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Causal Inference under Data Restrictions

Xiaoqing Tan, PhD

University of Pittsburgh, 2022

This dissertation focuses on modern causal inference under uncertainty and data restric-

tions, with applications to neoadjuvant clinical trials, distributed data networks, and robust

individualized decision making.

In the first project, we propose a method under the principal stratification framework to

identify and estimate the average treatment effects on a binary outcome, conditional on the

counterfactual status of a post-treatment intermediate response. Under mild assumptions,

the treatment effect of interest can be identified. We extend the approach to address cen-

sored outcome data. The proposed method is applied to a neoadjuvant clinical trial and its

performance is evaluated via simulation studies.

In the second project, we propose a tree-based model averaging approach to improve the

estimation accuracy of conditional average treatment effects at a target site by leveraging

models derived from other potentially heterogeneous sites, without them sharing subject-level

data. To our best knowledge, there is no established model averaging approach for distributed

data with a focus on improving the estimation of treatment effects. The performance of this

approach is demonstrated by a study of the causal effects of oxygen therapy on hospital

survival rate and backed up by comprehensive simulations.

In the third project, we propose a robust individualized decision learning framework with

sensitive variables to improve the worst-case outcomes of individuals caused by sensitive

variables that are unavailable at the time of decision. Unlike most existing work that uses

mean-optimal objectives, we propose a robust learning framework via finding a newly defined

quantile- or infimum-optimal decision rule. From a causal perspective, we also generalize

the classic notion of (average) fairness to conditional fairness for individual subjects. The

reliable performance of the proposed method is demonstrated through synthetic experiments

and three real-data applications.

Public health significance: The dissertation addresses several aspects of causal infer-

iv



ence: 1) identify principal stratum treatment effects; 2) enhance the estimation of treatment

effects via heterogeneous data integration; 3) derive robust individualized decision rules con-

sidering worst-case scenarios. It has the potential to fundamentally improve the current

practice in drug development and precision medicine.
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1.0 Introduction

1.1 Challenges in Causal Inference under Data Restrictions

Modern statistical and machine learning methods are capable of capturing correlations

between variables but often fail to inform us the causes behind. Causal inference, on the

other hand, helps to understand the underlying data-generating process, which is critical

when analyzing data from our contemporary world, particularly in fields such as healthcare,

political science, and economics.

1.1.1 Data Collection Concerns in Traditional Clinical Trials

In traditional clinical trials, data collection often requires long years of follow-up, leading

to problems such as patients’ withdrawal and high cost of the study. Recently, in neoadjuvant

clinical trials, early efficacy of a treatment is assessed first via an intermediate post-treatment

response and the eventual efficacy is assessed via long-term outcomes such as survival. Al-

though strongly associated with survival, this intermediate response has not been confirmed

as a surrogate endpoint. To fully understand its clinical implication, it is important to es-

tablish causal estimands such as the causal effect in survival for patients who would obtain a

certain intermediate response under treatment. In Chapter 2, driven by a recent neoadjuvant

clinical trial, a method is developed under the principal stratification framework to identify

and estimate the average treatment effects on the long-term outcome, conditional on the

counterfactual status of the post-treatment intermediate response.

1.1.2 Privacy Concerns in Distributed Data Networks

In the modern context, new challenges arise in the research of causal inference due to data

restrictions. Data privacy has become an important issue with the establishment of multiple

distributed research networks in large scale studies (Fleurence et al., 2014; Hripcsak et al.,

2015; Platt et al., 2018; Donohue et al., 2021). These distributed networks collect sensitive
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subject-level data and store them at individual research sites (e.g., hospitals). Effective

statistical and machine learning approaches are hence needed to be developed to jointly

analyze data across sites, without directly utilizing subject-level information. Chapter 3

introduces a tree-based model averaging approach to improve the estimation accuracy of

conditional average treatment effects at a target site by leveraging models derived from

other potentially heterogeneous sites, without them sharing subject-level data.

1.1.3 Timeliness and Fairness Concerns in Decision Making

There’s been a growing concern around the timeliness and fairness of individualized deci-

sion making algorithms. For example, there may exist sensitive variables that are important

to the intervention decision, but their inclusion in decision making is prohibited due to rea-

sons such as delayed availability, fairness, or other concerns. Robust individualized decision

rules that take into account the variation caused by the unavailability of these sensitive vari-

ables are needed. On the other hand, in most existing works such as Manski (2004); Qian

and Murphy (2011), individualized decision rules aim to maximize the potential average

performance. Consequently, certain groups may get unfairly or unsafely treated due to the

heterogeneity in their response to the treatment. These problems can impact people’s lives

in direct and important ways like loan approvals or the length of a sentence in a court case.

It is therefore an imperative task to develop fairness-aware decision learning methods. In

Chapter 4, we propose a robust individualized decision learning framework with sensitive

variables to improve the worst-case outcomes of individuals caused by sensitive variables

that are unavailable at the time of decision.

1.2 Outline and Contributions

This section lists the chapters and corresponding contributions. Each chapter aims to

be a self contained exposition on a specific topic; as a result, some introductory material

for particular chapters are similar in scope. In the following of the dissertation, I develop
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several statistical and machine learning methods to address the aforementioned challenges

in causal inference under uncertainty and data restrictions, with applications to neoadjuvant

randomized trials, distributed data networks, and robust individualized decision making.

Chapter 2 concerns identifying and estimating causal effects that involve a post-treatment

intermediate response in neoadjuvant randomized clinical trials. In neoadjuvant trials, early

efficacy of a treatment is assessed via the binary pathological complete response (pCR) and

the eventual efficacy is assessed via long-term clinical outcomes such as survival. Although

pCR is strongly associated with survival, it has not been confirmed as a surrogate endpoint.

To fully understand its clinical implication, it is important to establish causal estimands such

as the causal effect in survival for patients who would achieve pCR under the new regimen.

Under the principal stratification framework, previous studies focus on sensitivity analyses

by varying model parameters in an imposed model on counterfactual outcomes. Under

mild assumptions, we propose an approach to identify and estimate those model parameters

using empirical data and subsequently the causal estimand of interest. We also extend our

approach to address censored outcome data. The proposed method is applied to a recent

clinical trial and its performance is evaluated via simulation studies. This chapter has been

accepted for publication in the Proceedings of the First Conference on Causal Learning and

Reasoning (CLeaR’22, Tan et al., 2022a).

Chapter 3 concerns improving the estimation accuracy of personalized treatment effects

by leveraging models rather than subject-level data from heterogeneous data sources. Ac-

curately estimating personalized treatment effects within a study site (e.g., a hospital) has

been challenging due to limited sample size. Furthermore, privacy considerations and lack

of resources prevent a site from leveraging subject-level data from other sites. We propose

a tree-based model averaging approach to improve the estimation accuracy of conditional

average treatment effects (CATE) at a target site by leveraging models derived from other

potentially heterogeneous sites, without them sharing subject-level data. To our best knowl-

edge, there is no established model averaging approach for distributed data with a focus on

improving the estimation of treatment effects. Specifically, under distributed data networks,

our framework provides an interpretable tree-based ensemble of CATE estimators that joins

models across study sites, while actively modeling the heterogeneity in data sources through
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site partitioning. The performance of this approach is demonstrated by a real-world study of

the causal effects of oxygen therapy on hospital survival rate and backed up by comprehen-

sive simulation results. This chapter has been accepted for publication in the Proceedings of

the 39 th International Conference on Machine Learning (ICML’22, Tan et al., 2022b).

Chapter 4 introduces RISE, a robust individualized decision learning framework with

sensitive variables, where sensitive variables are collectible data and important to the inter-

vention decision, but their inclusion in decision making is prohibited due to reasons such as

delayed availability or fairness concerns. A naive baseline is to ignore these sensitive variables

in learning decision rules, leading to significant uncertainty and bias. To address this, we pro-

pose a decision learning framework to incorporate sensitive variables during offline training

but do not include them in the input of the learned decision rule during model deployment.

Specifically, from a causal perspective, the proposed framework intends to improve the worst-

case outcomes of individuals caused by sensitive variables that are unavailable at the time

of decision. Unlike most existing literature that uses mean-optimal objectives, we propose a

robust learning framework via finding a newly defined quantile- or infimum-optimal decision

rule. The reliable performance of the proposed method is demonstrated through synthetic

experiments and three real-data applications. An earlier version of this work has been made

available online (Tan et al., 2022c).
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2.0 Identifying Principal Stratum Causal Effects Conditional on a

Post-treatment Intermediate Response

2.1 Introduction

We have seen a major shift in the conduct of breast cancer clinical trials in recent years.

Traditionally, breast cancer patients are randomly assigned to control or treatment after the

primary surgery. Patients from the two groups are then followed over years for comparison

of their long-term outcomes such as disease-free survival and overall survival. However, in

recent years, there have been an increasing number of neoadjuvant trials where many of the

systemic therapies are administered prior to the breast surgery (FDA, 2014).

The primary endpoint in neoadjuvant breast cancer clinical trials is pathological complete

response (pCR), a binary indicator of absence of invasive cancer in the breast and auxiliary

nodes (FDA, 2014). The rationale for using pCR is that efficacy of a treatment can be

assessed at the time of surgery instead of the typical 5-10 years of follow-up on survival

endpoints in the adjuvant setting. Strong association between pCR and survival has been

well documented (Cortazar et al., 2014; Von Minckwitz et al., 2012; Song et al., 2021),

making pCR an attractive candidate surrogate. In the latest guidance of the U.S. Food and

Drug administration (FDA), pCR is accepted as an endpoint to support accelerated drug

approvals, provided certain requirements are met (FDA, 2014). It is important to decipher

the causal relationship among treatment, pCR, and survival in order to interpret the efficacy

in survival when pCR is involved.

In the recently published National Surgical Adjuvant Breast and Bowel Project (NSABP)

B-40 trial, patients with operable human epidermal growth factor receptor 2 (HER2)-negative

breast cancer were randomly assigned to receive or not to receive bevacizumab along with

their neoadjuvant chemotherapy regimens (Bear et al., 2012). The addition of bevacizumab

significantly increased the rate of pCR (28.2% without bevacizumab vs. 34.5% with beva-

cizumab, p-value = 0.02). In terms of the long-term outcomes, patients on bevacizumab

showed improvements in event-free survival (EFS) and overall survival (OS) compared to
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the control patients (EFS: hazard ratio 0.80, p-value = 0.06; OS: hazard ratio 0.65, p-value

= 0.004) (Bear et al., 2015). Some investigators are interested in the comparison of survival

between pCR patients in the treatment group and pCR patients in the control group. Such

comparison, however, is problematic because these two groups of pCR patients are different

and any direct comparison between them lacks causal interpretation.

Under the counterfactual framework (Rubin, 1974), potentially a patient has a pCR sta-

tus after taking the control regimen and a pCR status after taking the treatment. Similarly,

one can define counterfactual outcomes and causal effects in survival status (0/1) after a

certain time period such as three years. The principal stratum framework proposed by Fran-

gakis and Rubin (2002) can be used to describe causal effect in long-term outcomes (such as

EFS) with an intermediate outcome (such as pCR) involved. Each principal stratum consists

of subjects with the same pair of potential pCR status: the pCR status under the control

regimen and the pCR status under the treatment regimen. One can then define the causal

effect of treatment in EFS on each principal stratum.

In this chapter, we propose a method to identify and estimate principal stratum causal

effects for a binary outcome and later extend our method for censored outcome data. The

causal estimand of interest is the treatment efficacy in 3-year EFS and OS among patients

who would achieve pCR under chemotherapy plus bevacizumab as in our motivating study,

the NSABP B-40 trial. A model of counterfactual outcome given the observed data is im-

posed. Using some probabilistic arguments, we connect the model parameters with quantities

that can be empirically estimated from the observed data. The resulting equations allow

us to estimate the model parameters and subsequently the causal estimand of interest, and

resolve the identifiability issue.

The remaining chapter is organized as follows. Section 2.2 presents related work in

principal stratum causal effects. Section 2.3 introduces the standard data settings, causal

estimands of interest, and a regression model in the context of a randomized neoadjuvant

trial. In Section 2.4, we provide key assumptions for identification of the causal estimand and

introduce the proposed method. In Section 2.5, we conduct a simulation study to assess the

performance of our method in terms of bias and coverage of bootstrap confidence intervals.

In Section 2.6, we apply the proposed method to the motivating NSABP B-40 study. We
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conclude with a discussion of the proposed method and future work in Section 2.7.

2.2 Related Work

Frangakis and Rubin (2002) propose to split study population into principal strata. Each

principal stratum is by definition independent of treatment assignment since it contains

information on counterfactual, or potential outcomes rather than the observed outcome for

a specific treatment assignment. One can then define treatment effects on each principal

stratum. Additionally, any union of the basic principal strata would also be a valid principal

stratum as it leads to comparisons among a common set of individuals. Gilbert et al.

(2015) show the principal stratification framework is useful for evaluating whether and how

treatment effects differs across subgroups characterized by the intermediate variable, thus

being firmly associated with the utility of the treatment marker.

Identification of principal stratum causal effects is in general difficult. A major chal-

lenge is that we do not observe the individual membership of principal stratum because of

its counterfactual nature (Gilbert and Hudgens, 2008; Wolfson and Gilbert, 2010). Under

the principal stratification framework, Gilbert et al. (2003) propose to perform sensitivity

analyses by varying model parameters in an imposed parametric model for counterfactual

outcomes. Shepherd et al. (2006) and Jemiai et al. (2007) extend this sensitivity analy-

ses approach by including baseline covariates in the model. These sensitivity analyses can

provide researchers with a range of causal estimates under different values of the sensitiv-

ity parameters. In reality, however, it is often unclear what the plausible values are for

these sensitivity parameters and the selected combinations may not be exhaustive. Li et al.

(2010) and Zigler and Belin (2012) use Bayesian approaches to model the joint distribution

of the counterfactual intermediate outcomes and long-term outcomes and incorporate prior

information regarding non-identifiable associations. The lack of identifiability, however, still

exists and is reflected by the over-coverage of confidence intervals in their simulation studies.

Principal stratum causal effects with regards to outcomes truncated by death are not

identifiable without further assumptions (Zhang and Rubin, 2003; Kurland et al., 2009; Lee
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et al., 2010). Tchetgen Tchetgen (2014) identify causal effects by borrowing information

from post-treatment risk factors of the intermittent outcome and the causal estimand may

vary according to the selected risk factors. Instrumental variables are also introduced to

provide information on the unobserved principal strata and the justification of that exclusion

restriction assumption is often challenging (Ding et al., 2011; Wang et al., 2017).

All the above methods either fall into sensitivity analyses or require exclusion restric-

tion assumptions. In this chapter, we propose a method to identify and estimate principal

stratum causal effects under data settings as Shepherd et al. (2006) for a binary outcome

and later extend our method to address issues of censored outcome data under mild assump-

tions. Identification of the causal effect is achieved with the bias minimal and the coverage

probabilities close to the nominal levels.

2.3 The Principal Stratification Framework of Interest

2.3.1 Standard Setting for Neoadjuvant Studies

Consider a neoadjuvant breast cancer clinical trial where patients are randomized to two

treatment groups. For subject i = 1, 2, . . . , n, let Zi ∈ {0, 1} be the binary treatment assign-

ment; Xi ∈ Γ = {0, 1, . . . , K} be a baseline discrete covariate. A continuous baseline variable

Xi such as clinical tumor size, would be grouped into K + 1 categories based on scientific

knowledge. We will discuss extensions to the scenarios with a continuous Xi in Section 2.7.

Throughout this paper, we assume that the stable unit treatment value assumption (SUTVA)

(Rubin, 1980) holds: the potential outcomes of any individual i are unrelated to the treat-

ment assignment of other individuals. Then we can denote Si(Zi) ∈ {0, 1} as a binary post-

randomization intermediate response such as the pCR status for subject i under treatment Zi

(possibly counterfactual). And denote Yi{Zi, Si(Zi)} = Yi(Zi) ∈ {0, 1} as a binary long-term

outcome of interest such as the EFS status at 3-year after study entry for subject i under

treatment Zi (possibly counterfactual). For individual i, {Zi, Xi, Si(Zi), Yi(Zi)} represents

the observed data of treatment assignment, baseline covariate, intermediate response and
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long-term outcome. If Zi = 0, {Si(0), Yi(0)} are observed and {Si(1), Yi(1)} are counterfac-

tual. If Zi = 1, then {Si(1), Yi(1)} are observed and {Si(0), Yi(0)} are counterfactual. Thus

for individual i, the complete counterfactual data would be {Zi, Xi, Si(0), Si(1), Yi(0), Yi(1)}.

Another important assumption is the monotonicity assumption: Si(0) ≤ Si(1) (Angrist et al.,

1996), as in the motivating NSABP B-40 study, addition of bevacizumab led to improved

pCR (Bear et al., 2012). We also assume for subject i, the treatment assignment Zi is

independent of Xi and the potential outcomes.

Under the principal stratification framework, denote the principal strata to be Ejk = {i :

Si(0) = j, Si(1) = k}, j, k = 0, 1. The principal stratum causal effects of interest are

θjk = E{Yi(1)− Yi(0)|i ∈ Ejk}, j, k = 0, 1.

Under the monotonicity assumption, the principal stratum E10 is empty. In the NSABP

B-40 study, we are interested in the causal effect in E01∪E11, those who would achieve pCR

had they been treated with chemotherapy plus bevacizumab:

θ = E{Yi(1)− Yi(0)|i ∈ E+1 = E01 ∪ E11} = E{Yi(1)− Yi(0)|Si(1) = 1}.

Other principal stratum causal effects such as θjk can be estimated using a similar ap-

proach as we outline in Section 2.4.

2.3.2 Modeling a Counterfactual Outcome

In order to estimate the principal stratum causal effects, Gilbert et al. (2003) propose to

use a logistic regression model for Pr{Si(1) = 1|Si(0) = 0, Yi(0)} as

Pr{Si(1) = 1|Si(0) = 0, Yi(0)} = logit−1{β0 + β1Yi(0)}.

Shepherd et al. (2006) further extend the logistic regression by incorporating baseline

covariates Xi as

Pr{Si(1) = 1|Si(0) = 0, Yi(0), Xi = x} = logit−1{β0 + β1Yi(0) + β2x}

=
exp{β0 + β1Yi(0) + β2x}

1 + exp{β0 + β1Yi(0) + β2x}
. (1)
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Jemiai et al. (2007) consider a more general model framework:

Pr{Si(1) = 1|Si(0) = 0, Yi(0), Xi = x} = w[r(x) + g{Yi(0), x}]

where w(u) ≡ {1+exp(−u)}−1 and g(·, ·) is a known function. In the case of Shepherd et al.

(2006), g(u, v) = β1u with β1 known. Jemiai et al. (2007) show that under the monotonicity

assumption, inference could be made on θ for any fixed function g and sensitivity analyses

could be performed by varying g.

2.4 The Proposed Method

2.4.1 Key Identification Assumptions

Identification of causal effects is achieved through two key assumptions. First, the mono-

tonicity assumption: Si(0) ≤ Si(1) (Angrist et al., 1996). That is, a subject who responds

under the control would respond if given the treatment. This monotonicity assumption

could prove valuable (Bartolucci and Grilli, 2011) and can be justified in many scenarios

that the additional therapy would help to improve the response. In the motivating NSABP

B-40 study, addition of bevacizumab led to improved pCR (Bear et al., 2012). Second, a

parametric model is used to describe the counterfactual response under the treatment for

a control non-respondent. Both the future long-term outcome and a baseline covariate are

predictors in this parametric model. It is required that the level of the covariates is at least of

the same dimension of model parameters and the imposed linearity assumption is critical to

identify and estimate those regression parameters. We will elaborate the second assumption

in Section 2.4.2.

2.4.2 Identification of Model Parameters and Causal Estimands

As mentioned in Shepherd et al. (2006) and will be described in Section 2.4.4, when the

parameters of model (1) are identified, the causal estimands can be identified.
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Lemma 2.4.1. For any x ∈ Γ = {0, 1, . . . , K} and y ∈ {0, 1}, let ax = Pr{S(1) = 1|S(0) =

0, X = x} and bxy = Pr{Y (0) = y|S(0) = 0, X = x}. Let a = (a0, a1, . . . , aK)
T and

by = (by0, by1, . . . , byK)
T . Define hx(β, a,b0,b1) = ax −

∑1
y=0 bxy logit

−1{β0 + β1y + β2x},

and H(β, a,b0,b1) = {h0(β, a,b0,b1), . . . , hK(β, a,b0,b1)}T .

If rank{∂H(β, a,b0,b1)/∂β} = 3, within the neighborhood of β there is a unique solution

β = ψ(a,b0,b1) such that H{ψ(a,b0,b1), a,b0,b1} = 0.

Proof. For all x ∈ Γ, we have

ax = Pr{S(1) = 1|S(0) = 0, X = x} =
1∑

y=0

Pr{S(1) = 1, Y (0) = y|S(0) = 0, X = x}

=
1∑

y=0

Pr{Y (0) = y|S(0) = 0, X = x}Pr{S(1) = 1|Y (0) = y, S(0) = 0, X = x}

=
1∑

y=0

bxy logit
−1(β0 + β1y + β2x).

Hence, H(β, a,b0,b1) = 0 and H(·) is a smooth function of β, a,b0, and b1. By invoking

the implicit function theorem, when rank(∂H/∂β) = 3, there exists a smooth function ψ

such that β = ψ(a,b0,b1) and H{ψ(a,b0,b1), a,b0,b1} = 0.

The identifiability of model parameter β depends on the availability of ax = Pr{S(1) =

1|S(0) = 0, X = x} and bxy = Pr{Y (0) = y|S(0) = 0, X = x}, for x ∈ Γ; y = 0, 1. The

linearity in X = x in model (1) also plays an important role. In general, when β2 ̸= 0

and K ≥ 2, there are equal or more equations than the number of unknown parameters

in β, Lemma 2.4.1 would hold. In practice, given (a,b0,b1), one solves for β such that

H(β, a,b0,b1) = 0. Then verify that rank{∂H(β, a,b0,b1)/∂β} = 3 at the solution.

2.4.3 Estimation of Causal Estimands

The causal estimand of interest is

θ = E{Yi(1)− Yi(0)|Si(1) = 1} = E{Yi(1)|Si(1) = 1} − E{Yi(0)|Si(1) = 1}. (2)
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Because {Yi(1), Si(1)} are observed for subjects in the treatment arm, Pr{Yi(1) = 1|Si(1) =

1} can be estimated by

P̂r{Yi(1) = 1|Si(1) = 1} =
∑

i 1{Zi = 1, Si(1) = 1, Yi(1) = 1}∑
i 1{Zi = 1, Si(1) = 1}

. (3)

where 1{·} is the indicator function.

