against all (OAA),

and various configurations of neural network (NN) algorithms. Fig 16 shows the P.V.Loss of

these algorithms over various datasets. As we can see, different configurations of NN algo-

rithms have the best performance over various datasets. The performance of our proposed

approach (using Cover 2 algorithm) is very close to NN algorithms. As shown in the graphs,

logistic regression and SVM don’t perform well over all datasets which is understandable.

Logistic regression has a linear decision surface and assumes a linear relationship between

dependent variables and independent variables which does not hold in the problem of ABAC

policy learning. And SVM algorithm does not perform well when the dataset is big, the

dataset is noisy, or when target classes are overlapping. Hence, SVM is not a good choice

for the given problem.

4.3.3.4 Policy Shift

Next, we examine how various algorithms respond to a shift in the authorization policy.

Fig 17 shows the P.V.Loss of these algorithms over a policy that has a shift after t =

5600. The authorization policy shifts from πm1 to πm2 after this timestamp. Note that all

algorithms have a slight increase in P.V.Loss after the shift but they adapt to the change

in the policy. For this specific simulation, Online Cover (with a cover set of size 2) adjusts

quicker than other algorithms and converge to a better P.V.Loss value. Interestingly, the

two contextual bandit algorithms (i.e. Online Cover and Bag) outperform the supervised

learning algorithm in terms of adapting to the shift in the policy.

4.3.3.5 Policy Initialization Techniques

Fig 18 shows the results of various initialization techniques over manual policy πm3

dataset. As shown in the graph, the initialization with general rules resulted in the highest

decline in the average loss and the initialization based on the default capability action resulted

in the lowest decline in the average loss.
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Figure 16: Comparison of Online Cover algorithm with various supervised algorithms on

different datasets
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(c) πm2 Complete Dataset
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(d) πm3 Complete Dataset

Figure 16: Comparison of Online Cover algorithm with various supervised algorithms on

different datasets (Cont.)
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4.3.3.6 Policy Learning with Planning

Fig 19 shows the results of the Online Cover algorithm over manual policy πm3 with

and without planning. As we can see in the figure, the learning algorithm with planning

decreased the PVL by 25% for this dataset. We should note that Online Cover learned a

model with the lowest PVL for this dataset and this is a significant reduction for such a

model. Table 11 shows the results of the planning algorithm over various databases. As we

can see from the results, the planning algorithm decreases the PVL for at least 10% for all

cases that the planning was applied.

0 10000 20000 30000 40000 50000
Data Point

0.00

0.01

0.02

0.03

0.04

0.05

Pr
og

re
ss

iv
e 

Va
lid

at
io

n 
Lo

ss

Without Planning With Planning

Figure 19: The effect of learning with planning on reducing average loss of Online Cover

model on πm3 dataset
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4.4 Discussion

While an adaptive ABAC policy learning through an RL model seems a promising ap-

proach for policy development and management in complex and evolving systems, there are

some considerations that need to be reviewed carefully. In this section, we discuss such

challenges.

4.4.1 Managing Incorrect Authorization Decisions

The learning process needs to go through multiple rounds of state-action-feedback se-

quences to achieve good performance. Hence, some incorrect authorization decisions during

the learning phase is inevitable. To address the issue, the system could employ the following

approaches to minimize the consequences of the wrong authorization decisions of the RL

agent throughout the learning process:

• The system can employ a simpler AC model (e.g., RBAC or DAC) while the learning

process is taking place.

• The system can continue using its legacy AC model while the learning process is taking

place and before completely migrating to the newly learned ABAC model. This approach

has two advantages: first, the decision of the legacy system can be used as feedback to

the learning agent, and second, the migration can happen when the administrator feels

confident about the decisions of the agent (i.e., the loss is less than a desirable threshold).

• For sensitive resources, the default action can be set to “deny” (except for an adminis-

trator) and the RL model can be initialized with these default decisions as suggested in

the proposal.

4.4.2 Model Convergence

The learning process of the proposed model is assumed to have been converged when the

loss of the RL model is less than a desired threshold set by the administrator of the system.

However, in the case of dynamic systems, for any newly added attribute/attribute values or
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an update in authorization policies, a learning process will continue. As such, the RL agent

will always work in the background.

For example, as we can see in Figures 14 and 15, the more the agent receives feedback

from the users, the lower the loss of the RL model would be. If we assume the desired loss of

the model is set at 0.15 by the administrator of the system, then the Online Cover algorithm

converges for all the datasets.

On the other hand, when we have an update in the authorization policy (as described in

Section 4.3.3.4 and was shown in Figure 17), although the RL model was converged before

the policy update, the loss rate would increase after such an update. Hence, the agent needs

more feedback from the users to learn the new policy. Therefore, the loss rate decreases and

the model converges again.

4.5 Conclusion

In this section, we take a reinforcement learning, more specifically, a contextual-bandit

approach, to support adaptive ABAC policy learning. We have proposed a simple and

reliable method for learning ABAC policy rules by incorporating the feedback of users on

access decisions made by the authorization engine. We have focused on Home IoT as a

running example throughout the section. We have proposed four different procedures for

initializing the learning model and a planning approach based on attribute value hierarchies

to accelerate the learning process. We have evaluated our proposed approach over real and

synthetic data including both complete and sparse datasets. Our experiments show that the

proposed learning model not only fits the dynamic nature of modern information systems but

it also achieves performance comparable to the full information supervised learning methods

in many scenarios and even outperforms them in several situations.
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5.0 ABAC Policy Misconfiguration Detection and Resolution

Authorization methods are critical components of each system and are vital for ensuring

the confidentiality and availability of its information. By the advent of emerging technologies

(e.g. Online Social Networks (OSNs), Cloud computing, Internet of Things (IoT), etc.), a

need for a reliable access control (AC) mechanism has become more salient than ever be-

fore. However, current information systems are still suffering from unintended information

leakages through unauthorized access to their resources. Developing and managing access

control policies are often error-prone as there is not an effective mechanism for analyzing

such policies. Furthermore, in distributed/federated systems, the authorization policies can

be designed and managed by multiple authorities, hence they may contain various anoma-

lies including conflicts and redundancies. Besides, as modern systems evolve rapidly, their

authorization policies go through several updates which if not done correctly could result in

policy misconfigurations.

