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A NEW TEST OF INDEPENDENCE AND ITS APPLICATION TO

VARIABLE SELECTION

Haeun Moon, PhD

University of Pittsburgh, 2022

In the first part of our research, we propose a new interpoint-ranking sign covariance

measure for nonparametric test of independence. The proposed method is applicable to

general types of random objects as long as a meaningful similarity measure can be defined,

and it is shown to be zero if and only if the two random variables are independent. The

test statistic is a U -statistic, whose large sample behavior guarantees that the proposed

test is consistent against general types of alternatives. Numerical experiments and data

analyses demonstrate the great empirical performance of the proposed method. In the sec-

ond part, we propose to combine the frequent voting idea with the proposed and existing

test of independence methods for model-free variable selection. This research is motivated

and illustrated by an application in selecting important genes related to suicidal behaviors.

Numerical experiments demonstrate nice empirical performance of the proposed method.

keyword: Consistent; Independence Test; Interpoint distance; Nonparametric; Sign Covari-

ance; Model-free selection.
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1.0 INTRODUCTION

The first part of the thesis focuses on developing a rank based statistic for measuring the

association and statistical dependence between two outcomes of interest, where the outcomes

are not measured by a real number, but measured with multi-dimensional quantities, curves,

images or more general types of data. Traditional rank-based statistics such as Kendall’s Tau

in one-dimensional cases are widely used. However, the extension to multi-dimensional cases

and general types of data is a challenging problem, because the ordering is not well defined for

data beyond real numbers. This difficulty has been explicitly noted in several recent papers.

We have worked out a method based on interpoint distances for this problem. We propose

to first compute the interpair rankings based on the similarity matrix, where for each fixed

data point, order all the other data points according to the similarity to this particular point,

then we compute a rank-based dependence measure with respect to this interpair ranking,

and finally summarize over all data points to obtain the final statistic. We are able to prove

that the proposed test can detect general types of association/dependency, meaning that the

computed statistic will be away from zero if and only if there exists association/dependency

between the two random objects. This research is summarized in chapter 2 and chapter

3. The second part of the thesis concerns the application of the independence test and

dependence measures in scientific data analysis, especially for the variable selection problem.

We combine the resampling procedure with the test of independence and suggest a new

selection procedure based on the frequency of voting. In chapter 4, we evaluate the finite

sample performance of the proposed method in simulated data. We also illustrate that the

method can be applied to select groups of variables with potentially different dimensions

through a data application, where we select important genes for suicidal behaviors.
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2.0 BACKGROUND AND REVIEW OF INDEPENDENT TESTS

Let X and Y be random variables with marginal distributions PX on X and PY on Y ,

respectively, and joint distribution PXY on X × Y . Our research aim to test

H0 : PXY = PXPY versus H1 : PXY ̸= PXPY

based on samples (X1, Y1),. . . ,(Xn, Yn) ∈ X × Y of size n drawn independently and iden-

tically from PXY . This fundamental statistical question has received much attention with

a wide range of applications. Here we consider nonparametric independence tests and no

distributional assumptions will be made on PX , PY or PXY .

Let P0, P1 be collection of distributions of X and Y satisfying H0 and H1, respectively.

Assume we develop a statistical test ψn : {Xn×Yn} → {0, 1} with a test statistic T (n). At a

significance level α, we decide whether to accept H0 or not by comparing T (n) with a critical

value Cα, i.e., ψn = 1{T (n) ≥ Cα}. A desirable independence test should at least control the

type I error, i.e.,

lim
n

sup
P∈P0

E(Ψn = 1) ≤ α. (2.1)

This can be achieved by deriving the null distribution of T (n) and using the upper (1−α)-th

quantile of the null distribution as the critical value Cα. Alternatively, a brute force solution

is to use a permutation test, where the critical value Cα is taken to be the the upper (1−α)-th

quantile of the T (n) values from the permuted data.

For an independence test to be useful, a further requirement is that the test should have

non-trivial power for a general class of P1. To achieve this, ideally the population counterpart

of T n (or a scaled version bnTn), denoted by θ, should serve as a meaningful measure of de-

pendence and have an independence-zero equivalence property. The test statistic T n should

2



converge to its population version with a desirable rate. We summarize the requirement as

follows.

(i) θ = 0 if P ∈ P0 and θ > 0 if P ∈ P1.

(ii) bnT
(n) converges to θ as n→ ∞.

However, this requirement is not easy to achieve for a general collection of P1. Even

in the univariate case, (X ,Y) = (R,R), classical measures of association such as Pearson

correlation (Pearson, 1895), Kendall’s τ (Kendall, 1938), and Spearman’s ρ (Spearman, 1904)

could be zero even in the presence of an association between random variables, i.e., tests

based on these coefficients are not consistent against general types of alternatives. The

problem becomes more challenging and remains largely unsolved for multivariate data and

more general random objects until some breakthrough work in recent years. In this chapter,

we provide a review of recent developments in the test of independence. We draw particular

attention to a rank-based nonparametric test, sign covariance test (denoted as τ ∗), which was

introduced as a modification of Kendall’s τ by Bergsma and Dassios (2014). Being based

on the concordance and discordance of four points rather than two points as τ does, the

test based on τ ∗ is consistent against general types of alternatives and meanwhile, it enjoys

robustness, simplicity and interpretability (Bergsma and Dassios, 2014; Nandy et al., 2016;

Dhar et al., 2016; Weihs et al., 2018). However, the original paper (Bergsma and Dassios,

2014) only developed tests for bivariate distributions of (X, Y ), and they particularly noted

the difficulty in generalizing to multivariate settings.

2.1 RANK BASED TESTS

Let (X, Y ) ∈ (X ,Y) be random variables and (X i, Y i) are i.i.d copies of (X, Y ). For

a simple case, (X ,Y) = (R,R), tests based on Kendall’s τ (Kendall, 1938) (:=Esign(X1 −

X2)(Y 1 − Y 2)) and Spearman’s ρ (Spearman, 1904) (:=3Esign(X1 − X2)(Y 1 − Y 3)) have

been used widely. Despite their simplicity and interpretability, it has been shown that they

could be zero under the nonlinear type of alternatives i.e., these tests are not consistent.

3



Two alternative tests based on Hoeffding’s D coefficient (Hoeffding, 1948) and Blum-Kiefer-

Rosenblatt’s R coefficient (Blum et al., 1961) were developed with better consistency guar-

antee. Denoting marginal distributions of X and Y as FX and FY , respectively, and joint

distribution as FXY , Hoeffding’s D is given as

D =

∫
(FXY (x, y)− FX(x)FY (y))

2dFXY (x, y), (2.2)

and Blum-Kiefer-Rosenblatt’s R is given as

R =

∫
(FXY (x, y)− FX(x)FY (y))

2dFX(x)FY (y). (2.3)

These coefficients basically measure the distance between two cumulative distribution func-

tions, FXY (x, y) and FX(x)FY (y), with respect to some measure on X × Y . These are

Cramer-von Mises type distances, which are widely used in two-sample testing problems.

The Hoeffding’s D coefficient satisfies independence-zero property for bivariate continuous

distributions, and the BKR-R coefficient satisfies independence-zero property for both con-

tinuous and discrete variables. In univariate cases, these coefficients can be estimated by

rank-based U -statistics.

A recent paper Bergsma and Dassios (2014) proposed a sign covariance as a new measure

of dependence between two random variables.

The population version of sign covariance is defined as

τ ∗(X, Y ) = Ea(X1, X2, X3, X4)a(Y 1, Y 2, Y 3, Y 4), (2.4)

where

a(z1, z2, z3, z4) = sign(|z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|) (2.5)

for z1, z2, z3, z4 ∈ R.

The main theorem in Bergsma and Dassios (2014) states that when (X, Y ) has a bivariate

discrete or continuous distribution, or a mixture of the two, τ ∗(X, Y ) ≥ 0 with equality if

and only if X and Y are independent. Moreover, the authors of that paper conjectured

that this property holds in general without continuous or discrete conditions. Actually, the
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A consistent test of independence 1007

(a) Concordant pair (b) Discordant pair

Figure 1. Concordant and discordant pairs of points associated with Kendall’s tau.

where !C2 is the probability that two observations are concordant and !D2 the probability that
they are discordant (see Figure 1). Secondly,

ρS = !C3 − !D3 ,

where !C3 is the probability that three observations are concordant and !D3 the probability that
they are discordant (see Figure 2). It can be seen that τ is simpler than ρS , in the sense that
it can be defined using only two rather than three independent replications of (X,Y ), or, more
specifically, in terms of probabilities of concordance and discordance of two rather than three
points. This was a reason for Kruskal to prefer τ to ρS (Kruskal [16], end of Section 14).

An alternative definition of ρS , which was originally given by Spearman, is as a Pearson corre-
lation between uniform rank scores of the X and Y variables. For continuous random variables,
both this and the aforementioned definition lead to the same quantity. However, with this def-
inition, ρS is to some extent an ad hoc measure, since the choice of scores is arbitrary, and
alternative scores (e.g., normal scores) might be used.

A test of independence based on i.i.d. data can be obtained by application of the permutation
test to an estimator of τ or ρS , which is easy to implement and fast to carry out with modern
computers. Such ordinal tests are also used as a robust alternative to tests based on the Pearson
correlation.

A drawback for certain applications is that τ and ρS may be zero even if there is an association
between X and Y , so tests based on them are inconsistent for the alternative of a general asso-
ciation. For this reason, alternative coefficients have been devised. The best known of these are

(a) Concordant triples (b) Discordant triples

Figure 2. Concordant and discordant triples of points associated with Spearman’s rho.

Figure 1: Kendall’s τ : Configurations of concordant (left) and discordant (right) quadruples for two
observations.

conditions have been eased later, though not completely, to the extent that X and Y have

both continuous marginal distributions (Drton et al., 2018).

This sign covariance τ ∗ can be viewed a modified Kendall’s τ . From the definition of

Kendall’s τ , it can be shown that

τ 2 = Es(X1, X2, X3, X4)s(Y 1, Y 2, Y 3, Y 4)

where s(z1, z2, z3, z4) = sign(|z1 − z2|2 + |z3 − z4|2 − |z1 − z3|2 − |z2 − z4|2). This becomes τ ∗

if we replace the squared distance | · |2 with the absolute value | · |. In addition, Kendall’s τ

has an equivalent formula τ = ΠC2 −ΠD2 , where ΠC2 and ΠD2 denote the probabilities that

two randomly chosen points are concordant and discordant, respectively, where the term

concordant and discordant for two points is illustrated in Figure 1. The sign covariance

τ ∗ also has an equivalent formula, τ ∗ = (2ΠC4 − ΠD4)/3, where ΠC4 and ΠD4 denote the

probabilities that four randomly chosen points are concordant and discordant, respectively,

where the term concordant and discordant for four points is illustrated in Figure 2. Under

independence, ΠC4 = 1/3 and ΠD4 = 2/3. If one variable is a strictly monotone function

of the other, then ΠC4 = 1 and ΠD4 = 0. Moreover, Drton et al. (2018) proved that for

bivariate normal data, the sign covariance is a monotone function of the correlation |ρ|.

In the univariate case, the sign covariance τ ∗ can be estimated by a rank-based U -

statistic with order 4. The test of independence based on τ ∗ is proven to be consistent

against general alternatives and enjoy robustness, simplicity and interpretability (Bergsma

and Dassios, 2014; Nandy et al., 2016; Dhar et al., 2016; Weihs et al., 2018). However, the

generalization to multivariate variables is not easy. The authors mentioned the definition of

τ ∗ can be straightforwardly extended to variables in an arbitrary metric space, by defining

5



(a) Concordant (b) Discordant

Figure 2: Sign Covariance τ∗: Configurations of concordant (left) and discordant (right) quadruples for
four observations.

ad(z1, z2, z3, z4) = sign(d(z1, z2) + d(z3, z4)− d(z1, z3)− d(z2, z4)). But in this case, τ ∗ might

be smaller than zero and the consistency of the τ ∗ test does not hold any more. In Chapter 3,

we extend the sign covariance to work for general types of random objects while preserving

a general consistency, and we also give the general form to generalize other coefficients,

including the Hoeffding’s D coefficient (Hoeffding, 1948) and the Blum-Kiefer-Rosenblatt’s

R coefficient (Blum et al., 1961).

Generalizing rank-based tests from univariate data to multivariate data is an active re-

search area. A straightforward extension was explored in Leung et al. (2018) and Drton et al.

(2018), which derived a family of test statistics for testing mutual independence by collecting

all pairwise dependent signals, where univariate measures can be readily computed for each

pair of one-dimensional variables. For testing mutual independence between X(1), ..., X(p),

the resulted statistic is represented as the sum or maxima of
(
p
2

)
univariate measure of in-

dependence. Another appealing idea is to use the projection approach. Kim et al. (2020)

illustrated that using a projection-averaging approach, the sign covariance independence test

can be generalized to multivariate data through integrations of the projected univariate τ ∗

over the unit sphere, as

τ ∗pq =

∫
Sp−1

∫
Sq−1

E[a(αTX1, αTX2, αTX3αTX4)a(βTY 1, βTY 2, βTY 3, βTY 4)]dλαλβ,

where a function is defined in Equation (2.5). Similar projection idea has been suggested by

Zhu et al. (2017) to generalize Hoeffding’s D (Hoeffding, 1948) to multivariate cases. Instead

6



of projecting to a one-dimensional space, there are also works trying to define multivariate

ranks directly. Two recent papers, Deb and Sen (2019) and Shi et al. (2019), developed

tests of independence for multivariate variables based on a recent breakthrough in Hallin’s

multivariate rank (Hallin et al., 2018), where one first “discretize” the unit ball Sd to n grid

points with a well-defined ordering and obtain multivariate rank through an optimal coupling

between the observed data points and the grid points. These above-mentioned tests have

appealing properties in Rd settings, but in general are not extendable to more general types

of data, such as spherical surfaces, planar graph, symmetric positive matrices equipped with

Riemannian geometry and manifold-valued functional data. These complex data increasingly

arise in practice (Free et al., 2001; Zheng, 2015; Dai et al., 2018; Adriaenssens et al., 2011;

Masucci et al., 2009). We also would like to note that there was earlier work using interpoint

distances to rank multivariate data or build graphical tests, for example, Mantel (1967);

Friedman et al. (1983); Biswas et al. (2016); Sarkar and Ghosh (2018). However, these

tests are not consistent against general types of alternatives, and we focus on developing a

consistent nonparametric test in this paper.