Meanwhile,

Pr{Yi(0) = 1|Si(1) = 1} = Pr{Si(1) = 1, Yi(0) = 1}
Pr{Si(1) = 1}

=

∑
x Pr{Si(1) = 1, Yi(0) = 1|Xi = x} · Pr{Xi = x}∑

x Pr{Si(1) = 1|Xi = x} · Pr{Xi = x}
(4)

In equation (4), Pr{Xi = x} can be estimated by P̂r{Xi = x} =
∑

i 1(Xi = x)/n and

Pr{Si(1) = 1, Yi(0) = 1|Xi = x}

=
1∑

j=0

Pr{Si(1) = 1, Yi(0) = 1, Si(0) = j|Xi = x}

=
1∑

j=0

Pr{Si(1) = 1, Yi(0) = 1|Si(0) = j,Xi = x} · Pr{Si(0) = j|Xi = x}

=
1∑

j=0

[
Pr{Si(1) = 1|Si(0) = j, Yi(0) = 1, Xi = x}

· Pr{Yi(0) = 1|Si(0) = j,Xi = x} · Pr{Si(0) = j|Xi = x}
]
. (5)

In equation (5), Pr{Yi(0) = 1|Si(0) = j,Xi = x}, j = 0, 1, can be estimated by

P̂r{Yi(0) = 1|Si(0) = j,Xi = x} =
∑

i 1{Zi = 0, Si(0) = j, Yi(0) = 1, Xi = x}∑
i 1{Zi = 0, Si(0) = j,Xi = x}

.

By the monotonicity assumption, Pr{Si(1) = 1|Si(0) = 1, Yi(0) = 1, Xi = x} ≡ 1.

The estimation of Pr{Si(j) = 1|Xi = x}, j = 0, 1, is described in Lemma 2.4.2.

Lemma 2.4.2. Under the monotonicity assumption, for any x, we denote

q̂j(x) =

∑
i 1{Zi = j, Si(j) = 1, Xi = x}∑

i 1{Zi = j,Xi = x}
, j = 0, 1;

the observed proportions of responders in the control group and the treatment group with

X = x, respectively.

We use maximum likelihood estimation to estimate Pr{Si(j) = 1|Xi = x}, j = 0, 1.
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(a) when q̂1(x) ≥ q̂0(x), the maximum likelihood estimate of Pr{Si(j) = 1|Xi = x} is q̂j(x),

j = 0, 1;

(b) when q̂1(x) < q̂0(x), the maximum likelihood estimate of Pr{Si(j) = 1|Xi = x} is∑
i 1(Si = 1, Xi = x)/

∑
i 1(Xi = x), j = 0, 1.

In the second scenario, the estimates are the same as the pooled proportion of responders

among patients with X = x. The proof of Lemma 2.4.2 is presented in Appendix A.1.

The last item in equation (4) needed for estimating the causal estimand is Pr{Si(1) =

1|Si(0) = 0, Yi(0) = 1, Xi = x}. Gilbert et al. (2003) and Shepherd et al. (2006) conduct

sensitivity analyses by varying the values of the β in model (1). In Section 2.4.4, we will

discuss how to estimate β using a probabilistic equation.

2.4.4 Estimation of Model Parameters

Let

GL(x) = Pr{Si(1) = 1|Si(0) = 0, Xi = x}

GR(x, y) = Pr{Yi(0) = y|Si(0) = 0, Xi = x}

GM(x, y;β) = Pr{Si(1) = 1|Si(0) = 0, Yi(0) = y,Xi = x}.

This leads to an equation system:

GL(x) =
1∑

y=0

GM(x, y;β) ·GR(x, y);x ∈ Γ

We can estimate GL(x) with the following empirical estimates from the observed data

by

ĜL(x) =
P̂r{Si(0) = 0, Si(1) = 1|Xi = x}

P̂r{Si(0) = 0|Xi = x}

where the numerator and the denominator are derived from Lemma 2.4.2. The details are

presented in Appendix A.1.
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Because {Xi, Si(0), Yi(0)} are observed for subjects in the control arm, GR(x, y) can be

estimated by

ĜR(x, y) =

∑
i 1{Zi = 0, Si(0) = 0, Yi(0) = y,Xi = x}∑

i 1{Zi = 0, Si(0) = 0, Xi = x}

With ĜL(x) and ĜR(x, y) estimated from the observed data and GM(x, y;β) specified as

the regression model in equation (1), we have

ĜL(x) =
1∑

y=0

GM(x, y;β) · ĜR(x, y); x ∈ Γ (6)

The number of unknown parameters β in system of equations (6) is three and the number

of equations is (K + 1), for Xi ∈ Γ = {0, 1, . . . , K}. For (6), when K + 1 < 3, we cannot

uniquely solve for β. When K + 1 = 3, the number of equations is the same as the number

of unknown parameters and in general we can solve for β. When K + 1 > 3, there are

more equations than the number of unknown parameters, and there are generally no exact

solutions to the equation systems (6). In that case, we propose to estimate β by

β̂ = arg min
β

K∑
x=0

{ĜL(x)−
1∑

y=0

GM(x, y;β) · ĜR(x, y)}2 (7)

where ĜL(x), ĜR(x, y) and GM(x, y;β) are probabilities bounded between 0 and 1.

With β estimated, we can estimate the causal estimand θ via the procedure outlined in

Section 2.4.3.
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2.4.5 Consistency of Model Parameters and Causal Estimands

Here we provide the theoretical guarantee of our estimators β and θ.

Let

Q
(x)
0 (β) = {GL(x)−

1∑
y=0

GM(x, y;β) ·GR(x, y)}2, x ∈ Γ; y = 0, 1

Q̃0(β) = {Q(0)
0 (β), Q

(1)
0 (β), . . . , Q

(K)
0 (β)}T ,

Qn(β) =
K∑
x=0

Q(x)
n (β) =

K∑
x=0

{ĜL(x)−
1∑

y=0

GM(x, y;β) · ĜR(x, y)}2

Theorem 2.4.3. Under the following conditions:

(a) β satisfies Q(x)
0 (β) = 0, ∀x ∈ Γ = {0, 1, . . . , K}.

(b) rank |∂Q̃0(β)/∂β| ≥ dim(β).

(c) ĜL(x)
p→ GL(x), ĜR(x, y)

p→ GR(x, y), as n→∞, ∀x ∈ Γ;∀y = 0, 1.

Then β̂ = arg minβQn(β)
p→ β and the causal estimand θ̂ p→ θ as n→∞.

The detailed proof of Theorem 2.4.3 is presented in Appendix A.2.

2.4.6 Extension to Censored Data

As in the motivating NSABP B-40 study, the long-term outcome Yi may be subject to

right censoring. For any time T = t0 of interest, the binary counterfactual outcomes would

be {Yi(0; t0), Yi(1; t0)} and the causal estimand can be formulated as

θ(t0) = E{Yi(1; t0)− Yi(0; t0)|i ∈ E+1}.

With Yi subject to censoring, Pr{Yi(1; t0) = 1|i ∈ E+1} can be estimated by the Kaplan-

Meier (KM) estimates at time T = t0. The estimation is similar for other relevant quantities

such as Pr{Yi(0; t0) = 1|Si(0) = j,Xi = x} in equation (5) under the scenario where Yi(Zi)

is always observed.
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2.5 Simulation Studies

A simulation study is used to assess the performance of the proposed method. The setup

is chosen to resemble the NSABP B-40 study by simulating treatment assignment, baseline

tumor size category, binary pCR response status, and binary survival status, specifically:

D = [Di = {Zi, Xi, Si(0), Si(1), Yi(0), Yi(1)}, i = 1, . . . , n].

We simulate the subject-level data as follows. First, we simulate the categorical baseline

tumor category Xi from a multinomial distribution with Pr{Xi = x} = 0.25, x ∈ {0, 1, 2, 3}.

Next, we simulate Si(0) given Xi from a Bernoulli distribution with Pr{Si(0) = 1|Xi =

x} = p(x) with p(0), p(1), p(2), p(3) = 0.3, 0.25, 0.25, 0.2, respectively. We then simulate

the survival status under control, Yi(0), with a Bernoulli draw with Pr{Yi(0) = 1|Si(0) =

0, Xi = x} = 0.7, 0.65, 0.6, 0.55 for x = 0, 1, 2, 3, respectively and Pr{Yi(0) = 1|Si(0) =

1, Xi = x} = 0.84, 0.78, 0.72, 0.66 for x = 0, 1, 2, 3, respectively. The choice of these

numbers reflects a 20% improvement in 3-year EFS for respondents over nonrespondents

under the control regimen.

Next, we simulate the conditional distribution {Si(1)|Si(0), Yi(0), Xi}. For subjects with

Si(0) = 1 we set Si(1) to be 1 to enforce the monotonicity assumption. For subjects with

Si(0) = 0 we draw Si(1) from a Bernoulli distribution: Pr{Si(1) = 1|Si(0) = 0, Yi(0) =

y,Xi = x} = logit−1{β0 + β1y + β2x}. We try different settings for β = (-3, -5, 0.2), (-5, -1,

-2), and (-7, 3, 0.2).

We then simulate the survival status under treatment, Yi(1), according to the following

probability distributions:

Pr{Yi(1) = 1|Si(0) = 0, Si(1) = 0, Yi(0) = 0} = 0.5,

Pr{Yi(1) = 1|Si(0) = 0, Si(1) = 0, Yi(0) = 1} = 0.6,

Pr{Yi(1) = 1|Si(0) = 0, Si(1) = 1, Yi(0) = 0} = 0.85,

Pr{Yi(1) = 1|Si(0) = 0, Si(1) = 1, Yi(0) = 1} = 0.9,

Pr{Yi(1) = 1|Si(0) = 1, Si(1) = 1, Yi(0) = 0} = 0.85,

Pr{Yi(1) = 1|Si(0) = 1, Si(1) = 1, Yi(0) = 1} = 0.9.
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These probabilities are chosen to make the 3-year EFS under treatment greater for those who

would obtain pCR under treatment than those who would not, and have a greater 3-year

EFS for those patients who would be event-free under control than those who would not be

event-free under control. We set these probabilities to be independent of the baseline tumor

size given the potential outcomes {Si(0), Si(1), Yi(0)}.

Lastly we simulate the treatment assignment with equal probability for each arm as a

Bernoulli draw with Pr{Zi = 0} and Pr{Zi = 1} both equal to 0.5 to ensure that inde-

pendence between potential outcomes and treatment assignment. For the simulated data

the true average causal effect for principal stratum Si(1) = 1, E{Yi(1) − Yi(0)|Si(1) = 1},

can be calculated using the above parameters for simulations. The detailed calculations is

given in Appendix A.3. Under the three parameter settings the true values of the causal

estimands are θ=0.179, 0.130, and 0.120, respectively. This means that under the three

different settings, if the treatment was administered to all subjects who would achieve pCR

under treatment there would be a 17.9%, 13.0%, 12.0% increment in survival respectively,

within the time frame under consideration, than had all of them taken the control instead.

Under each parameter setting and a chosen sample size n=1000, 2000, or 4000, we sim-

ulate R=1000 replicates. A quasi-Newton method, the Broyden-Fletcher-Goldfarb-Shanno

algorithm, is used for the optimization. We create B=500 bootstrap samples to obtain

the 95% confidence interval for the causal estimates. Let θ̂(r) be the mean estimate among

bootstrap samples from the r replicate, r = 1, . . . , R.

We construct bootstrap confidence intervals to account for the variability introduced by

estimating model parameters. We use the basic bootstrap CI, or the pivotal CI (Davison

and Hinkley, 1997) for constructing CIs from bootstrap estimates. Let {θ̂(1), θ̂(2), . . . , θ̂(B)}

are the causal effect estimates from B bootstrap samples. Denote θ∗(1−α/2) and θ∗(α/2) as the

100(1 − α/2)% and 100(α/2)% of the bootstrap causal effect estimates. The 100(1 − α)%

bootstrap confidence interval is given by (2θ̂ − θ∗(1−α/2), 2θ̂ − θ∗(α/2)) where θ̂ is the estimate

from the data.

We report the empirical bias, mean squared error (MSE), average length of 95% CIs, and
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the coverage of those CIs, where

Bias(θ̂) = R−1

R∑
r=1

{θ̂(r) − θ},

MSE(θ̂) = R−1

R∑
r=1

{θ̂(r) − θ}2,

95% CI width = R−1

R∑
r=1

|θ̂(r)U,0.05 − θ̂
(r)
L,0.05|,

95% CI coverage = R−1

R∑
r=1

1{θ ∈ (θ̂
(r)
L,0.05, θ̂

(r)
U,0.05)}

with θ̂(r)L,0.05 and θ̂(r)U,0.05 the lower bound and upper bound of the 95% bootstrap CIs of θ̂ from

the rth simulated dataset. Table 1 shows the simulation results of the proposed method

under three different parameter settings and various sample sizes. Our simulation results

show the identification of causal effects is achieved with the bias negligible and the coverage

probabilities close to the nominal levels.
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Table 1: Simulation results of the proposed method under three different parameter settings

and various sample sizes.

Sample size Empirical bias MSE 95% CI width 95% CI coverage

Setting 1: β=(-3, -5, 0.2), θ=0.179

1000 -0.011 3.001e-3 0.206 0.952

2000 -0.006 1.539e-3 0.155 0.955

4000 -0.002 6.755e-4 0.116 0.962

Setting 2: β=(-5, -1, -2), θ=0.130

1000 -6.011e-5 2.496e-3 0.185 0.943

2000 9.358e-4 1.137e-3 0.130 0.948

4000 1.086e-4 5.462e-4 0.093 0.950

Setting 3: β=(-7, 3, 0.2), θ=0.120

1000 0.008 2.547e-3 0.194 0.955

2000 0.006 1.319e-3 0.141 0.957

4000 0.003 6.363e-4 0.100 0.953

2.6 Application to NSABP B-40 Trial

2.6.1 B-40 Data Analysis

Here we apply the proposed method to the NSABP B-40 study (Bear et al., 2012, 2015).

Among the 1206 enrolled participants, 13 withdrew consent, 7 had missing data and 2

had had inoperable disease after chemotherapy. Another 15 patients did not have nodal

assessment so their pCR status was not ascertained. We conduct our analysis among the

rest 1169 patients. Our purpose is to estimate the causal treatment effect in 3-year EFS
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and OS among patients who would obtain a pCR had bevacizumab been added to their

treatment regimen. KM estimates are used since there are 61 patients censored at 3 years.

To apply our method, the clinical tumor size is used as the baseline auxiliary covariate

X. Patients are grouped into four nearly equal-sized groups: 2-3 cm, 3.1-4 cm, 4.1-6 cm

and >6 cm, based on breast cancer expert knowledge. We code these four tumor size groups

into {0, 1, 2, 3}, respectively. Among the 589 patients in the control arm, the proportions of

those who achieved pCR in each patient group are 28%, 23%, 22% and 17%, respectively;

among the 580 patients in the treatment arm, the proportions of those who achieved pCR are

31%, 26%, 25% and 27%, respectively. This does not violate the monotonicity assumption

Si(0) ≤ Si(1). The 3-year long-term outcome status Yi = 1 if the patient i survived within

the first 3 years and 0 otherwise.

We calculate the 95% bootstrap confidence intervals from 500 bootstrap samples. The

estimated causal treatment effect in 3-year EFS among those who would obtained pCR under

treatment is θ̂EFS = 0.180 (95% CI=(0.056, 0.377)) with β̂ = (−1.797,−5.874, 0.285). The

estimated causal treatment effect in 3-year OS among those who would obtained pCR under

treatment is θ̂OS = 0.175 (95% CI=(0.062, 0.354)) with β̂ = (−1.85,−4.764, 0.289). For

both scenarios, because 0 is outside of the 95% CIs, we would claim that the addition of

bevacizumab improves 3-year EFS and OS among patients who would respond to neoadjuvant

chemotherapy plus bevacizumab at a 95% confidence level.

2.6.2 Sensitivity of Initial Parameters in Optimization

For the real data application, the initial estimate βinit = (β0, β1, β2) is set at (0, 0, 0). To

see the sensitivity of initial parameters, we try 9261 = 21 × 21 × 21 different initial values

of βinit, with β0, β1, and β2 on the integer grids of [−10, 10] × [−10, 10] × [−10, 10]. The

corresponding histograms of causal estimates in 3-year EFS and 3-year OS at convergence

are presented in Figure 1. Our estimated model parameters β̂ in Section 2.6.1 achieves the

minimum loss of equation (7). Except for some extreme initialization such as (10,10,10),

most of the θ̂ are the same or very close to the causal estimates calculated by using βinit

= (0,0,0) as initial parameters. Therefore, we conclude that the causal estimand is not

20



sensitive to the initial parameter settings in optimization. In practice, we suggest running

optimization with various initial values and identify the right estimate.

Figure 1: Histogram of the causal estimates obtained from different initial values of model

parameters in the optimization process for 3-year EFS (Figure A) and 3-year OS (Figure

B), respectively. Except for some extreme initialization, most of the causal estimates are the

same or very close to the causal estimate calculated by using zeros as initial parameters.

2.6.3 Comparisons to Sensitivity Analysis Method

We compare the performance of our method with that of the sensitivity analysis similar to

Gilbert et al. (2003) and Shepherd et al. (2006). Recall that for X = x ∈ Γ = {0, 1, . . . , K},

we have an equation system:

ĜL(x) =
1∑

y=0

GM(x, y;β) · ĜR(x, y); x ∈ Γ = {0, 1, . . . , K}

where GM(x, y;β) = logit{β0 + β1y + β2x}. In the sensitivity analysis we vary the value

of β1 from -7 to -3. Then for each category of x we define βx = β0 + β2x. Under this

reparameterization we have only one unknown parameter, βx, for each equation. We then

solve for βx for each equation independently and obtain the causal estimand subsequently.
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By varying values of β1 around the estimated β̂1 from Section 2.6.1, the corresponding

causal estimands in 3-year EFS and 3-year OS are presented in Table 2. The estimated

causal effects in 3-year EFS vary from 0.159 to 0.181 with none of the 95% CIs including 0;

the estimated causal effects in 3-year OS vary from 0.132 to 0.176 with none of the 95% CIs

including 0. These intervals overlap a lot with the confidence intervals of real data. These

results suggest the addition of bevacizumab may improve 3-year EFS and 3-year OS among

patients who would respond to neoadjuvant chemotherapy plus bevacizumab.

Table 2: Sensitivity analysis for the estimated causal effect of bevacizumab in 3-year survival

among those who would obtain pCR under chemotherapy plus bevacizumab.

Long-term survival β1 θ̂ 95% CI for θ̂

EFS -7 0.181 (0.025, 0.290)

-6 0.180 (0.043, 0.289)

-5 0.178 (0.040, 0.282)

-4 0.172 (0.058, 0.272)

-3 0.159 (0.065, 0.267)

OS -7 0.176 (0.055, 0.278)

-6 0.172 (0.067, 0.267)

-5 0.166 (0.069, 0.267)

-4 0.153 (0.066, 0.235)

-3 0.132 (0.064, 0.200)

2.7 Discussion and Future Work

We have proposed a method under the principal stratification framework to estimate

causal effects of a treatment on a binary long-term endpoint conditional on a post-treatment
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binary marker in randomized controlled clinical trials. We also extend our method to address

censored outcome data. In our motivating study, we demonstrate the causal effect of the

new regimen in the long-term survival for patients who would achieve pCR. Other principal

stratum causal effects can be estimated in a similar fashion. Our approach can play an

important role in a sensitivity analysis.

Identification of causal effects is achieved through two assumptions. First, a subject

who responds under the control would respond if given the treatment. This monotonicity

assumption could prove valuable (Bartolucci and Grilli, 2011) and can be justified in many

scenarios that the additional therapy would help to improve the response. When the auxiliary

variable X is discrete, we can identify and estimate Pr{S(1) = 1|S(0) = 0, X} under the

monotonicity assumption. Second, a parametric model is used to describe the counterfactual

response under the treatment for a control non-respondent (Shepherd et al., 2006). Both the

future long-term outcome and a baseline covariate are predictors in this parametric model.

Shepherd et al. (2006) does not consider when the auxiliary X is discrete, the parameters

of model (1) can be identified when the level of the discrete covariate is at least of the same

dimension of model parameters. Instead they perform sensitivity analyses by varying the

values of those model parameters in order to estimate the causal estimands. It is recognized

that no diagnostic tool is available to verify the validity of this counterfactual model.

In the motivating dataset, we discretize a continuous baseline variable into several lev-

els. In practice, the linearity assumption may not hold. We would consider a two-pronged

approach: 1) to estimate GL(x) and GR(x, y) by nonparametric estimates such as spline or

kernel density estimates for a univariate continuous X; 2) to use a more flexible model for

the counterfactual response such as a logistic regression with natural cubic spline with fixed

and even-spaced knots along the domain of X. For each given x, we can still use the same

probabilistic argument to link those estimates and the model parameters. The objective

function would be a weighted sum of the squared difference of those probabilistic estimates.

23



3.0 A Tree-based Model Averaging Approach for Personalized Treatment

Effect Estimation from Heterogeneous Data Sources

3.1 Introduction

Estimating individualized treatment effects has been a hot topic because of its wide

applications, ranging from personalized medicine, policy research, to customized marketing

advertisement. Treatment effects of certain subgroups within the population are often of

interest. Recently, there has been an explosion of research devoted to improving estimation

and inference of covariate-specific treatment effects, or conditional average treatment effects

(CATE) at a target research site (Athey and Imbens, 2016; Wager and Athey, 2018; Hahn

et al., 2020; Künzel et al., 2019; Nie and Wager, 2021). However, due to the limited sample

size in a single study, improving the accuracy of the estimation of treatment effects remains

challenging.

Leveraging data and models from various research sites to conduct statistical analyses

is becoming increasingly popular (Reynolds et al., 2020; Cohen et al., 2020; Berger et al.,

2015). Distributed research networks have been established in many large scale studies

(Fleurence et al., 2014; Hripcsak et al., 2015; Platt et al., 2018; Donohue et al., 2021). A

question often being asked is whether additional data or models from other research sites

could bring improvement to a local estimation task, especially when a single site does not

have enough data to achieve a desired statistical precision. This concern is mostly noticeable

in estimating treatment effects where sample size requirement is high yet observations are

typically limited. Furthermore, information exchange between data sites is often highly

restricted due to privacy, feasibility, or other concerns, prohibiting centralized analyses that

pool data from multiple sources (Maro et al., 2009; Brown et al., 2010; Toh et al., 2011;

Raghupathi and Raghupathi, 2014; DeShazo and Hoffman, 2015; Donahue et al., 2018; Dayan

et al., 2021). One way to tackle this challenge is through model averaging (Raftery et al.,

1997), where multiple research sites collectively contribute to the tasks of statistical modeling

without sharing sensitive subject-level data. Although this idea has existed in supervised
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learning problems (Dai and Zhang, 2011; McMahan et al., 2017), to our best knowledge, there

are no established model averaging approach and theoretical results on estimating CATE in

a distributed environment. The extension is non-trivial because CATE is unobserved in

nature, as opposed to prediction problems where labels are given.