Attribute Based Access Control (ABAC) has shown to be a promising AC model for

providing flexible and comprehensive authorization mechanisms in emerging complex sys-

tems. However, its flexibility comes with a cost; its development and management is much

more complex than other AC models. The complexity of ABAC model makes the manual

detection and resolution of policy misconfiguration a very challenging or even an impossible

task.

In this chapter, we propose an ABAC policy misconfiguration detection and resolution

framework that is based on a continuous analysis of ABAC policy rules as well as their

corresponding access log. The rest of the chapter is organized as follows. In Section 5.1, we

overview the ABAC model and its policy language that we use through out this chapter.

In Section 5.2, we present the policy misconfiguration detection problem and enumerate

various forms of policy misconfigurations. In Section 5.3, we present the proposed ABAC

policy misconfiguration discovery and resolution framework. In Section 5.4, we present the

evaluation of the proposed approach. Finally, Section 5.5 concludes the chapter.
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5.1 ABAC Model

Throughout this chapter, U , O, and OP represent sets of users, objects, and operations

in a system, and UA, OA, and EA correspond to sets of user attributes, object attributes,

and environmental attributes, respectively. E = U ∪O and A = UA∪OA∪EA are the sets

of all entities and all attributes in the system.

Definition 29. (Attribute Range). Given an attribute a ∈ A, the attribute range V (a) is

the set of all valid values for a in the system.

Definition 30. (Attribute Function). Given an attribute a ∈ A and an entity e ∈ E, an

attribute function Attr(a, e) is a function that maps an entity to a specific value from the

attribute range. Specifically, Attr(a, e) returns the value of attribute a for entity e.

Example 8. Attr(position, John) = faculty indicates that the value of attribute position

for John is faculty.

Definition 31. (Attribute Filter). An attribute filter is defined as a set of tuples F =

{⟨a, v⟩| a ∈ A and v ∈ V (a)}. Here ⟨a, v⟩ is an attribute filter tuple that indicates a has

value v.

Attribute filters are used to filter entities based on their attribute values.

Example 9. Tuple ⟨department, admissions⟩ points to all entities in the system that have

“admissions" as the value of their “department" attribute.

Definition 32. (Attribute Filter Satisfaction). An entity e ∈ E satisfies an attribute

filter F , denoted as e |= F , iff

∀⟨ai, vi⟩ ∈ F : Attr(ai, e) = vi

Example 10. Suppose Au = {dept, position, courses}. The set of tuples Fu = {⟨dept, CS⟩, ⟨position,

grad⟩} denotes a user attribute filter. Here, the graduate students in the CS department sat-

isfy Fu.
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Definition 33. (Access Request). An access request q is a tuple q = ⟨u, o, op, ea⟩ where

user u ∈ U is the requester requesting to perform operation op ∈ OP on object o ∈ O while

environmental attributes ea ∈ EA holds.

Definition 34. (Access Record/Access Log). An access record is a tuple l = ⟨q, d⟩

containing the decision d made by the system for request q. An Access Log L is a set of such

tuples.

The decision d for an access request can be permit or deny. A tuple with permit as its

decision means that user u is authorized to perform operation op over an object o under

environmental attributes ea. an access record with deny decision means the user is not

authorized to get such access.

Definition 35. (ABAC Rule). An ABAC rule ρ is a tuple ρ = ⟨fu, fo, fe, op, d⟩, where fu,

fo, and fe are user attribute filter, object attribute filter and environmental attribute filter,

respectively, op is a corresponding operation, and d shows the decision of the ABAC rule for

such combination of attributes and requested operation.

Example 11. Consider rule ρ1 = ⟨{⟨position, student⟩, ⟨deptu, CS⟩}, {⟨type, article⟩, ⟨depto, CS⟩},

{⟨location, campus⟩}, read, permit⟩. It can be interpreted as “A student from CS department

is permitted to read an article from CS department if he/she is on campus".

Definition 36. (Rule Satisfaction) An access request q = ⟨u, o, opq, ea⟩ is said to satisfy

a rule ρ = ⟨fu, fo, fe, opρ, d⟩, denoted as q |= ρ, iff

u |= fu ∧ o |= fo ∧ ea |= fe ∧ opq = opρ.

Definition 37. (Rule Coverage). The rule coverage of ρ over access log L denoted as

JρKL is a set of access right tuples which the rule ρ can be applied to, formally:

JρKL = {⟨q, d⟩ ∈ L | q = ⟨u, o, opq, ea⟩ ∧ q |= ρ}.

Definition 38. (Overlapping Coverage). The overlapping coverage of ρ over access log

L denoted as JρKOL is a set of access right tuples in JρKL that are also part of the coverage of

one or more other rules, formally:

JρKOL = {⟨q, d⟩ ∈ JρKL | ∃ρ
′ ∧ ⟨q, d⟩ ∈ Jρ′KL}.
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Definition 39. (Disjoint Coverage). The disjoint coverage of ρ over access log L denoted

as JρKDL is a set of access right tuples in JρKL that are not part of the coverage of any other

rules, formally:

JρKDL = {⟨q, d⟩ ∈ JρKL | ∄ρ
′ ∧ ⟨q, d⟩ ∈ Jρ′KL}.

Definition 40. (ABAC Policy). An ABAC policy πABAC is a tuple πABAC = ⟨E,A,OP,P⟩

where E, ATT , OP , and P are sets of entities, attributes, operations, and ABAC rules in

the system, respectively.

Definition 41. (ABAC Policy Decision). The decision of an ABAC policy π for an

access request q is denoted as dπ(q).

dπ(q) is permit iff:

(∃ρ1 ∈ π : dρ1 = permit ∧ q |= ρ1) ∧ (∄ρ2 ∈ π : dρ2 = deny ∧ q |= ρ2)

dπ(q) is deny iff:

(∃ρ1 ∈ π : dρ1 = deny ∧ q |= ρ1) ∧ (∄ρ2 ∈ π : dρ2 = permit ∧ q |= ρ2)

dπ(q) is unknown iff:

(∃ρ1 ∈ π : dρ1 = permit ∧ q |= ρ1) ∧ (∃ρ2 ∈ π : dρ2 = deny ∧ q |= ρ2)

The system needs to apply conflict resolution techniques to conclude the decision for

unknown situations.