Finally, two alternatives we would like to mention are Heller et al. (2012) and Pan et al.

(2019). The “HHG” method (Heller et al., 2012) transforms the original problem into many

aggregated 2 ×2 contingency tables and use the Pearson’s χ2 test of independence. The ball

covariance method (Pan et al., 2019) defines a class of Ball covariance measures by integrating

the Hoeffding’s dependence measure on the coordinate of radius over poles. Interestingly,

the “HHG” method, the ball covariance with their recommended weight functions and our

proposed method all depend on the ranking of interpoint distances, although they are derived

from three different perspectives.

2.2 NON-RANK BASED TESTS

For multidimensional data, there also exists some non-rank based tests which are consis-

tent against general types of alternatives. Distance covariance (dCov) (Székely et al., 2007)

was suggested as consistent measure of dependence for multivariate random variables in

7



(Rp,Rq), and later generalized to a metric space with some restrictions (Lyons et al., 2013).

Denoting the characteristic function of FX , FY and FXY as ψX , ψY and ψXY , respectively,

population dCov is defined as

dCov2(X, Y ) =
1

cpcq

∫
Rp×Rp

|ψXY (s, t)− ψX(s)ψY (t)|2

∥t∥1+p∥s∥1+q
dsdt (2.6)

where cp, cq are constants. It has an nice empirical counterpart, with akl = |Xk − Xl|,

bkl = |Yk − Yl|,

V 2
n (X, Y ) :=

1

n2

∞∑
k,l=1

(akl − āk· − ā·l + ā··)(bkl − b̄k· − b̄·l + b̄··),

which is easy to compute and converges to the population coefficient.

With independent copies of (X, Y ), the definition of dCov can also be written as

dCov = E∥X1 −X2∥∥Y 1 − Y 2∥+ E∥X1 −X2∥E∥Y 1 − Y 2∥ − 2E∥X1 −X2∥∥Y 1 − Y 3∥.

Then for univariate X and Y , we can write it as

dCov = Eb(X1, X2, X3, X4)b(Y 1, Y 2, Y 3, Y 4)

where b(z1, z2, z3, z4) = |z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|. Here the b function differs

from the a function in Equation (2.5) only by a sign operator. This reveals the connection

between the sign covariance τ ∗ and the distance covariance measure.

Another popular measure is the Hilbert-Schmidt independence criterion (HSIC) (Gretton

et al., 2005, 2008), which is based on the Maximum Mean discrepancy between PXY (x, y)

and PX(x)PY (y). According to Sejdinovic et al. (2013), dCov and HSIC are equivalent if the

kernel is in the equivalence class that is associated to the distance. The dCov test and the

HSIC test are both consistent against general types of alternatives for multivariate data. For

more general types of random objects, additional assumptions such as strong negative type

spaces and characteristic kernels are needed (Lyons et al., 2013; Sejdinovic et al., 2013).

In Chapter 3, we compare the proposed test of independence with these existing methods,

including the distance covariance test (Székely et al., 2007), Hilbert-Schmidt independence

criterion (Gretton et al., 2008), two versions of ball covariance tests (Pan et al., 2019) and

the HHG method (Heller et al., 2012).
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3.0 A NEW TEST BASED ON INTERPOINT-RANKING SIGN

COVARIANCE

In this chapter, we introduce a new dependence measure, which we call interpoint-ranking

sign covariance (IPR-τ ∗), and develop a new test of independence based on IPR-τ ∗. The

new test inherits good properties from sign covariance τ ∗, and is applicable to general types

of random objects. We are able to prove the zero-independence equivalence of the proposed

IPR-τ ∗ and to show that the test is consistent against general types of alternatives. We also

discuss the general form of the interpoint-ranking based generalization of other coefficients,

including the Hoeffding’s D coefficient (Hoeffding, 1948) and the Blum-Kiefer-Rosenblatt’s

R coefficient (Blum et al., 1961).

3.1 DEFINITION AND PROPERTIES OF IPR-τ ∗

Let (X , ρ), (Y , ζ) be two separable Banach spaces, where ρ and ζ also represent distances

induced by norms. Let θ be a Borel probability measure on X × Y with marginals µ on X

and ν on Y . Let (X, Y ) be a pair of random variables where (X, Y ) ∼ θ, X ∼ µ and

Y ∼ ν. Let (X0, Y 0),. . . ,(X4, Y 4) be i.i.d copies of (X, Y ). Then for i ∈ {1, 2, 3, 4}, we can

refer ρ(X0, X i) and ζ(Y 0, Y i) as X- and Y -interpoint distance arisen from (X0, Y 0). The

interpoint-ranking sign covariance (IPR-τ ∗) collects the signal of dependency between X-

and Y -interpoint distances arisen from all anchor points (X0, Y 0) in X × Y .
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Definition 1. The interpoint-ranking sign covariance, or IPR-τ ∗, is defined as

IPR-τ ∗(X, Y ) = Ea(ρ(X0, X1),ρ(X0, X2), ρ(X0, X3), ρ(X0, X4))

a(ζ(Y 0, Y 1), ζ(Y 0, Y 2), ζ(Y 0, Y 3), ζ(Y 0, Y 4)),

where a(z1, z2, z3, z4) is defined in Equation (2.5).

The interpoint distances sometimes is called pairwise distances. Empirically, if there are

n copies of the data X, one can compute an n×n pairwise distance matrix [ρij] for X, with

n(n−1)/2 distinct values. For each fixed data point i, one can rank all other points based on

the order of ρij, and compute the interpoint ranking Ri(j). Interpoint distance has been used

in various ways to characterize the distribution and geometry of multivariate data, including

some independence tests. However, most of them directly build a dependence measure on

the two vectors containing n(n − 1)/2 X-interpoint distances (rankings) and n(n − 1)/2

Y -interpoint distances (Mantel, 1967; Guo and Modarres, 2020), which oversimplified the

structure. In Definition 1, for a fixed reference point (X0, Y 0), interpoint distance maps

the original data to a one dimensional space and the univariate τ ∗ can be applied. Then

we view the reference point (X0, Y 0) as an extra independent copy in the definition. Here

IPR-τ ∗ is defined using five independent copies of (X, Y ) rather than four copies as used in

the original sign covariance, which can be considered as the expense of the extended domain.

IPR-τ ∗ remain invariant under the monotone transformation of distances since a represents

a coordination structure of interpoint distances.

Theorem 1 states that this new coefficient is nonnegative and becomes zero if and only

if X and Y are independent, provided that the joint probability distribution is discrete or

continuous, or a mixture of the two.

Theorem 1. Let (X , ρ), (Y , ζ) be two separable Banach spaces and θ be a Borel probability

measure on X ×Y with marginals µ on X and ν on Y. Assume θ is discrete or continuous,

or a mixture of the two, that is, there exists a probability mass function PXY and a density

function h such that

θ(A×B) =
∑

xi∈A,yi∈B

PXY (xi, yi) +

∫
A×B

h(x, y)G(dx)G(dy),
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where A ⊂ X , B ⊂ Y are any two open sets and G is the Abstract Wiener measure on

X and Y. In addition, assume h(x, y) is continuous on any continuous point of θ. Then,

IPR-τ ∗(X, Y ) ≥ 0 with equality if and only if X and Y are independent.

Our domain, separable Banach space, is chosen so that the proper measure exists with

essential properties. Abstract Wiener measure is such measure which is a standardized

multivariate Gaussian measure extendable to separable Banach space. It is defined on a

Borel σ-algebra generated by open subsets and has a positive measure for any open subset.

Due to the absence of the Lebesgue measure in infinite dimensional spaces, we use the

Abstract Wiener measure to define the notion of continuous distributions, and it is easy to

see that it is equivalent to the conventional definition when restricted to a finite dimensional

space.

However, the results may be pushed to a separable metric space with a more mathe-

matically sophisticated definition of continuous distributions in the absence of the Lebesgue

measure. The assumptions regarding continuous and discrete distributions are inherited from

the original sign covariance paper, which may be relaxed as the authors of the sign covariance

paper conjectured. Our numerical experiments show that the method works under various

settings within and beyond these requirements. Moreover, well behaved metric spaces are

isometric to subspaces of Banach Space; See for example Kuratowski embedding for bounded

metric spaces (Kuratowski, 1935), the generalized Banach-Mazur theorem for separable met-

ric spaces (Kleiber and Pervin, 1969), and Nash embedding (Nash, 1956) for Riemannian

manifolds. Therefore the independence-zero equivalence property in most applications can

be studied in Banach spaces, with a restricted measure support.

We finally note that IPR-τ ∗ have a nice coverage to work. For example, if we consider

X = Rp, Y = Rq, with ld metric, for p, q, d ≥ 3, the spaces are not strong negative type

(Lyons et al., 2013), and the distance covariance test is not consistent. The proposed method

can cover these cases. Also, there is no finite moment condition.
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3.2 TEST OF INDEPENDENCE

Let (x1, y1), . . . , (xn, yn) be i.i.d. sample realizations of (X, Y ) from a joint distribution

θ.

Definition 2. We propose an empirical IPR-τ ∗ in the form of a U-Statistic of order 5,

Hn(X, Y ) =
1(
n
5

) ∑
1≤i1<i2<i3<i4<i5≤n

ϕ((xi1 , yi1), (xi2 , yi2), (xi3 , yi3), (xi4 , yi4), (xi5 , yi5)) (3.1)

with the kernel ϕ((x1, y1), (x2, y2), . . . , (x5, y5)) defined as

1

5!

∑
(j1,j2,j3,j4,j5)∈P5

a(ρ(xj1 ,xj2), ρ(xj1 , xj3), ρ(xj1 , xj4), ρ(xj1 , xj5))

a(ζ(yj1 , yj2), ζ(yj1 , yj3), ζ(yj1 , yj4), ζ(yj1 , yj5)).

To understand this coefficient, it is helpful to consider more straightforward expression of

Equation (3.1). Let

Ai =
1(

n−1
4

) ∑
j

1

4!

∑
π∈P4

a(ρ(xi, xjπ(1)
), . . . , ρ(xi, xjπ(4)

))a(ζ(yi, yjπ(1)
), . . . , ζ(yi, yjπ(4)

)),

where the outer sum is taken over the set of all ordered subsets j of 4 different integers chosen

from {1, 2, . . . , n}/{i}. Here Ai is a U-statistic of order 4 and gives rise to the τ ∗ between the

interpoint distance-induced random variables, ρ(xi, X) and ζ(yi, Y ). Then 1
n

∑
iAi equals

the empirical IPR-τ ∗(X, Y ). As a result, our empirical IPR-τ ∗ is the average of τ ∗s between

X- and Y- interpoint distances anchored in each n data points. Since Ais are not independent

to each other, it is easier to see when expressed as a U-statistic formula as Equation (3.1) to

drive the asymptotic property of Hn.

Now we drive the asymptotic behavior of Hn to see that Hn is indeed a consistent

estimator of IPR-τ ∗ and test based on Hn is consistent to general alternatives. Let

ϕi((x1, y1), . . . , (xi, yi)) = Eϕ((x1, y1), . . . , (xi, yi), (Xi+1, Yi+1), . . . , (X5, Y5))

and σi = V arϕi for i = 1, . . . , 5. We first present the general results based on the large-

sample theory of the U -statistics (Section 5.5 of Serfling (2009)).
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Lemma 1. If σ5 <∞, we have

n1/2(Hn(X, Y )− IPR-τ ∗(X, Y )) → N(0, 52σ1).

In the case that σ1 = 0, the above Gaussian limit is degenerate, and we refer to a second

lemma.

Lemma 2. If σ5 <∞ and 0 = σ1 < σ2, we have

n(Hn(X, Y )− IPR-τ ∗(X, Y )) →
(
5

2

) ∞∑
m=1

λm(χ
2
1m − 1) (3.2)

where χ2
1ms are independent χ2

1 variables and λms are the solutions of the eigen equation∫
X×Y

ϕ2((x, y), (x
′, y′))ψ(x′, y′)dθ = λψ(x, y), ψ ∈ L2. (3.3)

Under the null hypothesis, interpoint distances arising from fixed (x1, y1) are still i.i.d

random variables with no association. Therefore, ϕ1((x1, y1)) equals zero (Nandy et al.,

2016) and so does σ1. Then Hn is a degenerate U-statistic, and Lemma 2 applies. Under the

alternative hypothesis, Hn(X, Y ) converges to IPR-τ ∗(X, Y ) and IPR-τ ∗ > 0 by Theorem 1,

so nHn(X, Y ) → ∞ as n → ∞. In both cases, Hn(X, Y ) converges to IPR-τ ∗(X, Y ), i.e.,

Hn(X, Y ) is a consistent estimator.

We propose to reject the null hypothesis when nHn(X, Y ) > Cα, where Cα is the α-level

critical value from the null distribution. Combining Theorem 1 and Lemmas 1 - 2, we can

obtain the following theorem.

Theorem 2. If X and Y are jointly distributed as specified in Theorem 1, nHn(X, Y ) can

serve as a test statistic for a test of independence which is consistent against the alternatives.

Specifically,

(a) If X and Y are independent,

nHn(X, Y )
d→
(
5

2

) ∞∑
m=1

λm(χ
2
1m − 1), (3.4)

where χ2
1ms are independent χ2

1 variables and λms are the solutions of the eigen equation∫
X×Y

ϕ2((x, y), (x
′, y′))ψ(x′, y′)dθ = λψ(x, y), ψ ∈ L2. (3.5)

(b) If X and Y are dependent, nHn(X, Y )
p→ ∞.
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In Theorem 1, we proved that IPR-τ ∗(X, Y ) > 0 under the alternative. It is easy to see

that nHn(X, Y ) → ∞ in probability and the power goes to 1 if we consider a fixed dependent

signal. As long as IPR-τ ∗(X, Y ) does not decrease as the dimension increases, the proposed

test should work for large dimensions. However, in the sparse high dimensional case, where

(X ,Y) = (Rp,Rq), p, q are large relative to n, and the dependence only exists among a small

subsets of coordinates, the dependence signal IPR-τ ∗(X, Y ) should not be considered as a

constant; rather it is a function of 1/p and 1/q, and the power of the test depends on the

ratio of p and n.

Spectral approximation To get the critical value, one way is to solve the eigen equation

in Equation (3.5). The first step is to get a left-hand side approximation of the equation 3.5

by
1

n

n∑
i=1

ϕ2((x, y), (xi, yi))ψ(xi, yi).