This chapter focuses on improving the prediction accuracy of CATE concerning a tar-

get site by leveraging models derived from other sites where transportability (to be formally

defined in Section 3.3.1, Pearl and Bareinboim, 2011; Stuart et al., 2011; Pearl and Barein-

boim, 2014; Bareinboim and Pearl, 2016; Buchanan et al., 2018; Dahabreh et al., 2019) may

not hold. Specifically, there may exist heterogeneity in treatment effects. In the context of

our multi-hospital example, these are: 1) local heterogeneity: within a hospital, patients

with different characteristics may have different treatment effects. This is the traditional

notion of CATE; and 2) global heterogeneity: where the same patient may experience

different treatment effects at different hospitals. The second type of heterogeneity is driven

by site-level confounding, and hampers the transportability of models across hospital sites.

We also note that these two types of heterogeneity may interact with each other in the sense

that transportability is dependent on patient characteristics, which we will address.

We propose a model averaging framework that uses a flexible tree-based weighting scheme

to combine learned models from sites that takes into account heterogeneity. The contribution

of each learned model to the target site depends on subject characteristics. This is achieved

by applying tree splittings (Breiman et al., 1984) at both the site and the subject levels.

For example, effects of a treatment in two hospitals may be similar for female patients but

not for male, suggesting us to consider borrowing information across sites only on selective

subgroups. Our approach extends the classic model averaging framework (Raftery et al.,

1997; Wasserman, 2000; Hansen, 2007; Yang, 2001) by allowing data-adaptive weights, which

are interpretable in a sense that they can be used to lend credibility to transportability. For

example, in the case of extreme heterogeneity where other sites merely contribute to the

target, the weights can be used as a diagnostic tool to inform the decision against borrowing

information.

Our primary contributions are summarized as follows. 1) We propose a model averaging

scheme with interpretable weights that are adaptive to both local and global heterogeneity
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via tree-splitting dedicated to improving CATE estimation under distributed data networks.

2) We generalize model averaging techniques to study the transportability of causal infer-

ence. Causal assumptions with practical implications are explored to warrant the use of

our approach. 3) We provide an extensive empirical evaluation of the proposed approach

with a concrete real-data example on how to apply the method in practice. 4) Compared to

other distributed learning methods, the proposed framework enables causal analysis without

sharing subject-level data, is easy to implement, offers ease of operations, and minimizes

infrastructure, which facilitates practical collaboration within research networks.

The remaining chapter is organized as follows. In Section 3.2, we present a general for-

mulation of the problem and discuss related work on model averaging and data fusion. We

describe the proposed method and assumptions in detail in Section 3.3. The performance

of the proposed method is assessed by simulation experiments in Section 3.4 and illustrated

through a multi-hospital electronic health data application for critical care medicine in Sec-

tion 3.5 to estimate conditional treatment effects for oxygen therapy. We conclude the

chapter in Section 3.6.

3.2 Related Work

There are two types of construct of a distributed database (Breitbart et al., 1986): homo-

geneous versus heterogeneous. For homogeneous data sources, data across sites are random

samples of the global population. Recent modeling approaches (Lin and Zeng, 2010; Lee

et al., 2017; McMahan et al., 2017; Battey et al., 2018; Jordan et al., 2019; Tang et al.,

2020a; Wang et al., 2021) all assume samples are randomly partitioned, which guarantees

identical data distribution across sites. The goal of these works is to improve overall pre-

diction by averaging results from homogeneous sample divisions. The classic random effects

meta-analysis (see, e.g., Whitehead (2002); Sutton et al. (2000); Borenstein et al. (2011)

describes heterogeneity using modeling assumptions, but its focus mostly is still on global

patterns.
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3.2.1 Heterogeneous Models

In practice, however, there is often too much global heterogeneity in a distributed data

network to warrant direct aggregation of models obtained from local sites. The focus shifts to

improving the estimation of a target site by selectively leveraging information from other data

sources. There are two main classes of approaches. The first class is based on comparison of

the learned model parameters {θ̂1, . . . , θ̂K} from K different sites where for site k we adopt

model fk(x) = f(x;θk) with subject features x to approximate the outcome of interest

Y . Clustering and shrinkage approaches are then used by merging data or models that are

similar (Ke et al., 2015; Smith et al., 2017; Ma and Huang, 2017; Wang et al., 2020; Tang

et al., 2020b). Most of these require the pooling of subject-level data. The second class

of approaches falls in the model averaging framework (Raftery et al., 1997) with weights

directly associated with the local prediction. Let site 1 be our target site, and the goal is

to improve f1 using a weighted estimator f ∗(x) =
∑K

k=1 ωkfk(x) with weights ωk to balance

the contribution of each model and
∑

k ωk = 1. It provides an immediate interpretation

of usefulness of each data source. When the weights are proportional to the prediction

performance of fk on site 1, for example,

ωk =
exp{−

∑
i∈I1(fk(xi)− yi)2}∑K

ℓ=1 exp{−
∑

i∈I1(fℓ(xi)− yi)2}
,

with yi being the observed outcome of subject i in site 1, indexed by I1, the method is

termed as the exponential weighted model averaging (EWMA). Several variations of ωk can

be found in Yang (2001); Dai and Zhang (2011); Yao et al. (2018); Dai et al. (2018). In

general, separate samples are used to obtain the estimates of ωk’s and fk’s, respectively.

Here we focus on the literature review of model averaging. We note that our framework

is also related to federated learning (McMahan et al., 2017). But the latter often involves

iterative updating rather than a one-shot procedure, and could be hard to apply to nonau-

tomated distributed research networks. Besides, it has been developed mainly to estimate

a global prediction model by leveraging distributed data, and is not designed to target any

specific site. We further discuss these approaches and other related research topics and their

distinctions with model averaging in Appendix B.1.
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3.2.2 Transportability

In causal inference, there is a lot of interest in identifying subgroups with enhanced

treatment effects, targeting at the feasibility of customizing estimates for individuals (Athey

and Imbens, 2016; Wager and Athey, 2018; Hahn et al., 2020; Künzel et al., 2019; Nie

and Wager, 2021). These methods aim to estimate the CATE function τ(x), denoting

the difference in potential outcomes between treatment and control, conditional on subject

characteristics x. To reduce uncertainty in estimation of personalized treatment effects,

incorporating additional data or models are sought after. Pearl and Bareinboim (2011,

2014); Bareinboim and Pearl (2016) introduced the notion of transportability to warrant

causal inference models be generalized to a new population. The issue of generalizability is

common in practice due to the non-representative sampling of participants in randomized

controlled trials (Cook et al., 2002; Druckman et al., 2011; Allcott, 2015; Stuart et al., 2015;

Egami and Hartman, 2020). Progress on bridging the findings from an experimental study

with observational data can be found in, e.g., Stuart et al. (2015); Kern et al. (2016); Stuart

et al. (2018); Ackerman et al. (2019); Yang et al. (2020); Harton et al. (2021). See Tipton

and Olsen (2018); Colnet et al. (2020); Degtiar and Rose (2021) and references therein for a

comprehensive review. However, most methods require fully centralized data. In contrast, we

leverage the distributed nature of model averaging to derive an integrative CATE estimator.

3.3 A Tree-based Model Averaging Framework

We first formally define the conditional average treatment effect (CATE). Let Y de-

note the outcome of interest, Z ∈ {0, 1} denote a binary treatment indicator, and X

denote subject features. Correspondingly, let y, z and x denote their realizations. Us-

ing the potential outcome framework (Neyman, 1923; Rubin, 1974), we define CATE as

τ(x) = E[Y (Z=1)−Y (Z=0)|X = x], where Y (Z=1) and Y (Z=0) are the potential outcomes un-

der treatment arms Z = 1 and Z = 0, respectively. The expected difference of the potential

outcomes is dependent on subject features X. By the causal consistency assumption, the
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observed outcome is Y = ZY (Z=1) + (1− Z)Y (Z=0).

Now suppose the distributed data network consists of K sites, each with sample size of

nk. Site k contains data Dk = {yi, zi,xi}i∈Ik , where Ik denotes its index set. Its CATE

function is given by τk(x) = Ek[Y
(Z=1) − Y (Z=0)|X = x], where the expectation is taken

over the data distribution in site k. Without loss of generality, we assume the goal is to

estimate the CATE function in site 1, τ1.

3.3.1 Causal Assumptions

To ensure information can be properly borrowed across sites, we first impose the following

idealistic assumptions, and then present relaxed version of Assumption 3.3.2. Let S be the

site indicator taking values in S = {1, . . . , K} such that Si = k if i ∈ Ik.

Assumption 3.3.1 (Unconfoundedness).

{Y (Z=0), Y (Z=1)} ⊥ Z|X, S;

Assumption 3.3.2 (Transportability).

{Y (Z=0), Y (Z=1)} ⊥ S|X;

Assumption 3.3.3 (Positivity).

0 < P (S = 1|X) < 1 and 0 < P (Z = 1|X, S) < 1 for all X and S.

Assumption 3.3.1 ensures treatment effects are unconfounded within sites so that τk(x)

can be consistently identified. It holds by design when data are randomized controlled tri-

als or when treatment assignment depends on X. By this assumption, we have τk(x) =

E[Y |X = x, S = k, Z = 1]− E[Y |X = x, S = k, Z = 0]. The equality directly results from

the assumption. Assumption 3.3.2 essentially states that the CATE functions are trans-

portable, i.e., τk(x) = τk′(x) for k, k′ ∈ {1, . . . , K}. See also Stuart et al. (2011), Buchanan

et al. (2018) and Yang et al. (2020) for similar consideration. This assumption may not be

satisfied due to heterogeneity across sites. In other words, site can be a confounder which

prevents transporting of CATE functions across sites. Our method allows Assumption 3.3.2
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to be violated and use model averaging weights to determine transportability. Explicitly, we

consider a relaxed Assumption 3.3.4 to hold for a subset of sites that contains site 1.

Assumption 3.3.4 (Partial Transportability).

{Y (Z=0), Y (Z=1)} ⊥ S1|X.

Here, S1 takes values in S1 = {k : τk(x) = τ1(x)} and {1} ⊂ S1 ⊂ S. We denote S1
as the set of transportable sites with regard to site 1. Hence, transportability holds across

some sites and specific subjects. In a special case in Section 3.4 where S1 = {1}, bias may

be introduced to by model averaging. However, our approach is still able to exploits the bias

and variance trade off to improve estimation. Assumption 3.3.3 ensures that all subjects are

possible to be observed in site 1 and all subjects in all sites are possible to receive either arm

of treatment. The former ensures a balance of covariates between site 1 population and the

population of other sites. Violation of either one may result in extrapolation and introduce

unwanted bias to the ensemble estimates for site 1. This assumption is also used, e.g., in

Stuart et al. (2011).

3.3.2 Model Ensemble

We consider an adaptive weighting of {τ1, . . . , τK} by

τ ∗(x) =
K∑
k=1

ωk(x)τk(x) (8)

where τ ∗ is the weighted model averaging estimator. The weight functions ωk(x)’s are

not only site-specific, but also depend on x, and follow
∑K

k=1 ωk(x) = 1. It measures the

importance of τk in assisting site 1 when subjects with characteristics x are of interest. We

rely on each of the sites to derive their respective τ̂k from Dk so that D1, . . . ,DK do not

need to be pooled. Only the estimated functions {τ̂2, . . . , τ̂K} are passed to site 1. We will

describe the approaches to estimate τ̂k in Section 3.3.5.

A two-stage model averaging approach is proposed. We first split D1, the data in the

target site, into a training set and an estimation set indexed by {i ∈ I(1)1 } and {i ∈ I(2)1 },

respectively. 1) Local stage: Obtain τ̂1 from subjects in I(1)1 . Obtain τ̂k from local subjects
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Algorithm 1 Tree-based model averaging for heterogeneous data sources
for k = 1 to K do ▷ Loop through K sites. Can be run in parallel.

Build a local model using site k data. Site 1 model uses its training set only.

end for

for i ∈ I(2)1 do ▷ Loop through subjects in site 1 estimation set.

for k = 1 to K do ▷ Loop through K local models.

Predict τ̂k(xi) using local model k.

Di,k = [xi, k, τ̂k(xi)].

end for

end for

Create augmented site 1 data Daug,1 by concatenating Di,k vectors.

T̂EF(x, s) = EnsembleForest(Daug,1) ▷ Or EnsembleTree when B = 1.

in Ik, k = 2, . . . , K. These {τ̂k}Kk=1 are then passed to site 1 to get K predicted treatment

effects for each subject in I(2)1 , resulting in an augmented data set as shown in Figure 2(b).

2) Ensemble stage: A tree-based ensemble model is trained on the augmented data by either

an ensemble tree (ET) or an ensemble random forest (EF), with the predicted treatment

effects from the previous stage, i.e., τ̂k(xi) as the outcome. The site indicator S of which

local model is used as well as the subject features xi are fed into the ensemble model as

predictors. The resulting model will be used to compute our proposed model averaging

estimator. Figure 2(a) illustrates a conceptual diagram of the proposed model averaging

framework and structure of the augmented data. Note the idea of data augmentation has

been used in, e.g., computer vision (Perez and Wang, 2017; Mo et al., 2020, 2021), statistical

computing (van Dyk and Meng, 2001), and imbalanced classification (Chawla et al., 2002).

Here the technique is being used to construct weights for model averaging, which will be

discussed in the following paragraph. Algorithm 1 provides an algorithmic overview. Our

method has been implemented as an R package ifedtree available on GitHub (https:

//github.com/ellenxtan/ifedtree).
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Figure 2: (a) Schema of the proposed algorithm. (b) Illustration of the augmented data

constructed from the estimation set of site 1.

3.3.3 Construction of Weights

A tree-based ensemble is constructed to estimate the weighting functions {ωk}Kk=1. Het-

erogeneity across sites is explained by including the site index into an augmented training

set when building trees. An intuition of our approach is that sites that are split away from

site 1 (by tree nodes) are ignored and the sites that fall into the same leaf node are con-

sidered homogeneous to site 1 hence contribute to the estimation of τ1(x). A splitting by

site may occur in any branches of a tree, resulting in an information sharing scheme across

sites that is dependent on x. We construct the ensemble by first creating an augmented

data Daug,1 = {xi, k, τ̂k(xi)}i∈I(2)
1 ,k∈S , for subjects in I(2)1 . The illustration of this augmented
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site 1 data is given in Figure 2(b). An ensemble is then trained on this data by either a

tree or a random forest, with the estimated treatment effects τ̂k(xi) as the outcome, and a

categorical site indicator of which local model is used along with all subject-level features as

predictors, i.e., (xi, k). We denote the resulting function as T (x, s) which depends on both

x and site s, specifically, TET(x, s) and TEF(x, s) for ensemble tree (ET) and ensemble forest

(EF), respectively. Let L(x, s) denote the final partition of the feature space by the tree to

which the pair (x, s) belongs. The ET estimate based on the augmented site 1 data can be

derived by

T̂ET(x, s) = {|{(i, k) : (xi, k) ∈ L(x, s)}i∈I(2)
1 ,k∈S |}

−1
∑

{(i,k):(xi,k)∈L(x,s)}
i∈I(2)

1 ,k∈S

τ̂k(xi)

=
∑
i∈I(2)

1

K∑
k=1

1{(xi, k) ∈ L(x, s)}
|L(x, s)|

τ̂k(xi). (9)

Intuitively, observations with similar characteristics (x and x′) and from similar sites (s

and s′) are more likely to fall in the same partition region in the ensemble tree, i.e.,

(x, s) ∈ L(x′, s′) or (x′, s′) ∈ L(x, s). This resembles a non-smooth kernel where weights

are 1/|L(x, s)| for observations that are within the neighborhood of (x, s), and 0 otherwise.

The estimator borrows information from neighbors in the space of X and S. The splits

of the tree are based on minimizing in-sample MSE of τ̂ within each leaf and pruned by

cross-validation over choices of the complexity parameter. Since a single tree is prone to be

unstable, in practice, we use random forest to reduce variance and smooth the partitioning

boundaries. By aggregating B ET estimates each based on a subsample of the augmented

data, {T̂ (b)}Bb=1, an EF estimate can be constructed by

T̂EF(x, s) =
1

B

B∑
b=1

T̂ (b)(x, s)

=
∑
i∈I(2)

1

K∑
k=1

λi,k(x, s)τ̂k(xi), (10)

where λi,k(x, s) =
1

B

B∑
b=1

1{(xi, k) ∈ Lb(x, s)}
|Lb(x, s)|

.
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The form of T̂ (b)(x, s) closely follows (9) but is based on a subsample of Daug,1. The weights,

λi,k(x, s), are similar to that in (9), and can be viewed as kernel weighting that defines an

adaptive neighborhood of x and s. We then obtain the model averaging estimates defined in

(8) by fixing s = 1 such that τ̂ ∗ET(x) = T̂ET(x, s = 1) or τ̂ ∗EF(x) = T̂EF(x, s = 1). The weight

functions {ωk(x)}Kk=1 for τ̂ ∗(x) can be immediately obtained from the ET or EF by

τ̂ ∗ET(x) = T̂ET(x, 1) =
K∑
k=1

ω̂k(x)τ̂k(x),

where ω̂k(x) =
∑
i∈I(2)

1

1{(xi, k) ∈ L(x, 1)}
|L(x, 1)|

;

τ̂ ∗EF(x) = T̂EF(x, 1) =
K∑
k=1

ω̂k(x)τ̂k(x),

where ω̂k(x) =
∑
i∈I(2)

1

λi,k(x, 1).

It can be verified that
∑K

k=1 ω̂k(x) = 1 for all x. As our simulations in Section 3.4 show, τ̂ ∗

improves the local functional estimate τ̂1. We set B = 2, 000 throughout the paper. Tree

and forest estimates are obtained by R packages rpart and grf, respectively.

3.3.4 Interpretability of Weights

The choice of tree-based models naturally results in such kernel weighting wk(x) (Athey

et al., 2019), which are not accessible by other ensemble techniques. Such explicit and in-

terpretable weight functions could deliver meaningful rationales for data integration. For

example, under scenarios where there exists extreme global heterogeneity (as shown in Sec-

tion 3.4 when c is large), wk(x) can be used as a diagnostic tool to decide which external

data sources should be co-used. Weights close to 0 inform against model transportability,

and they are adaptive to subject-level features x so that decisions can be made based on the

subpopulations of interest.
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3.3.5 Local Models: Obtaining τ̂k

Estimate of τk(x) at each local site must be obtained separately before the ensemble.

Our proposed ensemble framework can be applied to a general estimator of τk(x). For

each site, the local estimate could be obtained using different methods. Recently, there has

been many work dedicated to the estimation of individualized treatment effects (Athey and

Imbens, 2016; Wager and Athey, 2018; Hahn et al., 2020; Künzel et al., 2019; Nie and Wager,

2021). As an example, we consider using the causal tree (CT) (Athey and Imbens, 2016)

to estimate the local model at each site. CT is a non-linear learner that (i) allows different

types of outcome such as discrete and continuous, and can be applied to a broad range of

real data scenarios; (ii) can manage hundreds of features and high order interactions by

construction; (iii) can be applied to both experimental studies and observational studies by

propensity score weighting or doubly robust methods. CT is implemented in the R package

causalTree. We also explore another estimating option for local models in Appendix B.3.

3.3.6 Asymptotic Properties

We provide consistency guarantee of the proposed estimator T̂EF for the true target τ1.

Assuming point-wise consistent local estimators are used for {τk}Kk=1, EF with subsampling

procedure described in Appendix B.2 is consistent.

Theorem 3.3.5. Suppose the subsample used to build each tree in an ensemble forest is

drawn from different subjects of the augmented data and the following conditions hold:

(a) Bounded covariates: Features X i and the site indicator Si are independent and have a

density that is bounded away from 0 and infinity.

(b) Lipschitz response: the conditional mean function E[T |X = x, S = 1] is Lipschitz-

continuous.

(c) Honest trees: trees in the random forest use different data for placing splits and estimating

leaf-wise responses.

Then T̂EF(x, 1)
p→ τ1(x), for all x, as mink nk →∞. Hence, τ̂ ∗EF(x)

p→ τ1(x).
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The conditions and a proof of Theorem 3.3.5 is given in Appendix B.2. To demonstrate

the consistency properties of our methods, we add in Appendix B.3 oracle versions of ET

and EF estimators, denoted as ET-oracle and EF-oracle, which use the ground truth of local

models {τk}Kk=1 in estimating {ω̂k}Kk=1. This removes the uncertainty in local models. The

remaining uncertainty only results from the estimation of the ensemble weights, and we see

both oracle estimators achieve minimal MSE. Section 3.4 gives a detailed evaluation of the

finite sample performance.

3.4 Simulation Studies

Monte Carlo simulations are conducted to assess the proposed methods. We specify

m(x, k) as the conditional outcome surface and τ(x, k) as the conditional treatment effect

for individuals with features x in site k. The treatment propensity is specified as e(x) =

Pr(Z = 1|X = x). The potential outcomes can be written as Yi = m(X i, Si) + {Zi −

e(X i)}τ(X i, Si) + ϵi, following notations in Robinson (1988); Athey and Imbens (2016);

Wager and Athey (2018); Nie and Wager (2021). The mean function is m(x, k) = 1
2
x1 +∑4

d=2 xd + (x1 − 3) · c · Uk, and the treatment effect function is specified as

τ(x, k) = 1{x1 > 0} · x1 + (x1 − 3) · c · Uk,

where z = 0, 1, Uk denotes the global heterogeneity due to site-level confounding, controlled

by a scaling factor c, and ϵi ∼ N(0, 1). Features follow X i ∼ N(0, ID), where D = 5, and

are independent of ϵi. The simulation setting within each site (with k fixed) is motivated by

designs in Athey and Imbens (2016). Features in τ are determinants of treatment effect while

those in m but not in τ are prognostic only. The data are generated under a distributed data

networks. We assume there are K = 20 sites in total, each with a sample size n = 500. In

our main exposition, we consider an experimental study design where treatment propensity

is e(x) = 0.5, i.e., individuals are randomly assigned to treatment and control. Variations

of the settings above are discussed, with results presented in Appendix B.3.
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Two types for global heterogeneity are considered by the choice of Uk. For discrete

grouping , we assume there are two underlying groups among theK sites Uk ∼ Bernoulli(0.5).