Definition 42. (Rule Cluster). The rule cluster of ρi denoted as C(ρi) is a set of access

right tuples in the rule coverage JρiKL that has the same policy decision as the rule decision,

formally:

C(ρi) = {⟨q, d⟩ ∈ JρiKL | dπ(q) = dρi}.

Definition 43. (Rule Cluster Center). The rule cluster center of ρi denoted as µi is the

arithmetic mean of all the access right tuples belonging to the rule cluster, formally:

µi = {µi[1], µi[2], ..., µi[m]} : µi[j] =
1

nj

∑
x∈C(ρi)[j]

x, nj = |C(ρi)|.
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Definition 44. (Rule Coverage Purity). Rule coverage purity of ρ, denoted as Purity(ρ),

is a measure of the extent to which rule coverage is disjoint, formally:

Purity(ρ) =
|JρKDL |
|JρKL|

Definition 45. (Policy Purity). Policy purity of π, denoted as Purity(π), is a measure

of the extent to which the coverage of the rules in the policy is disjoint, formally:

Purity(π) =
1

n

∑
ρi∈Pπ

|JρiKDL |
|JρiKL|

, n = |Pπ|

5.2 Policy Misconfiguration

In large distributed systems, conflicts between policies are inevitable. Manual resolution

of such conflicts is a tedious task. In order to be able to resolve policy conflicts automat-

ically, we first need to distinguish between different types of conflicts that may occur in

policy configuration. Moffett and Sloman in [44] classify policy conflicts into two main cat-

egories: Conflict of Modalities and Conflict of Goals. Conflict of Modality points to two

types of conflicts: Positive-Negative Conflict that happens when a subject is both permitted

and denied for the same action on an object and Conflict between Imperative and Authority

that occurs when a subject is required to initiate an action on an object and at the same

time, he is forbidden to carry out such action. Conflict of Goals comprises multiple sub-

categories including Conflict of Priorities that occurs when two policies require the use of

more resources than what is available, Conflict of Duties which is also known as a failure

of the control principle of separation of duties, and Conflict of Interests which describes a

situation where a subject is authorized to perform two different operations and carrying out

both together is forbidden.

In ABAC policy domain, we are usually concerned about two types of anomalies in

authorization policy specifications, policy rules conflict and policy rules redundancy. Policy

rules conflict happens when two rules overlap (they both cover a common set of access

requests) and they yield different decisions. Authorization systems often employ various
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conflict resolution techniques (e.g., deny precedence, order precedence, recency precedence,

etc. ) to overcome such conflicts, however, these conflict could still result in safety issues

(e.g., permitting unauthorized access) or availability issues (e.g., denying legitimate access).

On the other hand, policy rules redundancy occurs when two rules overlap and they have

same decision for every access request. Having redundant policy rules may increase the

response time of authorization engine and worsen the policy evaluation performance [27].

Existing work in the literature focuses on discovery and resolution of design-time policy

anomalies that can be found by analyzing the set of policy rules at the time of system set

up. Such conflicts and redundancies that are identifiable at policy design time are formally

defined as follows.

Definition 46. (Policy Rules Conflict). Rule ρ1 and rule ρ2 have conflict (denoted as

ρ1Xρ2) if they have common attribute filters and their operations are the same but they have

different decisions. Formally,

ρ1Xρ2 ⇐⇒

(fu1 ∩ fu2 ̸= ∅) ∧ (fo1 ∩ fo2 ̸= ∅) ∧ (fe1∩fe2 ̸= ∅) ∧ op1 = op2 ∧ d1 ̸= d2.

Definition 47. (Policy Rules Redundancy). Rule ρ1 and rule ρ2 have redundancy (de-

noted as ρ1 ≈ ρ2) if they have common attribute filters and their operations and decisions

are the same. Formally,

ρ1 ≈ ρ2 ⇐⇒

(fu1 ∩ fu2 ̸= ∅) ∧ (fo1 ∩ fo2 ̸= ∅) ∧ (fe1∩fe2 ̸= ∅) ∧ op1 = op2 ∧ d1 = d2.

Many studies have focused on discovering design-time policy misconfigurations and re-

solving them [27, 18]. However, not all misconfigurations are identifiable at design time and

with only analyzing the policy rules. A more in-depth analysis with respect to both policy

rules and access log tuples is required to prevent more complex policy anomalies. For exam-

ple, assume that rule ρ1 is part of the University access control policy. It allows users with

registrar as their positions to read rosters when they’re on campus.

ρ1 = ⟨{⟨position, registrar⟩}, {⟨type, roster⟩}, {⟨location, campus⟩}, read⟩
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Now, assume rule ρ2 is added to the system that allows anyone in registration department

to read rosters when they’re on campus.

ρ2 = ⟨{⟨department, registration⟩}, {⟨type, roster⟩}, {⟨location, campus⟩}, read⟩

While analyzing the rules attribute filters for identifying design-time anomalies, no mis-

configuration will be found within these two rules. However, if we know that all the users

in registration department have registrar as their position, then the second rule becomes

redundant.

Such shortcomings motive us to employ anomaly detection techniques to detect miscon-

figurations in policy rules specifications.

5.3 ABAC Policy Misconfiguration Discovery and Resolution

In our proposed approach, we mainly focus on run-time anomalies that may occur in

authorization specification, especially in highly dynamic systems. Such misconfigurations

may happen due to various results, including:

• Policy Update: Any update in policy rules such as adding a new rule or changing

policy rule attribute filters may result in a misconfiguration. For example, assume that

a new rule is added to the policy which has a high shared coverage with another rule in

the system. This could result in either policy rule conflict or policy rule redundancy.

• Policy Attribute Update: An update in the list of attributes of the system such as

addition/deletion of an attribute from policy attributes may increase the shared coverage

between rules and cause policy anomalies.

• Entity Update: In a highly dynamic system, updates in the statistical population of

entities in a system are inevitable. Entities’ attributes and attribute values may evolve

continuously. Such updates may result in a correlation between attributes which may

cause policy conflict/redundancy or an update in an attribute value that may make a

policy rule ineffective. For example, during the pandemic, most users started to work

from home, so the value of their location attribute shifted from "On-Campus" to "Out-of-
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Campus". Such updates in users’ attribute values, may lead to policy misconfigurations

that need to be addressed by system administrators.

