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The Universe is full of a zoo of galaxies that serve as beacons tracing the underlying

structure of dark matter in the Universe. Galaxies exhibit a diverse array of structural

properties and observed brightnesses, all of which provide clues to their evolution and the

underlying structure of space. The galaxy in which we reside, the Milky Way, provides

an exclusive opportunity for testing models of galaxy formation and cosmology courtesy of

our proximity to the stars and dust that shape the Galaxy. Data-model comparisons of

Milky Way observations to simulations, and observations of Milky Way-like galaxies are a

compelling way to improve our understanding of galaxy formation and evolution.

However, we still currently lack insight into how the Milky Way fits in with the general

galaxy population, an issue stemming from our location within the disk of the Milky Way.

Dust blocks a large portion of our view of the Milky Way and we are unable to capture

bulk integrated properties like we can for other galaxies. The focus of this thesis is on

utilizing state-of-the-art statistical techniques and models to surpass these issue, addressing

discrepancies in both simulations and observations, to improve our understanding of the

Milky Way and how it connects to other galaxies as a means for answering questions on

galaxy evolution.
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5.3 Linear term coefficients (a1) from the initial fit (i.e., the fit of observed

color as a function of redshift in bins of rest-frame color, 0(g − r)) as

function of the central 0(g − r) of each bin are plotted as blue points.

For reference, three of the initials fits from which the a1’s are derived

are depicted in Fig. 5.2. We perform a linear fit for a1 as a function of

the center of our 0(g − r) bins with a Huber regression (Equation 42),

which is plotted here as a black dashed line. A linear fit is a sufficient

approximation due to the relatively small scatter. None of the a1 points

in this band were excluded from the fit but the NMAD cutoff, but the

Huber regression is robust to the reddest point. . . . . . . . . . . . . . 215

5.4 Histograms of rest-frame colors comparing K -correction methods for

GALEX FUV/NUV , SDSS uriz, and 2MASS J/H/Ks bands. We show
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GSWLC-M2 (orange line) and those calculated using the Kcorrect
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In general, our rest-frame colors derived from both Kcorrect and

GSWLC-M2 are in excellent agreement with each other. In the 2MASS
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are self-consistent and in agreement with the Kcorrect colors; however,

the GSWLC-M2 colors show more peaked distributions likely caused by

uncertainties in modeling unusual older stellar populations (TP-AGB

stars, post-AGB stars, and extreme HB stars). The offsets in 0(g−r) are

likely due to the fact that our rest-frame colors are derived from 0(g− r)

for both catalogs. Overall, our rest-frame colors for these bands are well-

matched to each other and to those from Kcorrect and GSWLC-M2.
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5.5 Same as Fig. 5.4 but for the WISE bands. GSWLC-M2 did not derive

WISE colors, but we still derive rest-frame WISE colors using 0(g − r)
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same. It is evident that for all colors the contours of both redshift bins

align closely in the rest-frame in contrast to the observed-frame. This is

the expected result for successful K -corrections and similar results are

observed in Kcorrect and GSWLC-M2 (save for (W4 − r)). . . . . . 227

5.7 Plots of the mean difference between observed and rest-frame color (e.g.,

∆(u− r) = (u− r)−0 (u− r)) as a function of 12 redshift bins for optical

colors. Blue points depict our K-corrected results with a linear initial

fit, and orange points depict results for a quadratic fit. Grey points

show results from the corresponding source denoted at the column title.

The colored dashed lines depict a linear extrapolation to redshift 0. Our
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However, this is not necessarily the case for K -corrections that rely on
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5.9 Derived SEDs for two galaxies from our sample which share the same

0(g − r) = 0.667 but reside at two different redshifts. The lower redshift

galaxy is plotted with blue points and offset from the higher redshift

galaxy in the y-axis for clarity. Stars are plotted at the observed fluxes.

Triangles are plotted at the luminosity determined from the rest-frame

magnitudes derived via Kcorrect (left panel) and GSWLC-M2 (right
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K-correction method. As a means of comparison we plot the spectrum
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of the difference between the photometry of the two galaxies shown and

the template (formalized in r-band). While we do not expect a direct

match to a template, we provide it as a means of comparison to help

guide the eye. We can conclude that our K-correction method provides

reasonable estimates for even the weakly constrained WISE bands, where

Kcorrect fails in W4 and GSWLC lacks. The rest-frame W4 predic-

tion of the higher redshift galaxy lies below the y-axis range and the

rest-frame prediction for the lower redshift galaxy overlaps with the ob-

served photometry of the higher redshift galaxy. Given the redshifts of

these objects and our data driven approach, our K -corrected magnitudes

cannot significantly deviate from the observed photometry, which allows

us to K-correct even low signal-to-noise bands like W3 and W4. . . . . 234
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1.0 Introduction

1.1 Background

The focus of this dissertation is on leveraging the Milky Way to fill in some of our

knowledge gaps on the complexities of galaxy formation and the underlying nature of dark

matter. The overarching goal is to answer how the Milky Way - both on the dark matter side

and luminous matter side - fits in with other galaxies in the Universe. The chapters within

are designed as a two-pronged approach to this goal, first focusing on the theoretical side

and then on the observational side. These chapters are generally self contained meaning that

readers can focus on sections more relevant to their interests. The remainder of Chapter 1

introduces readers with a limited knowledge on extragalactic astronomy to topics covered in

the remainder of the text as a means for setting up the concepts behind my models and key

results.

1.1.1 The Standard Cosmological Model

Our modern Cosmology is based upon the cosmological principal, the idea that the

Universe is isotropic and homogeneous, and Einstein’s theory of relativity, where the mass

distribution of the Universe governs the structure of space-time. These pillars have led to

the success of our Big Bang cosmological model, in which we describe the formation of the

elements and eventually stars and galaxies in the Universe.

The cosmological model was first defined by observations dependent on luminous matter.

If we disperse the incoming light from one of the many objects we observed in the sky, we

find that the spectrum produced by the atomic signatures are shifted to longer wavelengths

(or redshifted) compared to what we expect from their rest-frame positions. Edwin Hubble’s

1929 discovery of the recession of distant galaxies, with velocities proportional to their dis-

tance, was our first definitive piece of evidence of an expanding Universe [171] in which most

galaxies are moving away from us. From this initial discovery a successful model of Cosmol-
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ogy has been built. Subsequent observations of the Cosmic Microwave Background (CMB) in

1964 confirmed the prediction of a Hot Big Bang in which a uniform background of radiation

caused by the high temperatures and density of the early Universe was observed, marking

when the Universe had cooled enough from expansion for photons to travel freely through

space [290]. Primordial abundances of nuclei heavier than hydrogen have been directly pre-

dicted and measured, confirming nucleosynthesis driven by the Big Bang. The concept of a

Universe originating from an initial small, hot, and dense state with no given center or edge

yet a finite age and expanding space serves as the backbone for our cosmological model well

supported by observations.

However, these imprints left by luminous matter are only a portion of our modern concor-

dance cosmological model. Our model now also includes two more mysterious constituents

of the Universe – dark matter and dark energy. The assembly of luminous gravitationaly

bound stars, gas and dust within galaxies is enforced by more massive and extended ma-

terial that we cannot see. Dark matter was first postulated by Fritz Zwicky in 1933 after

finding that galaxies in the coma cluster moved too fast to be bound by visible matter [402].

Additional observations of galactic rotation curves, lensed galaxy systems, and the structure

of the Universe over the latter half of the 20th century have generally convinced astronomers

of the existence of dark matter and the pivotal connection it plays in galaxy formation and

evolution. Even more surprising was the discovery of the accelerated expansion of space in

the 1990s by cosmologists measuring distant supernovae [305, 292] - objects further away

from us are moving faster than what is expected from typical Universe expansion. Now our

current cosmological paradigm consists of cold dark matter, believed to be composed of relic

massive stable particles with random motions at non-relativistic speeds (hence cold) when

the Universe was young, and dark energy, most commonly thought to be a type of “vacuum

energy” (i.e., an underlying background energy contributing to the cosmological constant).

Thus we refer to our concordance cosmological model as “ΛCDM” where Λ represents dark

energy, alongside cold dark matter (CDM).
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1.1.2 A Brief History of (Dark) Matter and Large Scale Structure

As exemplified by Hubble’s law, the study of cosmology is closely linked to the study of

galaxies. Because of the fixed universal speed of light, the distance of a galaxy and hence

its redshift (z) is linked directly to a specific age of the Universe. Thus more distant objects

emitted their light at a time when the Universe was younger. But before we address the

study of galaxies, we need to address the underlying structure of the Universe that built up

these galaxies. Otherwise we are left with little explanation for the vast dichotomy of galaxies

that we observe today. The cosmological principal asserts that the Universe is homogeneous.

While at very large scales (>200 Mpch−1) this is true we know that the cosmological principal

cannot hold at smaller scales, otherwise galaxies like the Milky Way we live in would never

have formed.

Our standard “Big Bang” cosmological model proposes tiny (quantum) fluctuations in

the density field in the fledgling stage of the Universe (z ∼ ∞). As the Universe expanded

significantly and rapidly during a stage of inflation not long after, these quantum fluctua-

tions were amplified as slight density fluctuations before they could self-annihilate. These

fluctuations left their mark as small temperature anisotropies that we observe in the CMB.

During expansion the Universe cooled and matter came to be the dominant constituent of

the Universe instead of radiation (post z ∼ 3600). These over-densities became magnified by

their gravitational field, increasing their density with respect to the background and attract-

ing matter. Gravitational instability amplified these perturbations further, and started to

form the dust clouds that cooled and fragmented into the first stars (z ∼ 100). Cumulatively

more massive structure formed, yielding galaxies (z ∼ 10) and ultimately leading to the

massive galaxy systems we observed at present day (z ∼ 0), such as galaxy clusters, super-

clusters, and walls (and consequently voids) (see e.g., Ref. [75]). The growth of structure in

the Universe is especially governed by gravitational instability.

The structures that we see today could not have been built from luminous matter alone,

but instead by dark matter, which accounts for 85% of the total mass of the Universe. With-

out dark matter the galaxy formation epoch would have begun considerably later than what

we observe. Luminous matter is subject to radiation pressure, which works in opposition to
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the gravitational instability which allows for compact structures to form (like in stars, which

are radiation pressure supported against gravitational collapse). Conversely, dark matter

only interacts gravitationaly and is unimpeded by any other forces. Thus dark matter must

have amplified the initial density perturbations in the young Universe, allowing for these

structures to build up. Once the perturbations have grown sufficiently, a region may reach a

critical density that is many times higher than the background density of the Universe. At

this point the perturbations stop growing linearly and begin to undergo nonlinear collapse.

Ultimately, dark matter collapses into a network of self-bound objects we refer to as

dark matter halos. While the precise definition of a halo can vary between research stud-

ies, astronomers agree that dark matter halos are approximately virialized objects 1 [80].

The virialized region is a few hundred times the background density of the Universe. The

background density contrast is typically used to define the boundary of the halo, the most

common being the virial radius, which is dependent on cosmology and time [52]. It is with

the formation of dark matter halos that baryonic matter begins to follow suit via gravita-

tional attraction and ultimately forming structures we observe. Consequently the study of

dark matter halos is a critical aspect for studying the formation and evolution of galaxies.

N-body simulations serve as one of the key methods for investigations of dark matter

halos since gravitational dynamics are far too complex to by analytically explored. These

simulations take a co-moving cube to represent the Universe and place in particles that inter-

act under gravitational dynamics (see e.g., Ref. [366, 1, 13, 166, 336]). N-body simulations

have unveiled many aspects of non-linear structure formation. For example, numerical sim-

ulations in the late 90’s revealed the existence of much lower mass halos within the virial

radius of a more massive halo [260, 198]. While small halos merging with larger ones may

experience mass stripping and disruption, some are dense enough to survive the process (or

at minimum their cores). This results in smaller self-bound halos residing within the virial

boundary of the more massive halo [188, 393]. We refer to these objects as subhalos (their

observational counterparts are satellite galaxies), which we expect to be the direct result of

hierarchical assembly 2. The study of halos provides key clues on how galaxies assemble and

1A virialized objects is a stable system of gravitationaly interacting particles.
2Hierarchical assembly refers to the creation of larger structure by the consecutive merging of smaller

structures.
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evolve, as the assembly of baryons necessitates the assembly of dark matter. The properties

of a galaxy reflect those of the halo in which it lives.

1.1.3 Galaxy Formation and Evolution

Dark matter constitutes the underlying pieces for which galaxies are able to form by

attracting baryonic matter into said dark matter gravitational potential wells. As the baryons

cooled radiatively and contracted at the center of dark matter halos, their angular momentum

was conserved resulting in the formation of a disk [113]. Baryonic matter can undergo such

a process independent of dark matter, but would taken a significantly longer time without

dark matter. While the precise details of disk formation and consequentially star formation

are highly complex and still not understood to a high degree of certainty, we have a general

theory on the formation of galaxies that is intimately tied with that of the dark matter halo.

Galaxies serve as our beacons for probing the underlying geometry of space and as the houses

of star (and therefore metal) formation, making them one of the key building blocks of the

Universe.

Because of our inability to perform large scale experiments in space, our ability to query

galaxy evolution models hinges on comparisons to observed galaxies. In the earlier 20th

century addressing questions of galaxy evolution was limited to targeted observations with

small sample sizes due to technological limits. The past few decades have birthed large,

wide-scale surveys spanning wavelengths from the UV (λ ∼ 100− 400nm) to the radio (λ ∼

1mm−several km). One notable survey is the Sloan Digital Sky Survey (SDSS; [390]), which

has produced deep multi-band (λ = 3543−9134Å) CCD imaging and spectroscopic follow-up

for > 106 galaxies out to a median redshift of z ∼ 0.1. Combinations of photometric and

spectroscopic data provide detailed information on both the light (e.g., colors, magnitudes)

and physical properties (e.g., mass, star formation rate) of galaxies. Galaxy surveys of this

scale (and forthcoming larger surveys) span the extensive breadth of properties that galaxies

exhibit [28], their population distributions, and map the underlying 3D structure of the

Universe traced by galaxies.

Rest-frame color and absolute magnitude are some of the easiest quantities to measure
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in most galaxies, with known redshift (z), regardless of their distance from us. One of the

most notable discoveries of underlying galactic distributions is the color-magnitude diagram

(CMD), or integrated color as a function of magnitude. In this parameter space, the SDSS

sample revealed that galaxies tend to fall into one of two populations: passively-evolving

red galaxies with older stellar populations; or blue galaxies that are actively forming stars.

In the optical CMD, these two galaxy populations are commonly referred to as the “red

sequence” and “blue cloud” which also followed with general galaxy morphological type.

This dichotomy was established by SDSS and and other surveys to high significance at both

low redshift (z ∼ 0.1; [338, 11]) and high redshift (z ∼ 1; [20, 373]).

The majority of the population of galaxies that fall into the blue cloud are spiral galaxies.

These galaxies are generally actively forming stars. Much of their light is dominated by the

hot and consequently bright and blue O- and B-stars. As a result, the spectral energy distri-

bution (SED; a characterization the galaxy’s flux as a function of wavelength) is dominated

in the UV and optical, and re-emission from excited dust in the infrared, by these stars.

Spiral galaxies have their stars, gas, and dust organized into rotationally supported disks.

These disks have an exponential decrease in brightness from the center [131], with results of

various instabilities super-imposed within the disk, such as rings and the titular spiral arms

- the major site of star formation [359]. The centers of spiral galaxies tend to contain older

stellar populations where the central bulge resides and where bars often form [329], thus the

central region of spiral galaxies tends to be redder than the remainder of the disk.

Conversely, the majority of the galaxy population that falls within the red sequence are

elliptical galaxies. These galaxies are spheroidal or ellipsoidal in shape, exhibiting very little

morphological features and smooth surface brightness profiles that diminish more gradually

than those of spiral galaxies [323, 152]. Elliptical galaxies contain much smaller reservoirs of

cold gas resulting in little if any star formation. As a result of the minimal star formation,

the stellar populations within these galaxies are old and metal rich (lacking in young short-

lived O- and B-stars) which gives them their red color and bright optical-red colors in their

respective SED. Despite the lack of young, bright stars elliptical galaxies can far exceed the

brightness of elliptical galaxies.

The region of the CMD between these two distinct galaxy populations is often referred
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to as the “green valley”. This locus is thought to contain a transitional population of galaxies

that are passively evolving in the sense that star formation rates are diminished Ref. [20, 120],

though they still can contain some younger stars. The increase in the fraction of red galaxies

over time has led many astronomers to conclude that a galaxy first lives in the star forming

blue cloud and then transitions into the green valley and ultimately into the red sequence

in complete quiescence, with the galaxy growing more and more red over time due to the

ageing stellar population. Thus comparisons of galaxy populations like those done with the

CMD are a key tool for unlocking the answers to galaxy evolution.

1.1.4 The Milky Way, A Laboratory for Galaxy Evolution

Many remaining unknowns of galaxy formation and evolution, such as the origins of

galaxy color bimodality, can be answered by comparing galaxy populations and by making

direct comparisons to the Milky Way. Our residence within a massive, star forming galaxy

provides a major advantage for seeking answers. The Milky Way is the optimal laboratory

for testing galaxy evolution theories and the best benchmark for comparisons, given our

proximity to fully resolved constituents that make up a galaxy of the luminosity of the Milky

Way at the present epoch (z = 0). The Sun’s location within nearly the mid-plane of the disk

and approximately two-thirds radially from the center [183] places us in the prime location

to study the creation of stars in nearby stellar nurseries, like the Taurus molecular cloud

only 140pc away.

Moreover, the Milky Way is the only galaxy where we can measure the properties of large

samples of individual, resolved stars. Detailed observations of stellar magnitudes and colors

(e.g., 2MASS [330], the VVV Survey [309]), stellar spectra (e.g., APOGEE [115], GALAH

[86]), and stellar distances and proper motions (Gaia [132]) - have covered over a billion

stars in the Milky Way. While we are unable to fully map the extent of the Milky Way,

for stars that are close enough these surveys have created an unprecedented 3-D map of the

Milky Way, further revealing the composition, formation, and evolution of the Galaxy (e.g.,

Ref. [42, 300, 53]) through the assembly of stellar mass over cosmic time.

The Milky Way also offers a unique perspective for obtaining constraints on ΛCDM.
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Studies on satellites of the Milky Way have enabled constraints on possible dark matter

paradigms [267] and test the validity of predictions from N-body simulation such as the

number density of satellites [201, 367, 178], which are challenging to measure outside of the

Local Group. Stellar measurements can also be compared to simulations to test consistencies

between ΛCDM and the Milky Way, tackling outstanding questions like the shape of the MW

dark matter halo [82].

These in-depth observations of the Milky Way have brought forth a plethora of dedicated

simulations made to produce Milky Way-like galaxies that match a number of these observed

properties. Via computer, astronomers can track the dynamical evolution and interactions of

dark matter, gas, and stars within synthetic version of the Milky Way, with initial conditions

set by cosmological observations and prescriptions of physical laws guiding the process. Gen-

erally these simulations are limited by mass resolution, or the number of particles within the

volume, which determine how many stars or how much gas a single particle represents. One

example of such simulations are the Latte simulations [376]. They have produced possible

iterations of the Milky Way, which have allowed us to extrapolate our local measurements to

explore evolutionary histories of the Milky Way, such as the formation of disk components

[226, 139, 315] and the bulge of the Milky Way [88]. The recipes used to model the evolution

within simulations contain a number of free model parameters. These parameters can be

tuned to construct evolutionary paths with results that directly match the compositions and

structure of Milky Way stars and gas, or can be used to explore various contributions certain

properties have to galactic evolution. Thus the connection between MW observation and

simulation is a key tool in understanding the constituents of galaxy evolution.

In some respects, the Milky Way is a typical large galaxy of its morphology, reflective

of its low density environment [85]. Given its stellar mass the Milky Way has a typical star

formation rate and bulge-to-total mass ratio when compared to similar galaxies [36]. It has

also been shown to reasonably obey the Tully-Fisher relation [218], which links maximum

rotational velocity to luminosity in spiral galaxies [348]. The Milky Way (∼ 1012.1M⊙) is one

of two primary members of the Local Group, the other being Andromeda/M31 (∼ 1012.2M⊙).

As a whole, the Local Group is a relatively low mass system consisting of an assortment of

spiral and dwarf (≲ 108M⊙) galaxies, which resides in a low-density filament in the outskirts
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of the Virgo super-cluster [349]. This means that the Milky Way is considered to be in a

relatively low-density environment, which is common for spiral galaxies.

Yet in other respects the Milky Way appears to be relatively unique. The massive

satellites of the Milky Way - the Large and Small Magellanic clouds - are quite rare with only

a few percent or less of analogous systems found in surveys and simulations [222, 104, 119].

Additionally, in contrast to M31, the Milky Way has not had any major mergers (objects

with mass fractions above 0.3 relative to the MW merging with the MW) within the past 10

Gyr. One of the most unique features of the Milky Way is its anomalously small disk scale

length discovered by Ref. [217]. This raises the question of the uniqueness of the Milky Way

and complicates how we compare the Milky Way to other galaxies.

1.1.5 Connecting the Galactic and Extra-Galactic

In order to connect our detailed observations within the Milky Way to the populations

of observed galaxies we must first understand how the Milky Way compares to other galax-

ies. However, comparing colors and luminosities of the Milky Way to external galaxies is

not trivial, regardless of whether we compare to observed galaxies or to mock images from

high-resolution hydrodynamical simulations. Our location in the plane of the Milky Way

is a double-edged sword; while we can explore star formation and galaxy evolution to an

unrivaled level of detail, we are also inhibited in measuring the Milky Way the same way we

measure external galaxies. Much of our view of the Galaxy is obscured by interstellar dust,

especially at UV and optical wavelengths [62, 320]. This is due to the progressively efficient

absorption and scattering of light by dust as a decreasing function of wavelength. Stars out-

side of the local solar region are reddened as a result of the dust obscuration. Additionally,

determining the bulk integrated light of stellar populations in the Milky Way is challenging

due to the spread of stars over large and varying distances, which is further exacerbated by

correspondingly large and varying dust extinction along lines of sight to the Earth. This

makes the study of any portions of the Galactic disk beyond the solar neighborhood excep-

tionally difficult, and results in a fragmented picture of the Milky Way. Integrated properties

that are relatively painless to obtain in external galaxies (though dust obscuration can af-
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fect these observations as well, see e.g., [243, 245]), are impossible to obtain directly within

our own Galaxy [265]. Hence much of our understanding of the Milky Way is still poorly

constrained.

Recent work, such as that by Ref. [219], has began to tackle the question of where the

Milky Way lies on the optical CMD in an effort to enable comparisons of the Milky Way

to other spirals and the full galaxy population. This study was also limited, lacking critical

constraints at short (UV) and long (IR) wavelength ranges which are established to be much

more sensitive to star formation and could improve classification of the current evolutionary

stage of the Milky Way. Constraints on the full UV-IR SED of the Milky Way will be the

subject of Chapter 4 which focuses on capturing the full bulk photometric properties in the

Milky Way. By exploiting the assumption that the Milky Way should not be incredibly

unusual amongst its peers (i.e., galaxies of the same physical properties like mass and star

formation rate), it is straightforward to build a model to determine Milky Way photometric

properties trained on the photometric properties of other galaxies.

Another necessary task for making connections between the Milky Way and other galaxies

hinges on comparisons between the Milky Way and simulations. The measurable structural

and kinematic parameters of the Milky Way play a large role in providing comparisons for

numerical simulations of synthetics galaxies. Modern high-resolution simulations, such as

Eris [157], APOSTLE [316], Latte [376], and the DC Justice League suite [9] can construct

mock galaxy images that are representative of the Milky Way. Much of our understanding

of the details of how the Milky Way built up its stellar populations and observed structure is

a result from these simulations. However, the link between observations and simulations is

precarious, where assumptions that are erroneous on one side can propagate into the other.

It is difficult to establish whether simulations match the Milky Way because models of the

physics of star formation and feedback are correct, or instead they mimic Milky Way-like

properties for a galaxy and dark matter halo with incorrect characteristics (mass, merger

history, etc.) when using mis-tuned physical models. One way to address these issues is to

consider what it means for a simulated galaxy to be Milky Way-like, which is one of the focal

points of Chapter 3. This chapter explores constraints on Milky Way dark matter halos and

the connections the halo properties have to real observables like satellite abundance, all which
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are shaped by the evolutionary history of the Galaxy. Likewise, it is not unusual for observers

and simulators to make different assumptions about the systems they are exploring; a key

issue explored in Chapter 2 that addresses potential double counting of subhalo contribution

to the dark matter halo mass profile. Advances to the observation-simulation connection also

depend on our improved understanding of the Milky Way in the context of the general galaxy

population. Currently simulators must resort to comparing their simulated Milky Ways to

very general galaxy populations that, while superficially resembling the Milky Way, have a

wide range of other global properties [157]. This issue is also explored in Chapter 4, where

a detailed outside-in picture of the Milky Way can dramatically alleviate the comparisons

simulators make. Our ability to interpret our observations of the Milky Way into assertions

about galaxies in general hinges upon the nuanced details within modeling.

1.2 Structure of Thesis

In general this dissertation is centered on utilizing statistical tools and techniques to sur-

pass many of the hurdles that inhibit our knowledge of Milky Way properties and out ability

to connect the Milky Way to the galaxy population from both observation and simulation.

This thesis has four major components, with additional supplementary material included at

the end. Below I outline the motivation and findings of each chapter.

• Chapter 2 –– Before placing the Milky Way in an extra-galactic context, I first focus

on the disconnect between simulations and observations - a crucial first step before com-

parisons to the Milky Way can be made. Because dark matter has no electromagnetic

interactions, our knowledge on the nests of galaxy formation is extracted by indirect

observation, like gravitational lensing, and inferred from models of the mass distribu-

tions of halos. However, there is a disparity between the models of halos inferred from

simulations versus those used to interpret observations. In simulations, the ensemble

of the host halo and subhalos are considered as one unit, while some lensing inferences

treat subhalos separately from the host. Additionally, subhalos are a key indicator of

the evolutionary stage and history of a dark matter halo, so their treatment in mod-
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els must be carefully considered. By employing least squared fitting to various forms

of dark matter halo density distributions (ρ(r)), I explore the impact subhalos have on

these systems. I show that without including subhalos in the density distributions these

distributions change significantly in shape, indicating that lens modeling must be more

discerning with treatments of subhalos. This chapter also provides evidence for the very

nuanced connection between environment, galaxy evolution, and the reflected properties

exhibited by dark matter halos, especially for halos at the mass of the Milky Way and

higher. For example, I find that the central concentration of material in a halo, which

is correlated with the mass of the halo, is partially explained by subhalos. I also find

that scatter amongst halos at fixed mass is also directly tied to the presence of subhalos.

Both of these pieces of evidence indicate the intricate ties between halo evolution and

the properties they exhibit.

• Chapter 3 –– In this chapter I place the Milky Way’s dark matter halo in the context

of other dark matter halos that are within the same mass range of the Milky Way. One

of the unique predictions of ΛCDM is the abundance of dark matter subhalos. Observed

subhalos around the Milky Way cause detectable perturbations which in turn can be

used to constrain halo properties and test the validity of ΛCDM. But connecting the

Milky Way to other galaxies, observed or simulated, is even further complicated by the

discrepancies at small scales (<1 Mpch−1) between the predictions of N-body simulations

and observations within the Local Group. One aspect of these discrepancies is the focus

of this chapter, an issue coined the “missing satellites problem”, or an over-prediction

by simulations of the number of subhalos of a particular rotation speed relative to the

number of observed satellites of the Milky Way. Simulators have attempted to fix this

apparent discrepancy by tuning the baryonic physics in hydrodynamical simulations to

reduce the number of predicted satellites. However, the halo comparisons that show this

discrepancy do not use all of the information we have on the Milky Way’s halo. Part of

the missing satellites problem can be attributed to predicting the subhalo mass function

from dark matter-only simulations that only match the Milky Way in mass and not in

other important second order parameters such as concentration, spin, and time of the last

major merger. To address this, in this chapter I use high-resolution zoom-in simulations
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of Milky Way-mass dark matter halos to investigate halo properties beyond mass and

their correlation with subhalo abundance in order to determine subhalo populations for

a halo whose properties match our own. I find that the Milky Way’s halo has a higher

concentration, lower spin, and quieter merger history than the average halo of the same

mass. With a Poisson maximum likelihood model I make a more accurate prediction for

the Milky Way’s subhalo abundance, resulting in the conclusion that the Milky Way has

as many as 30-50% fewer subhalos than typical halos of the same mass (i.e., neglecting

matches in second order parameters). We must carefully consider what we call “Milky

Way-like” before making imprudent comparisons.

• Chapter 4 –– This chapter focuses in on constructing a full outside-in portrait of the

Milky Way. Here I construct the first SED of the Milky Way, spanning from the UV to

the IR. This serves as a critical tool for allowing us to compare the Milky Way directly

to objects measured in extragalactic surveys at a variety of wavelengths. A full Milky

Way SED also offers constraints to hydrodynamical simulations that currently lack mea-

surements of non-optical luminosities necessary for constraining star formation history

and galactic extinction. I expand upon the work of Ref. [219] by increasing increasing

both the number of physical galaxy parameters studied (disk scale length, bulge-to-total

mass ratio, and bar probability in addition to stellar mass and star formation rate) - due

to the unusually compact disk and quiescent evolutionary history of the Milky Way - as

well as the range of photometric colors and magnitudes (in the band passes of GALEX

FUV/NUV , 2MASS J/H/Ks, and WISE W1 −W4 in addition to SDSS ugriz). Due

to the complexity of this model, I developed a Gaussian process regression (GPR) model

that is trained on a broad galaxy sample and uses the fiducial MW properties and their

uncertainties to predict individual photometric properties for the MW. I further confirm

the optical “green valley” transitional classification of the Milky Way on the CMD in the

process, but note that in the UV and IR the Milky Way is more consistent with the star

forming “blue cloud”. In fact, the Milky Way appears to be consistent with the popula-

tion of red spiral galaxies, objects that are bright and red, likely undergoing effects from

bar induced star formation suppression.

• Chapter 5 –– Luminosity measurements of various objects in the Universe are critical
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for understanding how stars and galaxies have evolved over time. However, astronomers

are challenged to correct for the redshifting of light to longer wavelengths between the

time the light is emitted from the objects and then subsequently observed in a telescope.

This difference, which must be accounted for in photometry, is referred to as the K-

correction. Currently our K-correction methods rely upon some form of SED fitting

utilizing empirical or model galaxies, which have a slew of limitations. For example,

methods that utilize a somewhat small number of templates can result in inaccurate K-

corrections for galaxies that poorly match the templates. Similarly, one is left the dark in

obtaining K-corrections for wavelengths that do not have available or poorly constrained

templates, such as the IR bands, which became a notable issue in utilizing the WISE

bands in Chapter 4. In this chapter I have developed an empirically driven approach that

regresses off of a color for which SEDs are well constrained. By relying on the assumptions

that at low redshift galaxy SEDs fall into a single parameter family and the K-correction

for a given band is a simple (polynomial) function of a galaxy’s rest-frame color (a

degenerate combination of dust, metallicity, and star formation history) determined in

some other pair of bands I have found that K-corrections are easily calculable at low

redshift. With this approach, as long as one has access to a single rest-frame color that

has been K-corrected already, one can determine rest-frame colors for any other pair of

bands. This became a useful tool for determining the infrared colors of the Milky Way,

and going forward may be instrumental in many aspects of astronomy.

• Chapter 6 – This chapter summarizes the results and implications this dissertation has

accrued about how the Milky Way and its dark matter halo fits in with other galaxies and

the underlying dark structure of the Universe. I illustrate the new comprehensive portrait

of the Milky Way, a galaxy now no longer thought to be a standard blue spiral like any

other. I conclude with future avenues of study to better pinpoint our understanding of

the evolution of our Milky Way with a focus on statistical techniques exploited in this

dissertation.
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2.0 Illuminating Dark Matter Halo Density Profiles Without Subhaloes

This chapter has been accepted for publication in the Monthly Notices of the Royal Astro-

nomical Society ©: 2020 Catherine Fielder. Published by Oxford University Press on behalf

of the Royal Astronomical Society. All rights reserved. Minor modifications have been made

to the text.

2.1 Introduction

The gravitational collapse of over-dense patches of the universe in the Lambda–Cold Dark

Matter (ΛCDM) cosmology culminates in the formation of virialized dark matter-dominated

structures called dark matter haloes. Much of the modeling necessary to undertake modern

data analyses for the purpoes of understanding cosmology, the nature of dark matter, or the

evolution of galaxies relies on our understanding of various properties of dark matter haloes.

Halo properties and their evolution have been investigated theoretically and in great detail

[379, 188, 73, 332, 22, 398, 158, 225]. Similarly there are a number of observational probes

of the structure of dark matter haloes, including gravitational lensing [253, 235, 76, 181,

282, 351], X-ray surface brightness/temperature [271], and line-of-sight velocity dispersion

of either stars [15, 279, 389] or satellites [254, 261]. The delicate marriage of dark matter

halo theory and observation is fundamental for our understanding of galaxy formation and

evolution.

N -body simulations have been instrumental in determining the structures and mass as-

sembly histories of haloes. Haloes grow hierarchically. Large haloes accumulate their masses

through mergers with smaller haloes, which leave a lasting imprint. On dynamical timescales

(∼3–4 Gyr at z = 0), in-falling haloes may be stripped of their mass and/or disrupted, while

those that survive become dense, self-bound objects orbiting within the larger host halo (see

e.g., [188, 393, 394, 56]). Therefore, host dark matter haloes are composed of (1) a relatively

smooth component and (2) subhaloes, the gravitationally bound haloes that reside within
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the larger hosts. The smooth component of a halo consists primarily of disrupted subhaloes

from earlier mergers [298, 391], but there may also be a sub-dominant contribution acquired

via smooth accretion [368].

A basic characteristic of a dark matter halo is its density profile, which describes the

way that mass is distributed throughout the bound object. Despite the fact that halo for-

mation is a complex process, N -body simulations have shown that the mass distributions of

dark matter haloes are well described by the same equilibrium density profile at all masses.

The most widely used halo density profile is the spherically averaged Navarro–Frenk–White

(NFW) profile [273, 274]. The NFW profile is a two-parameter (one-parameter at fixed mass)

functional form that describes the halo mass distribution as a function of distance from the

halo center:

ρ(r) =
ρs

r
rs

(1 + r
rs

)2
, (1)

where ρs is the local density. The length scale, rs, is referred to as the characteristic radius

or scale radius; it corresponds to the radius at which d ln ρ/d ln r = −2 in the case of the

NFW profile.

The degree to which the mass within a halo is distributed with respect to its radius

is often quantified by the dimensionless halo concentration parameter, c = rvir
rs

. The virial

radius, rvir, can be thought of as the “outer edge” of the halo that characterizes the halo size

1. Halo concentration has a well-known dependence upon both mass (the concentration–

mass relation) and redshift [274, 55, 199]. Profile parameters of individual haloes, such as

concentration, are typically determined by building a spherically averaged density profile

from simulation data and fitting this profile to the NFW form.

The contributions of substructure are handled differently in observational and theoretical

studies, which provides challenges to compare results between them. In simulation analy-

ses, spherical averages of haloes typically include all halo substructure. In observational

investigations, such as the analyses of gravitational lens systems, the spherically averaged

halo profile is typically modeled with a particular form, the parameters of which are then

inferred from the data [257, 220]. However, in such observational studies, it is often the case

that the observed substructures (e.g., satellite galaxies) within a lensed system are assigned

1rvir = ( 3
4π

Mvir

ρ(<rvir)
)1/3, which is derived from the virial theorem for a gravitating body.
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their own, distinct density profiles in addition to the profile attributed to the host system

[279, 280, 94, 144]. Thus there arises the risk that these subhaloes are being double counted.

If the subhaloes are to be treated as discrete units with their own properties, one needs to

use halo density profiles developed to exclude the mass within substructures. Likewise, if

one were to exclude subhaloes from the host halo and then model the subhaloes separately,

there is no guarantee that the same host halo mass profile (e.g., NFW) would still be an

accurate representation of the host. These concerns are the focus of the present work.

In this work we examine the impact of subhaloes on host halo mass profiles, and the

ability of analytic profiles like the NFW profile to accurately describe halo mass distributions

that do not include the mass associated with subhaloes. To do this, we make use of the

density profiles of haloes from which we have removed the mass associated with subhaloes,

a technique first used by Ref. [224] and Ref. [385]. Even when we exclude subhaloes we are

still spherically averaging the haloes. In order to explore a wide range of masses, we use

two sets of high-resolution zoom-in simulations. One simulation focuses on Milky Way-mass

haloes and the other on cluster-sized haloes.

In Section 2.2 we describe the simulations used in our work, the halo finder, and the halo

density calculations. Section 2.3 details our analysis methods of the halo profiles through

statistical methods and fitting to different mass profile prescriptions. Section 2.4 presents

the results for both stacked and individual haloes in order to compare different functional

forms for the density profile. In Section 2.5 we summarize our results and conclude that the

mass distributions of the smooth component of the halo and the combination of the smooth

and subhalo components are distinctly different, especially in the outer region of the halo

mass distribution and describe the implications of such a result with a more universal mass

profile, the generalized Einasto profile.

2.2 Data

In the following section, we outline the simulations and halo finder used, the methods

for calculating simulated halo density profiles, and the procedures used to excluding mass
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associated with subhaloes.

2.2.1 Zoom-In Simulations of Two Mass Regimes

In this work we use two sets of zoom-in, gravity-only simulations. The first set consists

of 45 zoom-in simulations focusing on haloes of approximately the mass of the Milky Way’s

halo and initially presented in Ref. [237], which we refer to as the Mao et al. Milky way Mass

Zoom-in (MMMZ) simulations in the remainder of this chapter. The second simulation suite

comprises 96 cluster-mass zoom-in simulations known as the RHAPSODY simulations, first

presented in Ref. [385]. All analyses performed in this chapter are applied to both sets of

simulations, allowing us to test for consistency of results across several orders of magnitude

in halo mass and to test for mass dependence. In both cases we use the present-day (z = 0)

snapshots.

The haloes in the MMMZ simulations cover a very narrow range in virial mass (Mvir =

1012.1±0.03 M⊙). The cosmological parameters for the simulations are as follows: matter

density ΩM = 0.286; dark energy density ΩΛ = 1 − ΩM = 0.714; Hubble parameter h =

H0/100 = 0.7; mass fluctuation amplitude σ8 = 0.82; and scalar spectral index ns = 0.96.

These MMMZ haloes were selected for high-resolution re-simulation from a parent c125-

1024 dark-matter-only simulation run with L-GADGET (see [17, 214]). The high-resolution

zoom-in regions have a particle mass of mp = 3.0× 105 h−1M⊙ and a softening length of 170

h−1 pc comoving. We use four times the softening length, or 0.68 h−1 kpc, as the minimum

length scale down to which the density profiles are fitted. The lower limit to the subhalo

maximum circular velocity Vmax for convergence is approximately 10 km s−1. For more details

on the MMMZ simulations, refer to Ref. [237].

The RHAPSODY simulations also span a very narrow mass range at the cluster-size scale,

Mvir = 1014.8±0.05 M⊙. The cosmological parameters used for the RHAPSODY simulations

are very similar to those of MMMZ, specifically: ΩM = 0.25; ΩΛ = 0.75; h = 0.7; σ8 =

0.8; and ns = 1. The differences between MMMZ and RHAPSODY cosmologies will have

negligible effect on any comparisons performed in this chapter, as halo concentrations only

depend weakly on cosmological parameters, especially at z = 0 [223].
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These RHAPSODY zoom-in simulations were selected from one of the CARMEN simu-

lations from the LArge Suite of DArk MAtter Sim-ulations (LasDamas; [248]) with a volume

of 1 h−1Gpc and 11203 particles. We use the higher-resolution version of these simulations

(RHAPSODY 8K), which have a particle mass of mp = 1.3× 108h−1M⊙. And the minimum

length scale that the density profiles are fitted down to is four times the softening length,

equivalent to 13 h−1 kpc.

We note that the choice of 4× the softening length as our minimum length scale is to be

consistent with previous studies [385, 237], even though the softening lengths do not necessary

set the convergence limit of halo mass profiles [294, 225]. Nevertheless, the minimum length

scale has little effect on our results as the main change in profiles when subhaloes are excluded

are in the outskirts.

2.2.2 Density Profiles and Subhalo Removal

In this work, we endeavor to study the density distribution of the“smooth”components of

host haloes. We use Rockstar (version 0.99.9-RC3+) to identify haloes according to a virial

definition. The Rockstar halo finder uses phase-space information in order to distinguish

subhaloes from the host halo’s background density, which we take advantage of for this work.

Using the particle catalogs we define the smooth component of any host halo to be the mass

not associated with any Rockstar-identified subhalo. For more details on Rockstar, see

Ref. [18] or access the publicly available code at bitbucket.org/gfcstanford/rockstar.

There exists no unambiguous way to define the smooth component of a halo. Our opera-

tional definition is dependent upon the Rockstar algorithm for halo identification. Further

details regarding this choice and other possible ambiguities are given in Section 2.4.4 and

2.7.

For the purposes of this work, we define the smooth component of a host halo to be

those particles not explicitly associated with a self-bound subhalo by Rockstar. By default

> 50% of particles must be bound for ROCKSTAR to read out the subhalo. We have used

this definition to construct the following processed simulation data sets.

• subhalo-included: the set of all particles associated with the host and all of its subhaloes

19

https://bitbucket.org/gfcstanford/rockstar


(in Rockstar this corresponds to all particles that reside within the virial radius of the

host halo).

• subhalo-excluded: particles that are associated with the host but not explicitly associated

with any subhalo listed in the Rockstar halo catalog. This sample excludes subhaloes

but includes diffuse substructures, such as streams, that do not meet the binding criteria

in Rockstar.

• subhalo-only: the set of particles explicitly associated with at least one subhalo. This

corresponds to the set of particles in the subhalo-included set that are not within the

subhalo-excluded set.

In all cases, only particles within the virial radius of the host halo are considered. As is

evident, the subhalo-included data set consists of the union of particles within the subhalo-

excluded and subhalo-only data sets, and the subhalo-excluded and subhalo-only data sets

are mutually exclusive. Readers interested in further details of these definitions can see 2.7.

It is useful to get a visual impression of the substructure removal procedure. Fig. 2.1

shows a scatter plot of particles within a plane of width ∆z = ±1kpc of the center of the

host halo for one of the MMMZ haloes. The host halo is centered at (x = 0, y = 0). The

left (blue) panel shows the combined distribution of host halo and subhalo particles; i.e., the

subhalo-included sample as defined above. This is the set of particles that would generally

be taken to correspond to a single dark matter halo in N -body simulation analyses and in

the vast majority of studies of halo properties.

The middle (orange) panel of Fig. 2.1 depicts the subhalo-excluded sample. There is

a noticeable feature aside from the smooth central component of the host halo; at (x =

−0.01, y = 0.09h−1Mpc) there is an over-density that was not listed in the Rockstar halo

catalog due to its low bound fraction. Objects like these are in the tidal stream stage of

merging. This definition of halo particles more closely maps to the dark matter associated

with the central galaxy of the halo, and hence is closer to the de facto halo definition assumed

in many observational analyses.
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For comparison, the right (green) panel depicts only the particles associated with those

subhaloes that are listed in the Rockstar halo table, or subhalo-only. By construction, the

combination of the orange and green points is identical to the blue points. While it appears

that there is a remaining central halo component, these particles exhibit a large, coherent

velocity to the halo center when observed in velocity space. This over-density represents a

substructure passing near the host halo center.

It is evident that the distribution of mass without subhaloes is much smoother with many

fewer density peaks, demonstrating the effectiveness of our subhalo exclusion procedure.

The smooth, subhalo-excluded, components of halo profiles contain less total mass than

the virial masses of the full halo profiles. For instance, for the MMMZ haloes, ∼ 20 per cent

of the mass is in subhaloes on average, while the mass fraction in subhaloes for the RHAP-

SODY haloes is ∼ 36 per cent. This difference is accounted for by the relation that more

massive haloes contain more subhaloes [394, 145, 335] rather than a reflection of resolution,

as the RHAPSODY haloes have a slightly lower resolution that the MMMZ haloes. As a con-

sequence of this decrease in mass, the smooth components of the haloes will not separately

satisfy the same virial over-density criterion that the subhalo-included profiles satisfy. This

introduces an ambiguity in the physical boundaries of the haloes with subhaloes removed.

We choose to use the original virial radius, rvir, as the halo boundary even in the case with

subhaloes removed. We note that quantities listed with the subscript ”nosub” are computed

when subhaloes are excluded. We also note that when individual haloes are examined we

include their snapshot reference ID.

2.3 Analysis

In this section, we describe our analysis methods. First, we summarize the functional

forms of the analytic dark matter halo profiles used to fit the simulation data, including a

new functional form that we refer to as the “generalized Einasto” profile. We then describe

the algorithms used to fit these profiles to simulated halo density profiles. Lastly, we specify

the statistics used to assess the quality of fits.
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Figure 2.1: Visualization of subhalo removal in a 2D projection for one of the MMMZ host haloes. The
particles shown here are all restricted to be within the virial radius of the halo, denoted by the black dashed
line. In addition we plot a subset of the particles restricted to be near the z value of the halo center,
requiring zhost − 0.001 < z < zhost + 0.001h−1Mpc. The left (blue) panel shows the standard case where
all host and subhalo particles are considered together as making up the dark matter halo. High density
areas away from the center corresponding to subhaloes can be easily seen. The middle (orange) panel
corresponds to the case where we have excluded subhalo particles; his case may be more appropriate for
comparison with observational techniques, as discussed in Section 2.2. The particle distribution is much
smoother and more uniform, but some substructure (not associated with systems that Rockstar defines
as self-bound subhaloes) is still visible. In the right panel (green) we show only those particles associated
with subhaloes that are included in the Rockstar catalog. By construction the orange distribution and the
green distribution added together correspond to the blue slice.
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2.3.1 Density Profile Parameterization

Halo density profiles have been modeled and parameterized in various different ways.