Specifically, we assume odd-index sites and even-index sites form two distinct groups G1 =

{1, 3, . . . , K − 1}; G2 = {2, 4 . . . , K} such that Uk∈G1 = 0 and Uk∈G2 = 1. Sites from similar

underlying groupings have similar treatment effects and mean effects, while sites from differ-

ent underlying groupings have different treatment effects and mean effects. For continuous

grouping , we consider Uk ∼ Unif [0, 1]. We vary the scales of the global heterogeneity un-

der the discrete and continuous cases, respectively, with c taking values c ∈ {0, 0.6, 1, 2}. A

c = 0 implies all data sources are homogeneous. In other words, Assumption 3.3.2 is satisfied

when c = 0 but not when c > 0.

3.4.1 Compared Estimators and Evaluation

The proposed approaches ET and EF are compared with several competing methods.

LOC: A local CT estimator that does not utilize external information. It is trained on I1
only, combining training and estimation sets. MA: A naive model averaging method with

weights ωMA
k = 1/k. This approach assumes models are homogeneous. EWMA: We consider

a modified version of EWMA that can be used for CATE. We obtain an approximation of

τ1(x) by fitting another local model using the estimation set of site 1, denoted by τ̃1(x). Its

weights are given by

ωEWMA
k =

exp{−
∑

i∈I(2)
1
(τ̂k(xi)− τ̃1(xi))

2}∑K
ℓ=1 exp{−

∑
i∈I(2)

1
(τ̂ℓ(xi)− τ̃1(xi))2}

.

STACK: A stacking ensemble, which is a linear ensemble of predictions of several models

(Breiman, 1996). To our end, we regress τ̃1(x) on the predictions of the estimation set in

site 1 from each local model, {τ̂1(x), . . . , τ̂k(x)}. The stacking weights are not probabilistic

hence not directly interpretable. We report the empirical mean squared error (MSE) of these

methods over an independent testing set of sample size nte = 2000 from site 1. MSE(τ̂) =

n−1
te

∑nte

i=1{τ̂(xi)−τ1(xi)}2. Each simulation scenario is repeated for 1000 times. Experiments

are performed on a 6-core Intel Xeon CPU E5-2620 v3 2.40GHz equipped with 64GB RAM.
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Figure 3: Box plots of MSE ratios of CATE estimators, respectively, over LOC, for (a) dis-

crete grouping and (b) continuous grouping across site. Different colors imply different

estimators, and x-axis, i.e., the value of c, differentiates the scale of global heterogeneity. The

red dotted line denotes an MSE ratio of 1. MA performance is truncated due to large MSE

ratios. The proposed ET and EF achieve smaller MSE ratios compared to standard model

averaging or ensemble methods and are robust to heterogeneity across settings.

Table 3: MSE ratios of EF over LOC. As n increases, model averaging becomes more powerful

due to better estimation of τk, and is more pronounced when c is small.

c = 0 c = 0.6 c = 1 c = 2

Discrete
grouping

n = 100 0.57 0.59 0.61 0.59

n = 500 0.12 0.17 0.17 0.16

n = 1000 0.07 0.12 0.12 0.13

Continuous
grouping

n = 100 0.54 0.59 0.63 0.69

n = 500 0.11 0.24 0.31 0.34

n = 1000 0.08 0.17 0.21 0.26

38



3.4.2 Estimation Performance

Figure 3 shows the performance of the proposed estimators and the competing estimators,

using LOC as the benchmark. The proposed ET and EF show the best performance in terms

of the mean and variation of MSE among other estimators when c > 0, and comparable to

equal weighting MA when c = 0. Although, a forest is more stable than a tree in practice,

both ET and EF give similar results because the true model is relatively simple and can be

accurately estimated by a single ensemble tree under the given sample size.

Although asymptotically consistency, under finite sample, bias exists in local models and

leads to biased model averaging estimates. While explicit quantification of bias and variance

remains challenging due to extra uncertainty carried forward from the local estimates, we

demonstrated that the proposed estimators can improve upon the local models under small

sample size via Table 3. It shows the MSE ratio of EF over LOC as a measure of gain

resulting from model averaging by varying n = 100, 500, 1000. The decrease in MSE ratio

as n increases, regardless of the choice of c, is consistent with our asymptotic results in

Theorem 3.3.5. This is due to a bias-and-variance trade-off in the ensemble that ensures a

small MSE, which remains smaller than that in LOC despite varying n. It also shows our

method is robust to the existence of local uncertainty.

3.4.3 Visualization of Information Borrowing

Figure 4 visualizes the proposed ET and EF. In (a) and (d), the site indicator and X1

appear as splitting variables in the ETs, which is consistent with the data generation process.

The estimated treatment effect (b) and (e) reveals the pattern of transportability across sites

and with respect to X1. Panels (c) and (f) plot the model averaging weights in EFs over X1.

Site 1 has a relatively large contribution to the weighted estimator while models from other

sites have different contributions at different values of X1 depending on their similarity in

τ(x, k) to that in site 1. Corresponding ET and EF show consistent patterns.

39



site:
2,4,6,8,10,12,14,16,18,20

X1 < 0.44

X1 < −0.35 X1 < 1.4

X1 < 0.72

−4 −2.8 −1.3 0.8

0.14 1.3

yes no

(a)

−1

−2

0

1

2

3

1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20
site

X
1

−4    −2 0 2
Causal estimates

(b)

0.025

0.050

0.075

−2 0 2
X1

w
ei

gh
t

Site

11
13
15
17
19

10
12
14
16
18
20

1
3
5
7
9

2
4
6
8

(c)

X1 < 1.2 site: 
1,3,6,9,10,11,12, 
14,15,18, 19,20 

I '\-.. site: 
2,7,13, 16 

X1 <-0.28 

/� 

\ 
site: 

site: 
1,3,6,9, 10,11,12, 
14,15,18,19,20 1,3,6,9, 10,11,12, 

14,15,18, 19,20 

� 
site: 

1,3,6, 11,12, 14,18,20

@ 

X1�< 1.2 site: 
1,3,6,9, 10, 11, 12, 
14, 15, 18, 19,20 

I '\-.. site:
2,7,13, 16 

 

/� 

\ 
site: 

site: 
1,3,6,9, 10, 11, 12, 
14, 15, 18, 19,20 1,3,6,9, 10, 11, 12, 

14, 15, 18, 19,20 

� 
site: 

1,3,6, 11, 12, 14, 18,20

@ 

X1�< -0.28

(d)

−1

−2

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
site

X
1

−4    −2 0 2Causal estimates

(e)

0.02

0.04

0.06

0.08

−2 0 2
X1

w
ei

gh
t

Site

10
11
12
14
15
18
19
20

13
16
17

1
3
6
9

2
4
5
7
8

(f)

Figure 4: Visualization of simulation results under discrete grouping (a,b,c) and contin-

uous grouping (d,e,f) when c = 1. (a) and (d) visualize the proposed ETs where the site

indicator and X1 are selected as splitting variables, which is consistent with the underlying

data generation process. (b) and (e) show the predicted treatment effects of the proposed

EFs varying X1 in each site, marginalized over all other features. (b) is arranged according

to the true grouping, odd sites versus even sites. The plot recovers the pattern of local

and global heterogeneity. (c) and (f) plot the interpretable model averaging weights in EFs

over X1. The weights of site 1 have a relatively large contribution to the weighted estimator

while models from other sites have different contributions for different X1 depending on their

similarity in τ(x, k) to that in site 1. Corresponding ET and EF show consistent patterns

and recover the true grouping.
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3.4.4 Additional Simulations

The detailed results of these additional simulations are included in Appendix B.3.

1) Connection to supervised learning. The uniqueness of averaging τk(x) as opposed

to supervised learning that averages prediction models fk(x) is that the outcome of fk(x) is

immediately available. In our case, an additional estimation step is needed to construct the

model averaging weights. We provide a comparison among estimators that utilize the ground

truth {τk(x)}Kk=1 (denoted as “-oracle”) when computing ensemble weights. This mimics the

case of supervised learning where weights are based on observed outcomes. Oracle methods

achieve smaller MSE ratios; the pattern is consistent with Table 3.

2) Simulation under observational studies. We also consider the treatment gen-

eration mechanism under an observational design. Specifically, the propensity is given as

e(x) = expit(0.6x1). We consider both a correctly specified propensity model using a logis-

tic regression of Z on X1 and a misspecified propensity model with a logistic regression of

Z on all X. In general, the proposed estimators obtain the best performance with similar

results as in Figure 3. With the correctly specified propensity score model, the local estima-

tor is consistent in estimating τk(x), the proposed framework is valid. When the propensity

model is misspecified, extra uncertainty is carried forward from the local estimates, but the

proposed estimators can still improve upon LOC. This is due to a bias-and-variance trade-off

that leads to small MSE, which remains smaller than the local models.

3) Covariate dimensions. Besides D = 5, we consider other choices of covariate

dimension including D = 20, 50. With a higher dimension, the MSE ratio between the pro-

posed estimates and LOC estimates increases but the same pattern across methods persists.

4) Unequal sample size at each site. In the distributed date network, different

sites may have a different sample size nk. Those with a smaller sample size may not be

representative of their population, leading to an uneven level of precision for local causal

estimates. We consider a simulation setting where site 1 has a sample size of n1 = 500 while

other site n2, . . . , nK has a sample size of 200. Results show that the MSE ratio between

the proposed estimates and LOC estimates increases compared to the scenario where the

sample size in all sites are 500. However, the proposed estimators still enjoy the most robust

41



performance. This also shows our method is robust to the existence of local uncertainty.

5) Different local estimators. We stress that other consistent estimators could be

used as the local model. Options such as causal forest (Wager and Athey, 2018) are explored

varying the sample size at local sites. Similar performance is observed as in Figure 3.

6) Further comparisons to non-adaptive ensemble. Here we provide a brief dis-

cussion of the implications of the proposed method and how it differs from non-adaptive

methods such as stacking. Although unrealistic, when the true weights are non-adaptive,

the performance may be similar. Plus, our learned weights can be used to examine adap-

tivity, as shown in Figure 4(c,f) and Figure 5(c). Stacking is shown to be more robust than

non-adaptive model averaging in case of model misspecification. See discussion in Clarke

(2003). Our additional simulation results show that in case of a large global heterogeneity,

as c increases, the heterogeneity across sites gets larger, reducing the influence of important

covariates on heterogeneity, hence the weights become more non-adaptive. However, the

proposed methods still enjoy a comparable performance to STACK, which further indicates

the robustness of the proposed methods.

3.5 Example: A Multi-Hospital Data Network

Application with contextual insights is provided based on an analysis of the eICU Col-

laborative Research Database, a multi-hospital database published by Philips Healthcare

(Pollard et al., 2018). The analysis is motivated by a recent retrospective study that there is

a higher survival rate when SpO2 is maintained at 94-98% among patients requiring oxygen

therapy (van den Boom et al., 2020), not “the higher the better”. We use the same data

extraction code to create our data. We consider SpO2 within this range as treatment (Z = 1)

and outside of this range as control (Z = 0). A total of 7,022 patients from 20 hospitals, each

with at least 50 patients in each treatment arm, are included with a randomly selected target

(hospital 1). Hospital-level summary information is provided in Appendix B.4. Patient-level

features include age, BMI, sex, Sequential Organ Failure Assessment (SOFA) score, and

duration of oxygen therapy. The outcome is hospital survival (Y = 1) or death (Y = 0).
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Figure 5 visualizes the performance of EF-based estimated effect of oxygen therapy set-

ting on in-hospital survival. CT is used as the local model with propensity score modeled by

a logistic regression. Figure 5(a) shows the propensity score-weighted average survival for

those whose received treatment is consistent with the estimated decision. Specifically, the

expected reward is given by ∑
i Yi1(Zi = Zest

i )/π(Zi,X i)∑
i 1(Zi = Zest

i )/π(Zi,X i)
,

where Zest
i = 1(τ̂ > 0) denotes the estimated treatment rule and π(Zi,X i) is the probability

of receiving the actual treatment. We provide expected reward for the 1) observed treatment

assignment (baseline), 2) LOC-based rule, and 3) EF-based rule. The treatment rule based

on our method can increase mean survival by 3% points compared to baseline, and is more

promising than LOC.

In the fitted EF, the hospital indicator is the most important, explaining about 50% of the

decrease in training error. Figure 5(b) shows the estimated CATE varying two important

features, BMI and oxygen therapy duration. Patients with BMI around 36 and duration

above 400 show the most benefit from oxygen therapy in the target SpO2 range. Patients

with BMI between 20 and 30 and duration around 200 may not benefit from such alteration.

Figure 5(c) visualizes the data-adaptive weights ωk(x) in the fitted EF with respect to BMI

for different models, while holding other variables constant. The weights of hospital 1 are

quite stable while models from other sites may have different contribution to the weighted

estimator for different values of BMI. Judging from hospital information in Appendix B.4,

hospitals with a larger bed capacity tend to be similar to hospital 1, and are shown to provide

larger contributions.

In this distributed research network, different hospitals have a different sample size. For

sensitivity analysis, we consider a weighting strategy to adjust for the sample size of site k.

Results show similar patterns as in Figure 5. Detailed results are provided in Appendix B.4.

The real-data access is provided in Appendix B.5.
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Figure 5: Application to estimating treatment effects of oxygen therapy on survival. (a)

Expected survival of treatment decision following different estimators. The proposed EF

shows the largest gain in improving survival rate, more promising than LOC and baseline.

(b) Estimated treatment effects varying duration and BMI, two important features in the

fitted EF. Patients with a BMI around 35, and a duration above 400 benefited the most.

(c) Visualization of data-adaptive weights in the estimated EF varying BMI. Hospitals with

a larger bed capacity tend to contribute more, the data of which might be more similar to

hospital 1.

3.6 Discussion

We have proposed an efficient and interpretable tree-based model averaging framework

for enhancing treatment effect estimation at a target site by borrowing information from

potentially heterogeneous data sources. We generalize standard model averaging scheme

in a data-adaptive way such that the generated weights depend on subject-level features.

This work makes multi-site collaborations and especially treatment effect estimation more

practical by avoiding the need to share subject-level data. Our approach extends beyond

causal inference to estimating a general f(x) from heterogeneous data.

Unlike in classic model averaging where prediction performance can be assessed against

observed outcomes or labels, treatment effects are not directly observed. While our approach
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is guaranteed to be consistent under randomized studies, the weights are estimated based on

expected treatment effects, hence relying on Assumption 3.3.1 (unconfoundedness) to hold.

It may be a strong assumption in observational studies with unmeasured confounding.
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4.0 Robust Individualized Decision Learning with Sensitive Variables

4.1 Introduction

Recently, there has been a widespread interest in developing methodology for individual-

ized decision rules (IDRs) based on observational data. When deriving IDRs, some collectible

data are important to the intervention decision, while their inclusion in decision making is

prohibited due to reasons such as delayed availability or fairness concerns. For example, sen-

sitive characteristics of subjects regarding their income, sex, race and ethnicity may not be

appropriate to be used directly for decision making due to fairness concerns. In the medical

field especially for patients in severe life-threatening conditions such as sepsis, timely bedside

intervention decisions have to be made before lab measurements are ordered, assayed and

returned to the attending physicians. However, due to the delayed availability of lab results,

most of the decisions are made with great uncertainty and bias due to partial information

at hand. We define sensitive variables as variables whose inclusion into decision rules is

prohibited. The formal definition of sensitive variables will be given in Section 4.3.

In this work, we propose RISE (Robust Individualized decision learning with SEnsitive

variables), a robust IDR framework to improve the outcome of individuals when there are

informative yet sensitive variables that are either not available or prohibited from using dur-

ing IDR deployment. To achieve this, we propose to estimate the optimal IDR by optimizing

a quantile- or infimum-based objective, respectively, for continuous or discrete sensitive vari-

ables. Our idea falls along the lines of work that considers algorithmic fairness (Dwork et al.,

2012) while extending it to the setting of causal inference (Rubin, 2005) in the sense that

decisions are driven by causality rather than a general utility function. We show in our

empirical analyses that this leads to fairer and safer real-life decisions with little sacrifice

of the overall performance. This optimization problem is then shown to be equivalent to

a weighted classification problem where most existing machine learning classifiers can be

readily applied.

Assuming that a large outcome value is preferable, optimal IDRs are traditionally de-
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rived through maximizing the mean outcome of the sample population. In this paper, we

are interested in a specific yet broadly applicable setting of learning that involves sensitive

variables. We consider offline learning where sensitive variables are collected and can be

used in training the IDRs, but they cannot be used as input in the resulting IDRs. This is a

setting commonly considered in the fairness and privacy-related literature for classification

(e.g., Kamiran and Calders (2012)), but not from a causal standpoint. When there exist

important variables that are simply left out from training, the estimated IDR will be biased.

This bias can be removed if all important variables are used during training, which we will

show in Section 4.3.1 a mean-optimal approach. The optimal action maximizes the mean

outcome where the mean is taken over the sensitive variables, conditioning on other variables.

This method, however, has no control of the disparity in sensitive variables. Subjects with

different sensitive values may report large outcome differences, hence unfairly or unsafely

treated. Therefore, objective functions with robustness guarantees for sensitive variables are

preferred, since they offer protection to subjects in the lower tail of the outcome distribution

with regards to the sensitive values.

For illustration, we consider a toy example with binary actions, A ∈ {−1, 1}. We note

that the decision can only be made based on the variable X whereas S is a sensitive variable.

The setup is shown in Table 4 and the oracle values under the mean-optimal rule and RISE
1 are given in Table 5. The detailed setup can be found in Section 4.4.1 under Example

1. We consider vulnerable subjects as those with low outcome values, as highlighted in red

in Table 4 (A full definition is given in Section 4.3.2). For X ≤ 0.5, the mean-optimal rule

would assign action A = 1 as it tries to achieve the largest average reward across S = 0 and

S = 1. Recall that S is not available at the time of decision. However, this action results in

great harm for subjects with S = 1 as they could get the worst expected outcome of 0. On

the contrary, RISE improves the worst-case outcome by assigning A = −1, protecting the

vulnerable subjects. Likewise, for X > 0.5, the mean-optimal rule assigns A = −1 while the

RISE assigns A = 1 protecting those with S = 0 that could have experienced an outcome of

5. Compared to the mean-optimal rule, the proposed rule achieves a larger reward among
1For the mean-optimal rule, overall average reward is calculated by (30 + 0 + 5 + 27)/4 = 15.5, reward

among vulnerable subjects is calculated by (0 + 5)/2 = 2.5; for RISE, overall average reward is calculated
by (11 + 13 + 15 + 13)/4 = 13, reward among vulnerable subjects is calculated by (13 + 15)/2 = 14.
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vulnerable subjects while maintaining a comparable overall reward.

Table 4: Toy example setup of E(Y |X,S,A).

X ≤ 0.5 X > 0.5

S = 0 S = 1 S = 0 S = 1

A = −1 11 13 5 27

A = 1 30 0 15 13

Table 5: Toy example results.

Average reward

Overall Vulnerable

Mean-optimal rule 15.5 2.5

RISE 13 14

Main contributions. The main contributions of the proposed framework are sum-

marized as follows. Methodology-wise, 1) we propose a novel framework, RISE, to handle

sensitive variables in causality-driven decision making. Robustness is introduced to improve

the worst-case outcome caused by sensitive variables, and as a result, it reduces the outcome

variation across subjects. The latter is directly associated with fairness and safety in deci-

sion making. To the best of our knowledge, we are among the first to propose a robust-type

fairness criterion under causal inference. 2) We introduce a classification-based optimization

framework that can easily leverage most existing classification tools catered to different func-

tional classes, including state-of-the-art random forest, boosting, or neural network models.

Application-wise, 3) the consideration of sensitive variables in decision learning is important

to applications in policy, education, healthcare, etc. Specifically, we illustrate the application
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of RISE using three real-world examples from fairness and safety perspectives where robust

decision rules are needed, across which we have observed robust performance of the proposed

approach. From a fairness perspective, we consider a job training program where age is con-

sidered as a sensitive variable. From a safety perspective, we consider two applications to

healthcare where lab measurements are considered as sensitive variables.

The remaining chapter is organized as follows. Section 4.2 discusses related work. Sec-

tion 4.3 describes the proposed RISE framework in detail. The performance of the proposed

framework is evaluated by simulation studies and applied to three real-data applications in

Section 4.4. We conclude and discuss future work in Section 4.5.

4.2 Related Work

Our work focuses on individualized decision rules, which aim at assigning treatment

decision based on subject characteristics. Existing methods for deriving IDRs include

model-based methods such as Q-learning (Watkins and Dayan, 1992; Murphy, 2003; Moodie

et al., 2007; Chakraborty et al., 2010; Goldberg and Kosorok, 2012; Song et al., 2015) and

A-learning (Robins et al., 2000; Murphy, 2005), model-free policy search methods such as

Robins et al. (2008); Orellana et al. (2010a,b); Zhang et al. (2012); Zhao et al. (2012, 2015),

and contextual bandit methods Bietti et al. (2021); Li et al. (2011). In Appendix C.1,

we provide additional literature review on general IDRs under causal settings. Fairness,

safety and robustness are topics of interest that extend well beyond causal inference. In

the following, we provide a review of these areas, with focus given to work related to causal

inference and IDRs.

Fairness and safety in IDRs. The consideration of fairness and safety in machine

learning has seen an explosion of interest in the past few years Dwork et al. (2012); Varshney

(2016); Barocas et al. (2019); Nabi and Shpitser (2018); Hashimoto et al. (2018); Choulde-

chova and Roth (2020); Mehrabi et al. (2021); Pessach and Shmueli (2022), especially for

solving classification and regression problems to help derive decisions that are not only accu-

rate but also fair. In these work, sensitive variables are also referred to as sensitive, protected,
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or auxiliary attributes. We extend the definition of sensitive variables to include delayed in-

formation that is not available at deployment as it is also suitable for this framework.