Then we plug (x1, y1), ..., (xn, yn) into (x, y) to obtain a matrix eigenproblem

n∑
i=1

ϕ2((xj, yj), (xi, yi))ψ(xi, yi) = v̂ψ(xj, yj).

The solutions for v̂m, m=1,2,.., are the eigenvalues of the Gram matrix

Θij = ϕ2((xi, yi), (xj, yj)) for j = 1, .., n,

and λ̂m ≃ 1
n
v̂m. So

∑
m

λ̂m ≃ 1
n
tr(Θ) and

∑
m

λ̂2m ≃ 1
n2 tr(Θ

2).

On the other hand, Welch Satterthwaite equation gives an approximation for a χ2 type

mixture
∞∑

m=1

λmχ
2
1m as βχ2

d. By matching the first 2 cumulant, we obtain β =
∑

λ2
m∑

λm
and

d = (
∑

λm)2∑
λ2
m

. Plugging in the approximation of
∑
m

λ̂m and
∑
m

λ̂2m, we obtain

β ≃ 1

n

tr(Θ2)

tr(Θ)
, d ≃ tr(Θ)2

tr(Θ2)
,

where
∑∞

m=1 λm(χ
2
1m − 1) is approximated by βχ2

d − βd.

Permutation approximation An alternative is to approximate the critical value by a

permutation distribution. For a class of U -statistic based tests with a continuous asymptotic

null distribution, Theorem 2.5 in Kim et al. (2020) establish that the permutation critical
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value converge to the oracle critical value under both null and alternative distributions, and

the power will be asymptotically the same as the test using the oracle critical values.

Computational Complexity For n sample points, efficient algorithms to compute the sign

covariance has been developed in Heller and Heller (2016) with O(n2) operations and later

in Even-Zohar and Leng (2019) with O(n) operations. Our statistic is a summation of n

different sign covariances of interpoint distances. Our numerical experiments showed that

the permutation method (with 1000 permutation samples) is generally faster than the null

distribution approximation using the spectral method.

3.3 A GENERAL FORM TO GENERALIZE OTHER STATISTICS

Finally, we introduce a general form to generalize other statistics. The idea developed in

this paper can be used to generalize other univariate dependence measures, such as Hoeffd-

ing’s D, Blum-Kiefer-Rosenblatt’s R, the squared Kendall’s τ , and the univariate distance

covariance. These coefficients can be estimated by a U -statistic; see for example Drton et al.

(2018). Let

Um =
1(
n
m

) ∑
1≤i1<i2,...,im−1<im≤n

ϕ((xi1 , yi1), . . . , (xim , yim)),

where the kernel ϕ((x1, y1), . . . , (xm, ym)) is defined as

1

(m)!

∑
(j1,...,jm)∈Pm

h((xj1 , yj1), . . . , (xjm , yjm)).

Then we can generalize Um to work for multivariate data or more general objects by

introducing an extra independent pair,

Um+1 =
1(
n

m+1

) ∑
1≤i1<i2,...,im<im+1≤n

ϕ̃((xi1 , yi1), . . . , (xim+1 , yim+1)),

where the new kernel ϕ̃((x1, y1), . . . , (xm+1, ym+1)) is defined as

1

(m+ 1)!

∑
(j1,...,jm+1)∈Pm+1

h((ρ(xj1 , xj2), ζ(yj1 , yj2)), . . . , (ρ(xj1 , xjm+1), ζ(yj1 , yjm+1))).

15



When this generalization is applied to Hoeffiding’s D or Blum-Kiefer-Rosenblatt’s R, the

empirical performance is very similar to that of IPR-τ ∗. In this thesis, we focus on generaliz-

ing the sign covariance test because it has nice theoretical properties and also the construc-

tion of τ ∗ is simpler than the construction of Hoeffding’s D and Blum-Kiefer-Rosenblatt’s

R. When both X and Y have continuous distributions, Drton et al. (2018) derived an in-

teresting identity between τ ∗, Hoeffding’s D, and Blum-Kiefer-Rosenblatt’s R, which gives

1/18τ ∗ = 1/30D + 1/45R. The same identity holds for IPR-τ ∗, IPR-D and IPR-R.

In addition, for X ∈ R and Y ∈ R, the distance covariance (Székely et al., 2007) has the

equivalent formula

dCov = 1/4Eb(X1, X2, X3, X4)b(Y 1, Y 2, Y 3, Y 4),

with b(z1, z2, z3, z4) = |z1 − z2| + |z3 − z4| − |z1 − z3| − |z2 − z4|. Here the b function differs

from the a function used in τ ∗ only by a sign operator (Bergsma and Dassios, 2014). Székely

et al. (2007) showed that the distance covariance test works for multivariate data if the

absolute distance |z1 − z2| is replaced by a Euclidean distance on Rp. If we estimate the

univariate distance covariance by Um as analogous to that for the sign covariance τ ∗, the

form of Um+1 naturally provides another way to generalize the univariate distance covariance

to the multivariate case.

3.4 SIMULATIONS

In the first three simulation, we study the empirical performance of our proposed IPR-τ ∗

test: Simulation I, Multivariate data; Simulation II, Manifold-valued data; and Simulation

III, Manifold-valued functional data. We compare the Type-I error and statistical power

with several existing tests of independence: the distance covariance test denoted by “dCov”

using the R package energy (Székely et al., 2007), the test based on the summation of Pearson

chi-square statistic denoted by “HHG” using the R package HHG (Heller et al., 2012), the

Ball covariance test with a constant weight denoted by“BCov1” and a probability weight

denoted by “BCov2” using the R package Ball (Pan et al., 2019) and the Hilbert-Schmidt
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independence criterion with Gaussian kernel denoted by “HSIC” using the R package HSIC

(Gretton et al., 2008). Our proposed test is implemented in R. The code is currently available

upon request and the package will soon be publicly available. The distance covariance test

is applicable to metric spaces of strong negative type and the HSIC method requires the

kernels to be characteristic. These conditions are in general hard to check for non-Hilbertian

data, and we know some of the non-Hilbertian data are not of strong negative type. Also the

original “HHG” paper (Heller et al., 2012) only proved consistency of the test for Rp and Rq.

Nevertheless, we still applied these methods to all of the examples since these methods are all

based on pairwise distances and can be empirically applied to complex objects as long as an

appropriate distance/metric can be defined. In the implementation, we use the same metric

for all methods, and p-values are all based on 1000 permutations. In all of the following

settings, we report the results with sample sizes 20, 50, 100 and 200. The significance level

is 0.05, and powers are based on 1000 simulations. In Simulation IV, we show some results

for other generalizations given in Section 3.3 .

Simulation I

We consider multivariate variables X = (X1, X2, X3, X4, X5) and Y = (Y1, Y2, Y3, Y4, Y5)

with the regular Euclidean distance. Examples 3.1-3.2 assess Type-I error rates and Exam-

ples 3.3-3.11 compare power performances. Similar settings have been used in Székely et al.

(2007), Heller et al. (2012) and Pan et al. (2019).

Example 3.1. (Type I) X, Y are generated from a multivariate normal distribution with

mean 0 and cov(Xi, Xj) = cov(Yi, Yj) = 0.1 for i ̸= j, i, j = 1, 2, 3, 4, 5. There is no

correlation between X and Y components.

Example 3.2. (Type I) X, Y are generated from a multivariate t(v) distribution for v = 1, 2.

Example 3.3. (Linear) X,Y are generated from a jointly normal distribution with mean 0

and cov(Xi, Xj) = cov(Yi, Yj) = 0.1 for i ̸= j, cov(Xi, Yi) = 0.3 for i, j = 1, 2, 3, 4, 5.

In Examples 3.4-3.8, X is generated from a multivariate normal distribution with mean

0 and cov(Xi, Xj) = 0.1 for i ̸= j, i, j = 1, 2, 3, 4, 5.

Example 3.4. (Quadratic) Yi = 0.5X2
i + ϵ with ϵ ∼ N(0, 1) for i = 1, 2, 3, 4, 5.
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Test Sample size Normal t(1) t(2)

IPR-τ∗ 20/50/100/200 0.030/0.026/0.035/0.043 0.064/0.056/0.048/0.032 0.036/0.047/0.045/0.046
dCov 20/50/100/200 0.046/0.045/0.054/0.050 0.054/0.042/0.038/0.049 0.040/0.055/0.060/0.042
HHG 20/50/100/200 0.039/0.048/0.051/0.052 0.059/0.055/0.046/0.034 0.043/0.052/0.054/0.057
BCov1 20/50/100/200 0.040/0.052/0.047/0.058 0.058/0.044/0.045/0.033 0.036/0.069/0.056/0.058
BCov2 20/50/100/200 0.043/0.053/0.054/0.042 0.060/0.043/0.046/0.044 0.041/0.069/0.056/0.048
HSIC 20/50/100/200 0.037/0.051/0.053/0.044 0.054/0.041/0.040/0.051 0.040/0.050/0.057/0.052

Table 1: Empirical Type-I error rates at nominal significance level 0.05 in Simulation I. Results are based
on 1,000 simulations.

Example 3.5. (Y=Xϵ) Yi = Xiϵ with ϵ ∼ N(0, 1) for i = 1, 2, 3, 4, 5.

Example 3.6. (Y=Inv(X)) Yi = 1/|Xi| for i = 1, 2, 3, 4, 5.

Example 3.7. (Concave) Yi = ±1/|Xi| with random signs of equal probability, for i =

1, 2, 3, 4, 5.

Example 3.8. (X-shape) Yi = ±Xi with random signs of equal probability, for i = 1, 2, 3, 4, 5.

In Examples 3.9-3.11, Z = (Z1, Z2, Z3, Z4, Z5) is generated from a multivariate normal

distribution with mean 0 and cov(Zi, Zj) = 0.1 for i ̸= j, i, j = 1, 2, 3, 4, 5.

Example 3.9. (Circle) Xi = 2logit−1(Zi)− 1 and Yi = ±(1−X2
i )

1/2 with random signs of

equal probability, for i = 1, 2, 3, 4, 5.

Example 3.10. (Diamond) Xi = 2logit−1(Zi)− 1 and Yi = ±(1− |Xi|) with random signs

of equal probability, for i = 1, 2, 3, 4, 5.

Example 3.11. (Two-pieces) Xi = 2logit−1(Zi) − 1 and Yi = (0.9I{|Xi|<0.5} + 0.1)ϵ with

ϵ ∼ N(0, 0.1) for i = 1, 2, 3, 4, 5.

Table 1 confirms that the Type-I error rates are well-controlled for all methods. Figure

3 summarizes the empirical powers. The proposed method “IPR-τ ∗” shows a good per-

formance, and the powers reach one as sample size increases to 200. In general, we see

that “IPR-τ ∗” and “HHG” always belong to a group with the highest power except for the

linear case. While the distance covariance test has the best power for the linear case, it

generally has the lowest power for other non-linear cases. The power of “dCov” is poor for

“Y = Inv(X)”, “Concave”, “Circle”, “Diamond” and “Two-pieces” even with the sample
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Figure 3: Simulation I: Empirical power of the tests for IPR-τ∗ (•, red), dCov (■, blue), HHG (×, black),
BCov1 (▲, green), BCov2 (△, orange) and HISC (⋄, purple). Power values are computed for each of the
sample sizes 20, 50, 100, 200 with 1,000 simulations.
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size 200. The performances of “BCov1”, “BCov2” and “HSIC” are somewhat in between.

The power of “HSIC” with Gaussian kernel is seen to be poor for “Circle”, “Diamond” and

“Two-pieces”.

Simulation II

We consider variables in a non-Euclidean space with Riemannian Metric as a distance.

We first consider variables on a spherical coordinate of the unit sphere S2. In a spherical

coordination, each point on a sphere, denoted by (θ, ϕ)s, is uniquely represented with lon-

gitude θ and latitude ϕ, where θ specifies the east-west position on a spherical surface and

ϕ specifies an angle which range from 0 at the equator to π/2 at the north, and −π/2 at

the south; so θ ∈ [−π, π] and ϕ ∈ [−π/2, π/2]. We use the great-circle distance, the shortest

distance over the surface of a sphere between two points.

Example 3.12. (Type I) X = (X1, X2) where X1, X2 ∼ U(0, 1), Y = (θ, ϕ)s ∈ S2 with θ ∼

U(−π, π), ϕ ∼ U(−π/2, π/2).

Example 3.13. (Sphere 1) X is same as Example 3.12, Y = (θ, ϕ)s ∈ S2 with θ ∼ U(−π, π),

ϕ = π(X1 +X2)ϵ/2− π/2, ϵ ∼ U(0, 1).

Example 3.14. (Sphere 2) X is same as Example 3.12, Y = (θ, ϕ)s ∈ S2 with θ ∼ U(−π, π),

ϕ = π|X1 −X2|ϵ− π/2, ϵ ∼ U(0, 1).

Example 3.15. (Sphere 3) X is same as Example 3.12, Y = (θ, ϕ)s ∈ S2 with θ ∼ U(−π, π),

ϕ = π(X1 +X2)
2ϵ/4− π/2, ϵ ∼ U(0, 1).

We also consider symmetric positive matrices. Specifically, we consider a 3 by 3 symmet-

ric positive matrix variable whose every non-diagonal element equal to ρ. We use the affine

invariant Riemannian metric, d(A,B) = ||log(A−1/2BA−1/2)||F , where log(A) is the matrix

logarithm of A, and ||A||F is the Frobenius norm of A.

Example 3.16. (Type I) X =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, Y = ϵ with ρ ∼ U(0, 0.3), ϵ ∼ N(0, 0.3).

Example 3.17. (PD 1) X =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, Y = ρ+ ϵ with ρ ∼ U(0, 0.3), ϵ ∼ N(0, 0.3).

Example 3.18. (PD 2) X =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, Y = ϵ with ρ ∼ U(0, 0.3), ϵ ∼ N(0, ρ/3).

Example 3.19. (PD 3) X =
( 1 ρ1 ρ1
ρ1 1 ρ1
ρ1 ρ1 1

)
, Y =

( 1 ρ2 ρ2
ρ2 1 ρ2
ρ2 ρ2 1

)
, ρ1 = 1/(1 + λ21), ρ2 = 1/(1 + λ22)

with
(
λ1
λ2

)
∼ N(

(
1
1

)
,
(

1 0.5
0.5 1

)
).
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We observed that the Type-I error rates for all methods are well-controlled. The empirical

powers are shown in Figure 4. All methods have increasing power towards 1 as the sample

size increases. The “dCov” method seems to perform the best in linear relationships and is

less competitive in other settings.