To be able to detect all of the aforementioned policy misconfigurations, we propose a

multi-level anomaly detection framework as follows.

• High-Level Policy Analysis In this level, the focus is completely on the authoriza-

tion policy and its features. The features such as number of rules, number of access

requests, percentage of permitted requests, percentage of denied requests, percentage of

total shared coverage, percentage of total disjoint coverage, etc., are recorded and ana-

lyzed periodically. Any anomaly in such records could be a sign of a misconfiguration in

the authorization policy and needs to be examined further. The high-level policy analysis

could reveal any misconfiguration that occurs due to a policy update, a policy attribute

update, or an entity update.

• Mid-Level Policy Rules Analysis In this level, each policy rule goes through a sep-

arate line of analysis and its features will be used for anomaly detection purposes. The

features that are being monitored regularly include the number of policy rule attribute

filters, size of the rule coverage, percentage of rule shared coverage, percentage of rule

disjoint coverage, the attribute values of rule center, the frequency of each attribute value

in the rule coverage, etc. The analysis at this level could also reveal any misconfiguration

due to policy updates, policy attribute updates, and entity updates.

• Low-Level Access Records Analysis Finally, we will run an anomaly detection algo-

rithm on all access records corresponding to each rule. If a rule has a positive decision

(i.e permit), we feed the anomaly detection algorithm with permitted access records and

if a rule has a negative decision (i.e deny), we focus on the rejected access records. This

level of analysis would locate any anomalies that were uncovered by the other two levels.

Figure 20 shows the proposed multi-level policy anomaly detection framework.
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Figure 20: Overview of the proposed multi-level ABAC policy anomaly detection framework
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5.3.1 ABAC Policy Misconfiguration Resolution

When an anomaly is detected in an ABAC policy by the proposed framework, the most

recently updated policy rule is a potential candidate for causing the anomaly. However, as

was discussed previously, there are various reasons that may result in misconfiguration in

an ABAC policy, hence finding the candidate rules and tuning them is not straightforward.

To be able to resolve a misconfiguration in an ABAC policy, first, we select the rules that

correspond to the records that were found anomalous by the employed anomaly detection

algorithm. Among the candidate rules, we focus on the rule that has the lowest Rule Coverage

Purity. Such a rule is the candidate rule that needs to be tuned. For this purpose, we select

another policy rule that has the highest overlapping coverage with the candidate rule. Our

goal is to reduce the overlapping coverage between these two policy rules. Overlapping

coverage often happens when there is a correlation between attribute values of two rules.

Hence, the next step for resolving the misconfiguration is to find the correlated attribute

values between the given rules. Finally, we add a negated Attribute Filter corresponding to

the correlated attribute value to each rule to decrease the correlation and the overlapping

coverage.

Example 12. Assume the following two rules have high overlapping coverage.

ρ1 = ⟨{⟨position, registrar⟩}, {⟨type, roster⟩}, {⟨location, campus⟩}, read⟩

ρ2 = ⟨{⟨department, registration⟩}, {⟨type, roster⟩}, {⟨location, campus⟩}, read⟩

Assume the overlapping coverage is the result of a high correlation between two attribute

values, ⟨position, registrar⟩ and ⟨department, registration⟩. To resolve the issue, we add

the negation of each attribute filter to the other rule. Hence, the tuned rules will be as follows:

ρ′1 = ⟨{⟨position, registrar⟩, ⟨department, !registration⟩}, {⟨type, roster⟩}, {⟨location, campus⟩},

read⟩

ρ′2 = ⟨{⟨department, registration⟩, }, {⟨type, roster⟩}, {⟨location, campus⟩}, read⟩

Algorithm 6 shows the details of the ABAC policy misconfiguration resolution process.
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Algorithm 6: ABAC Policy Misconfiguration Resolution Algorithm
Input: L, πABAC

Output: πABAC

1 procedure Misconfiguration Resolution

2 anomalous_records = anomaly_detection_algorithm(L,πABAC)

3 R = get_candidate_rules(anomalous_records);

4 ρ1 = get_lowest_rule_coverage_purity(R,L,πABAC);

5 ρ2 = get_highest_overlapping_coverage(ρ1,L,πABAC);

6 ⟨a1, v1⟩, ⟨a2, v2⟩ = find_correlated_attribute_values(ρ1, ρ2,L);

7 ρ1 = ρ1 ∪ ⟨a2, !v2⟩ ;

8 ρ2 = ρ2 ∪ ⟨a1, !v1⟩ ;

9 return πABAC

5.4 Evaluation

In order to evaluate the performance of the proposed approach in terms of detecting and

resolving ABAC policy anomalies, we set up an extensive experimental study. In this section,

we describe the datasets, the anomaly detection algorithms, and the evaluation metrics.

5.4.1 Datasets

Since it is hard to get a set of the real-world access log, as they are often considered to be

highly confidential by organizations, we generated synthetic datasets to check the scalability

and performance of the proposed framework. The synthesized datasets are generated based

on a set of manually generated policies that are used in Chapter 4. Appendix B shows

the details of the manual policies used in the policy misconfiguration detection experiments.

For each manual policy, we generate a complete access log (that includes every possible

combination of attribute values) and in each time interval, we select a random set of access

requests from the complete access log.

Table 12 shows the details of the access log datasets. In this table, |P| shows the number
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Table 12: Details of Datasets

πABAC |P| |A| |V | |L|

Manual Policy 1 (πm1) 11 5 30 5K

Manual Policy 2 (πm2) 11 5 29 5K

Manual Policy 3 (πm3) 38 5 44 15K

of ABAC rules in the policy, |A| and |V | =
∑
a∈A
|V (a)| show the number of attributes and

attribute values, respectively, and |L| shows the size of the access log in each time interval.

5.4.2 Anomaly Detection Algorithms

We empirically evaluated three anomaly detection algorithms for our proposed approach.

The algorithms are as follows:

• Isolation Forest: Isolation Forest is an unsupervised anomaly detection algorithm

that employs the random forest algorithm (decision trees) for discovering outliers in

the dataset [39]. The algorithm tries to divide the records in a way that each data point

gets isolated from others. Usually, the anomalies are far away from other records, hence,

it’s easier to isolate them compared to normal data points. The Isolation Forest anomaly

detection algorithm generates a ranking list that shows the degree of the anomaly.