Among earlier work, preprocessing (Kamiran and Calders, 2012; Feldman et al., 2015;

Creager et al., 2019; Sattigeri et al., 2019) and inprocess training approaches (Beutel et al.,

2017; Hashimoto et al., 2018; Lahoti et al., 2020) consider disentangling the input X from a

known or unknown sensitive variable S so that the transformed X does not contain any in-

formation related to S. Due to the causal nature of IDRs, effect of IDRs cannot be estimated

consistently when an informative S is left out and the resulting rule is suboptimal. This fol-

lows from the classic argument that any unmeasured confounding (i.e., S), if not accounted

for, would lead to bias. Similar issues persist in contextual bandits (Joseph et al., 2016; Patil

et al., 2020). Makar et al. (2022) considers reducing the impact of auxiliary variables on pre-

diction under distributional shift. Although it is motivated from a causal idea, its main focus

is still on prediction. Inside the causal framework, Zhang and Bareinboim (2018); Nabi et al.

(2019) extend fairness from prediction to policy learning using causal graphical models by

incorporating fairness constraints. Chen et al. (2022) considers counterfactual fairness that

seeks to achieve conditional independence of the decisions via data preprocessing. Despite

earlier efforts in bringing fairness into the causal framework, most of these approaches only

ensure mean zero disparity in S but do not have robustness guarantees in the sense that the

variance of the disparity in S is not controlled. Besides, most examples consider a single

categorical sensitive variable, but not multiple or continuous ones.

Robustness in IDRs. Recently the statistical literature has witnessed a growing

interest in developing robust methods for estimating IDRs. They introduce robustness into

the objective function by using quantile-optimal treatment regimes or mean-optimal treat-

ment regimes under certain constraints to improve the gain of individuals at the lower tail

of the reward spectrum (Wang et al., 2018a,b; Qi et al., 2022, 2019; Fang et al., 2022). In

particular, Wang et al. (2018a); Qi et al. (2022) propose to estimate quantile- or tail-optimal

treatment regimes. Wang et al. (2018b) studies the mean-optimal treatment regime under a

constraint to control for the average potential risk. Qi et al. (2019) proposes a decision-rule-

based optimized covariates dependent equivalent for tasks of individualized decision making.

Fang et al. (2022) considers mean and quantile objectives simultaneously by maximizing the
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average value with the guarantee that its tail performance exceeds a prespecified threshold.

Robustness, in their sense, pertains to the outcome distribution subject to the sampling er-

ror. When sensitive variables are present, we consider instead the robustness of the outcome

distribution subject to the uncertainty due to sensitive variables, providing a more targeted

way of ensuring robustness, which is directly related to fairness and safety. Compared

to algorithms based on explicit fairness constraints (for example Zafar et al. (2017); Zhang

et al. (2018) in classification and Zhang and Bareinboim (2018); Chen et al. (2022) in causal

inference) that seek to remove the disparity across different values of S, our method reduces

the variance of disparity across S. In addition, constraint-based approaches typically require

specialized optimization procedures whereas our approach presents an elegant and system-

atic way for optimization. To our knowledge, we are the first few to consider decision fairness

via a robust objective under the causal framework.

4.3 Robust Decision Learning Framework with Sensitive Variables

4.3.1 Preliminaries

We let random variables be represented by upper-case letters, and their realizations be

represented by lower-case letters. Suppose there are n independent subjects sampled from a

given population. For subject i, let Ai ∈ {−1, 1} denote a binary treatment assignment and

Yi denote the corresponding outcome. Without loss of generality, we assume a larger value

of outcome is desirable. Under the potential outcomes framework (Rubin, 1978; Splawa-

Neyman et al., 1990), let Yi(−1) be the potential outcome had the subject been assigned

to control and Yi(1) be the potential outcome had the subject been assigned to treatment.

Let Xi ∈ X be the feature vector and, for now, Si be a single sensitive variable. Extension

to multiple sensitive variables is presented in Section 4.3.5. We consider S ∈ S where

S = {1, . . . , K} if S is discrete and S = R if S is continuous.

We define sensitive variables that are important to the intervention decision, but their

inclusion in decision making is prohibited. Formally, consider variablesX and S that are both
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available during model training and are both determinants of conditional average treatment

effect (Rubin, 1974). While X and S may be both involved in training, the derived decision

rule d(·) precludes the input of S due to sensitive concerns. Hence, the derived IDR is only a

function with the form d(X) : X→ A. Following the above definition, we consider an offline

learning framework where sensitive variables are collected and can be used in obtaining the

IDRs, but they cannot be used in the resulting IDRs. A causal diagram and a decision

diagram are provided in Appendix C.6.

Assumption 4.3.1 (Consistency).

Y = Y (−1)1(A = −1) + Y (1)1(A = 1).

Assumption 4.3.2 (Positivity).

0 < Pr(A = 1|X,S) < 1.

Assumption 4.3.3 (Unconfoundedness).

{Y (−1), Y (1)} ⊥ A|{X,S} and {Y (−1), Y (1)} ̸⊥ A|X.

Assumption 4.3.1 is the standard consistency assumption in causal inference and As-

sumption 4.3.2 states that every subject has a nonzero probability of getting the treatment.

Assumption 4.3.3 states that given X and S, the potential outcomes are independent of

the treatment assignments. Besides, the unconfoundedness does not hold when only X is

conditional, signifying the importance of S. Under causal settings, Assumption 4.3.3 ensures

that treatment effects cannot be non-parametrically identifiable without S (Neyman, 1923;

Rubin, 1974; Holland, 1986; Imbens and Angrist, 1994; Pearl, 2009). Approaches such as

disentanglement of X from S under supervised learning settings mentioned in Section 4.2

will introduce bias towards estimating the IDR.

Before introducing the proposed method, we first discuss two kinds of approaches to deal

with sensitive variables under causal settings. The first kind is naive approaches that omit

sensitive variables. When S is not available for future deployment, a naive approach is to

maximize EX{E(Y |X,A = d(X))} over d using (X,A, Y ) during the training procedure.

This approach will introduce bias in the estimation of potential outcomes and lead to a
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suboptimal IDR due to the unmeasured confounder S. It is thus important that one includes

S into the training procedure. For example, if we consider the value function framework (i.e.,

expected outcome) used by most existing works such as Manski (2004); Qian and Murphy

(2011), we can show that

E{Y (d)} = EX,S

[
E(Y (d)|X,S)

]
= EX

[
ES|X{E(Y (d)|X,S)}

]
(11)

= EX

[
ES|X{E(Y |X,S,A = d(X))}

]
̸= EX

[
E(Y |X,A = d(X))

]
,

where the third equality in (11) holds by Assumptions in Section 4.3.1 and the last inequality

also indicates the naive approaches without using S will in general fail. Then one valid ap-

proach is the mean-optimal approach that uses the sensitive variables. That is, to maximize

EX

[
ES|X{E(Y |X,S,A = d(X))}

]
over d using (X,S,A, Y ). The optimal IDR under this

criterion is, for every X ∈ X,

d̃(X) ∈ sgn(ES|X{E(Y |X,S,A = 1)} − ES|X{E(Y |X,S,A = −1)}),

which guarantees to find the treatment that maximizes the conditional expected outcome

given each X by averaging out the effect of the sensitive variable S. The mean-optimal

approaches, however, fail to control the disparities across realizations of the sensitive vari-

ables due to the integration over S, which may lead to unsatisfactory decisions to certain

subgroups, as illustrated in the toy example in Section 4.1.

4.3.2 Robust Optimality with Sensitive Variables

Driven by the limitation of existing approaches, our goal is to derive a robust decision rule

that maximizes the worst-case scenarios of subjects when some sensitive information is not

available at the time of deploying the decision rule. Specifically, our robust decision learning

framework draws decisions based on individuals’ available characteristics summarized in

the vector X without the sensitive variable S, while improving the worst-case outcome of

subjects in terms of the sensitive variable in the population. Formally, given a collection D
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of all treatment decision rules depending only on X, the proposed RISE approach estimates

the following IDR, which is defined as

d∗ ∈ argmaxd∈DEX

[
GS|X{E(Y |X,S,A = d(X))}

]
, (12)

where GS|X(·) could be chosen as some risk measure for evaluating E(Y |X,S,A = d(X))

for each S ∈ S. Examples include variance, conditional value at risk, quantiles, etc. In this

paper, we consider GS|X as the conditional quantiles (for a continuous S) or the infimum

(for a discrete S) over S.

Specifically, for a discrete S, GS|X is consider as an infimum operator of E(Y |X,S,A =

d(X)) over S. We thus aim to find

d∗ ∈ argmaxd∈DEX

[
infs∈S{E(Y |X,S = s, A = d(X))}

]
,

where inf is the infimum taken with respect to E(Y |X, s,A = d(X)) over s ∈ S. This

implies that for a given X, d∗(X) assigns the treatment that yields the best worst-case

scenario among all possible values of S for every X ∈ X, or equivalently,

d∗(X) ∈ sgn(infs∈S{E(Y |X,S = s, A = 1)− infs∈S{E(Y |X,S = s, A = −1)}).

For a continuous S, we consider GS|X{E(Y |X,S,A = d(X))} as Qτ
S|X{E(Y |X,S,A =

d(X))}, which is the τ -th quantile of {E(Y |X,S,A = d(X))} and τ ∈ (0, 1) is the quantile

level of interest. Specifically, Qτ
S|X{E(Y |X,S,A = d(X))} = inf{t : F (t) ≥ τ} with F

denoting the conditional distribution function of E(Y |X,S,A = d(X)) given X and d. Note

the randomness behind E(Y |X,S,A = d(X)) given X and d is fully determined by the

sensitive variable S. Then optimal IDR under this criterion is defined as

d∗ ∈ argmaxDEX

[
Qτ

S|X{E(Y |X,S,A = d(X))}
]
.

This implies that for a given X, d∗(X) assigns a treatment that yields the largest τ -th

quantile of the outcome over the distribution related to S, or equivalently,

d∗(X) ∈ sgn({Qτ
S|X{E(Y |X,S,A = 1)} −Qτ

S|X{E(Y |X,S,A = −1)}).

We let τ = 0.25 throughout the paper and suppress τ for simplicity. Results on varying the

value of τ is provided in Appendix; see Section 4.4.1 for details.
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4.3.3 Identifying Vulnerable Subjects

Our RISE framework provides a natural way to define vulnerable groups. Specifically, for a

discrete S, if infS{E(Y |X,S,A = 1)} > infS{E(Y |X,S,A = 0)}, then arg infS{E(Y |X,S,A =

0)} is vulnerable given X, otherwise is arg infS{E(Y |X,S,A = 1)}. In other words, the

vulnerable subjects are those in the worst-off group that needs protection. Similarly, for

a continuous S, if QS{E(Y |X,S,A = 1)} > QS{E(Y |X,S,A = 0)}, then the set {S :

E(Y |X,S,A = 0) ≤ QS{E(Y |X,S,A = 0)}} defines the vulnerable subjects given X, oth-

erwise this group is defined as {S : E(Y |X,S,A = 1) ≤ QS{E(Y |X,S,A = 1)}}.

4.3.4 Estimation and Algorithm

Here we provide a transformation of the proposed RISE from an optimization problem

to a weighted classification problem. There are several advantages to this conversion: 1)

The optimization problem defined in (12) involves a nonsmooth and nonconvex objective

function that could lead to computational challenges. 2) With multiple powerful statistical

and machine learning toolbox to choose from, a classification problem can be more readily

solved in practice. Hyperparameter tuning and model selection could be conducted to further

boost performance. 3) Compared to a direct optimization of (12), a classification-based

optimizer allows the use of off-the-shelf software packages that can be tailored to different

functional classes or incorporate different properties such as model sparsity.

Proposition 4.3.4. Maximizing the objective function in (12) is equivalent to maximizing

EX

{
1(d(X) = 1)[GS|X{E(Y |X,S,A = 1)} −GS|X{E(Y |X,S,A = −1)}]

}
.

With Proposition 4.3.4 and a proper estimator of the outcome model E(Y |X,S,A) using

our training data Dn = {Xi, Si, Ai, Yi}ni=1, we replace the expectation of Yi by its estimate

Ŷi and solve the following problem.

argmaxd∈Dn
−1

n∑
i=1

[1(d(xi) = 1){g1(xi)− g2(xi)}], (13)
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where g1(xi) = Gs|x{Ŷi(xi, s, ai = 1)} and g2(xi) = Gs|x{Ŷi(xi, s, ai = −1)}. We have the

following proposition to address noncontinuity in (13) and transform it into a classification

problem. Define F as a class of all measurable functions over X.

Proposition 4.3.5. Let f(x) to be a smooth function. Maximizing the empirical objective

in (13) is equivalent to a weighted classification problem of minimizing over f ∈ F,

n−1

n∑
i=1

1[sgn{g1(xi)− g2(xi)} · f(xi) < 0] · |g1(xi)− g2(xi)|, (14)

with features xi, the true label sgn{g1(xi)− g2(xi)}, and the sample weight |g1(xi)− g2(xi)|,

for subject i, i = 1, . . . , n.

With Proposition 4.3.5, we have transformed the optimization problem (12) into a

weighted classification problem (14) where for subject i with features xi, the true label

is sgn{g1(xi) − g2(xi)} and the sample weight is |g1(xi) − g2(xi)|. The estimated optimal

decision rule by (14) is then given by d̂(x) = sgn{f̂(x)}.2 The proof of Proposition 4.3.4 and

Proposition 4.3.5 is presented in Appendix C.2.

Algorithm 2 provides an algorithmic overview. The inner expectation E(Y |X,S,A)

can be modeled as Ŷ (X,S,A) using a twin model separated by the treatment and control

groups. For a continuous S, we propose to estimate G(X,A) = QS|X,A{E(Y |X,S,A)} via

a quantile regression of Ŷ on X but without S. For a discrete S, we propose to obtain an

estimate of G(X,A) = infS{E(Y |X,S,A)} by finding the minimum among {E(Y |X,S =

1, A), . . . , E(Y |X,S = K,A)}. The estimated decision rule can then be obtained from the

weighted classification. In our implementation, neural networks are used to fit models in the

training data sets. The details on modeling and hyperparameter tuning via cross-validations

are given in Appendix C.3. A Python package rise based on neural networks is built. Note

that the model choices are flexible.

2If f̂(x) = 0, assign a random treatment.
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Algorithm 2 RISE (Robust individualized decision learning with sensitive variables)
Input Training data Dn = {Yi, Ai, Xi, Si}ni=1

Output Estimated decision rule d̂

1: for i = 1 to n do

2: Ŷi(xi, si, ai) ← Model E(Y |X,S,A = a) using Dn with a = 1 and a = −1, respec-

tively.

3: if S is continuous then

4: g1(xi)← Model QS|X,A{E(Y |X,S,A = a)} via quantile regressions of Ŷi(xi, si, ai)

on xi, for Dn with a = 1.

5: g2(xi)← Model QS|X,A{E(Y |X,S,A = a)} via quantile regressions of Ŷi(xi, si, ai)

on xi, for Dn with a = −1.

6: end if

7: if S is discrete then

8: g1(xi)← Compute infs∈S{Ŷi(xi, s, ai = 1)}.

9: g2(xi)← Compute infs∈S{Ŷi(xi, s, ai = −1)}.

10: end if

11: end for

12: d̂ ← Build a weighted classification model with features xi, label sgn{g1(xi) − g2(xi)},

and sample weight |g1(xi)− g2(xi)| for 1 ≤ i ≤ n.

13: Return d̂

4.3.5 Extension to Multiple Discrete Sensitive Variables

For multiple discrete sensitive variables, similar estimation procedure can be conducted

as outlined in Section 4.3.4. Suppose there are L discrete sensitive variables, i.e., S =

{S1, S2, . . . , SL}. The inner expectation E(Y |X,S1, . . . , SL, A) can be obtained with a twin

model of Y on X and all S for each treatment level. The infimum over S is obtained by

finding the minimum iterating space of possible parameter values for each sensitive variable.

See Section 4.4.2 for an example of using multiple discrete sensitive variables. We will discuss

in Section 4.5 the challenges and future work related to scenarios with multiple continuous
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sensitive variables or that with a mixture of continuous and discrete sensitive variables.

4.4 Numerical Studies

In this section, we perform extensive numerical experiments to investigate the merit

of robustness of the proposed framework via simulations and three real-data applications.

The results demonstrate that the proposed rules achieve a robust objective with sensitive

variables unavailable at the time of decision while maintaining comparable mean outcomes.

For comparison, we consider the naive and mean-optimal approaches described in Sec-

tion 4.3.1, which correspond to different choices of G(·) functions. The naive decision rule

that simply disregard information of S, denoted as Base, can be formulated in our opti-

mization framework of (12) by letting G(X,A) = E(Y |X,A). The IDR can be estimated

directly by fitting a model of Y on X in each treatment arm. The resulting IDR is not

sensitive variables-aware and is biased due to confounding, as discussed. Another IDR

that resembles traditional mean-optimal decision rules, denoted as Exp, can be formu-

lated as G(X,S,A) = E(Y |X,S,A). This can be obtained by training a classification model

without S, i.e., only using X, after obtaining an outcome model for the inner expectation

E(Y |X,S,A). Note that this approach is not robust to extreme behaviors in S. The model-

ing approaches described in Appendix C.3 applies to here. We also include the double robust

(Chernozhukov et al., 2018) versions of Base and Exp, respectively, by adapting Policytree

(PT, Sverdrup et al., 2020; Athey and Wager, 2021), the latest state-of-the-art policy learn-

ing method for maximizing the expected values. The two new methods are termed PT-Base

and PT-Exp.

We consider the following evaluation metrics. 1) Objective: the quantile objective is es-

timated and reported for a continuous S and the infimum objective is for a discrete S. The

objective, when τ < 0.5, (here τ = 0.25) represents the value of the “low performers” among

all possible value of S under a given d. 2) Value: the value function, or expected reward

used by the most existing methods, such as Manski (2004); Qian and Murphy (2011), is de-

fined as V (d) = E{Y (d)}. It represents the “average performers”. For randomized trials, an
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unbiased estimator of V (d) is given by V̂ (d) = {
∑T

i=1 Yi1(Ai = d̂)/π(Ai,X i)}/{
∑T

i=1 1(Ai =

d̂)/π(Ai,X i)} (Murphy et al., 2001), where T is the sample size of the test data. For observa-

tional studies, the value is estimated with V̂ (d) = T−1
∑T

i=1 Ŷi(xi, si, ai = d̂). We report the

metrics among all subjects and among the potential vulnerable subgroup, respectively. For

simulation, we consider training data and the testing data, respectively, with sample sizes

of 5,000. For real-data applications, we consider a 80-20 split of the dataset into a training

data and a testing data. Continuous covariates are standardized before the estimation. All

results are based on 100 replications.

4.4.1 Simulation Studies

Example 1. Here we provide the detail for the simulation of the motivating example

introduced in Section 4.1. The outcome is generated using the following model: Yi = 1(Xi >

0.5){5+101(Ai = 1)+22Si−241(Ai = 1)Si}+1(Xi ≤ 0.5){11+191(Ai = 1)+2Si−321(Ai =

1)Si}+ ϵi, where the covariate Xi ∼ Unif [0, 1], treatment assignment Ai ∼ Bernoulli(0.5),

and the noise ϵi ∼ N(0, 1). For a discrete type S, the sensitive variable Si ∼ Bernoulli(0.5).

For a continuous type S, Si is generated from a mixture of beta distributions, Beta(4, 1) and

Beta(1, 4), with equal mixing proportions.

Example 2. We generate the outcome Y using the following model: Yi = {0.5 + 1(Ai =

1)+exp(Si)−2.5Si1(Ai = 1)}{1+Xi1−Xi2+X
2
i3+exp(Xi4)}+{1+21(Ai = 1)+0.2 exp(Si)−

3.5Si1(Ai = 1)}{1+5Xi1−2Xi2+3Xi3+2 exp(Xi4)}+ϵ, where Xij ∼ U(0, 1), j = 1, . . . , 6, A

satisfies log{P (Ai = 1|Xi)/P (A = 0|Xi)} = 0.6(−Si+Xi1−Xi2+Xi3−Xi4+Xi5−Xi6), and

ϵi ∼ N(0, 1). For a continuous type S, Si is generated from a mixture of beta distributions,

Beta(4, 1) and Beta(1, 4), with equal mixing proportions; for a discrete type S, we consider

a binary Si that satisfies log{P (Si = 1|Xi)/P (Si = 0|Xi)} = −2.5 + 0.8(Xi1 +Xi2 +Xi3 +

Xi4 +Xi5 +Xi6).

Table 6 summarizes the performance of the proposed IDRs compared to the mean crite-

rion for Example 1 and Example 2. The proposed RISE achieves the largest objectives and

improves the value among vulnerable subjects, while maintaining comparative overall values.

As demonstrated in the toy example introduced in Section 4.1, we expect that RISE helps
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improve the value among the vulnerable subjects while maintaining a comparable overall

value. As for the objective, intuitively, the proposed rule is expected to have a larger objec-

tive. We also point out that there is no direct relationship between the objective among all

subjects versus the objective among vulnerable subjects. For example, using the toy example

with setup in Table 4, and limiting to subjects with X ≤ 0.5 only, S = 1 is vulnerable and is

assigned A = −1 by the proposed RISE. The objective among S = 1 is 13 but the objective

among both S = 0 and S = 1 is 12 = (11 + 13)/2, which is smaller than that among the

vulnerable group. In other words, by protecting the vulnerable subjects, the proposed rule

may lead to an increase in the outcome of the vulnerable group, and the gain may result in

a higher outcome than the overall mean outcome. PT-Exp method tends to show the best

improvement in terms of the overall value, as the doubly robust-based estimators tend to

reduce variance in value estimation. However, PT-Exp is shown to have minimal benefits

for vulnerable subjects. RISE still shows the largest gain in the objective and value among

vulnerable subjects among all compared methods.

In the appendix, we consider for a continuous S different quantile criteria τ = 0.1 and

0.5, respectively, to test the robustness of the proposed RISE. Results show that when τ is

small, there is more strength in the proposed method, as the algorithm aims to improve the

worst-outcome scenarios. The proposed RISE has the largest gain in objective and value

among vulnerable subjects when τ is 0.1, and has similar performance as the compared

approaches when τ is 0.5. Also, we consider a scenario where S is not involved in the

data generation of Y , i.e., Assumption 4.3.3 is simplified as {Y (−1), Y (1)} ⊥ A|X. The

estimated objective and value function are similar across all compared approaches, which

indicates the robustness of RISE. Finally, we study the performances of our method when

Assumption 4.3.2 is nearly violated or Assumption 4.3.3 is violated. Similar patterns have

been observed that the proposed RISE achieves the largest objectives and improves the value

among vulnerable subjects, while maintaining comparative overall values. The details can

be found in Appendix C.4.
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Table 6: Simulation results for Example 1 and Example 2. Standard error in parenthesis.

Example Type of S IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

1

Disc.