The two following families of functions have been used most frequently to describe dark

matter halo densities:

1. Double Power-Law: These profiles asymptote to different power laws at small and large

radii. Profiles of the double power-law type generally have functional forms similar to the

NFW profile described by Equation 1. Previous work has explored a generalized NFW

(gNFW) five-parameter profile in order to account for deviations of dark matter haloes

from the standard NFW profile, particularly to allow for variations in the slopes at the

inner (cusp/core) and outer regions of haloes [164, 397, 90]. The gNFW profile can be

written as

ρ(r) =
2(β−γ)/αρs(

r
rs

)γ [
1 +

(
r
rs

)α](β−γ)/α
, (2)

where α, β, and γ are all constants. The generalized NFW double power law has a slope

of −γ at small radii and −β at large radii; the α parameter governs the rate of transition

between these slopes. The standard NFW profile has (α, β, γ) = (1, 3, 1), corresponding

to an inner power law index of −1 and an outer power law index of −3. Many studies use

the NFW profile, as the simplicity of having fewer free parameters can be advantageous,

despite the increased fidelity with which a gNFW profile can represent simulation data.

2. Continuously Varying Power-Law: Functional forms of this type allow for a gradual

flattening of the slope of the density profile towards the inner part of the halo. A

well-known member of the continuously varying power-law family is the Einasto profile

[114], which has come to be used extensively as recent work has shown it to be a better

description of the distribution of matter in haloes than other two or three-parameter

profiles [137, 275, 108, 199]. The standard three-parameter Einasto profile is

ρ(r) = ρsexp
(
− 2

α

[( r

rs

)α

− 1
])

, (3)

where ρs and rs are the scale density and scale radius, defined similarly as in the NFW

case. The Einasto profile differs from the NFW profile most at small and large radii.
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The inner slope of the Einasto profile goes to 0 as r approaches 0, and the outer slope

does not asymptote to a constant value.

In the main body of this chapter, we focus on four specific profiles. These are (i) the

NFW profile (Equation 1, two parameters), (ii) the generalized NFW profile (Equation 2,

five parameters), and (iii) the Einasto profile (Equation 3, three parameters), which serve as

standards to compare to prior work, as well as (iv) a four-parameter “generalized Einasto”

(gEinasto) profile (a profile that was first presented in Ref. [297] and studied in Ref. [342])

that we find best describes halo density profiles:

ρ(r) = ρs

( r

rs

)−γ

exp
(
− 2

α

[( r

rs

)α

− 1
])

, (4)

where γ modifies the inner density profile slope compared to the [114] form. This profile’s

asymptotic behavior tends to −γ at small radii2.

In 2.6 we describe the other functional forms that we tested, but do not present detailed

results for each of these profiles for the sake of brevity. Our qualitative results carry over

to these cases as well. As we will show, the gEinasto profile, (iv), is the best-performing

model and will be used to demonstrate most of our results. We use the NFW model, (i), as

a standard for comparison.

In order to enable comparisons across different types of halo profiles, we calculate halo

concentration using the radius at which the profile fit has a derivative equal to −2, r = r−2.

We define concentration as c−2 = rvir/r−2. For each of the aforementioned profiles, the local

power-law indices and values of r−2 are listed in Table 2.1. Note that in the case of the

gEinasto profile, if γ > 2, then the profile will never have d ln ρ/d ln r ≥ −2. We also include

for reference ρ−2 = ρ(r = r−2) which are useful for the case in which ρs is held constant

when fitting profiles.

In Fig. 2.2 we show an example of the local power law indices as a function of halo-centric

distance for each of the analytic profiles that we investigate for pedagogical purposes. Red

lines depict the NFW (solid) and generalized NFW (dashed) profiles, and purple lines depict

the Einasto (dash-dotted) and generalized Einasto (dotted) profiles. The parameters of

2As we were finalizing this manuscript, Ref. [213] presented a cored-Einasto profile for the description of
density profiles in galaxy formation simulations, akin to the cored-Sersic model of Ref. [153]
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ρs ρs

(
2−γ
2

)−γ/α

exp
(

γ
α

)

Table 2.1: Table of convenient functions for the density profiles discussed in this work. In order these are
the local power-law index, the radius at which the profile has a derivative equal to −2, r−2, and the density
of the profile at which the radius is equal to −2, ρ−2.
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these profiles are representative of a Milky Way-mass halo stack. Notice that for illustrative

purposes, the plot extends over an unusually large range of halo-centric distances. We do

this in order to illustrate the asymptotic behaviors of the profiles, as each profile has unique

behavior at its asymptotes. The parameterization of the generalized Einasto profile allows

us to decrease the asymptotic slope in the inner region of the halo.

2.3.2 Profile Fitting Procedure

Much of the analysis in this chapter relies on fits of halo density profiles to the functional

forms described in Section 2.3.1. We perform fits on both stacked and individual halo

profiles. Stacked profiles have compelling uses in both theory (individual halo profiles are

noisy, making stacks useful for the study of general trends) and observation (e.g. the stacking

of weak lenses to improve the inference of halo properties from low signal-to-noise lenses).

Individual halo profiles allow us to study halo-to-halo variations. Our fitting procedure is as

follows:

1. From Rockstar catalogs and particle tables, we compute halo density profiles as fol-

lows. We bin the distribution of particle distances relative to the center of the host halo,

r, into 90 logarithmically spaced bins between r/rvir = 10−3 and 1. We calculate the

density of each bin by dividing mass by bin volume, vi = 4
3
π(r3i+1 − r3i ), where i is the

bin index.

2. To compute stacked profiles, we first normalize each profile by the total mass of its

subhalo-included profile. Normalization is not necessary for individual halo fits.

3. To construct a stack, we calculate the mean density of the number-weighted profiles,

creating a number-weighted stack. Stacks are constructed in scaled units (r/rvir). We

calculate standard error of the density in each bin, SEi = σi/
√
N , where σi is the stan-

dard deviation of the density of the given radial bin across all haloes of the stack, and N is

the number of haloes in the stack. We use the standard error as the uncertainty in the fits.
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Figure 2.2: Analytic density profile derivatives for a Milky Way-mass (MMMZ) type halo. The parameters
of each profile were determined from the subhalo-included fits to the MMMZ stacked haloes Section 2.3.1
(NFW, generalized NFW, Einasto, and generalized Einasto). This plot extends over a large range of radii in
order to clearly depict clearly the asymptotic behaviors of each profile. For reference the region between the
gray vertical bands designates the typical range that a halo profile is examined in with the left band at the
resolution limit and the right band at the virial radius. The red lines depict the NFW (solid) and generalized
NFW (dashed) profiles, and the purple lines depict the Einasto (dash-dot) and generalized Einasto (dotted)
profiles. Our parameterisation of the generalized Einasto profile allows for a shallower inner slope in the
halo.
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4. For individual halo profiles we do not need to calculate the mean. In these cases, we use

σ, the standard deviation of the density of all the haloes in the respective simulation, as

the uncertainty.

5. We then mask all bins with bin centers below four times the softening length of the

simulation from being used in the fits (4× lsoft = 0.68 h−1 kpc co-moving for MMMZ and

4 × lsoft = 13 h−1 kpc for RHAPSODY).

6. Finally, we fit each functional form to the density profiles (whether derived from a stack

or an individual halo) by minimizing the usual χ2 function [see Eq. (6) below] using

scipy.optimize.curve fit from the scipy Python package [364]. To expedite the fits,

we include by-eye initial guesses for each free parameter. The fitting errors are those

described in points (iii) and (iv). We apply the following set of bounds on each parameter

to avoid un-physical solutions.

a. ρs > 0,

b. 0 < rs < Rvir,

c. 0 < α < 5,

d. 0 < β < 10,

e. 0 < γ < 5 for gNFW or −5 < γ < 5 for gEinasto.

The details of the fitting procedure are as follows. First, we choose as the independent vari-

able for each binned density ri =
√
rbin,outer × rbin,inner, the geometric mean of the radial bin

edges. We evaluate the analytic density profiles at each of these values of ri. We allow ρs to

be a free parameter in the fits, but one may choose instead to keep it fixed, which guarantees

that the fitted profile will satisfy the integral definition of the halo virial mass. There are

studies that have allowed ρs to be a free parameters [55, 371, 97, 223] and studies that have

not [272, 89, 69]. Also note that when we plot stacked profiles we normalize the profile to the

mean mass of the haloes (with subhaloes included) so that all profiles are plotted in absolute

units. For example, we plot r2ρ(r) in units of M⊙ kpc−1.
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Fig. 2.3 is the first depiction of a single halo’s density profile in this chapter and is shown

as an example. The plot corresponds to MMMZ halo 829, the same object whose projected

density is shown in Fig. 2.1. On the y-axis we plot the quantity r2×ρ(r) instead of just ρ(r)

to make it easier to see differences amongst density profiles, given the large dynamic range

of density. The gray, vertical band at the left represents the resolution limit of four times the

softening length, which is equivalent to 0.68 h−1 kpc co-moving. The meanings of the colors

are matched to Fig. 2.1. The solid blue curve represents the subhalo-included density of Halo

829; i.e., the quantity normally calculated from N -body simulations, incorporating both host

halo and subhalo mass. The solid orange curve depicts the subhalo-excluded density profile;

mass associated with detected subhaloes is not counted in this case. The solid green curve

shows a subhalo only density profile for reference. While in the inner region of the halo the

two profiles are quite similar they deviate from each other in the outer region.

As part of our analyses, we also scrutinize the local power-law index, d ln ρ/d ln r, from

both the numerical halo density profile data and the fits to the analytic profiles. Examining

the local power-law index of the profiles yields insight into the profile parameters (e.g., α,

β, γ) that will best represent the numerical data. The derivatives of the numerical data are

calculated numerically using the three-point (quadratic) Lagrangian interpolation estimator

[165, 27].

2.3.3 Assessing Fits

We have employed a variety of statistics to assess the quality of fits for each functional

form described in Section 2.3.1. The statistics that we will examine are the root-mean-square

fractional residual, χ2, and Akaike and Bayesian information criteria.

The first statistic we use to characterize fit accuracy is the root-mean-square fractional

residual between a halo profile and its best fit,

fRMS =

√√√√ 1

Nbins

∑
i

[
ρpred(ri)

ρdata(ri)
− 1

]2
, (5)

where ρdata(ri) is the density estimated for the simulated halo in the ith radial bin, ρpred(ri)

is the value of the density predicted by the model to which the data is being fit. The fRMS

29



10 2 10 1 100

r/rvir

109

1010

1011

r2
(r)

[M
/k

pc
]

MW-Mass Halo (829)

Subhaloes-included
Subhaloes-excluded
Subhaloes only

Subhaloes-included
Subhaloes-excluded
Subhaloes only

Figure 2.3: The density profile of Halo 829 in the Milky Way-mass (MMMZ) simulations, the same halo
shown in Fig. 2.1. The y-axis shows r2 times the density, as a function of distance from the center of the halo.
The gray region represents radii below the resolution limit of the simulations, as discussed in Section 2.2.
The blue, orange, and green curves are based on particles shown in the correspondingly colored panels in
the previous figure; in all figures, blue indicates subhalo-included distributions, orange indicates subhalo-
excluded distributions, and green indicates subhalo only distributions for reference. In the inner region of the
halo the subhaloes included and subhaloes excluded profiles are very similar to each other, but they deviate
more in the outer parts of the halo; this is a common trend among haloes.
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residual value provides an easily interpret-able measure of the accuracy of fits; if fRMS = 0.1,

the best fit of a given type typically deviates from the measured halo density profile by ≈ 1

per cent (in an RMS sense, so that deviations are added in quadrature). The closer fRMS

is to zero, the better the match is between the best fit to a given functional form and the

measured density profiles.

We use the well-known χ2 statistic to assess quality of fit and to perform model selection

from among the analytic density profiles that we propose above. The χ2 statistic is

χ2 =
∑
i

[
ρpred(ri) − ρdata(ri)

SEi

]2
, (6)

where mathrmSEi is the standard error per bin described in Section 2.3.2, and the sum over

i is a sum over all of the bins not excluded by the resolution cut. To avoid confusion, we

denote χ2 values derived from fits to stacked density profiles as χ2
stack. For individual profiles,

we calculate the χ2 values resulting from each of the individual halo profile fits. In order

to discuss the fit quality for this ensemble of fits, we examine the median χ2 value resulting

from the set of fits and designate it as χ2
median.

We aim to identify the profiles that best represent the halo profiles in our simulations;

however, we cannot draw this conclusion directly from the fRMS and/or χ2 values because

the functional forms used have varying numbers of free parameters. Adding additional

parameters to a fitting function will always decrease both the minimum value of χ2 and

fRMS. To assess whether or not the additional parameters have intrinsic explanatory power,

it is necessary to determine whether or not the decrease in the minimum value of χ2 is

significant in comparison to the decrease in χ2 one would expect from adding parameters

that simply fit the noise in the data. The Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) are statistics that are frequently used to quantify

whether or not the improvement of the fit (i.e., decrease in χ2) is sufficient to conclude that

the additional parameters have explanatory power [147, 148]. The AIC and BIC are

AIC ≡ 2k + χ2, and (7)

BIC ≡ ln(n)k + χ2, (8)
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where k is the number of free parameters in a given model and n is the number of data points

used to evaluate the fit. Differences in AIC/BIC of more than ten are generally considered

to provide very strong evidence of a superior model. For example, if AIC is reduced by more

than ten upon introducing a model with more parametric freedom, one concludes that the

new model is a superior fit to the data with intrinsic explanatory power.

2.4 Results

In this section, we compare the subhaloes-included and -excluded halo density profiles,

and assess how well each of the various analytic forms of halo density profile can describe

the simulated data sets. In so doing, we will show that the subhaloes-included profiles are

very different from the subhaloes-excluded density profiles, particularly in the outer regions

of the halo, and characterize those differences.

2.4.1 Identifying Best Fit Forms for Stacked Profiles

The focus of this subsection is to identify which analytic halo profile fitting functions

best describe the stacked profiles of simulated dark matter haloes.

Table 2.2 presents a variety of summary statistics for assessing the fit quality for each

of the proposed analytic density profiles introduced in Section 2.3.1. Blue or orange colors

are used to indicate tables of statistics for the subhalo-included or subhalo-excluded cases,

respectively. All goodness-of-fit statistics provided are the values for fits to stacked halo

profiles, with the exception of the last column, which lists the median chi-squared value from

the set of fits to each individual halo in the sample. The profiles are listed in Table 2.2 in

order of BIC from lowest (best) to highest (worst). It is evident that fRMS and χ2 generally

follow the same rank ordering as BIC. As a reference, the best-fit values of the parameters

from all of the profile fits are provided in Table 2.4 of 2.8.

The generalized Einasto profile is the most effective model for the simulated halo density

profiles, considering both Milky-Way-mass haloes (MMMZ) and cluster-mass haloes (RHAP-
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SODY) and for both the subhalo-included and subhalo-excluded data. It is favored over the

other profiles considered by all statistics used here, except for the median chi-squared value

across haloes. In this case, with the exception of the the subhaloes-excluded MMMZ data,

the generalized NFW profile yields marginally smaller values. The smaller χ2values for the

individual haloes are likely a result of the increased model complexity of the generalized

NFW profile.

Having established the utility of the generalized Einasto profile, we will focus on this

profile for most of the remainder of this chapter. In most of the figures that follow, we will

present detailed results for the gEinasto profile and the standard NFW profile. We include

the standard NFW profile because it is widely studied and therefore enables comparison with

previous literature. The corresponding rows in Table 2.2 are highlighted to indicate these

profiles.

We now turn our attention to the optimal model, the generalized Einasto profile, and

the comparison model, the NFW profile. Fig. 2.4a and Fig. 2.4b show the stacked fits in

both mass regimes. As before blue denotes subhalo-included and orange denotes subhalo-

excluded. The vertical gray band indicates radii below the simulation resolution limit (see

Section 2.2.1). The fit to the generalized Einasto profile is shown by the thick dashed lines.

The bands around the data indicate the halo-to-halo scatter (or intrinsic scatter) of the

profiles used in the stack for each bin, or the standard deviation of the halo density per

bin. It is evident that the intrinsic scatter across halos of the same mass is smaller than the

change in the profiles without subhaloes in the outer halo region. Therefor the effects we

are seeing are not merely due to the intrinsic scatter of dark matter halo profiles. These are

among the same fits used to generate Table 2.2.

The lower panels of Fig. 2.4a and Fig. 2.4b depict the ratio of the density profile fits to

the simulated profiles. The x-axes align with the top panels while the y-axes show R(ρ(r)) =

ρ(r)fit/ρ(r)simulation. This ratio would lie along the black dash-dot horizontal line at R(ρ(r)) =

1 for a perfect fit; the smaller the deviation from the R(ρ(r)) = 1 line, the closer a functional

form is to the stacked profile. The fits to each profile are labeled and shown in the same

order as Table 2.2 of increasing BIC.

In terms of deciding upon the functional form that most faithfully represents simulated
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MW-Mass Subhaloes Included
Models fRMS 2

stack BIC 2
median

Gen. Einasto 0.017 44.481 61.588 7.21
Gen. NFW 0.021 70.878 92.261 6.382

Einasto 0.033 192.502 205.332 8.949
NFW 0.137 1843.308 1851.861 28.389

MW-Mass Subhaloes Excluded
Models fRMS 2

stack BIC 2
median

Gen. Einasto 0.016 35.602 52.709 5.974
Gen. NFW 0.022 66.045 87.428 6.068

Einasto 0.055 430.868 443.698 9.744
NFW 0.104 2026.734 2035.287 35.095

Cluster-Mass Subhaloes Included
Models fRMS 2

stack BIC 2
median

Gen. Einasto 0.027 135.334 151.842 8.924
Gen. NFW 0.032 188.193 208.829 7.343

Einasto 0.041 333.317 345.698 12.841
NFW 0.075 818.921 827.175 19.402

Cluster-Mass Subhaloes Excluded
Models fRMS 2

stack BIC 2
median

Gen. Einasto 0.018 33.268 49.776 4.122
Gen. NFW 0.027 75.339 95.975 3.505

Einasto 0.062 428.287 440.668 8.826
NFW 0.096 1419.749 1428.003 23.233

Table 2.2: Statistics for evaluating goodness-of-fit and model suitability for the NFW profile, generalized
NFW profile, Einasto profile, and the generalized Einasto profile. The blue tables represent fits where
mass from subhaloes is included in the density profile, as has generally been done in previous simulation
studies; orange tables represent cases where subhalo mass has been excluded. The first two tables correspond
to the Milky Way-mass (MMMZ) host haloes and the second two tables correspond to the cluster-mass
(RHAPSODY) host haloes. The two models used in the following figures are highlighted. We first list
statistics calculated from fits to stacks (averages) of the haloes in each respective simulation; specifically, the
the root mean square fractional residual (fRMS), the χ2 of the best fit to the stacked haloes (χ2

stack), and the
Bayesian Information Criteria. The final column, (χ2

median), represents the median of the chi-squared values
calculated from fits to the density profiles of all individual haloes from a simulation set. The statistics used
are described in more detail in Section 2.3.3. In almost all cases, the generalized Einasto profile provides
the most balance of fit quality and limited model complexity; the BIC values in particular provide strong
evidence that this functional form performs optimally at describing halo density profiles.
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dark matter haloes, Table 2.2, Fig. 2.4a, and Fig. 2.4b all show that at both mass ranges

we have the same result: the gEinasto profile is a better representation of the simulation

stacks than the NFW profile or Einasto profile, and is comparable to the generalized NFW

profile. The gEinasto profile has the possible disadvantage of two additional free parameters

compared to the NFW profile, but this result holds even using metrics, such as the BIC and

AIC, that account for additional parameter freedom. These conclusions hold for both the

subhalo-included and the subhalo-excluded data sets.

Despite being described faithfully by the same functional form (the gEinasto profile), it

is apparent that the subhalo-included and subhalo-excluded profiles are notably different.

In particular, subhalo-excluded density profiles drop more steeply at large radii than the

subhalo-included density profiles. These differences manifest themselves in different best-fit

profile parameters. The mass deficit at large halo-centric distance are a result of the fact that

subhaloes are preferentially found in the outer regions of haloes [394]. It is likely the case

that the shallow outer slope of the NFW profile is a result of subhalo contribution, which we

explore further in the following subsection. Without subhaloes, the host halos likely have

higher concentrations as a result of this deficit of mass in the outer region, which we explore

further in Section 2.4.3.

2.4.1.1 Effective Power Law Index

One of the clearest ways to see why the NFW (and other functional forms) do not

perform as well as the gEinasto profile is by comparing the local power-law indices, de-

fined as d ln ρ/d ln r, of the simulated profiles to various functional forms. Deviations from

these asymptotic behaviors imply limitations to the quality of the fit that the correspond-

ing profile can achieve. The technique for calculating the density derivatives is described in

Section 2.3.1.

In Fig. 2.5a and Fig. 2.5b, we show the local power-law indices corresponding to the

profiles shown in Fig. 2.4a and Fig. 2.4b. The results shown in Fig. 2.5a and Fig. 2.5b are not

new fits to the local power-law indices of the profiles. Rather, they show the local power-law

indices implied by the fits to local density discussed above. In both plots the thin solid lines

35



1010

1011

r2
(r)

[M
/k

pc
]

MW-Mass (MMMZ)

1.00

0.8

1.5

(
(r)

) gEinasto

1.00

0.8

1.5

(
(r)

) gNFW

1.00

0.8

1.5

(
(r)

) Einasto

10 2 10 1 100

r/rvir

1.00

0.8

1.5

(
(r)

) NFW

(a)

1013

1014

r2
(r)

[M
/k

pc
]

Cluster-Mass (RHAPSODY)

Subhaloes-included
Subhaloes-excluded

Simulation
gEinasto

1.00

0.8

1.5

(
(r)

) gEinasto

1.00

0.8

1.5
(

(r)
) gNFW

1.00

0.8

1.5

(
(r)

) Einasto

10 2 10 1 100

r/rvir

1.00

0.8

1.5

(
(r)

) NFW

(b)

Figure 2.4: (a) Upper panel: The stacked density profile from all 45 Milky Way-mass (MMMZ) host haloes.
The gray band at low r indicates the adopted resolution limit of four times the softening length. The blue
curve depicts the density profile when subhalo mass is included, as conventionally done in N -body analyses,
while the orange curve corresponds to the case where subhaloes have been excluded. Both curves have been
fit to a generalized Einasto profile, as defined by Equation 4 and discussed in Section 2.3.1. The thick blue
dashed line is a generalized Einasto fit to the blue curve, and the thick orange dashed line is a fit to the orange
curve. The filled regions around the simulation data correspond to the halo-to-halo scatter of the density
profiles used in the fit, or the standard deviation of the density of these haloes as described in Section 2.3.2.
Lower panel: Ratio of the density profile of the fit to the simulation data. The horizontal dashed line denotes
where a perfect fit would lie. Each residual panel is labeled according to the fit to the given profile, shown in
the same order as Table 2.2. It is evident that a generalized Einasto profile is a better fit to the simulation
than the standard NFW profile or Einasto profile in both cases as expected from Table 2.2. While the fit to
the generalized NFW profile is comparable to the generalized Einasto profile, the generalized Einasto profile
provides a better fit quality and smaller model complexity. (b) As in panel (a), but for the stacked density
profile of the 96 cluster-mass (RHAPSODY) host haloes. In both mass ranges it is apparent that mass in
subhaloes has the largest effect on the density profiles in their outer portions.
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depict the local power-law indices of the simulation data and the thick dashed lines represent

the parameters resulting from the fit to the generalized Einasto profile. The shaded regions

around the fits to the gEinasto profile define the 68 and 95 percentile confidence regions of

the fit. These percentile regions are calculated from bootstrap re-sampling (re-sampling with

replacement) of the set of host halo density profiles 1000 times. For each bootstrap sample,

the fit of the stack is performed again and the corresponding power law indices are computed

by substitution of the fit parameters. Then we determine the confidence regions.

Fig. 2.5a and Fig. 2.5b further demonstrate that the generalized Einasto profile is able

to capture the behavior of the simulation for both the subhalo-included and the subhalo-

excluded models. It is also notable that the subhalo-excluded profiles are steeper than their

counterparts due to the mass deficit in the outer region of the haloes.

We compare the subhalo-excluded power-law indices for all four profiles of interest (NFW,

generalized NFW, Einasto, and generalized Einasto) in Fig. 2.6a and Fig. 2.6b. The steep

outer slopes of the subhalo-excluded simulation data set cannot be well described by either

the NFW profile or the Einasto profiles.

For the Einasto profile, the inner power-law index approaches 0 when r ≪ rs. The

parameter α allows the profile to steepen as r increases, but no single value of α can capture

the rate of increase of the slope on all scales. The gEinasto profile improves upon the

Einasto profile by introducing a distinct parameter to capture the inner profile power-law

index, making it approach to −γ for r ≪ rs. With this additional freedom, α in the gEinasto

profile can be tuned to match the halo density profiles at r ≳ rs. In this way, the generalized

Einasto profile is able to capture the shallowness of the subhalo-included profiles and the

steepness of the subhalo-excluded profiles at large radii.

The contrast between the outer power-law indices of the subhalo-included and subhalo-

excluded profiles has a profound implication: the outer power-law index of the mass dis-

tribution of haloes is determined largely by subhaloes. A comparison between the results

shown in Fig. 2.6a and Fig. 2.6b to the general profile shown in Fig. 2.2 shows that the

asymptotic behavior of the given profile at r ∼ rvir drives the fit more than the asymptotic

behavior at the inner region. Profiles with relatively shallow slope at large radii, such as

the standard NFW profile with d ln ρ/d ln r = −3, do not faithfully describe the smooth
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(subhalo-excluded) components of halos. This should be considered in any application for

which one must model the smooth component of the host halo and the subhaloes associated

with the host halo independently.

2.4.2 Impact of Subhaloes on Individual Halo Profiles

So far we have found, using stacked profiles and fit quality statistics, that the generalized

Einasto profile describes well the halo mass distribution both with or without the presence

of the mass in subhaloes. Haloes are dynamically evolving systems, which results in halo-to-

halo variation for haloes of the same mass. A functional form that fits well to a stack may

not necessarily be a good fit to the individual haloes that contributed to the stack due to

this variation. In this subsection, we investigate fits to the profiles of individual simulated

dark matter haloes, rather than to stacked profiles. We apply the same fitting procedures

described in Section 2.3.2.

For the sake of brevity we show a selection of 3 haloes from each simulation in Fig. 2.7a

and Fig. 2.7b. We select the haloes closest to the 33rd, 66th, and 99th percentiles in χ2 from

the subhalo-included fits. This corresponds to Halo 088 (483), Halo 530 (266), and Halo

606 (517) for the MMMZ (RHAPSODY) haloes. We used the same fitting procedures as

Fig. 2.4a and Fig. 2.4b in axes and colors, the only difference being that the profiles are

not stacked. The error-bars are representative of the standard deviation of all haloes in the

respective simulation (the halo-to-halo scatter) of which the calculation is describe in (iv) of

Section 2.3.2.

Some of these profiles have notable peaks in the outer region or troughs in the inner

region. We investigated these deviations from the fits for these haloes. These features are

caused by massive subhaloes and/or active mergers. Consequently, these features are not

well described by a single monotonic profile function when subhaloes are included, and in

some cases even when subhaloes are excluded (as in Halo 088), because the particles are

mixed in.

Despite the noisiness of the individual halo profiles, these results are very similar to those

in Fig. 2.4a and Fig. 2.4b. According to the residuals the generalized Einasto profile provides
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Figure 2.5: (a) Effective power law index of the density profiles (i.e., logarithmic derivatives of the profiles) as
a function of radius for the Milky Way-mass (MMMZ) haloes. Plotted here are the derivatives derived from
a stack, or average, of the profiles from all of the MMMZ host haloes. The solid lines depict the derivative of
the stacked simulation data, which is calculated using a 3-point derivative algorithm numerically. The dashed
line shows the local power-law index implied from the fit to the generalized Einasto profile. We re-sample the
45 hosts with replacement and re-calculate the fits of these new samples to the generalized Einasto profile.
Then we calculate the 68 and 95 percent regions of the local power-law index. The shaded blue and orange
regions around the fit represent these bootstrapped errors. As before, the gray region represents radii below
the resolution limit of the simulations. The generalized Einasto profile provides a good fit to the simulations
except the very extreme outer region where the profile falls off. (b) Same as (a) but for the cluster-mass
(RHAPSODY) haloes; the generalized Einasto profile is also a good descriptor of the simulations in this
mass range.
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Figure 2.6: (a) Similar to Fig. 2.5a, this figure shows the effective power law indices of the density profiles
as a function of radius for the MW-mass haloes for all four profiles (NFW profile, generalized NFW profile,
Einasto profile, and generalized Einasto profile) explored herein. We show results for the subhalo-excluded
models only, as all profiles provide good descriptions of the subhalo-included simulation data set. The solid
lines depict the derivative of the stacked simulation data, and the dashed line shows the power-law index
implied from the fit of the simulation data to the respective profile. (b) Same as (a) but for the cluster-mass
haloes. For both mass regimes the NFW profile has a much shallower outer slope than the simulation data.
The Einasto profile has a much less severe but shallow prediction as well. This shallow slope means the
profiles do not have enough flexibility to match the simulation data when subhaloes are excluded. It is
evident that the additional parameter of the generalized Einasto profile over the standard Einasto profile
allows for a larger flexibility in describing the halo density profiles.
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a tighter fit than the NFW profile. Additionally, as before, the subhalo-excluded profiles are

much smoother. While the shapes of the profiles are not completely identical they are much

more similar to each other.

To assess fit quality, Fig. 2.8 shows the χ2 of the individual halo fits to the generalized

Einasto profile, where the x-axis is the χ2 with subhaloes and the y-axis is the χ2 without

subhaloes. Red points mark MMMZ haloes and purple points mark RHAPSODY haloes.

The black, diagonal line corresponds to the case in which both values of χ2 are equal. The

square, diamond, and star points correspond to the halos whose profiles are shown in Fig. 2.7a

and Fig. 2.7b.

It is evident that the χ2 values for the fits to the gEinasto profiles are generally smaller

when subhaloes are excluded. This is the case for both simulation mass ranges, but the

effect is more pronounced in the RHAPSODY haloes. This decrease in χ2 is likely a result

of the halo density profiles yielding a much smoother mass distribution after subhaloes are

removed. Because we are fitting to a smooth functional form, this form can describe the halo

density profile with smaller residuals.

We further investigate if this change in χ2 is correlated with the fraction of mass in

subhaloes, defined as Mvir,nosubs/Mvir, where Mvir,nosubs is the total mass within Rvir but

excluding particles associated with subhaloes. The points in Fig. 2.8 are shaded according to

the subhalo abundance metric; halos marked in darker colors have a smaller mass fraction in

subhaloes. The haloes with a greater portion of their mass in subhaloes tend to have worse

χ2 when subhaloes are included, an effect which is substantially alleviated without subhaloes.

This follows the narrative that the halo density profiles are much smoother without subhaloes

and thus better described by an analytic profile. However, there is a decent scatter about

this trend - the haloes with the most mass in subhaloes don’t necessarily have the worst

fits to the generalized Einasto profile. Thus subhaloes abundance alone cannot describe this

change in χ2.

Overall we have shown that in addition to stacked haloes individual halo profiles can be

well described by the generalized Einasto profile. Both by eye inspection (examining the

profile fits) and the results of the χ2 of the fits provide strong evidence that the generalized

Einasto fits to the individual profiles are acceptable. We also show that regardless of stacks
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Figure 2.7: (a) Three individual halo profiles and their respective fits from the MW-mass simulations (the
axes and colors are the same as those in Fig. 2.4a). These haloes were selected according to the χ2 of their
fits including subhaloes. We have marked three haloes that are at the 33rd (Halo 088), 66th (Halo 530), and
99th (Halo 606) percentiles in χ2, representative of a good, average, and not very good fit respectively. Error
bars are representative of the halo-to-halo scatter, plotted every 10 bins starting at either the 0th bin (for
subhalo-included; blue) or the 5th bin (for subhalo-excluded; orange). According to the residuals there is
strong evidence that individual haloes tend to be better described by the generalized Einasto profile than
the NFW profile. (b) As in (a) but for the cluster-mass host haloes. The haloes at the 33rd, 66th, and 99th

percentiles in χ2 before subhalo removal are Halo 483, Halo 266, and Halo 517. As in (a), the individual
halo profiles are better fit to the generalized Einasto profile than the NFW profile.
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Figure 2.8: The χ2 of the individual halo fits to the generalized Einasto profile with subhaloes (the x-axis)
plotted against the χ2 of the individual halo fits without subhaloes (the y-axis). Red points mark MW-mass
(MMMZ) haloes and purple points mark cluster-mass (RHAPSODY) haloes. For reference, the black line
across the diagonal shows χ2 = χ2

nosub. The three points marked here by the square, diamond, and star
correspond to the halo profiles shown in Fig. 2.7a and Fig. 2.7b. All of the points are colored according
to a proxy for subhalo number, the halo mass fraction in subhaloes Mvir,nosub/Mvir. The darker the shade,
the less total halo mass in subhaloes (or the fewer subhaloes a halo has). The MMMZ haloes have quite a
bit of scatter but tend to have improved χ2 after subhaloes are excluded. Nearly all of the RHAPSODY
haloes have improved fits after subhaloes are excluded. In general the haloes with a larger mass fraction in
subhaloes have smaller χ2 after subhaloes are excluded from the fits. Without subhaloes the halo profiles
are smoother and have smaller residuals compared to analytic profiles. However, the scatter indicates that
subhalo abundance alone does not account for the change in χ2.
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or individual profiles, halo density profiles exhibit a mass deficit in the outer halo region

when subhaloes are excluded. Additionally the subhalo excluded component of the haloes

are smoother than their subhalo included counterparts, which allows them to be better

described by a smooth functional form.

2.4.3 The Concentration–Mass Relation With and Without Subhaloes

It is now well known that mean halo concentration is a slowly declining function of halo

mass (e.g., [55, 116, 371, 396, 107, 137, 227, 199, 223, 295, 101]). This mass dependence of

halo concentration is widely thought to be caused by the fact that larger haloes assemble

their masses later, on average, than their less-massive counterparts. In this section, we study

the degree to which subhaloes themselves influence the mass dependence of halo concentra-

tions. We emphasize that the concentrations calculated when subhaloes are excluded use

the original virial radius of the halo with subhaloes. There is no unambiguous way to define

a halo without its subhaloes so here we take the simplest approach of maintaining the same

halo “edge” in both cases.

The best-fit values of halo concentration for subhalo-included and -excluded are shown

in Fig. 2.9. Red points denote the MMMZ haloes and purple points denote the RHAPSODY

haloes. Open circles mark values calculated from the generalized Einasto fits and open

triangles mark values calculated from the NFW fits. We also show corresponding histograms

of the concentration values, filled histograms represent the generalized Einasto profile results

and outlined histograms represent NFW profile results. The concentration parameter is

calculated as described in Section 2.3.1.

It is evident that haloes of different mass ranges exhibit different changes in concentration.

The MMMZ haloes roughly maintain the same concentrations, with or without subhaloes,

from the generalized Einasto fits. However these same haloes have increased concentrations

resulting from the NFW fits. In contrast, the RHAPSODY haloes almost all have higher

concentrations without subhaloes regardless of the fit profile. In part this effect is a result

of the more massive RHAPSODY haloes having a larger fraction of their mass in subhaloes

and in part a result of the cluster mass haloes having smaller concentrations to start with
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so r−2 encompasses more subhaloes. However, despite this change the concentrations of

the RHAPSODY haloes and MMMZ haloes do not match without subhaloes. This implies

that the concentration dependence on halo mass is not purely decided by the presence of

subhaloes — the smooth central halo component is also impacted by halo formation history.

In Table 2.3 we quantify the changes exhibited by the concentration after subhaloes are

excluded, with similar conclusions to those described above. The errors presented are cal-

culated via bootstraps of the haloes. In the first and third columns we present the median

concentrations of the individual halo fits (for MMMZ and RHAPSODY haloes respectively).

The generalized Einasto profile median concentration has a smaller increase without sub-

haloes compared to the NFW profile (and even decreases minimally for the MMMZ haloes).

Because subhaloes are typically in the outskirts of haloes, the exclusion of the mass in sub-

haloes results in an increase in concentration [394].

Next we calculate the scatter of the concentration at a fixed halo mass, σlog c−2 , shown in

columns two and four of Table 2.3. This is done by calculating the inter-quartile range (IQR)

of log c−2. This gives an estimate of σ, where we assume log c−2 follows a normal distribution

such that σ = IQR/1.349. When subhaloes are excluded, the scatter in both simulations is

much smaller, indicating less scatter amongst halo fitting parameters. In general the scatter

is smaller in the more massive RHAPSODY haloes compared to the MMMZ haloes, which

is an expected result from, e.g., Ref. [278, 107]. The subhalo-included results fall within the

range of values estimated for the NFW profiles (see e.g., [180, 55, 371, 76, 278, 107]).

The final column of Table 2.3 shows the ratio of the median concentration of the Milky

Way-mass MMMZ haloes to the median concentration of the cluster-sized RHAPSODY

haloes, MMMZ med(c−2)
RHAPSODY med(c−2)

. This ratio is larger than one in all cases, reflecting the fact that

concentration is a slowly decreasing function of halo mass. We find that the value of this

ratio computed from the subhaloes-excluded concentrations is smaller than the value for the

standard, subhaloes-included concentrations. The median concentrations of the haloes of the

different masses exhibit a higher degree of similarity in the subhaloes-excluded case. Halo

concentrations still exhibit a non-negligible mass dependence when subhalos are excluded.

Thus subhaloes increase the mass dependence of concentrations but do not completely explain

the mass trend.
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Figure 2.9: The concentration of the MW-mass MMMZ haloes (red) and the cluster-mass RHAPSODY haloes
(purple) calculated from individual fits to the generalized Einasto profile (open circles) and the NFW profile
(open triangles) as described in Section 2.3.1. The horizontal axis is the concentration when including the
mass in subhaloes, denoted by c−2 With Subhaloes, and the vertical axis is the concentration when excluding
the mass in subhaloes as denoted by c−2 Without Subhaloes. We also show corresponding histograms of
the concentrations for the gEinasto profile (filled) and the NFW profile (outlined). A solid black line shows
y = x; points on this line result in the same concentration values regardless of the presence of subhaloes. The
MMMZ haloes show little to no change in gEisnasto concentration after excluding subhalo mass, while the
RHAPSODY haloes almost all have notably higher gEinasto concentrations without subhaloes. For NFW
concentrations, there is a larger increase in both mass ranges when halos are excluded. We find that a
concentration–mass relation remains, even with the exclusion of subhalo mass.
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MW-Mass Cluster-Mass c-M Relation
Models Median c 2 log10c 2 Median c 2 log10c 2 cMW

2 /ccluster
2

NFW 13.666 ± 0.7 0.141 ± 0.042 5.484 ± 0.17 0.103 ± 0.05 2.492 ± 0.155

Gen. Einasto 11.633 ± 0.65 0.216 ± 0.033 4.632 ± 0.15 0.137 ± 0.044 2.511 ± 0.163

MW-Mass Cluster-Mass c-M Relation
Models Median c 2 log10c 2 Median c 2 log10c 2 cMW

2 /ccluster
2

NFW 15.987 ± 0.48 0.118 ± 0.038 8.46 ± 0.2 0.077 ± 0.027 1.89 ± 0.087

Gen. Einasto 12.285 ± 0.55 0.148 ± 0.04 6.331 ± 0.17 0.085 ± 0.033 1.94 ± 0.117

Table 2.3: Tables of the median concentrations and scatter for the simulated haloes. The concentrations are
calculated as described in Section 2.3.1. As before the blue table shows results of subhalo-included models
and the orange table shows results for subhalo-excluded models. The median concentrations are simply the
medians of the values computed for each individual halo for the given model, with errors from bootstrapping.
We also list concentrations of the stacked halo profiles in Table 2.4. The scatter σlog c−2 describes the scatter
in the concentration–mass relation. Concentration is simply a transformation of the halo parameters and
makes it easy to study the differences, namely that the scatter is much smaller for subhalo-excluded models
indicating that their parameters are more similar. The final column cMW

−2 /ccluster−2 is the fraction of the
median concentrations for the respective simulation. The fractional change in concentration is much smaller
for subhalo-excluded. These results indicate that subhaloes have an effect on the concentration-mass relation
but do not completely explain the trend.
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2.4.4 Robustness Checks and Caveats

We have performed several tests to ensure the robustness of our results. First, we exam-

ined the results when stacking subsets of haloes according to additional halo properties to see

if this had an effect on the fit assessment (such as subhalo abundance). We have tabulated

the same statistics as those in Table 2.2 when stacking subsets of the haloes split according

to their subhalo mass fraction (see Section 2.4.2 for further discussion on this quantity) and

other such proxies for subhalo abundance such as metrics for halo formation time (as halo

formation time is anti-correlated with subhalo count). In general the trends were the same as

those shown for the full stack, barring a couple of edge cases where the stack was influenced

by a few haloes undergoing mergers.

In general, we present fRMS values calculated using the logarithmically spaced bins

defined in (i) of Section 2.3.2. Logarithmic bins have the effect of preferentially weighting

the inner portions of halo profiles relative to a binning scheme linear in radius, r. To do that

we computed a linear fRMS by interpolating densities onto a linear grid and recomputing

each of the fits. We have confirmed that using a linear binning scheme does not alter the

qualitative results and preserves the rank ordering of fRMS among haloes in the sample.

A separate concern is that the halo profiles have not turned over yet at the virial radius,

especially for the more massive RHAPSODY haloes. The edge of a halo is arbitrarily defined.

Because of this there is the possibility that the virial radius may not be the physical edge

of the halo. In terms of density profiles this means that the density is not yet at the point

where the slope is diverging. We have examined and fit profiles extending to both 1.5 × rvir

and 2 × rvir and find that this has no effect on our qualitative results with minor effect on

our quantitative results.

In addition to these consistency checks, our results and conclusions are subject to several

caveats. First, concentrations were determined via a specific algorithm for halo profile fitting.

While we expect the qualitative aspects of our conclusions to be unaltered by the application

of distinct algorithms, some of the quantitative details of the results may be sensitive to the

algorithm used to determine halo concentrations.

Second, the detailed results presented here are dependent on what one defines as “sub-
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structure.” In Section 2.2.2 we define streams, caustics, and loosely self-bound objects that

are actively being disrupted as part of the smooth halo component. Including these objects

in the substructure component would reduce the mass of the smooth halo component and

may also systematically alter the structure of the smooth halo component. For further de-

tail and examples of an alternative way of defining the smooth halo component see 2.7 and

relevant figures. Despite having a vastly different smooth halo component, the generalized

Einasto profile still has the smallest BIC, fRMS, χ2, etc for subhalo excluded fits.

In this work we use the default binding criterion defined in Rockstar (see Ref. [18]

for further detail), or the limit that a subhalo must meet in order to be self bound. Using

different halo finders and different binding criteria can result in slightly different substruc-

ture abundances. However, we do not expect the differences between results from various

halo finders to be severe, as Ref. [285] found that substructure presences agreed quite well

across halo finders. But these small difference in turn can slightly alter what is counted

as “substructure” and what is attributed to the smooth halo component. While we use the

criterion that 50 per cent of particles must be bound to a subhalo, Ref. [18] finds that effects

don’t manifest until a threshold of 15 per cent or lower. We expect our results to hold, at

least qualitatively, for different subhalo self-binding criteria especially because the subhalo

mass fraction is generally small compared to the overall halo mass.

Third, as with all simulation-based studies, the simulations that we analyzed had finite

force and mass resolution. We again expect that our conclusions are not compromised by

finite resolution, but several quantitative aspects of the results may be resolution dependent.

Most notably, we provide best-fit parameters for each profile in 2.8. It may be tempting

to take the inner profile power-law indices (γ) to represent the asymptotic inner power-law

indices of halo density profiles, as this is a quantity of interest across many sub-disciplines.

However, we caution that the specific power-law indices quoted are likely resolution depen-

dent and our analysis cannot to rule out profiles that become shallower than ρ ∝ r−1 at

small radii.

Resolution can alter our quantitative results in at least one additional way. As resolution

increases, smaller subhaloes will be resolved within the simulation. Consequently, removing

“subhaloes”according to the definition used herein is inherently resolution dependent. Higher
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resolution simulations will contain smaller subhaloes not present in relatively lower-resolution

counterpart simulations. It is possible that this additional substructure may alter our results.

Therefore it is useful to consider the amount of mass in subhaloes that may not be identified

as mass associated with subhaloes due to our resolution. An estimate of this non-identified

subhalo mass is calculated using an analytic power-law subhalo abundance function [335].

We find that the cumulative mass in subhaloes below our resolution limit to be approximately

∼ 15% of the mean MMMZ halo mass.