Simulation III

We consider manifold-valued functional trajectories X(t) = (θ(t), ϕ(t))s with t ∈ [0, 1].

For each time point t, X(t) is a point on the unit sphere S2, so θ(t) ∈ [−π, π] and ϕ(t) ∈

[−π/2, π/2]. We generate data as follows.

θ(t) =(η0t+
20∑
j=1

ηjsin(jπt))(mod2π)− π,

ϕ(t) =((ξ0t+
20∑
j=1

ξjsin(jπt))/2 ∨ π/2) ∧ −π/2

with coefficients ηs and ξs drawn independently from a normal distribution with mean zero.

Standard deviations are 1 for η0, ξ0 and j−6/5 for ηj, ξj (j = 1, . . . , 20). When defining

ϕ(t), we made upper and lower bounds to ensure ϕ(t) ∈ [−π/2, π/2], even though (ξ0t +∑20
j=1 ξjsin(jπt))/2 exceeding π/2 or below −π/2 is unlikely in this setting. Examples of

sample trajectories X(t) are shown in Figure 5.

The distance between two trajectories is measured by

d1(Xi(t), Xi′(t)) = supt∈[0,1]d(Xi(t), Xi′(t))

where d refers a great-circle distance between two points on a unit sphere. In our simulation,

we generate n = 20, 50, 100, 200 sample curves with 101 observed points on each trajectory

where the observed points are equally spaced between [0, 1].

Example 3.20. (Type I) X(t) = (θ(t), ϕ(t))s, Y ∼ N(0, 1).

Example 3.21. (FT1) X(t) = (θ(t), ϕ(t))s, Y = (1/
∫ 1

0
|θ(t)|dt, 1/

∫ 1

0
|ϕ(t)|dt).

Example 3.22. (FT2) X(t) = (θ(t), ϕ(t))s, Y = (
∫ 1

0
|θ(t)|dt + ϵ1,

∫ 1

0
|ϕ(t)|dt + ϵ2) with ϵ1,

ϵ2 ∼ N(0, 0.5).
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Figure 4: Simulation II: Empirical power of the tests for IPR-τ∗ (•, red), dCov (■, blue), HHG (×, black),
BCov1 (▲, green), BCov2 (△, orange) and HISC (⋄, purple). Power values are computed for each of the
sample sizes 20, 50, 100, 200 with 1,000 simulations.

Figure 5: A demonstration of sample curves Xi(t) generated in Simulation III.
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Figure 6: Simulation III: Empirical power of the tests for IPR-τ∗ (•,red), dCov (■, blue), HHG (×, black),
BCov1 (▲, green), BCov2 (△, orange) and HISC (⋄, purple). Power values are computed for each of the
sample sizes 20, 50, 100, 200 with 1,000 simulations.

In Simulation III, the Type-I errors are well-controlled for all the methods. Figure 6

show that the powers of all methods increase as the sample size increases, except for the

“dCov” method in Example 3.21. The proposed test “IPR-τ ∗” and “HHG” maintain good

power in both cases.

Overall, numerical experiments have confirmed that the proposed test is consistent

against general alternatives. The empirical powers for “IPR-τ ∗” and “HHG” are similar

and within the highest power group, although the test statistics are derived from very differ-

ent perspectives. The ball covariance methods are powerful in most cases, and we find that

different weights lead to different performances with no obvious winner. The ball covariance

is proved to be asymptotically equivalent to the “HHG” test if a chi-square type weight is

used (Pan et al., 2019), and we only focus on finite sample performance here. The HSIC

method with Gaussian kernel is usually in the middle group, but has poor power for some

cases such as Examples 3.9 and 3.10. The performance of “dCov” is somehow divided. The

method tends to perform better than others in normal and linear cases, but clearly less

competitive in terms of power in all other cases.

Simulation IV

Referring Section 3.3, general Um+1 form gives rise to IPR-D or IPR-R, for Hoeffiding’s
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Figure 7: Empirical power of the tests for IPR-τ∗ (•, red), IP-dCov (▲, black) and dCov(■, blue). Power
values are computed for each of the sample sizes 20, 50, 100, 200 with 200 simulations.
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D and Blum-Kiefer-Rosenblatt’s R respectively. We conducted simulations to compare IPR-

τ ∗, IPR-D and IPR-R using examples as in Simulation I. The empirical performances of

these methods were very similar.

Next, we compared IPR-τ ∗, IP-dCov and dCov using the same examples as in Simulation

I. We found that IP-dCov generally had a better empirical performance than dCov (except

for the linear case). The performance of IP-dCov was not as good as IPR-τ ∗ in Y = Inv(X),

concave and circle. Results are shown in Figure 7.

3.5 DATA EXAMPLE

DLBCL Data

We first apply the proposed test of independence to study the relationship between gene

expression and survival outcomes. We use the data provided by Rosenwald et al. (2002), in

which the survival time of patients with diffuse large B-cell lymphoma after chemotherapy

is recorded as well as the related gene expression profiles. As the survival time is believed

to be influenced by the molecular features of tumor, previous papers, including Bair and

Tibshirani (2004), Bair et al. (2006), Bøvelstad et al. (2007), Chen et al. (2011) and Chen

et al. (2017), have tried to build predictive models for survival time of a patient, using

gene-expression patterns as predictors.

In the study, 240 patients were examined for 7399 gene expression profiles with the use

of DNA microarrays. Following the same approach as the above-cited authors, we pre-screen

the genes and use only 240 most relevant ones. The subset selection is performed by fitting

a univariate Cox regression model of each gene expression value on survival one-by-one and

ranking the obtained Cox scores from largest to smallest (Chen et al., 2011). We apply the

proposed method “IPR-τ ∗” as well as “dCov”, “HHG”, “BCov1”, “BCov2”, “HSIC” to test

independence between 240 gene expressions and the survival time. Euclidean distance is

used to measure the distance between two gene expressions for all the methods.

All of the methods detect the dependency with 0.05 significance level. More efforts

can be put into building predictive models after the nonparametric tests show statistically
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significant results. As a comparison, we test with the 240 genes that have the lowest Cox

scores and repeat the same sets of tests. No method concludes the dependency.

Farm Data

We investigate the dependency between the annual crop yields and the temperature

using the dataset described in Wong et al. (2019). In this dataset, the annual yield of

two major crops, corn and soybean, is recorded in bushels per acre from 105 counties of

Kansas from 1999 and 2011, provided by the National Agricultural Statistics Agency at

https://quickstats.nass.usda.gov/. The weather data is from the National Climatic Data

Center at https://www.ncdc.noaa.gov/data-access and contains the daily minimum, maxi-

mum temperature aggregated at the county level.

Following the source paper, we let Y be the annual corn or soybean yield for a specific year

and county, respectively, X1(t) and X2(t) be the daily maximum and minimum temperatures

for the same year and county, and X(t) = (X1(t), X2(t)). We aim at testing independence

between the annual crop yields and temperature trajectories. For this purpose, we introduce

the daily heat unit accumulation defined as, HU(X, t) = [(X1(t) +X2(t))/2−Tbase]+, based

on which phenological development of plants occurs according to the EPIC plant growth

model (Williams et al., 1989), i.e., no growth occurs at or below Tbase. In the formula, Tbase

is a crop-specific base temperature. Following the reference paper, we use Tbase = 8◦C for

corn and 10◦C for soybean. c+ denotes the positive part of c. The dissimilarity between

temperatures is measured by

dX(X(t), X ′(t)) = (

∫ 365

0

([
X1(t) +X2(t)

2
− Tbase]+ − [

X ′
1(t) +X ′

2(t)

2
− Tbase]+)

2dt)1/2,

and Euclidean distance is used for Y .

All six methods have the same statistical conclusion at the 0.05 significance level. Sig-

nificant dependence between temperature and annual crop yields are found for both soybean

data and the corn data. In this data example, we find that the largest sign covariance values

arise from anchor points in year 2004, which indicates that the X and Y -interpoint distances

computed for a data point in year 2004 tend to be highly correlated. Further interpretation

and visualization of the dependence could be a topic for future research.
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4.0 APPLICATION TO VARIABLE SELECTION

4.1 BACKGROUND

High-dimensional data provide rich ground for studying relationships between variables.

However, it also posts new challenges in building and estimating a model. Variable selection

is a crucial procedure to reduce the number of variables and make the analysis concise and

interpretable. In this chapter, we investigate a way to use a measure of independence to

select important variables with an application to gene selection related to suicidal behaviors.

There exist a vast amount of old and new methods to select variables in a high -

dimensional setting. The L1 penalized approach “LASSO” (Tibshirani, 1996) is probably

one of the most widely-used methods in practice. Assuming that response variable Y can be

expressed as a linear combination of explanatory variables {Xj}pj=1 plus an error, that is,

Yi =
∞∑
j=1

βjXij + ϵi,

LASSO jointly achieves low prediction error and sparse estimation of {βj}pj=1 by introducing

L1 penalty term to an optimization function and provides a natural way to select variables.

It has a computationally feasible algorithm and nice regime to decide the size of selection

through cross-validation which enhances its applicability. Many LASSO variants have been

proposed in order to extend a linear model assumption (Tibshirani, 1997; Roth, 2004; Kr-

ishnapuram et al., 2005) and to improve prediction accuracy (Zou and Hastie, 2005) of the

original method, but they are still in a framework of penalizing coefficients and minimizing

model-based residuals. However, as the data collection method evolves, it gets harder to

know in advance how the variables are related and whether the assumed model fits the data.
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There is no systematic results on the control of false-positive and false-negative errors if a

misspecified model is used.

Recently, Li et al. (2012) and Pan et al. (2018) suggested to use a measure of indepen-

dence (“dCov” and “BCov”) to select important variables. In their papers, one computes a

measure of dependence with the response variable for each independent variable in the can-

didate set, and selects the top N of them where the variables are ordered by the magnitude

of the dependence measure (scale-based approach). With the development of conditional

independence measures (Wang et al., 2015), there are also some recent work proposed to

perform an analogous variable selection using conditional dependence measures instead of

dependence measures (Lu and Lin, 2020; Liu and Wang, 2018). These can be viewed as

an extension of the Sure Independence Screening method (SIS) proposed by Fan and Lv

(2008). The original SIS approach assumes a linear model and selects variables by ordering

the marginal Pearson correlation coefficients. The authors showed that this process achieves

sure screening property which means that all active (truly important) variables are selected

with probability converging to 1 as the sample size goes to infinity with an assumption of

Gaussian errors. Later their work was extended to generalized linear models (Fan et al.,

2009), Cox models (Zhao and Li, 2012) and linear model with preselected variables (Barut

et al., 2016). The new methods based on independence measures are nice additions to the

existing selection methods as they offer a completely model-free approach without assuming

any kind of relationships in advance. However, these methods are all scale-based approaches,

which possess several problems in practice. First, they rely on the assumption that the mag-

nitude of the estimated dependence measure represents the strength of variable importance.

In finite sample experiments, the ordering based on the estimated dependence measure is not

always stable due to natural estimation variability. In particular, when there exist various

kinds of relationships, the magnitude of the dependence measure does not necessarily have a

interpretable scale as in a linear measure. Second, although the theory says the true active

variables will all be retained with a large enough model size, determining the cutoff (model

size) is practically difficult. Third, it is particularly hard to compare groups of variables

with different dimensions. For example, one may want to cluster genes and select them at

all or not if they are in the same cluster. One of the LASSO variants, group-LASSO (Zou
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and Hastie, 2005) provides a way to perform such selection where they enforce each cluster

a different penalty depending on the size of clusters to make a fair comparison. However, it

is hard to make such adjustments for a measure of independence because we do not exactly

understand the effect of dimensions on the magnitude of the measure.

Motivated by the need to address these practical challenges in data analysis, we propose

a frequent voting method that uses but do not completely rely on the absolute ordering of

the dependence measure. Instead of the magnitude of the dependence measure, we rather

order variables by their frequency to pass the independence test in bootstrapping samples.

The size of a model is decided by the amount of stability we want to achieve (70, 80, or

90% of total bootstrapping samples). The work is motivated by a project selecting genes

related to suicidal behaviors. The number of genes is greater than the sample size, and

we don’t have any knowledge about how genes are related to the probability of committing

suicidal behaviors. Longitudinal observations are available for some subjects, and we wish

to conduct a gene cluster selection where each cluster has different sizes. We will illustrate

that the proposed method is proper to conduct these analyses.

Incorporating a resampling procedure into variable selection is intuitively appealing and

certainly not a new idea. Meinshausen and Bühlmann (2010) provides some formal frame-

work on this and illustrates cases where this approach can be combined with various kinds of

selection methods. They mention that selecting variables based on “a stability measure”, the

probability for each variable to be selected in a random resampling of the data, can provide

better separation of relevant variables from irrelevant ones, proper guidance to decide an

amount of regularization (size of the model), and sometimes achieves a consistent selection

with settings where the original methods fail. We found that this framework is particularly

well-suited when combined with a test of independence, as it opens up the possibility to

convert a mere test to a new selection method with a completely model-free setting while

properly addressing the problems of the scale-based approach.

The remaining of this chapter is organized as follows. In Section 4.2, we introduce

a new method based on a frequent voting. In Section 4.3, we assess the finite sample

performance of the proposed method with comparison to the scale-based method and LASSO.

In Section 4.4, we apply the method to select important genes related to suicidal behaviors.
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We present various selection results including unconditional selection, multivariate selection,

and conditional selection to illustrate possible extensions of our proposed method.

4.2 FREQUENT VOTING METHOD

Let Y be a response vector and X1, ..., Xp be vectors of predictors. A proper test of

independence needs to be chosen depending on the dimension of the data. For illustration,

in this chapter, we use distance covariance measure and the IPR-τ ∗ measure for (Xj, Y ) ∈

(Rp,Rq). We use distance covariance measure and τ ∗ for (Xj, Y ) ∈ (R,R).