Base 7.03 (0.03) 7.01 (0.04) 14.3 (0.05) 7.92 (0.06)

Exp 6.39 (0.03) 6.39 (0.04) 14.4 (0.05) 7.14 (0.06)

RISE 12.0 (0.01) 12.0 (0.01) 13.0 (0.01) 14.0 (0.01)

PT-Base 2.66 (0.02) 2.65 (0.02) 15.4 (0.05) 2.58 (0.02)

PT-Exp 2.62 (0.02) 2.62 (0.02) 15.5 (0.05) 2.55 (0.02)

Cont.

Base 9.12 (0.03) 9.14 (0.04) 14.5 (0.08) 8.25 (0.11)

Exp 8.75 (0.03) 8.75 (0.04) 14.6 (0.08) 7.58 (0.06)

RISE 10.3 (0.02) 10.3 (0.03) 13.9 (0.04) 10.3 (0.06)

PT-Base 6.71 (0.03) 6.72 (0.03) 15.3 (0.05) 4.52 (0.02)

PT-Exp 6.68 (0.02) 6.67 (0.02) 15.4 (0.05) 4.47 (0.02)

2

Disc.

Base 7.79 (0.02) 8.66 (0.03) 19.4 (0.04) 11.4 (0.06)

Exp 9.12 (0.03) 10.1 (0.03) 19.5 (0.04) 14.4 (0.05)

RISE 13.5 (0.01) 14.0 (0.01) 17.4 (0.02) 22.1 (0.02)

PT-Base 7.19 (0.03) 7.77 (0.03) 19.0 (0.05) 9.71 (0.05)

PT-Exp 8.30 (0.02) 9.03 (0.03) 19.1 (0.04) 12.2 (0.05)

Cont.

Base 9.89 (0.02) 9.87 (0.03) 17.6 (0.02) 9.09 (0.04)

Exp 11.1 (0.02) 11.1 (0.02) 17.8 (0.02) 12.2 (0.04)

RISE 13.7 (0.02) 13.7 (0.02) 17.0 (0.01) 18.9 (0.03)

PT-Base 9.30 (0.02) 9.29 (0.03) 18.0 (0.03) 7.61 (0.04)

PT-Exp 9.41 (0.02) 9.41 (0.02) 18.1 (0.02) 7.92 (0.04)
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4.4.2 Real-data Applications

We present three real-data examples to showcase the robust performance of RISE. These

applications consider either fairness or safety in the context of policy (LaLonde, 1986) and

healthcare (Hammer et al., 1996; Seymour et al., 2016) where sensitive variables exist. The

information of data access is provided in Appendix C.5.

4.4.2.1 Fairness in a Job Training Program

To illustrate the implication of the proposed method from a fairness perspective, we

consider the National Supported Work (NSW) program (LaLonde, 1986) for improving per-

sonalized recommendations of a job training program on increasing incomes. This program

intended to provide a 6 to 18-month training for individuals in face of economic and social

problems such as former drug addicts and juvenile delinquents. The original experimental

dataset consists of 185 individuals who received the job training program (A = 1) and 260

individuals who did not (A = −1). The baseline covariates are age, years of schooling, race

(1 = African Americans or Hispanics, 0 = others), married (1 = yes, 0 = no), high school

diploma (1 = yes, 0 = no), earning in 1974, and earning in 1975. The outcome variable

is the earning in 1978. In the exploratory analysis using causal forest (Wager and Athey,

2018), we observe that age may play an important role in the causal effect of the job training

program on the long-term post-market earning. In the following data example we use age

as the sensitive variable S and other baseline covariates as X. The earnings in years 1974,

1975, and 1978 are transformed by taking the logarithm of the earning plus one.

4.4.2.2 Improvement of HIV Treatment

To illustrate the implication of the proposed method from a safety perspective when there

is delayed information, we consider the ACTG175 dataset among HIV positive patients

(Hammer et al., 1996). The original study considers a total of 2,139 patients who were

randomly assigned into four treatment groups. In this data application, we focus on finding

the optimal IDRs between two treatments: zidovudine combined with didanosine (A = −1)
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and zidovudine combined with zalcitabine (A = 1). The total number of patients receiving

these two treatments is 1,046. The baseline covariates we consider are age, weight, CD4 T-

cell amount at baseline, hemophilia (1 = yes, 0 = no), homosexual activity (1 = yes, 0 = no),

Karnofsky score, history of intravenous drug use (1 = yes, 0 = no), gender (1 = male, 0 =

female), CD8 T-cell amount at baseline, race (1 = non-Caucasian, 0 = Caucasian), number

of days of previously received antiretroviral therapy, use of zidovudine in the 30 days prior

to treatment initiation (1 = yes, 0 = no), and symptomatic indicator (1 = symptomatic,

0 = asymptomatic). The outcome variable is the CD4 T-cell amount at 96 ± 5 weeks

from the baseline. We consider CD8 T-cell amount at baseline as the sensitive variable. The

response of CD8 T-cell among HIV positive patients has not been fully understood (Boppana

and Goepfert, 2018). Clinically, it is plausible that only CD4 is measured in clinical visits

where treatments are based on, hence CD8 might not be measured and not used in decision

making. As our exploratory analysis using causal forest shows, CD8 T-cell amount may play

an important part in the treatment effect of the outcome.

4.4.2.3 Safe Resuscitation for Patients with Sepsis

For this application, we apply the proposed method to treating sepsis, a life-threatening

disease. This application intends to provide an example to apply our method with multiple

categorical sensitive variables in the scenario where there is missing yet important informa-

tion at the time of decision making. We apply the proposed method to a sepsis study from

the University of Pittsburgh Medical Center (UPMC). The original study cohort includes

30,687 patients with Sepsis-3 (Seymour et al., 2016) within 6 hours of hospital arrival from

14 UPMC hospitals between 2013 and 2017. For our data analysis, we consider X to be base-

line patient characteristics 4 hours before sepsis onset, which includes patient demographics

of age, gender (1 = male, 0 = female), race (1 = Caucasian, 0 = others), and weight, and

vital signs of usage of mechanical ventilation (1 = yes, 0 = no), respiratory rate, tempera-

ture, intravenous fluids (1 = yes, 0 = no), Glasgow Coma Scale score, platelets, blood urea

nitrogen, white blood cell counts, glucose, creatinine. We consider two sensitive variables,

lactate and Sequential Organ Failure Assessment (SOFA) score 4 hours before sepsis onset.
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Lactate and SOFA score have been two important indicators of sepsis severity (Howell et al.,

2007; Krishna et al., 2009; Shankar-Hari et al., 2016). Different from the baseline patient de-

mographics or common vital signs that are typically obtained at the admission of patients,

SOFA score combines performance of several organ systems in the body (Seymour et al.,

2016), which requires additional calculation and cannot be obtained directly. Lactate labs

measures the level of lactic acid in the blood (Andersen et al., 2013) and are less common

in routine examination, which could be delayed in ordering. Hence, their measurements are

obtained retrospectively after treatment decisions have been made and are not available at

times of decision. We discretize lactate level at clinically meaningful value of 2 mmol/L

(Shankar-Hari et al., 2016), and SOFA score at value of 6 for analysis (Vincent et al., 1996;

Ferreira et al., 2001). The treatment option is whether the patient took any vasopressors

during the first 24 hours after sepsis onset. The outcome is patient survival at day 90. The

analysis cohort contains 6,539 patients in total. We are interested in making decision about

whether to treat patients with vasopressors in the first 24 hours after sepsis onset given

the measurements of lactate and SOFA are not available at the time of decision making.

Additional rationale and background on this example is provided in Appendix C.5.

4.4.2.4 Results of Real-data Applications

Table 7 presents the performance of various IDRs on the three applications. As expected,

RISE has the largest objective as well as value among vulnerable subjects. The patterns are

similar to that in the synthetic experiments in Section 4.4.1. In applications to the job train-

ing data and the sepsis study, results show that RISE has a larger value among all subjects

than other IDRs. This is possible when there are more gains in the vulnerable subjects

than other subjects, which further demonstrate the superiority of the proposed approach

in improving worst-case outcomes caused by sensitive variables. We provide visualizations

by Shapley additive explanations (SHAP) (Lundberg and Lee, 2017) for RISE and Exp,

respectively, in Appendix C.5 about feature importance in the final classification models to

help interpret important covariates in making the decisions. The SHAP approach provides

united values to describe the correlation between each feature and the predicted decision
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rule, respectively (Lundberg and Lee, 2017). Overall, the direction of correlations is similar

for RISE and Exp, but their ranking of feature importance may be different.

Table 7: Estimated objective and value of different IDRs for the three data applications.

Standard error in parenthesis. The outcome of each study is italicized.

Dataset IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

NSW

log(income+1)

Base 5.26 (0.04) 5.28 (0.05) 6.32 (0.05) 6.33 (0.07)

Exp 5.22 (0.04) 5.24 (0.05) 6.37 (0.05) 6.37 (0.07)

RISE 5.43 (0.04) 5.44 (0.04) 6.42 (0.04) 6.42 (0.06)

PT-Base 4.97 (0.04) 5.08 (0.06) 6.40 (0.03) 6.38 (0.05)

PT-Exp 5.03 (0.04) 5.11 (0.05) 6.43 (0.03) 6.40 (0.05)

ACTG175

CD4 T-cell amount

Base 336.9 (1.65) 338.1 (2.23) 350.5 (1.86) 357.5 (2.24)

Exp 337.5 (1.65) 338.9 (1.80) 351.9 (1.95) 359.1 (2.21)

RISE 351.5 (1.67) 351.2 (1.80) 351.8 (1.88) 363.1 (2.19)

PT-Base 299.7 (1.01) 299.5 (1.91) 356.9 (1.72) 350.7 (2.54)

PT-Exp 300.1 (0.99) 299.9 (1.83) 357.1 (1.55) 352.7 (2.61)

Sepsis

survival rate

Base 0.752 (0.001) 0.721 (0.001) 0.965 (0.001) 0.905 (0.002)

Exp 0.752 (0.001) 0.721 (0.002) 0.966 (0.001) 0.908 (0.002)

RISE 0.771 (0.001) 0.735 (0.001) 0.972 (0.001) 0.923 (0.002)

PT-Base 0.753 (0.001) 0.642 (0.002) 0.981 (0.001) 0.848 (0.003)

PT-Exp 0.764 (0.001) 0.644 (0.002) 0.984 (0.001) 0.875 (0.003)

4.5 Discussion and Future Work

We have proposed RISE, a robust decision learning framework with a novel quantile-, or

infimum-optimal treatment objective intended to improve the worst-case scenarios of indi-

viduals when decisions with uncertainty are needed to be made with sensitive yet important

information missing. Our approach can be applied to a board of applications, including but

not limited to politics, education, healthcare, etc. For multiple continuous sensitive vari-
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ables, the estimated decision rule by RISE can be easily obtained by fitting similar quantile

regression as described in Section 4.3.4. For a mixture of continuous and discrete sensitive

variables, the estimated rule can be obtained by taking infimum over the discrete ones, then

obtaining quantile over the continuous ones. However, challenges remain in finding vulner-

able subjects described in Section 4.3.2 under these settings as it may be computationally

difficult to find a vulnerable set of S when they are multi-dimensional. Another future work

includes extension of the current binary treatment option to a multi-treatment option. It is

also worth mentioning that our work can be naturally extended to the scenario where there

exist unmeasured confounders. As long as the conditional average outcome given observed

covariates can be identified (e.g., via instrumental variables (Wang and Tchetgen Tchetgen,

2018)), our method can be applied.
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5.0 Summary and Future Work

This dissertation is motivated by challenges in causal inference under practical data

restrictions. Traditional randomized clinical trials typically require long years of data col-

lection, which leads to loss of follow-up, poor compliance, or other issues and subsequently

affects the estimation of treatment effects. In the more recent neoadjuvant trials, on the

other hand, the efficacy of a treatment can be estimated early with an intermediate post-

treatment response. However, the clinical implication of this intermediate post-treatment

response has not yet been understood. This idea, along with real data from a neoadjuvant

clinical trial, has motivated the development of methods in Chapter 2. In the modern context,

new challenges arise with growing concerns such as data privacy and operational feasibility

in distributed research networks, and the timeliness and fairness of individualized decision

rules. Driven by these concerns, we develop the privacy-protecting method for improving

the estimation of conditional average treatment effects in Chapter 3 and the fairness-aware

decision learning framework in Chapter 4 with board applications, including but not limited

to politics, education, healthcare, etc. The three proposed methods in this dissertation re-

spectively address important challenges in causal inference, which includes: identification of

principal stratum treatment effects, enhancement of treatment effect estimation via hetero-

geneous data integration, and derivation of robust individualized decision rules. Each of the

methods can be further improved and extended along in their own framework and settings

as have been discussed in each of the chapters.

One promising direction for future research is to generalize the toolbox of privacy-

protecting analytic and data-sharing methods and to construct a unified framework that is

applicable to a broader range of problems pertaining to modern distributed data networks.

It is of great interest to borrow the strengths of each of the proposed methods, Chapter 3

in particular, pairing with new methodologies developed by others to develop, test, and dis-

tribute open-source statistical software packages, maximizing value of methodology research

to practical applications.

Driven by the recent initiatives of collaboratory distributed research networks, another
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promising direction and natural extension of current work, Chapter 4 in particular, is to

develop a generalizable recommendation system for treatment that is robust to population

heterogeneity across multiple sites. A more robust treatment recommendation system that

jointly take into account the population heterogeneity due to observed and/or unobserved

confounding can enhance treatment gain from across all sites, hence more general and widely

applicable.

Last but not least, it is of great interest to investigate the unconfoundedness assump-

tion that is typically adopted in causal inference for observational studies, as mentioned in

Chapter 3 and Chapter 4. Unconfoundedness is a strong and untestable assumption for

observational studies where unmeasured confounding could exist. It is therefore important

to stress how this assumption breaks down when there is unobserved confounding. For ex-

ample, little has been understood about how bad things could get and when do things cancel

out in cases of assumption violations. We would like to address these important issues by

leveraging the knowledge accumulated through the development of this dissertation.
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Appendix A for Chapter 2

A.1 Estimation of Pr{Si(0) = 1|Xi = x} and Pr{Si(1) = 1|Xi = x}

We use the maximum likelihood approach to estimate Pr{Si(0) = 0|Xi = x}, Pr{Si(0) =

1|Xi = x} and Pr{Si(1) = 1|Xi = x}. Let

Ejkx = {i : Si(0) = j, Si(1) = k|Xi = x}, j, k = 0, 1, x ∈ Γ

be the principal stratum under each category X = x. Because of the monotonicity assump-

tion, E10x is empty. Let

pjkx = Pr{Ejkx} = Pr{Si(0) = j, Si(1) = k|Xi = x}, j, k = 0, 1, x ∈ Γ

Therefore, p00x+p01x+p11x = 1 for all x ∈ Γ. For each x, Pr{Ejkx} can be estimated from the

observed data {Zi, Xi, Si(Zi), i = 1, 2, . . . , n} via maximum likelihood. Let Nzsx be the total

number of subjects with Z = z, S(Z) = s and baseline category x with
∑

Z;S=0,1;X Nzsx = n.

Then the likelihood function for (p00x, p01x, p11x) is given by

L(p00x, p01x, p11x|N00x, N01x, N10x, N11x) ∝ f(Nzsx)

∝ Pr{S(0) = 0|X = x}N00x · Pr{S(0) = 1|X = x}N01x

· Pr{S(1) = 0|X = x}N10x · Pr{S(1) = 1|X = x}N11x

= (p00x + p01x)
N00x · pN01x

11x · pN10x
00x · (p01x + p11x)

N11x (by monotonicity assumption)

= (1− p11x)N00x · pN01x
11x · pN10x

00x · (1− p00x)N11x

= (1− p11x)N00x · pN01x
11x · (1− p+1x)

N10x · pN11x
+1x

1) When N00x ·N11x ≥ N01x ·N10x, the resulting MLEs for (p00x, p01x, p11x) are given by

p̂00x = P̂r{Si(0) = 0, Si(1) = 0|Xi = x} = 1− p̂+1x

=
N10x

N10x +N11x

=

∑
i 1(Zi = 1, Si(1) = 0, Xi = x)∑

i 1(Zi = 1, Xi = x)
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p̂11x = P̂ r{Si(0) = 1, Si(1) = 1|Xi = x}

=
N01x

N00x +N01x

=

∑
i 1(Zi = 0, Si(0) = 1, Xi = x)∑

i 1(Zi = 0, Xi = x)

p̂01x = P̂ r{Si(0) = 0, Si(1) = 1|Xi = x} = 1− p̂00x − p̂11x

Obviously for each x ∈ Γ, p̂00x is the proportion of non-respondents in the treatment arm

with X = x; p̂11x is the proportion of respondents in the control arm with X = x.

2) When N00x ·N11x < N01x ·N10x, p̂11x = p̂+1x. The likelihood function is given by

L(p00x, p01x, p11x|N00x, N01x, N10x, N11x)

= (1− p11x)N00x · pN01x
11x · (1− p11x)N10x · pN11x

11x

= (1− p11x)N00x+N10x · pN01x+N11x
11x

The resulting MLEs for (p00x, p01x, p11x) are given by

p̂01x = P̂ r{Si(0) = 0, Si(1) = 1|Xi = x} = 0

p̂00x = P̂r{Si(0) = 0, Si(1) = 0|Xi = x} = N+0x

N++x

=

∑
i 1(Si = 0, Xi = x)∑

i 1(Xi = x)

p̂11x = P̂ r{Si(0) = 1, Si(1) = 1|Xi = x} = N+1x

N++x

=

∑
i 1(Si = 1, Xi = x)∑

i 1(Xi = x)

Then p̂00x is the proportion of non-respondents among all subjects with X = x; p̂11x is

the proportion of respondents among all subjects with X = x.
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A.2 Proofs of Consistency of Model Parameters and Causal Estimands

Here we show our estimator β̂ is a consistent estimator for β. We first show that β̂ can

be considered as an extremum estimator as defined by Hayashi (2000). Then we prove that

the conditions set forth by Hayashi (2000) for consistency of an extremum estimator are

satisfied by our estimator. Then by Slutsky’s theorem, the causal estimand θ̂ is a consistent

estimator for θ.

Definition A.2.1 (Extremum Estimator). An estimator η̂ is an extremum estimator if

there is a function Qn(η) such that (Hayashi, 2000)

η̂ = arg max
η

Qn(η); η ∈ H.

One example of an extremum estimator is the maximum likelihood estimator where

Qn(η) =
n∏

i=1

f(xi|η).

Here we minimize the objective function,

Qn(β) =
K∑
x=0

Q(x)
n (β)

=
K∑
x=0

{ĜL(x)−
1∑

y=0

GM(x, y;β) · ĜR(x, y)}2; x ∈ Γ

which is equivalent to maximizing −Qn(β). Therefore β̂ is an extremum estimator.

Let

Q0(β) =
K∑
x=0

Q
(x)
0 (β); x ∈ Γ

where Q(x)
0 (β) = {GL(x)−

1∑
y=0

GM(x, y;β) ·GR(x, y)}2. We present sufficient conditions for

the existence of a unique local minimizer of Q0(β) in Lemma A.2.2.

Lemma A.2.2. There exists a unique local minimizer β0 for Q0(β) if:

(a) Q
(x)
0 (β0) = 0, ∀x ∈ Γ = {0, 1, 2, . . . , K}.
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(b) rank

∣∣∣∣∂Q̃0(β)

∂β

∣∣∣∣
β=β0

≥ dim(β) where Q̃0(β) = {Q(0)
0 (β), Q

(1)
0 (β), . . . , Q

(K)
0 (β)}T .

Proof. From (a) we have that β0 minimizes Q0(β) since Q0(β) ≥ 0, ∀β and Q0(β0) = 0.

Then from (b) and the Implicit Function Theorem, there exists a unique function g{GL(x),

GR(x, y)} such that g{GL(x), GR(x, y)} = β0, in the neighborhood of {GL(x), GR(x, y)}

where {GL(x), GR(x, y)} = [GL(x), GR(x, y);x ∈ {0, 1, . . . , K}, y = 0, 1]. Thus, β0 is a

unique local minimizer for Q0(β).

The proof of Theorem 3.3.5 is given as below.

Proof. From Proposition 7.1 in (Hayashi, 2000): an extremum estimator η̂ is a consistent

estimator for η if there is a function Q0(η) satisfying the following two conditions:

(I) Identification: Q0(η) is uniquely maximized on H at η0 ∈ H.

(II) Uniform convergence: Qn(·) converges uniformly in probability to Q0(·).

The condition (I) is satisfied according to Lemma A.2.2. To show that the condition (II)

is satisfied here, let

Qn(β) =
K∑
x=0

Q(x)
n (β)2

=
K∑
x=0

{ĜL(x)−
1∑

y=0

GM(x, y;β) · ĜR(x, y)}2

Q0(β) =
K∑
x=0

Q
(x)
0 (β)2

=
K∑
x=0

{GL(x)−
1∑

y=0

GM(x, y;β) ·GR(x, y)}2.
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From

|Qn(β)−Q0(β)| = |
K∑
x=0

Q(x)
n (β)2 −

K∑
x=0

Q
(x)
0 (β)2|

≤
K∑
x=0

|Q(x)
n (β)2 −Q(x)

0 (β)2|

=
K∑
x=0

|Q(x)
n (β)−Q(x)

0 (β)| · |Q(x)
n (β) +Q

(x)
0 (β)|

≤
K∑
x=0

2 · |Q(x)
n (β)−Q(x)

0 (β)|, x ∈ Γ

because 0 ≤ |Q(x)
n (β)| ≤ 1 and 0 ≤ |Q(x)

0 (β)| ≤ 1, each of which is a difference of two

probability estimates.

Therefore,

|Qn(β)−Q0(β)|

≤
K∑
x=0

2 ·
{
|ĜL(x)−GL(x)|+

1∑
y=0

GM(x, y;β) · |ĜR(x, y)−GR(x, y)|
}

≤
K∑
x=0

2 ·
{
|ĜL(x)−GL(x)|+

1∑
y=0

|ĜR(x, y)−GR(x, y)|
}

(15)

because GM(x, y;β) is a probability bounded between 0 and 1.

Since ĜL(x) and ĜR(x, y) are either sample proportions or their ratios,

ĜL(x)
p→ GL(x), as n→∞

ĜR(x, y)
p→ GR(x, y), as n→∞

As ĜL(x) and ĜR(x, y) do not involve β, from (15) we have

Qn(β)
p

=⇒ Q0(β), as n→∞

where p
=⇒ denotes uniform convergence in probability. This confirms condition (II) and

completes the proof of β̂ p→ β as n→∞.