While 15% is a non-negligible mass fraction, we emphasize that it is the spatial bias of

these very low-mass subhaloes relative to the overall halo mass distribution that would cause

our results to change. If these subhaloes are not biased relative to the overall dark matter

halo mass distribution, then their removal constitutes merely a change in profile normaliza-

tion and not a change in profile shape. Several studies have examined the spatial distribution

of subhaloes with respect to their hosts. These studies generally find that the most massive

subhaloes do exhibit a spatial bias with respect to the overall halo matter distribution (mas-

sive subhaloes preferentially lie in halo outskirts) and that this bias decreases with decreasing

halo mass [393, 394, 392, 340, 269, 303, 335, 135, 155]. This suggests that the subhaloes that

are not identified within our simulation will not induce significant qualitative changes to our

results. A definitive answer to this question awaits further, higher-resolution simulations.

We close this discussion of subhaloes that may be missing due to resolution by noting that

the definition of a halo or a subhalo that is most suitable depends upon the data with which

the prediction is to be compared and the specific analyses that will be performed.

Fourth, we have only examined two narrow halo mass bins here. Therefore, we cannot

make specific statements about the detailed mass dependence of any of the effects that we

have explored, including the concentration–mass relation. An interesting extension of this

work would be to consider the profiles of haloes over a wider range of masses in order to

construct an improved halo concentration–mass relation based on smooth profiles.

Lastly, recent work such as that by Ref. [64] finds that satellites are more concentrated

than subhaloes. Baryonic effects may alter our quantitative results along these lines; while

in N -body simulations the subhalo mass loss occurs only in the outer regions, it may oc-

cur at smaller radii when baryonic physics is introduced. For example, Ref. [102] showed
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that substructure orbiting in the inner galaxy region can be destroyed by disk shocking.

Substructure abundances can be reduced by as much as a half [140, 317]. While this effect

predominantly occurs within the inner 30 kpc of the halo, this is within the range that we

see a notable offset between subhaloes included and subhaloes excluded. This could mean

that the effect subhaloes have on host halo density profiles is less severe, but we do expect

some effect to remain. Another interesting extension of our work would be to explore the

effects of removing subhaloes in hydro-dynamical models.

2.5 Summary and Conclusion

In this chapter, we have investigated the density profiles of the smooth components

of host dark matter haloes and compared them with conventional halo density profiles.

Typically, the density profiles of host dark matter haloes are analyzed including all of the

mass associated with subhaloes within these hosts. Here, we isolate the smooth components

of the host haloes by removing the mass associated with subhaloes (following earlier work

by Ref. [385]), and study the resultant smooth host density profile.

We examine the difference between the smooth and conventional density profiles for a

set of high-resolution simulations of 45 Milky Way-sized haloes (the MMMZ haloes, with

Mvir = 1012.1±0.03M⊙), and a set of simulations of 96 cluster-sized haloes (the RHAPSODY

haloes, with Mvir = 1014.8±0.05M⊙). Considering profiles at different masses is a priority

because the amount of halo substructure is known to increase systematically with halo mass

[394]. However, the prerequisite of high resolution precludes an exploration of a wide range

of halo masses. Studying high-resolution simulations of Milky Way- and cluster-sized haloes

is a compromise between these considerations.

We have drawn four primary conclusions from our work, which can be summarized as

follows.

(i) The density profiles of the smooth components (i.e., excluding mass within subhaloes)

of host dark matter haloes decline more steeply at large radii compared to conventional

density profiles that include both smooth mass and mass within subhaloes (see Fig. 2.3,
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Fig. 2.5a, Fig. 2.5b, Fig. 2.6a, Fig. 2.6b).

(ii) A single functional form, the generalized Einasto (gEinasto) profile, describes all of the

profiles that we have studied, including both smooth (subhaloes-excluded) and conven-

tional (subhaloes-included) profiles, with a smaller residual error than either the often-

used NFW or Einasto profiles (see Table 2.2, Fig. 2.4a, Fig. 2.4b, Fig. 2.7a, Fig. 2.7a).

(iii) We find that concentrations (c−2) derived from the smooth halo density profiles exhibit a

weaker dependence upon mass than the concentrations derived from conventional density

profiles including subhaloes. This indicates that substructure plays an important role in

establishing the concentration–mass relation (see Table 2.3, Fig. 2.8, Fig. 2.9).

(iv) Concentrations derived from the density profiles of the smoothed components of haloes

exhibit exhibit smaller scatter at fixed mass than conventional concentrations. This indi-

cates that substructure plays a role in establishing the distribution of halo concentrations

at fixed mass (see Table 2.3).

Each of these conclusions has a variety of important consequences. We elaborate on each of

points (i)–(iv) in turn below.

The prevalence of substructure is a natural consequence of CDM. It is also known that

subhaloes are distributed within their hosts differently than the mass distribution [270, 394].

One consequence of this difference is that the smooth component of a halo has a density

profile that is different from its total mass density profile including subhaloes, declining

more rapidly than the full halo density profile. This distinction may be relevant to studies

that aim to understand the nature of the nearly universal density profiles of haloes, and

may impact analyses of a variety of observations. The effect that we measure is also broadly

consistent with recent work describing the influence of mergers on halo concentrations [369].

Consider the analysis of a hypothetical gravitational lens system as an illustration of

the importance of the distinction between the mass in the smooth component of the host

and its subhaloes. The mass distribution of the lens system can be constrained through the

observation of the magnified/distorted images of the source galaxies behind the lens system.
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A common strategy is to treat the bulk of the lens mass as an NFW profile. However,

visible substructures (satellite galaxies) or invisible substructure are treated as haloes with

their own, distinct profiles. The problem with this scheme is that the NFW profile used to

describe the main lens system is already calibrated to include the mass in substructure. This

new, composite lens system, built from an NFW main halo and distinct subhaloes, no longer

represents the mass distributions found in CDM halo simulations. One might informally

say that the subhaloes are “double counted.” The model would represent the predictions of

simulations more faithfully if the main lens were modeled using a profile calibrated to the

smooth component of the host halo alone. This work provides such profiles.

Similarly, halo density profiles determine the luminosities of extra-galactic sources of dark

matter annihilation. The boost factors associated with the balance between the smooth halo

component and subhaloes could be altered by the differences between the two as we have

shown such profiles are markedly different.

We demonstrated that the“generalized Einasto”(gEinasto) profile introduced in Ref. [297]

provides a better description of dark matter halo density profiles than either the NFW or

Einasto profiles (or several other candidate profiles, see 2.6), in support of the conclusions

of Ref. [342]. Indeed, in all cases that we have studied, including MMMZ (Milky Way-sized)

haloes and RHAPSODY (cluster-sized) haloes, both with and without including the mass

within subhaloes in the density profiles, the gEinasto profile provides a superior description

of the dependence of halo density on halo-centric distance. As evinced in Fig. 2.2, Fig. 2.6a,

and Fig. 2.6b, the Einasto profile has the shortcoming that it cannot describe the variation of

the local power-law index d ln ρ/d ln r as a function of r with a single value of α for the entire

halo. The gEinasto profile is an Einasto-type profile with an additional free inner power-law

index. This additional freedom enables the Einasto profile to describe halo density over the

entire range of resolved halo radii. A gEinasto fit to stacked halo density profiles describes

the haloes with residuals smaller than a few per cent in all cases.

Concentration (c−2) is a convenient dimensionless characterization of the scale at which a

halo profile steepens. Here we find that the concentrations of the smooth halo density profiles

have a weaker dependence on mass than conventional concentrations, which is shown in

Fig. 2.9 and Table 2.3. First, we find that the concentrations for the subhalo-excluded profiles
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(for the gEinasto profile) are up to ∼ 30 per cent higher than concentrations derived from the

conventional halo mass distribution for individual haloes (and up to ∼ 35 per cent higher for

the stacks). This is in agreement with results from past work (e.g., Ref. [394, 237, 124]) that

indicated that haloes with higher concentrations tend to have fewer subhaloes. We also find

higher halo concentrations when subhaloes are removed. However, a mass dependence on

concentration remains, even without subhaloes in the picture. Thus the concentration–mass

relation is only partially explained by subhaloes.

At fixed mass we also find that the smooth profile concentrations have a significantly

smaller scatter than concentrations with subhaloes included. Some scatter remains after

subhalo removal. One possible and well explored source of this scatter is the halo formation

history, where recently forming haloes typically have lower concentration (see e.g., Ref. [371,

396]). Another possible source of this remaining scatter is environment, as work by Ref. [228]

found that more concentrated haloes live in denser environments at fixed mass. This is

consistent with the now well-known concentration-dependent clustering of haloes [372, 138].

We have shown that subhaloes have a prominent effect on the profiles of dark matter

haloes at larger radii (r ≳ r−2), and have given fitting formulae that encapsulate this effect.

As we collect ever more precise data at a variety of observational facilities, we hope that this

new accounting for halo mass will enable more powerful and less biased data analyses. The

effort to understand the role of subhaloes in determining halo properties is only beginning.

Given this work, it is reasonable to suspect that subhaloes may influence a variety of halo

properties. While a detailed exploration is beyond the scope of this work, future studies of

such effects may yield tools which can further improve data analyses and deeper insights into

the formation and evolution of dark matter haloes.

2.6 Other Halo Profiles

There have been numerous papers discussing various profiles that describe dark matter

haloes. Most are variations of the double power-law generalized NFW profile (Equation 2)

with power-law indices α, β and γ set to various specific values. There has been more recent
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work that also studies varieties of continuously varying power laws, namely modifications to

the Einasto profile (Equation 3). In addition to the primary results presented in the main

text, we investigated fitting dark matter halo density profiles to the following analytic forms.

1. The generalized NFW profile with various constraints on α, β, or γ. E.g., (α, β, γ) =

(1, 3, γ); (1, β, γ); (α, β, 1.58).

2. The Generalized Moore profile [260] (α, β, γ) = (3 − γ, 3, γ).

3. The Denhen & McLaughlin Profile [89] (α, β, γ) = (4
9
, 31

9
, 7

9
).

4. The Generalized Denhen & McLaughlin Profile [89] (α, β, γ) = (3−γ
5

, 18−γ
5

, γ).

5. The DiCintio [97] model (α, β, γ) = (0.84, 2.85, 1.09) using the equations in their paper,

and M∗ = 5 × 1010 and Mhalo = 1.3 × 1012 for the Milky Way from Ref. [28].

6. A log parabola (or curved power law), as it was a good descriptor of the effective power

law index of our profiles (i.e., the derivative of the log of the density with respect to log

r, which is discussed in Section 2.4.1.1). This is expressed by ρ(r) = ( r
rs

)−α−β ln (r/rs).

None of these profiles performed as well as the generalized NFW or generalized Einasto

profiles. We mention them here for completeness for the reader.

2.7 Subhalo Removal with Rockstar

Here we continue the discussion of how subhaloes are excluded from calculations. Cleanly

identifying particles that belong to detectable subhaloes and distinguishing them from par-

ticles that belong only to the host and not to any subhalo is not straightforward. Objects

identified as subhaloes in the halo table do not correspond one-to-one to the set of over-

densities visible in particle distributions. For example, Rockstar does not list subhaloes

with low self-bounded particle fractions in the halo catalog (< 50 per cent self-bound parti-

cles). These are structures that are very diffuse and do not fall within the strict ”subhalo”

definition and are more commonly associated with tidal streams. However, some of these

objects are very small and not real, so one must define a mass and self-bound fraction cut in
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order to get high purity results. Please refer to the Rockstar paper, Ref. [18], for details

on binding criteria.

In Section 2.2.2 our ”subhalo-excluded” particles are those that are not associated with

any subhalo listed in the Rockstar halo catalog. This sample includes objects that do

not meet this bounded-ness threshold in Rockstar. However, it is also possible to select

particles that are only tagged as host particles. This would mean excluding both particles

that belong to substructure that meets Rockstar’s criteria and particles that are part of

other more diffuse substructures.

In Fig. 2.10 we show a 2D halo slice (∆z = ±1kpc) comparing this alternative subhalo-

excluded method to that of Section 2.2.2 and Fig. 2.1. The left panel depicts the particles

of this alternative subhalo-excluded model in black. The right panel of Fig. 2.10 depicts the

particles that are in our fiducial model but are not included in the alternative subhaloes

excluded model. There is a significant portion of mass in diffuse material that is not yet part

of the host halo according to Rockstar, but likely would be in a few time steps. Thus we

use this more realistic interpretation as our host halo.

The alternative subhalo-excluded method is an even smoother depiction of the host halo.

If we then plotted the opposite of this to show subhaloes only, there would be a much more

notable buildup of particles at the center of the halo caused by the diffuse substructure. This

alternative subhalo-excluded method is less physical as haloes would indeed contain diffuse

over-density peaks near the center as a result of hierarchical buildup. Hence we warn the

reader about using this alternative subhalo-excluded definition.

Fig. 2.11a and Fig. 2.11b show what these differences look like when shown as a halo

density profile. These plots are identical to the simulation data depicted in our other stacked

figures, i.e., the upper panels of Fig. 2.4a and Fig. 2.4b. In addition we provide a stacked

profile for the alternative method of subhalo-excluded depicted by the black line. Using

this definition of subhalo exclusion more strongly impacts the inner portion of the halo in

addition to the outer portion of the halo. This method over-suppresses the inner mass of

a realistic halo, as we expect the diffuse/smooth halo component to partially consist of old

disrupted subhaloes.
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Figure 2.10: Left : alternative subhalo-excluded particles, depicted in black. This figure has the same z-axis
cut at Fig. 2.1 and the virial radius of the host halo is overlaid. Right: The subset of particles that exist in
the fiducial subhalo-excluded method presented in the chapter that do not exist in the set of the alternative
subhalo-excluded particles. I.e. particles in the middle orange panel of Fig. 2.1 that do not overlap with the
particles shown in the left panel of this plot. It is apparent that in this alternative subhalo-excluded method
there is no evidence of other minor over-densities and the host is completely smooth. Additionally, there is
a significant portion of mass that does exist in diffuse material that is not yet classified as part of the host
halo in our fiducial model.
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Figure 2.11: (a) The same simulation data depicted in the upper panel of Fig. 2.4a, i.e. a stacked density
profile of all 45 of the MW-mass MMMZ host haloes. The blue curve depicts the density profile for subhalo-
included, the orange curve depicts our simulations after subhaloes have been excluded, and the black curve
depicts the simulations for the alternative method of full subhalo-excluded. (b) The same data depicted in
the upper panel of Fig. 2.4b, or a stacked density profile of all 96 of the cluster-mass RHAPSODY host haloes
depicting both methods of subhalo-excluded. It is evident that this method excludes a significant portion of
mass in the inner halo region in addition to the outer halo, which is likely a less physical representation of
an observed halo.
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2.8 Best Fit Profile Values

For reference in Table 2.4 we provide the best fit parameters for the stacked haloes to

each profile discussed in the text in addition to the concentration computed from these

parameters, as per Section 2.3.1. We emphasize that the rs provided is not the inverse of

the concentration, as our concentrations are calculated from r−2 and not rs.
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MW-Mass Subhaloes Included
Models rs c 2

NFW 0.0758 N/A N/A N/A 12.85
G.NFW 1.0 0.58 5.1 1.2 10.52

Einasto 0.0859 0.17 N/A N/A 11.88
G.Einasto 0.6821 0.34 N/A 0.98 10.53

MW-Mass Subhaloes Excluded
Models rs c 2

NFW 0.0606 N/A N/A N/A 15.86
G.NFW 0.6013 0.7 5.8 1.3 11.51

Einasto 0.0707 0.2 N/A N/A 13.91
G.Einasto 0.5457 0.4 N/A 1.1 11.78

Cluster-Mass Subhaloes Included
Models rs c 2

NFW 0.1837 N/A N/A N/A 5.44
G.NFW 0.9962 0.78 4.64 1.19 4.49

Einasto 0.2041 0.19 N/A N/A 4.9
G.Einasto 0.9999 0.49 N/A 1.04 4.42

Cluster-Mass Subhaloes Excluded
Models rs c 2

NFW 0.118 N/A N/A N/A 8.48
G.NFW 0.5961 1.05 4.9 1.26 6.34

Einasto 0.1308 0.26 N/A N/A 7.64
G.Einasto 0.5688 0.64 N/A 1.11 6.29

Table 2.4: Fit values for the profiles of interest in this work, described in Section 2.3.1. The rs are scaled
by the median rvir as in our plots. These are fit values that result from the stacked haloes after being fit to
each listed profile. Values marked as ”N/A”mean that this profile does not have that parameter in it.
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3.0 Predictably Missing Satellites: Subhalo Abundances in Milky Way-like haloes

This chapter has been accepted for publication in the Monthly Notices of the Royal Astro-

nomical Society ©: 2019 Catherine Fielder. Published by Oxford University Press on behalf

of the Royal Astronomical Society. All rights reserved. Minor modifications have been made

to the text.

3.1 Introduction

Simulations of structure formation based upon the ΛCDM (cold dark matter with a

cosmological constant) cosmological model successfully describe a wide range of observations,

particularly at large scales (r ≳ 10 Mpch−1). However, a number of observations on smaller

scales (r ≲ 1 Mpch−1) exhibit possible discrepancies with the standard model [128, 258, 198,

260, 43, 93, 57]. Many of these discrepancies have been observed in the Milky Way (MW),

the galaxy we are able to study in the most detail.

In this chapter we focus most directly on an issue known as the ‘missing satellites problem’

(MSP). The MSP is the apparent over-prediction of the abundance of satellite haloes of a

particular velocity dispersion (or rotation speed) within a ΛCDM model relative to the

number of galaxies of similar velocities that have actually been observed in the Milky Way

(e.g., [198, 260, 56]). We expect substructure to survive the hierarchical assembly of dark

matter (DM) haloes, as the dense cores of merging haloes are not strongly affected by tidal

interactions [188, 393, 56] but the question of how much substructure there should be remains.

We describe objects in terms of maximum circular velocity, Vmax, which is a measure of

the depth of the potential well of a dark matter halo. The critical range of maximum circular

velocity we are interested in for studying the MSP is the range of 10−30 km s−1, where other

physical effects do not dominate (gas cooling on the low velocity end and photoionization

feedback on the high velocity end). There has only been ∼ 26 dwarf satellites observed

of this size, compared to roughly ∼ 350 predicted from CDM simulations [344, 56] with
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Vmax > 10 km s−1within 400 kpc of a Milky Way-size host. Of these ∼ 100 should be massive

enough to host observable galaxies [56]. The MSP is the difference between the number of

predicted subhaloes of the size necessary to host galaxies with the observed stellar kinematics

of the classical Milky Way dwarf satellites and the number of actual dwarf satellites. Within

the ΛCDM framework, most such subhaloes cannot host dwarf satellites comparable in size to

the classical MW dwarfs. Many previous works have tried to understand this discrepancy via

some baryonic processes (e.g., supernova feedback) or through exotic physics (e.g., alternative

models of dark matter).

The missing satellites problem is not the only example of potential small-scale discrepan-

cies from ΛCDM expectations found in the Local Group. The simplest possible relationship

between galaxies and dark matter would place the known satellites of the Milky Way into the

largest subhaloes surrounding it [57]. The ’too-big-to-fail’ (TBTF) problem was identified

based upon ΛCDM N-body simulations [335, 99] which showed that the most massive sub-

haloes were too dense to host the the brightest Milky Way satellites [43, 44]. Naively, these

dense subhaloes should form stars more efficiently than their more diffuse counterparts, yet

they do not appear to host the Local Group dwarfs [343, 197].

A number of solutions have been proposed to alleviate or eliminate the MSP and TBTF

problems. Some of the most well-studied proposals include:

1. Survey incompleteness: The missing objects could be too dim or too diffuse to have been

detected yet. This question could partially be reconciled with future survey projects such

as LSST, a hope that has gained traction after the numerous satellite galaxy discoveries

from SDSS and DES [29, 106], although most of these dwarfs are predominately much

smaller than the regime that we are interested in (Vmax ≲ 10 km s−1). Recent work by

Ref. [195] argues that there is no longer any MSP based upon our current understanding of

the suppression of star formation in the satellites and the recent discovery of faint dwarfs

after being completeness corrected to the Milky Way’s virial radius. They predict that

the number of satellites that inhabit the Milky Way is consistent with CDM predictions.

However, there is still some issue with objects smaller than Segue I (Vmax = 10+7.0
−1.6 km s−1

from Ref. [178]) in their model being over-predicted. In this case, the observed abundance

of satellites can be explained, but the question of why subhaloes of similar potential well
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depth may host galaxies of very different luminosities would still be open.

2. Host halo properties: Ref. [368] pointed out that the Milky Way’s mass is uncertain by

roughly a factor of two; if the MW mass is on the low side of this range, then both the

missing satellites and TBTF problems are greatly alleviated. In addition, several studies

have shown that there is significant scatter in subhalo abundances among host haloes at

fixed host halo mass [299, 179, 358]. Both Ref. [299] and Ref. [179] argued that the

TBTF problem is only marginally significant given this large scatter, even if the mass of

the Milky Way halo is on the high end of the observed range.

3. Baryonic effects: Both MSP and TBTF are issues that arise when comparing observa-

tions with N -body simulations. However, baryonic physics can potentially change the

observable satellite population substantially. Galaxies in small subhaloes may be dim

because their host haloes did not form stars significantly prior to reionization, at which

point their gas was stripped by the UV background [58, 23, 259, 40]. Milky Way sub-

haloes may have experienced a stronger suppression caused by the radiation from the

MW itself. Photoionization is expected to affect haloes in the range of Vmax ∼ 30 kms−1

[111, 58, 23, 40, 316, 57].

Likewise, supernova feedback heats and blows out the interstellar medium, which can

suppress star formation in low-mass dark matter haloes [91, 262, 318, 202]. This process

generally effects larger subhaloes of Vmax ∼ 100 km s−1. Winds and UV radiation from

massive stars may also deposit energy into the gas within a subhalo, enhancing this effect

[66].

Hydrodynamic simulations have backed the baryon solution up, showing that adding

baryonic physics into dark matter-only models can substantially alleviate the missing

satellites problem [401, 316, 400]. For example, dynamical friction resulting in angular

momentum transfer from baryons to dark matter alters the dark matter density profile

at the centres of low-mass galaxies [47], making them more cored than cuspy. These

objects have less visible stars due to stronger effects of tidal stripping on cored density

profiles [92].

Tidal stripping by the host halo or the parent galaxy during accretion could have torn

apart some fraction of the lower mass satellites [100, 28, 140, 268].
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4. Non-cold dark matter and exotic physics: Dark matter properties which deviate from

CDM could reduce the number of subhaloes of appropriate potential well depth to host

the observed satellite galaxies, thus alleviating or eliminating the MSP and the TBTF

issue [333, 334, 393, 370]. Additionally Ref. [186] and Ref. [393] argue that non-standard

inflationary scenarios could alter the initial conditions for structure formation, yielding

fewer satellites at lower mass scales and alleviating small-scale issues such as the MSP.

Among these possible solutions, the study of the impact of host halo properties has mostly

been limited to host halo mass. In N -body simulations, including the original simulation

from which the haloes in this work were drawn, the abundance of resolved subhaloes is found

to be directly proportional to the mass of the host halo over several orders of magnitude in

mass (e.g., [136, 204, 45]). However, other halo properties, such as halo concentration and

spin, correlate with the subhalo population as well; incorporating their effects will yield

improved predictions of subhalo populations. This will enable more direct comparisons of

the satellite abundances around the Milky Way to the subhalo populations of a halo whose

properties match our Galaxy’s.

In this chapter, our first goal is to use high resolution ΛCDM zoom-in simulations for

Milky Way-mass haloes (described in Section 3.2.1) to explore the nature of the host-to-

host scatter in subhalo populations. Our study seeks, in part, to determine which host halo

properties determine the distribution of subhalo abundance at fixed host halo mass. We

then make predictions for substructure abundances in the Milky Way which incorporate

observational constraints on the properties of its host dark matter halo, and explore the

impact on the missing satellites problem.

A variety of data has provided constraints on various properties of the dark matter halo

which hosts the Milky Way other than its total mass. For example, kinematics of halo stars

[87] and masers [277] have constrained the Milky Way halo concentration by constraining its

mass distribution, while the tidal stream of the Sagittarius dwarf [212, 362] has constrained

the halo’s shape. We may grossly infer its angular momentum as well. For example, Ref. [218]

show that the Milky Way’s stellar disk has a scale length roughly a factor of two lower than

would be typical given its mass (or luminosity) and rotation speed, lying further from the

luminosity-velocity-radius relation than roughly 90% of spirals. This small scale length would
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be expected to be related to its halo spin parameter [256]. As a result, the atypical scale

length of the Milky Way suggests that its dark matter halo may also be unusual; we wish to

explore any impact this has on the abundance of subhaloes in our Galaxy.

The “tailor-made” prediction of Milky Way subhalo abundance which we obtain in this

chapter is relevant to our interpretation of the small-scale challenges to ΛCDM in many ways.

Suppose, for instance, that we assume the most conservative scenario in which any small-scale

issues can be completely resolved by invoking baryonic processes rather than by introducing

any new physics. We will show in this chapter that it is reasonable to expect that the Milky

Way host halo includes roughly one-fourth fewer than average smaller subhaloes and as much

as three-fifths fewer than average larger subhaloes than would be typical given its mass, based

upon the correlations of satellite abundance with other Milky Way halo properties. In that

case, the impact of baryonic physics on the MSP and TBTF problems must be significantly

smaller than has been assumed in the past (as otherwise we have observed more satellites

around the Milky Way than would be expected in ΛCDM).

This has important consequences for the tuning of the parametrized models of baryonic

physics used in simulating galaxy evolution. For example, if we suppose that the MSP is

resolved largely by baryonic feedback, then this feedback may need to be significantly less

efficient than previously thought, since the Milky Way should be expected to have fewer

subhaloes to begin with than a typical halo of its mass. Such alterations to baryonic physics

models may have extensive impacts on simulations of dwarf galaxy formation and of galaxy

evolution more generally. In addition, our study also provides a theoretical context for

interpreting the observed satellite luminosity functions of Milky Way-like hosts that are

outside the Local Volume [141], with which we can test how impactful host halo properties

are on the satellite populations by correlating them with proxies for halo properties such as

disk scale length. The general strategy that we describe and advocate in this manuscript will

become increasingly useful as more and more becomes known about the Milky Way galaxy

and the halo of the Milky Way.

The structure of this chapter is as follows. First, in Section 3.2 we describe the basic host

dark matter halo properties we focus on in this chapter – spin, shape, concentration, and

merger history – and describe what is known about each for the Milky Way. In Section 3.3, we
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show that host halo properties are strongly correlated with the total abundance of subhaloes

above a threshold in circular velocity. We then examine what model based upon the host halo

properties provides the best predictions for satellite abundance for Milky Way-like hosts, and

evaluate that model using the observed properties of the Milky Way host halo. In Section 3.4

we conclude that due to the somewhat unusual formation history of the Milky Way’s host

halo, we expect that it should have fewer subhaloes than typical for its mass, and discuss some

implications and caveats. Additionally, in Section 3.5 we explain the details of obtaining a

rough concentration estimate for the Milky Way when incorporating adiabatic contraction,

and in Section 3.6 we discuss in detail the numerical and mathematical techniques utilized

in this work and provide fitting functions for estimating subhalo abundance based upon host

halo properties.

3.2 Milky Way Halo Properties

The following subsections detail the host halo properties we use in our analyses and

include approximate estimates for the Milky Way. We stress that the values for the Milky

Way are subject to both measurement and modelings errors. The most important take away

is the approximate rank of the Milky Way in order to compare it to other dark matter haloes.

3.2.1 Zoom-in Simulations

In the analyses presented here, we use a set of zoom-in cosmological simulations con-

sisting of 45 Milky Way-mass haloes. These haloes were selected from a 125 Mpch−1parent

simulation containing 10243 particles. The cosmological parameters for the simulations are

ΩM = 0.286, ΩΛ = 1 − ΩM = 0.714, h = 0.7, mass fluctuation amplitude σ8 = 0.82, and

scalar spectral index ns = 0.96. All of the Milky Way-analog haloes selected for re-simulation

fall within the mass range of Mvir = 1012.1±0.03 M⊙. The mass of the highest-resolution par-

ticles in the zoom-in simulations is mp = 3.0 × 105 M⊙ h−1. The softening length within the

highest-resolution region is 170 pch−1co-moving. The lower limit in Vmax for convergence is
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approximately 10 km s−1. For more details on the simulation suite, refer to Ref. [237].

We use the ROCKSTAR halo finder to identify haloes and subhaloes within each simulation.

Halo masses and radii are defined as virial values using the virial over-density threshold ∆vir,

which has a value of ≈ 340 given the cosmological parameters from the previous paragraph.

Subhaloes are haloes whose centers lie within the virial radius (Rvir) of a halo that has a

larger maximum circular velocity, Vmax = max[GM(< R)/R]1/2. We refer to any halo that is

not a subhalo as a host halo. In each simulation, we select every subhalo that lies within 200

kpc of the host halo’s center and has Vmax > 10 km s−1. Generally in this chapter, we use Vmax

as a measure of the potential well depth in a subhalo. In the following, we will often quote

subhalo circular velocities in units of the maximum circular velocity of the host halo, namely

V sat
max/V

host
max , because subhalo demographics are approximately self-similar when scaled in this

way. Our resolution limit corresponds to a limit on this ratio of V sat
max/V

host
max > 0.065.

Halo properties (e.g., concentration, spin, and so on; see below) are all computed as

described in the ROCKSTAR documentation Ref. [18].

3.2.2 Concentration

On average, CDM haloes can be described by a universal density profile which is ap-

proximated well by the Navarro, Frenk, & White (NFW) profile of Ref. [273] (defined in

Equation 1). The scale radius of a halo is most often expressed through the concentration

parameter cNFW, which is the ratio of the halo virial radius to the halo scale radius,

cNFW =
rvir
rs

. (9)

The concentration parameter characterizes the degree to which the mass of the halo is con-

centrated toward the halo center. Concentration is known to be a slowly-declining function

of halo mass [274, 55]; it has previously been found to correlate with subhalo abundance

[237].

We can compare the concentration of simulated haloes in the mass range of the Milky Way

to the approximate constraints of the Milky Way halo concentration, along with the haloes

of galaxies of the same Hubble type (SBb/c in the case of the Milky Way; [55, 274]). ΛCDM
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models of 1012M⊙ haloes have placed cNFW in the range of 11–21. However, the constraint on

“normal” Sb galaxies according to Ref. [200] is expected to be ∼ 10–17, based on statistical

ensembles of haloes. It is challenging to pin down an exact estimate of concentration for

Milky Way-sized haloes in dark matter-only simulation, as baryons are expected to cause

haloes to adiabatically contract and drive up their concentrations [113, 34, 256, 97], while

feedback and/or mergers can reduce halo concentrations. Concentration measurements of

the range 18–24 are expected for a Milky Way dark matter halo, where the dark matter halo

has been constrained with observations of dynamical tracers in the Milky Way halo [15, 65,

87, 277, 184, 395]. These observations are expected to reflect some degree of contraction of

the halo, so we use a publicly available code, CONTRA [149], in order to estimate a non-

contracted concentration for the Milky Way. This process is discussed in detail in Section 3.5.

We determine the concentration of the Milky Way to be cMW
NFW = 15.13+1.35

−2.58, which we will

use in our modeling.

3.2.3 Spin

It has long been thought that proto-dark matter haloes acquire angular momentum

due to tidal torques from nearby over-densities [287, 103, 112, 378]. The resulting angular

momentum is often parameterized using a dimensionless quantity called the spin parameter.

The two most common definitions of the halo spin parameter are

λP =
Jvir|E|1/2

GM
5/2
vir

(10)

and

λB =
Jvir√

2MvirrvirVvir

, (11)

where Mvir, Jvir, E, Vvir, and Rvir are respectively halo virial mass, total angular momentum

within the virial radius, total energy of the halo relative to a zero point at infinity, halo

virial velocity, and the halo virial radius. The first of these, λP, is generally referred to as

the Peebles spin parameter and quantifies the angular momentum of the halo in units of the

angular momentum necessary to support the halo assuming that all particles are on circular

orbits [288]. The Bullock spin parameter, λB, is a convenient definition for cases in which
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halo energies are not readily available (e.g., in most numerical simulations; [54]). In this

work we use only the Bullock spin parameter.

Dark matter haloes are mostly supported by the random motions of their particles instead

of rotation, so typical values of the spin parameter are quite small, with the median spin

value being ∼ 0.05 and ranging from 0.02 − 0.11 [14]. Since spin characterizes the angular

momentum of the halo, there is expected to be a correlation between halo spin parameter and

galaxy morphological type (with rotationally-supported galaxies found in haloes of greater

spin). For example, Ref. [365] and Ref. [200] have estimated that Sb galaxies should reside

in haloes with spins in the range λSb
P ∼ 0.02 to 0.10 (90% confidence region). Simple galaxy

formation and evolution models, such as the classic model of Ref. [256], suggest that for

a fixed host halo circular velocity, more compact disks form within haloes of lower spin.

Therefore, given that the Milky Way has a more concentrated stellar disk than is typical for

a galaxy of its mass, we would also expect it to have a lower spin [255]. As an example, the

Ref. [256] model for disk formation in hierarchical cosmologies in particular predicts that

λP =
2.0RdVc(|E|)1/2

GM
3/2
vir

(
md

jd

)
, (12)

with the relation from Ref. [55]

λB ≃ λPf(cv)
1/2, (13)

where jd = Jd
J

is the angular momentum fraction or the disk angular momentum divided by

the total angular momentum, md = Md

M
is the disk mass fraction or the disk mass divided

by the total mass, Rd is the disk scale-length, Vc is the circular velocity, and f(cv) ≃ [2/3 +

(cNFW/21.5)0.7] [256, 236]. For typical concentrations of cNFW ≃ 10, f(cv) is of order unity.

This is what we will adopt for our work.

For simplicity, we use the Ref. [256] assumption that md

jd
= 1 for an NFW halo. This

is based upon the assumption that the specific angular momentum of what forms the disk

and the halo are the same; however, recent simulations suggest that this idealization may

be suspect [341, 177]. Recent estimates of the Milky Way parameters include disk scale

length (Rd = 2.71+0.22
−0.20 kpc from Ref. [218], consistent with other measurements [250, 28]),

circular velocity (Vc = 219 ± 20 km s−1 from Ref. [304] and Ref. [109]), and virial mass
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(Mvir = 1.3±0.3×1012M⊙). Putting these together, we estimate λMW
B = 0.0332±0.0105 for

the Milky Way. For comparison, Ref. [184] uses contrasting values for the Milky Way based

on kinematics from giant stars, Rd = 4.9 ± 0.4 kpc and Mvir = 0.8+0.31
−0.16 × 1012M⊙, which

yields λB = 0.0975 ± 0.0432 for the Milky Way (or λB = 0.0596 ± 0.0193 if we use the same

Mvir as in our calculation). In all three cases errors are calculated by propagation of errors.

Our estimate of λMW
B = 0.0332 ± 0.0105 is consistent with the results of Ref. [109],

which use a slightly different approach and slightly different (older) estimates of Milky Way

properties. This λMW
B will be the Milky Way mean and σ used in our analysis. We emphasize

that we are not looking to calculate a precise λB for the Milky Way - we are more interested

in the rank of the Milky Way’s spin, and whether it correlates with disk size, as it would

in a Ref. [256] model. Although recent studies have challenged this model, we will take the

classic approach. Additionally, as we will show in Section 3.3, the spin parameter has a

sub-dominant effect on subhalo abundance.

3.2.4 Shape

Dark matter haloes in ΛCDM are not spherical but, rather, more nearly triaxial ellipsoids.

The shapes of CDM haloes are commonly described by the ratios of their principal axis ratios,

b/a (the intermediate-to-long axis ratio) and c/a (the short-to-long axis ratio). Generally,

CDM haloes are close to prolate [7], with c ∼ b < a. Therefore, for simplicity we quantify

halo shape using c/a. Halo shape is highly dependent on the merger history of the halo. The

more recent a merger, the less spherical a halo will be and the longest axis of the halo typically

correlates with the impact direction of the most recent merger event. Generally, haloes at

fixed mass that have formed earlier tend to be more spherical (c/a ∼ 1.0; [321, 377]), and

more massive haloes tend to be less spherical (c/a < 1.0; [228]).

Constraints on the shape of the dark matter halo which hosts the Milky Way are relatively

weak. Through various gas and stellar stream measurements, density profile estimates, and

simulations, the Milky Way is approximated to be quasi-spherical, with c/aMW ≃ 0.72–0.8

according to Ref. [212] and Ref. [362] when incorporating measurements from the Sagittarius

stream. Therefore the estimated value for the Milky Way we use in our analysis is c/a = 0.76,
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σc/a = .02.

3.2.5 Halo Merger History

Halo merger history is also correlated with subhalo abundance. Earlier forming haloes

have been shown to have less substructure [394, 179, 238]. Host haloes that assembled earlier

are expected to end up with less mass in subhaloes because there has been more time for

accretion by the host.

There is good evidence from chemo-dynamical studies [306] and other work that the

Milky Way has had a quieter accretion history than typical. It appears that the Galaxy has

not had any substantial mergers since the formation of its galactic disk (≈ 9–12 Gyr ago;

[352]).

For simplicity, we characterize merger history in terms of the scale factor of the Universe

at the time of a halo’s last major merger, aLMM = 1
1+zLMM

. For the zoom-in simulations used

in this chapter, we define a major merger as one with a mass ratio > 0.3 (which implies

that a merger like the current Milky Way–Sagittarius merger would be classified as a minor

merger, as expected by current mass estimates). Using the limits of 9–12 Gyr for the Milky

Way’s last major merger we convert to z = 1.33−3.55 and aMW
LMM = 0.43−0.22 respectively of

which we select the median aMW
LMM = 0.325), using WMAP9 cosmological parameters (which

match the simulation parameters closely; cf. Section 3.2.1). The choice of cosmology has a

minuscule effect on this estimate in comparison to the uncertainty in the time since the last

major merger.

3.2.6 The Milky Way Halo Compared to Other Dark Matter haloes

Figure 3.1 depicts the joint distributions of the spin (λB), concentration (cNFW), shape

(c/a), and last major merger scale (aLMM) parameters of the 45 Milky Way-size halo simu-

lations that we study. Each host halo from a zoom-in simulation is depicted as a circular or

triangular point in purple or blue respectively. The blue triangular haloes correspond to the

five nearest neighbors to the Milky Way in the multi-dimensional space consisting of all the

parameters plotted, as we will discuss in Section 3.6.2. Our simulated Milky Way-like haloes
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exhibit the same correlations between these properties found in prior work. For example

concentration and spin are known to be anti-correlated [228], and shape and merger history

are expected to be correlated [7].

The region of Fig. 3.1 in which Sb galaxies’ haloes are thought to reside is shown by

the orange dashed region. We highlight this regime to enable comparisons to the estimated

parameters of the Milky Way halo, since the Milky Way is generally classified as an SBb/c

galaxy. In the case of aLMM, a value is quoted only for our Galaxy, denoted by the black

dashed lines, as we are not aware of prior work on major merger scale parameters for Sb

galaxy dark matter haloes.

The black points with the error bars represent the estimated parameters of the Milky

Way host halo from the literature; their provenance is described individually above. As is

evident, the Milky Way lies closer to the outskirts of the multidimensional distribution in

each projection. In particular, the Milky Way halo appears to have a somewhat low spin,

high concentration, more spherical shape, and a longer lookback time to the last major

merger than a typical halo of the same mass. The concentration, shape, and lookback time

of the Milky Way is expected to be consistent with the Galaxy’s more compact stellar disk

than average at fixed luminosity.

We have demonstrated that the Milky Way may well be an outlier in the distributions

of several halo properties. One of these properties, concentration, was previously found to

correlate with subhalo abundance [394, 237, 179]. Indeed, it is not unreasonable to suspect

that other properties correlate with subhalo abundance as well, particularly because halo

spin and shape are so strongly associated with halo merger activity. In the following section,

we will investigate the correlations between host halo properties and subhalo abundance and

use these correlations to make predictions for subhalo demographics within haloes resembling

that of the Milky Way.
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Figure 3.1: Plots of all possible combinations of the host halo parameters investigated in this work. The
orange dashed region indicates the range of estimated values for Sb galaxy host haloes; these have morphology
similar to the Milky Way (which is estimated to be SBb/c). The black dashed regions shown in aLMM are
values quoted only for the Milky Way due to no known work on major merger scales of Sb galaxy dark
matter haloes. The black point with errorbars represent the estimated properties for the Milky Way host
halo described in Section 3.2. We emphasize that these are approximate estimates and in many cases are
difficult to constrain well. The blue triangle points are the 5 nearest neighbors to the Milky Way within this
four-dimensional parameter space; their identification is discussed in Section 3.6.2. The Spearman correlation
coefficient and p-values for all of the correlations shown here are presented in Table 3.1. The Milky Way lies
at the outskirts of each of these projections. Known relationships between host halo properties have been
reproduced by our simulations.
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3.3 Subhalo Abundances in Milky Way-Like haloes

In this section we investigate the relationships between the host halo properties described

above and the abundance of subhaloes in each simulated Milky Way-like halo. We will then

incorporate the correlations observed into a prediction for subhalo abundances within haloes

resembling that in which the Milky Way resides.

3.3.1 Halo Properties and Subhalo Abundances

We begin with a simple statistical search for correlations. Table 3.1 shows the Spearman

correlation coefficient between the host halo properties. The Spearman (or ranked) correla-

tion coefficient (ρ) measures the strength and direction of a monotonic relationship between

two ranked variables [266]. The coefficient can range from +1 to −1, where the extremes

indicate that each of the variables is a strictly monotone function of the other, so that that

ranks within lists of the two variables are perfectly associated. The p values is a way of

investigating whether we can accept or reject the null hypothesis that there is no monotonic

association between the two variables. We set our threshold at p < 0.05, or a less than

5% chance that the relationship found (or any stronger relationship) would happen if the

null hypothesis were true. In Table 3.1 the numbers above the diagonal denote ρ and the

numbers below the diagonal denote p. The table is color-coded according to the correlation

coefficient: values of ρ near 1.0 are shown as red while ρ near −1.0 corresponds to blue. The

Spearman correlation is sensitive to both linear and non-linear relationships, and (unlike

the Pearson correlation coefficient) is robust to outliers. We use the Spearman correlation

because we are interested in testing for general monotonic relationships between dark matter

halo properties.

Focusing on the first column and row, we conclude that cNFW, aLMM, and λB are all signif-

icantly correlated with subhalo abundance. The shape parameter c/a still has a relationship

with subhalo abundance, but not as strong as for the other host properties.

Although no significant correlation between the abundance of subhaloes and host halo

mass is found here, this is almost certainly due to the small mass range of the zoom-in
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haloes, such that the variations in other parameters dominate. In the parent simulations

from which the re-simulated haloes were drawn, the number of subhaloes is on average

directly proportional to host halo mass.

We next investigate how each host property individually influences subhalo abundance.

In Fig. 3.2 we present the mean cumulative velocity function (CVF) of the subhaloes when

host haloes are divided into subsets according to their properties. The CVFs (top panels)

and ratio of each CVF to the average halo CVF (bottom panels) are separated into quar-

tiles according to each host halo property considered here: cNFW, λB, c/a, or aLMM. The

vertical axis of the CVF (upper) plots is the average cumulative number of subhaloes above

a threshold in velocity, while the horizontal axis is the corresponding maximum subhalo

velocity normalized by the maximum velocity of the respective host. The vertical axis in

the lower panel corresponds to the cumulative number of subhaloes for a particular quartile

divided by the average cumulative number of subhaloes amongst all hosts.

The quartile curves shown in each panel are determined by percentiles in each respective

host halo property. The > 75th percentile bin for each panel includes 12 host haloes, while the

other percentiles have 11 host haloes each. For each halo we determine how many subhaloes

are in each of 20 logarithmically spaced V sat
max/V

host
max = V frac

max bins; from this we can determine

the cumulative number of subhaloes for each halo summing down to a given bin of V frac
max . The

mean CVF for the haloes in each quartile are shown as the red to orange lines. Portions of the

plots which lie below the resolution limit described in Section 3.2.1 (i.e., with V frac
max < 0.065)

are indicated by the hatched region.

The black points represent the 11 classical satellites of the Milky Way, using values from

Ref. [388, 360, 185, 209, 44, 301, 249] and Ref. [178] compiled in Table 1 of Ref. [178]. The

only kinematic information available for the Milky Way dwarf spheroidals is the line-of-

sight velocities of stars, which can be used to constrain the dynamical mass of the dwarf.