To start, we create a set of bootstrapping samples (X∗
1 , ..., X

∗
p , Y

∗) and perform a test

of independence between X∗
j and Y ∗ for j = 1, ..., p, separately. If the test rejects the null

hypothesis for Xj, then Xj gets one vote. We repeat this procedure B times, a predefined

number of bootstraps, and collect the vote for each variable Xj throughout the B times

repeated procedure. We finally order X1, ..., Xp by the vote they have, whose possible range

is between 0 and B. We decide the cutoff by an amount of stability we want to achieve. We

may select every Xj whose vote exceeds 0.8B.

The suggested method is simple and intuitive but possesses advantages over the scale-

based method. First, the method is free from a direct comparison of measures between

predictors. The method only uses whether the measure of independence exceeds the α-level

critical value of the null distribution, so the decision we make for the procedure is supported

by the large sample theory of the independence test. Second, the method has a natural

way of selecting a cutoff; rather than deciding the size of the model, one chooses a level

of stability to achieve. Third, the method allows predictors to have different dimensions.

The independence measure are not compared between groups of predictors with different

dimensions, but they are compared with their critical value.

This simple method is mainly aimed at screening and retaining important variables. A

second step model-based approach with the selected variables may be employed to assess

the prediction error. Some other extensions such as iterative screening based on residuals as

discussed in Pan et al. (2018) can also be considered.
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4.3 SIMULATION

In this section, we conduct a Monte-Carlo simulation to assess the empirical performance

of the proposed frequent voting method, compared to the scale-based method and LASSO.

Two measures of dependency, distance covariance (“dCov”) and sign covariance (τ ∗) are

employed for illustration. A random tie-break is used when τ ∗ is employed. The results are

based on the implementation in R packages “dcov”, “TauStar” and “glmnet”, respectively.

We generateX = (X1, ..Xp)
T from a multivariate normal distribution with zero mean and

covariance matrix Σ = (σij)p×p where σij = ρ|i−j|. We consider three levels of intercorrelation

(a) ρ = 0, (b) ρ = 0.2 and (c) ρ = 0.8. We fix the dimension p to be 200, and consider

sample size n = 100, 150, 200 for the mixture examples in 4.1-4.3 and n = 200, 400 for logistic

examples in 4.4-4.5.

For the frequent voting method, the results are based on B = 100 of bootstrapped

samples with a significance level of 0.05 for the independence test. Critical values are ap-

proximated by a permutation procedure with data generated under each setting and they

are averaged over 5 times. For the scale-based method, normalized version of measures are

used for a comparison which are

dCorj =
dCov(Xj, Y )√

dCov(Xj, Xj)dCov(Y, Y )
and τ ∗b,j =

τ ∗(Xj, Y )√
τ ∗(Xj, Xj)τ ∗(Y, Y )

for j = 1, ..., p. A linear LASSO model is used in Examples 4.1-4.3, and a logistic LASSO

model is used in Example 4.4-4.5.

We evaluate the performance through P1, P11, P21, P31 and Pall which are the proportions

that each or all active variables (X1, X11, X21, X31) are selected in 200 replications, for a

given size of the model. Here we do not really have a model, the size of the model is the

total number of variables selected. For the frequent voting method, the size of the model is

determined by a frequency cutoff; variables are selected if they achieve 90%, 80%, or 70%

of the vote from bootstrapped data. Since the scale-based method doesn’t have a common

way to determine a cutoff and for comparison purpose, their size of selection is matched with

the frequent voting method. For LASSO, the size of the model is determined to achieve a
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minimum mean squared error through cross-validation. We hope to retain the true variables

with high probability with a reasonable size of the model.

Example 4.1-4.3 are designed to illustrate the various mixture relationships. Response

variable Y is generated from the following models which include a linear term, quadratic

term, interaction term, and other nonlinear relationships.

Example 4.1. Y = 0.8X1 +X11 + 0.8X2
21 +X2

31 + ϵ, ϵ ∼ N(0, 1)

Example 4.2. Y = X1 + 1.5X2
11 + 4.5I(X2

21 > 0.6752)I(X2
31 > 0.6752) + ϵ, ϵ ∼ N(0, 1)

Example 4.3. Y = X1 + 4X11I(X21 < 0) + exp(|X31|) + ϵ, ϵ ∼ N(0, 1)

The results are summarized in Tables 2 - 10. In each table, the nine columns represent

the results under three different frequency cutoffs (d = 90%, 80%, 70%) and with three levels

of intercorrelation between covariates (ρ = 0, 0.2, 0.8). As expected, we observe that the

average size of the model increases as the intercorrelation becomes bigger as well as the

cutoff becomes lower. For each example, we present results for n = 100, n = 150 and

n = 200 in three separate tables. The performance of the frequent voting method and the

scale-based method improves as the sample size increases, but the LASSO method does not

improve much due to the lack of ability to detect nonlinear relationships. Varying the model

size for LASSO method does not improve the performance much for the same reason. We

include the LASSO method as a benchmark for baseline comparison. In the following, we

discuss the performance of the frequent voting method and the scale-based method.

Overall, the performance of the frequent voting method is very satisfactory with a mod-

erate sample size n = 150 or 200, in the sense that the probability of retaining all important

variable is close to 1 with a reasonable model size. In all of the settings, the frequent voting

method is always better than the scale-based method, when τ ∗ is used as an independence

measure, in the sense that the probability of retaining all true variables is much higher with

the frequent voting method when the size of the model is kept the same. Using “dCov” as

a dependence measure, the performance of the frequent voting method and the scale-based

method is similar in Example 4.1 as shown in Tables 2-4. The frequent voting method is

clearly better in Example 4.2 as shown in Tables 5-7. The frequent voting method is mod-
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erately better than the scale-based method in Example 4.3 as shown in Tables 8-10. This

is reasonable. When the chosen dependence is suitable and has a clear scale ordering for

detecting the true relationship, the scale-based method will be relatively stable in practice.

Overall, the frequent voting method largely stablize the performance and works well in all

cases with a moderate sample size n = 150.

Example 4.4 and Example 4.5 are designed to assess the performance of methods when

Y is binary. In both examples, Y follows the Bernoulli distribution with probability 1/1 + ep

and p is generated as follows. Example 4.4 is a logistic version of Example 4.1 and Exam-

ple 4.4 illustrate various relationships without linear terms.

Example 4.4. p = 0.8X1 −X11 + 0.8X2
21 −X2

31

Example 4.5. p = X2
1 −X2

11 + 2I(X21 > 0.675)− 2I(X2
31 > 0.6752)

The simulations results are shown in Tables 11-14. As expected, we observe that the

average size of the selected model increases as the intercorrelation becomes bigger as well as

the cutoff becomes lower. For each example, we present results for n = 200, and n = 400

in separate tables. The performance of the frequent voting method and the scale-based

method improves as the sample size increases, but the LASSO method does not improve

much due to the lack of ability to detect nonlinear relationships. Overall, the performance

of the frequent voting method is very satisfactory with a sample size n = 400, in the sense

that the probability of retaining all important variable is close to 1 with a moderate model

size. In all of the settings, the frequent voting method is better than the scale-based method,

in the sense that the probability of retaining all true variables is higher with the frequent

voting method when the size of the model is kept the same.
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4.1(a) 4.1(b) 4.1(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.72 0.87 0.93 0.73 0.89 0.95 0.87 0.95 0.96
P11 0.96 1.00 1.00 0.95 0.99 1.00 0.98 1.00 1.00
P21 0.46 0.62 0.77 0.48 0.68 0.81 0.73 0.89 0.95
P31 0.75 0.87 0.93 0.81 0.91 0.94 0.85 0.95 0.97
Pall 0.29 0.50 0.67 0.28 0.53 0.72 0.52 0.80 0.87

Scale

P1 0.78 0.90 0.95 0.79 0.90 0.95 0.88 0.96 0.99
P11 0.98 0.99 1.00 0.98 1.00 1.00 0.99 1.00 1.00
P21 0.39 0.61 0.77 0.45 0.70 0.84 0.60 0.83 0.91
P31 0.70 0.83 0.95 0.74 0.91 0.93 0.84 0.93 0.98
Pall 0.25 0.50 0.72 0.26 0.56 0.73 0.47 0.75 0.87

Avg.Size 4.9 10.8 21.5 5.7 12.8 24.3 17.1 30.6 47.8

τ∗

Freq

P1 0.81 0.91 0.95 0.84 0.92 0.97 0.87 0.94 0.97
P11 0.99 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
P21 0.42 0.63 0.76 0.43 0.64 0.74 0.50 0.72 0.86
P31 0.78 0.90 0.98 0.76 0.88 0.93 0.76 0.87 0.93
Pall 0.25 0.50 0.70 0.24 0.49 0.66 0.32 0.57 0.77

Scale

P1 0.85 0.92 0.98 0.86 0.92 0.96 0.90 0.96 0.98
P11 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
P21 0.20 0.49 0.67 0.24 0.48 0.69 0.23 0.52 0.73
P31 0.49 0.80 0.91 0.47 0.76 0.89 0.49 0.77 0.90
Pall 0.08 0.36 0.59 0.06 0.31 0.57 0.08 0.37 0.63

Avg.Size 6.2 13.2 24.8 6.4 13.4 24.9 14.5 24.1 36.8

Lasso

P1 0.92 0.87 0.91
P11 0.99 0.95 0.94
P21 0.13 0.17 0.12
P31 0.18 0.21 0.13
Pall 0.03 0.03 0.01

Avg.size 13.3 15.6 12.0

Table 2: Simulation result of Example 4.1 for n=100. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.Size means an average size of selection with a given cutoff.
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4.1(a) 4.1(b) 4.1(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.93 0.96 0.97 0.94 0.97 0.99 1.00 1.00 1.00
P11 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.83 0.93 0.96 0.81 0.90 0.97 0.83 0.94 0.98
P31 0.97 0.98 1.00 0.98 1.00 1.00 0.95 1.00 1.00
Pall 0.75 0.87 0.93 0.75 0.87 0.96 0.78 0.94 0.98

Scale

P1 0.96 0.98 0.99 0.96 0.99 1.00 1.00 1.00 1.00
P11 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.79 0.93 0.97 0.80 0.94 1.00 0.75 0.88 0.97
P31 0.94 0.98 0.99 0.97 0.99 1.00 0.96 0.99 1.00
Pall 0.71 0.91 0.96 0.73 0.92 1.00 0.73 0.87 0.97

Avg.Size 7.9 17.6 33.8 9.3 21.4 40.0 19.6 30.5 44.8

τ∗

Freq

P1 0.94 0.97 0.99 0.95 0.97 0.99 0.99 1.00 1.00
P11 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.77 0.89 0.97 0.77 0.89 0.95 0.79 0.88 0.94
P31 0.94 0.98 1.00 0.98 1.00 1.00 0.96 0.99 1.00
Pall 0.67 0.85 0.95 0.71 0.86 0.94 0.75 0.87 0.93

Scale

P1 0.97 0.97 0.99 0.95 0.98 1.00 1.00 1.00 1.00
P11 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.44 0.75 0.93 0.49 0.73 0.90 0.52 0.76 0.88
P31 0.86 0.94 0.99 0.83 0.96 1.00 0.83 0.96 0.99
Pall 0.36 0.68 0.90 0.35 0.68 0.89 0.40 0.73 0.87

Avg.Size 7.1 14.7 26.6 7.5 15.1 28.0 18.9 28.6 42.0

Lasso

P1 0.98 0.96 0.97
P11 1.00 1.00 0.99
P21 0.20 0.13 0.09
P31 0.22 0.20 0.19
Pall 0.07 0.03 0.02

Avg.size 15.1 13.8 13.0

Table 3: Simulation result of Example 4.1 for n=150. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.1(a) 4.1(b) 4.1(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.99 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.98 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00
P31 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pall 0.96 0.99 1.00 0.96 1.00 1.00 0.96 0.99 1.00

Scale

P1 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.96 0.99 1.00 0.93 1.00 1.00 0.91 0.99 1.00
P31 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pall 0.95 0.99 1.00 0.91 0.99 1.00 0.91 0.99 1.00

Avg.Size 7.9 16.9 31.7 8.0 16.9 31.6 22.7 33.1 47.4

τ∗

Freq

P1 0.99 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.93 0.98 1.00 0.94 1.00 1.00 0.95 0.99 1.00
P31 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Pall 0.91 0.98 1.00 0.92 0.99 1.00 0.94 0.99 1.00

Scale

P1 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.72 0.92 0.98 0.70 0.93 1.00 0.77 0.93 0.99
P31 0.97 1.00 1.00 0.98 1.00 1.00 0.97 0.99 1.00
Pall 0.69 0.92 0.98 0.68 0.92 1.00 0.74 0.92 0.99

Avg.Size 7.5 15.2 27.9 8.0 15.9 28.9 21.8 31.5 44.9

Lasso

P1 1.00 0.99 1.00
P11 1.00 1.00 0.99
P21 0.16 0.13 0.11
P31 0.18 0.18 0.20
Pall 0.04 0.03 0.02

Avg.size 13.8 12.7 13.0

Table 4: Simulation result of Example 4.1 for n=200. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.2(a) 4.2(b) 4.2(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.72 0.83 0.91 0.72 0.89 0.93 0.78 0.91 0.95
P11 0.84 0.94 0.97 0.85 0.94 0.98 0.91 0.97 0.98
P21 0.34 0.54 0.69 0.29 0.49 0.66 0.46 0.68 0.81
P31 0.34 0.55 0.66 0.41 0.60 0.74 0.47 0.64 0.76
Pall 0.11 0.29 0.46 0.10 0.26 0.46 0.20 0.40 0.61

Scale

P1 0.74 0.86 0.93 0.76 0.89 0.95 0.84 0.92 0.96
P11 0.84 0.96 0.98 0.84 0.95 0.99 0.91 0.98 1.00
P21 0.18 0.43 0.59 0.19 0.40 0.62 0.31 0.54 0.73
P31 0.22 0.39 0.55 0.19 0.38 0.60 0.33 0.58 0.77
Pall 0.04 0.16 0.36 0.02 0.12 0.37 0.08 0.32 0.54

Avg.Size 3.8 8.4 16.2 4.0 9.3 18.3 8.6 19.2 34.3

τ∗

Freq

P1 0.84 0.96 0.99 0.92 0.97 1.00 0.86 0.94 0.98
P11 0.93 0.98 0.99 0.94 0.98 0.99 0.84 0.94 0.98
P21 0.34 0.55 0.72 0.34 0.55 0.69 0.34 0.49 0.67
P31 0.38 0.60 0.73 0.34 0.62 0.74 0.36 0.55 0.74
Pall 0.08 0.29 0.52 0.08 0.31 0.46 0.08 0.24 0.46