Because the causal estimate θ̂ is a continuously differentiable function of β̂ and relevant

sample proportions, by Slutsky’s theorem, θ̂ p→ θ as n→∞.
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A.3 Calculation of True Principal Stratum Causal Effects

For the simulated data, the true average causal effect for principal stratum Si(1) = 1 can

be calculated by

E{Yi(1)− Yi(0)|Si(1) = 1} = E{Yi(1) = 1|Si(1) = 1} − E{Yi(0) = 1|Si(1) = 1}

=
Pr{Yi(1) = 1, Si(1) = 1} − Pr{Yi(0) = 1, Si(1) = 1}

Pr{Si(1) = 1}

where

Pr{Si(1) = 1} =
∑
x

{
Pr{Si(0) = 1|Xi = x} · Pr{Xi = x}

+
∑
y

[
Pr{Xi = x} · Pr{Si(0) = 0|Xi = x}

· Pr{Yi(0) = y|Si(0) = 0, Xi = x}

· Pr{Si(1) = 1|Si(0) = 0, Yi(0) = y,Xi = x}
]}

Pr{Yi(0) = 1, Si(1) = 1} =
∑
x

[
Pr{Xi = x} · Pr{Si(0) = 1|Xi = x}

· Pr{Yi(0) = 1|Si(0) = 1, Xi = x}

+ Pr{Xi = x} · Pr{Si(0) = 0|Xi = x}

· Pr{Yi(0) = 1|Si(0) = 0, Xi = x}

· Pr{Si(1) = 1|Si(0) = 0, Yi(0) = 1, Xi = x}
]

Pr{Yi(1) = 1, Si(1) = 1} =
∑
x

∑
y

[
Pr{Xi = x} · Pr{Si(0) = 1|Xi = x}

· Pr{Yi(0) = y|Si(0) = 1, Xi = x}

· Pr{Yi(1) = 1|Yi(0) = y, Si(0) = 1, Xi = x}

+ Pr{Xi = x} · Pr{Si(0) = 0|Xi = x}

· Pr{Yi(0) = y|Si(0) = 0, Xi = x}

· Pr{Si(1) = 1|Si(0) = 0, Yi(0) = y,Xi = x}

· Pr{Yi(1) = 1|Si(0) = 0, Si(1) = 1, Yi(0) = y,Xi = x}
]
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Appendix B for Chapter 3

B.1 Related Topics and Distinctions

In Section 3.2, we focused on the literature review of model averaging for ease of exposi-

tion, because the most innovated part of our method is motivated directly from this class of

work. Here we clarify the main differences among model averaging, meta-analysis, federated

learning, as well as super learner.

Model averaging: a convex averaging of models via model-specific weights (Raftery et al.,

1997; Yang, 2001; Dai and Zhang, 2011; Yao et al., 2018; Dai et al., 2018). The extension of

the weights from scalars to functions provides the best motivation for our approach.

Meta-analysis: classic in the way that it describes the site-level heterogeneity using

modeling assumptions (Whitehead, 2002; Sutton et al., 2000), rather than a more data-

driven approach such as tree models. It can be either frequentist or Bayesian, the latter

of which tends to be more useful under limited sample sizes. However, its main interest is

typically the overall effect rather than the site-level heterogeneity, which is usually modeled

by a nuisance parameter (Borenstein et al., 2011; Riley et al., 2011; Tan et al., 2018; Röver

and Friede, 2020).

Federated learning: originated from the field of computer science (McMahan et al., 2017),

federated learning is a collaborative learning procedure that ensures data privacy by exchang-

ing model parameters only. Federated learning methods often involves iterative updating

(Fallah et al., 2020; Cho et al., 2021; Smith et al., 2017; Yang et al., 2019), rather than

a one-shot procedure, which could be hard to apply to nonautomated distributed research

networks. It has been developed mainly to estimate a global prediction model by leveraging

distributed data (Li et al., 2020; Kairouz et al., 2019; Zhao et al., 2018; Hard et al., 2018),

and is not designed to target any specific site.

Super learner: an ensemble of multiple statistical and machine learning models (van

der Laan et al., 2007). It learns an optimal weighted average of those candidate models

by minimizing the cross-validated risk, and assigns higher weights to more accurate models
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(Polley and van der Laan, 2010). The final prediction on an independent testing data is the

weighted combination of the predictions of those models. Super learner has been showed

empirically to improve treatment effect estimation via the modeling of propensity score in

observational studies (Pirracchio et al., 2015; Wyss et al., 2018; Shortreed et al., 2019; Ju

et al., 2019; Tan et al., 2022d).

Mixture of experts: an ensemble learning technique that decomposes a task into multiple

subtasks with domain knowledge, followed by using multiple expert models to handle each

subtask. A gating model is then used to decide which expert to use to make future prediction

(Masoudnia and Ebrahimpour, 2014). It differs from other ensemble methods typically in

that often only a few experts will be selected for predictions, rather than combining results

from all experts (Masoudnia and Ebrahimpour, 2014).

B.2 Proof of Theorem 3.3.5

The proof of Theorem 3.3.5 closely follows arguments given in Wager and Athey (2018).

Suppose the subsamples for building each tree in an ensemble forest are drawn from different

subjects in the augmented site 1 data. Specifically, in one round of EF, we draw m samples

from the augmented data, where m is less than the rows in the augmented data, i.e., m <

(n1 ·K). By randomly picking m unique subjects from site 1 and then randomly picking a

site indicator k out of K sites for each of the m subjects. The resulted m subsamples should

not be from the same subject and are hence independent and identically distributed. As long

as m < n1, we can ensure that all the subsamples are independent. In practice, when the

ratio of n1/K is relatively large, the probability of obtaining samples from the same subject

is small.

Assume that subject features X i and the site indicator Si are independent and have a

density that is bounded away from 0 and infinity. Suppose moreover that the conditional

mean function E[T |X = x, S = k] is Lipschitz continuous. We adopt the honesty definition

in Athey and Imbens (2016) when building trees in a random forest. Honest approaches sep-

arate the training sample into two halves, one half for building the tree model, and another
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half for estimating treatment effects within the leaves (Athey and Imbens, 2016). Follow-

ing Definitions 1-5 and Theorem 3.1 in Wager and Athey (2018), the proposed estimator

T̂EF(x, 1) is a consistent estimator of the true treatment effect function τ1(x) for site 1.

B.3 Additional Simulation Results

B.3.1 Connection to Supervised Learning

Similar to ET-oracle and EF-oracle whose weights are built on the ground truth CATE

functions τk’s, we also consider for EWMA and STACK under a similar hypothetical setting.

Specifically, we assume the true τ1 is known and use it to compute the weights. This version

of EWMA estimator is denoted as EWMA-oracle and its weight is given by

ωEWMA-oracle
k =

exp{−
∑

i∈I(2)
1
(τ̂k(xi)− τ1(xi))

2}∑K
ℓ=1 exp{−

∑
i∈I(2)

1
(τ̂ℓ(xi)− τ1(xi))2}

.

Similarly, the corresponding linear stacking approach, denoted as STACK-oracle, regresses

the ground truth τ1(x) on the predictions of the estimation set in site 1 from each local

model, {τ̂1(x), . . . , τ̂k(x)}. We compare the proposed model averaging estimators with the

local estimator, MA, two versions of modified EWMA, as well as two versions of the linear

stacking approach. We present simulation results using CT as the local model and the

sample size at local sites to be n = 500. Figure 6 presents the performance of the proposed

estimators along with other competing estimators. Each series of boxes corresponds to

a different strength of global heterogeneity c. Table 8 reports the ratio between MSE of

the estimator and MSE of the local model in terms of average and standard deviation of

MSE, respectively, over 1000 replicates. Our proposed estimators ET and EF shows the

best performance overall in terms of the mean and variation of MSE among the estimators

without using the information of ground truth τ1(x). Comparing with ET, EF has a slightly

smaller MSE when c is large, which is expected because forest models tend to be more stable

and accurate than a single tree. ET-oracle achieves minimal MSE for low and moderate

degrees of heterogeneity while EF-oracle has the minimal MSE under all settings. The local
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estimator (LOC) in general shows the largest MSE compared to other estimators, as it

does not leverage information from other sites. By borrowing information from additional

sites, variances are greatly reduced, resulting in a small MSE of ensemble estimators. MA

that naively adopts the inverse of sample size as weights performs well under low levels of

heterogeneity, but suffers from a huge MSE with large variation as c increases. EWMA

estimators perform slightly better and are more stable than LOC and MA. EWMA-oracle

has better performance than EWMA in all settings as the information of true CATE is

used for weight construction. STACK estimators performs better than EWMA estimators.

Similarly, STACK-oracle performs better than STACK in all settings. STACK-oracle, with

ground truth τ1(x) available, outperforms ET and EF when there exists a moderate to high

level of heterogeneity across sites.

B.3.2 Various Sample Sizes in Local Sites

We provide detailed simulation results varying n (100, 500, 1000) with CT as the local

model. Figure 7 and Figure 8 show box plots of simulation results with a sample size of

100 and 1000, respectively, at each site. Our proposed methods ET and EF show robust

performance in all settings. ET-oracle and EF-oracle achieve close-to-zero MSE with very

small spreads in some settings. Figure 9 shows plots of the bias and MSE of EF-oracle

varying sample size at each site (n = 100, 500, 1000). As the sample size increases, both bias

and MSE of EF-oracle reduce to zero. Consistency of EF-oracle can be shown via simulation

when perfect estimates are obtained from local models. Meanwhile, our proposed method

greatly reduce MSE by selectively borrowing information from multiple sites.

B.3.3 Simulations under Observational Studies

We also consider the treatment generation mechanism under an observational design.

Specifically, the propensity is given as e(x) = expit(0.6x1). We consider both a correctly

specified propensity model using a logistic regression of Z onX1 and a misspecified propensity

model with a logistic regression of Z on all X. Figure 10 and Figure 11 show box plots of

simulation results. In general, the proposed estimators obtain the best performance with
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similar results are obtained as in the Figure 3. With the correctly specified propensity score

model, the local estimator is consistent in estimating τk(x), the proposed framework is valid.

When the propensity model misspecified, extra uncertainty is carried forward from the local

estimates, but the proposed estimators can improve upon the local models. This is due to a

bias-and-variance trade-off that guarantees small MSE in prediction, which remains smaller

than those from local estimators.

B.3.4 Covariate Dimensions

We consider various choices of covariate dimensions besides D = 5. Specifically, we also

try D = 20 and D = 50. Figure 12 and Figure 13 show box plots of simulation results. With

a higher dimension of variables, the MSE ratio between the proposed estimates and LOC

estimates increases than that in the scenario with a small dimension.

B.3.5 Unequal Sample Size at Each Site

In the distributed date network, different sites may have a different sample size nk. Those

with a smaller sample size may not be representative of their population, leading to an uneven

level of precision for local causal estimates. We consider a simulation setting where site 1

has a sample size of n1 = 500 while other site n2, . . . , nK has a sample size of 200. Figure 14

shows box plots of simulation results. Results show that the MSE ratio between the proposed

estimates and LOC estimates increases compared to the scenario where the sample size in all

sites are 500. However, the proposed estimators still enjoy the most robust performance via

bias-and-variance trade-off. This also shows our method is robust to the existence of local

uncertainty.

B.3.6 Different Local Estimators

We explore another option for the local model using the causal forest (CF) (Wager and

Athey, 2018) varying the sample size at local sites. A causal forest is a stochastic averaging

of multiple causal trees (Athey and Imbens, 2016), and hence is more powerful in estimating
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treatment effects. In each tree of the causal forest, MSE of treatment effect is used to select

the feature and cutoff point in each split (Wager and Athey, 2018). CF is implemented in

the R packages grf. Figure 15, Figure 16, and Figure 17 show box plots of simulation results

with a sample size of 100, 500, and 1000, respectively, at each site. Our proposed methods

ET and EF show robust performance in all settings regardless of the use of information of

the ground truth τ1(x).

B.3.7 Further Comparisons to Non-adaptive Ensemble

We provide simulation results to compare the proposed methods to the non-adaptive

method STACK. Consider the following setting where the heterogeneity is continuous and

nonlinear: τ(x, k) = 1{x1 > 0}·x1+(x1−3)·(Uk)
c, with Uk ∼ Unif [0, 3], X i ∼ N(0, I5), and

c = (1, 2, 3, 4). As c increases, the heterogeneity across sites gets larger, reducing the influence

of x1 on heterogeneity, hence the weights become more non-adaptive. For c = (1, 2, 3, 4),

the one-SD ranges of MSE ratios of EF over STACK are [0.73,0.82], [0.86,0.87], [0.99,1.04],

[0.87,1.07], respectively. When c is relatively small, the proposed EF has a smaller MSE

compared to STACK. As c increases, the performance of EF is similar to that of STACK, in

the case of a large global heterogeneity. This further indicates the robustness of the proposed

methods.
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Figure 6: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT) and

a sample size of 500 at each site for (a) discrete grouping and (b) continuous grouping across

site, respectively, varying scale of global heterogeneity. Estimators ending with “-oracle"

makes use of ground truth treatment effects. Different colors imply different estimators, and

x-axis, i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted

line denotes an MSE ratio of 1. MA performance is truncated due to large MSE ratios.

The proposed ET and EF achieve competitive performance compared to standard model

averaging or ensemble methods and are robust to heterogeneity across settings. Note that

ET-oracle and EF-oracle achieve close-to-zero MSE ratios with very small spreads in some

settings.
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Table 8: Simulation results for ratio between MSE of the estimator and MSE of LOC (CT)

with a sample size of 500 at each site. A smaller number indicates larger improvement

over the local model. Estimators ending with “-oracle" makes use of ground truth treatment

effects. Our proposed methods ET and EF shows robust performance in all settings whether

or not using the information of ground truth τ1(x).

Discrete grouping Continuous grouping

Estimator c = 0 c = 0.2 c = 0.6 c = 1 c = 0 c = 0.2 c = 0.6 c = 1

Ratio of average of MSEs over 1000 replicates

MA 0.09 0.91 2.4 9.87 0.08 0.32 0.65 1.78

EWMA 0.57 0.62 0.61 0.62 0.56 0.65 0.7 0.77

EWMA-oracle 0.42 0.5 0.49 0.5 0.42 0.49 0.53 0.59

STACK 0.44 0.45 0.44 0.45 0.45 0.45 0.48 0.54

STACK-oracle 0.06 0.04 0.04 0.04 0.06 0.06 0.06 0.07

ET 0.12 0.17 0.16 0.16 0.13 0.24 0.29 0.37

ET-oracle <0.01 <0.01 <0.01 <0.01 <0.01 0.08 0.1 0.07

EF 0.1 0.13 0.13 0.13 0.1 0.19 0.25 0.3

EF-oracle <0.01 <0.01 <0.01 <0.01 <0.01 0.06 0.06 0.05

Ratio of standard deviation of MSEs over 1000 replicates

MA 0.15 0.35 0.76 3.05 0.14 0.24 0.38 0.81

EWMA 0.61 0.65 0.67 0.66 0.58 0.65 0.69 0.75

EWMA-oracle 0.46 0.52 0.54 0.54 0.44 0.52 0.55 0.6

STACK 0.47 0.46 0.47 0.47 0.45 0.49 0.52 0.6

STACK-oracle 0.1 0.08 0.08 0.08 0.09 0.11 0.12 0.14

ET 0.18 0.23 0.22 0.22 0.18 0.26 0.32 0.43

ET-oracle 0.02 0.03 0.02 0.02 0.02 0.06 0.07 0.07

EF 0.17 0.19 0.19 0.2 0.17 0.23 0.29 0.39

EF-oracle 0.03 0.03 0.03 0.03 0.03 0.06 0.07 0.08
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Figure 7: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT) and

a sample size of 100 at each site for (a) discrete grouping and (b) continuous grouping across

site, respectively, varying scale of global heterogeneity. Estimators ending with “-oracle"

makes use of ground truth treatment effects. Different colors imply different estimators, and

x-axis, i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted

line denotes an MSE ratio of 1. MA performance is truncated due to large MSE ratios.

The proposed ET and EF achieve competitive performance compared to standard model

averaging or ensemble methods and are robust to heterogeneity across settings. Note that

ET-oracle and EF-oracle achieve close-to-zero MSE ratios with very small spreads in some

settings.
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Figure 8: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT) and

a sample size of 1000 at each site for (a) discrete grouping and (b) continuous grouping across

site, respectively, varying scale of global heterogeneity. Estimators ending with “-oracle"

makes use of ground truth treatment effects. Different colors imply different estimators, and

x-axis, i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted

line denotes an MSE ratio of 1. MA performance is truncated due to large MSE ratios.

The proposed ET and EF achieve competitive performance compared to standard model

averaging or ensemble methods and are robust to heterogeneity across settings. Note that

ET-oracle and EF-oracle achieve close-to-zero MSE ratios with very small spreads in some

settings.
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Figure 9: Plots of the bias and MSE of EF-oracle varying sample site at each site for (a)

discrete grouping and (b) continuous grouping across site, varying scale of global heterogene-

ity. Both bias and MSE reduces to zero as the sample size increases.
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Figure 10: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT) and

a sample size of 500 at each site under observational design with a correctly specified

propensity score model for (a) discrete grouping and (b) continuous grouping across site,

respectively, varying scale of global heterogeneity. Estimators ending with “-oracle" makes

use of ground truth treatment effects. Different colors imply different estimators, and x-axis,

i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted line denotes

an MSE ratio of 1. MA performance is truncated due to large MSE ratios. The proposed ET

and EF achieve competitive performance compared to standard model averaging or ensemble

methods and are robust to heterogeneity across settings. Note that ET-oracle and EF-oracle

achieve close-to-zero MSE ratios with very small spreads in some settings.
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Figure 11: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT)

and a sample size of 500 at each site under observational design with a misspecified

propensity score model for (a) discrete grouping and (b) continuous grouping across site,

respectively, varying scale of global heterogeneity. Estimators ending with “-oracle" makes

use of ground truth treatment effects. Different colors imply different estimators, and x-axis,

i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted line denotes

an MSE ratio of 1. MA performance is truncated due to large MSE ratios. The proposed ET

and EF achieve competitive performance compared to standard model averaging or ensemble

methods and are robust to heterogeneity across settings. Note that ET-oracle and EF-oracle

achieve close-to-zero MSE ratios with very small spreads in some settings.
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Figure 12: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT)

and a sample size of 500 at each site, and covariate dimension of 20 for (a) discrete grouping

and (b) continuous grouping across site, respectively, varying scale of global heterogeneity.

Estimators ending with “-oracle" makes use of ground truth treatment effects. Different col-

ors imply different estimators, and x-axis, i.e., the value of c, differentiates the scale of global

heterogeneity. The red dotted line denotes an MSE ratio of 1. MA performance is truncated

due to large MSE ratios. The proposed ET and EF achieve competitive performance com-

pared to standard model averaging or ensemble methods and are robust to heterogeneity

across settings. Note that ET-oracle and EF-oracle achieve close-to-zero MSE ratios with

very small spreads in some settings.
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Figure 13: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT)

and a sample size of 500 at each site, and covariate dimension of 50 for (a) discrete grouping

and (b) continuous grouping across site, respectively, varying scale of global heterogeneity.

Estimators ending with “-oracle" makes use of ground truth treatment effects. Different col-

ors imply different estimators, and x-axis, i.e., the value of c, differentiates the scale of global

heterogeneity. The red dotted line denotes an MSE ratio of 1. MA performance is truncated

due to large MSE ratios. The proposed ET and EF achieve competitive performance com-

pared to standard model averaging or ensemble methods and are robust to heterogeneity

across settings. Note that ET-oracle and EF-oracle achieve close-to-zero MSE ratios with

very small spreads in some settings.
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Figure 14: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CT)

and a sample size of 500 at site 1, and a sample size of 200 at other sites for (a) discrete

grouping and (b) continuous grouping across site, respectively, varying scale of global het-

erogeneity. Estimators ending with “-oracle" makes use of ground truth treatment effects.

Different colors imply different estimators, and x-axis, i.e., the value of c, differentiates the

scale of global heterogeneity. The red dotted line denotes an MSE ratio of 1. MA perfor-

mance is truncated due to large MSE ratios. The proposed ET and EF achieve competitive

performance compared to standard model averaging or ensemble methods and are robust to

heterogeneity across settings. Note that ET-oracle and EF-oracle achieve close-to-zero MSE

ratios with very small spreads in some settings.
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Figure 15: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CF) and

a sample size of 100 at each site for (a) discrete grouping and (b) continuous grouping across

site, respectively, varying scale of global heterogeneity. Estimators ending with “-oracle"

makes use of ground truth treatment effects. Different colors imply different estimators, and

x-axis, i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted

line denotes an MSE ratio of 1. MA performance is truncated due to large MSE ratios.

The proposed ET and EF achieve competitive performance compared to standard model

averaging or ensemble methods and are robust to heterogeneity across settings. Note that

ET-oracle and EF-oracle achieve close-to-zero MSE ratios with very small spreads in some

settings.
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Figure 16: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CF) and

a sample size of 500 at each site for (a) discrete grouping and (b) continuous grouping across

site, respectively, varying scale of global heterogeneity. Estimators ending with “-oracle"

makes use of ground truth treatment effects. Different colors imply different estimators, and

x-axis, i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted

line denotes an MSE ratio of 1. MA performance is truncated due to large MSE ratios.

The proposed ET and EF achieve competitive performance compared to standard model

averaging or ensemble methods and are robust to heterogeneity across settings. Note that

ET-oracle and EF-oracle achieve close-to-zero MSE ratios with very small spreads in some

settings.
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Figure 17: Box plots of the MSE ratios of CATE estimators, respectively, over LOC (CF) and

a sample size of 1000 at each site for (a) discrete grouping and (b) continuous grouping across

site, respectively, varying scale of global heterogeneity. Estimators ending with “-oracle"

makes use of ground truth treatment effects. Different colors imply different estimators, and

x-axis, i.e., the value of c, differentiates the scale of global heterogeneity. The red dotted

line denotes an MSE ratio of 1. MA performance is truncated due to large MSE ratios.

The proposed ET and EF achieve competitive performance compared to standard model

averaging or ensemble methods and are robust to heterogeneity across settings. Note that

ET-oracle and EF-oracle achieve close-to-zero MSE ratios with very small spreads in some

settings.
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B.4 Additional Results for Data Application

In real-life applications, hospitals may have different sample sizes nk that may affect the

accuracy of the estimation of τk. Table 9 shows hospital-level information for the 20 hospitals

where the number of patients across sites varies. Information includes the region of the U.S.

where the hospital is located, whether it is a teaching hospital, the bed capacity, and the

number of patients within the hospital.