In the case of Sculptor, Draco, Leo II, Fornax, Sextans, Carina, Leo I, and Ursa Minor,

Ref. [209] and Ref. [44] use the Via Lactea II simulation or the Aquarius suite of simulations,

respectively, to assign weights to subhaloes in the simulations according to how well they

match the dynamical mass of each respective Milky Way satellite, and then use the weighted

average of Vmax for those subhaloes as an estimate of the satellite’s Vmax value. For example,
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Nsub

Nsub

Mvir

= 9.47 × 10 2

cNFW

= 8.57 × 10 1

aLMM

= 5.64 × 10 1

B

= 3.98 × 10 1

c/a
= 2.29 × 10 1

Mvir p = 5.36 × 10 1 = 9.78 × 10 2 = 3.32 × 10 2 = 8.66 × 10 2 = 6.61 × 10 2

cNFW p = 5.80 × 10 14 p = 5.23 × 10 1 = 6.68 × 10 1 = 3.87 × 10 1 = 4.75 × 10 1

aLMM p = 5.44 × 10 5 p = 8.29 × 10 1 p = 5.30 × 10 7 = 5.38 × 10 1 = 5.81 × 10 1

B p = 6.83 × 10 3 p = 5.71 × 10 1 p = 8.57 × 10 3 p = 1.39 × 10 4 = 2.84 × 10 1

c/a p = 1.31 × 10 1 p = 6.66 × 10 1 p = 9.82 × 10 4 p = 2.85 × 10 5 p = 5.90 × 10 2

1

0

1

Table 3.1: Table of Spearman correlation coefficients, ρ, and the corresponding p-values, p, amongst all of the
host halo properties considered in our analysis: the number of subhaloes (Nsub), the mass within the virial
radius (Mvir), concentration (cNFW), the scale factor at the time of the last major merger (αLMM = 1

1+zLMM
),

the Bullock spin parameter (λB), and the halo shape (parameterized by the ratio of tertiary to major axis
length, c/a). Above the diagonal and denoted by ρ are the correlation coefficients. Below the diagonal
and denoted by p are the corresponding p-values for each correlation. A value p < 0.05 corresponds to a
correlation that is statistically significant at > 2σ, or a < 5% chance this relationship would be found if
the null hypothesis of of no monotonic association between variables is true. The values are colored by the
strength of their correlation: 1.0 is red and -1.0 is blue, as described in the color bar. Subhalo number is
most strongly correlated with cNFW, αLMM, and λB in our simulations, followed by c/a and very weakly by
Mvir (which is expected given our small mass range).
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Ref. [44] computes a distribution function of possible Vmax by assigning a weight from the

estimated likelihood that each subhalo from their six randomly-selected Milky Way-mass

host haloes is consistent with the given satellite’s mass. For the case of the Large Magellanic

Cloud (LMC) Ref. [360] uses proper motions and line of sight velocity measurements of stars

in the LMC in concordance with a model of a flat rotating disk to estimate the circular

velocity. A similar treatment is done for the Small Magellanic Cloud (SMC). In the case

of Sagittarius, Ref. [178] uses the relation Vmax = 2.2σline of sight [301] with the line of sight

velocity dispersion measurement (σline of sight) from Ref. [249] in order to estimate its Vmax.

The dwarf spheroidal estimates from Ref. [209, 44] and Ref. [360] are all consistent (within

errors) with this relation.

A key assumption made is that the simulated haloes of a given mass will match the

kinematics of Milky Way satellites’ haloes of the same estimated mass. In particular, the

stellar content of these satellites is only in the very central region (∼ 1 kpc) so extrapolation

beyond this stellar distribution is necessary to constrain Vmax. Although using Vmax is less

subject to extrapolating issues than the total mass, Vmax will still depend substantially on the

assumed distribution of dark matter for a galaxy of the observed size [393]. The shape of the

dark matter density profile may vary substantially from an NFW profile. In the case for the

work by Ref. [44], the density profiles are not assumed NFW or Einasto with all properties

computed from the raw particle data in order to get around this issue (but a general profile

is still indeed assumed).

To normalize these values to V frac
max we use the average Vmax of the Milky Way after

doing 10,000 bootstraps perturbing the measured value from Ref. [388] and Ref. [178] of

V MW
max = 170±15 km s−1 by a Gaussian of the error. This value was determined by using line

of sight kinematic data and connecting it with simulation data by finding the best matched

probability distributions. Our resulting V host
max = 170.22 km s−1 for the Milky Way. This

is consistent with our Milky Way-mass host haloes, that have an average V host
max = 174.06

km s−1.

The shaded gray regions around the Milky Way satellite points indicate the 68% and

95% confidence regions from the effect of measurement errors on each satellite Vmax. For

each satellite, we generate 10,000 Gaussian-distributed values randomly drawn from the
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errors in each V sat
max and then perturb the estimated value for that satellite by the generated

value. We emphasize that the goal of including the Milky Way satellite points is strictly

for reference and not direct comparison, as our dark matter-only simulations do not include

the baryonic physics, feedback mechanisms, etc. (see Section 3.1) that would be necessary to

make the V frac
max values from the simulations directly comparable to the Milky Way satellite

characteristics.

The bottom panel of each plot, which depicts the ratio of each quartile’s mean CVF to

the overall average CVF, shows the differences amongst the quartiles for a given property

more clearly than the raw cumulative velocity functions plotted in the top panel. A dotted

horizontal line at Nsat(> V sat
max)/⟨N⟩ = 1 indicates where there would be no difference between

a given quartile and the mean. The orange regions around Nsat(> V sat
max)/⟨N⟩ = 1 corresponds

to the 68% and 95% confidence region about this value from Poisson errors for a quartile of

11 haloes.

The differences between the CVFs of quartiles divided according to a given property allow

us to investigate the relationship between that property and subhalo abundance. In Fig. 3.2

it is clear that at low velocities, the separation between the extreme quartiles for every

property shown is larger than the 2σ Poisson error. We see the most significant separation

when we divide samples according to cNFW; this property also has the strongest correlation

to N sub (cf. Table 3.1), consistent with the results from Ref. [394] and the model developed

by Ref. [237]. The next strongest effect is associated with aLMM, as expected from predictions

from e.g., Ref. [394] and Ref. [179]. Interestingly c/a shows a more significant separation

than λB in Fig. 3.2, in contrast to Table 3.1. The higher concentration, lower spin, more

spherical, or earlier forming haloes – that is, those which are most similar to the estimated

properties of the Milky Way dark matter halo in each characteristic – are all associated with

having fewer subhaloes.

We can conclude that at low velocities this set of four host halo properties can help to

predict subhalo abundance, given their correlations with that quantity. We expect this to

be the case at higher velocities as well, but there is too much noise due to low counts per

bin to draw a statistically significant conclusion from Fig. 3.2 at high velocities. Physically

we expect there to be far more subhaloes with low Vmax than high, given the mass function
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of subhaloes [260, 58, 337, 205], making it the most important region to probe.

Having shown that we can identify host halo properties that correlate with subhalo

abundance, we next investigate what combinations of these parameters provides the best

predictions of subhalo abundances for Milky Way-like dark matter haloes.

3.3.2 Predicting Milky Way Subhalo Abundances

To address this question, we have built power-law scaling relation models which utilize

various combinations of halo properties as predictors for the cumulative number of subhaloes

above a given value of Vmax, in order to produce more accurate predictions of the subhalo

abundance for the Milky Way. We describe these models in detail in Section 3.6.3 but

summarize them here.

The first model considered is a relatively simple one, incorporating only cNFW to predict

subhalo abundance; we refer to it as our “one-parameter model” hereafter (the fit does

incorporate a second parameter setting the scale of the overall subhalo numbers at a given

velocity, however). This approach can be motivated by Ref. [237]’s conclusion that halo

concentration provides sufficient information to predict subhalo abundance in haloes of a

given mass. We compare predictions from this simple model to results from a power-law

model built using an optimized combination of the examined host halo properties, which

has greater statistical explanatory power; we will refer to it as our “three-parameter model”,

though again it also incorporates a normalization factor. We also compare to a model that

does not have the best statistical explanatory power, but does not include concentration.

Specifically, the robust three-parameter model includes concentration, spin, and shape

(as well as the assumption, motivated by tests with larger simulations, that subhalo abun-

dance is proportional to mass). This specific set of parameters was chosen because it had

lower Akaike and Bayesian Information criteria (AIC and BIC) than other models consid-

ered, which included all combinations of the halo parameters used in this chapter; quadratic

terms combining those parameters; and first order polynomial cross terms e.g., cNFW × c/a,

that had as many as 5 total parameters (apart from a constant term). These low informa-

tion criterion values indicate that this model provides a better fit for subhalo abundances,
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Figure 3.2: Cumulative velocity functions Nsat(> V sat
max/V

host
max = V frac

max) of subhaloes for samples split ac-
cording to various host halo properties. The black points indicate the 11 classical Milky Way satellites
(Mvir ≃ 1010M⊙). The gray region around each point represent 68% and 95% confidence regions as a result
of Gaussian perturbations with amplitude given by the error in each satellite’s V frac

max . Separate cumulative
velocity functions are shown for haloes divided into quartiles by, from left to right: (a) concentration (cNFW),
(b) spin (λB), (c) shape (c/a), and (d) scale factor at last major merger (aLMM); color labeling is indicated
in each panel’s legend. In the bottom panel of each plot is shown the ratio of each curve to the average
cumulative velocity function including all host haloes. These normalized plots include a black dashed line at
Nfrac(> Vmax)/⟨N⟩ = 1 to indicate where there is no separation between the quartiles. The orange regions
around Nsat(> V frac

max)/⟨N⟩ = 1 indicate the 68% and 95% confidence regions for a case with no deviation
from the mean value due to Poisson errors (given the average number of subhaloes and the total number of
host haloes that fall in a quartile where we use 11). Portions of the figures below the resolution limit of the
simulations used, V sat

max/V
host
max = 0.065 (described in Section 3.2.1), are depicted by the hatched regions. At

low velocities the cumulative velocity functions exhibit statistically significant separations amongst various
host halo properties.
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given the number of free parameters in the model, than any others considered. Details of

this evaluation are given in Section 3.6.3. This model is expected to provide additional

information as opposed to just additional degrees of freedom, given its low AIC and BIC

values. Although both models provide useful predictions of subhalo abundances, we would

expect the three-parameter model to always provide a more accurate prediction than the

one-parameter model, as the one-parameter model is a special case of the three-parameter

model (so further optimization via the other parameters can only improve performance; see

Table 3.3 and discussion). We also show in Table 3.3 that the χ2 value of three-parameter

model is 20% better than for the one-parameter model.

The comparison three-parameter model includes spin, shape, and scale factor at the time

of the last major merger. This model is chosen for comparison due to the dubious nature of

the concentration measurement of the Milky Way, as well as a means for comparing to a model

without concentration. This model’s information criteria are also shown in Table 3.3, which

makes it evident that this model is not the best combination of parameters for predicting

subhalo abundance. We use these three models to estimate subhalo abundances for the Milky

Way; by comparing their results we can assess the robustness of our predictions.

We obtain the best predictions of subhalo abundances with a model where the average

number of subhaloes in a halo of given properties has a power-law dependence on all relevant

parameters, as described in Section 3.6.3 and Section 3.6.4. We define such a power-law

model as:

Npred
sub (> V frac

max) = k ×
∏
i

xαi
i , (14)

where Npred
sub is the predicted average subhalo abundance based on halo properties, k sets the

scale of the abundances, and αi is the exponent for the ith halo parameter xi used in the

model (e.g., cNFW).

Because we are trying to predict the cumulative subhalo abundance for the Milky Way

even at relatively high velocity thresholds where most haloes have few subhaloes, the Gaus-

sian assumption which underlies the method of least-squares linear regression is not valid for

this problem (following the usual rule of thumb that the Poisson distribution can be safely

approximated by a Gaussian only for N > 25). Instead, we rely on a Poisson maximum
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likelihood method to fit models, as it should provide accurate results even in this regime.

Specifically, we determine the parameter values which maximize the likelihood of the ob-

served set of subhaloes in the simulations. Given the properties for the Milky Way discussed

in Section 3.2 in combination with the results from the maximum likelihood fits, we make

a prediction for N sub(> V frac
max) for the Milky Way in 20 separate bins of V frac

max , i.e. we fit a

separate model for each threshold of V frac
max . The equations and algorithms underlying our

methods are discussed in detail in Section 3.6.4.

For each bin in V frac
max we can predict a cumulative number of subhaloes for the Milky Way

down to that velocity threshold by substituting in the estimates of the Galaxy’s parameters

discussed in Section 3.2 for the xi in Equation 14, and using the k and αi values resulting

from the model fit for that bin. For example, in the case of the one-parameter model we use

the estimate of cNFW = 15.13 for the Milky Way, and the k and αcNFW
that result from the

Poisson maximum likelihood fit for a particular velocity threshold to obtain a prediction for

the corresponding element of the Milky Way CVF.

Fig. 3.3, Fig. 3.4, and Fig. 3.5 depict the results of our model fits, evaluated using the

properties of the Milky Way host halo determined in Section 3.2.6. The purple lines show

the predicted cumulative velocity functions (i.e., the subhalo abundance for each threshold in

velocity fraction considered) for the Milky Way from the one- and three-parameter models,

respectively. The dashed grey region indicates the resolution limit of the simulations (which

begins to have effects below V sat
max/V

host
max = V frac

max = 0.065). The solid black line shows the

average CVF for the 45 host haloes. In the bottom panels the dashed-dot black line at Nsat(>

V frac
max)/⟨N⟩ = 1 is shown for comparison to indicate no separation between the predictions

and the average CVF depicted by the solid black line (similar to Fig. 3.2).

Over-plotted in blue are the cumulative velocity functions for the same 5 nearest neigh-

bors to the Milky Way that were indicated in Fig. 3.1, Fig. 3.11, and Fig. 3.12 for comparison.

The CVF for the Milky Way classical satellites is again depicted by the black points, as dis-

cussed in Section 3.3.

Uncertainties on our model predictions have been obtained via bootstrap re-sampling.

Specifically, we randomly select a set of size N = 45 of our simulated Milky Way-mass host

haloes with replacement (i.e., allowing the same host halo to be selected more than once)
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and compute the maximum likelihood fit again 10,000 times. For each bootstrap sample,

we also draw a new set of Milky Way halo properties from the probability distributions

for each defined by their uncertainties (Gaussian for spin, shape, and scale factor at the

last major merger, and two half-Gaussians for concentration due to asymmetric errors, see

Section 3.6.4). We can identify 68% and 95% confidence intervals from these bootstrap

samples as the regions containing the middle 68% and 95% of bootstrap results at a given

velocity, respectively. The resulting confidence intervals, which reflect only uncertainties in

Milky Way halo properties and the parameters of the subhalo abundance fits, are depicted

by the darker and lighter purple regions.

Additionally, with this bootstrapped sample we can investigate the enlarged range of

observed values expected from Poisson scatter about the mean subhalo abundance. For

every bin in each bootstrap sample, we randomly generate a value from a Poisson distri-

bution with mean given by the predicted number of subhaloes within that bin (Npred
sub,l(>

V frac
max,l) −Npred

sub,l+1(> V frac
max,l), where l indicates velocity bin number and Npred

sub,l(> V frac
max,l) is the

predicted cumulative number of subhaloes down to the minimum velocity of that bin). To

generate a CVF for that bootstrap sample we then add together the randomly-generated

values cumulatively, starting with the highest velocity bin. The resulting values incorporate

both the bootstrap uncertainties and the Poisson scatter in subhalo abundances, with the

effects of covariance between velocity bins resulting from our use of cumulative counts prop-

erly accounted for. The 68% and 95% confidence intervals derived from the distribution of

bootstrap values with Poisson scatter included are depicted by the darker and lighter orange

regions, respectively.

The distributions of predicted subhalo abundances for the lowest-velocity bin above the

resolution limit (V frac
max > 0.065) considering only uncertainties in Milky Way parameters and

model fits (purple) or including Poisson variation as well (orange) are shown in Fig. 3.8. In

this plot, shaded regions depict distributions just above the resolution limit and outlined

histograms correspond to a bin at the high V frac
max end before bin counts are dominated by

zero. The extents of the 68% and 95% confidence intervals corresponding to these histograms

are listed in Table 3.2.

In both models that include concentration the predicted CVF for the Milky Way lies

83



10−1
100

101

102

N
sa

t (
>
V

fr
ac

m
a
x
)

1 ParameterModel
Average CVF
MW-like Haloes
Prediction
Milky Way Data

10−1

V sat
max/V

host
max

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
sa

t (
>
V

fr
a
c

m
ax

)/
〈 N〉

Figure 3.3: Top panel : Cumulative velocity function for the Milky Way from a one-parameter scaling relation
model which predicts subhalo abundance as a function of halo concentration. The purple line corresponds
to the prediction of the model at each threshold value of V frac

max for the Milky Way, based on the MW halo’s
estimated properties. The solid black line corresponds to the average CVF for all of the 45 zoom-in host
haloes, while the blue lines are the CVFs for the five nearest neighbors to the Milky Way in parameter space,
as indicated in Fig. 3.1 and described in Section 3.6.2. The darker and lighter purple regions indicate the
68% and 95% confidence regions about the purple prediction line due to uncertainties in both fit parameters
(evaluated via bootstrap re-sampling) and in Milky Way properties (evaluated by re-drawing values from
Milky Way parameter uncertainties before evaluating the models). The darker and lighter orange regions
indicate 68% and 95% confidence regions which incorporate Poisson scatter in subhalo abundances as well.
Bottom panel : Ratios of the CVFs to the average CVF of all simulated Milky Way-like haloes. The one-
parameter model predicts that the Milky Way’s host halo should have (at 68% confidence) 12–30% fewer
subhaloes than average at the low V frac

max end and 19–45% fewer subhaloes than average at the high V frac
max end

(though Poisson scatter can dwarf this effect, especially at high V frac
max) compared to an average dark matter

halo of the same mass.
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Figure 3.4: As Fig. 3.3 but for a three-parameter scaling relation model, which predicts subhalo abundance as
a function of concentration, spin, and halo shape. The three-parameter model has a less significant prediction
than the one-parameter model due to the buildup of error. This model predicts that the Milky Way’s host
halo should have 1–24% fewer subhaloes than average at the low V frac

max end (at 68% confidence) and 22–52%
fewer subhaloes at the high V frac

max end. Again, additional error from Poisson scatter can dwarf this effect,
especially at high V frac

max .
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Figure 3.5: As Fig. 3.4 but a three-parameter scaling relation which predicts subhalo abundance as a function
of spin, shape, and scale factor at the last major merger (we have essentially exchanged cNFW for aLMM).
The predictions for this model are substantially different from the models that include concentration. This
model predicts that the Milky Way’s host halo should have up to 17% fewer to 2% more ubhaloes than
average at the low V frac

max end (at 68% confidence), and 4–35% fewer subhaloes at the high V frac
max end. We

emphasize that the blue lines denote the same haloes discussed in Section 3.6.2 and shown in previous plots
(Fig. 3.1, Fig. 3.3,Fig. 3.4, etc). Namely these are the haloes most similar to the Milky Way across all four
parameter spaces, which includes concentration.
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Figure 3.6: A CVF of one parameter models depicted with all possible theoretical values of concentration for
haloes at the same mass and morphology as the Milky Way (see Section 3.2.2). The model is computed in
exactly the same way as for Fig. 3.3, and then plotted for various concentration values. haloes of concentration
greater than ∼ 12 are consistent with having fewer subhaloes. The high-V frac

max tail is more sensitive to the
concentration than the overall normalization.

87



10−1
100

101

102

N
sa

t (
>
V

fr
ac

m
a
x
)

cNFW = 15.13

c/a= 0.76

λB = 0.0332

aLMM = 0.325

Average CVF

10−1

V sat
max/V

host
max

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
sa

t (
>
V

fr
ac

m
a
x
)/
〈 N〉

Figure 3.7: A CVF of one parameter models depicted with estimated values of Milky Way host halo parame-
ters (concentration in green, shape in orange, spin in blue, and scale factor at the last major merger in pink),
as described in Section 3.2. It is clear that concentration is the strongest predictor for a far from average
subhalo abundance, which is expected given Fig. 3.6, and the tight correlation between concentration and
subhalo abundance seen in Table 3.1. The next strongest deviation comes from shape, followed by scale
factor at the last major merger, and lastly spin (which is very close to the average).
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Uncertainty 68% 95%

One-para. Bootstraps 0.70–0.88 0.64–1.05

Three-para. Bootstraps 0.76–0.99 0.69–1.19

Three-para. No cNFW Bootstraps 0.83–1.02 0.71–1.13

One-para. Poisson 0.68–0.90 0.59–1.09

Three-para. Poisson 0.74–1.01 0.64–1.22

Three-para. No cNFW Poisson 0.29–1.05 0.62–1.17

Table 3.2: Table of 68% and 95% confidence intervals for the total abundance of subhaloes above the
resolution limit (V frac

max > 0.065) predicted for the Milky Way (or what we refer to in the text as low V frac
max).

All calculations are done using the power-law models defined by Equation 14. We consider separate confidence
intervals for the mean subhalo abundance of a Milky Way-like halo, which include only the uncertainties from
subhalo abundance fitting and Milky Way halo parameter uncertainties (labeled as ’Bootstrap’ confidence
intervals here); and confidence intervals which also include the impact of Poisson scatter about that mean
abundance (labeled as ’Poisson’). We provide results for the one-parameter model, the three-parameter
model, and three-parameter model without concentration. All confidence intervals are calculated from the
total cumulative predicted subhalo abundance above the resolution limit of V frac

max = 0.065 divided by the mean

total measured subhalo abundance (Npred
sub /⟨Nmeas

sub ⟩) above this limit. These confidence intervals correspond
directly to the shaded regions depicted visually in Fig. 3.8.
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below the average for the Milky Way-mass dark matter haloes up to 1σ. However, this is not

the case for the model that does not include concentration. This means that concentration is

a critical component when examining subhalo abundances in relation to host halo properties,

which is evident from Fig. 3.6 and Fig. 3.7 (which is also not surprising since, as discussed in

Section 3.3.1 and seen in Table 3.1 concentration is by far the parameter most correlated with

subhalo abundance). The former depicts one-parameter models based on the total theoretical

range of concentration values of a halo of similar mass or morphology to the Milky Way

(see Section 3.2.2. These models are identical to the one-parameter model, but a different

concentration is used for plotting (i.e., the xi in Equation 14). The mean concentration of

haloes in our simulations is 11.63. A halo with a concentration larger than that mean is

consistent what having a noticeably smaller predicted subhalo abundance. Additionally we

find that the tail at the high V frac
max end is more sensitive to concentration than the overall

normalization (concentrations smaller than 9 predict more massive subhaloes than average).

The latter depicts one-parameter models for the estimated values of the Milky Way host

halo properties as described in Section 3.2. This shows that concentration is the strongest

predictor for a Milky Way-like halo to having fewer subhaloes, followed by shape, scale factor

at the last major merger, and spin last.

Based upon the two superior models, we can conclude that the Milky Way host halo

could have fewer subhaloes than would be typical of a halo of its mass (or should, if we take

the mean to be representative). At the low V frac
max end, at 68% confidence not accounting

for Poisson scatter we should expect 12–30% fewer subhaloes than average based on the

one-parameter model, or up to 22% fewer subhaloes based on the three parameter model,

when incorporating uncertainties in the subhalo abundance fits and Milky Way parameter

values. These percentage ranges are similar, but larger at high Vmax, when Poisson scatter

is accounted for. At the high V frac
max end the mean prediction is even smaller compared to

the average (19–52% fewer subhaloes), but uncertainties in fit parameters and fractional

Poisson scatter are greater, making the presence of satellites as large as the Magellanic

Clouds rare but not extraordinary. Additionally, despite the three-parameter model without

concentration being much less robust (see Table 3.3), it still predicts as many as 17% fewer

subhalo at low V frac
max and up to 35% fewer subhaloes at high V frac

max at 1σ.
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Figure 3.8: Histograms of predicted total cumulative subhalo abundance below the resolution limit normal-
ized by the mean measured subhalo abundance, where errors constituting the purple histograms include
uncertainties in fitting power-law models and uncertainties in the Milky Way host halo parameters (based
off just the bootstraps), whereas the orange histogram also incorporates uncertainties due to Poisson scatter
about the bootstrapped relations. The filled histograms correspond to the low V frac

max end just above the
resolution limit, and the outlined histograms correspond to the high V frac

max end before the subhalo counts are
dominated by 0. The incorporation of Poisson scatter leads to a similar spread in predicted subhalo abun-
dance at low V frac

max and a much larger spread at high V frac
max . The 68% and 95% confidence regions derived from

these distributions are provided in Table 3.2. The one-parameter model predicts slightly fewer subhaloes for
the Milky Way than the three-parameter model,which both predict fewer subhaloes for the Milky Way than
the model that does not include concentration.
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The differences between the predicted cumulative velocity functions of the two concentra-

tion based models are relatively small. This also demonstrates that a simple concentration-

based model is adequate for describing subhalo abundances in Milky Way-like haloes to first

order, consistent with the results from Ref. [237] and Fig. 3.7. This is no surprise, given

cNFW’s close relationship to the other parameters. For example, when we repeat the same

analysis with a one-parameter model using the next-most correlated property in Table 3.1,

aLMM, only 0−20% fewer subhaloes than average are predicted at low V frac
max , while the results

are unstable at high V frac
max . cNFW is significantly more tightly correlated with Nsub than the

other host halo properties considered.

As discussed in Section 3.6.3, the three-parameter model predicts subhalo abundances for

the simulated haloes with smaller scatter than the one-parameter model. As a result, at first

glance one would expect this model to also yield more compact confidence intervals for the

abundance of subhaloes around the Milky Way, but in Table 3.2 the opposite holds true (e.g.,

the 95% confidence interval including all sources of scatter spans 41% in the one-parameter

model versus 50% in the three-parameter model with concentration). This can be explained

at least in part by the uncertainties in Milky Way halo properties beyond concentration, the

effects of which will alter the confidence intervals for the three-parameter model, but not

for the one-parameter case. Specifically, the three-parameter will be a better model in the

future when there are better constraints on the properties of the Milky Way. Otherwise the

errors on the parameters propagate into the errors of the subhalo abundance estimate.

Fig. 3.3, Fig. 3.4, and Fig. 3.5 make clear that at V frac
max above ∼0.2 the typical halo whose

properties match the Milky Way’s will have even fewer subhaloes compared to the average -

a deficiency in excess of 60%. This makes it somewhat more surprising that the MW should

have any relatively large satellites such as the Large and Small Magellanic Clouds (LMC and

SMC) or Sagittarius (the SMC and Sagittarius correspond to the two highest-V sat
max points

in each figure; the LMC is off the plot range with Vmax = 91.7 km s−1), as more massive

satellites are rarer in the haloes most like the one which hosts our Galaxy.

With these results we can define fits for the parameter exponents, αi, and the scale k

as functions of V frac
max for both the one-parameter and three-parameter models which include

concentration, as those are the superior models. These functions can be used in order to
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determine a CVF for any set of host haloes. The functions and process is described in

Section 3.6.5.

3.3.3 Halo Properties and Subhalo Scaling Relations

As briefly mentioned previously, the issue of ’too-big-to-fail’ (TBTF) refers to the over-

abundance of specifically massive and dense subhaloes predicted from CDM simulations in

comparison to the number of luminous satellites that the Milky Way has been observed

to host [43, 44, 343]. The TBTF has been formulated in many different ways; the most

well known is through N -body simulations that show Milky Way-mass hosts should host

6–10 subhaloes with a potential well depth of Vmax > 25 km s−1 [229, 43, 178]. This is not

consistent with observations around the Milky Way; only the LMC and SMC fit into this

criteria. Another formulation of TBTF is in terms of density. The central densities of Milky

Way satellites that have been inferred from kinematics are too low compared to the central

densities of their dark matter subhalo counterparts [43, 299, 178].

In quantitative terms, the density formulation of the TBTF is the statement that the

classical dwarfs imply a larger radius at which the maximum velocity is reached (Rmax) for a

given maximum velocity (Vmax) than is typical of CDM subhaloes, or that the subhaloes are

denser then their kinematics suggest. We use Rmax and Vmax because NFW profiles consist

of two parameters, and these are easily related to observed stellar kinematics. Subhaloes

fall on a narrow line in Rmax–Vmax space, seen in Ref. [393] and subsequent papers. If the

structural relation of Rmax and Vmax varies systematically as a function of host halo property

(as is the case in our CVFs), this could hold an interesting implication for TBTF — an

implied relationship between subhalo density and host halo property.

We have used our model for satellite abundances in Milky Way-like haloes to investi-

gate whether the TBTF issue can be related to host halo properties. Specifically, we have

measured the relationship between the maximum circular velocity of subhaloes and their

maximum radius, dividing haloes up into quartiles based on host halo properties as above.

However, the results were inconclusive: i.e., any separation in the Rmax-Vmax plane for sam-

ples divided into dark matter host halo property quartiles is relatively weak. We find no

93



statistically significant separation when dividing host haloes into quartiles according to their

halo concentration, spin, shape, or major merger scale. Anything unusual in the properties

of the Milky Way halo cannot be used to explain structural differences between the observed

satellite properties and the expected characteristics of subhaloes; rather, we find the best-

fit scaling relations to be essentially independent of halo properties. Improvements to this

analysis would require a much larger sample of Milky Way-mass haloes to be re-simulated

at high resolution.

3.4 Conclusion

In this chapter, we have utilized Milky Way-mass zoom-in simulations to investigate the

sources of the scatter in subhalo abundances at fixed mass (see Fig. 3.2). We particularly

focus on predicting subhalo abundance conditioned on properties of a host halo. Recent

studies of the Milky Way have revealed that the Milky Way has an unusually small disk

[28, 218], which in standard galaxy formation theory would be related to unusual host halo

properties; we have sought to determine if the particular properties of our Galaxy’s halo

would also cause its expected satellite galaxy abundance to be unusual. The aspects of the

halo we have investigated are its concentration (cNFW), spin (λB), shape (c/a), and scale

factor at last major merger (aLMM), as discussed in Section 3.2.

First, we conclude that based on current estimates of its properties the Milky Way’s host

dark matter halo indeed lies at an extremum compared to haloes of its mass from N-body

simulations (see Fig. 3.1). In particular, the Milky Way lies away from the median in the

projections across the full parameter space (higher-than average cNFW, lower than average λB,

more spherical than average c/a, and a very small aLMM). Next, from our N-body simulations

we have determined that the host halo properties considered are significantly correlated with

subhalo abundances for Milky Way-mass dark matter haloes (Table 3.1); as a result, they

can be used to predict the cumulative velocity function of a given halo (Fig. 3.2). haloes

with lower-than average concentration host a greater number of subhaloes than haloes with

higher-than average concentrations. Similarly, lower-than average spin haloes host fewer
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subhaloes than higher-than average spin haloes, lower-than average (less spherical) shaped

haloes host fewer subhaloes than higher-than average shaped haloes, and earlier forming

haloes host fewer subhaloes than later forming haloes. In concordance with estimates for the

Milky Way, it should be expected that the Milky Way should host fewer subhaloes.

Using the results from the simulations, we have built two sets of scaling-relation models

that predict subhalo abundance above a given threshold velocity based upon the properties

of a dark matter halo. In the first model, we predict the subhalo abundance based on a

single parameter (at fixed halo mass), namely concentration (cNFW). Our second model

was a three-parameter model that conditioned subhalo abundance on cNFW, spin (λB), and

host halo shape (c/a). We also compare to a three-parameter model that does not include

concentration, due to the current limited understanding of halo contraction making the Milky

Way concentration a rough estimate. We then evaluate these models with the estimated

properties of the Milky Way’s host dark matter halo to predict subhalo abundances for our

Galaxy.

The conclusion of this analysis is that we should expect a host halo similar to the Milky

Way’s to possess fewer subhaloes than the average halo of its mass. However, the error on

actual measurements of the Milky Way dark matter halo also make the range of predicted

subhaloes consistent with no effect. We will focus our discussion on the impact of the

likely scenario that a halo like the Milky Way has fewer subhaloes when utilizing host halo

parameters beyond mass. The central predicted values of our best models are well below

the mean, which implies a significant probability of a subhalo count deficit. This result is

summarized in Figures 3.3 and 3.4. Both classes of model yield the same basic result: the

Milky Way is predicted to have 1–30% fewer subhaloes at low circular velocities (V frac
max) and

19–52% fewer at high circular velocities than a typical halo of its mass, at 68% confidence

when considering only model fitting and Milky Way parameter uncertainties. The decrement

with respect to the average cumulative velocity function of dark matter haloes is itself a

function of Vmax (i.e., a function of subhalo mass). The effect is much larger than estimated

uncertainties in the fitting and in propagated Milky Way parameters. Current observations

have detected approximately 26 satellites around the Milky Way with V sat
max > 10 km/s (this

does not include completeness correction or any other corrections). The mean prediction
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of the one- and three-parameter models estimate 127–135 total subhaloes around the Milky

Way, of which some fraction should host observable satellites. At 1σ below the mean our

models predict as few as 118–129 subhaloes around the Milky Way. In comparison the mean

subhalo number for the Milky Way mass host haloes in our zoom-ins is 169 total subhaloes

with V sat
max > 10 km/s. The similar results from both models indicates that the dominant

effect is the relationship between halo concentration, cNFW, and satellite abundance, N sat,

as exemplified by Fig. 3.5,Fig. 3.6, and Fig. 3.7. It appears that a cNFW-based model is

generally adequate for predicting subhalo abundance in the mass range of the Milky Way’s

dark matter halo, though more complicated models can yield smaller errors.

Additionally, we have found that variations in host halo properties do not have a statis-

tically significant impact on the structure of dark matter subhaloes themselves (at least as

assessed using properties connected to TBTF within our sample; see Section 3.3.3). Only the

subhalo numbers (and hence the MSP) have been impacted by taking host halo properties

into account. A set of new halo re-simulations at a resolution 8× higher than those used in

this work are now under way and may enable improved investigation of the TBTF problem.

The results described above suggest that a non-negligible fraction of the ’missing satel-

lites’ problems is a result of the unusual formation history of the Milky Way. The halo

of the Milky Way formed early with very few recent major mergers, which resulted in a

more spherically-shaped halo. This also would be expected to lead to a more centrally-

concentrated dark matter halo — consistent with the estimates shown in Fig. 3.1 as well

as results from, e.g., Ref. [371, 396] and Ref. [223]. This lack of major mergers should also

lead to a relatively small angular momentum of the Milky Way halo. This is consistent with

previous results showing that at all masses, haloes with lower spin tend to be in less-dense

regions and less strongly clustered [138, 122, 363], such that many reside in environments

resembling our Local Group. All of these halo characteristics correlate with having a smaller

number of satellites. The results of our models are all consistent with scenarios where the

Milky Way’s low satellite abundance compared to simple ΛCDM predictions may in part be

related to its quiet accretion history as was speculated in Ref. [219, 218].

However, the low subhalo abundance we predict for the Milky Way dark matter halo

based on its properties is not on its own sufficient to explain the missing satellites issue.
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Other factors, such as baryonic physics, must still play a role. In Section 3.1 we listed

several of the numerous solutions to the MSP. We will discuss how our results tie in with

those solutions below.

1. Baryonic effects: Although our work has shown that we should expect there to be fewer

subhaloes than previously anticipated for the Milky Way, the observations and predictions

still do not match. At the low velocity end we predict 5× as many subhaloes as have

been detected to date. Baryonic physics that causes any satellites in these subhaloes to

be difficult to detect could address this problem; the strength of baryonic effects required

would be smaller than previously estimated, however. Our results suggest that the Milky

Way begins with a state of up to ∼ 30% fewer small subhaloes and up to ∼ 50% fewer

larger subhaloes than average. Baryonic effects do not need to be as efficient as proposed

and can use insight from host halo parameters to better tune models.

Ref. [401] and Ref. [47] suggest that a combination of supernova feedback and enhanced

tidal disruption caused by the presence of a baryonic disk can resolve the missing satellites

problem. However, simulations which recover a Milky Way-like population of satellites

in a typical galaxy of Milky Way mass must be somewhat miss-tuned. That is, either

feedback or tidal effects from the baryonic disk must be weaker than was assumed in the

simulations of Ref. [47] in order to get a set of satellites like those that surround our

Galaxy when starting out with fewer subhaloes than are typical.

Concentration is an indicator of formation time that may contain more information about

the global formation of a halo than simply the time of the last major merger. In host

haloes that accrete their substructure earlier, tidal stripping will have longer to operate,

depleting subhalo abundances. This implies that the subhaloes within our Galaxy’s halo

were likely largely accreted relatively early compared to those surrounding other galaxies

(barring those associated with the LMC and SMC which may be on their first infall

[26, 25]) within the mass range of the Milky Way’s halo. This may cause tidal stripping

to have stronger effects in the Milky Way system than is typical for a galaxy of its mass.

2. Non-cold dark matter and exotic physics: Similar arguments apply to more exotic

physics as to baryonic effects. If, for example, a non-CDM dark matter model and/or

some modification to inflation were invoked to alleviate the MSP and TBTF issue, those
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modifications would need to be weaker than previously assumed, given the smaller Milky

Way subhalo abundance that we predict.

To summarize, when exploring potential factors affecting the missing satellites problem

and tuning models to match the Milky Way’s satellite population, it is important to ensure

that those models predict that a galaxy will have a Milky Way-like satellite population, not

for an average halo of Milky Way host mass, but rather for one which has Milky Way-like

properties across the board.

We note that uncertainties on the mass of the Milky Way’s dark matter halo are sufficient

that it may be as small as one half of the value assumed when selecting haloes for re-

simulation in Ref. [237]. Since the number of subhaloes is proportional to halo mass in the

parent simulations from which those haloes were drawn, we would correspondingly expect

a 50% smaller subhalo population for a typical galaxy of Milky Way halo mass than what

the simulation results give [368]. In combination with the differences between the expected

population of Milky Way subhaloes and the population in a more typical galaxy implied by

our model fits, this would mean in net that a 3–4× reduction in the number of subhaloes of

the Milky Way halo (and hence the strength of the missing satellites problem) compared to

what was previously assumed is entirely possible.

One outstanding anomaly is that, although the Milky Way overall has fewer satellites

than might be expected for the typical halo of its mass, it actually has more of the most

massive satellites than average. Previous numerical and observational studies have estimated

that there is a 2.5–11% chance that a halo of the mass of the Milky Way hosts two subhaloes

as large and luminous as the Magellanic Clouds (e.g., Ref. [60]). Taking our Galaxy’s halo

properties into account only increases this contrast. Fig. 3.3, Fig. 3.4 and Fig. 3.5 show that

at V frac
max above 0.2 the Milky Way subhalo abundance is expected to be further below the

average for a halo of its mass than at lower velocities (with a decrement of up to 50% of the

standard prediction, considering only model fitting and Milky Way parameter uncertainties).

This makes the ’too-big-to-fail’ problem even more of a puzzle. The Milky Way’s host halo

properties predict in our model that these large companions are very unlikely in concordance

with TBTF, yet the Milky Way hosts two very massive companions. However, we note that

the large Poisson scatter in this regime tends to dwarf the suppression of subhalo abundances.
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It would be interesting to follow up this work with an enlarged suite of re-simulated haloes

that is more well-suited to addressing the abundances of these large, rare subhaloes.

There are several important caveats to our results which are important to keep in mind

when interpreting this work. First, existing constraints on the Milky Way’s halo properties

are in many cases only rough estimates; this can propagate through into predictions of satel-

lite populations. We have discussed the issue of concentration in detail in Section 3.2.2 and

Section 3.5, where adiabatic contraction results in higher concentrated and less NFW-like

haloes which is an issue that has not been explored in detail in the literature. Additionally

one might worry particularly about estimates of our Galaxy’s spin parameter, as there is

significant doubt that the connection between disks and haloes is as tight as implied by the

Ref. [256] model. Simple models of galaxy formation assume that angular momentum con-

servation during collapse leads spiral galaxies to have specific angular momenta comparable

to the haloes they reside in [121, 256, 55]. However, simulation work by Ref. [177] shows

that the halo spin parameter is not significantly correlated with galaxy size. Nonetheless, we

remind the reader that it is concentration, and not spin, that drives the bulk of the reduction

in subhalo abundance at fixed halo mass; changing the estimated spin parameter by a factor

of two has a ∼ 5% effect on the predicted subhalo abundance at low V frac
max and no noticeable

effect at high V frac
max .

In this chapter, we have focused entirely on the problem of differences between the sub-

halo abundance in Milky Way-like haloes versus the typical halo of the same mass. However,

in exploring this problem we have investigated two related issues which we will focus on in

upcoming work. First, we have investigated the influence subhaloes have on measurements of

dark matter halo properties in simulations. This will provide us with a better understanding

of the quantities used as input for semi-analytic models, as well as potential differences be-

tween estimates of halo properties for real galaxies versus measurements of those properties

in simulations. Second, we have explored the relationship between subhalo abundances and

the galaxy-halo connection. An interesting extension of this work which we have not pur-

sued to date would be a comparison of subhalo abundances with the observed population of

satellites around M 31, or with satellite populations around Milky Way analog galaxies. Disk

scale length (compared to expectations from the mass-size relation of galaxies) could poten-
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tially be used to separate high-spin from low-spin haloes of comparable mass, enabling an

empirical test of whether satellite abundance correlates with halo properties beyond mass.

Through such studies, data from current and upcoming surveys (e.g., the SAGA Survey;

[141]) have the potential to provide us with more insight into the Missing Satellites and Too

Big to Fail problems.

3.5 Concentration and Adiabatic Contraction

In order to compare the estimated concentration of the Milky Way to our dark matter

only data, we must explore how adiabatic contraction of the halo effects the concentration

measurement. We do this by employing CONTRA, a publicly available code that calculates

the contraction of a dark matter halo as a result of a central population of baryons [149]. This

code assumes a spherically symmetric distribution of matter for the dark matter halo (which

we know is not entirely accurate), and that the velocity distribution is isotropic (which we

know is also unlikely to be the case - the velocity distribution varies throughout the halo).

However, it is the most simple model to begin with.

We explore results based upon the updated model for halo contraction from Ref. [149].

The Blumenthal [34] model is the original standard model that has since been updated.

The Blumenthal model treats a halo as spherically symmetric, which undergoes homologous

contraction - spherical shells that contact in radius but do not cross each other, with particle

orbits that are circular, and angular momentum is conserved. The Gnedin model adds in

a correction for gas dissipation, which better accounts for effect from mergers and feedback

from star formation. It essentially allows for eccentricity in particle orbits that better reflects

a complex formation scenario.

The parameters used for input into CONTRA are those determined for the Milky Way

from Ref. [28], were the baryonic fraction fb = 0.07 ± 0.001, the baryon scale length Rb =

0.00957 incorporating the scale length of the disk from Ref. [218], and we assume no velocity

anisotropy. We calculate an NFW fit to circular velocity where contracted concentration is

a free parameter (we also studied a model allowing mass to also be a free parameter which
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yielded similar results):

V (cNFW) = Vvir

√
1

x

ln (1 + cNFWx) − cNFWx
(1+cNFWx)

ln (1 + cNFW) − cNFW

1+cNFW

(15)

where x = r
Rvir

with r as the contracted positions of the dark matter particles from Contra,

Vvir =
√

GMvir

Rvir
, Mvir = 1.3 × 1012M⊙ for the Milky Way from Ref. [28], Rvir = 282 kpc, and

G is Newton’s gravitational constant. Data output from CONTRA is log-spaced in 80 bins,

so all of our analysis has the same structure, and the errors are linear. In order for us to

avoid fitting to a more complex model (which would constitute its own paper), we fit in the

outer region of the halo (r > 20 kpc) in rotation curve space in order to mitigate effects from

the bulge and the disk.

This fit was calculated using scipy.optimize.curve fit from Ref. [364], which is a form

of non-linear least squares fitting. The results are presented for two concentration values

for the Gnedin model in Fig. 3.9. The blue curves correspond to an initial (pre-contraction)

concentration of 10, and the orange curves correspond to an initial concentration of 20.

This spans the approximate theoretical range of NFW concentrations for the Milky Way. In

both cases the solid lines depict what the rotation curve looks like without any contraction

(Equation 15). The over-plotted dashed lines represent the contracted results output from

CONTRA, and the dashed-dot lines are the fit to Equation 15. It is evident that the fit is

not a good depiction of the CONTRA data. This implies that for a fit to contracted data

for a halo that most resembles the Milky Way, NFW is not the best model even in the outer

regions of the halo where the fit matches the form of the non-contracted model better than

the contracted data.

Fig. 3.10 shows the concentrations as a result of the contraction plotted as a function of

their initial values. The differences are small but notable. haloes starting with a higher con-

centration experience slightly more contraction, which is anticipated. Although we reproduce

the expected near 1:1 variance in concentration, the fits themselves are poor.

Despite the inaccuracies in the fits to the adiabatically-contracted profiles, we can take

the resultant concentration from the fit in order to calculate NFW concentration as a function

of contracted concentration. This is done using the Ref. [364] 1D interpolator. There are a

range of estimated values for the Milky Way concentration using various dynamical tracers
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Figure 3.9: Rotation curves based on the Gnedin contraction model for two initial NFW concentration values
of 10 and 20, depicted by blue and orange respectively. These concentration values fully span the theoretical
range for haloes of the same mass as the Milky Way. In both cases the solid lines depict what the rotation
curve looks like without any contraction, which perfectly matches to the fit of Equation 15 by design. The
over-plotted dashed lines represent the contracted results output from CONTRA, and the dashed-dot lines
are the fit to Equation 15. It is evident that the fit is not a good depiction of the CONTRA data.
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centration values input into CONTRA, denoted by blue points. For comparison the black line shows the
1:1 ratio which would indicate no change in concentration. The differences are relatively small, where, for
example, a halo of NFW concentration of 10 is expected to have a concentration of 13.95 after contraction.
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(a majority being blue horizontal branch stars) and various models. We incorporate results

from Ref. [15, 65, 87, 277, 184] and Ref. [395] in order to calculate the best estimate for the

Milky Way’s concentration post-contraction with a median and median interval of 19.85+3.5
−5.085.

We re-map this estimate and errors into non-contracted space, yielding a best result for the

Milky Way of cMW
NFW = 15+1.35

−2.58.

It is erroneous to say that a contracted halo similar to the Milky Way has a concentration

in the same sense that an NFW halo does, for the case of a simple model. One reason for

the bad fitting could be the level that the Milky Way itself deviates from an NFW profile -

an NFW profile is the average for haloes and only good down to ∼ 10− 20%. Another is the

fact that there is velocity anisotropies in the halo. These are issue that needs to be explored

further in the field, but is beyond the context of this chapter.

3.6 Numerical and Mathematical Techniques

In the appendices which follow, we discuss details of the numerical and mathematical

techniques used in this work. First, in Section 3.6.1 we describe our exploratory linear

regression modeling using a variety of combinations of host halo properties as predictors for

subhalo abundance. Next, in Section 3.6.2, we discuss the methods used to select the five

simulated haloes with properties nearest to those of the Milky Way, which are indicated

as blue points or lines in Figs. 3.1, 3.3, 3.4, 3.11, 3.12. In Section 3.6.3, we discuss the

selection of the two models used in our final analyses based upon their information criteria.