Scale

P1 0.87 0.97 0.98 0.91 0.96 0.98 0.86 0.93 0.98
P11 0.72 0.91 0.98 0.70 0.89 0.97 0.74 0.90 0.98
P21 0.15 0.37 0.62 0.16 0.42 0.63 0.18 0.39 0.61
P31 0.19 0.43 0.62 0.15 0.38 0.60 0.22 0.43 0.68
Pall 0.01 0.12 0.37 0.01 0.09 0.34 0.02 0.09 0.38

Avg.Size 5.7 12.9 24.3 5.8 13.3 24.4 7.6 16.2 29.4

Lasso

P1 0.72 0.70 0.71
P11 0.18 0.11 0.10
P21 0.06 0.05 0.04
P31 0.08 0.05 0.05
Pall 0.01 0.00 0.01

Avg.size 10.5 8.9 8.0

Table 5: Simulation result of Example 4.2 for n = 100. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.2(a) 4.2(b) 4.2(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.98 1.00 1.00 0.97 0.99 1.00 0.93 0.98 0.99
P11 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.72 0.86 0.92 0.83 0.91 0.98 0.66 0.82 0.90
P31 0.80 0.92 0.97 0.78 0.92 0.96 0.76 0.94 0.97
Pall 0.58 0.80 0.89 0.66 0.84 0.94 0.52 0.75 0.87

Scale

P1 0.96 1.00 1.00 0.98 1.00 1.00 0.94 0.99 0.99
P11 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00
P21 0.53 0.77 0.90 0.61 0.82 0.94 0.55 0.76 0.89
P31 0.59 0.82 0.93 0.54 0.79 0.94 0.57 0.79 0.92
Pall 0.31 0.65 0.83 0.34 0.64 0.88 0.32 0.60 0.81

Avg.Size 6.7 14.6 27.8 7.0 14.7 27.7 9.6 17.6 29.1

τ∗

Freq

P1 1.00 1.00 1.00 0.99 0.99 1.00 0.98 0.99 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.62 0.81 0.89 0.71 0.87 0.94 0.72 0.88 0.94
P31 0.71 0.85 0.93 0.75 0.88 0.95 0.76 0.94 0.98
Pall 0.42 0.70 0.83 0.53 0.78 0.90 0.53 0.81 0.92

Scale

P1 0.99 1.00 1.00 0.98 1.00 1.00 0.98 0.99 1.00
P11 0.96 0.99 1.00 0.96 1.00 1.00 0.98 1.00 1.00
P21 0.40 0.70 0.85 0.48 0.75 0.91 0.49 0.78 0.91
P31 0.45 0.71 0.86 0.41 0.71 0.88 0.52 0.75 0.89
Pall 0.15 0.48 0.73 0.18 0.54 0.80 0.25 0.57 0.80

Avg.Size 6.7 14.4 26.5 7.1 14.7 26.3 10.4 19.5 32.8

Lasso

P1 0.87 0.84 0.88
P11 0.17 0.16 0.12
P21 0.04 0.07 0.03
P31 0.08 0.06 0.06
Pall 0.00 0.01 0.00

Avg.size 10.3 9.9 7.6

Table 6: Simulation result of Example 4.2 for n = 150. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.2(a) 4.2(b) 4.2(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.90 0.98 1.00 0.93 0.97 0.99 0.91 0.97 0.99
P31 0.94 0.98 0.99 0.86 0.94 0.99 0.91 0.96 0.97
Pall 0.83 0.96 0.98 0.81 0.92 0.98 0.81 0.92 0.96

Scale

P1 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.79 0.94 0.99 0.77 0.93 0.97 0.72 0.93 0.97
P31 0.83 0.94 0.97 0.77 0.90 0.97 0.84 0.93 0.97
Pall 0.64 0.89 0.96 0.61 0.84 0.95 0.59 0.85 0.94

Avg.Size 7.6 16.1 30.5 7.3 14.7 27.3 12.7 21.7 34.7

τ∗

Freq

P1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.91 0.97 0.99 0.89 0.96 0.98 0.89 0.98 0.99
P31 0.91 0.97 0.99 0.87 0.97 0.98 0.89 0.95 0.99
Pall 0.83 0.94 0.97 0.78 0.93 0.96 0.79 0.93 0.98

Scale

P1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.68 0.89 0.98 0.65 0.86 0.96 0.68 0.90 0.98
P31 0.70 0.91 0.97 0.62 0.86 0.96 0.75 0.91 0.97
Pall 0.43 0.81 0.95 0.41 0.75 0.93 0.50 0.82 0.95

Avg.Size 7.2 14.8 26.9 7.4 15.2 27.6 12.9 23.1 37.4

Lasso

P1 0.92 0.96 0.91
P11 0.17 0.16 0.15
P21 0.03 0.05 0.03
P31 0.06 0.08 0.05
Pall 0.00 0.00 0.01

Avg.size 8.8 9.0 7.0

Table 7: Simulation result of Example 4.2 for n = 200. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.3(a) 4.3(b) 4.3(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.62 0.79 0.84 0.57 0.73 0.84 0.77 0.88 0.96
P11 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00
P21 0.55 0.73 0.81 0.37 0.60 0.74 0.64 0.81 0.90
P31 0.78 0.92 0.97 0.80 0.90 0.94 0.87 0.94 0.97
Pall 0.29 0.52 0.66 0.17 0.43 0.62 0.47 0.70 0.85

Scale

P1 0.66 0.81 0.87 0.58 0.73 0.85 0.86 0.96 0.99
P11 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00
P21 0.38 0.64 0.83 0.24 0.53 0.75 0.48 0.74 0.88
P31 0.78 0.92 0.97 0.78 0.90 0.94 0.85 0.93 0.98
Pall 0.22 0.48 0.70 0.10 0.38 0.63 0.41 0.68 0.86

Avg.Size 6.9 16.4 31.3 5.0 11.5 22.7 19.1 33.2 51.8

τ∗

Freq

P1 0.71 0.82 0.88 0.67 0.81 0.89 0.79 0.94 0.98
P11 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
P21 0.49 0.68 0.85 0.39 0.59 0.76 0.47 0.66 0.85
P31 0.77 0.90 0.97 0.88 0.94 0.96 0.80 0.90 0.94
Pall 0.23 0.49 0.71 0.21 0.45 0.66 0.30 0.55 0.77

Scale

P1 0.74 0.85 0.91 0.71 0.84 0.91 0.91 0.96 0.98
P11 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
P21 0.24 0.50 0.72 0.17 0.41 0.67 0.25 0.50 0.74
P31 0.59 0.81 0.92 0.58 0.83 0.94 0.64 0.86 0.93
Pall 0.09 0.33 0.58 0.07 0.26 0.57 0.15 0.42 0.67

Avg.Size 6.3 13.4 25.3 6.1 13.1 24.4 15.7 25.8 38.2

Lasso

P1 0.71 0.66 0.70
P11 0.96 0.97 0.96
P21 0.05 0.04 0.02
P31 0.22 0.24 0.18
Pall 0.02 0.02 0.01

Avg.size 13.5 11.4 10.9

Table 8: Simulation result of Example 4.3 for n = 100. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.3(a) 4.3(b) 4.3(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.84 0.96 0.99 0.91 0.95 0.98 0.96 0.99 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.86 0.95 0.98 0.87 0.98 0.99 0.89 0.97 0.98
P31 0.98 1.00 1.00 0.99 1.00 1.00 0.97 0.99 1.00
Pall 0.72 0.91 0.96 0.79 0.93 0.96 0.83 0.95 0.97

Scale

P1 0.90 0.97 0.98 0.90 0.97 0.99 0.98 0.99 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.74 0.88 0.96 0.79 0.94 0.98 0.82 0.96 0.98
P31 0.98 1.00 1.00 0.98 1.00 1.00 0.97 0.99 1.00
Pall 0.66 0.86 0.93 0.71 0.90 0.97 0.78 0.94 0.97

Avg.Size 8.9 21.2 40.2 12.3 29.9 54.3 23.0 36.1 52.9

τ∗

Freq

P1 0.86 0.96 0.99 0.90 0.96 0.98 0.99 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.77 0.88 0.93 0.81 0.93 0.98 0.85 0.95 0.97
P31 0.99 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00
Pall 0.65 0.85 0.91 0.72 0.88 0.96 0.82 0.94 0.97

Scale

P1 0.93 0.98 0.99 0.91 0.95 0.99 0.99 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.50 0.77 0.87 0.48 0.73 0.90 0.65 0.88 0.96
P31 0.91 0.98 1.00 0.91 0.99 1.00 0.87 0.98 1.00
Pall 0.39 0.73 0.85 0.40 0.67 0.88 0.56 0.86 0.95

Avg.Size 7.0 14.0 25.5 7.5 15.1 27.8 20.8 30.8 44.3

Lasso

P1 0.88 0.87 0.91
P11 0.99 1.00 1.00
P21 0.06 0.07 0.05
P31 0.28 0.28 0.20
Pall 0.03 0.02 0.00

Avg.size 12.6 12.4 12.2

Table 9: Simulation result of Example 4.3 for n = 150. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.3(a) 4.3(b) 4.3(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.97 0.99 1.00 0.93 0.98 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.98 1.00 1.00 0.94 1.00 1.00 0.99 1.00 1.00
P31 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00
Pall 0.94 0.98 1.00 0.86 0.97 1.00 0.99 1.00 1.00

Scale

P1 0.96 0.99 1.00 0.96 1.00 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.95 1.00 1.00 0.87 0.97 1.00 0.97 1.00 1.00
P31 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Pall 0.90 0.98 1.00 0.83 0.97 1.00 0.96 1.00 1.00

Avg.Size 11.1 26.7 49.8 8.2 18.1 34.5 31.2 48.4 69.6

τ∗

Freq

P1 0.97 0.99 1.00 0.97 1.00 1.00 0.99 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.93 0.98 1.00 0.94 0.97 1.00 0.96 0.99 1.00
P31 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Pall 0.90 0.97 1.00 0.90 0.97 1.00 0.95 0.98 1.00

Scale

P1 0.97 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.76 0.94 1.00 0.70 0.94 0.98 0.83 0.97 0.99
P31 0.97 1.00 1.00 0.97 0.99 1.00 0.98 0.99 1.00
Pall 0.70 0.93 1.00 0.67 0.92 0.98 0.81 0.96 0.99

Avg.Size 7.4 15.2 27.6 7.9 16.1 28.9 23.9 33.9 47.2

Lasso

P1 0.94 0.93 0.94
P11 1.00 1.00 1.00
P21 0.07 0.04 0.04
P31 0.31 0.29 0.19
Pall 0.01 0.03 0.00

Avg.size 12.4 13.4 11.9

Table 10: Simulation result of Example 4.3 for n = 200. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.4(a) 4.4(b) 4.4(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.64 0.81 0.90 0.70 0.84 0.90 0.59 0.73 0.81
P11 0.92 0.96 0.99 0.93 0.97 0.99 0.85 0.96 0.98
P21 0.30 0.51 0.63 0.41 0.60 0.76 0.44 0.64 0.72
P31 0.60 0.80 0.88 0.64 0.80 0.85 0.60 0.78 0.88
Pall 0.10 0.33 0.48 0.13 0.38 0.59 0.07 0.28 0.47

Scale

P1 0.69 0.83 0.91 0.75 0.85 0.92 0.63 0.74 0.82
P11 0.92 0.97 1.00 0.95 0.97 0.99 0.89 0.96 0.98
P21 0.19 0.38 0.56 0.26 0.42 0.58 0.22 0.42 0.62
P31 0.43 0.64 0.80 0.42 0.65 0.80 0.35 0.60 0.79
Pall 0.04 0.19 0.42 0.05 0.21 0.43 0.03 0.15 0.39

Avg.Size 3.0 5.1 8.5 3.4 5.7 9.1 5.8 9.9 14.8

τ∗

Freq

P1 0.58 0.77 0.90 0.63 0.80 0.90 0.55 0.69 0.80
P11 0.90 0.95 0.97 0.89 0.97 0.99 0.81 0.94 0.98
P21 0.15 0.29 0.42 0.17 0.33 0.51 0.20 0.39 0.58
P31 0.45 0.64 0.79 0.40 0.61 0.74 0.37 0.59 0.72
Pall 0.03 0.14 0.28 0.02 0.13 0.34 0.01 0.11 0.31

Scale

P1 0.64 0.81 0.90 0.69 0.85 0.92 0.58 0.72 0.80
P11 0.92 0.96 0.98 0.93 0.97 0.98 0.85 0.96 0.98
P21 0.09 0.18 0.30 0.08 0.19 0.36 0.04 0.18 0.32
P31 0.15 0.36 0.59 0.16 0.33 0.55 0.11 0.32 0.55
Pall 0.01 0.05 0.15 0.01 0.04 0.20 0.00 0.02 0.13

Avg.Size 2.5 4.5 8.0 2.6 4.8 8.5 4.5 8.2 13.2

Lasso

P1 0.92 0.94 0.87
P11 0.98 0.99 0.95
P21 0.05 0.05 0.05
P31 0.05 0.05 0.01
Pall 0.01 0.02 0.01

Avg.size 12.4 12.2 12.7

Table 11: Simulation result of Example 4.4 for n = 200. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.4(a) 4.4(b) 4.4(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.97 1.00 1.00 0.98 0.99 1.00 0.90 0.95 0.97
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.93 0.99 1 0.00 0.86 0.92 0.95 0.90 0.96 0.98
P31 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Pall 0.91 0.98 1.00 0.84 0.92 0.95 0.80 0.91 0.95

Scale

P1 0.97 1.00 1.00 0.99 1.00 1.00 0.94 0.97 0.98
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.79 0.92 0.97 0.76 0.88 0.94 0.78 0.91 0.97
P31 0.95 0.99 1.00 0.97 1.00 1.00 0.91 0.99 1.00
Pall 0.73 0.91 0.97 0.72 0.88 0.94 0.66 0.87 0.95

Avg.Size 4.5 6.3 9.3 4.5 6.4 9.7 11.1 15.3 20.6

τ∗

Freq

P1 0.96 0.99 1.00 0.97 1.00 1.00 0.90 0.94 0.97
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.77 0.89 0.97 0.70 0.83 0.90 0.74 0.86 0.93
P31 0.96 0.99 0.99 0.96 1.00 1.00 0.91 0.97 1.00
Pall 0.71 0.88 0.96 0.65 0.83 0.90 0.60 0.78 0.90