Hospitals with a smaller sample size may not be representative of the population, leading

to an uneven level of precision for local causal estimates. To account for different sample

sizes at each hospital, we consider a basic weighting strategy where we add weights to each

observation τ̂k(x) in the augmented site 1 data adjusting for the sample size of site k. The

weights are defined as ηk(x) = Knk{
∑K

j=1 nj}−1.

Figure 18 visualizes the performance of oxygen therapy on hospital survival with the

weighting strategy adopted. CT is used as the local model with propensity score modeled

by a logistic regression. Figure 18(a) shows the propensity score-weighted average survival

for those whose received treatment is consistent with the estimated decision. Treatment rule

based on our method can increase survival by 4%, more promising than the EF estimates

without the weighting strategy and the LOC and the baseline. The weighting strategy takes

account into the unequal sample size among the hospital network, and assign weights based

on precision of local estimates.

In the fitted EF, the hospital indicator remains the most important, explaining about

48% of the decrease in training error. Figure 18(b) shows the estimated CATEs varying two

important features, BMI and oxygen therapy duration. Patients with BMI between 36 and 40

and duration above 400 show the most benefit from oxygen therapy in the target SpO2 range.

Patients with BMI between 20 and 30 and duration between 100 and 400 may not benefit

from such alteration. The treatment estimates are similar to that in Figure 5(b) Figure 18(c)

visualizes the proposed model averaging scheme with data-adaptive weights ωk(x) in the

fitted EF with respect to BMI for different models, while holding other variables constant.

The weights of hospital 1 are quite stable while models from other sites may have different

contribution to the weighted estimator for different values of BMI. Similar to Figure 5(c),
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Table 9: Hospital-level information of our analysis cohort in eICU database. Hospitals are

relabeled according to their average contribution to the estimation task at hospital 1, the

target site.

Hospital Number of Number of Number of Bed Teaching
Region

site patients control treated capacity status

1 477 205 272 ≥ 500 False South

2 297 109 188 ≥ 500 True West

3 163 58 105 ≥ 500 True Midwest

4 222 58 164 ≥ 500 False South

5 659 165 494 ≥ 500 True Midwest

6 305 174 131 ≥ 500 False South

7 347 109 238 ≥ 500 True Midwest

8 523 162 361 ≥ 500 False South

9 210 78 132 Unknown False Unknown

10 379 161 218 ≥ 500 True Midwest

11 234 70 164 ≥ 500 True Midwest

12 747 185 562 ≥ 500 True Northeast

13 464 129 335 ≥ 500 True South

14 474 229 245 ≥ 500 False South

15 166 64 102 100 - 249 False Midwest

16 388 94 294 ≥ 500 False Midwest

17 435 240 195 ≥ 500 True South

18 200 55 145 250 - 499 False South

19 183 52 131 250 - 499 False West

20 149 71 78 250 - 499 False South
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hospitals with a larger bed capacity tend to be similar to hospital 1, and are shown to provide

larger contributions. In general, the weighting strategy helps further improve the expected

survival rate. The patterns in each subfigure are similar to Figure 5, which indicates the

robustness of our proposed estimators. We do stress that improvements to the weighting

strategy for different sample sizes at each site are needed. A strategy considering both

treatment proportion as well as covariate distributions across sites may further enhance the

data-adaptive model averaging estimator.
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Figure 18: Application to estimating treatment effects of oxygen therapy on survival with

a sample size weighting strategy. (a) Expected survival of treatment decision following

different estimators. (b) Estimated treatment effects varying duration and BMI, two impor-

tant features in the fitted EF. (c) Visualization of data-adaptive weights in EF varying BMI.

B.5 Real Data Access

Although the eICU data used in our application example cannot be shared subject to

the data use agreement, access can be individually requested at https://eicu-crd.mit.

edu/gettingstarted/access/.
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Appendix C for Chapter 4

C.1 Additional Literature Review

Typical model-based methods for deriving IDRs include Q-learning such as (Watkins

and Dayan, 1992; Murphy, 2003; Moodie et al., 2007; Chakraborty et al., 2010; Goldberg

and Kosorok, 2012; Song et al., 2015) and A-learning such as (Robins et al., 2000; Murphy,

2005) where a model of responses is imposed and the optimal decision rule is obtained by

optimizing value function derived from the model. Model-based methods posit a model

of responses given observed covariates and treatment assignments, and obtain the optimal

IDR by optimizing the corresponding value function derived from the model. Q-learning

optimizes the corresponding value function derived from a parametric model of responses

given observed covariates and treatment assignments, and it results in an optimal decision

rule. A-learning is a semiparametric method, which derives from a model that directly

describes the difference between treatments, with the baseline remaining unspecified. On

the other hand, model-free methods such as Robins et al. (2008); Orellana et al. (2010a,b);

Zhang et al. (2012); Zhao et al. (2012, 2015) assign values to actions simply through trial

and error without pre-specifying a model. Besides, contextual bandit methods (see Bietti

et al. (2021) and references therein) test out different actions and automatically learn which

one has the most rewarding outcome for a given situation. Other methods include (Robins,

2004; Moodie et al., 2009; Cai et al., 2011; Henderson et al., 2010; Thall et al., 2002; Imai

and Ratkovic, 2013; Huang et al., 2015; Tao and Wang, 2017). See (Chakraborty et al.,

2010; Chakraborty and Moodie, 2013; Laber et al., 2014; Kosorok and Moodie, 2015) and

references therein for a comprehensive review on general IDRs under causal settings.

C.2 Proofs of Propositions

Here we show proofs of Propositions 4.3.4 and 4.3.5 in Section 4.3.4.
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Proof of Proposition 4.3.4. We observe that to maximize the objective function in (12) is

equivalent to maximizing

EX

[
GS|X{E(Y |X,S,A = d(X))}|X

]
= EX

[
GS|X{E(Y |X,S,A = 1)}1(d(X) = 1)

+GS|X{E(Y |X,S,A = −1)1(d(X) = −1)}
]

= EX

{
1(d(X) = 1)[GS|X{E(Y |X,S,A = 1)} −GS|X{E(Y |X,S,A = −1)}]

+GS|X{E(Y |X,S,A = −1)}
}

∝ EX

{
1(d(X) = 1)[GS|X{E(Y |X,S,A = 1)} −GS|X{E(Y |X,S,A = −1)}]

}
.

Proof of Proposition 4.3.5. Let d(x) = sgn{f(x)}, by this transformation, we consider the

following objective on a smooth function f(x),

argmaxd∈D
1

n

n∑
i=1

{
1(d(xi) = 1)[g1(xi)− g2(xi)]

}
= argmaxf

1

n

n∑
i=1

1[sgn{f(xi)} = 1] · [g1(xi)− g2(xi)]

= argminf

1

n

n∑
i=1

1{1 · f(xi) < 0} · [g1(xi)− g2(xi)]

= argminf

1

n

n∑
i=1

1[sgn{g1(xi)− g2(xi)} · f(xi) < 0] · |g1(xi)− g2(xi)|.

The sign of the estimated f above is a d to (13).

Hence, the proposed classification-based objective is to minimize

1

n

n∑
i=1

1[sgn{g1(xi)− g2(xi)} · f(xi) < 0] · |g1(xi)− g2(xi)|.

To this point, we have transformed the optimization problem (12) into a weighted classifica-

tion problem where for subject i with features xi, the true label is sgn{g1(xi)− g2(xi)} and

the sample weight is |g1(xi)− g2(xi)|.
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C.3 Details on Modeling and Hyperparameter Tuning

In our implementation, neural networks with mean or quantile losses are used to fit the

models with hyperparameters tuned via a 5-fold cross validation in the training data sets.

Specifically, implemented in TensorFlow (Abadi et al., 2016), neural networks with mean

squared loss is used to model E(Y |X,S,A) separated by the control arm and the treatment

arm, respectively. For continuous S, to model QS|X,A{E(Y |X,S,A)}, neural networks with

quantile loss is used with a prespecified τ , for the control arm and the treatment arm,

respectively. In the final weighted classification model, neural networks with cross-entropy

loss is used. Note that the model choices here are flexible. One can perform model selection

if they would like to.

Hyperparameter tuning helps prevent overfitting and is essential in machine learning

methods or other black-box algorithms such as neural networks. In our implementation, the

optimal hyperparameters are obtained via a 5-fold cross validation in the training data sets.

Specifically, we consider the number of hidden layers (1, 2, and 3 layers), the number of

hidden units in each layer (256, 512, and 1024 nodes), activation function (RELU, Sigmoid,

and Tanh), optimizer (Adam, Nadam, and Adadelta), dropout rate (0.1, 0.2, and 0.3),

number of epochs (50, 100, and 200), and batch size (32, 64, and 128).

C.4 Additional Simulations

C.4.1 Different Quantile Criteria

For the quantile criteria, we also consider τ = 0.1 and 0.5, respectively. Table 10 presents

the simulation results for Example 2 with continuous S using 0.1 quantile criterion and 0.5

quantile criterion, respectively. Results show that when τ is small, there is more strength in

the proposed method, as the algorithm aims to improve the worst-outcome scenarios. The

proposed RISE has the largest gain in objective and value among vulnerable subjects when

τ is 0.1, and has similar performance as the compared approaches when τ is 0.5.
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C.4.2 S as a Noise Variable

We generate the outcome Y using the following model where S is not involved: Y =

1(X1 ≤ 0.5){8 + 121(A = 1) + 16 exp(X2) − 261(A = 1)X2} + 1(X1 > 0.5){13 + 31(Ai =

1) + 2 exp(X2) − 81(A = 1)X2} + ϵ, where Xj ∼ U(0, 1), j = 1, 2, A ∼ Bernoulli(0.5),

and ϵ ∼ N(0, 1). For continuous S, S = expit{−2.5(1 − X1 − X2)}; for discrete S, we

consider a binary S that satisfies log{P (S = 1|X)/P (S = 0|X)} = −2.5(1 − X1 − X2).

Table 11 summarizes the performance of the proposed IDRs compared to the mean criterion

for Example 2. The estimated objective and value function are similar for the compared

IDRs, which indicates the robustness of the proposed RISE.

C.4.3 Violations of Causal Assumptions

To further test the robustness of the proposed RISE, we consider scenarios where the

causal ssumptions in Section 4.3.1 may not hold. To test the violation of positivity assump-

tion in Assumption 4.3.2, using the same setting as in Example 2, we consider an extreme

propensity score, or the probability of being treated given X and S. Specifically, we let A

satisfy log{P (Ai = 1|Xi)/P (A = 0|Xi)} = −1.2(−Si +Xi1 −Xi2 +Xi3 −Xi4 +Xi5 −Xi6).

To test the unconfoundedness assumption in Assumption 4.3.3, a random normal noise,

e ∼ N(0, 1) is added to X1 in the setting of Example 2. The simulation results are presented

in Table 12 and Table 13 respectively.
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Table 10: Simulation results for Example 2 with continuous S using 0.1 quantile criterion

and 0.5 quantile criterion, respectively. Standard error in parenthesis. The proposed RISE

has more strengths when τ is small, as the algorithm aims to improve the worst-outcome

scenarios.

Type of S τ IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

Cont. 0.1

Base 7.93 (0.03) 7.92 (0.03) 17.7 (0.02) 8.64 (0.07)

Exp 8.88 (0.05) 8.85 (0.05) 17.8 (0.02) 10.6 (0.12)

RISE 13.8 (0.01) 13.7 (0.02) 16.9 (0.01) 20.9 (0.03)

PT-Base 6.97 (0.02) 6.95 (0.02) 17.9 (0.03) 6.65 (0.04)

PT-Exp 7.11 (0.02) 7.08 (0.03) 18.0 (0.03) 6.96 (0.05)

Cont. 0.5

Base 17.3 (0.04) 17.2 (0.04) 17.7 (0.02) 23.8 (0.19)

Exp 17.2 (0.03) 17.4 (0.03) 17.8 (0.02) 22.1 (0.17)

RISE 17.4 (0.04) 17.4 (0.04) 17.8 (0.02) 24.0 (0.22)

PT-Base 17.3 (0.05) 17.3 (0.05) 18.0 (0.03) 23.9 (0.26)

PT-Exp 17.4 (0.05) 17.4 (0.05) 18.1 (0.03) 24.0 (0.25)

101



Table 11: Simulation results for scenario when S is a noise variable. Vulnerable subjects

cannot be defined as S is not important in the example. The estimated objective and value

function are similar for the compared IDRs, which indicates the robustness of the proposed

RISE.

Type of S IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

Disc.

Base 27.5 (0.03) - 27.5 (0.06) -

Exp 27.5 (0.03) - 27.5 (0.06) -

RISE 27.5 (0.03) - 27.5 (0.06) -

PT-Base 27.5 (0.02) - 27.5 (0.03) -

PT-Exp 27.5 (0.02) - 27.5 (0.03) -

Cont.

Base 27.2 (0.04) - 27.3 (0.07) -

Exp 27.2 (0.04) - 27.3 (0.07) -

RISE 27.2 (0.04) - 27.3 (0.07) -

PT-Base 27.2 (0.04) - 27.3 (0.07) -

PT-Exp 27.2 (0.04) - 27.3 (0.07) -
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Table 12: Simulation results for Example 2 where the positivity assumption in Assump-

tion 4.3.2 is nearly violated. Standard error in parenthesis.

Type of S IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

Disc.

Base 10.0 (0.03) 11.1 (0.03) 19.3 (0.02) 16.1 (0.04)

Exp 8.80 (0.03) 9.77 (0.04) 19.5 (0.02) 13.6 (0.04)

RISE 13.5 (0.01) 14.0 (0.01) 17.3 (0.01) 22.0 (0.02)

PT-Base 9.88 (0.03) 10.7 (0.04) 18.9 (0.02) 15.4 (0.05)

PT-Exp 8.42 (0.03) 9.14 (0.04) 19.1 (0.02) 12.4 (0.05)

Cont.

Base 11.5 (0.03) 11.5 (0.04) 17.5 (0.03) 13.1 (0.04)

Exp 10.4 (0.04) 10.4 (0.05) 17.8 (0.04) 10.3 (0.05)

RISE 14.3 (0.01) 14.3 (0.02) 16.9 (0.01) 20.4 (0.02)

PT-Base 11.0 (0.04) 10.9 (0.04) 17.7 (0.02) 11.8 (0.04)

PT-Exp 9.63 (0.03) 9.61 (0.03) 18.0 (0.02) 8.38 (0.03)
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Table 13: Simulation results for Example 2 where the unconfoundedness assumption in

Assumption 4.3.3 is violated. Standard error in parenthesis.

Type of S IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

Disc.

Base 7.65 (0.04) 8.44 (0.05) 19.3 (0.03) 11.1 (0.06)

Exp 8.94 (0.05) 9.91 (0.06) 19.4 (0.02) 13.9 (0.06)

RISE 13.5 (0.01) 14.0 (0.01) 17.4 (0.01) 22.1 (0.02)

PT-Base 6.84 (0.03) 7.35 (0.04) 18.9 (0.03) 8.91 (0.05)

PT-Exp 7.95 (0.05) 8.62 (0.06) 19.1 (0.03) 11.4 (0.06)

Cont.

Base 9.58 (0.03) 9.58 (0.03) 17.9 (0.02) 8.33 (0.05)

Exp 10.2 (0.04) 10.2 (0.04) 17.8 (0.02) 9.83 (0.06)

RISE 14.2 (0.01) 14.1 (0.02) 16.9 (0.01) 20.1 (0.03)

PT-Base 9.27 (0.02) 9.26 (0.03) 17.9 (0.02) 7.51 (0.03)

PT-Exp 9.34 (0.02) 9.34 (0.03) 18.0 (0.02) 7.72 (0.03)
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C.5 Additional Information and Results for Real-data Applications

C.5.1 Data Availability

The access of the job training dataset (LaLonde, 1986) is available at https://users.

nber.org/~rdehejia/data/.nswdata2.html. The access of the ACTG175 dataset (Ham-

mer et al., 1996) is available from the R package speff2trial. The third dataset (Seymour

et al., 2016) is not publicly available. All real data used in the chapter are deidentified with

no personal information.

C.5.2 Additional Background on the Sepsis Application

Sepsis is leading cause of acute hospital mortality and commonly results in multi-organ

dysfunction among ICU patients (Sakr et al., 2018; Onyemekwu et al., 2022). Clinically,

treatment decisions for sepsis patients are needed to be made within a short period of time

due to the rapid deterioration of patient conditions. Lactate and the Sequential Organ

Failure Assessment (SOFA) score have been two important indicators of sepsis severity and

has been found to be more useful for predicting the outcome of sepsis than other clinical vitals

and comorbidity scores (Howell et al., 2007; Krishna et al., 2009; Shankar-Hari et al., 2016;

Machicado et al., 2021). Typically, information of baseline patient characteristics such as age,

gender, race, and weight, and common vital signs such as usage of mechanical ventilation,

respiratory rate, temperature, intravenous fluids, Glasgow Coma Scale score, platelets, blood

urea nitrogen, white blood cell counts, glucose, and creatinine are obtained at the admission

of patients. On the other hand, SOFA score combines performance of several organ systems

in the body such as neurologic, blood, liver, and kidney (Seymour et al., 2016; Liu et al., 2019)

and cannot be obtained directly. Lactate labs measures the level of lactic acid in the blood

(Andersen et al., 2013) and are less common in routine examination, which could be delayed

in ordering. Hence, their information may not be available by the time of treatment decision

due to multiple reasons including doctors’ delayed ordering, long laboratory processing time,

or the rapid deterioration of development of sepsis, which poses tremendous difficulties for

early diagnosis and treatment decisions within a short time. According to the new definition
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of Sepsis-3 (Shankar-Hari et al., 2016), a serum lactate level >2 mmol/L is considered to

be in critical conditions and is highly likely to indicate a septic shock. Also, a SOFA score

greater than 6 has been associated with a higher mortality (Vincent et al., 1996; Ferreira

et al., 2001).

C.5.3 Visualizations

Here we provide visualizations of features that are important in the estimated decision

rules for the three real-data applications in Section 4.4.2. The Shapely additive explanations

(SHAP) (Lundberg and Lee, 2017) is considered to be a united approach to explaining

the predictions of any machine learning or black-box models. Figure 19, Figure 20, and

Figure 21 presents the SHAP variable importance plots in the final weighted classification

model by RISE and Exp, respectively, for the three real-data applications. Correlations

between the feature and their SHAP value are highlighted in color. The red color means

a feature is positively correlated with assigning treatment A = 1 and the blue indicates a

negative correlation. Overall, the direction of correlation is similar for RISE and Exp, but

their ranking of feature importance may be different.

Fairness in a job training program. Figure 19 presents the SHAP variable impor-

tance plots in the final weighted classification model by RISE and Exp, respectively. We

observe that whether having a high school diploma and income in 1974 are two important

features in the variable important plot by RISE, while incomes in 1974 and in 1975 are im-

portant by Exp. It seems that being no degree and low income in 1974 has a higher chance

of assigning A = 1 (to receive the job training program) by RISE, while low income in 1974

and but a higher income in 1975 may be associated with assigning A = 1 by Exp.

Improvement of HIV treatment. Figure 20 presents the SHAP variable importance

plots in the final weighted classification model by RISE and Exp, respectively. We observe

that age and CD4 T-cell counts are two important features in the variable important plot

by RISE, while weight and number of days of previously received antiretroviral therapy are

important by Exp. It seems that being of a younger age and high CD4 T-cell count has

a higher chance of assigning A = 1 (zidovudine combined with didanosine) by RISE, while
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being of a larger weight and few days of previously received antiretroviral therapy may be

associated with assigning the treatment by Exp.

Safe resuscitation for patients with sepsis. Figure 21 presents the SHAP variable

importance plots in the final weighted classification model by RISE and Exp, respectively.

We observe that Glasgow Coma Scale score, age, and platelets appears to be important

features in both the plot by RISE and that by Exp. Other important features in the plot by

RISE include temperature and blood urea nitrogen, where in the plot by Exp, respiratory

rate and white blood cell counts are of top importance. Being in a low temperature with a

high blood urea nitrogen tends to be predicted as A = 1 (to assign vasopressors) by RISE

while being of higher respiratory rate with high white blood cell counts tends to be predicted

as A = 1 by Exp.

C.6 Causal and Decision Diagrams

We provide a causal diagram and a decision diagram under consideration, respectively,

in Figure 22. As the causal diagram shows, both X and S confound the effect of treatment

A on outcome Y . The arrows represent the causal relationship between variables. Hence,

both X and S should be used for decision making in general. On the other hand, in the

decision diagram under our setting, sensitive variables S is shown in a dotted circle as S may

not be readily available at the time of decision making. We connect S and A with a dotted

arrow to indicate that S is incorporated during model training of the decision rule, but not

model deployment. Hence, the decision rule d only maps X to the treatment option, i.e.,

A = d(X).

107



0.00 0.05 0.10 0.15 0.20
SHAP Value (Red = Positive Impact)

re75

race

married

educ

re74

nodegree
Va

ria
bl

e

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
SHAP Value (Red = Positive Impact)

race

educ

nodegree

married

re75

re74

Va
ria

bl
e

(b)

Figure 19: Visualization for the job training program: SHAP variable importance plots for

decision rules RISE (a) and Exp (b), respectively. Covariates (X) are ranked by variable

importance in descending order. Correlations between the feature and their SHAP value are

highlighted in color. The red color means a feature is positively correlated with assigning

treatment A = 1 and the blue indicates a negative correlation.
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Figure 20: Visualization for the ACTG175 dataset: SHAP variable importance plots for

decision rules RISE (a) and Exp (b), respectively. Covariates (X) are ranked by variable

importance in descending order. Correlations between the feature and their SHAP value are

highlighted in color. The red color means a feature is positively correlated with assigning

treatment A = 1 and the blue indicates a negative correlation.
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Figure 21: Visualization for the sepsis data: SHAP variable importance plots for decision

rules RISE (a) and Exp (b), respectively. Covariates (X) are ranked by variable importance

in descending order. Correlations between the feature and their SHAP value are highlighted

in color. The red color means a feature is positively correlated with assigning treatment

A = 1 and the blue indicates a negative correlation.
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(a) (b)

Figure 22: (a) Causal diagram. Both X and S confound the effect of treatment A on

outcome Y . The arrows represent the causal relationship between variables. Hence, both

X and S should be used for decision making in general. (b) Decision diagram. Sensitive

variables S is shown in a dotted circle as S may not be readily available at the time of decision

making. We connect S and A with a dotted arrow to indicate that S is incorporated during

model training of the decision rule, but not model deployment. Hence, the decision rule d

only maps X to the treatment option, i.e., A = d(X).
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