• Local Outlier Factor: The Local Outlier Factor is an algorithm that calculates the

density of data points and uses it as a metric for detecting anomalies [12]. The metric is

called anomaly score and measures how isolated a record is with respect to its surrounding

neighborhood.

• One-Class SVM: The Support Vector Machine (SVM) was originally proposed as a

classification algorithm that predicts a hyperplane to separate two or more classes of

data points. For one-class SVM where we have one class of records, the goal is to find

a hyperplane that separates the cluster of data points from the anomalies [55].
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Table 13: Performance of various anomaly detection algorithms over different policies (High

Level Policy Analysis)

Metrics Databases
πm1 πm2 πm3

Accuracy
Isolation Forest 88.6 90.5 89.6
One Class SVM 74.2 98 86.8
Local Outlier Factor 97.9 98.4 95.5

Precision
Isolation Forest 53.9 52.5 56.2
One Class SVM 51.7 58.3 54.2
Local Outlier Factor 62.9 61.8 49.2

Recall
Isolation Forest 94.2 95.2 94.7
One Class SVM 84 87.5 85.2
Local Outlier Factor 81.8 99.2 48.5

F1 Score
Isolation Forest 54.3 52.2 58.3
One Class SVM 45.8 63.2 54.3
Local Outlier Factor 68.2 68.7 48.9

5.4.3 Experimental Results

In this section, we compare various anomaly detection algorithms for detecting policy

anomalies over different datasets. To have a baseline for comparing the performance of

various anomaly detection algorithms, we label the records corresponding to the rules with

the lowest Rule Coverage Purity as anomalous. Table 13 reports the performance of different

anomaly detection algorithms over each dataset for the high-level policy analysis. As we can

see from the results, the Local Outlier Factor has the highest performance among the three

anomaly detection algorithms. Figure 21 shows the increase in Policy Purity of each dataset

after applying the proposed anomaly detection and resolution algorithms. As we can see, the

third policy has the highest increase in the Policy Purity, however, the proposed anomaly

resolution algorithm resulted in at least %25 increase in Policy Purity for all datasets. Table

14 reports the performance of different anomaly detection algorithms over the rules with the

highest shared coverage in Policy πm1 in the mid-level policy analysis. Here again, the Local

Outlier Factor has the highest performance among the three anomaly detection algorithms.
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Table 14: Performance of various anomaly detection algorithms over different rules of policy

πm1 (Mid Level Policy Analysis)

Metrics Databases
ρ2 ρ3 ρ5 ρ6

Accuracy
Isolation Forest 83 84 84.8 80
One Class SVM 85.6 86.5 94.3 98.7
Local Outlier Factor 99.5 99.3 99.3 99.6

Precision
Isolation Forest 51.4 51.5 51.6 51.2
One Class SVM 51.6 51.8 54 64
Local Outlier Factor 73 83.2 81.7 78.9

Recall
Isolation Forest 91.5 92 92.4 90
One Class SVM 92.8 93.2 97.1 99.4
Local Outlier Factor 82.3 83.2 81.7 78.9

F1 Score
Isolation Forest 48.1 48.5 48.9 46.8
One Class SVM 49.3 49.7 56 71.5
Local Outlier Factor 76.8 74.5 72.6 78
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Figure 21: Policy Purity Increment After Applying the Proposed Anomaly Detection and

Resolution Algorithms
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5.5 Conclusion

In this section, we have proposed an anomaly detection based approach to finding ABAC

policy misconfigurations and resolving them. The proposed approach is capable of detecting

misconfigurations on different levels including policy level, policy rule level, and access records

level. Furthermore, our proposed approach is capable of refining policies with the goal of

resolving anomalies in authorization policy specifications and increasing policy quality.
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6.0 Conclusions and Discussions

As part of this dissertation, we have presented three complementary frameworks that

aim at partially/completely automating the ABAC policy development and maintenance.

We have presented a clustering-based approach to automatically extract ABAC policy

rules from a given set of access logs. Our goal is to extract policy rules with both positive

and negative attribute filters while minimizing the policy complexity. To achieve such an

objective, we first propose to cluster the given access log based on the values of attributes of

entities of the system. In our proposed framework, each cluster corresponds to one ABAC

policy rule. Hence, we need to extract policy rule items for each cluster. For this purpose,

we have defined Effective Attribute Filter and Effective Relation which are used to identify

the policy rule items corresponding to the access tuples in each cluster. The extracted policy

rules may need further processing to gain higher quality. We propose Rule Pruning and

Policy Refinement algorithms to polish the extracted rules. The Rule Pruning algorithm

helps with removing duplicate rules and the goal of the Policy Refinement algorithm is to

identify too relaxed or too restricted policy rules and fix them. Furthermore, to be able to

compare a set of extracted policies, we have proposed a Policy Quality Metric which observes

the size of the extracted policy and the relative F-score of the extracted policy considering

the given access log. The extracted policy with lower complexity (smaller size) and higher

F-score (higher correctness) would have higher policy quality.

Additionally, we have presented an adaptive ABAC policy development and manage-

ment framework in which we utilized Reinforcement Learning (RL) and, more specifically,

contextual bandit, to establish a mapping between access requests and the appropriate au-

thorization decisions for such requests. The authorization engine (AE) is considered as an

agent in our proposed framework and its authorization decision (permit or deny) is an action

according to the state of the system. Attributes of entities involved in an access request as

well as the contextual factors form the state of the system. The AE learns authorization

policies by interacting with the environment without having explicit knowledge of the origi-

nal access control policy rules. We have proposed four methods for initializing the learning
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model and a planning approach based on hierarchies over attribute values to accelerate the

learning process.

Our third proposed framework is designed to detect ABAC policy misconfiguration based

on a continues analysis of ABAC policy rules as well as their corresponding access log. We

focused on detecting two types of run-time anomalies in ABAC policies: conflict between

policy rules and redundant policy rules. We introduced run-time rule coverage (that shows

the access requests covered by a policy rule in a period of time) as well as overlapping

coverage and disjoint coverage. Such definitions are used for detecting overlapping rules and

anomalous configurations. We have presented a multi-level anomaly detection framework

that detects misconfigurations in ABAC policy rules and resolves them based on a proposed

set of policy refinement techniques.