Scale

P1 0.97 1.00 1.00 0.99 1.00 1.00 0.92 0.95 0.97
P11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P21 0.45 0.67 0.86 0.42 0.64 0.81 0.43 0.68 0.86
P31 0.82 0.92 0.96 0.79 0.91 0.97 0.68 0.86 0.97
Pall 0.35 0.61 0.83 0.31 0.57 0.78 0.25 0.55 0.80

Avg.Size 4.1 5.9 9.1 4.2 5.9 9.3 9.2 13.3 18.5

Lasso

P1 1.00 1.00 1.00
P11 1.00 1.00 1.00
P21 0.06 0.08 0.06
P31 0.08 0.08 0.08
Pall 0.01 0.02 0.01

Avg.size 13.4 12.6 13.0

Table 12: Simulation result of Example 4.4 for n = 400. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.5(a) 4.5(b) 4.5(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.64 0.78 0.87 0.73 0.85 0.91 0.65 0.78 0.86
P11 0.49 0.65 0.77 0.52 0.67 0.80 0.41 0.60 0.74
P21 0.51 0.68 0.78 0.51 0.66 0.78 0.49 0.70 0.79
P31 0.37 0.55 0.67 0.41 0.60 0.78 0.34 0.45 0.59
Pall 0.04 0.19 0.35 0.06 0.20 0.43 0.03 0.11 0.25

Scale

P1 0.56 0.71 0.82 0.55 0.69 0.81 0.48 0.68 0.78
P11 0.30 0.49 0.65 0.28 0.46 0.64 0.27 0.49 0.67
P21 0.58 0.71 0.80 0.62 0.71 0.79 0.57 0.73 0.81
P31 0.20 0.37 0.51 0.24 0.42 0.60 0.19 0.37 0.52
Pall 0.02 0.08 0.20 0.01 0.05 0.21 0.00 0.05 0.19

Avg.Size 2.6 4.9 8.2 2.7 4.9 8.5 3.5 7.1 11.6

τ∗

Freq

P1 0.39 0.59 0.70 0.45 0.67 0.79 0.39 0.61 0.70
P11 0.25 0.47 0.62 0.29 0.51 0.66 0.22 0.41 0.61
P21 0.45 0.63 0.77 0.47 0.66 0.76 0.45 0.63 0.79
P31 0.26 0.44 0.63 0.30 0.52 0.71 0.25 0.43 0.57
Pall 0.00 0.06 0.21 0.01 0.08 0.23 0.00 0.05 0.16

Scale

P1 0.23 0.44 0.63 0.23 0.41 0.61 0.17 0.36 0.57
P11 0.12 0.25 0.39 0.12 0.23 0.41 0.10 0.25 0.44
P21 0.50 0.67 0.77 0.54 0.70 0.76 0.49 0.66 0.80
P31 0.14 0.25 0.41 0.18 0.30 0.49 0.14 0.30 0.43
Pall 0.00 0.02 0.08 0.00 0.01 0.06 0.00 0.00 0.06

Avg.Size 1.8 3.9 7.4 2.0 4.1 7.6 2.5 5.8 10.5

Lasso

P1 0.05 0.06 0.04
P11 0.02 0.02 0.03
P21 0.51 0.54 0.48
P31 0.02 0.04 0.02
Pall 0.00 0.00 0.00

Avg.size 7.7 7.6 6.2

Table 13: Simulation result of Example 4.5 for n=200. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.5(a) 4.5(b) 4.5(c)
d1 d2 d3 d1 d2 d3 d1 d2 d3

dCov

Freq

P1 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00
P11 0.94 0.97 1.00 0.94 0.98 0.99 0.96 0.99 0.99
P21 0.96 0.98 1.00 0.94 0.98 0.99 0.94 0.98 0.99
P31 0.93 0.97 1.00 0.91 0.96 0.98 0.86 0.95 0.98
Pall 0.81 0.92 1.00 0.78 0.91 0.96 0.74 0.91 0.96

Scale

P1 0.96 0.99 1.00 0.98 0.99 1.00 0.98 0.99 1.00
P11 0.86 0.93 0.98 0.84 0.93 0.97 0.81 0.94 0.99
P21 0.96 0.98 0.99 0.95 0.97 0.99 0.96 0.99 1.00
P31 0.80 0.90 0.96 0.78 0.88 0.93 0.70 0.87 0.95
Pall 0.60 0.81 0.93 0.62 0.77 0.89 0.51 0.80 0.92

Avg.Size 4.4 6.2 9.4 4.4 6.2 9.4 7.6 12.0 17.1

τ∗

Freq

P1 0.93 0.97 0.99 0.95 0.99 0.99 0.92 0.98 0.98
P11 0.84 0.92 0.96 0.80 0.92 0.97 0.84 0.95 0.97
P21 0.94 0.97 0.99 0.92 0.96 0.99 0.91 0.97 0.99
P31 0.91 0.96 1.00 0.85 0.95 0.98 0.81 0.92 0.98
Pall 0.66 0.82 0.93 0.57 0.83 0.92 0.57 0.82 0.92

Scale

P1 0.75 0.90 0.97 0.78 0.91 0.97 0.75 0.90 0.98
P11 0.62 0.77 0.90 0.60 0.73 0.90 0.50 0.76 0.91
P21 0.94 0.97 0.99 0.94 0.96 0.99 0.94 0.98 1.00
P31 0.71 0.80 0.92 0.70 0.80 0.91 0.56 0.79 0.93
Pall 0.26 0.52 0.79 0.27 0.49 0.78 0.19 0.49 0.81

Avg.Size 4.0 5.7 8.9 4.0 5.7 9.0 6.2 10.1 15.4

Lasso

P1 0.05 0.06 0.06
P11 0.02 0.02 0.02
P21 0.87 0.89 0.81
P31 0.03 0.04 0.03
Pall 0.00 0.00 0.00

Avg.size 8.3 8.6 7.6

Table 14: Simulation result of Example 4.5 for n = 400. P1, P11, P21, P31 and Pall are proportions that
each or every active variables (X1, X11, X21, X31) are included in selection with frequency cutoff 90%(d1),
80%(d2) and 70%(d1) over 200 repetitions. Avg.size means an average size of selection with a given cutoff.
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4.4 DATA APPLICATION

We apply the proposed method to select important genes related to suicidal behaviors.

Suicide ranks among the 10 leading causes of death in the US and is the 2nd leading cause

in youth. Suicidal behavior occurs in the context of many psychiatric disorders; however,

relatively few subjects with a psychiatric disorder attempt suicide. Current diagnosis largely

depends on psychosocial symptoms and doesn’t successfully identify individuals at risk (May

et al., 2012). One of the most challenging and critical tasks is to identify objective biological

predictors for suicidal behavior. The data is a part of ongoing research and its collection

is not completed yet. Any result of this section is based on available samples and is only

for an illustrative purpose. We acknowledge Prof. Nadine Melhem from the Department

of Psychiatry at the University of Pittsburgh for providing this dataset to study our new

selection method.

The data combines gene activation levels and EHR records which track suicidal behaviors

of a subject. There exists multiple levels of suicidal behaviors which ranging from a suicidal

ideation to an successful suicide. For identifying them, the Columbia Suicide Severity Rating

Scale (C-SSRS)349 is used. It is a widely used clinical and research tool to assess current and

lifetime suicidal ideation and behavior, including intent and lethality rating for attempts at

follow-up; and Suicidal Ideation Questionnaire (SIQ)350,351 to assess the severity of suicidal

ideation. In this study, we use a binary response variable; Y = 1 if one commits any kind

of suicidal behaviors within 6 months and 0 otherwise. For gene expression data, Illumina’s

HumanHT-12 v4 Expression BeadChip Kit is used, which is a microarray providing genome-

wide transcriptional coverage of more than 47,000 well-characterized genes, gene candidates,

and splice variants. Samples are prepared using the Illumina®Totalprep RNA Amplification

Kit. Only genes that passed our quality control (QC) analysis and demonstrated a detection

p-value which was significant in at least 50% of the sample were included in our analysis.

It has been established in the literature that HPA axis dysregulation is associated with

increased risk for suicide. We will focus on examine gene expressions in the HPA axis and

inflammatory pathways in a large sample of male and female psychiatric patients at high-

risk but with no prior history of suicidal behavior; following the same subjects over time to

47



examine the temporal sequence between alterations in these pathways and suicide attempts.

Finally we have 134 samples and 20 of them are Y = 1 cases. At this point, only 46 subjects

have longitudinal observations of gene activation levels. The number of genes is 2423.

In the first part, we perform an unconditional selection to discover important genes

related to Y . We begin with a plain individual gene selection on their single observation.

Then we try to select genes based on a cluster selection, where the genes are selected together

or not if they belong to the same cluster. In the second part, we select genes conditional on

gender. We compare results between the frequent voting method, scale-based method, and

logistic LASSO. For the frequent voting method, 500 bootstrapped samples are used to vote

based on a significance level of 0.05. Normalized measures (distance correlation instead of

distance covariance) are used for the scale-based method.

4.4.1 Unconditional Selection

We first apply our method to select individual genes based on their single observation.

Two measures of independence, “dCov” and τ ∗, are used. As seen in Table 15, when we

apply frequency cutoff 90, 80, 70%, a total of 1, 6, and 22 genes are selected respectively with

“dCov” and 0, 6 and 25 genes are selected with τ ∗. For the frequent voting method, the top

6 genes are exactly overlapped between two measures. Figure 8 illustrate the distribution

of gene expression levels for the Y = 1 and Y = 0 groups. The difference between two

distributions is prominent in the most relevant gene, 2406. This gene is called “YWHAE” and

is known to be related to schizophrenia, a mental disease that can cause suicidal behaviors.

The other 5 genes also show some different shapes in distribution between two groups.

The number of genes selected in the scale-based method is matched with the frequent

voting method. The top 6 selections for the scale-based method are slightly different de-

pending on which measure is used. We found that 4 of the top 6 genes in the frequent voting

method are also selected in the scale-based method for both “dCov” and τ ∗. One of the top

6 genes in the frequent voting method, gene 1671, is not selected in the top 25 genes using

the scale-based method with “dCov”. LASSO didn’t select any genes when applying CV to

minimize the mean squared error, so we list the top 6 genes in their solution path. Only 2 of
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90% 80% 70%

dCov

Freq
119 1484 119 224 296 371 350 378 501 901 999

2406 (1) 1649 1671 1235 1484 1530 1538 1649 1671
1986 2406 (6) 1916 1958 1974 2014 1986 2060 2406 (22)

Scale
371 1484 119 296 350 371 378 901 999 1242

2406 1530 1649 1339 1484 1530 1538 1608 1673 1649
1986 2406 1916 1958 1965 1974 1986 2060 2406

τ∗

Freq (0)
119 1484 80 119 122 155 296 705 999 1484 1608 1668
1649 1671 1530 1538 1958 1649 1671 1673 1965 1974

1986 2406 (6) 1986 2014 2060 2178 2345 2406 2409 (25)

Scale
1484 1530 119 154 155 296 350 378 501 999 1242
1538 1649 1484 1530 1538 1608 1649 1671 1673 1958
1986 2406 1965 1974 1986 2014 2060 2178 2406 2409

Lasso
296 901 1484

1530 1986 2241

Table 15: Result of unconditional selection. Each numbers in parentheses refer a size of selection with a
given cutoff for the frequent based method. Size of selection for scale-based method and LASSO are matched
with that of the frequent voting method.

the Top 6 selected by the frequent voting method are also selected in LASSO. It is noticeable

that the most relevant gene in the other two methods, 2406, is not selected in LASSO.

Due to a delay in the sample collection, currently only 46 samples have longitudinal

observations. The proposed method can be used to selection genes with longitudinal obser-

vations by employing distance covariance or “IPR−τ ∗” as dependent measures as they work

for multivariate dimensional data.

We now move to the cluster selection which aims to select closely related genes to-

gether. Genes are believed to interact and work together. Recently clustering analysis based

on gene networks has been studied widely. In the first step, we cluster genes based on

their co-expression patterns. We apply a hierarchical clustering algorithm, called WGCNA

(a weighted gene co-expression network analysis) (Langfelder and Horvath, 2008). Using

R package “WGCNA” and with some tuning parameters (softpower=5, minimum module

size=3), we identified 135 clusters whose size range from 3 to 538. There are 24 unassigned

genes which we still include as a cluster of size 1. There are different methods for gene net-

work analysis and clustering. We use WGCNA just for illustration purposes. We then apply
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(a) Gene 2406 (b) Gene 119 (c) Gene 1484

(d) Gene 1649 (e) Gene 1671 (f) Gene 1986

1
Figure 8: Different distributions of each gene’s activation level between two groups; Y=1 (red) Y=0 (blue).
The genes are from the top 6 selected by the frequent voting method.
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two multivariate measures of independence, “dCov” and “IPR-τ ∗” to test the independence

between each cluster vs the response variable. The frequent voting method is then used to

decide which clusters to select. For reference, we also present the result of group-LASSO

selection (Zou and Hastie, 2005) for logistic regression conducted using R package “gglasso”,

where the penalty for each cluster is proportional to the square root of the corresponding

size of each group (cluster). We still include the results of the scale-based method but note

that this method may not be suitable for variables with different dimensions.

90% 80% 70%

dCov
Freq (0) 1 (1) 1 2 4 5 8 9 12 14 15 17 33 51 56 122 (14)

Scale (0) 1 (1) 1 2 5 8 12 14 17 30 33 51 56 94 122 154

IPR-τ ∗
Freq (0) 24 33 94 116 (4) 15 17 24 28 33 51 79 56 94 116 (10)

Scale (0) 24 137 145 154 (4) 15 17 24 33 94 116 137 145 149 154 (10)

g-LASSO 20 21 24 25 80 81 129 112 120 122

Table 16: Result of a cluster selection. The numbers denote a cluster number. Each numbers in parentheses
refer a size of selection with a given cutoff for the frequent based method. Size of selection for group LASSO
is matched with that of “IPR-τ∗” selection

Table 16 summarize the selection result. For the frequent voting method, 0,1,14 clusters are

selected with “dCov” and 0,4,10 clusters are selected with “IPR-τ ∗”. Since group LASSO

didn’t select any clusters with a minimum mean square error criteria, the top 10 results are

listed. For the frequent voting method, clusters 15, 17, 33, 51, 56 are commonly included in

“dCov” and “IPR-τ ∗” selection. Cluster 24 and 122 are commonly selected by group LASSO

and one of the two frequent voting selections. There exists some overlaps in selection between

the frequent voting method and the scale-based method.