In Section 3.6.4, we discuss in detail the Poisson maximum likelihood methods used to fit

power-law scaling models for the subhalo abundance. Lastly in Section 3.6.5 we provide a

general fitting function for satellite abundance.

3.6.1 Regression Modeling

Our exploration of models for the dependence of subhalo abundance on halo properties

starts with simple linear regression modeling. We begin by developing models for the total
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abundance of subhaloes per host halo, above the resolution limit described in Section 3.2.1

equal to V frac
max = 0.065. In that regime, there are > 100 subhaloes per host halo, so Poisson

errors in the abundance of subhaloes can be approximated well by a Gaussian distribution.

As a result, if we restrict ourselves to purely linear models for simplicity, ordinary least

squares (OLS) regression provides an appropriate analysis technique for our data.

Specifically, we regress the total number of subhaloes each host has (our dependent

variable) against the matrix of host halo properties considered in this work (constituting

the independent variables in this problem). The host halo property distributions are more

uniformly distributed in linear space (in the cases of concentration and shape) or log space

(for spin, last major merger scale, and mass), so before we take any further steps the log

of λB and aLMM are taken. Additionally, before the regression is performed (but after log

transformations are applied), each set of properties is normalized to have mean zero and

variance one, enabling coefficients of different properties to be directly compared to each

other. We utilize the Ref. [286] sklearn.linear model.LinearRegression class for the OLS

regression. We can compare the least-squares predictions to the actual number of subhaloes

in each halo to test to what degree a given model explains the overall subhalo abundance.

3.6.2 Nearest Neighbors

Throughout this work we highlight the simulated host haloes that are most similar to

the Milky Way in their properties. Specifically, the blue points or curves in our figures

correspond to the five nearest neighbors to the Milky Way properties in the multidimensional

parameter space of λB, cNFW, c/a, and aLMM (the simulated haloes are already selected to

have approximately the same mass).

We identify these neighbors incorporating the results of the regression fits described in

Section 3.6.1. Explicitly, we begin by transforming the estimates of Milky Way host halo

properties described in Section 3.2 to the same scale as the halo properties used in regression

by subtracting off the mean and dividing by the standard deviation of the values of that

property amongst the simulated host haloes. We then multiply each host halo property (and

the corresponding Milky Way values) by the regression coefficients for that parameter from
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an OLS linear regression. We can then define a ’distance’ by the square root of the sum of

the squares of the differences of each of these re-normalized and re-weighted properties. This

distance will be smallest for those haloes which most closely resemble the Milky Way in the

properties which most strongly determine subhalo abundances.

For convenience we determine the nearest neighbors using the scipy.spatial.KDTree()

function from Ref. [286]. This function allows neighbors – that is, those haloes with smallest

distance from a given point in parameter space, using the metric defined above – to be

identified using a multidimensional binary tree, also known as a k -d tree.

3.6.3 Model Selection

In Section 3.3.2 we compare predictions for subhalo abundances from two models of

differing complexity that include concentration. These were selected out of a set of more

than twenty different models incorporating various linear combinations of host halo properties

and their products, with up to five parameters per model in total. The parameters for each

model were determined using simple linear OLS regression as discussed in Section 3.6.1. We

also compare to an inferior model that does not include concentration because of the current

difficult nature of measuring concentration for the Milky Way.

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

are two statistics commonly used for informing model selection [5, 10]. Adding additional

parameters will always tend to increase likelihood values (or decrease chi-squared) when

fitting models to a given data set, even if those parameters do not truly have intrinsic

explanatory power. The information criteria were introduced in order to penalize goodness-

of-fit measures based upon the number of free parameters in a model in order to mitigate

this issue. We have calculated both quantities for all models investigated to determine which

ones provide the best fits to the data given their level of complexity; the two models we

focus on in this work had the lowest AIC and BIC values of any models considered that lack

degeneracies when given in power-law form. The information criteria can be defined as

AIC ≡ 2k − 2 ln(L̂); (16)

BIC ≡ ln(n)k − 2 ln(L̂), (17)
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where k is the number of free parameters in the model, L̂ is the maximum likelihood value,

and n is the number of data points (in our case n = 45, corresponding to the 45 host

haloes). For Gaussian errors 2 ln(L̂) = −χ2 plus a constant, so we use the latter quantity

for simplicity in this case (as the number of subhaloes is large enough that the Poisson

distribution is very close to Gaussian, and only differences in the information criteria are

meaningful, so constants do not matter). We calculate χ2 as

χ2 =
∑
j

(N j,meas
sub −N j,pred

sub )2

σ2
j

, (18)

where N j,meas
sub is the measured total subhalo abundance in the simulation above the resolution

limit V frac
max = 0.065 for the jth halo, N j,pred

sub is the predicted total subhalo abundance from

a given model for the jth halo, and σj is the uncertainty in the jth subhalo abundance

derived from the data, σj =
√
N j,meas

sub ; in this case we calculate σj from the data values

rather than a model both because N is large (so using data values should give us a good

approximation to the predicted uncertainties if we knew the true mean abundance) and to

enable apples-to-apples comparisons of χ2 / AIC / BIC values between different models.

We also use the root-mean-square deviation (σRMS) as a measure of the difference between

predicted values from a given model (in our case Npred
sub ) and the measured values (Nmeas

sub ).

We calculate this quantity as

σRMS =

√
⟨(Nmeas

sub −Npred
sub )2⟩. (19)

In other words, σRMS is a measure of how accurately a model is able to predict the subhalo

abundances measured in our simulations [374]. It is worth keeping in mind that the root-

mean-square deviation, like chi-squared, is sensitive to outliers.

Table 3.3 provides the AIC, BIC, χ2, and σRMS values for linear versions of the models

used in Section 3.3.2, in addition to power-law version of the models (which we describe in

detail below) and a model which assumes that subhalo abundance is only determined by halo

mass (in which case the least-squares prediction is simply the average subhalo abundance,

as halo mass is the same for all the re-simulated galaxies). In this section we focus on

the linear models, as those were used to select the best combinations of parameters to
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investigate. In our case a three-parameter model that includes linear dependence on halo

spin, concentration, and shape fares better on both information criteria, χ2, and σRMS than

the one-parameter model that incorporates concentration alone. This three-parameter model

performed better on both information criteria than almost all of the linear OLS regression

models investigated, which included models linear in all the host halo parameters presented

in Section 3.2, quadratic terms in those quantities, and cross terms multiplying pairs of

halo properties, with up to five total parameters, not including a constant term. The only

exceptions were models with cross terms that become degenerate with halo properties when

converted into power law form, as in the models used in Section 3.3.2. We expect this model

to be a more robust predictor for subhalo abundance. The three-parameter model without

concentration is a much less robust model for predicting subhalo abundance. We include

solely for comparison due to issue with current Milky Way concentration measurements as

described in Section 3.5.

Visual depictions of the one-parameter and three-parameter OLS fits are shown in Fig. 3.11

and Fig. 3.12. The scatter plots in each panel shows the residual value of the number of

subhaloes when the prediction from a linear model is subtracted, excluding that model’s de-

pendence on the independent variable shown in that panel. We refer to this as Nmeas
sub −N¬xi

sub

where Nmeas
sub is the number of total subhaloes per host halo across the simulations above

the effective resolution limit of V frac
max = 0.065 and N¬xi

sub is the predicted subhalo number,

excluding the effect of host halo property xi. In Fig. 3.11, this means that what is plotted

on the y axis is the number of subhaloes minus the constant term of the fit; in Fig. 3.12 the

constant term and the dependence on all parameters but the one plotted are removed.

The over-plotted line in each panel is mi × xi, where mi is the coefficient from the

regression fit for the property xi; i.e., each line is the prediction of the regression model for

the dependence on that parameter. Our methods are based off those presented in section 7

of Ref. [296]. In each plot the blue triangle points correspond to the nearest neighbors to the

Milky Way, as discussed in Section 3.6.2. These scatter plots demonstrate that the results

of the regression look generally sensible, but the correlated pattern of residuals indicates

that a linear fit is an imperfect representation of the data; as a result, we utilize power law

dependencies in our final models.
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Model AIC BIC χ2 σRMS

Linear

One-para. 146.26 149.88 142.26 22.34

Three-para. 136.26 143.49 128.26 21.50

Three-para. No cNFW 462.11 469.34 454.11 39.92

Power law

One-para. 142.85 146.46 138.84 22.17

Three-para. 125.62 132.85 117.62 20.59

Three-para. No cNFW 450.16 457.39 442.16 39.21

Mass-only model 687.24 698.05 685.24 49.69

Table 3.3: Table of Akaike Information Criterion (AIC) Bayesian Information Criterion (BIC), χ2, and σRMS

values for the models used to estimate subhalo abundance for the Milky Way within this work. Values are
first listed for linear models which utilize one halo parameter (concentration) or three (concentration, spin
parameter, and shape); values are then listed for power-law models incorporating the same quantities. We
also provide statistics for a model which does not incorporate any host halo parameters, which implies that
subhalo abundance is based on mass alone (as all of the re-simulated haloes have roughly the same mass).
The three-parameter models have lower values for AIC, BIC, χ2, and σRMS in all cases compared to a one-
parameter model like that used in Ref. [237], indicating that such models provide a better fit to the data even
when penalizing them for their extra free parameters. We present results based on both one-parameter and
three-parameter models in this work in order to test the robustness of our conclusions, but our results favor
the three-parameter power law model as superior to the others considered, and all halo-parameter-based
models are vastly superior to the results when ignoring halo properties. Differences in AIC/BIC of > 10 are
generally considered to provide very strong evidence of a superior fit.
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Figure 3.11: Residual subhalo abundance as a function of the parent halo’s NFW concentration parameter.
In this and the figures below, the residual plotted on the y-axis is the observed (N sat for a given halo minus
the predicted N sat) for that halo from the regression model, where all terms except for the one dependent
on the x-axis value are included in the prediction (in this case, this simply means that the constant term
from regression has been subtracted from the total subhalo abundances above the effective resolution limit
of V frac

max = 0.065). The over-plotted line is m×cNFW where m is the coefficient from the regression for the
property cNFW, i.e. the term that was omitted from the regression model in calculating the residual. If
the model is a good fit to the data the line should be a good representation of the plotted points. The
blue triangle points correspond to the nearest neighbors to the Milky Way in parameter space, identified
as discussed in Section 3.6.2. The tightness of the points about the line indicates that a linear function of
cNFW provides a useful prediction of subhalo number; the systematic pattern of residuals about the line at
low cNFW indicates that a non-linear dependence should give an even better fit.
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Figure 3.12: Residual subhalo abundance as a function of the parent halo’s spin, concentration, and shape.
The residual plotted on the y axis is the observed (Nmeas

sub subhalo abundance for a given halo minus the
predicted subhalo abundance for that halo from the regression model, where all terms except for the one
dependent on the x axis value are included in the prediction (N¬xi

sub )). The over-plotted line in each panel
corresponds to the best-fit regression coefficient for a given parameter times the value of that parameter
(from left to right: λB, cNFW, or c/a). This corresponds to the prediction of the regression model for the
dependence on each quantity, with dependence on all other parameters subtracted off (as well as the constant
term of the fit). The blue triangle points indicate the five nearest neighbors to the Milky Way, identified
as discussed in Section 3.6.2. The results show that a linear model based on λB, cNFW, and c/a provides
improved predictions for subhalo abundance compared to one which depends on concentration alone.
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Fig. 3.13 depicts the distribution of coefficients derived when OLS regression for the

one-parameter is applied to 10,000 bootstrap re-samplings of the set of re-simulated haloes.

Bootstraps provide a reliable way to obtain errors from regression fitting even in the presence

of covariances or incorrect error models. The distribution of regression coefficients amongst

the bootstrap samples approximates the true PDFs for those parameters; we can use statistics

of the distribution of these values as estimates for parameter uncertainties. In Fig. 3.13 the

cNFW coefficients are always non-zero, which indicates that the improvement to predictions

for subhalo abundance from including this parameter is statistically significant.

Similarly, Fig. 3.14 shows the distribution of coefficients derived when OLS linear regres-

sion is applied to 10,000 bootstrap re-samplings with replacement of the three-parameter

model. In the histograms for λB, only 3.9% of the coefficients are ≥ 0 and in the histogram

for c/a, 17.5% of the coefficients are ≥ 0. This means that these two terms are not as

dominant as cNFW in the subhalo prediction, and in particular c/a is noticeably outweighed

by the other two parameters (typically for significance we look for < 5% of the coefficients

crossing over the x = 0 line).

For multi-parameter models it is useful to also examine how the coefficients of each pa-

rameter correlate with each other, which helps illuminate degeneracies between parameters

in the fitting. As can be seen in Fig. 3.14, cNFW and λB are the most important param-

eters for this model since they show little correlation, indicating that they each provide

almost totally distinct information. In contrast, the scatter plot between the λB and c/a

coefficients amongst the bootstrap samples shows significant covariance between them. This

indicates that there is likely some redundant information between the two halo parameters

(which is no surprise given their relationship to each other). We conclude that although the

three-parameter model provides useful predictions for subhalo abundance, not all of these

parameters are contributing equally. We also point out that the more parameters there are

in a model, errors on these parameters will propagate into subhalo abundance predictions.

Current estimates of the Milky Way host halo properties are not very exact - therefore at

current times a three-parameter model will likely have larger errors than a one-parameter

model (as seen in Fig. 3.3 and Fig. 3.4) but in the future when measurements are more

accurate the three-parameter model is expected to provide a better prediction for subhalo
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Figure 3.13: The distribution of the coefficient of cNFW from linear regression derived from one thousand
bootstraps with replacement of the simulated halo samples. The statistics of the distribution of coefficients
from bootstrapping can be used to characterize the uncertainties in the regression parameters. In this case,
because the cNFW coefficients are always non-zero, we have firmly established that this parameter can be
used to improve predictions of subhalo abundance.
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abundance.

3.6.4 Maximum Likelihood Fitting of a Power-Law Model for Subhalo Abundance

The linear one-parameter and three-parameter models presented above have been estab-

lished to be better predictors for subhalo abundance than mass alone. In this section we

investigate the improvements possible when models based upon power-law scaling relations,

rather than a linear combination of parameters, are used. We also implement improved

fitting methodologies that work well even in the small-Nsub regime.

Whereas we can write a linear model for subhalo abundance as

Npred
sub = k +

∑
i

αi × xi, (20)

where k corresponds to the intercept of a regression fit and αi is the coefficient for the ith

halo parameter xi used in the regression (e.g., cNFW), we can similarly define a power-law

model as

Npred
sub = k

∏
i

xαi
i ; (21)

in this case the αi are the exponents of the parameters xi, rather than their linear coefficients.

In the previous appendices, we investigated subhalo abundance models for a case where

the net number of subhaloes per halo was large, such that the Poisson distribution may be

closely approximated by a Gaussian and the assumptions of least-squares regression apply.

However, for higher velocity thresholds where there may be only a few subhaloes per halo,

this assumption breaks down. Instead, we adopt a Poisson distribution-based maximum like-

lihood approach which provides secure results even in this domain. For Poisson-distributed

counts the natural logarithm of the likelihood for the number of subhaloes of the jth halo,

ln P(Nmeas
sub |Npred

sub ), is given by the formula

ln P(Nj,meas
sub |Nj,pred

sub ) = N j,meas
sub lnN j,pred

sub −N j,pred
sub − ln Γ(N j,meas

sub + 1), (22)

where N j,meas
sub is the observed number of subhaloes for a given velocity threshold for the

jth host; N j,pred
sub is the predicted number of subhaloes for the jth host from a given model

and the same velocity threshold; and Γ indicates the standard Gamma function. We can

114



60

60

40

40

20

20
cNFW Coeffs

500

1000

1500

2000

10

10

0

0

10

10

20

20
λB Coeffs

16 8 0 8 16
c/aCoeffs

60

50

40

30

20

c N
F
W

C
oe

ff
s

10 0 10 20

500

1000

1500

2000

8
0
8
16

λ
B

C
oe

ff
s

16 8 0 8 16

400 400
800 800

1200 1200
1600 1600

N
u
m

b
er

Figure 3.14: Distributions of parameter coefficients from bootstrap re-samplings of the subhalo abundance
data for the three-parameter regression depicted in Fig. 3.12. The histograms correspond to how many times
each value of a given coefficient occurs amongst the bootstrap samples. We can treat the distribution of
coefficients from the bootstraps as a PDF for those coefficients to determine errors in regression fits. The
scatter plots show pairs of the coefficients from each bootstrap fit plotted against each other. The scatter plot
for λB vs c/a shows that the coefficients have a significant correlation with each other. It is clear that not
all halo parameters contribute equally to our ability to predict subhalo number; however, the AIC and BIC
results provide strong evidence that a three-parameter model is superior to one that relies on concentration
alone.
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maximize the likelihood of a model given the set of halo simulations by maximizing the

product of their individual likelihoods (as they are independent draws from the underlying

distributions the net likelihood is the product of the individual likelihoods). However, this

is equivalent to maximizing the sum of the values of the log likelihoods for each halo, i.e.,∑
j ln P(Nj,meas

sub |Nj,pred
sub ), so we do the latter.

Our fit values of k and the power law exponents (αi) correspond to the values which

maximize the total log likelihood,
∑

ln P(Nmeas
sub |Npred

sub ). We determine this values by mini-

mizing the negative of the total log likelihood using the scipy.optomize.minimize() function

[364, 291] with the Nelder-Mead solver [276]. This function requires an initial guess which we

construct by linear regression for the ln of Nmeas
sub in terms of the ln’s of the xi. The intercept

of this linear fit should correspond to the ln of the k parameter in Equation 21, while the

power-law exponents αi should correspond to the linear coefficients of this regression.

Goodness-of-fit statistics for the power-law Poisson Maximum Likelihood fits of both the

one-parameter model and three-parameter model for the total subhalo abundance above the

effective resolution limit of V frac
max = 0.065 are given in Table 3.3. In both cases a power-law

model provides a better fit than the equivalent linear model. The ∆AIC and ∆BIC for the

linear versus the power-law models are > 3 in the case of one-parameter models and >∼ 10

for three-parameter models, indicating that in each case the power-law model provides a

superior representation of the data.

Similarly to Fig. 3.11, and Fig. 3.12, we can plot the equivalent of a residual plot for

the three-parameter power law model, which we provide in Fig. 3.15. In this case the y-axis

differs, as for a power-law model ratios, not differences, are more meaningful. Hence we

plot Nmeas
sub /N¬xi

sub , where N¬xi
sub is still the predicted subhalo abundance without including the

host parameter xi, but now using a power-law model instead of a linear one. Over-plotted

in orange is the result of the power-law fit for the quantity plotted in a given panel, xαi
i .

For reference we also indicate the five nearest neighbors to the Milky Way as blue triangle

points. Comparing Fig. 3.15 to Fig. 3.12, it is evident that the power-law Poisson maximum

likelihood regression does a better job than the OLS linear regression as a predictor for

subhalo abundance, and once more cNFW is the parameter that has the greatest predictive

power.
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Figure 3.15: Illustration of the three-parameter power-law model for subhalo abundance as a function of the
parent halo’s spin, concentration, and shape (from left to right: λB, cNFW, and c/a). The y-axis shows the
observed (Nmeas

sub subhalo abundance for a given halo divided by the predicted subhalo abundance for that
halo from a power-law model as described in Equation 21, where all terms except for the one dependent
on the x axis value are included in the prediction (N¬xi

sub )). The over-plotted orange line in each panel
corresponds to the parameter shown on the x-axis raised to the power of the best-fit exponent from our
Poisson maximum likelihood fit. The blue triangle points indicate the five nearest neighbors to the Milky
Way, identified as discussed in Section 3.6.2. This result shows that a power-law is a better fit to the data
than a linear fit, and that cNFW has the greatest predictive power for subhalo abundance.
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To determine the errors in the exponents from the power-law Poisson maximum likelihood

fit we again use bootstrap re-sampling. Specifically, we produce 10,000 bootstrap re-samples

with replacement of the ensemble of host haloes and perform the fit for each sample. Fig. 3.16

displays the results of this process for the power-law fits; it may be compared to Fig. 3.14.

The dependence upon halo concentration is strongest, while the dependence upon spin is

relatively weak and covariant with the shape dependence. Unlike in the case of the linear

model (Fig. 3.14) there appears to be a significant degeneracy between cNFW and c/a.

In order to predict the cumulative subhalo abundance for the Milky Way as a function of

fractional velocity, we carry out this fitting procedure for a series of values for the minimum

V frac
max . Specifically, our procedure is as follows:

(1) We select twenty logarithmically-spaced values of V frac
max to serve as the minimum

fractional velocity for each of twenty bins, and determine the total number of subhaloes

above every minimum value for each host halo.

(2) For each of the twenty minimum values of V frac
max we fit a power-law model for predicting

Nsub of the form given by Equation 21 by maximizing the total Poisson likelihood across all

45 host haloes (using Equation 22), as described above.

(3) We obtain a prediction for the abundance of subhaloes for the Milky Way above each

fractional velocity threshold by evaluating the corresponding power-law fit with the Milky

Way’s estimated halo properties (described in Section 3.2) substituted in. That is, given

the αi’s and k values from a Poisson maximum likelihood fit, we can predict the cumulative

subhalo number for the Milky Way corresponding to each minimum value of V sat
max/V

host
max from

the equation

N sat(> V frac
max) = k

∏
i

xαi
i,MW , (23)

where xi,MW is the estimated value of the i’th halo property for the Milky Way’s host halo.

These predictions correspond to the solid purple curves in Fig. 3.3, Fig. 3.4, and Fig. 3.5.

(4) We then perform bootstrap re-sampling amongst the host haloes in order to calculate

the uncertainty in our power-law fits, and in the parameter estimates for the Milky Way. For

each bootstrap we perturb the measured Milky Way host halo properties by a random draw

from a normal distribution with standard deviation set by that property’s estimated error.

The case of concentration is a bit unique because our concentration estimate does not have
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Figure 3.16: Distributions of parameter exponents from bootstrap re-samplings of the subhalo abundance
data for the three-parameter power-law Poisson maximum likelihood fit depicted in Fig. 3.15. The histograms
correspond to how many times each value of a given coefficient occurs amongst the bootstrap samples. The
scatter plots show pairs of the coefficients from each bootstrap fit plotted against each other. The scatter
plot for c/a vs cNFW and c/a vs λB show that the coefficients have a correlation with each other. This implies
that c/a is not contributing as much as the other two parameters in predicting subhalo number. However,
the statistics in Table 3.3 show that the three-parameter model is still the superior model for predicting
subhalo abundance for Milky Way-mass dark matter haloes.
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symmetric errors. We instead build two half-Gaussians with the same mean and construct

the CDF of this distribution. With this we can use the PDF as a look-up table and generate

random variables that correspond to that value of concentration. At the same time we select

a new sample of the simulated host haloes with replacement. With this new sample we

then refit for the power-law model parameters via Poisson maximum likelihood and evaluate

each model with the corresponding estimated Milky Way halo properties for each bin. The

resulting 68% and 95% confidence intervals of the cumulative velocity functions for each

bootstrap sample correspond to the semitransparent purple regions in Fig. 3.3, Fig. 3.4, and

Fig. 3.5.

(5) Last, with this bootstrapped set of samples we can determine the impact of Poisson

scatter on the range of values possible for the Milky Way. For each bootstrap, in each bin

of V frac
max we compute the predicted number of subhaloes for the Milky Way per bin for a

non-cumulative satellite abundance. Then we draw randomly from a Poisson distribution

using this non-cumulative predicted abundance as the mean. Last, these Poisson values are

cumulatively summed in order to determine the error corresponding to the scatter of the

45 haloes about the model prediction. The 68 and 95 percent confidence regions for this

result are depicted in orange in Fig. 3.3, Fig. 3.4, and Fig. 3.5. Applying a log-normal error

distribution yields very similar results to the Poisson scatter utilized here. We also compare

the errors for the total cumulative number of subhaloes from the bootstraps alone and the

additional impact of Poisson scatter in Fig. 3.8. The incorporation of Poisson noise leads

to a much wider spread in predicted subhalo abundance at higher Vmax and a comparable

spread at low Vmax. Percentile confidence regions for these two error models on total subhalo

abundance normalized by the mean measured subhalo abundance are shown numerically in

Table 3.2 and visually in Fig. 3.8.

The end result of this process is both a best-fit, best-estimate cumulative velocity function

for the Milky Way and a set of additional CVFs whose distribution reflects the uncertainties

in fitting power-law models, uncertainties in the parameters of the Milky Way host halo, and

uncertainties due to Poisson scatter about the relation.
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3.6.5 Fitting Functions for the Subhalo Cumulative Velocity Function

Our best-fit models for the cumulative velocity function of subhaloes as a function of

host halo parameters can be approximately described by a simple set of formulae. Our goal

is to provide easily-computed values which can be substituted into Equation 23 to predict

the cumulative velocity function for any dark matter halo. We take advantage of the fact

that (due to the self-similarity of dark matter haloes of different masses and the virial scaling

relations), the number of subhaloes above a given V frac
max should have minimal dependence on

halo mass. That is, we expect the number of satellites above a given fraction of a halo’s

Vmax to be similar regardless of halo mass, but in a more massive halo, the satellites that are

above that fractional threshold will also be more massive (this also leads to the conclusion

that there will be more total satellites above a fixed minimum Vmax in more massive haloes,

roughly proportional to the halo mass).

To define an approximate model for the CVF, we need to specify values of k and αi as

a function of the minimum subhalo fractional velocity considered, V frac
max . Specifically, the

results from Poisson maximum likelihood one-parameter power-law fits can be accurately

represented using a function that is linear at low velocities and quadratic at high velocities.

We have fit for this function using the Numpy curve fit() routine applied to the values of

αcNFW
as a function of V frac

max obtained from the Poisson maximum likelihood results, using

weights calculated from the standard deviation of the bootstrap results for this parameter

at a given velocity. From this we obtain a fit:

αcNFW
=

 0.12V † − 0.78, V † < 0,

−66.26V †2 − 1.02V † − 0.78, V † ≥ 0,
(24)

where V † = V frac
max − 0.12. This fit provides a good representation of the dependence of the

power-law exponent on velocity over the range 0.05 ≤ V frac
max ≤ 0.25.

We find that a single quadratic function of V frac
max is sufficient for characterizing the de-

pendence of the power-law pre-factor k on velocity. In order to ensure a self-consistent

set of fitting functions, we must obtain new values of k for each threshold velocity while

forcing αcNFW
to have the value predicted by Equation 24 for αcNFW

. Specifically, we take

k = ⟨Nmeas
sub /N sat

k=1(> V sat
max)⟩, where Nmeas

sub /N sat
k=1(> V sat

max) is the satellite abundance estimate
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for each host halo taking k=1 and the value of αcNFW
from Equation 24; i.e., N sat

k=1(> V sat
max) =

c
αcNFW
NFW . By a least-squares fit to the values of the logarithm of k as a function of threshold

velocity, we obtain

ln k = 205.58(V frac
max)2 − 73.66V frac

max + 10.93. (25)

The results of Equation 24 and Equation 25 can then be substituted into Equation 21 to

obtain a prediction for the subhalo abundance at a given threshold in velocity based on

a dark matter halo’s concentration. The results of these fitting formulae match the mean

predictions for the Milky Way (corresponding to the purple line in Fig. 3.3) to better than

2.7% RMS over the range in velocities 0.05 ≤ V frac
max ≤ 0.25.

We similarly have derived fitting functions which can be used to approximate our three-

parameter model fits. We begin by noting that the exponents of the spin and shape pa-

rameters from our bootstrap samples are consistent with being constant at all velocities.

As a result, for our fitting formula we treat them as fixed at their median values across all

bootstrap samples from the original maximum likelihood calculation, corresponding to

αλB
= 0.03; (26)

αc/a = 0.26. (27)

We then perform new fits for a new k and αcNFW
via Poisson maximum likelihood, including

spin and shape in the model but forcing their exponents to have the fixed values described

above.

Then we proceed the same as for the one-parameter model. We find that the concentra-

tion exponent for the three-parameter model can be approximated well by

αcNFW
=

 0.10V † − 0.91, V † < 0,

−71.86V †2 + 2.02V † − 0.91, V † ≥ 0,
(28)

where V † = V frac
max − 0.11 in this case. Once again, we use the fitting formula predictions for

αcNFW to estimate the k term at each velocity, and then fit for ln k as a function of V frac
max via

least-squares. We then find

ln k = 208.21(V frac
max)2 − 74.11V frac

max + 11.47. (29)

122



The results from Equation 28 and Equation 29 can be substituted into Equation 21 to

obtain a prediction based on a dark matter halo’s concentration, spin, and shape for subhalo

abundance above a given velocity threshold. The results of these sets of fitting formulae

match the mean Milky Way prediction (the solid purple line in Fig. 3.4) to 6.9% difference

RMS for 0.05 ≤ V frac
max ≤ 0.25.

We note that if realizations of a cumulative velocity function incorporating Poisson statis-

tics are desired, care must be taken to ensure that covariances between values at different

velocities resulting from the use of a cumulative quantity are properly accounted for. Step

five in Section 3.6.4 describes the procedure which we have employed for this purpose.
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4.0 Constraining the Milky Way’s Ultraviolet to Infrared SED with Gaussian Process

Regression

This chapter has been accepted for publication in the Monthly Notices of the Royal Astro-

nomical Society ©: 2021 Catherine Fielder. Published by Oxford University Press on behalf

of the Royal Astronomical Society. All rights reserved. Minor modifications have been made

to the text.

4.1 Introduction

Within the Milky Way we have a unique opportunity to study the nuances of galactic

properties, allowing us to test galaxy formation and evolution models at an unrivaled level

of detail. For example, chemical abundances for hundreds of thousands of stars have been

obtained from spectroscopic surveys [233, 240], and stellar surveys that catalog distance and

dynamical measurements on millions of stars have been performed [132]. This exhaustive

stellar information has helped constrain the Milky Way’s evolutionary history. In turn, high-

resolution dynamical simulations have been able to produce galaxies of increased similarity

to the Milky Way [157, 316, 376], matching fundamental galaxy properties such as dwarf

satellite populations and reproducing characteristics of our Galaxy’s gas, dust, and stellar

components. Comparisons between Milky Way stellar data and high-resolution hydrody-

namical simulations of Milky Way-like galaxies are an increasingly useful way to improve our

understanding of galaxy formation.

However, the marriage between observations and models is delicate: incorrect assump-

tions on one side can propagate into the other. Simulators must make choices about how

to implement crucial parameters that affect the galaxy evolution process, such as the gas

density threshold for star formation to occur and the efficiency with which it proceeds; this is

sometimes done by attempting to match observed properties of the Milky Way. But without

knowing how our Galaxy fits in amongst the broader galaxy population, it is difficult to
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determine whether simulations match the Milky Way because they have the correct physics

or because they have incorrectly tuned parameters that match by coincidence or design.

This is complicated by the exceptional difficulty of obtaining a global picture of the

Milky Way, given our location in the disk and the obscuration caused by interstellar dust.

As a result, there are properties that we can easily measure in external galaxies that are

impossible to measure directly within our own, making it difficult to determine where we fit

within the broader galaxy population.

Creating an outside-in picture of the Milky Way that spans a multitude of broad-band

wavelengths will enable simulators to more accurately tune their physics assumptions, as it

will then be possible to test whether quantities that can only be determined from large-scale

stellar surveys and those that can be measured directly only for extra-galactic objects are

reproduced. The most basic, easiest-to-measure intrinsic quantities we can use to study

galaxies are their luminosities and colors; once redshift is known, these can be inferred from

broad-band photometry. Hence the focus of this chapter will be in determining these proper-

ties for the Milky Way. This will enable our Galaxy to be placed on standard color-magnitude

and color-color diagrams and result in a multi-wavelength spectral energy distribution (SED)

for the Milky Way.

The radiation emitted by a galaxy is characterized by its spectral energy distribution

(SED), or flux as a function of wavelength. Galaxy SEDs contain the imprints of the physical

processes occurring within - the stellar population’s ages and abundances (i.e., the star

formation history and metallicity of the galaxy), the dust and gas content and the chemistry

and physical state of the interstellar medium (ISM). Because different sources dominate the

emission at different wavelengths, long-wavelength-baseline SEDs allow one to disentangle

the contributing effects. This makes SEDs one of the best direct probes for studying galaxy

formation and evolution from both an observational and theoretical modeling perspective.

However, comparing colors and luminosities of the Milky Way to external galaxies is not

trivial, regardless of whether we compare to observed galaxies or to mock images from high-

resolution hydrodynamical simulations (such as Eris [157], APOSTLE [316], and Latte [376]).

Much of our view of the Galaxy is obscured by interstellar dust, especially at UV and optical

wavelengths [62, 320]. Stars outside of the local solar region are reddened as a result of the
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dust obscuration. Determining the integrated light of stellar populations in the Milky Way is

challenging due to the spread of stars over large and varying distances, with correspondingly

large and varying dust extinction along lines of sight to the Earth. This makes the study of

any portions of the Galactic disk beyond the solar neighborhood exceptionally difficult, and

results in a fragmented picture of the Milky Way. Integrated properties that are relatively

painless to obtain in external galaxies (though dust obscuration can affect these observations

as well, see e.g., Ref. [243, 245]), are impossible to obtain directly within our own Galaxy

(e.g., [265]). As a result, simulators often must resort to comparing their simulated Milky

Ways to very general galaxy populations (such as sets of Sbc or late type galaxies) that,

while superficially resembling the Milky Way, have a wide range of other global properties

(e.g., [157]).

In an effort to circumvent our limited view of the Milky Way, we can study galaxies

that mimic the properties of our Galaxy but can be observed from outside, which we label

Milky Way Analogues (MWAs). This method hinges on the Copernican assumption that

the Milky Way should not be extraordinary among a galaxy population that shares some

key properties with it. These comparisons are enabled by working within volume-limited

subsets of large surveys, which ensure that the observed objects constitute a representative

population. Previous work suggests that galaxies with similar stellar mass and star formation

rates are also similar in other properties, as the observed galaxy population is well-matched

by models that parameterize galactic star formation histories with a limited collection of

curves [18, 146, 2, 190]. Even further, Ref. [19] showed mass and star formation rate are

strongly correlated with the photometric properties of a galaxy. Therefore we can exploit

the fact that two galaxies of identical mass and star formation rate should have similar

luminosities and colors, with some scatter given the range of galaxy photometric properties

at fixed physical parameters. Ref. [219], utilized this to constrain the Milky Way’s optical

colors and magnitudes based on the range of observed properties of MWAs that were matched

in stellar mass and star formation rate. MWAs also allow direct comparison of properties of

our Galaxy to its closest peers (e.g., [217, 218, 129, 35, 206]) and have been a successful tool

for improving our understanding of the Milky Way in an extra-galactic context.

The Milky Way, however, has some characteristics that are atypical (at the < 2σ level)
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amongst its peers - e.g., the Milky Way has an unusually compact disk (i.e., a small disk scale-

length) [41, 28, 217], and an unusually quiescent merger history (from observation; [352, 306],

and simulation; e.g., [124, 63]). The deviations of the Milky Way from the average suggest

that we should consider parameters beyond just stellar mass and star formation rate in order

to identify samples of objects that more closely resemble the Milky Way.

Galaxy morphological characteristics such as disk scale length (Rd) and bulge-to-total

ratio (B/T ) are tied to a galaxy’s evolutionary history and therefore should connect to its

photometric properties [61, 307] as well as to the ways in which the Milky Way is atypical.

We would therefore wish to incorporate these properties in addition to stellar mass and star

formation rate in defining an MWA. However, as the number of parameters required to match

the Milky Way increases, the number of MWAs correspondingly reduces dramatically. For

example Ref. [129] only found 179 analogues when selecting on stellar mass, bulge-to-total

mass ratio, and morphology; Ref. [36] and Ref. [35] found no MWAs within 1σ of the MW

when selecting on stellar mass, star formation rate, bulge-to-total ratio, and disk scale length

in either the SDSS-IV MaNGA survey [59] or a larger photometric sample drawn from the

GALEX-SDSS-WISE Legacy catalog (GSWLC; Ref. [312]) respectively.

Ref. [219] found that the color of the Milky Way is consistent the green valley region

of the CMD as it has been defined using purely optical passbands. Characterizing the UV

and IR colors of the Milky Way can provide more sensitive probes of whether it would be

classified as in the process of quenching if seen from outside, allowing us to better understand

what type of population the Milky Way may belong to. Ref. [219] speculated that the Milky

Way might belong to the population of massive “red spiral” galaxies, which are characterized

by their red optical colors despite ongoing star formation [244, 81]. Galaxies within this

population may be moving into the green valley due to slow quenching (cf. Ref. [319]). This

conjecture can only be fully tested by examining wavelengths outside of the optical range; in

g − r, the colors of massive spiral galaxies on the star-forming main sequence (a population

that should include the Galaxy) overlap with both the red sequence and the blue cloud

[81, 310]. However, samples of MWAs that have high-quality photometry over a broader

wavelength range will have reduced numbers due to the limited coverage of sufficiently deep

photometry in GALEX.
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To address the lack of analogues when multi-dimensional parameter spaces are used,

and the smaller overall sample size resulting from the increase in wavelength coverage, we

introduce a Gaussian process regression (GPR) approach in this work. GPR is an emergent

tool in astrophysics. For example, Ref. [37] employed GPR to emulate results of cosmological

simulations, while Ref. [150] used GPR to detect and classify exoplanets. We can use GPR

to leverage information from a wider variety of galaxies, instead of just the closest Milky Way

analogues, in order to extract information from large-scale trends between galaxy physical

and photometric properties. Thanks to the probabilistic framework that underlies GPR, we

obtain uncertainty estimates for all predicted quantities for free. The primary result from

this chapter will be an ultraviolet to infrared SED of the Milky Way as viewed face-on,

determined via GPR based on star formation history and structural parameters (i.e., galaxy

physical parameters) that have been measured well for both the Milky Way and galaxies

from the Sloan Digital Sky Survey [4].

The chapter is organized in the following manner. In Section 4.2 we describe the ob-

servational data used, including the external galaxy data in Section 4.2.1 and Section 4.2.2,

and estimated properties of the Milky Way in Section 4.2.3. Section 4.3 details our new

Gaussian process regression-based methodology. In Section 4.4 we compare the luminosity

and colors of the Milky Way at multiple wavelengths and the Milky Way’s predicted SED to

properties of other galaxies. Finally we summarize our results, and discuss implications and

future work in Section 4.5. 4.6 provides a summary of the galaxy parameters and tables that

list predicted photometry for the Milky Way. 4.7 describes tests of the accuracy of the GPR

procedures used here, and 4.8 describes how we address the systematic corrections needed

for k-corrections and Eddington bias.

In this chapter all magnitudes are reported in the AB system, except for the Johnson-

Cousin UBV RI magnitudes which are presented in the Vega system. Absolute magnitudes

are derived using a Hubble constant H0 = 100 km s−1Mpc−1, so they are equivalent to

My − 5 log h (where My is the y-band absolute magnitude and h = H0/100) for other values

of h. For other properties in which measurements for the Milky Way are compared to extra-

galactic galaxy measurements we assume H0 = 70 km s−1Mpc−1 (h = 0.7) in accordance

with Ref. [219], for a standard flat ΛCDM cosmology with Ωm = 0.3. Parameters such as log
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stellar mass and log star formation rate can be modified for different h values by subtracting

2 log h/0.7. We do this to avoid confusion and to allow for potential updates to future h

measurements.

4.2 Observational Data

In this section we describe the many galaxy catalogs utilized in this work. We break this

up by photometry (Section 4.2.1) and inferred galaxy properties (Section 4.2.2), with the

Milky Way measurements included in the final subsection (Section 4.2.3).

4.2.1 Photometry

4.2.1.1 SDSS Galaxies

The sample of galaxies that we use as a starting point originates from the eighth data

release (DR8; Ref. [4]) of the Sloan Digital Sky Survey III (SDSS-III; Ref. [390]). DR8

provides both images and photometry of thousands (almost 106) of local galaxies. The

optical broadband passbands, u, g, r, i, and z were the subjects of previous Milky Way

analogue work by Ref. [219] and are used in this study in addition to bands outside of the

optical range.

We make use of both the “model” and “cmodel” magnitudes from SDSS. The former

refers to magnitudes derived from the better of either a de Vaucouleurs or an exponential

profile fit to the galaxy surface brightness distribution. These types of magnitudes are

expected to produce the highest signal-to-noise estimate of galaxy colors; thus when we refer

to galaxy colors derived from SDSS we will be using model magnitudes for the calculations.

Alternatively, cmodel magnitudes are derived from the best fit to a linear combination of a

de Vaucouleurs and exponential profile. These magnitudes provide the best estimate of the

total flux of a galaxy in each passband. When we refer to galaxy absolute magnitudes for

SDSS bands we will use cmodel magnitudes.

k-corrections on these passbands to rest-frame z = 0 were calculated via the kcorrect
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v4.2 software [31], as described in Ref. [219]. This provided AB absolute magnitudes for

the SDSS ugriz photometry. Additionally, kcorrect was used to convert the SDSS ugriz

photometry to restframe Johnsons-Cousins UVBRI Vega magnitudes in order to make easy

comparisons to literature values. Results are presented with the adoption of the Ref. [31]

and Ref. [219] notation, where an absolute magnitude of passband y at redshift z is denoted

as zMy.

Our main galaxy sample is derived from the volume-limited sample presented in Ref. [219].

A volume-limited sample is required for accurate results from Milky Way analogues in order

to alleviate a radial selection effect known as Malmquist bias, i.e., the preferential inclusion

of intrinsically bright galaxies. At higher redshifts within the main SDSS sample [339], only

the most luminous galaxies will be brighter than the sample magnitude limit and followed-up

spectroscopically. By using a volume-limited sample we ensure that galaxies within the range

of the Milky Way’s parameters are included equally at all distances considered. Ref. [219]

determined the limits for their volume-limited sample from an initial draw of Milky Way ana-

logues from the full SDSS DR8 parent catalog without any redshift cuts. Then in 0(g − r)

vs. 0Mr (i.e., restframe g-r color derived using z = 0 passbands versus r-band absolute

magnitude, again evaluated with the z = 0 passband) color-magnitude space a maximum

redshift was chosen such that all objects as low in luminosity as the faintest Milky Way

analogues would still be included at that z. A minimum redshift was also applied to limit

the impact of the finite SDSS fiber aperture on measured galaxy properties. The resulting

volume-limited sample contains a total of 124,232 target galaxies within the redshift range

of 0.03 < z < 0.09. Some initial cuts on SDSS quality flags were also employed; for further

details on the construction of this volume-limited sample refer to Section 3.1 of [219]. All

cross-matches from SDSS to other catalogs presented here were constructed only using the

volume-limited sample. Both the SDSS sample used here and the cross-matched catalogs

presented in this chapter are available at our catalog GitHub repository1.

1https://github.com/cfielder/Catalogs
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4.2.1.2 GALEX–SDSS–WISE Legacy Catalog

Photometry in ultraviolet and infrared wavelengths used in this work comes from the

GSWLC [312, 311]. We use GSWLC-M2, the medium-deep catalog of GSWLC-2, which

covers 49% of the SDSS DR10 footprint. While this reduces the number of targets for study,

the improved signal-to-noise in the UV-imaging over the shallow catalog enables tighter

results. SDSS Photometry between DR7/DR8 and DR10 is the same, so no issue arises

between cross matches of the SDSS volume-limited sample and the GSWLC-M2 sample. In

order to account for any differences in astrometry we consider matches to be separations

within 1.5 arcseconds.

The ultraviolet sample in the GSWLC catalog originates from the GALEX  survey  (F UV, 

NUV), and has been corrected for galactic reddening and calibration errors [241]. UV 

detections are available for 74% of SDSS targets in the GSWLC-M2 catalog. The 

infrared sample in the GSWLC catalog originated from the 2MASS and WISE surveys. 

The 2MASS photometry (JHKs) is available for 48% of SDSS targets and WISE 

photometry (W1, W2, W3, W 4) is available for 41% of SDSS targets.

4.2.1.3 DESI Legacy Imaging Surveys

Data release 8 of the DESI (Dark Energy Spectroscopic Instrument) Legacy imaging

surveys includes g, r, z, and WISE photometry of sources detected in DECam or BASS/MzLS

imaging [96]. We use these catalogs for all WISE-band photometry presented here, as the

matched-model measurements from the Legacy Surveys Tractor catalogs go substantially

deeper and have lower errors than other public WISE data products. We also calculate

k-corrections for the WISE bands using this photometry; we discuss our procedures for this,

which allow accurate k corrections in the IR without making any assumptions about SED

templates at those wavelengths, briefly in Section 4.8.1 and more extensively in Chapter 5.

DESI Legacy and SDSS contain photometry that comes from differing filter sets and

detectors. DESI Legacy North uses BASS and MOSAIC filters while DESI Legacy South

used DECam filters [96]. Our corrections for offsets between the DESI Legacy Survey and

SDSS photometry is described in Section 4.8.2.
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4.2.2 SDSS-based Properties

Only one of the galaxy properties which we use to create SEDs is recorded in the standard

SDSS photometric catalogs and required no further analysis; specifically, the best fit axis ratio

(b/a) of a galaxy. We use the b/a value determined from an exponential fit to the galaxy’s

surface brightness density in the r-band throughout this work.