6.1 Limitations

There are some limitations with regards to the research conducted in this dissertation

which we discuss below.

First, in this domain access to real datasets are very limited as access control records

are sensitive and organizations are not willing to make them publicly available. Generating

manual policies that are realistic and non-trivial is also challenging. These policies are mostly

simple and small in size. On the other hand, synthetic ABAC policies can be generated in

all sizes and with varying structural characteristics. To check the feasibility of our proposed

approaches in a more complex setting, we used a set of randomly generated policies and

showed the performance of our proposed approaches over them. However, we should note that

the performance of our proposed methods on random policies might not be representative of

their performance in real scenarios and over real policies.

Secondly, in our proposed approaches, the learned policy needs to go through multiple

rounds of refinement to achieve good performance. Hence, some incorrect authorization

decisions during the learning phase is inevitable. As a result, the proposed approaches may

not be applicable/feasible in highly sensitive environments where an incorrect authorization
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decision has a severe impact and is intolerable. In Section 4.4.1, we have suggested a few

techniques to decrease the impact of incorrect decisions during the learning process.

In addition, in the first part of the framework, the proposed approach is based on an

unsupervised clustering algorithm. Since finding the proper number of clusters is a challenge

related to clustering algorithms, our approach is affected by this issue. The same issue

will also be valid in finding the best thresholds to extract effective attributes and relations.

Besides, as the proposed algorithm is based on tuning multiple parameters, it is possible

that it gets stuck in minimum optima, however, by trying more randomization in cluster

initialization and a wider range of parameters, we can get one that is closer to global optima.

Finally, in the second part of the framework, where we employed RL for learning the

ABAC policy, the agent is dependent on the feedback it receives from the users of the

system. While this feedback is limited to incorrect decisions made by the agent, it still needs

some user intervention. It’s important to develop a user-friendly solution to minimize the

burden on users for giving feedback on incorrect decisions.

6.2 Future Research

There are several areas for future research in the domain of automatic ABAC policy

design and management. While we have developed multiple frameworks based on differ-

ent techniques for automating ABAC policy learning, there are still several research direc-

tions to explore for future work. One direction is to apply other learning algorithms for

mining ABAC policies from access logs. It might be interesting to study more complex

algorithms/techniques such as Neural Network, Deep Learning, and other Evolutionary al-

gorithms for solving such problems.

Most of the experiments in this dissertation were done over synthesized datasets. As a

potential future research direction and to be able to check the feasibility of various policy

learning frameworks and compare them, it’s necessary to conduct extensive experiments

based on real-world datasets.

In addition, in this dissertation, the synthesized datasets are generated randomly without
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considering the distribution of the real data. With respect to this, future work includes

extracting the distributions of real data for various environments and synthesizing datasets

based on such distributions.

In our proposed frameworks, we assumed all involved parties are trusted and will not

deviate from the defined protocols. However, in real-world scenarios, such an assumption

may not hold. Hence, it’s important to study the presence of an adversarial attacker, who

may try to deceive the learning algorithms and bypass security controls.

With respect to policy anomaly detection, future work includes extending the policy

misconfiguration framework with information visualization techniques. Such visualization

will provide an intuitive cognitive sense for anomalies in the ABAC policy and facilitate the

policy management task.
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Appendix A Chapter 3 Sample Policies

In the following, we list the policy rules we used in our experiments in Chapter 3. Uni-

versityP, HealthcareP, and ProjectManagementP only contain positive attribute filters and

relations while UniversityPN, HealthcarePN, and ProjectManagementPN include both pos-

itive and negative attribute filters and relations.
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Table 15: Manual policies with only positive filters

Policy Rules

UniversityP

⟨{⟨type, gradebook⟩}, {⟨crsTaken, crs⟩}, readScore⟩
⟨{⟨type, gradebook⟩}, {⟨crsTaught, crs⟩}, addScore⟩
⟨{⟨position, faculty⟩, ⟨type, gradebook⟩}, {⟨crsTaught, crs⟩}, changeScore⟩
⟨{⟨department, registrar⟩, ⟨type, roster⟩}, read⟩
⟨{⟨position, faculty⟩, ⟨type, roster⟩}, {⟨crsTaught, crs⟩}, read⟩
⟨{⟨type, transcript⟩, {⟨uid, student⟩}, read⟩
⟨{⟨isChair, true⟩, ⟨type, transcript⟩}, {⟨udepartment, rdepartment⟩}, read⟩
⟨{⟨department, registrar⟩, ⟨type, transcript⟩}, read⟩
⟨{⟨type, application⟩}, {⟨uid, student⟩}, checkStatus⟩
⟨{⟨department, admissions⟩, ⟨type, application⟩}, setStatus⟩

HealthcareP

⟨{⟨position, nurse⟩, ⟨type, HR⟩}, {⟨uward, rward⟩}, addItem⟩
⟨{⟨type, HR⟩}, {⟨teams, treatingTeam⟩}, addItem⟩
⟨{⟨type, HR⟩}, {⟨uid, patient⟩}, addNote⟩
⟨{⟨type, HR⟩}, {⟨agentFor, patient⟩}, addNote⟩
⟨{⟨type, HRitem⟩}, {⟨uid, author⟩}, read⟩
⟨{⟨position, nurse⟩, ⟨type, HRitem⟩, ⟨topic, nursing⟩}, {⟨uward, rward⟩}, read⟩
⟨{⟨type, HRitem⟩, ⟨specialty, topic⟩}, {⟨teams, treatingTeam⟩}, read⟩
⟨{⟨type, HRitem⟩, ⟨topic, note⟩}, {⟨uid, patient⟩}, read⟩
⟨{⟨type, HRitem⟩, ⟨topic, note⟩}, {⟨agentFor, patient⟩}, read⟩