4.4.2 Conditional Selection

In some applications, researchers believe that some covariates Z need to be controlled

when studying the effect of X on Y . If we ignore this relationship, the marginal selection

may give us an inconsistent result even under a model-free approach. That is, we may drop
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important variables or include false variables (Fan and Lv, 2008). A simple linear model can

illustrate this point. If two variables are highly correlated, and their effects on Y are in an

opposite direction, their marginal correlation with Y can be very low or even zero. There-

fore, selection based on a conditional relationship is sometimes very important. Conditional

selection provides a way to recruit additional variables based on previous knowledge about

relationships.

Formally speaking, X and Y are said to be independent conditional on Z if they satisfies

H0 : PXY |Z = PX|ZPY |Z versus H1 : PXY |Z ̸= PX|ZPY |Z .

Unlike the unconditional independence problem, it is known to be very challenging to identify

a conditional relationship (Shah et al., 2020), especially when Z is continuous or has multiple

dimensions. One alternative method is to transform Z to discrete data by binning, but

then Type 1 error will not be controlled anymore. Nevertheless, there exist some attempts

to consider a conditional relationship to select variables. As a popular classical method,

forward selection employs an iterative algorithm; at each step, one selects the most relevant

variables which minimize the residual sum of squares (RSS) in a linear regression setting.

Wang (2009) extends this method to high dimensional data (when p exceeds n) based on a

partial correlation coefficient. In a residual-based approach, we first make an unconditional

selection, estimate a model to get residuals and then conduct another unconditional selection

with these residuals as new response variables (see iterative versions of Fan and Lv (2008);

Pan et al. (2018)). As another model-based approach, Barut et al. (2016) suggests a marginal

selection method based on a generalized linear model. In their method, when a set of variables

are pre-selected, one recruits additional variables if the scale of their conditional marginal

likelihood estimator exceeds a certain threshold while every variable is standardized.

Recently, conditional version of distance covariance (“c-dCov”) was suggested by Wang

et al. (2015). Its population version is quantified by

Sa = E[D2(X, Y |Z)a(Z)],
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where D(X, Y |Z) is a measure of distance covariance evaluated at fixed Z and a(Z) is some

weight function. The corresponding empirical statistic was also suggested using a kernel-

based approach ; based on a distance between Z and impose weights. It provides a natural

way to extend our model-free method to conduct a conditional selection, compensating for

the possible inconsistency caused by a marginal selection.

Although the measure was successfully developed, implementing the measure with real

data has some challenges. Since the measure is an average of multiple unconditional mea-

sures, the required sample size for a reliable result is larger than an unconditional method.

In other words, the convergence of test statistic is slow for a conditional measure. If we

consider a multidimensional Z, the rate of convergence will be even slower; it is a function of

hr/2 where h is a kernel bandwidth used to approximate a density of Z and r is the dimension

of Z. Here we have a relatively small sample and we only illustrate the conditional selection

idea using gender as a conditioning variable. We first provide unconditional selection results

separately conducted for males and females. Overall, the selection result is similar between

the frequent voting method and the scale-based method. However, the selection results are

very different between males and females, which means that the important genes may be

different in two genders. This difference is possibly caused by a small sample size (71 for

males and 63 for females); nevertheless, we proceed with a selection conditioning on gender.

Here R package (“cdcsis”) is used to calculate a conditional distance covariance and

its normalized version is used for the scale-based method. We also provide a result with

conditional LASSO which can be performed by enforcing “gender” to stay in a model.

As seen in Table 18, with 90%, 80%, and 70% of frequency cutoff, a group of 0, 2 and

8 genes are selected respectively with the frequent voting method. It includes two common

selections, gene 1484 and gene 1986, with LASSO, and one common selection, gene 2406,

with the scale-based method. Selection based on the scale-based method and LASSO have

no overlaps.

Compared to the separate results in Table 17, we found that 6 of the top 8 genes origi-

nated from the male, and 2 of them are from the female for the scale-based selection. This

is probably because there are more samples for males than females. Although the difference

is not large, it can largely affect the selection because the empirical distance covariance is
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80%

Male

dCov
Freq 80 624 677 999 1283 1393 1420 1538 1673 1916 (10)

Scale 80 157 677 999 1283 1393 1420 1538 1673 1916

τ ∗
Freq 1538 1673 (2)

Scale 1393 1538

Female

dCov
Freq 119 675 811 898 1262 1891 1906 1986 2029 2110 2406 (11)

Scale 119 675 811 1218 1262 1608 1891 1906 1986 2110 2406

τ ∗
Freq 1262 (1)

Scale 1262

Table 17: Unconditional selection result for male (71 subjects) and female (63 subjects)

.

averaged over the fourth of the density function of Z. That is, a(Z) = 12f 4(Z) when f is a

density function of Z. Then the relative weight of males over females is (71/63)4 = 1.6. For

the frequent voting selection, 3 of the top 8 selections are from females.

Compared to the unconditional selection in Table 15, the frequent voting method results

show that 6 of the top 8 genes are included in the top 22 selection of the unconditional

method. Gene 1958 is not selected by the unconditional “dCov” method but can be found

in the top 25 of the τ ∗-based unconditional selection. Gene 157 is not selected in any

of the unconditional selection. We plot histograms of the activation level of gene 157 in

Figure 9. Its overall distribution is not very different between Y = 1 and Y = 0 cases, but

when we look at female samples, the suicidal cases are more likely to have high expression

values. This illustrates the difference between the conditional selection and the unconditional

selection. The scale-based selection does not overlap with unconditional selection as much

as the frequent voting method. Only 4 of the top 8 are found in the top 22 selection. The

top 2 genes, 1538 and 1916 are not found in the top 6 genes in unconditional selection.

For LASSO, since minimizing mean squared error doesn’t select any genes, we list the top
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90% 80% 70%

c-dCov
Freq (0) 119 2406 (2) 119 157 296 371 1484 1958 1986 2406 (8)

Scale 1538 1916 80 999 1393 1538 1673 1906 1916 2406

LASSO 901 1986 709 901 963 1484 1530 1671 1986 2241

Table 18: Selection result conditional on gender. Each numbers in parentheses refer a size of selection
with a given cutoff for the frequent based method. Size of selection for scale-based method and LASSO are
matched with that of the frequent voting method.

genes with a matched size to the frequent voting method. LASSO result didn’t change much

from an unconditional selection to conditional selection, but we note that we only control

gender in the model without considering any interaction effects between gender and genes.

The conditional dependence test is conceptually different from a model based approach

controlling Z in the model.
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(a) All (b) female (c) male

1
Figure 9: Histogram of gene 157’s activation level between two groups; Y=1 (red), Y=0 (blue).
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5.0 DISCUSSION

In this paper, we have introduced a new measure of independence that works for general

types of data. A corresponding empirical measure was suggested as a U-statistic. A test of

independence is derived based on a large sample theory. The simulation study illustrates that

the proposed measure have nice empirical power in detecting various kind of dependency.

We applied the proposed test of independence to gene expression data and crop yields data

to study the relationship between variables.

We also have proposed a new model-free variable selection method based on the sug-

gested and existing measures of independence. Combining with a resampling procedure,

the new selection method gives a way to reduce the number of independent variables to an

adjustable size while considering the stability of their relationships with a response variable.

The method was extended to a conditional variable selection which controls the effect of

confounding variables. We applied this method to select important genes related to suicidal

behaviors. Due to the delay in sample collection, the analysis was conducted based on only

available samples. We may further analyze this data when the collection is finished. We

may also apply this method using other conditional tests of independence and compare the

results with a current selection using a conditional distance covariance. Once the selection

is confirmed, we may build a model to assess the real-data prediction performance of the

method.
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APPENDIX

PROOFS

Lemma 3. Assume θ is discrete or continuous, or a mixture of the two, that is, assume

there exists a probability mass function PXY and a density function h such that

θ(A×B) =
∑
xi,yi

PXY (xi, yi) +

∫
A×B

h(x, y)G(dx)G(dy),

where A ⊂ X , B ⊂ Y are any two open sets and G is the abstract Wiener measure on X and

Y. Then, induced random variables defined by Ux = ρ(x,X), Vy = ζ(y, Y ) with Ux : X → R,

Vy : Y → R are well-defined and has a jointly discrete or continuous distribution, or a

mixture of the two.

Proof. Denote the closed ball with center x and radius r1 in X as B̄ρ(x, r1) or B̄(x, r1), and

the closed ball with center y and radius r2 in Y as B̄ζ(y, r2) or B̄(y, r2).

For Ux,

Pr(Ux ∈ [0, a]) = Pr(X ∈ B̄(x, a)) = µ(B̄(x, a)).

So Ux is a well-defined Borel probability measure on R. Same applied for Vy and the joint

variable.

58



Now we show that Ux and Vy has a jointly discrete, continuous or a mixture of two

distributions.

Pr(Ux ≤ a, Vy ≤ b) = Pr(B̄(x, a)× B̄(y, b))

=
∑

a′∈[0,a],b′∈[0,b]

∑
xi∈∂B(x,a′),yi∈∂B(y,b′)

PXY (xi, yi)

+

∫ a

0

∫ b

0

∫
∂B(x,a′)×∂B(y,b′)

h(x, y)G(dx)G(dy)db′da′

Here, PUxVy(a
′, b′) =

∑
xi∈∂B̄(x,a′),yi∈∂B̄(y,b′) PX,Y (xi, yi) is a probability mass function and∫

∂B(x,a′)×∂B(y,b′)
h(x, y)G(dx)G(dy) is a density function.

Proof of Theorem 1

Proof. Let’s define η(x, y) for (x, y) ∈ X × Y as

η(x, y) = Ea(ρ(x,X1), ρ(x,X2), ρ(x,X3), ρ(x,X4))a(ζ(y, Y 1), ζ(y, Y 2), ζ(y, Y 3), ζ(y, Y 4)),

where (X1, Y 1), . . . , (X4, Y 4) are independent copies of (X, Y ). If we define new random

variables induced by x, y as Ux = ρ(x,X), Vy = ζ(y, Y ), respectively, which are well-defined

by Lemma 3, η(x, y) becomes τ ∗(Ux, Vy). Therefore, under the consistency condition of τ ∗

met by Lemma 3, η(x, y) is zero if Ux and Vy are independent and positive otherwise. Then

IPR-τ ∗(X, Y ) = E(x,y)∼θη(x, y) ≥ 0 is derived.

If X and Y are independent, then Ux and Vy are independent for every (x, y) ∈ X × Y .

So IPR-τ ∗(X, Y ) = 0. In the following, we will show that IPR-τ ∗(X, Y ) = 0 only if X and

Y are independent.

Step 1) We claim that if θ ̸= µ × ν, there exist a point of dependence in the support

set of θ. Since h(x, y) is continuous on any continuous point of θ, we have marginal density

funtion f(x) and g(y) for any continuous point (x, y) of θ. Denote support sets of θ, µ and

ν as Sθ, Sµ and Sν .
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Then, since Sθ ⊂ Sµ × Sν , we have

1 =
∑

Sµ×Sν

PX,Y (x, y) +

∫
Sµ×Sν

h(x, y)G(dx× dy)

=
∑
Sθ

PX(x)PY (y) +
∑

Sµ×Sν/Sθ

PX(x)PY (y)

+

∫
Sθ

f(x)g(y)G(dx× dy) +

∫
Sµ×Sν/Sθ

f(x)g(y)G(dx× dy).

If the claim is not true, we must either have a discrete point (x, y) ∈ Sc
θ such that

PX,Y (x, y) ̸= PX(x)PY (y), and/or sets A and B such that
∫
A×B

h(x, y)G(dx× dy) ̸=
∫
A
f(x)

G(dx)
∫
B
g(x)G(dy). In the first case, PX,Y (x, y) ̸= PX(x)PY (y) implies PX(x)PY (y) > 0,

so (x, y) ∈ Sµ × Sν/Sθ. Then there should exists another point (x′, y′) ∈ Sθ such that

PX,Y (x
′, y′) > PX(x

′)PY (y
′) to balance the above equation. The same argument applies to

the later case.

Step 2) With the results of Step 1), if (x, y) is a discrete point and PX,Y (x, y) ̸=

PX(x)PY (y), we can find balls Bρ(x, r1) and Bζ(y, r2) such that

θ(Bρ(x, r1)×Bζ(y, r2)) ̸= µ(Bρ(x, r1))ν(Bζ(y, r2)),

with small enough r1 and r2. Since {Ux < r1} = Bρ(x, r1) and {Vy < r2} = Bζ(y, ry), this

equation is reduced to

PUx,Vy(r1, r2) ̸= PUx(r1)PVy(r2).

So Ux and Vy are not independent, i.e. η(x, y) > 0. Then,

IPR-τ ∗(X, Y ) ≥ η(x, y)θ(x, y) > 0.

If (x, y) is a continuous point, we can say that h(x, y) > f(x)g(y) without a loss of

generosity. Since h(x, y) is continuous, so are f(x), g(y). We can find an area A of nonzero

measure such that there exist balls Bρ(v, rv), rv > 0 and Bζ(w, rw), rw > 0 for every

(v, w) ∈ A where h(v′, w′) > f(v′)g(w′) for v′ ∈ Bρ(v, rv) and w
′ ∈ Bζ(w, rw).
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Then,

θ(Bρ(v, rv)×Bζ(w, rw)) =

∫
Bρ(v,rv)×Bζ(w,rw)

h(v′, w′)G(dv′ × dw′)

>

∫
Bρ(v,rv)

f(w)G(dw)

∫
Bζ(w,rw)

g(w′)G(dw′)

= µ(Bρ(v, rv))ν(Bζ(w, rw))

Same as the discrete case, the inequality is reduced to PUv ,Vy((−∞, rv) × (−∞, rw)) >

PUv((−∞, rv))PVw((−∞, rw)). So Uv and Vw are not independent and η(v, w) > 0 for every

(v, w) ∈ A. Then,

IPR-τ ∗(X, Y ) ≥
∫
A

η(v, w)h(v, w)G(dv × dw) > 0,

and IPR-τ ∗(X, Y ) = 0 only if X and Y are independent.
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