Axis ratio is used here as a proxy for galaxy inclination. Disk galaxies with very small

axis ratios are likely heavily tilted from our perspective, in contrast to face-on disks which

would typically have axis ratios of b/a ∼ 0.9 [72, 234]. Highly-inclined star forming galaxies

suffer greatly from dust obscuration which can effect their colors and magnitudes by making

them appear redder and fainter than their intrinsic properties [79, 245, 263, 203]. This effect

is important to consider when we are making predictions for a disk galaxy like the Milky

Way.

4.2.2.1 MPA-JHU Masses and Star Formation Rates

The MPA-JHU galaxy property catalog provides total mass and star formation rate

estimates for galaxies within SDSS DR7. Ref. [219] developed an updated version of this

catalog using the SDSS DR8 photometry. To summarise, the masses are calculated by fitting

stellar population synthesis model to the galaxy’s photometry (instead of spectral features,

as in Ref. [189, 133]), similar to Ref. [313]. The star formation rates are calculated by

emission-line modelling based upon Ref. [46] with some updates. In order to account for

aperture bias Ref. [219] follows the method of Ref. [313] in calculating photometry for the

light that falls outside of the fibre and fitting stochastic stellar population synthesis models

to it. Thus each galaxy SFR measurement consists of a combination of the SFR measured

from inside and outside of the SDSS fibre. For more details on these calculations refer to

Section 2.2.2 of Ref. [219] and Ref. [46]. In both cases a Kroupa initial mass function (broken

power law) is assumed [207].

Each galaxy in our volume-limited sample is assigned a posterior probability distribution

function (PDF) of log stellar mass and log star formation rate, as well as a corresponding

cumulative distribution function (CDF) determined by the posterior. Nominal values used
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for the log Ṁ∗ and log SFR of each object are taken to be the mean value of the posterior.

The standard deviation (σ) on these values are calculated from percentiles (P ) in the CDF

provided in the MPA-JHU measurements; we take σ = (P84−P16)/2, i.e., half the difference

between the 16th and 84th percentile values. This gives us estimates of the stellar mass and

star formation rates as well as their associated errors for each galaxy in the sample.

The GSWLC-2 catalogs which we use for photometry also provide computations of stellar

masses and star formation rates. We chose to use the MPA-JHU results instead in order

to avoid any systematic effects that may result from using the same measurements for our

galaxy properties that were used to determine these derived quantities. We have tested how

our results change if we use GSWLC-2 masses and star formation rates and find minimal

differences, as summarized in Section 4.4.2.4.

4.2.2.2 Simard et al. Bulge and Disk Decompositions

In order to characterize the light-weighted bulge-to-total ratios (B/T ) and disk scale

lengths (Rd) for SDSS galaxies, we use the catalog of Ref. [327]. This work performed galaxy

image decompositions for objects within the Legacy area in SDSS via the GIM2D software

package [328].

Specifically, we use the catalog of fits based on composites of a Sersic n = 4 bulge and

a pure exponential disk (Sersic n = 1). For our analysis we use the B/T computed in

r band, as it is expected to be more stable than g-based measurements. As a check we

have performed our analyses using B/Tg instead of B/Tr and found minimal differences (cf.

Section 4.4.2.4). It is worth noting that Ref. [208] finds that these bulge+disk decompositions

can be somewhat inaccurate when applied to strongly-barred galaxies, which may lead to

some biases within our galaxy sample. However, fits optimized for barred galaxies have been

performed for only samples of a few thousand objects, inadequate for our purposes, so we

rely on the [327] results here. The Ref. [328] bulge and disk decompositions are derived using

a H0 = 70 kms−1Mpc−1.
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4.2.2.3 Galaxy Zoo 2 Bar Presence

The presence of bars have been speculated to be correlated to the star formation history

within a galaxy. However, the sense of the effect is unknown; a bar may be related to

an increase in star formation [162, 161, 95, 174], no effect [293, 242, 67], or decreased star

formation [361, 98, 130], along with other potential effects on color and metallicity [247].

Regardless of the source of any correlations, we wish to incorporate any possible differences

having a bar may cause when we determine the Milky Way’s SED, since our Galaxy does

exhibit clear evidence of a bar [32]. The Galaxy Zoo 2 (GZ2) catalog [381, 160] contains

identifications of detailed morphological features in disk galaxies, such as spiral arms and

bar presence. The galaxies classified in Galaxy Zoo 2 are a sub-sample of the brightest and

largest galaxies in the SDSS Main Galaxy Sample.

The Galaxy Zoo projects are open public projects in which members of the community

identify whether they found a variety of galaxy features in the images provided. In the

Galaxy Zoo 2 catalog the number of raw votes for each morphological feature is weighted

(to account for user consistency) and adjusted to mitigate the impact of redshift-dependent

biases, yielding a corrected fraction of volunteers who identified a given morphological feature

for each galaxy. In our case we focus on the debiased fraction of volunteers who identified a

galaxy as having a bar, which we denote by pbar (following Galaxy Zoo labelling conventions;

however, this is a fraction of votes, not a probability). Above some threshold in pbar (after

cuts in related parameters) we can be confident that a given galaxy indeed hosts a bar.

Ref. [381] developed the initial version of Galaxy Zoo 2 bar thresholds; more conservative

thresholds were later defined by Ref. [134].

Often, when one uses Galaxy Zoo results it is necessary to consider responses to previous

questions that influence whether the question of interest is even presented to the volunteers.

For example, as described in Ref. [381], a voter is only asked “Is there a sign of a bar feature

through the center of the galaxy?” if they first selected that the object has “features or disk”

when asked “Is the galaxy simply smooth and rounded, with no sign of a disk?”, and then

responded in the negative when asked “Could this be a disk viewed edge-on?”. One would

then identify galaxies that have received a large fraction of “yes” votes as containing bars. It
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is worth noting that Ref. [381] states galaxies that receive fewer than 10 net votes for a given

question may not have a reliable classification. Therefore to construct a bar sample using the

minimum allowances of Ref. [381], using the debiased vote fractions from Ref. [160] (which

was an improvement to the debiasing of Ref. [381]), one would use the cuts in the second

and third row of the third column of Table 3 in Ref. [381] with pbar ≥ 0.3 as recommended

by Ref. [134] and additional voting number thresholds Nnot edgeon ≥ 10, and Nbar ≥ 10.

However, here we do not want to consider only information on the relationship between

galaxy star formation history, structural properties, and photometric properties that comes

from those galaxies that most definitively host bars. Rather, it is desirable for the training

sample for our Gaussian process regression model to include objects spanning a broad range

of parameter space: this yielded smaller net prediction errors in Milky Way photometric

parameters than when small, restricted samples are used for training. For additionally

discussion on this choice refer to Section 4.4.2.4.

To summarize, the primary set of data that we employ in this chapter consists of a

cross-match between the original SDSS DR8 volume-limited sample reported in Ref. [219],

an updated version of the MPA-JHU catalog [46] of masses and star formation rates in SDSS,

the Ref. [327] morphological bulge-disk decomposition catalog, the GSWLC-2 medium-deep

photometry catalog [312, 311], the Galaxy Zoo 2 catalog [381, 160], and the DESI Legacy

survey DR8 catalog [96]. These cross-matches were performed using the astropy coordi-

nates package. We required that objects be separated by less than 1.5 arcseconds from a

counterpart in the SDSS volume-limited sample to be considered a match, and discard any

galaxies that are not included in all catalogs considered.

Our sample is smaller than the original volume-limited sample as a result. The MPA-

JHU catalog contains all objects from the volume-limited sample, so we begin with the

same set of 124,232 galaxies utilised by Ref. [219]. After matching to Ref. [327], 123,167

galaxies remain; some objects are lost due to minor differences between the DR7 and DR8

SDSS catalogs. When we require GSWLC-M2 measurements, we are left with only 60,857

galaxies, as roughly half of the SDSS footprint is covered by medium-deep GALEX, 2MASS,

and WISE photometry (see Section 4.2.1.2). After matching to GZ2 29,836 galaxies remain,

a consequence of the brighter magnitude limit used to select GZ2 objects compared to the
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original SDSS Main Galaxy Sample (see Section 4.2.2.3). We note that due to the brighter

magnitude limit of GZ2, our final sample is no longer volume-limited. This would yield biased

results if we were measuring aggregate properties of Milky Way analogues. However, for our

GPR methodology this only modulates the density of our training set within parameter

space, causing larger prediction errors due to the sparser sampling, but not leading to a bias.

Finally, matching to DESI Legacy leads to only a minor reduction in galaxy number

as it covers a super-set of the SDSS area with deeper photometry (but different reduction

algorithms). After these cross matches we then remove objects with photometric values of

“NaN”, infinity, or −99, which all indicate missing photometry in one catalog or another.

This is only done when necessary for the evaluation of the GPR. For our WISE k-correction

calculations (see 4.8.1) we will exclude objects with large WISE photometry errors in a given

band, which we do not propagate into our main galaxy sample.

The final data sample consists of 29,588 galaxies in total from redshift 0.03 < z < 0.09,

which is publicly available at our catalog GitHub. The parameters which we will use to

predict photometric properties are stellar mass (M∗), star formation rate (SFR), galaxy axis

ratio as a proxy for inclination (b/a), bulge-to-total ratio (B/T ), disk scale length (Rd), and

corrected bar vote fraction (pbar). Covariances amongst these parameters are minimal, as

discussed further in 4.6.1; we show joint distributions for these parameters in Fig. 4.12.

4.2.3 Milky Way Properties

A number of the properties of the Milky Way used in this study have been derived us-

ing the Bayesian mixture model meta-analysis method first presented in Ref. [216]. This

technique combines information from multiple measurements in order to obtain aggregate

constraints on the Milky Way’s properties, taking into account the possibility that individual

measurements could be incorrect or have their errors miss-estimated. This Bayesian method

is combined with Monte Carlo simulations in order to account for uncertainties on the Sun’s

measured Galactocentric radius, R0; the Galactic exponential disk scale length; and uncer-

tainties in the local surface density of stellar mass. The inferred mass of the Milky Way’s

stellar disk depends upon all three of these parameters.
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Ref. [154] recently obtained a greatly improved geometric measurement of our distance

from the center of the Milky Way, R0 = 8.178±0.026 kpc (Ref. [216] used the value 8.3±0.35

kpc from Ref. [143]). We have rerun the Bayesian mixture model inference from Ref. [219] and

Ref. [217] with this updated measurement of the Galactocentric distance to obtain updated

measurements of the Milky Way’s mass, bulge-to-total mass ratio, and disk scale length; see

those papers for all details of the data sets used and the calculations (the star formation rate

estimate from Ref. [216] is not affected by the value of R0, so we adopt it unchanged). The

resulting Milky Way parameters used in this study are as follows:

• Bulge Mass MB
∗ = 0.90 ± 0.06 × 1010 M⊙

• Disk Mass MD
∗ = 4.58+1.18

−0.94 × 1010 M⊙

• Total Stellar Mass M∗ = 5.48+1.18
−0.94 × 1010 M⊙

• Star Formation Rate SFR= 1.65 ± 0.19 M⊙yr−1 [216]

• Log Specific Star Formation Rate log SFR
M∗

= −10.52 ± 0.10

• Bulge-to-total Mass Ratio B/T = 0.16 ± 0.03

• Disk Scale Length Rd = 2.48+0.14
−0.15 kpc

The revised stellar mass estimate for the Milky Way is smaller than the previous estimate,

but by an amount that is significantly smaller than the previously-estimated uncertainties.

By design these physical parameters are constructed such that they can be directly com-

pared to the extragalactic catalogs used to predict photometric properties. For example, the

stellar mass and star-formation rate estimates for the Milky Way are constructed assuming a

Kroupa initial mass function [207] and an exponential disk model, which is the same way in

which mass and star formation rates were calculated in the MPA-JHU catalog [46] that we

use in this analysis. The only parameter where this is not fully the case is the bulge-to-total

ratio, B/T . For the Milky Way we can securely estimate only a mass-weighted value for this

quantity. In external galaxies, however, the mass-weighted B/T is much more difficult to

obtain, and light-weighted measurements tend to be more reliable. However, our predicted

Milky Way properties do not change significantly when we switch from r-band-based to g-

band-based B/T values, even though mass-to-light ratios differ significantly between these

bands, suggesting that this is not a major issue.
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Our analysis also depends on two additional parameters that are determined indepen-

dently of any Bayesian mixture model meta-analysis. These quantities have values assigned

to them based on their meaning in their respective catalogs and our understanding of the

Milky Way:

• Axis ratio (inclination proxy) b/a = 0.9 ± 0.1

• Bar vote fraction pbar = 0.45 ± 0.15

Galaxy inclination has a strong effect on color and luminosity measurements for disk

galaxies. As mentioned in Section 4.2.2, dust alters the observed colors and magnitudes of

star-forming galaxies that are highly inclined or edge-on. Our perspective within the Milky

Way makes it somewhat equivalent to being edge-on to us (though our position within the

Galaxy, rather than outside, does cause some differences). However, photometric properties

are most cleanly determined for those objects which are observed face-on. Therefore, we

predict the SED that would be observed for the Milky Way for axis ratio values drawn from

a uniform distribution spanning from b/a = 0.8 to 1.0, consistent with the intrinsic axis

ratios of spiral galaxy disks as described by Ref. [234] and in Section 4.2.2. Our results

should therefore correspond to the properties of our Galaxy if it were observed face-on.

While axis ratio is a good proxy for inclination, it is not a perfect substitute. For example,

Ref. [355] found that disk galaxies that are rounder (b/a ∼ 1) tend to be older and therefore

intrinsically redder. This means that small biases could result from treating the Milky Way

as having a face-on axis ratio. However, there is no straightforward way to avoid this, and

the effect should be small compared to other sources of error.

The Milky Way exhibits clear evidence that it contains a bar (e.g., [32, 325]). However,

very few Galaxy Zoo 2 galaxies have pbar = 1.0, and those galaxies with the highest bar

vote fractions are expected to have very strong bars, which may not match our Galaxy.

Therefore we assume that in Galaxy Zoo 2 the Milky Way would have a vote fraction above

the threshold for defining a bar, but not a value higher than the bulk of barred galaxies.

Ref. [134] and Ref. [381] find that pbar ≥ 0.3 serves as a reliable threshold between bar

presence and lack thereof. Galaxies with 0.3 ≤ pbar < 0.5 likely have weaker bars while

galaxies with pbar > 0.5 likely have stronger bars. Because the bar strength of the Milky

138



Way’s bar as it would be determined from outside our Galaxy is not well-constrained, we

treat the bar vote fraction for the Milky Way as uniformly distributed between pbar = 0.3

and pbar = 0.6. Choosing a larger mean vote fraction has small effect on our results, given

the large range of fractions considered (compared to the distribution of pbar in GZ2).

4.3 Gaussian Process Regression for Predicting Milky Way Photometry

In this subsection we describe how Gaussian process regression can be used to estimate

photometric properties for the Milky Way. First we explain the need to transition from Milky

Way analogue-based methods to GPR when we consider higher-dimensionality parameter

spaces in Section 4.3.1. In Section 4.3.2 we explain the basic concepts behind GPR, and in

Section 4.3.2.3 we highlight the fundamental differences between GPR and analogue galaxy

methods. Section 4.3.2.1 describes the kernel used to set up our GPR, which guides how

information is propagated from training objects to predictions. We briefly describe the

computational limitations of the GPR implementation we are using in Section 4.3.2.2. Lastly,

Section 4.3.2.4 investigates the contributions of various sources of uncertainty to our GPR

predictions.

4.3.1 Limitations of Using Analogue Galaxies

Using Milky Way analogues to predict the photometric properties of the Milky Way,

as was done in Ref. [219], has been a very useful methodology but also has limitations.

Of particular concern is the dramatic reduction in MWA sample size that occurs as the

number of parameters that must be matched increases; we would like to move from the two

parameters considered by Ref. [219] (M∗and SFR), to a total of six, adding b/a, B/T , Rd,

and pbar. Requiring that analogues be Milky Way-like in more ways should reduce the spread

in photometric properties of the resulting sample, potentially enabling stronger constraints.

There are only limited correlations between these six parameters (cf. Fig. 4.12 in 4.6.1),

so degeneracies between them are minimal: they each add new information. For instance,
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galaxies with stellar mass and star formation rate matching the Milky Way exhibit bulge-to-

total ratios ranging from zero to one: structural and star-formation history parameters carry

distinct information. However, while matching on additional galaxy parameters produces

a population of analogues that must each be closer in properties to the Milky Way, the

resulting MWA sample becomes much smaller (with as few as ∼ 5 analogues in the sample

that are within 3σ of the Milky Way in all of the properties considered, and none within 2σ

for every aspect).

The reduction in the size of analogue galaxy samples as more parameters are considered

is illustrated in Fig. 4.1. We plot the total number of galaxies that are within a given number

of σ for every Milky Way parameter considered (where σ represents the uncertainty in the

Milky Way value for a given property) as a function of the number of σ used as a threshold.

The lightest shade of blue denotes the number of analogues within a given threshold when

only considering stellar mass (M∗) and axis ratio (b/a). The consecutive additions indicated

in the legend represent the inclusion of the listed parameter in addition to all previous ones;

i.e., we consecutively incorporate star formation rate, disk scale length, bulge-to-total ratio,

and finally bar vote fraction. Hence, the darkest purple line shows the number of analogues

when using all six parameters (which we have used in order of decreasing constraining power

on Milky Way colors). The σ tolerances used for each parameter are the same Milky Way

measurement errors defined in Section 4.2.3, except for pbar. The significant uncertainty we

fiducially ascribe to bar vote fraction would cause the 5 parameter and 6 parameter lines to

be degenerate with one another; to avoid confusion we use σpbar = 0.05 instead of 0.15 when

constructing this plot.

The previous work by Ref. [219] would most closely correspond to the +SFR (3 param-

eters), medium blue line. If one were to restrict to objects within ±2σ of the Milky Way

value for all parameters employed, there would be a total of zero Milky Way analogue galax-

ies when using five or more parameters. In the six-dimensional space that we employ below,

there are only 200 galaxies that are within even ±6σ of the Milky Way value in all six prop-

erties; at that extreme, analogue samples would be selecting objects that are not very close

to the Milky Way at all. The lack of close analogues in high-dimensional parameter spaces

makes constraints on Milky Way properties from the MWA method weak in that limit, with
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Figure 4.1: Total number of galaxies within an allowed tolerance (Ngal < Nσ) as a function of the maximum
deviation away from the Galactic values allowed for each parameter, in units of the uncertainty in the Milky
Way value of that parameter, Nσ. The lightest shade of blue denotes galaxy counts when analogues are
selected using only stellar mass (M∗) and axis ratio (b/a). Consecutive parameter additions are cumulative.
Thus the darkest purple line incorporates all six parameters of stellar mass, axis ratio, star formation rate
(SFR), disk scale length (Rd), bulge-to-total ratio (B/T ), and bar vote fraction (pbar). The σ values used
for each parameters are defined in Section 4.2.3, except in the case of bar vote fraction, for which we use a
smaller error (σpbar

= 0.05 instead of 0.15) for illustrative purposes. Note that there are very few galaxies
even within large tolerance windows when using several parameters, e.g., only ∼ 10 MWAs within 3σ for 5
parameters simultaneously, and no objects that are close to the Milky Way in all aspects, since the MWA
method scales poorly with increased dimensionality.
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correspondingly large uncertainties.

4.3.2 Gaussian Process Regression: A Powerful Method for Interpolation and Prediction

To address the lack of Milky Way analogue galaxies in our multi-dimensional parameter

space, we have developed alternative methods for predicting Milky Way properties based

upon Gaussian process regression. In this sub-section we summarise the basic properties of

GPR relevant for this work. For in-depth discussion, we refer the reader to Ref. [302] and

Ref. [151].

Gaussian process regression (sometimes called kriging) is effectively a method of inter-

polation where information from training data is accounted for by a smooth and continuous

weighting function, called a “kernel” or covariance function. The joint probability distribu-

tion of the values of a Gaussian process at any finite set of points in parameter space will be a

multi-variate Gaussian (with a number of dimensions set by the number of points in the set);

the kernel specifies how the covariance between points depends upon their separation. The

kernel should be a smooth and continuous function, with a length scale (which governs how

far information propagates from a given point) that is optimized by training on the observed

data. We can then predict what the value and the uncertainty of the desired quantity would

be at any arbitrary point in space by applying this kernel to the training data. This is in

contrast to other supervised learning algorithms which typically make single-valued, “point”

predictions rather than predicting PDFs. It can be shown that GPR yields the minimum

variance out of any unbiased interpolation method that depends only linearly on the training

data; this makes GPR an optimal interpolation algorithm.

For our application of GPR, the galaxy sample described in Section 4.2 will serve as the

training set. The six parameters we defined in Section 4.2.2 (stellar mass, star formation rate,

etc.) serve as the features we will use for prediction. Our goal is to determine an optimised

mapping from these physical parameters to a single output photometric parameter in our

catalogue, e.g., the r-band absolute magnitude, 0Mr.

Once our training data is selected we then go into the model-selection phase of GPR,

during which the mean function and covariance function (or kernel) used for GPR are selected
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and tuned. We detail our selection of the covariance function in Section 4.3.2.1. Effectively,

the kernel determines how information from a given training point will be propagated to make

predictions at other points in parameter space. Hyper-parameters describing the kernel are

tuned at this step to maximise the log-marginal likelihood of the training data. After this

step we consider the model to be “fit”.

Finally we enter the inference phase of GPR. At any point in our six-dimensional param-

eter space, we can now determine the posterior probability distribution for the parameter

of interest by applying the kernel to the training data. When evaluated at a single point in

parameter space, a Gaussian process corresponds to a 1-D Gaussian; we thus obtain both

a predicted mean for the property of interest (e.g., 0Mr) and the standard deviation of the

Gaussian describing its uncertainty. In our example we would pass in a set of physical pa-

rameters measured for the Milky Way and obtain a predicted value for the 0Mr of the Milky

Way, as well as the uncertainty in that value.

In reality we do not only query the GPR at the mean measured Milky Way properties

presented in Section 4.2.3; rather, we perform random draws from the PDFs describing M∗,

SFR, b/a, B/T , Rd, and pbar in order to incorporate the uncertainties in the Milky Way’s

measured properties into our analysis. For log M∗, log SFR, B/T , and Rd we assume a

normal distribution. For b/a and pbar we draw from uniform distributions, as described in

Section 4.2.3.

We perform these random draws 1000 times (so that we have 1000 full sets of Milky Way

parameters). We then evaluate the GPR predictions for Milky Way photometric properties

at each of these points in parameter space. This gives us a prediction and error estimate

corresponding to each draw from the PDFs of Milky Way characteristics. Thus we end up

with 1,000 total predictions for each Milky Way photometric property. Our mean prediction

for the Milky Way in a given photometric band corresponds to the arithmetic mean of all

these predictions.

In this work all Gaussian Process regression calculations have been done with the Python

scikit-learn Gaussian Process module, sklearn.gaussian process [286]. For details on

the implementation of this module, refer to Ref. [286] and the scikit-learn documentation.

The following sub-sections provide more details on some aspects of our GPR methods
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and their advantages.

4.3.2.1 Choice of Kernel for GPR

In this work we use a combination of two kernels for Gaussian Process Regression: a

Radial Basis Function kernel and a white noise kernel. The Radial Basis Function (RBF)

kernel decreases proportionally to exp−γD2, where γ is a free parameter and D is the

Euclidean distance between points; this kernel will cause the covariance between the predicted

values from GPR at different points in parameter space to decrease as a Gaussian in distance

as the separation between those points increases.

However, there is also scatter in galaxy photometric properties even for objects measured

to have the same physical properties. In order to capture that, we also incorporate a white

noise kernel, which models the spread in values for the predicted property at a fixed point

in parameter space with normally distributed noise [302]. The net covariance used for the

Gaussian process regression is then the sum of the distance-dependent covariance from the

RBF kernel and the (diagonal) covariance matrix corresponding to the white noise kernel.

For a given set of training data, there is a nearly endless number of functions that

can fit the given data points, each one a realization of the Gaussian process. The kernel

creates a prior on the GP to constrain which functions from that set are most likely to

describe the parameter space. The posterior is then determined using the training data

values. Due to this probabilistic approach, the Gaussian process provides both predicted

values and uncertainties at any points within the parameter space. Uncertainties due to the

finite training sample size and its distribution in parameter space and those corresponding

to intrinsic variation between training objects that have the same physical parameters are

both captured. In regions of parameter space that are poorly constrained by the training

data, the prediction uncertainties are correspondingly larger.

The kernels we use in this work are available in the sklearn.gaussian process.kernels

base class. For the white noise kernel (WhiteKernel in scikit-learn) we initialize the noise

level to be 1; similarly, we initialize the length scale for the RBF kernel to be 1 for each

parameter. We opt to normalize the output photometric property to have mean zero and
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variance one across the training set, which helps to ensure that these initial guesses will have

the right order of magnitude. The noise level and length scales are then optimized and the

regression model is built via the sklearn.gaussian process.GaussianProcessRegressor

class. In our model we allow the optimizer to restart 10 times in order to find the kernel

parameters that maximize the likelihood without being trapped in a false maximum.

4.3.2.2 Optimizing Training Samples

The computation time and required memory for the scikit− learn implementation

of GPR scales as the number of data points used to train the model squared and cubed,

respectively. As a result, we find that the maximum training sample size we can use without

running out of memory on the computers used for this work is ∼ 6, 000; it is infeasible to

train from our entire catalog when using this GPR implementation.

We have therefore tested the effects of either restricting to objects with physical param-

eters within some tolerance of the MW fiducial values or randomly selecting a subset of

objects in order to reduce the training set size. We have focused on the root mean squared

error (RMSE) of predicted Milky Way photometry for the NUV , r, and J bands for this

optimization. We use five-fold cross-validation for all the tests; i.e., we always train with

80% of the data and test with 20%, but rotate what objects are used for training and testing

through the whole data set, and only retain the values for an object when it was in the test

set. This provides unbiased estimates of the RMSE for a training set 80% as large as the

one we actually have. We find that the combination that offered the lowest RMSE across

all bands while keeping computational time manageable was to randomly select 2,000 galax-

ies out of the set of objects that are within 12σ of the Milky Way for every parameters of

interest. We therefore adopted this training strategy for all results below.

4.3.2.3 Comparison to Results from Analogue Samples

GPR can provide more accurate predictions than many other techniques thanks to its

ability to leverage information from both nearby objects in the training set as well as from

more distant objects that characterize larger-scale trends. In our application, this allows the
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GPR to map from the Milky Way’s physical properties to its photometric properties much

more accurately than if we had only used the few objects that are similar to the Milky Way

in all respects (i.e., those which would be classified as MWAs) to inform the mapping.

Fig. 4.2 illustrates the fundamental difference between how properties are constrained

by the Milky Way analogue selection method versus Gaussian process regression. For sim-

plicity’s sake we perform this comparison based on only three parameters (stellar mass, star

formation rate, and axis ratio, the same ones utilized in Ref. [219]), as the analogue method

starts to break down when more parameters are included. We also do not correct for Ed-

dington bias in either measurement (q.v. 4.9) for simplicity. Objects included in a set of

MWAs based on 5,000 samples from the distribution of possible Milky Way properties via

methods equivalent to those from Ref. [219] are depicted by the orange points. The ana-

logues fall within a narrow range of stellar mass, limiting the set of objects that contribute

information. The orange star represents the mean prediction for the Milky Way’s 0(g − r)

color (0(g−r) = 0.682) resulting from this set (derived via the Hodges–Lehmann robust esti-

mator, Ref. [168]). The orange ellipse depicts the 1σ confidence region for 0(g− r) color and

stellar mass. In contrast to the Milky Way analogues, the sample of galaxies used to train

the GPR are shown by purple points. These cover a much broader range of parameter space

than the MWAs. Similarly, the prediction for the Milky Way’s 0(g − r) color using GPR is

shown by a purple star (with 0(g − r) = 0.668), along with the corresponding 1σ confidence

region which is shaded in purple. When we have many analogues, both techniques yield very

similar results, but unlike MWAs the GPR technique still provides strong constraints when

we consider many parameters at once.

4.3.2.4 Characterizing Sources of Uncertainty

We can quantify the contributions of different sources of uncertainty to our GPR esti-

mates by changing how we perform the regression. We illustrate our methods by evaluating

how the prediction from a six-parameter Gaussian process regression fit changes as a single

parameter varies. The left panel of Fig. 4.3 shows one of the physical parameters being

regressed from, star formation rate, on the x axis and the target value, 0(g− r) color, on the
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Figure 4.2: A comparison of galaxy samples and results from the Milky Way analogues method versus
Gaussian Process regression. For this analysis analogues were selected based upon stellar mass, star formation
rate, and axis ratio, and we use the same parameters to predict color via GPR. Orange points represent Milky
Way analogues selected by methods equivalent to Ref. [219], while purple points indicate the galaxies used
to train the Gaussian process regression. The predicted mean Milky Way 0(g− r) color is denoted by a star
in the corresponding color, and ellipses depict a 1σ joint confidence region for color and stellar mass. Both
methods yield a similar predicted 0(g−r) color for the Milky Way when we have large numbers of analogues.
In contrast to the small window that the Milky Way analogues lie in, the GPR utilizes a wider variety of
galaxies to capture larger-scale trends.
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y axis. We chose this pair as galaxy star formation rate is expected to correlate with galaxy

color well at fixed stellar mass.

First we isolate the scatter in color at fixed properties; this corresponds to the contri-

bution of the white noise kernel to the covariance function of the GPR. To determine the

magnitude of this scatter we query the GPR at the Milky Way’s fiducial physical proper-

ties to obtain a predicted PDF of 0(g − r) at this point in parameter space from which we

can draw samples. The standard deviation of the color of these samples corresponds to the

scatter encoded in the white noise kernel.

In the panel at the right of Fig. 4.3 we plot a histogram of 10,000 possible 0(g− r) colors

drawn from the GP’s predicted PDF, evaluating it at the fiducial value of the Milky Way’s

SFR. In the left panel the lavender star denotes the mean predicted 0(g − r) for the Milky

Way with this model, and the error bar corresponds to the standard deviation of the sample

values. This error bar therefore corresponds to the 1σ scatter in color at fixed properties.

The gray shaded area corresponds to the ±1σ band for the GPR prediction of color for

a range of log (SFR) values. By construction the half-width of the band must match the

standard deviation of samples from the PDF at fixed properties.

To instead isolate the contribution to errors resulting from the uncertainty in Milky

Way properties, we determine the distribution of mean predicted colors evaluated at varying

values of SFR drawn from the PDF for the Milky Way. We perform 1000 draws from the

fiducial MW log SFR PDF in total and evaluate the GPR mean predicted 0(g − r) for each.

In Fig. 4.3 the dark purple points in the left panel shows the resulting predictions, which all

fall on a continuous curve by construction. The panel to the right shows the histogram of this

set of predictions in purple. We quantify the scatter in color attributable to uncertainties

in the Milky Way’s measurements via the standard deviation of the 0(g − r) values at these

1,000 points.

To illustrate the full range of values obtained via GPR we plot ten samples from the

distribution of predictions for each of the thousand Milky Way SFR draws as faint blue

points in Fig. 4.3. These samples vary in color due to both the scatter in color at fixed

properties and due to the uncertainty in Milky Way properties.

We can extend these same ideas in 1-D to evaluate the relative contributions of uncer-

148



tainties in Milky Way properties and of the scatter in properties at fixed color to the error

in Milky Way 0(g− r) color, for any GPR model of interest. The key difference from Fig. 4.3

is that, in order to quantify the full scatter due to uncertainties in Milky Way properties,

we allow all the parameters to vary, not only SFR. We present the results of this analysis

for GPR models based on two to six physical parameters in Fig. 4.4. We use a stacked bar

plot to display the contribution to the variance from each error source, where the x-axis is

labeled according to the physical parameters used to train the GPR (where additions are all

cumulative, so entries further to the right incorporate more parameters). Since independent

errors will add in quadrature, the contribution to the net variance from each factor is propor-

tional to the height of its bar. The variance due to the scatter at fixed properties is shown

in a lighter violet shade, while that resulting from the uncertainty in Milky Way properties

is shown in dark purple. The scatter at fixed properties contributes to the majority of the

error in the Gaussian process regression for 0(g − r) color.

We have also evaluated the contribution to uncertainties resulting from the finite size

of the training sets used. This scatter is isolated by varying the randomly-selected training

sample 100 times. For each training sample we evaluate the mean predicted value from

GPR at the Milky Way’s fiducial physical parameters. The contribution to uncertainties

from the finite size of training samples is obtained by calculating the variance of the GPR

predictions across all of the training sets. These values are minute: the variances are an order

of magnitude smaller than error attributed to the scatter due to Milky Way measurements.

Thus any contribution to errors resulting from the finite training sample size is negligible.

We have performed the same error budget test for colors in the UV, near-IR, and mid-

IR. The results mirror those presented in Fig. 4.4: the errors are dominated by scatter at

fixed properties, followed by scatter from the Milky Way measurements. In all cases errors

attributable to finite training set size are negligible compared to other sources. While the

cumulative variance decreases for every parameter added when we predict colors, this is not

the case for absolute magnitudes. In that case, the cumulative variance decreases as we

add parameters until the sixth parameter, pbar, is incorporated. At that point, the variance

increases and the scatter due to finite training becomes more important. For this reason all

absolute magnitude predictions within this chapter are performed using only 5 parameters,
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excluding pbar.

While uncertainties in Milky Way characteristics will contribute to the random errors in

the derived photometric properties of our Galaxy, uncertainties in the physical parameters

of the training galaxies can cause systematic errors. If the density of objects in parameter

space varies quickly (with non-negligible second or higher derivatives), objects will more

often scatter from well-populated regions of parameter space into sparser regions than vice

versa. The resulting systematic shift in the measured distribution of parameters compared

to the underlying distribution with no scatter is known as Eddington bias.

In the context of this work, Eddington bias will lead to shifts in the color and luminosity

predicted for the Milky Way. We derive corrections for Eddington bias using methods similar

to those of Ref. [219]; we detail our procedures in 4.9. The estimated Eddington bias is

subtracted off from the GPR-predicted colors and luminosities for the Milky Way to produce

our final estimates for the Galaxy’s photometric properties and likewise the uncertainty on

the Eddington bias calculations is propagated into our final error estimates. In general

Eddington bias has small but nonzero effects on our results (< 1σ for almost all parameters,

as listed in 4.6).

In the following sections, the errors on GPR results presented include the contributions

from scatter at fixed properties, uncertainties in Milky Way properties, and uncertainty from

Eddington bias.

4.3.2.5 Summary of the GPR Algorithm for Determining Milky Way Photometric Prop-

erties

Here we summarize the steps taken to predict Milky Way photometric properties via

GPR. Our method proceeds as follows:

1. Construct the training sample by restricting to objects within 12σ of the Milky Way in

all physical parameters considered and then randomly down-sampling to 2,000 objects.

2. Adopt the combination of a Radial Basis Function (RBF) kernel and a white noise kernel

as the covariance function to be used for GPR.

3. Train the GPR using a single photometric property (normalized to have mean zero and
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Figure 4.3: A breakdown of uncertainty due to scatter at fixed properties and scatter due to Milky Way
measurement uncertainty. We plot results from a six parameter Gaussian process regression trained to
predict 0(g − r) color. For this example we vary only one of the input parameters, the star formation rate
(SFR). The light violet color corresponds to results when we use a fixed training set and evaluate the GPR at
fixed MW properties; this isolates the variation attributable to the white noise kernel, corresponding to the
scatter in color at fixed galaxy properties. The dark purple color corresponds to results when the training set
remains fixed but the SFR value is drawn randomly from the fiducial MW PDF, so that the contribution to
the color error attributable to the uncertainty in the star formation rate of the Milky Way can be evaluated
(the other five parameters used to train the GPR are held constant for simplicity for this example). In the
left panel the shaded region depicts the ±1σ range predicted by the GPR fit, plotted out to ±3σ of the
Milky Way’s SFR. The predicted 0(g − r) color and 1σ error for the Milky Way’s fiducial SFR (and hence
only including error at fixed properties) is shown by the star-shaped point and error bar in light purple. The
predicted 0(g − r) color from each of 5,000 draws from the SFR PDF is shown by the purple points, which
accounts for scatter due to the SFR measurement. These predictions perfectly trace the GPR fitand tend
to fall within ∼ 3σ of the Milky Way’s SFR, by construction. For reference we also show 10 samples from
the GPR-predicted PDF for each of the 5,000 random SFR values as faint blue points. The distribution of
these points reflects both the scatter of galaxy colors at fixed properties and the uncertainty in the MW
measurements. Histograms of the colors for each sample, whose distributions correspond to the scatter at
fixed properties and the scatter due to Milky Way SFR measurement uncertainties, are shown in the right
panel. It is evident that the spread in GPR predictions at fixed properties is much larger than the scatter
that results from uncertainties in the Milky Way’s SFR.
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Figure 4.4: Contributions to the variance in rest-frame 0(g−r) color for Gaussian process regression employing
varying sets of galaxy physical parameters. The x-axis shows the set of parameters used to predict color;
they increase cumulatively as we go from left to right, in order from the most constraining to the least
constraining parameter. The variance decreases monotonically as the number of parameters increases. In
every case the scatter in color at fixed properties dominates errors; uncertainties in the physical properties
of the Milky Way are sub-dominant. Contributions to uncertainties due to having a finite training set are
small enough to be considered negligible, enough so that they would not be visible on this plot if we included
them.
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variance one) as the output or “y” value and the physical galaxy parameters as the “x”

values. This training will tune the hyperparameters of the kernel.

4. Perform 1,000 random draws from the PDFs that describe the fiducial Milky Way’s prop-

erties. This will allow us to incorporate uncertainties in the Milky Way measurements

into our results.

5. Use GPR to apply the optimized kernel to the training set and predict the photometric

property of interest. For each randomly-drawn set of physical properties for the Milky

Way, we obtain the mean prediction, predicted variance, and a set of 1,000 values drawn

from the GPR-predicted PDF corresponding to that position in physical parameter space

(which we refer to as a set of samples).

6. The mean photometric prediction for the Milky Way is then calculated as the mean of the

set of GPR output means at the position of each MW draw. The error on the prediction

is calculated as the standard deviation of the values from the complete set of samples

generated, allowing us to incorporate both uncertainties associated with the scatter at

fixed properties and errors resulting from the uncertainties in MW properties.

The code used to construct the GPR is provided on our GP GitHub page for public use

here2. At this site we provide sample code for determining photometry estimates, addressing

systematics, and constructing an SED.

4.4 Results

Via GPR predictions for Milky Way photometric properties across the spectrum, we can

produce a comprehensive outside-in portrait of the Milky Way SED, allowing comparisons to

the colors and luminosities of other galaxies. In this section we apply a variety of diagnostics

from the literature, such as color-luminosity, color-mass, and color-color diagrams, in order

to assess how the Milky Way compares to the broader population. We also construct a

multi-wavelength SED for the Milky Way and compare our results to templates from the

literature.

2https://github.com/cfielder/GPR-for-Photometry
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4.4.1 The Milky Way Compared to the Broader Galaxy Population

As discussed in Section 4.3, we have predicted the Milky Way colors and luminosities

based upon the six parameters of stellar mass (M∗), star formation rate (SFR), axis ratio

(b/a), bulge-to-total ratio (B/T ), disk scale length (Rd), and bar vote fraction (pbar). In

the following color diagrams, all magnitudes and colors are presented as rest-frame AB

magnitudes (evaluating all passbands at redshift zero).

Our quantitative results are summarized in Table 4.2-Table 4.4. The values provided

correspond to the mean rest-frame predictions based upon the Gaussian process regression

derived via the methods presented in Section 4.3, and have been corrected for Eddington bias

as described in 4.9. colors and magnitudes are all calculated independently of one another.

For example, we use GPR to predict 0(g − r) galaxy color directly, as opposed to deriving

this value by subtracting the predicted 0Mr from the predicted 0Mg. For SDSS photometry,

our derived colors are based upon model magnitudes, as these yield the most accurate color

estimates for SDSS galaxies; however, the absolute magnitudes provided are based upon

cmodel magnitudes, as those most accurately represent the total brightness of an object.

Log-spaced density contours corresponding to the cross-matched galaxy sample of 29, 836

galaxies described in Section 4.2.1 and Section 4.2.2 are plotted in gray-scale on all of the

following color-based diagrams. We also overlay red and blue ellipses which denote the

rough locus of the red sequence and blue cloud, respectively, in each plot. These shadings

are intended to guide the eye and should not be interpreted in a quantitative manner. In a

corner of each plot we provide error bars that correspond to the mean uncertainties in each

galaxy property being plotted for the training set.

In each diagram we also show the locations of the 36 red spiral galaxies selected in

Ref. [244] that overlap with our cross-matched sample (out of 294 in the original catalog).

This sample of objects was selected based upon their color, presence of spiral features,

and shape/structural parameters from SDSS. They are required to have color 0(g − r) >

0.63− 0.02(0Mr + 20), overlapping the blue edge of the red sequence. They are also selected

to have a spiral likelihood pspiral ≥ 0.8 in the prescription of Ref. [12], and are required

to have visible arms in Galaxy Zoo 1 pCW > 0.8 or pACW > 0.8 [221] in order to ensure
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they have spiral morphology. These objects are also selected to be approximately face-on

(equivalent to an axis ratio requirement b/a > 0.63), as dust reddening is expected to have

a substantial impact on the apparent colors of spirals [245]. However, in that paper the axis

ratio values were calculated via r–band isophotal measurements, while ours are determined

from an exponential profile fit. Therefore we apply a profile-fit-based cut of b/a > 0.6 to this

sample to enable a more direct comparison to our face-on results for the Milky Way. Finally,

Ref. [244] requires that the red spiral sample contain galaxies with an SDSS fdeV ≤ 0.5, where

fdeV is defined as the weight of the de Vaucouleurs profile in the best-fit linear combination

with the exponential profile matched to the object’s image. This ensures that S0 galaxies do

not contaminate the sample, although they are already only a small percentage of the GZ1

sample.

The resulting red spiral sample is represented by red points in our plot. We overlay

the positions of these objects in each parameter space to help assess the consistency of the

inferred properties of the Milky Way with this population. Two objects whose 0(g−r) colors

in the cross-matched catalog differed by > 0.1 mag from the photometry used in Ref. [244]

due to changes in SDSS pipelines were excluded.

4.4.1.1 Optical colors

We first present results at optical wavelengths, as they allow us to compare directly to

previous work done with Milky Way analogues in Ref. [219]. We focus on the SDSS ugriz

bands (cf. Section 4.2.1.1). Fig. 4.5 presents predictions for Milky Way optical optical colors

as a function of stellar mass (M∗) in solar mass units.

The upper panel shows 0(u−r) color and the lower panel shows 0(g−r) color versus mass.

Both panels have overlaid dashed reference lines which can be used to distinguish general

regions of the diagrams. The top portion contains galaxies that are on the red sequence,

while the middle portion contains green valley galaxies, and the lower portion corresponds to

the blue cloud. The dashed lines bracketing the green valley in the upper panel correspond to

0(u−r) = −0.24+0.25M∗ and 0(u−r) = −0.75+0.25M∗ [319]. In the lower panel the plotted

lines correspond to 0(g− r) = 0.6 + 0.06(M∗− 10) and 0(g− r) = (0.6 + 0.06(M∗− 10)) + 0.1
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[251].

Previous results from Ref. [219] are plotted in orange. The star represents the mean

prediction and the ellipse encompasses the 1σ confidence region. We remind the reader that

these constraints were determined based only on stellar mass and star formation rate, along

with a cut on axis ratio. In comparison, the results of the 6-parameter Gaussian process

regression are plotted in purple. In red we plot the GPR result evaluated with an axis

ratio of b/a = 0.3 rather than 0.9, to illustrate the impact that the assumed inclination

has on the inferred SED. The GPR confidence regions are calculated from the covariance

between the the samples drawn from the regression predictions; the distribution of these

samples incorporates both uncertainties in Milky Way properties and scatter in colors at

fixed properties (cf. Section 4.3.2.4). In the lower right corner of each panel we show the

mean error in optical color and log stellar mass amongst the galaxies in our final sample.

Per-object uncertainties in the optical colors account for roughly half of the total scatter in

our GPR color prediction for a face-on Milky Way. In contrast, the average error in stellar

mass in the training sample does not affect the uncertainty in the stellar mass of the Milky

Way (it will, however, contribute to Eddington biases, as discussed in Section 4.8. Note that

Ref. [219] did not use the same stellar mass as we do, reflecting our updated estimate for the

mass of the Milky Way (cf. Section 4.2.3).

In both 0(u − r) and 0(g − r) our results are consistent with, though marginally redder

than, those reported in Ref. [219]. This is no surprise as we do not expect the Milky Way

to move far in optical color space when constraints tighten. Even when we make predictions

for a much more inclined Milky Way our results do not change dramatically in the optical,

with shifts well within the uncertainties in both our face-on results and those from Ref. [219],

although the color does become marginally redder as expected. In the optical the Milky Way

appears to lie in the “saddle” of the the galaxy-color bimodality, implying that the Milky

Way is redder than the average spiral galaxy in the local Universe in the optical bands. That

said, if one were to only consider spiral galaxies of similar mass to our Galaxy, the Milky

Way is not as unusually red as it would be if compared to lower-mass spiral galaxies.