ProjectManagementP

⟨{⟨adminRole,manager⟩, ⟨type, budget⟩}, {⟨udepartment, odepartment⟩}, approve⟩
⟨{⟨⟩, ⟨type, schedule⟩}, {⟨projectsLed, project⟩}, read⟩
⟨{⟨⟩, ⟨type, schedule⟩}, {⟨projects, project⟩}, read⟩
⟨{⟨⟩, ⟨type, task⟩}, {⟨task, rid⟩}, setStatus⟩
⟨{⟨⟩, ⟨type, task⟩, ⟨proprietary, false⟩}, {⟨projects, project⟩, ⟨oexpertise, rexpertise⟩}, read⟩
⟨{⟨isEmployee, True⟩, ⟨type, task⟩, ⟨proprietary, false⟩}, {⟨projects, project⟩,
⟨oexpertise, rexpertise⟩}, request⟩
⟨{⟨adminRole, auditor⟩, ⟨type, budget⟩}, {⟨projects, project⟩}, read⟩
⟨{⟨adminRole, accountant⟩, ⟨type, budget⟩}, {⟨projects, project⟩}, write⟩
⟨{⟨adminRole, accountant⟩, ⟨type, task⟩}, {⟨projects, project⟩}, setCost⟩
⟨{⟨adminRole, planner⟩, ⟨type, schedule⟩}, {⟨projects, project⟩}, write⟩
⟨{⟨adminRole, planner⟩, ⟨type, task⟩}, {⟨projects, project⟩}, setSchedule⟩
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Table 16: Manual policies with both positive and negative filters

Policy Rules

UniversityPN

⟨{⟨type, gradebook⟩}, {⟨crsTaken, crs⟩}, readScore⟩
⟨{⟨type, gradebook⟩}, {⟨crsTaught, crs⟩}, addScore⟩
⟨{⟨position, faculty⟩, ⟨type, gradebook⟩}, {⟨crsTaught, crs⟩}, changeScore⟩
⟨{⟨department, registrar⟩, ⟨type, roster⟩}, read⟩
⟨{⟨position, faculty⟩, ⟨type, roster⟩}, {⟨crsTaught, crs⟩}, read⟩
⟨{⟨type, transcript⟩, {⟨uid, student⟩}, !write⟩
⟨{⟨isChair, true⟩, ⟨type, transcript⟩}, {⟨udepartment, !rdepartment⟩}, !write⟩
⟨{⟨department, !registrar⟩, ⟨type, transcript⟩}, !write⟩
⟨{⟨type, application⟩}, {⟨uid, student⟩}, !setStatus⟩
⟨{⟨department, !admissions⟩, ⟨type, application⟩}, !setStatus⟩

HealthcarePN

⟨{⟨position, nurse⟩, ⟨type, HR⟩}, {⟨uward, rward⟩}, addItem⟩
⟨{⟨type, HR⟩}, {⟨teams, treatingTeam⟩}, addItem⟩
⟨{⟨type, HR⟩}, {⟨uid, patient⟩}, addNote⟩
⟨{⟨type, HR⟩}, {⟨agentFor, patient⟩}, addNote⟩
⟨{⟨type, HRitem⟩}, {⟨uid, author⟩}, read⟩
⟨{⟨position, nurse⟩, ⟨type, HRitem⟩, ⟨topic, !nursing⟩}, {⟨uward, rward⟩}, !write⟩
⟨{⟨type, HRitem⟩, ⟨specialty, !topic⟩}, {⟨teams, !treatingTeam⟩}, !addNote⟩
⟨{⟨type, HRitem⟩, ⟨topic, note⟩}, {⟨uid, !patient⟩}, !addItem⟩
⟨{⟨type, HRitem⟩, ⟨topic, note⟩}, {⟨agentFor, !patient⟩}, !write⟩

ProjectManagementPN

⟨{⟨adminRole,manager⟩, ⟨type, budget⟩}, {⟨udepartment, odepartment⟩}, approve⟩
⟨{⟨⟩, ⟨type, schedule⟩}, {⟨projectsLed, project⟩}, read⟩
⟨{⟨⟩, ⟨type, schedule⟩}, {⟨projects, project⟩}, read⟩
⟨{⟨⟩, ⟨type, task⟩}, {⟨task, rid⟩}, setStatus⟩
⟨{⟨⟩, ⟨type, task⟩, ⟨proprietary, false⟩}, {⟨projects, project⟩, ⟨oexpertise, rexpertise⟩}, read⟩
⟨{⟨isEmployee, True⟩, ⟨type, task⟩, ⟨proprietary, false⟩}, {⟨projects, project⟩,
⟨oexpertise, rexpertise⟩}, request⟩
⟨{⟨adminRole, auditor⟩, ⟨type, budget⟩}, {⟨projects, project⟩}, !write⟩
⟨{⟨adminRole, accountant⟩, ⟨type, budget⟩}, {⟨projects, !project⟩}, !write⟩
⟨{⟨adminRole, accountant⟩, ⟨type, !task⟩}, {⟨projects, project⟩}, setCost⟩
⟨{⟨adminRole, !planner⟩, ⟨type, schedule⟩}, {⟨projects, project⟩}, !write⟩
⟨{⟨adminRole, planner⟩, ⟨type, !budget⟩}, {⟨projects, project⟩}, setSchedule⟩
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Appendix B Chapter 4 Sample Policies

In the following, we present details of the manual policies we used in our experiments

in Chapter 4. We defined three sample manual policies for our experiments. Table 17 and

Table 18 show their operations, attributes, and corresponding attribute values. Table 19

shows the authorization policy rules for each manual policy.

Table 17: Operations in sample manual policies

Policy Operation

Manual Policy 1 (πm1)

lights_on_off
order_online
set_temperature
turn_on_cooler
turn_on_heater
install_software_update
mower_on_off
connect_new_device
view_lock_state
play_music

Manual Policy 2 (πm2)

lights_on_off
order_online
set_temperature
play_music
turn_on_cooler
turn_on_heater
camera_on_off
view_temperature_log
answer_door

Manual Policy 3 (πm3)

lights_on_off
order_online
set_temperature
play_music
turn_on_cooler
turn_on_heater
camera_on_off
view_temperature_log
answer_door
mower_on_off
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Table 18: Attributes and their corresponding values of sample manual policies

Policy Attribute Attribute Value

Manual Policy 1 (πm1)

Time

day
midday
night
midnight

Role

mother
father
child
visiting_family
guest

Location

inside_home
outside_home
yard
basement

Manual Policy 2 (πm2)

Time

morning
afternoon
evening
night

Role

mother
father
child
baby_sitter
neighbor

Location

kitchen
living_room
bedroom1
bedroom2

Manual Policy 3 (πm3)