The green valley (and by extension the galaxy color-bimodality) has been used as a basic

tool to distinguish transitional galaxies from the general galaxy population. Transitional
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Figure 4.5: Rest-frame optical color as a function of stellar mass. The gray-scale, log-spaced contours depict
the density of galaxies in our cross-matched sample. The dashed gray lines correspond to divisions of the
galaxy population used in the literature. We expect“red sequence”galaxies to be in the upper portion of each
plot, with the “blue cloud” corresponding to the bluest colors. The region between the two lines corresponds
to the “green valley” population. For 0(u − r) we use the divisions of Ref. [319] and in 0(g − r) we follow
Ref. [251] (cf. Section 4.4.1.1). The results and 1σ confidence region from Ref. [219] are marked in orange.
Our results from applying GPR to all six galaxy physical parameters considered are marked in purple; the 1σ
region is determined by the covariance between Gaussian process samples. For comparison, in lighter red we
show the six-parameter GPR result obtained when setting the axis ratio of the Milky Way to b/a = 0.3±0.1
rather than 0.9. The stellar masses differ between our prediction and Ref. [219] due to the updates to the
mass estimate for the Milky Way described in Section 4.2.3. Red points correspond to members of the red
spiral galaxy sample of Ref. [244]. In the lower right corner of each panel we depict error bars representative
of the mean uncertainties for galaxies in the comparison sample. Our results are consistent with Ref. [219]
and indicate that at optical wavelengths the Milky Way is redder than the typical star-forming spiral galaxy,
in addition to being more massive.
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galaxies have lower specific star formations rates (sSFR = SFR/M∗) than a star-forming

galaxy of the same mass; specific star formation rate can be used as a proxy for the evo-

lutionary state of a galaxy and its star forming history. Ref. [310] defines the transitional

region in sSFR space to be below the sSFR of massive Sbc galaxies, as these Sbc’s are the

earliest galaxy type expected to proceed with regular star formation free of quenching, but

above the sSFR at which galaxies appear to no longer be star forming in the UV. As de-

scribed in that work, this range corresponds to −11.8 < log (SFR/M∗) < −10.8. Note that

here and throughout this chapter log refers to the base 10 logarithm.

In Fig. 4.6 we plot the same rest-frame colors as in Fig. 4.5 but as a function of log specific

star formation rate. The vertical dashed lines denote the transitional region in log SFR/M∗,

as defined by Ref. [310]. The region with log sSFR above -10.8 corresponds to galaxies that

are actively forming stars while objects with log specific star formation rate below -11.8 are

quiescent; transitional objects are between them. In the lower panel the green horizontal

lines correspond to the green valley definition of Ref. [210] evaluated with the predicted

r band absolute magnitude for the Milky Way (0Mr = −20.65). Galaxies residing within

this range in 0(g − r) are expected to reside within the green valley. Galaxies above this

designation are expected to lie in or near the red sequence, and galaxies below are expected

to lie in or near the blue cloud.

Based on its specific star formation rate, the Milky Way must lie within the star-forming

population, rather than in the transitional range. While one might expect an object that

meets optical definitions of the green valley to have a transitional sSFR this is not necessarily

true, as galaxies of different evolutionary states can share the same optical color (see e.g.,

[81, 310]).

In 0(g − r) if we take the green valley to be 0.1 in width, as defined by Ref. [252],

the Galaxy would either fall within or be redder than the green valley, consistent with the

results shown in Fig. 4.5. Despite ongoing star formation, more massive spiral galaxies tend

to be redder in the optical than their lower-mass counterparts [244]. However, our estimated

properties for the Milky Way lie in the middle of the distributions of colors, masses, and

sSFRs of the red spiral sample from Ref. [244]; these objects are redder in the optical than

is typical for even the most massive spirals.
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Figure 4.6: Rest-frame optical color as a function of log specific star formation rate (log (SFR/M∗)) in units
of yr−1. The vertical dashed gray lines designate divisions of galaxy populations according to their specific
star formation rates, following the definitions of Ref. [310]: quiescent galaxies are at left, transitional objects
are in the middle, and star-forming objects are at right. The Milky Way lies on the star-forming side of
these divisions. The green horizontal lines in the bottom panel correspond to the green valley definition of
Ref. [210], evaluated at the r-band absolute magnitude of the Milky Way. According to the prescription by
Ref. [252] the green valley has a width of 0.1 in 0(g − r), leading to the limits shown here here. The Milky
Way mean value falls above this “green valley” region. While the optical color of the Milky Way is redder
than most star-forming galaxies in the local Universe, based on its specific star formation rate the Milky
Way would not be considered a transitional galaxy.
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As these plots exemplify, differentiating between galaxy populations based only on optical

photometry is challenging. For instance, in the lower panel in Fig. 4.6 we can see that

red sequence, transitional, and star-forming objects can all have colors of 0(g − r) ∼ 0.7.

In Fig. 4.5 the blue cloud becomes difficult to distinguish from the red sequence at high

masses as the most massive spirals have lower sSFRs and, therefore, redder colors. In the

following subsections we investigate constraints on the color of the Milky Way at UV and

IR wavelengths where galaxy populations may separate more clearly.

4.4.1.2 UV colors

We utilize far-ultraviolet (FUV) and near-ultraviolet (NUV) photometry from GALEX

provided in the GSWLC-M2 catalogue [241, 312, 311], as discussed in Section 4.2.1.2. Ther-

mal emission from massive stars with lifetimes < 100 Myr peaks at ultraviolet wavelengths,

while lower-mass, longer-lived stars play a larger role at optical wavelengths [310, 350]. Be-

cause UV radiation is produced by short-lived but high-luminosity stars it provides a sensitive

indicator of recent star formation. As a result, UV photometry can more clearly differentiate

star-forming from quiescent galaxies than optical measurements can.

Much as in Section 4.4.1.1, we can use our GPR results to place the Milky Way on UV-

based diagnostic diagrams from the literature. In Fig. 4.7 we plot 0(FUV−r) and 0(NUV−r)

UV-optical colors versus specific star formation rate. The contours and vertical reference lines

shown are defined in the same way as in Fig. 4.6. For 0(NUV − r) we show horizontal lines

corresponding to the “green valley” definition of Ref. [310], bounded at 4 < 0(NUV− r) < 5.

As before, our face-on MW prediction and the corresponding 1σ confidence region are plotted

in purple and the inclined MW prediction is plotted in red; unlike in the optical, there are

no previous estimates of Milky Way properties in this space that we could plot. Much as in

the optical, uncertainties in the UV photometry for individual objects account for roughly

half of the total scatter ascribed to our Milky Way UV predictions.

Compared to typical star-forming galaxies in the local Universe, the Milky Way has

redder than average UV colors and lower than average sSFR. The Milky Way appears to lie

on the blue side of the 0(NUV − r) green valley border, in contrast to its location in the
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Figure 4.7: As Fig. 4.6, but for UV-optical colors. The vertical reference lines come from Ref. [310] where
objects with a log sSFR > −10.8 are actively forming stars, objects with log sSFR < −11.8 are quiescent,
and objects in between are considered transitional. In 0(NUV− r) we also plot the bounds of the UV-optical
“green valley”as defined in Ref. [310]. Our predictions for the Milky Way show that it lies on the star forming
side of the transitional regions, and is most likely on the blue side of the UV-optical green valley border.
Our Galaxy lies in a similar region of these color spaces to the red spiral sample of Ref. [244].
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optical (cf. Fig. 4.5 and Fig. 4.6). This reflects the limited discriminating power of optical

color; the green valley is only 0.1 mag wide in 0(g− r), allowing objects to easily scatter over

its borders due to even small photometric errors or inclination effects, but it spans an entire

magnitude in 0(NUV − r). A more inclined Milky Way is predicted to be notably more red

in the UV than in the optical, so much so that it could be consistent with the UV green

valley in color.

As in the optical, our estimates for the Milky Way in the UV-sSFR plane lie in the

middle of the Ref. [244] red spiral population. Red spiral galaxies tend to lie outside of the

UV green valley as they have star formation rates comparable to typical blue spirals of the

same mass [81], and UV color is more sensitive to recent star formation rate than the optical

is.

4.4.1.3 Infrared/WISE colors

The infrared data for our galaxy sample originates from the 2MASS and WISE surveys,

as included in the GSWLC-M2 [312, 311] and DESI Legacy catalogs [96], respectively (cf.

Section 4.2.1). Similar to in the ultraviolet, the infrared brightness of a galaxy is sensitive

to recent star formation due to re-emission of UV photons absorbed by dust. The infrared

colors of galaxies also exhibit a color bi-modality, but star-forming galaxies exhibit redder

IR colors than the passively-evolving population, rather than bluer. Instead of the “green

valley,” the region between the star-forming and quiescent populations in the IR is commonly

referred to as the infrared transition zone (IRTZ), following Ref. [6].

In Fig. 4.8a and Fig. 4.8b we plot WISE color-color diagrams for the cross-matched

galaxy sample in addition to the GPR prediction for the Milky Way. The Milky Way color is

poorly constrained in some WISE bands due to the lower signal-to-noise of these detections.

If we compare our covariance ellipse in the 0(W1−W2) direction to the average errors in the

photometry (lower right error bar) the photometric errors account for a modest fraction of the

total uncertainties in our GPR prediction. However, in 0(W2−W3) and 0(W3−W4) errors

in the photometry for individual objects dominate the estimated uncertainties in the Milky

Way GPR predictions. The vertical lines in these plots designate the IRTZ from Ref. [6];
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objects with 0(W2−W3) > 0.565 in AB magnitudes correspond to late-type galaxies, those

with 0(W2−W3) < −1.035 are early-type galaxies, and in between lies the IRTZ. Magnitudes

were converted from Vega to AB magnitudes via the prescription of Ref. [176].

As before, we show predictions for the Milky Way if it were approximately face-on or

more steeply inclined by evaluating the GPR at different axis ratios. An inclined Milky

Way appears the be most notably different in the W3 band, which traces prominent dust

emission features, particularly those associated with polycyclic aromatic hydrocarbons [383].

It appears that an inclined spiral galaxy would be measured to be more IR bright compared

to a face-on counterpart matching it in all other ways; this may represent a systematic effect

related to data processing, since the dust emission would be expected to be optically thin.

We find similar results in Section 4.4.2.3.

In both diagrams the prediction for the Milky Way lies on the star-forming side of the

infrared transition zone. If we compare Fig. 4.8a to the classification scheme in Figure 12

of Ref. [383] (note that this requires converting our AB magnitudes to Vega magnitudes),

the Milky Way lies within the region of color space they label as typical for spiral galaxies,

as would be expected. Similarly, the classification scheme of Figure 11.b of Ref. [175] would

place the Milky Way in the intermediate disk region, consistent with the expectation for

a massive spiral galaxy. Intermediate disk objects are thought to be in transition towards

being quenched due to star formation rates that are decreasing with time; our estimate for

the Milky Way’s star formation rate is slightly below average for a spiral galaxy of the same

mass, consistent with this picture.

The infrared results mirror what we find from the UV: the Milky Way is still forming

enough stars to appear bright in the IR due to re-emission from dust. Galaxies are expected

to transition in the optical before they do in the infrared [6, 350]. If we follow the narrative of

Ref. [6] and Ref. [331], the Milky Way may be in the early transition phase from star-forming

to quiescent. It is brighter and redder in the optical compared to the typical star-forming

galaxy. In the UV the Milky Way is on the blue side of the green valley but near it. In the IR

the Milky Way’s inferred color is more typical for a star-forming galaxy, though uncertainties

are substantial. This would track with the expectation that a galaxy transitions in the optical

before it does in the IR.
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(a)

(b)

Figure 4.8: WISE color-color diagrams for both our parent sample (log density contours) and the predicted
results for the Milky Way from Gaussian process regression. Reference lines from Ref. [6] designate the
infrared transition zone (1.035 <0 (W2 − W3) < 0.565; IRTZ). The Milky Way appears to lie on the star
forming side of the IRTZ, much closer to the median colors of typical spiral galaxies, in contrast to the UV
and IR. Again our Galaxy lies in a similar region of these color spaces to the red spiral sample of Ref. [244].
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As before, the inferred colors of the Milky Way in the mid-IR are consistent with the

range of values for the Ref. [244] red spiral sample, though some WISE bands are not

well constraining due to the low signal-to-noise of the underlying measurements used for

prediction. Based on this, it remains plausible that the Milky Way is a part of the red spiral

population. We discuss how the Milky Way’s colors compare to other galaxy populations

further in Section 4.5.2.

4.4.2 The Multiwavelength Spectral Energy Distribution of the Milky Way

Thus far, we have focused on predictions for a single Milky Way color at a time. However,

we can assemble color information across all passbands to construct a spectral energy distri-

bution (SED) for the Galaxy. SEDs, which quantify the the total energy of emitted photons

as a function of wavelength or frequency, are valuable tools in the study of galaxies. Many

physical characteristics of galaxies can alter their SEDs - the age of their stellar population,

stellar abundances, gas and dust content, inter-stellar medium (ISM) chemistry, details of

star formation history, and the presence of an AGN can all leave distinct signposts that give

observers insight into the formation and evolution of a given galaxy (see e.g., [326]). Because

these effects each tend to alter the SED at specific portions of the spectral range, with broad

enough wavelength coverage and detailed enough spectral information one can disentangle

the dominant processes in a given galaxy.

Detailed modeling of the Milky Way’s SED will be the focus of follow-up work. In this

work, we will present a proof-of-concept for a GPR-constructed SED for the Milky Way

and provide an initial analysis of its properties. In the following sub-section we outline our

GPR-based methods for determining the SED of the Galaxy before presenting quantitative

results and assessing the effects the galaxy physical parameters used for prediction each has

on the SED.

4.4.2.1 Algorithm for Calculating the SED for the Milky Way

We work in frequency (ν) space instead of wavelength (λ) space when calculating the

SED of the Milky Way, as spectral energy distributions are most typically presented in units
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of energy per unit frequency. Our algorithm for calculating the SED proceeds as follows:

1. Estimate 0Mr and colors for the Milky Way –

Our SED is calculated in reference to the r-band. Therefore using the GPR (described

in Section 4.3) we predict the r-band AB absolute magnitude (0Mr) and all colors with

restframe r as the reference band; i.e., 0(x − r) where x spans from FUV to W4 (e.g.,

0(FUV − r), ...,0 (W4 − r)).

Eddington bias is subtracted off separately from our predicted colors and 0Mr before we

combine them. Similarly, the uncertainty in the Eddington bias is added in quadrature

to the uncertainty in the GP calculations (which incorporates both scatter at fixed prop-

erties and errors due to the Milky Way property uncertainties; cf. Section 4.3.2.4). For

details on the Eddington bias calculations refer to 4.9.

2. Calculate flux ratios –

We calculate the flux in each band fν,x relative to the flux in the r-band fν,r via the

relation

log

(
fν,x
fν,r

)
=

0(x− r)

−2.5
, (30)

where 0(x − r) is the Eddington bias-corrected color in the x band compared to the r

band, which we have predicted via GPR.

3. Calculate luminosity –

From the r-band absolute magnitude combined with the flux ratios it is straightforward

to convert to luminosity. We first calculate the r band luminosity as

log (Lν,r) =
(0Mr − 34.04)

−2.5

[
log

(
W

Hz

)]
, (31)

where 0Mr is the Eddington bias-corrected r-band absolute magnitude for the Milky

Way obtained via GPR. This formula is derived via the relation for converting flux to

AB magnitudes in combination with the area of a 10 pc radius sphere to convert flux to

luminosity. The luminosity in any other band can then be calculated via the relation

log (Lν,x) = log

(
fν,x
fν,r

)
+ log (Lν,r). (32)

166



We can then add log frequency (log ν) to obtain log νLν,x.

4. Calculate errors –

To convert uncertainties in magnitudes and colors to uncertainties in log νLν,x we make

use of propagation of errors. First to determine σlog νLν,r we calculate the partial derivative

of log νLν,r (which is Equation 31 + log ν) with respect to 0Mr. This yields

σlog νLν,r = 0.4σ0Mr
. (33)

Errors in the other bands are calculated in a similar manner, but they depend on both

the error in color and the error in 0Mr:

σlog νLν,x = 0.4 ×
√

σ2
0(x−r) + σ2

0Mr
. (34)

In the plots that follow we do not plot the contribution to errors from σ0Mr
as it is

fully covariant across all bands; as a result, when templates are normalized to match the

observed SED, any error in 0Mr would simply change the normalization. We do provide

its value for reference. Thus the error bars presented in the Milky Way SED plots are

equivalent to 0.4σ0(x−r).

The color predictions used to derive the luminosities used for our SED are provided

for reference in Table 4.2 and the value of 0Mr is provided in the absolute magnitude table

Table 4.4. We present our estimated luminosities and associated uncertainties, incorporating

Eddington bias corrections in each case, in Table 4.1.
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Passband λeff [µm] log νLν [log W] σlog νLν [log W]

FUV 0.155 35.53 0.20

NUV 0.2275 35.63 0.20

u 0.354 36.01 0.06

g 0.4750 36.44 0.02

r 0.622 36.62 0.09

i 0.763 36.66 0.01

z 0.905 36.70 0.02

J 1.25 36.67 0.04

H 1.65 36.54 0.05

Ks 2.15 36.39 0.06

W1 3.368 35.59 0.08

W2 4.618 35.58 0.10

W3 12.082 35.61 0.20

W4 22.194 35.49 0.30

Table 4.1: The passbands and corresponding power and uncertainties for the predicted SED of the Milky
Way, as plotted in Fig. 4.9. These values have already had Eddington bias subtracted out.
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4.4.2.2 Interpreting the SED of the Milky Way

In Fig. 4.9 we present our full predicted spectral energy distribution for the Milky Way,

along with a variety of empirical template galaxy spectra from the literature. We plot log νLν

(the power emitted per log interval in frequency) on the vertical axis, in units of log Watts.

The horizontal axis corresponds to restframe wavelength in units of µm; each photometric

band used is labeled at its effective wavelength along the top of the plot. The black open

circles represent the estimates for the Milky Way’s luminosity along with their associated

errors, calculated as described in Section 4.4.2.1. We also show the error bar corresponding

to the uncertainty in 0Mr near the bottom of the Fig. 4.9a for reference. The numerical

values for the Milky Way SED corresponding to the plotted points are provided in Table 4.1.

While detailed fitting of the Milky Way’s SED using physical models lies beyond the

scope of this chapter, we will compare to observed SEDs of individual galaxies and compos-

ite galaxy templates from the literature as a sanity check on the realism of our results. Using

photometry for extragalactic samples to constrain the SED of the Milky Way, and then com-

paring the results to observed galaxy photometry (albeit for different objects) is somewhat

circular. However, given that our analysis has treated every band completely independently,

there were no guarantees that we should get a sensible SED when combining GPR results

across the spectrum.

In Fig. 4.9a we compare our predicted Milky Way SED to templates from Ref. [21], which

are refinements to the templates from Ref. [74] and (for starburst galaxies) Ref. [196]. The

Ref. [74] templates were based upon averaging the observed SEDs of relatively blue galaxies

of a given morphological type. Given the broad range of observed SEDs for objects with

similar morphological classification, these should not be considered universally applicable for

all galaxies of a given type; however, we use the same labeling as Ref. [21] for consistency

with the literature.

In this and successive plots, we have normalized all templates to match the estimated

Milky Way SED in the r band. We normalize in an optical band as those bands have the

smallest errors in the predicted SED; which particular optical band we choose has minimal

effect on our comparisons. It is apparent that the Milky Way SED is generally consistent
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Figure 4.9: The predicted SED for the Milky Way from a six-parameter Gaussian process regression, depicted
by black open circles in all panels; the method of calculation is described in Section 4.4.2.1. (a) We compare
to empirical galaxy templates from Ref. [21] (re-calibrated from Ref. [74]) normalized to match the Milky
Way in the r-band. The Milky Way SED is consistent with the ’Sbc’ template from this set, which is labeled
as such because it was originally based on the average of the SEDs of two blue galaxies of morphological
type Sbc. (b) We compare the SED of the Milky Way to the most closely-matched templates from Ref. [50],
which are based on spectra and model fits to bright nearby galaxies. We show all templates whose χ2 values
in comparison to the Milky Way SED are below the 95% upper limit value of χ2 for 13 degrees of freedom;
again we normalize in the r-band. The two galaxies with the smallest χ2 (which fall below the 68% upper
limit) have their photometry plotted as round points, which are been offset in the wavelength direction for
clarity. Their accompanying spectra from the SED atlas are also plotted, without an offset. We also show
as fainter curves the SEDs for the remaining two galaxies with potentially matching SEDs, which have χ2

values below the 68% limit. Images of the four best-fitting galaxies are provided in Fig. 4.10. Portions of the
spectra from the SED atlas that are based on models are depicted using dotted lines, while those that are
directly based on observations are shown using solid lines. (c) The optical and near-IR portion of the Milky
Way SED, with Ref. [50] templates, as in (b). (d) The mid-IR portion of (b). The GPR method produces
a Milky Way SED that is consistent in shape with both composite SED templates and individual observed
SEDs.
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Figure 4.10: Postage stamp images corresponding to galaxies within the Ref. [50] SED atlas with χ2 values
below the 95% upper limit when compared to the estimated SED of the Milky Way. At the top of each image
we indicate the galaxy NGC number as well as the χ2 value for the comparison of its SED to the Galactic
one; we present them in order from smallest to largest χ2. At the bottom left of each tile is a letter marked
(A) or (B) which denote the source of the given image. (A) images are from Ref. [117] and (B) images are
from Ref. [322]. The border around each image matches the color used for its SED in Fig. 4.9b. It is evident
that galaxies that may have similar SEDs to the Milky Way exhibit a broad range of visual morphologies,
further emphasizing the lack of a unique mapping between morphology and galaxy SED.
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with the [21] “Sbc” galaxy template. The galaxies used to construct this template, M51

(NGC 5194) and NGC 2903 are undergoing moderate amounts of star formation, with log

specific star formation rates of -10.1 and -10.4 (versus -10.5 for the Milky Way) [264]. The

Milky Way is generally expected to have an SBbc morphological type (see, e.g., Ref. [28]

for a recent review on Milky Way structure, as well as Ref. [167, 191, 110]), though given

how it was constructed, we should not read too much into the agreement of our SED with

the Ref. [21] “Sbc” template in particular. It is clear, however, that the GPR method yields

results that resemble composite SED templates from the literature.

Ref. [21] provides only a sparse set of composite templates that may not match the SEDs

of an individual galaxy. Additionally, those templates do not span the full wavelength range

of the Milky Way SED we have produced. Thus we also compare to the set of 129 observed

galaxy spectral energy distributions from Ref. [50]. This SED atlas encompasses a variety

of bright galaxies in the very local Universe. Unlike the templates shown in Fig. 4.9a, these

correspond to SEDs of individual galaxies (not averages) with minimal modeling used to

interpolate between photometric and spectroscopic coverage.

The data tables from Ref. [50] provide extinction-corrected photometry as well as a

variety of summary values such as luminosity distance. Because the magnitudes are presented

in the AB system we can use the relation:

log fν =
mAB − 8.9

−2.5
, (35)

to calculated flux, where fν is flux in units of Jansky and mAB is the observed magnitude in

each band. We neglect k-corrections as these galaxies are very nearby (3.1 < DL < 249.2Mpc

at the most extreme), so the corrections are generally negligible. We then can use the flux-

luminosity relation Lν = 4πD2
Lfν to calculate the luminosity in each band. Via propagation

of errors the uncertainty in log νLν for these templates is equivalent to σlog νLν = 0.4σmAB
.

We take a few further steps before comparing the Ref. [50] SEDs to our Galaxy’s. First,

we have obtained the axis ratios (as a proxy for inclination) for 89 out of the 129 galaxies

in the Ref. [50] sample from the Siena Galaxy Atlas, which have been distributed as part of

DESI Legacy imaging surveys Data Release 9. All galaxies with b/a below 0.5 or unknown
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axis ratios were excluded from comparisons. Lower axis ratios should correspond to highly-

inclined galaxies for which reddening will strongly affect the SED [353, 234], making them

inappropriate comparisons to our face-on SED for the Milky Way. We then normalise the

observed SEDs to match the Galactic SED in the r-band, as was done for the Ref. [21]

templates before.

Finally, we calculate the χ2 difference between our predicted SED for the Milky Way

and each of the galaxy SEDs presented in the Ref. [50] atlas. We emphasize that no fitting

is performed in this comparison other than matching in the r band. We then calculate χ2

using log quantities, as that is the space in which we perform our predictions and for which

errors are (by construction) symmetric:

χ2 =
∑(

log νLatlas
ν − log νLMW

ν

σlog νLν

)2

, (36)

where σlog νLν combines in quadrature the total error in the MW SED for a given band, the

uncertainties in the Ref. [50] photometry, and log10 (1.1), which corresponds to a 10% error in

νLν . This extra error is added to account for systematic uncertainties in the photometry for

a given band relative to others; if this were not included, optical bands would dominate the

χ2 value due to their small nominal uncertainties. We calculate χ2 using the 14 bandpasses

in which we have measured the Milky Way’s predicted SED, which yields 13 total degrees of

freedom (one is lost due to the r-band normalization performed).

Fig. 4.9b over-plots the Ref. [50] SEDs for galaxies whose χ2 values fall within the 68%

upper limits for a χ2 distribution with 13 degrees of freedom (corresponding to χ2 = 14.8).

We also examine galaxies that fall below the 95% limit (with χ2 < 22.4), but exclude them

from plotting for brevity. Objects below the 68% upper limit (four in total) are clearly

consistent with the SED of the Milky Way, while those between the 68 and 95 percent limits

(comprising three objects) are in some tension with the SED of the Milky Way, but could

still be a match. While we calculate χ2 using the broadband photometry for each galaxy, we

also plot the full SED from Ref. [50] for each of these galaxies for reference.

In Fig. 4.9b the two galaxies with the smallest χ2 are labeled and plotted with the highest

opacity in teal and gold. For these two galaxies we also plot the observed photometry as

points offset in the wavelength direction so they are easier to compare to the Milky Way
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values. The higher χ2 objects are plotted with low opacity in pale blue. We also provide

more detailed plots of two separate ranges of the SEDs. The optical through near-IR regime

is depicted in Fig. 4.9c, while the near- to mid-IR SED is depicted in Fig. 4.9d. Portions

of the spectra that are based on observations are plotted with solid lines, while modeled

portions are plotted with dotted lines.

We also provide images for the four Ref. [50] atlas galaxies that fall below the 68% limit

in Fig. 4.10. At the top of each postage stamp image we list the galaxy NGC number, as

well as the χ2 value for comparing photometry for that galaxy to our Milky Way SED. The

tiles are presented in order from smallest to largest χ2 value. At the bottom left of each tile

is a letter marking (A) or (B) which refers to the source for each given image. (A) images are

from Ref. [117] and (B) images are from Ref. [322]. The borders that surround each image

match the color coding in Fig. 4.9b.

It is clear from this comparison that our GPR method produces results whose spectral

shape is comparable to observed galaxy SEDs. The small total number of SEDs within

the Ref. [50] atlas that are consistent with the Milky Way is no surprise; after cutting on

inclination we are reduced to only 70 objects, the majority of which are early-type galaxies,

leaving a limited number of examples to cover the full range of star-forming galaxies. We

emphasize that there remains a need for more careful investigation and modeling of the Milky

Way SED we have obtained; this will be the topic of follow-up work.

However, we will briefly comment on the galaxies from the Ref. [50] atlas whose SEDs

are most consistent with the Milky Way. NGC 4138 is an Hubble type SA(r)0 galaxy

which contains an AGN and a star-forming ring. Using estimates for mass from Ref. [182]

(2.92× 1010 M⊙) and Ref. [187] (6.23× 1010 M⊙) and the star formation rate estimates from

Ref. [380] (0.14 M⊙yr−1) and Ref. [49] (0.2 M⊙yr−1) yield a log sSFR of ∼ −11.3 to −11.5,

significantly smaller than the Milky Way value (−10.52). NGC 4138 has a 0(g − r) color of

0.73 ± 0.05 Ref. [50], matching the Milky Way value.

In contrast, NGC 3351/M95 is a galaxy of Hubble type SB(r)b, versus SBb or SBc for

the Galaxy; it contains a pseudo-bulge [314, 127, 50], much as the Milky Way is conjectured

to possess [28]. According to measurements provided by Ref. [215, 142] NGC 3351 has a log

specific star formation rate of −10.43 per year (SFR = 0.940 M⊙yr−1), which is comparable
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to the log sSFR of the Milky Way of −10.52. According to the measurements complied by

Ref. [50], NGC 3351 has a 0(g − r) color of 0.74 ± 0.05, very similar to that of the Milky

Way’s (0.73 ± 0.05, see Table 4.2). It matches the Milky Way SED equally well as NGC

4138 at most wavelengths, with the exception of the longest-wavelength W3 and W4 bands.

However, we note that the photometry for NGC 3351 from Ref. [83] does not show the strong

red slope in the mid-IR seen in the SED atlas spectrum. If the Ref. [83] measurements were

used in the mid-IR, the agreement with the Milky Way SED would be significantly better.

Two other galaxies in the atlas have SEDs for which the χ2 value when compared to the

Milky Way SED are below the 68% significance level. NGC 5055 is a galaxy of Hubble type

SAbc [50] with log sSFR of −10.53 as tabulated in Ref. [192]. NGC 3265 is of Hubble type

SA(rs)0 pec [8] with log sSFR of −9.12 [192]. The set of objects whose SEDs are consistent

with the Milky Way’s span a diverse range of visual morphologies.

4.4.2.3 Impact of Physical Parameters on the Estimated SED of the Milky Way

Thus far we present results based upon a set of fiducial values (with uncertainties) for

the Milky Way’s stellar mass, star formation rate, axis ratio, disk scale length, bulge-to-total

mass ratio, and bar presence (presented in Section 4.2.3). Because of the generality of the

Gaussian process regression fit, we can vary each of these parameters one at a time and test

its impact on the inferred SED.

In our previous analyses we randomly drew values from the distributions of Milky Way

properties and made predictions based on each of those draws, which were then combined,

as described in Section 4.3. This allowed us to incorporate the uncertainties in the Milky

Way’s physical properties into our results. In this subsection, however, we will neglect these

uncertainties in order to isolate the effect of changing the central values for each parameter.

We have performed a similar analysis to the one presented below by sampling from Milky

Way uncertainties as a cross-check; the results are very similar so we do not present them

here for brevity.

In this analysis we keep the values for the five Milky Way parameters not being studied at

their fiducial mean. We then choose a discrete set of values for the sixth parameter at which
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Figure 4.11: Isolating the contributions of each physical parameter to the SED. Each panels shows the
effect of varying one parameter while fixing the other five parameters to the fiducial Milky Way values (see
Section 4.2.3). We vary most parameters over a range of ±2σ from the Milky Way’s fiducial values. In the
case of axis ratio, we explore a wider range of values to convey better the impact of inclination on the observed
SED. The upper-left panel depicts the different SEDs that would be inferred for different galaxy axis ratios,
with the expected results that an inclined Milky Way would look much fainter than face-on. In the remainder
of the panels we depict the log of the predicted SED divided by the SED evaluated for fiducial Milky Way
parameters in order to make differences more clear; the plotted quantity is thus ∆(log (νLν)) = log ( νLν

νLMW
ν

).

The predicted SED for the Milky Way value is plotted with a dashed black line and open circles at the
passbands. On the color bars the Milky Way’s value is marked by a horizontal white line. In b/a the GP
captures the effects of dust reddening at higher inclinations. If the Milky Way were to have a higher SFR,
the SED would be brighter in both the UV and IR. If the Milky Way’s disk were more extended we would
observe an increased UV brightness and decreased mid-IR brightness. We caution the reader that predictions
for disk scale lengths more than 1σ below the Milky Way value may not be reliable. Relatively few galaxies
of the mass of Milky Way have sizes smaller than the Milky Way, causing the GPR to be poorly trained for
small Rd values [218]. Changes in the Milky Way’s B/T on the SED would be minimal. As we decrease the
intensity of the Milky Way’s bar it seems to have a minimal effect, with a slightly increased UV brightness.
In general these follow our expectations of galaxy evolution which we discuss further in Section 4.4.2.3.
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to evaluate the SED via GPR. In the case of star formation rate, bulge-to-total mass ratio,

and bar vote fraction we select 8 values that lie evenly spaced between ±2σ of the fiducial

mean value for the Milky Way (inclusive), in addition to evaluating at the nominal value.

For axis ratio we step through a wide range of possible galaxy axis ratios instead of focusing

around 0.9 in order to capture the full effects of inclination on the Galaxy SED. We have

excluded mass from this exercise, as changing mass would radically alter the normalization

of the predicted SED.

For each of the values that we step through for the given test parameter, the GPR is

evaluated as before. We apply a 12σ cutoff on the training sample for all parameters except

the one being varied. By focusing on one parameter at a time we can explore the impact

each has on the predicted SED for the Milky Way and can assess whether the GP is able to

capture the expected correlations between galaxy properties.

The results of this analysis are presented in Fig. 4.11. In the color bars for each panel the

lighter shades correspond to smaller values for the parameter being varied and darker shades

correspond to larger values. In all panels the fiducial value for the Milky Way is marked by

a horizontal white line on the color bar.

The upper left panel shows the GPR-predicted SED for each axis ratio value considered,

with axes similar to Fig. 4.9. The SED evaluated with b/a = 0.9, the fiducial axis ratio

value used for the Milky Way, is marked by open points. In this panel one can see the

effects of inclination reddening first hand, an effect that has been seen repeatedly in analyses

in spiral galaxies [324, 353, 234, 244]. The cross-section for dust extinction and scattering

generally increases with decreasing wavelength, causing reddening effects to be the strongest

at the shortest wavelengths. Thus we expect the SEDs of galaxies to appear redder the more

inclined they are [387]. The increased attenuation at higher inclinations for galaxies in the

training sample causes the GPR to predict a redder SED as the inclination increases (lower

b/a). We find a decreased brightness in the UV/optical and an increased brightness in the IR

as disks are viewed more edge-on, an effect also observed by SED modelers (see e.g., [281]).

In the remainder of the panels we plot SEDs divided by the SED evaluated at the fiducial

Milky Way values, as effects are more subtle and would be difficult to discern in an un-

normalized plot. We include a plot of this type based on varying axis ratio in the lower
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left panel, though we use a larger y-range than the other normalized plots due to the large

dynamic range spanned.

An SED which matches the prediction for the fiducial MW values exactly would fall

along the horizontal line at log (νLν)− log (νLMW
ν ) = 0. The photometric predictions for the

Milky Way nominal parameters hence correspond to the open circles along this line.

Star formation rate has the clearest effect on the SED, as seen in the top middle panel.

The amount of UV flux is a sensitive indicator of star formation as it is dominated by

hot, massive, short-lived stars. These stars contribute to the flux at optical and near-IR

wavelengths, but are subdominant there; but in the mid-IR the SED responds strongly to

star formation due to light from hot stars that is reprocessed by dust. The GPR predictions

reflect all of these phenomena.

The upper right panel depicts the effect of disk scale length on the predicted SED. We

note that the predictions become unstable at shorter scale lengths due to the small number

of Milky Way-mass galaxies with radius smaller than our Galaxy in the training samples (cf.

Ref. [218]), so results for disk scale lengths more than 1σ below the Milky Way value may

not be robust. Outside of that regime, it is clear that Milky Way-like galaxies with shorter

scale lengths exhibit significantly less flux in the UV than those with longer scale lengths

when M∗, SFR, etc. are all held fixed, along with smaller effects at optical-IR wavelengths.

A smaller disk, with other properties held fixed, could imply that the gas within the disk

is denser and dust columns are correspondingly greater. This would in turn cause the SED

to look fainter in the UV relative to the IR compared to if the disk were more extended. We

have tested the effect of varying b/a and Rd simultaneously and find that we can compensate

for a change in one with a change in the other almost perfectly. Given the long-standing

scenario that inclination effects on the SEDs of disc galaxies are driven by dust [234], it is

reasonable to hypothesize that the effects of varying Rd must relate to varying dust impact

as well.

The bottom middle panel shows the effect of varying only the bulge-to-total ratio. Over-

all, the impact on the SED is small. We see that if the Milky Way were to have a more

massive bulge, it would appear slightly fainter in the UV. This could reflect the fact that

bulges have older stellar populations than spiral disks; the effect may be subtle here as to
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first order the effect is captured by variation in specific star formation rate. Bulges are

also susceptible to dust reddening [347, 105], so a larger bulge may also suffer from greater

reddening effects at short wavelengths.

The lower right panel shows the variation in SEDs as we change the bar vote fraction.

As this quantity increases we see a decrease in UV brightness and an increase in mid-IR

brightness. In general we speculate that most effects caused by a bar may have been cap-

tured in the variation with other measured properties (particularly star formation rate). The

observed trend with pbar could cohere with a narrative of bar-induced star formation sup-

pression (see e.g., [346, 163]), which would affect the UV bands the most and lead to a galaxy

looking more red once the bar instability has caused the consumption of cold gas in the disk

[244]. However, this would not explain why galaxies with stronger bars are brighter in the

mid-IR while simultaneously being fainter in the UV. Alternatively, one could speculate that

processes associated with bars could modulate the properties of interstellar dust (e.g., by

affecting the ability of gas to cool and form molecular clouds); having more dust (at fixed

M∗, SFR, and inclination) should cause a reduction of flux in the UV and an increase in flux

in the mid-IR, as observed here.

4.4.2.4 Exploration of Other Sources of Physical Parameter Measurements

As described in Section 4.2.2.1 and Section 4.2.2.2, there exist multiple options for the

values used for the stellar mass, star formation rate, and bulge-to-total ratio for SDSS galax-

ies. In this subsection we discuss the impact on our results of using different measurements

of galaxy parameters or different methods of defining our training samples.

The GSWLC-M2 catalog [312, 311] includes estimates of stellar masses and star formation

rates computed based on the photometry within the catalog. While the M∗ values in the

GSWLC-M2 catalog closely match those from the MPA-JHU catalog [46] used for our main

results, the SFRs presented in the GSWLC-M2 catalog are far less bimodal than those

presented in the MPA-JHU catalog; a significant number of galaxies would be classified as

star-forming in GSWLC that would be considered quiescent based on the MPA-JHU catalog.

We have produced a Milky Way SED using the GSWLC-M2 stellar masses and star
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formation rates as features in place of the MPA-JHU values, but otherwise following the

same methods used to produce the results in Section 4.4.1 and Section 4.4.2. The impact on

predictions in the optical and IR is small. The effect is more notable in the UV, where the

Milky Way is predicted to be closer to the mean color of star-forming galaxies with the same

sSFR (corresponding to smaller values of 0(FUV − r) and 0(NUV − r) in Fig. 4.7). Even

so, the predicted UV colors are still within 0.5σ of those resulting from using MPA-JHU

M∗and SFRs. In addition to being brighter in the NUV and FUV, the predicted SED is also

marginally fainter in W3 and W4 compared to the results presented in Fig. 4.9, with shifts

that are again well below 1σ in each band.

Overall we find that using the stellar masses and star formation rates derived from the

GSWLC-M2 catalog instead of the MPA-JHU catalog has little effect on our predictions for

the Milky Way, and is subdominant to other sources of uncertainty.

There are also multiple options for which band to measure bulge-to-total ratios; the

Ref. [327] catalog contains bulge and disk decompositions performed both in the g and r

bands. For our main results we use the r-band value, B/Tr, but have also tested the impact

of instead using B/Tg on our results presented in Section 4.4.1 and Section 4.4.2.

Overall we find only very small effects on predicted colors from changing to B/Tg. All

results are well within a few hundredths of a magnitude of the previous values, except in the

case of 0(u−r). For that value, the predicted value for the Milky Way from the GPR trained

on B/Tg is larger than when we use B/Tr (corresponding to redder color; cf. Fig. 4.6),

though still within 0.5σ of our primary result. As a consequence, the predicted SED for the

Milky Way using B/Tg instead of B/Tr is almost identical to before.

As discussed in Section 4.2.2.3, using citizen science votes from Galaxy Zoo 2 requires

consideration of responses to previous questions that influence whether the question of in-

terest is even asked. If we wished to select a pure sample of barred galaxies, it would be

necessary to ensure not only that a high fraction of people who were asked whether a bar

is present voted in the affirmative, but also that a substantial total number of people voted

on each of the preceding questions in order to minimize errors in vote fractions (see, e.g.,

Ref. [381]). However, with GPR we may gain more information about trends that influence

photometric properties by including a broader set of objects, so we do not necessarily wish
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to exclude non-barred or non-spiral galaxies from the training sample. We explore here how

changing the treatment of GZ2 votes influences our GPR predictions.

We have tested what impact restricting the training set to only barred, face-on spirals

would have by testing how predicted colors for the Milky Way vary when using training

samples with a variety of different constraints: (1) a control sample without any restrictions

based on Galaxy Zoo 2 vote results; (2) a sample where if the number of votes on whether

or not a galaxy has a bar, Nbar, is less than ten we set pbar = 0; (3) a sample using the bar

selection cuts from Ref. [381] Table 3, column 3, rows 2 and 3 in addition to the vote count

thresholds mentioned in Section 4.2.2.3; or (4) a sample using the same cuts as Ref. [381]

except setting pbar = 0 when Nbar < 10, rather than rejecting objects with low Nbar from the

set entirely.

Applying all of the Ref. [381] cuts reduces the size of the training sample by roughly

an order of magnitude, degrading the ability of GPR to predict colors and increasing net

errors. Furthermore, requiring Nbar ≥ 10 not only shrinks the size of the sample but also

greatly biases the luminosity distribution of the training sample compared to a volume-

limited sample, which may result in biases in inferred photometry. We have explored how the

GPR-predicted Milky Way colors change for each of these four training sample definitions

(but otherwise using the methodologies described in Section 4.3). The results from (2)

compared to our fiducial case, (1), are nearly identical, so the particular values of pbar

assigned to objects with poorly-constrained vote counts cannot have had a large systematic

impact on our predicted Milky Way photometry. We also find that restricting to training

sample (3) or (4) yields much (≳ 2×) larger errors on all predictions. Results from (3)

and (4) are still within 1σ of those from (1) and (2), however. Therefore we conclude that

with GPR we get better predictions when we include more objects (including some with

noisier vote fractions) than when we instead restrict training to just the best-constrained

objects. Therefore we perform no GZ2-based cuts on the galaxy sample used for training,

and instead include objects spanning the full range of bar, face-on, and features vote fractions

in the training set.
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4.5 Summary and Conclusions

4.5.1 Summary

In this work we have set out to estimate a full SED for the Milky Way, spanning wave-

lengths from the UV to the IR. Our central motivation is twofold: (1) to improve our

understanding of how the Milky Way compares to the general galaxy population and by

doing so (2) guide the tuning of parameters in simulations in order to create more realistic

galaxies.

The previous work by Ref. [219] constrained the optical colors and luminosity of the

Milky Way using Milky Way analogue galaxies selected based on their stellar mass and star

formation rate, obtaining the best constraints on the Milky Way’s photometric properties

available previous to this work. Here, we have been able to reduce the uncertainties on these

constraints further by incorporating information from additional parameters such as disk

scale length and bulge-to-total ratio, that also connect to a galaxy’s evolutionary history

[61, 307], and have for the first time developed predictions for Milky Way photometry at

wavelengths beyond the optical.

We have shown that the Milky Way analogue method breaks down when we attempt to

match the Galaxy in many physical parameters; the number of Milky Way analogues rapidly

approaches zero in higher-dimensional spaces (cf. Fig. 4.1). Expanding to a wider wavelength

range requires information from data sets that do not cover the full SDSS footprint, making

the problem worse. We instead have predicted the photometric properties of the Milky

Way using Gaussian process regression, which provides an optimal means of interpolating

information from a limited training set. We have performed a series of tests throughout

this chapter that have demonstrated that GPR is able to produce realistic and reliable

photometric predictions.

We have compared predictions for the Milky Way to the broader local galaxy population

in color-mass, color-specific star formation rate, and color-color diagrams. As exemplified by

Fig. 4.5, we obtain similar results in the optical to those reported by Ref. [265] and Ref. [219],

though with reduced errors, further confirming the Milky Way has optical colors consistent
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with the green valley population. For the first time we have also predicted UV (Fig. 4.7)

and IR colors Fig. 4.8 for the Milky Way, which provide more sensitive diagnostics of the

evolutionary status of a galaxy. We find that in both these regimes the Milky Way appears

to lie on the star-forming side of the green valley.

In this work we have determined the luminosity and colors of the Milky Way for GALEX

FUV and NUV , SDSS ugriz, 2MASS JHKs, and WISE W1−W4 bands in an entirely self-

consistent way, giving us unprecedented constraints on its spectral energy distribution. We

have constructed the first multi-wavelength SED for the Milky Way. This SED has a shape

consistent with both composite galaxy templates (Fig. 4.9a) and observed SEDs of individual

galaxies (Fig. 4.9b). The GPR method produces a realistic SED with errors and captures

previously known galaxy property correlations, such as those between reddening in spiral

galaxies and viewing angle or between star-formation rate and UV and IR flux (Fig. 4.11).

High-resolution hydrodynamical simulators [157, 316, 376] no longer have to compare their

mocks of the Milky Way blindly to photometric constraints from broad galaxy populations

that span a wide range of properties. Rather, it should now be possible to tune the treatment

of star formation efficiency, threshold gas density for star formation, and dust properties to

produce galaxies which match the photometric properties of the Milky Way directly, while

simultaneously exploiting those properties that we can measure well from inside the Galaxy.

4.5.2 Discussion: The Milky Way as a Red Spiral

As previously suggested in a variety of works (e.g., Ref. [310], Ref. [319], and Ref. [219]),

definitions of the green valley that rely only on optical bands may lead to misleading conclu-

sions. The Milky Way has a specific star formation rate that is higher than the canonical val-

ues for green valley galaxies, log sSFR = −10.52 as compared to ∼ −11.8 < log sSFR < −10.8

for transitioning galaxies from Ref. [310], even though it has red optical colors for a star-

forming object. However, at UV and IR wavelengths the colors of the Milky Way more

clearly place it amongst the star-forming population. This combination of red optical colors

when viewed face-on with significant star formation evident at UV and IR wavelengths is

characteristic of the previously-identified population of red spiral galaxies.
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A population of red spiral galaxies in clusters was first identified by Ref. [356]. Since then,

these “passive spirals” have been identified at a range of redshifts and in multiple datasets.