Time

day
morning
afternoon
evening
night
midnight

Location

kitchen
living_room
bedroom1
bedroom2
inside_home
outside_home
yard
basement

Role

parent
mother
father
child
minor_child
teenager
guest
baby_sitter
neighbor
visiting_family108



Table 19: Policy rules of sample manual policies

Policy Rules

Manual Policy 1 (πm1)

⟨”location” : ”inside_home”, ”capability” : ”lights_on_off”⟩
⟨”capability” : ”order_online”, ”role” : ”mother”⟩
⟨”capability” : ”order_online”, ”role” : ”father”⟩
⟨”location” : ”inside_home”, ”capability” : ”set_temperature”⟩
⟨”time” : ”day”, ”capability” : ”play_music”⟩
⟨”time” : ”night”, ”capability” : ”play_music”, ”role” : ”mother”⟩
⟨”capability” : ”turn_on_cooler”, ”role” : ”father”⟩
⟨”capability” : ”install_software_update”, ”role” : ”father”⟩
⟨”capability” : ”connect_new_device”, ”role” : ”father”⟩
⟨”capability” : ”view_lock_state”⟩
⟨”location” : ”yard”, ”capability” : ”mower_on_off”, ”role” : ”visiting_family”⟩

Manual Policy 2 (πm2)

⟨”time” : ”morning”, ”capability” : ”play_music”⟩
⟨”time” : ”evening”, ”capability” : ”play_music”, ”role” : ”mother”⟩
⟨”capability” : ”lights_on_off”, ”role” : ”mother”⟩
⟨”capability” : ”turn_on_heater”, ”role” : ”father”⟩
⟨”location” : ”living_room”, ”capability” : ”answer_door”, ”role” : ”baby_sitter”⟩
⟨”capability” : ”view_temperature_log”⟩
⟨”capability” : ”order_online”, ”role” : ”father”⟩
⟨”time” : ”morning”, ”location” : ”living_room”, ”capability” : ”lights_on_off”,
"role":"neighbor" ⟩
⟨”capability” : ”answer_door”, ”role” : ”mother”⟩
⟨”capability” : ”answer_door”, ”role” : ”father”⟩
⟨”capability” : ”set_temperature”⟩

Manual Policy 3 (πm3)

⟨”time” : ”morning”, ”capability” : ”play_music”⟩
⟨”time” : ”afternoon”, ”capability” : ”play_music”⟩
⟨”time” : ”day”, ”capability” : ”play_music”⟩
⟨”location” : ”yard”, ”capability” : ”mower_on_off”, ”role” : ”visiting_family”⟩
⟨”location” : ”outside_home”, ”capability” : ”mower_on_off”, ”role” : ”visiting_family”⟩
⟨”location” : ”yard”, ”capability” : ”mower_on_off”, ”role” : ”neighbor”⟩
⟨”location” : ”outside_home”, ”capability” : ”mower_on_off”, ”role” : ”neighbor”⟩
⟨”location” : ”yard”, ”capability” : ”mower_on_off”, ”role” : ”baby_sitter”⟩
⟨”location” : ”outsidehome”, ”capability” : ”mower_on_off”, ”role” : ”baby_sitter”⟩
⟨”location” : ”yard”, ”capability” : ”mower_on_off”, ”role” : ”guest”⟩
⟨”location” : ”outsidehome”, ”capability” : ”mower_on_off”, ”role” : ”guest”⟩
⟨”location” : ”livingroom”, ”capability” : ”answer_door”, ”role” : ”baby_sitter”⟩
⟨”location” : ”livingroom”, ”capability” : ”answer_door”, ”role” : ”neighbor”⟩
⟨”location” : ”livingroom”, ”capability” : ”answer_door”, ”role” : ”visiting_family”⟩
⟨”location” : ”living_room”, ”capability” : ”answer_door”, ”role” : ”guest”⟩
⟨”location” : ”kitchen”, ”capability” : ”answer_door”, ”role” : ”baby_sitter”⟩
⟨”location” : ”kitchen”, ”capability” : ”answer_door”, ”role” : ”neighbor”⟩
⟨”location” : ”kitchen”, ”capability” : ”answerdoor”, ”role” : ”visitingfamily”⟩
⟨”location” : ”kitchen”, ”capability” : ”answer_door”, ”role” : ”guest”⟩
⟨”location” : ”bedroom1”, ”capability” : ”answer_door”, ”role” : ”baby_sitter”⟩
⟨”location” : ”bedroom1”, ”capability” : ”answer_door”, ”role” : ”neighbor”⟩
⟨”location” : ”bedroom1”, ”capability” : ”answer_door”, ”role” : ”visiting_family”⟩
⟨”location” : ”bedroom1”, ”capability” : ”answer_door”, ”role” : ”guest”⟩
⟨”location” : ”bedroom1”, ”capability” : ”answer_door”, ”role” : ”baby_sitter”⟩
⟨”location” : ”bedroom2”, ”capability” : ”answer_door”, ”role” : ”neighbor”⟩
⟨”location” : ”bedroom2”, ”capability” : ”answer_door”, ”role” : ”visiting_family”⟩
⟨”location” : ”bedroom2”, ”capability” : ”answer_door”, ”role” : ”guest”⟩
⟨”location” : ”bedroom2”, ”capability” : ”answer_door”, ”role” : ”baby_sitter”⟩
⟨”location” : ”insidehome”, ”capability” : ”answer_door”, ”role” : ”baby_sitter”⟩
⟨”location” : ”insidehome”, ”capability” : ”answer_door”, ”role” : ”neighbor”⟩
⟨”location” : ”insidehome”, ”capability” : ”answer_door”, ”role” : ”visiting_family”⟩
⟨”location” : ”inside_home”, ”capability” : ”answer_door”, ”role” : ”guest”⟩
⟨”time” : ”evening”, ”capability” : ”play_music”, ”role” : ”mother”⟩
⟨”time” : ”night”, ”capability” : ”play_music”, ”role” : ”mother”⟩
⟨”time” : ”evening”, ”capability” : ”play_music”, ”role” : ”father”⟩
⟨”time” : ”night”, ”capability” : ”play_music”, ”role” : ”father”⟩
⟨”time” : ”evening”, ”capability” : ”play_music”, ”role” : ”parent”⟩
⟨”time” : ”night”, ”capability” : ”play_music”, ”role” : ”parent”⟩109
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