As noted by to Ref. [81], for galaxies with a stellar mass above 1010M⊙ like the Milky Way

(M∗ = 5.48+1.18
−0.94 × 1010 M⊙), the blue cloud and red sequence overlap in their optical colors

(this is also consistent with findings by [310]). This makes optical photometry a poor choice

for constraining the star formation activity for galaxies like our own. However, these massive

objects still exhibit a distinct color bi-modality in the UV, as shown by Ref. [386, 310] and is

evident from comparing Fig. 4.6 and Fig. 4.7. In comparison to their lower-mass counterparts,

massive galaxies produced the great majority of their stars at earlier epochs [39]. This causes

the optical colors of massive galaxies to be dominated by relatively old stellar populations

as opposed to probing recent star formation activity [386, 71, 81]. Ref. [159] and Ref. [399]

provide evidence that this is the case for red spirals. Direct or re-radiated light from young

stars still dominates the red spiral SEDs at UV and IR wavelengths, however.

Reflecting that, Ref. [81] and Ref. [331] both find that red spiral galaxies tend to be UV

bright; this can be driven by a relatively small amount of total star formation. In order to

facilitate comparison of the Milky Way to the red spiral galaxy population, we have over-

plotted the red spirals from the Ref. [244] catalog (based on a Galaxy Zoo 2 and optical

color selection) that are also part of our cross-matched galaxy catalog on all color-mass,

color-sSFR, and color-color diagrams presented here. In each diagram the Milky Way falls

near the middle of the red spiral population.

Ref. [81] notes that 85−90% of objects in their red sample maintain SFRs of ∼ 1M⊙ yr−1;

Ref. [244] found that red spiral galaxies selected from Galaxy Zoo 2 typically had lower rates

of ongoing star formation than blue spirals of the same mass, but still non-negligible. For

comparison the Milky Way has a SFR of 1.65 ± 0.19 M⊙yr−1 [216], while the average star

formation rate of galaxies of approximately the same mass as the Milky Way (±0.3 in log

stellar mass) with B/T < 0.75 (to exclude ellipticals) within our cross-matched galaxy sample

is 1.69 M⊙yr−1; the Galaxy is very close to average in this respect.

Ref. [244] also finds that red spiral galaxies have a significantly higher bar fraction com-

pared to blue spirals of the same mass; 70% versus 27%. This matches with the clear evidence

that the Milky Way possesses a bar [32, 28, 325]. Ref. [244] notes that one possible evolu-
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tionary scenario for red spirals is bar-driven gas inflows. This removes gas from the outer

disk and funnels it into central star formation, which in turn causes the disk to appear more

and more red over time [246, 308, 68, 130].

Ref. [247] and Ref. [130] find that barred spirals tend to have redder colors than their

unbarred counterparts. It thus may be the case that the bar has played a role in the colors

that we observe for the Milky Way in this work. For example, bar quenching may play a

role in the development of red spirals, as Ref. [12] finds many high-stellar-mass red spirals

in the field and Ref. [331] notes that field red spirals most likely evolve primarily via secular

evolution due to the lack of nearby galaxies. In the case of the Milky Way, work by Ref. [163]

and Ref. [194] find that the bar may have played a substantial role in the star formation

history of the Milky Way (leading to a significant decrease in star formation 9-10 Gyr ago,

and thereby causing the observed pattern of chemical abundances in the disk). Although

the effect of bar vote fraction in Fig. 4.11 is small, it may be that the effects of a bar are

primarily captured by other parameters (e.g., SFR).

We note that Ref. [118] studied a population somewhat similar to red spirals, which

they labelled “red misfits”. Ref. [118] define this population as corresponding to objects with

log(sSFR) > −10.8 and restframe g − r > 0.67 (i.e., specific star formation rate measured

to be above the value for the saddle point in the bimodal distribution and color redder than

the saddle point in the color bimodality). Based on these divisions, the Milky Way almost

certainly meets this definition (which is less stringent than most red spiral classifications).

4.5.3 Outlook

As seen in Fig. 4.10, there is a significant diversity in the set of galaxies that have

SEDs consistent with the Milky Way, given the measurement uncertainties in both our

results and the Brown SED atlas. The goal of this chapter has been to construct the Milky

Way’s UV-to-IR SED to enable comparisons to samples of external galaxies and to improve

the tuning of simulations. However, in follow-up work we will fit the estimated SED of

the Milky Way using population synthesis models to obtain more detailed constraints on

how the star formation history, dust reddening properties, and metallicity of the Galaxy
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would be interpreted from outside (see e.g., [78]). This will require proper treatment of

covariances between different photometric bands; we will address this by employing multi-

output Gaussian process regression in this future work.

The longest-wavelength WISE W3 and W4 bands could have substantial discriminating

power on what SEDs are consistent with the Milky Way’s, if they only had smaller errors, as

is evident in Fig. 4.9. However, currently these bands are poorly measured compared to the

optical or near-IR; for most objects used in training the Milky Way SED, the signal-to-noise

ratio in these bands is below one. Given the low effects of dust extinction in these bands,

investigation of the flux ratio (or color) in these bands across the all-sky WISE imaging,

potentially combining modeling of smooth components of the Milky Way with mapping

of the contributions from dust, may provide an alternative method to constrain the color

of the Milky Way at the longest wavelengths. If luminosities in the W3 and W4 bands

can be measured relative to the luminosity in W2, long-wavelength measurements could

be effectively anchored well to the SED presented here; measuring such relative quantities

should be affected less by modeling uncertainties than absolute measurements would be.

The SED presented in the chapter (or future improved versions) can be used to iden-

tify multiwavelength Milky Way analogue galaxies by matching in unresolved photometric

properties. If we do not need to require detailed morphological measurements or citizen

science inspection of images it would greatly increase the size of the parent catalogs that

could be used to identify MWAs, which could be useful for a variety of follow-up studies such

as determining gas masses for the Milky Way or studying environments of Milky Way-like

galaxies.

The Milky Way appears to be atypical in its satellite population and mass assembly

history. For example, Ref. [119] finds that the assembly history of the Milky Way is only

reproduced in 0.65% of Milky Way-mass EAGLE galaxies. This assembly history should be

closely related to the local environment surrounding our Galaxy, and environment has been

found to play a key role in the formation and evolution of galaxies (e.g., [357, 289, 33]).

In future work we plan to explore how incorporating measures of galaxy environment

(e.g., measures of the local overdensity of galaxies) within a GPR model affect the predicted

SED of the Milky Way. The noisiness of environment measures [170] and the impact of SDSS

186



fiber collisions on Local Group-like systems (as typically only one galaxy out of two close

neighbors would be observed, causing analogues of a Milky Way-M31 pair to be missed)

may limit the information that may be gained from this, however. While we anticipate the

environment to have a small impact on the Galactic SED compared to the dominant effects of

stellar mass and star formation rate on galaxy colors [156], assessing the local environments

of the most Milky Way-like galaxies may allow us to explore and to what extent our Galaxy’s

environment has shaped its exhibited characteristics.

Gaussian process regression can be useful for a variety of studies beyond the photometric

estimates for the Milky Way considered here. For this reason the authors have provided their

analysis code on our project GitHub for full public access for adaption to any other project,

under a CC BY-SA 4.0 license.

4.6 Data Summary

4.6.1 Galaxy Properties

In this subsection we summarize the distribution of properties of the galaxy sample

used for training the GPR (which is described in Section 4.2). This sample consists of cross-

matches between the SDSS DR8 volume-limited sample reported in Ref. [219], the MPA-JHU

catalog of galaxy stellar masses and star formation rates [46], the Ref. [327] morphological

catalog, the Ref. [312, 311] GSWLC-M2 photometric catalog, the DESI Legacy imaging

survey DR8 [96], and the Galaxy Zoo 2 catalog [381, 160].

In Fig. 4.12 we present a corner plot for the distributions of the various galaxy physical

properties used to train the GPR: mass (M∗), star formation rate (SFR), axis ratio (b/a),

bulge-to-total ratio (B/T ), disk scale length (Rd), and bar vote fraction (pbar). In each

contour plot the fiducial value for the Milky Way (from Section 4.2.3) is marked by a black

star, while in the histograms the fiducial value is marked by a vertical dashed black line.

Overall we can conclude that covariances are fairly weak for most parameter pairs, with

the exceptions of the well-known M∗- Rd (or mass–size) relation, the bimodal distribution
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of objects in the M∗-SFR plane (corresponding to the red sequence/blue cloud division),

and weaker correlations between galaxy bulge-to-total ratio or bar vote fraction and star

formation rate.

4.6.2 Tabulated Photometric Predictions for the Milky Way

In this section we present the estimates of the colors and luminosities for the Milky Way

which we have obtained via Gaussian process regression. Table 4.2, Table 4.3, and Table 4.4

update Table 1 and 3 from in Ref. [219], and also incorporate results for the non-SDSS bands

used in this work. In addition, Table 4.2 tabulates the colors used to derive the luminosities

presented in Table 4.1, a necessary ingredient for our SED calculation.

In Table 4.4 all absolute magnitudes are calculated assuming a Hubble constant of H0 =

100hkm s−1 Mpc−1. Results for FUV, NUV, ugriz, JHKs, and W1−W4 are all presented

in the AB magnitude system, as in the body of the chapter. The Johnsons-Cousins UBV RI

values are provided in the Vega magnitude system. These were converted from the ugriz

measurements via the kcorrect v4.2 software on an object-by-object basis, as in Ref. [219].

We remind the reader that absolute magnitudes are computer with 5 physical parameters

instead of 6, due to the increased cumulative variance when pbar is incorporated in the GPR

for them. Therefore we do not include derivatives with respect to pbar for them, as bar vote

fraction was not used in the predictions of these quantities.

All tabulated results are presented for rest-frame z = 0 passbands. We note that each ta-

ble row is calculated independently from all others; for example, 0(FUV −r) is not calculated

from subtracting the predicted 0Mr from the predicted 0MFUV , but rather from a Gaussian

process regression that predicts 0(FUV −r) directly. This will in general yield smaller errors

for color calculations, as some of the errors in absolute magnitudes from different bands will

be covariant. We derive color predictions from model magnitudes while absolute magnitudes

are determined from cmodel magnitudes, again to minimize errors.

In these tables, the “Corrected Value” column corresponds to the predicted color or

absolute magnitude from the GPR, derived as the mean predicted value from 1, 000 draws

from the fiducial distributions of Milky Way physical properties (as described in Section 4.3),
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Figure 4.12: Distribution of the various galaxy physical properties used to predict the Milky Way SED, viewed
as both two-dimensional projections and one-dimensional histograms. In the contour plots the fiducial values
for the Milky Way are designated by a black star, while in the histograms the fiducial value is indicated
by a vertical black dashed line. The covariances are weak in almost all parameter combinations, except for
the well-known M∗- Rd (mass–size) relation, the bimodal distribution of galaxies in the M∗-SFR plane, and
weaker correlations of bulge-to-total ratio and bar vote fraction with star formation rate.
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after Eddington bias has been subtracted. The amount subtracted is tabulated for reference

in the “Bias Removed” column. The errors in the “Corrected Value” columns have had the

uncertainty in the Eddington bias added in quadrature and represent 1σ errors.

We also tabulate the derivatives of each photometric property with respect to every

galaxy physical property used for the prediction, allowing the photometry presented here to

be updated for values of Milky Way parameters that differ from the fiducial values used in

this work (or, conversely, to correct for a re-calibration of extragalactic values). The methods

applied are directly adapted from those presented in Section 5 of Ref. [219], but we provide

a brief summary here.

To calculate the derivatives we offset each of the Galaxy’s measured properties by ±0.1

multiplied by the fiducial error in that property (σ). We then evaluate the GPR using

these “offset” properties, rather than performing random draws from the Milky Way distri-

butions. For example, in order to calculate ∂(0Mr)/∂(log SFR) we would query the GPR

for predictions of the Milky Way values at log SFR − σSFR/10, the nominal log SFR, and

log SFR + σSFR/10, while all other parameters (stellar mass, disk scale length, etc.) are held

at the fiducial Milky Way values. This yields three total predictions, two with offset SFR

values and one at the nominal SFR. We then use these three values to calculate the deriva-

tive using the three-point Lagrangian interpolation method. Because these derivatives are

small, they are sensitive to the limited training sample size required for the scikit− learn

implementation of GPR (refer to Section 4.3.2.2 for details). In order to mitigate this effect

we repeat this process for ten different training sets, re-evaluating the GPR prediction at the

offset physical parameter and nominal value each time and calculating the derivative again.

The derivatives presented here for each parameter are then computed as the average of the

ten derivative values.

4.7 Testing the Accuracy of Our Gaussian Process Regression Methods

In order to have confidence in the results we obtain from the Gaussian process regression,

it is necessary to test the accuracy of the predicted photometry and error estimates. As in

190



Property Corrected Value Bias Removed ∂/∂(log M∗) ∂/∂(log SFR) ∂/∂(b/a) ∂/∂Rd ∂/∂(B/T ) ∂/∂pbar

0(FUV − r) 4.24 ± 0.59 0.16 ± 0.05 1.70 -1.03 -1.50 -0.15 0.51 0.14

0(NUV − r) 3.60 ± 0.38 0.16 ± 0.05 1.34 -0.85 -1.13 -0.12 0.76 0.09

0(u− r) 2.14 ± 0.14 0.06 ± 0.01 2.02 -0.96 -0.58 -0.29 -0.19 -0.05

0(g − r) 0.73 ± 0.04 0.05 ± 0.01 0.13 -0.13 -0.09 0.00 0.07 0.01

0(i− r) −0.33 ± 0.03 0.03 ± 0.00 -0.08 0.05 0.06 0.01 -0.03 0.00

0(z − r) −0.61 ± 0.06 0.04 ± 0.01 -0.16 0.09 0.14 0.01 -0.03 -0.02

0(J − r) −0.89 ± 0.11 0.02 ± 0.01 -0.24 0.05 0.16 0.03 0.03 -0.01

0(H − r) −1.11 ± 0.14 0.03 ± 0.01 -0.28 0.05 0.09 0.03 0.02 -0.03

0(Ks− r) −0.78 ± 0.15 0.02 ± 0.02 -0.29 0.05 0.20 0.03 0.03 -0.02

0(W1 − r) −0.17 ± 0.19 0.02 ± 0.01 -0.30 -0.12 0.44 0.09 -0.09 -0.03

0(W2 − r) 0.41 ± 0.26 0.00 ± 0.01 -0.25 -0.19 0.67 0.11 -0.11 -0.03

0(W3 − r) −0.30 ± 0.48 0.42 ± 0.04 0.40 -1.18 0.54 0.12 0.06 0.07

0(W4 − r) −1.01 ± 0.70 0.06 ± 0.03 1.08 -1.54 0.84 0.23 -0.19 -0.38

Table 4.2: X − r color estimates for each photometric band X used in this work; these values are used to
calculate the luminosities presented in Table 4.1, and have been determined by the methods described in
Section 4.3. The corrected value column refers to our final estimate after accounting for Eddington bias (cf.
Section 4.9). colors presented here are in the AB magnitude system.

Property Corrected Value Bias Removed ∂/∂(log M∗) ∂/∂(log SFR) ∂/∂(b/a) ∂/∂Rd ∂/∂(B/T ) ∂/∂pbar

0(u− g) 1.49 ± 0.11 0.12 ± 0.01 0.65 -0.47 -0.40 -0.15 -0.35 -0.02

0(r − i) 0.30 ± 0.03 0.01 ± 0.00 0.07 -0.04 -0.05 -0.01 0.02 0.00

0(i− z) 0.27 ± 0.03 0.01 ± 0.00 0.06 -0.03 -0.11 0.00 0.01 0.00

0(U − V ) 1.11 ± 0.12 0.13 ± 0.01 0.42 -0.41 -0.24 0.08 -0.25 0.02

0(U −B) 0.30 ± 0.08 0.12 ± 0.02 0.69 -0.28 -0.39 0.04 -0.68 0.09

0(B − V ) 0.80 ± 0.05 0.04 ± 0.01 0.17 -0.16 -0.08 -0.01 0.08 0.01

0(V −R) 0.54 ± 0.03 0.00 ± 0.00 0.06 -0.04 -0.06 0.00 0.03 0.01

0(R− I) 0.60 ± 0.04 0.01 ± 0.00 0.08 -0.06 -0.09 -0.01 0.02 0.01

0(W1 −W2) −0.57 ± 0.08 0.00 ± 0.01 0.03 0.10 -0.07 -0.03 0.01 0.02

0(W2 −W3) 0.91 ± 0.33 0.00 ± 0.02 -0.33 0.92 -0.08 -0.02 -0.38 -0.02

0(W3 −W4) 0.40 ± 0.49 0.02 ± 0.01 -0.65 0.09 0.25 -0.02 0.21 0.34

Table 4.3: Additional color estimates for the Milky Way, updating values from Table 1 and Table 3 of
Ref. [219] in addition to values for WISE colors (as plotted in Fig. 4.8). The SDSS ugriz and WISE W1−W4
values are presented in AB magnitudes. The Johnsons-Cousins UBV RI bands have been converted from
the ugriz measurements via kcorrect on an object-by-object basis, as in Ref. [219], and are presented in
the Vega magnitude system.
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Property Corrected Value Bias Removed ∂/∂(log M∗) ∂/∂(log SFR) ∂/∂(b/a) ∂/∂Rd ∂/∂(B/T )

0MFUV − 5logh −16.34 ± 0.66 0.37 ± 0.06 -0.04 -1.31 -1.84 -0.27 0.71

0MNUV − 5logh −17.12 ± 0.49 0.25 ± 0.06 -0.23 -1.12 -1.52 -0.26 0.48

0Mu − 5logh −18.53 ± 0.33 0.24 ± 0.03 -1.69 -1.14 -1.08 -0.35 0.36

0Mg − 5logh −19.91 ± 0.24 0.17 ± 0.02 -1.24 -0.52 -0.7 -0.15 -0.04

0Mr − 5logh −20.68 ± 0.53 0.23 ± 0.03 -1.29 -0.52 -0.52 -0.14 -0.17

0Mi − 5logh −20.95 ± 0.21 0.10 ± 0.02 -1.34 -0.41 -0.35 -0.16 0.01

0Mz − 5logh −21.34 ± 0.24 0.14 ± 0.03 -1.48 -0.38 -0.33 -0.14 0.13

0MU − 5logh −19.47 ± 0.39 0.24 ± 0.03 -0.48 -1.02 -1.11 -0.36 -0.59

0MB − 5logh −19.59 ± 0.25 0.16 ± 0.02 -1.15 -0.65 -0.58 -0.16 0.00

0MV − 5logh −20.48 ± 0.24 0.09 ± 0.02 -1.24 -0.50 -0.46 -0.18 -0.06

0MR − 5logh −20.91 ± 0.21 0.04 ± 0.02 -1.34 -0.46 -0.53 -0.18 -0.09

0MI − 5logh −21.65 ± 0.2 0.02 ± 0.02 -1.28 -0.42 -0.29 -0.13 0.06

0MJ − 5logh −21.65 ± 0.20 0.01 ± 0.02 -1.72 -0.40 -0.35 -0.12 -0.11

0MH − 5logh −21.75 ± 0.21 0.06 ± 0.02 -1.85 -0.39 -0.18 -0.10 -0.10

0MKs − 5logh −21.56 ± 0.20 0.07 ± 0.03 -1.87 -0.36 -0.15 -0.10 0.02

0MW1 − 5logh −21.80 ± 0.30 0.03 ± 0.01 -2.31 -0.3 -0.04 0.01 0.04

0MW2 − 5logh −21.19 ± 0.30 0.00 ± 0.01 -2.34 -0.32 0.01 0.03 0.02

0MW3 − 5logh −22.21 ± 0.48 0.03 ± 0.05 -1.73 -1.28 0.64 0.05 0.28

0MW4 − 5logh −22.39 ± 0.67 0.01 ± 0.04 -0.75 -1.34 0.49 0.10 -0.01

Table 4.4: Absolute magnitude estimates for the Milky Way, updating Table 1 and Table 3 of Ref. [219] with
additional absolute magnitude estimates beyond the optical. GALEX UV, SDSS ugriz, 2MASS J −Ks and
Wise W1−W4 magnitudes are all presented in the AB system. The Johnsons-Cousins UBV RI magnitudes
are presented in the Vega system.
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any supervised machine learning problem, we want to ensure that the given inputs map

correctly to the given outputs. In order to enable an unbiased evaluation of our model we

must split our data into separate training and test samples, as we do not want to evaluate

a model with information that was used to train it. To do this we use the scikit− learn

function sklearn.model selection.test train split. We use a split of 75% of our data

for training and 25% of the data for testing. We do not construct a separate validation set as

we do not have many hyper parameters to tune (the kernel defaults work well for our case,

as discussed in Section 4.3.2.1).

For each photometric property that we study, we train the GPR using only the physical

and photometric properties of the galaxies within the training sample. With that trained

model we then make predictions for a given photometric property using the testing sample’s

physical properties. This gives us predicted absolute magnitudes and colors for every galaxy

in our testing sample, which we can then compare to their actual observed values.

Fig. 4.13 depicts the results of this training and testing analysis for all of the bands

relevant to constructing the SED. We present histograms based on the differences between

the intrinsic value of a photometric property and the predicted value from the GPR, ∆, for

each galaxy in the testing sample. We then divide these ∆ values by the standard deviation

predicted by the GPR for that galaxy, σ to obtain the normalized residual, ∆
σ

. By focusing

on this quantity we can assess whether a bias in a given galaxy is present and how large

it is compared to the prediction uncertainties, and can additionally evaluate whether the

error estimates from the GPR are too small (too optimistic) or too large (too conservative)

compared to actual deviations.

In each histogram, we overlay a Gaussian with a mean of zero and a variance of one in

gray. One would expect the distribution of ∆
σ

to follow this distribution if there is no bias

in the predictions and the error values are all accurate. We also list the means and medians

of ∆
σ

for each band on the corresponding histogram. Some quantities exhibit a small skew,

but invariably the mean offsets are < 0.05σ and the median offsets are < 0.2σ, so any bias

is far subdominant to other sources of errors. In general the distribution of ∆
σ

is tighter than

the expected Gaussian, indicating that the σ estimates from GPR are slightly too large (i.e.,

overly conservative).
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In order to assess what may cause the small offsets, we have evaluated the histograms of

∆
σ

separately for face-on galaxies (which we take to be those with axis ratio b/a > 0.5) and

more inclined objects (b/a ≤ 0.5). We find that most of the slight skewing that is observable

in Fig. 4.13 is driven by the galaxies with higher inclinations. In this regime galaxy color

can change quickly and non-linearly with b/a, which can explain why the GPR struggles to

accurately predict colors for these galaxies.

Overall, we find that the GPR performs well at mapping from galaxy physical parameter

inputs to photometric properties, with biases that are much smaller than the predicted

uncertainties, and error estimates that err on the conservative side. We therefore can use

the method with confidence to make predictions for the photometric properties of the Milky

Way.

4.8 K-corrections for WISE Bands

4.8.1 Calculating the K-correction

When we observe extragalactic objects their spectrum is redshifted into the “observed”

reference frame. In order to convert from observed flux to rest-frame values, astronomers

utilize K-corrections, which account for the shifting of rest-frame light into different pass-

bands as redshift increases. While most of the photometry that we have used in this work

(as described in Section 4.2.1) has readily available K-corrections into rest-frame bands,

measurements in the WISE bands [383] do not.

Typically, K-corrections for a given band are calculated by calculating the effect on

observed colors of redshifting a theoretical or empirical spectral energy distribution (SED)

template; existing software packages such as kcorrect Ref. [31] have been designed to

perform this task. However, this approach is not feasible at wavelengths where SED templates

are not available or poorly constrained.

For this reason, in the WISE bands we adopt a new, almost purely empirical approach

which builds on the template-based methods presented in Ref. [16]. Our K-correction tech-
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Figure 4.13: Histograms depicting the difference between the actual color or absolute magnitude of galaxies
in an independent test sample from the value predicted by GPR, normalized by the predicted error resulting
from the GPR fit (∆σ ). For reference we have overlaid a Gaussian with a mean of zero and variance of one
in each panel; in the ideal case, the normalized residuals would follow this distribution. For reference we
also provide the means and medians of ∆

σ for each panel. The ∆
σ distribution for each property matches the

expectation well, with biases of < 0.2σ and RMS residuals slightly smaller than would be expected from the
predicted errors. Most of the minor skewing is attributed to galaxies with small axis ratios, for which color
changes quickly with inclination. Results for all quantities necessary for deriving the Milky Way SED are
shown here. We can conclude that the GPR is able to accurately map from galaxy physical properties to
colors and absolute magnitudes.
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niques are detailed in Chapter 5. While we do not go into detail here, we summarize the

strategy below.

We rely on the assumption that the K-correction needed for a given band is a simple

(polynomial) function of a galaxy’s rest-frame color determined in some pair of bands; i.e.,

that galaxy SEDs constitute a one-parameter family. This color can be determined in the

optical where more conventional K-correction methods are effective; we just need some way

to sort SEDs into a one-parameter family. The assumption that one parameter is sufficient

is not perfect, as there is some diversity in SEDs at fixed rest-frame color, but it is good to

first order as variations in dust, specific star formation rate, and metallicity all have coarsely

similar effects on the spectrum of a galaxy. Because we are focused on K corrections over

a limited redshift range near z = 0, getting things right to this level is sufficient to make

K-correction errors far subdominant to other sources of uncertainty in the WISE bands.

Our goal is to produce a function that takes as inputs the apparent magnitude in some

band, the redshift, and the rest-frame color in some pair of bands (which can be determined

by conventional K-correction methods, we will use 0(g−r) for this example), and returns the

rest-frame absolute magnitude in the desired band. We determine this function in two steps.

First, we determine polynomial relationships between the observed color in a pair of bands

(one of which serves as the anchor, and one of which is the desired target band) and redshift,

in bins of the rest-frame color in another (e.g., optical) pair of bands which is provided as

one of the inputs. This relationship is determined via a second order polynomial fit; i.e., we

parameterize the observed color (X − r)observed = f(z) = a0 + a1z + a2z
2. For each bin in

rest-frame color, we determine the fit coefficients separately. This is similar to the technique

applied in Ref. [50]; see, e.g., Fig. 2 of that work.

We then fit for the linear dependence of each of the fit coefficients on the mean rest-frame

color of a bin; i.e., we now treat the coefficients as functions a1(
0(g−r)) and a2(

0(g−r)). We

ignore the value of a0 as it corresponds to the predicted mean rest-frame color at z = 0; rather

than assuming this mean color is appropriate for all objects, we will instead only make small

adjustments to the observed photometry. To do this, we first fit for a1(
0(g−r)) and a2(

0(g−r))

via a linear regression algorithm which is robust to outliers, specifically the Huber regression

method implemented by scikit− learn (sklearn.linear model.HuberRegressor). We
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assume a linear dependence between each coefficient and the rest-frame reference color (0(g−

r) here).

The result of this process is a function that predicts the observed color in a new pair of

bands, as a function of the rest-frame color in some other pair of bands and the redshift.

At z = 0, the observed color and rest-frame color must agree, by definition. Hence, the

difference between the prediction for the observed color for an object at a given redshift,

and the prediction for the observed color at z = 0 (which corresponds to the value of

a0(
0(g − r), must be identical to the K-correction for the target color. If one subtracts off

the K-corrected reference band (which again can be an optical band where K-corrections

are already well-determined), one is left with the K-corrected unknown band on its own.

We apply this (small) correction to the observed photometry to map to the rest-frame

equivalent (i.e., we do not simply adopt the color in the new bands predicted from the rest-

frame color in known bands – which could entail large shifts from the observed photometry

for some objects – but rather we only make use of the small offset between observed and

rest-frame colors that was fit across the sample). To describe the process symbolically, we

use the rest-frame 0(g− r) color for an object to obtain the a1 and a2 values for the mapping

of color in some band X relative to r, X − r. Then we can obtain the rest-frame color in the

new band 0(X − r) = (X − r)observed − a1z − a2z
2. Finally, we can determine the rest-frame

absolute magnitude in band X via the expression 0MX =0 Mr +0 (X − r).

The result of this process is a simple but effective empirical method for obtaining K-

corrections for bands where SED templates are not well known, which can be applied so long

as K-corrections have already been determined in another set of better-characterized bands.

In this work, we use 0(g − r) color to determine the K-correction mappings as a function of

rest-frame color and redshift, and WISE-r colors as the target in each case. We have selected

these bands as g and r both have small photometric uncertainties and well-characterized K-

corrections. We will present more details of our procedures and tests of their effectiveness in

Ref. [123].

When evaluating the fits for the the K-corrections we exclude objects that have large

WISE photometric errors in the W1 and W2 channels. We do not place requirements on W3

or W4 errors as they are invariably large. Specifically, in W1 we perform the K-correction fits
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restricting to galaxies with errors σmW1
< 0.125, while in W2 we require errors σmW2

< 0.25.

Objects with larger errors are still included when performing our GPR analyses.

4.8.2 Photometric Offsets Between SDSS and DESI Legacy Survey Imaging

As described in Section 4.2.1.3, we rely on Legacy Survey catalogs for WISE photometry,

as the Tractor -based measurements have lower uncertainties than other public catalogs.

Because of the use of a matched object model across all passbands, colors in WISE bands

relative to optical bands will be determined with greater accuracy than total magnitudes

in a single band. However, because the filters and instruments used for the Legacy Surveys

have different transmission and response curves and photometry was performed with differing

analysis pipelines (BASS g and r and MOSAIC-3 z filters were used in the northern portion

of the Legacy Survey footprint, while in the south DECam was used for g, r, and z), the

rest-frame r band absolute magnitudes for a given object should differ between the SDSS

and Legacy data.

To calculate the WISE minus SDSS r band colors used to construct the Milky Way

SED, we therefore must take the WISE minus Legacy Survey r band color (which should be

measured self-consistently due to the use of a common model) and apply a small correction

to compensate for the differences between Legacy r and SDSS r. To do this we proceed as

follows:

1. Calculate absolute magnitudes for DESI Legacy bands – We calculate rest-frame abso-

lute magnitudes for all objects in the cross-matched catalog in the BASS and DECam r

and SDSS g and r bands, using the kcorrect [31] software. We base these calculations

only on the SDSS ugriz photometry for our galaxy sample.

2. Calculate the filter offsets in r – We now wish to determine the offsets between rest-

frame r absolute magnitude in Legacy Survey and SDSS filters, as a function of rest-frame

color: ∆r = Mr,BASS−Mr,SDSS for the North, or ∆r = Mr,DECam−Mr,SDSS for the South.

In Fig. 4.14 we plot ∆r as a function of SDSS 0(g− r) for our sample. Almost all objects

fall along a linear relationship between the r-band offset and color.

3. Fit for offsets as a function of 0(g− r) – We perform a robust least-squares fit using the
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scikit− learn [286] Huber regression function with 0(g−r) as the independent variable

and ∆r as the dependent variable. In Fig. 4.14 we plot these fits with black dashed lines.

Using the coefficients resulting from this fit, we can convert a rest-frame color referenced

to Legacy Survey r (e.g., 0(W1 − rDECam) to one referenced to SDSS r (0(W1 − rSDSS), for

this example) by evaluating the fit line at the rest-frame 0(g − r) color for a given object.

Our GPR predictions for WISE absolute magnitudes and WISE-r colors require use of this

correction; however, for WISE colors such as (W1-W2) the dependence on the offset cancels

out.

We apply this correction in tandem with calculating the K-corrected WISE colors, be-

fore training the Gaussian process regression. In the previous sub-section we expressed our

calculation of absolute magnitudes as 0MX =0 Mr +0 (X − r). Re-written to explicitly use

color relative to the SDSS r band, this expression becomes

0MX = 0MrSDSS
+ 0(X − rSDSS) =0 MrSDSS

+ (0MX −0 MrSDSS
). (37)

However, we have measured the X − rLegacy color, not X − rSDSS. In order to account for

the offset between Legacy and SDSS photometry we therefore require the correction derived

above:

0MX = 0MrSDSS
+ (0MX −0 MrLegacy

) + (0MrLegacy
−0 MrSDSS

), (38)

where (0MrLegacy
−0MrSDSS

) is the offset between rest-frame SDSS r and DESI Legacy Survey

r, or ∆r above. Applying this correction before performing further analysis allows us to

train the GPR based upon the combined North and South DESI Legacy catalogs rather

than training with each separately.

The magnitude of the offsets applied to the WISE photometric band estimates are small,

spanning from −0.14 to 0.05 in magnitude. Compared to the photometric errors of these

bands in Table 4.2 and Table 4.4, the errors on the photometry far outshine any error

attributed to the DESI Legacy - SDSS offset (especially for W3 and W4).
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Figure 4.14: Offsets between SDSS and DESI Legacy Survey rest-frame r-band absolute magnitude, plotted
as a function of SDSS rest-frame color, 0(g − r). The upper panel shows objects in the northern portion of
the Legacy Survey, which utilized the BASS filters and instrument in r. The lower panel shows objects in
the southern Legacy region, where DECam was used. The dashed black line depicts our linear fit for ∆r as a
function of 0(g− r). This fit follows the locus of objects well. With this fit we can obtain the offsets between
colors measured relative to Legacy Survey and SDSS photometry and subtract those offsets to construct
predicted WISE-based colors.
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4.9 Eddington Bias Corrections

Uncertainties in stellar mass, star formation rate, disc scale length, etc. can lead to biases

in the inferred photometric properties of the Milky Way. When the distribution of objects in

parameter space varies non-linearly, scatter from errors will preferentially move objects from

more sparsely populated regions to rarer locations compared to the opposite situation. This

can lead to an “Eddington” bias in inferred properties. For example, because of the rarity

of massive galaxies, a galaxy with a large stellar mass measurement is more likely to have

an intrinsic stellar mass that is smaller than the measured value than one that is larger, as

there is a much larger number of objects that can up-scatter compared to the number that

down-scatter. As a result, the stellar mass measurements used when training the Gaussian

process regression would then be biased high. Similar effects can occur with star formation

rate, disk scale length, etc.

We quantify this bias through an empirical approach based upon the methods presented

in Ref. [219]. We perturb the measured values of the galaxy sample used to train the GPR

with Gaussian noise sampled from the measured errors. Specifically this means we repeatedly

add to each galaxy’s measured M∗, SFR, B/T , etc. a value randomly drawn from a Gaussian

distribution centered at zero with a standard deviation of that object’s error in the given

quantity (e.g., σlogM∗), and determine the effects that adding errors to each quantity has. We

make the simplifying assumption that the bar vote fraction should not significantly contribute

to the Eddington bias (as uncertainties in that quantity are difficult to characterize, but also

should have limited effects on photometry).

To obtain predicted photometry for a given noise level, we run the GPR in a similar

manner to the methods used in Section 4.3, except we now train the regression on the

perturbed sample before predicting photometric quantities. We then predict the photometric

quantity of interest by evaluating each model assuming the fiducial value for each Milky Way

physical property (i.e., we use a fixed set of values for all evaluations rather than sampling

from the MW distributions). In our application, we perform this procedure on samples with

Gaussian noise applied to each physical property from one to four times successively.

In the original cross-matched training set, the values for each physical property have been
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perturbed from their true, intrinsic values due to measurement errors; we define this case as

corresponding to having noise applied n = 1 times. However, we wish to evaluate what the

measurement would be if there were no noise; i.e., for the case where n = 0. We therefore

wish to characterize the difference in the property of interest between the case where noise

has been applied n or n−1 times, and evaluate for n = 1 to determine the correction needed

to remove Eddington bias.

To determine this value we perform use a least squares quadratic fit to the set of dif-

ferences between GPR predictions as we add more noise: i.e., we fit a relation of the form

Pn − Pn−1 = An2 + Bn + C, where Pn is the prediction from GPR when noise has been

applied a total of n times and A, B, and C are coefficients of the fit. We use the resulting fit

to extrapolate to P1−P0, which should correspond to the effect of Eddington bias. The mean

Eddington bias at n = 1 is then quantified as the sum of the coefficients A+B +C from the

quadratic fit of the set of differences Pn − Pn−1. In practice, we perform the entire analysis

(adding random noise repeatedly, training the GPR, fitting for Pn − Pn−1, and adding the

coefficients) 25 times. The effect of Eddington bias for a given band is then calculated as

the mean of the set of 25 values. We then subtract this value from the GPR-predicted mean

for a given photometric property of the Milky Way to obtain a corrected value. The bias

removed in each of our predictions is documented in the third column of Table 4.2-Table 4.4.

The uncertainty in each of the 25 Eddington bias estimates (i.e., in the quadratic function

evaluated at the point n = 1) can be calculated via the square root of the sum of the

covariance matrix for the coefficients of the least-squares quadratic fit (as when n = 1 the

quadratic result is simply A + B + C). The uncertainty in the Eddington bias in each band

is therefore equivalent to σbias =

√∑n
i=1 σ

2
i

n
, where σi is the estimated uncertainty from the

i’th sample and here n = 25. As a check we have also computed errors via the standard

error on the mean Eddington bias and find comparable (though somewhat more optimistic)

results. The Eddington bias uncertainty is combined in quadrature with the uncertainty

estimated from sampling the GPR to produce the errors on the corrected values in the

tables in Section 4.6.
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5.0 Empirically Driven K-corrections At Low Redshift

This chapter is a draft with the intention to submit for peer-review and publication in the

Monthly Notices of the Royal Astronomical Society.

5.1 Introduction

Broad band luminosity measurements are critical for understanding galaxy evolution,

but require correcting for the redshifting of light across photometric band passes. The

redshifting of a galaxy spectra is equivalent to shifting the filter transmission curve through

which the galaxy is observed. Hence two galaxies with identical spectral energy distributions

(SEDs) but at different redshifts will usually have different fluxes in the same observed

band pass. This difference is referred to as the K -correction [173, 283]. K -corrections are

especially important for comparing populations of galaxies at varying redshift, as we want

equivalent measurements of the SEDs of these galaxies. K -corrections serve as a critical

equalizer in order to make practical comparisons among various galaxy surveys across many

redshift ranges. For objects where the entire spectrum has been observed, K -corrections

are straightforward to calculate, as the spectrum can be shifted to accommodate redshift

corrections. However, such results cannot always be trusted since spectra are typically

of central galactic regions, so the appropriate K -correction for integrated photometry will

likely differ. Considering we have yet to enter the era of easily available spatially resolved

spectroscopy in wide-field surveys, we must depend on photometric K -corrections.

To determine the intrinsic brightness of an object, or the brightness in the rest-frame,

we use a transformation that acts upon the observed-frame photometry. The K -correction

between a bandpass R used to observe a galaxy at redshift z and rest bandpass Q is defined

by [283, 169, 31]

MQ = mR −DM(z) −KQR(z) + 5 log h. (39)

Wherein MQ is the absolute magnitude, mR is the observed apparent magnitude, DM(z) is

203



the distance modulus, KQR(z) is the K -correction between band R and band Q, and h is the

Hubble constant. The distance modulus is defined as DM(z) = 5 log ( dL
10pc

) where dL is the

luminosity distance. For brevity we do not include the full and rigorous formalism for the

generalized definition of the K -correction, which is presented in Ref. [169] (see Eq. 8 and

10).

The key ingredients for determining K -corrections for a given galaxy are (1) some knowl-

edge of the spectrum of the object, which characterizes the flux emitted by the galaxy across

a large wavelength range and (2) the filter curves of the instrument used to make the obser-

vations, because the transmission function of each filter affects the collected photons slightly

differently. Oftentimes we do not have much information on the full spectrum of the objects

we observe, instead we merely have a handful of photometric points that sample various

parts of the spectrum. This requires us to either use analytical approximations to quantify

how the observed galaxy’s color changed with redshift, or to utilize templates to reconstruct

the observed galaxy’s SED.

Historically, template matching has been the oft used approach. There are two fami-

lies of SED templates that are used in this matching to determine K -corrections empirical

templates derived from a representative set of real galaxy spectra (e.g., Ref. [74, 196, 50]),

and synthetic templates derived from theoretical stellar population synthesis (SPS) models

[51, 239]. SPS models characterize star formation and evolution within a galaxy to construct

a realistic SED. Therefore theoretical templates, when used in combination with dust atten-

uation models, have the benefit of providing other physical quantities like estimates of stellar

mass and star formation rate in addition to K-corrected photometry.

There are a number of ways through which galaxy K -corrections have been calculated in

the literature. We briefly review K-correction methods here, but this list is not exhaustive.

We then discuss the caveats to using these methods.

Early work modeled K -corrections as a simple function of redshift and galaxy morpho-

logical type, such as in the work by Ref. [74]. The authors used empirical SED templates

for four morphological galaxy types (E, Sbc, Scd and Irr galaxies) to obtain K -corrections

using the best data available at the time. However, this method is somewhat oversimplified

based on our current understanding of galaxy evolution, as galaxies that may share the same
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morphology can have a substantially diverse sets of spectral properties [354].

It is more common to obtain K -corrections by modeling galaxy SEDs as a function of

wavelength. Using the observed colors of the galaxy in question, it is matched in some way

(typically a fit) to a template SED that has been shifted to the observed galaxy’s redshift.

Then the template is used to characterize the SED of the source galaxy. Maximum like-

lihood fitting of photometry to theoretical SPS based SED models has been often utilized

to calculate K -corrections such as in work by e.g., Ref. [20] and Ref. [48]. As mentioned

above, SPS models make reasonable approximations of real galaxy SEDs. However, while

this method works well for red galaxies, blue galaxies are not as tightly constrained due to

effects of star formation, dust attenuation, and nebular emission lines which have degen-

erate effects on galaxy SEDs. Even worse, SPS models alone may struggle to capture the

full diversity of galaxy SEDs. Ref. [30] introduced K-correction calculations derived from

matching photometric observations to templates constructed from combinations of Ref. [51]

SPS models, dust attenuation models, and nebular emission lines, which resulted in more

realistic SEDs. This was the first instance of using multiple components to construct galaxy

SEDs, which has served as the backbone of the commonly used Kcorrect v4.3 software

of Ref. [31]. Kcorrect has become the industry standard for determining K -corrections

and will serve as a comparison for our own results.

More recently, K -corrections have been estimated with analytical functions of redshift,

which are parameterized with a property that characterizes the galaxy. Ref. [382] fit second

order polynomials to the K -corrections as a function of rest-frame color with the Ref. [196]

empirical templates. Because their work was limited to three bands (BRI in DEEP2, the

Deep Evolutionary Exploratory Probe; [84]), the authors were unable to use the fitting

methods previously discussed such as that by Ref. [30] – three bands are not enough to

constrain the possible SED templates used for deriving K -corrections owing to the lack

of DEEP2 filter availability in Kcorrect at the time. Ref. [70] empirically showed that

K -corrections can be approximated as solely a function of redshift and a single color, using

190,275 observed galaxies spanning the redshift range 0.03 < z < 0.6. The authors derived

K -corrections defined by polynomials that are fifth order in observed color (they used (g −

r)) and third order in redshift for nine filters (ugrizY JHK), using both Kcorrect and
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PEGASE.2 [126] models (a type of stellar evolution model used in constructing synthetic

SEDs). Work by Ref. [284] takes a similar approach, deriving a linear relationship between

the K -correction, (g− r) color, and redshift for a number of galaxies of SDSS DR7 that were

processed by Kcorrect v4.3. Ref. [16] did a more in-depth study on which observed colors

best characterise each optical band (ugriz), deriving second order polynomials in color from

the 129 empirical SEDs from the Ref. [50] Atlas.

While K -corrections are derived reasonably well with templates there are also many

limitations to using these templates. First, there are a limited number of template SEDs.

As a result, small template numbers or limited template components may not span the full

range of possible colors exhibited by a diverse galaxy sample. This is especially concerning for

galaxies that have less commonplace SEDs which could result in inaccurate K -corrections due

to template mismatches. Empirical templates may provide a more representative SED sample

than theoretical templates. However, many of these templates only cover ultraviolet and

optical wavelengths, lacking infrared coverage. Additionally, many of the older commonly

used empirical templates such as those from Ref. [74] and Ref. [196] are active galactic nuclei

(AGN) spectra, which can lead to systematic errors due to the AGN outshining much of

the galaxy with strong emission lines and blue continua. A number of these older empirical

templates were also based on the centers of bright galaxies.Ref. [382] found that the use

of these templates (a portion of the [196] templates) resulted in calculations too red by

0.08 magnitudes. Empirical templates are also still limited by the galaxies for which robust

observations have been obtained, meaning some galaxy families do not have well observed

SEDs. Theoretical SEDs may also cover a limited wavelength range for the same reason.

Methods that employ model based templates are also limited by the quality of the models

used.

Regardless of which family of template is used, depending on templates also limits our

ability to determine K -corrections at wavelengths where the templates are not available,

poorly constrained, or models are lacking. For example, the WISE bands probe the inter-

stellar dust content of galaxies due to their sensitivity to polycyclic aromatic hydrocarbon

emission features, the small-grain dust continuum, and the thermal emission tail of larger

dust grains [384], which makes them an important component of a galaxy’s SED and char-
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acteristics. There have been few options for determining WISE K -corrections other than

with Kcorrect. Additionally, while Kcorrect can calculate K -corrections for the WISE

photometric bands, these fits do not employ modelling for dust emission features, which are

increasingly important for bands W2 through W4. The lack of this feature can result in

incorrect K -corrections.

In this work we have developed a data driven approach to determining K -corrections

that significantly limits the extent to which templates are relied upon and circumvents the

need for templates in less constrained filters. Conceptually our method is somewhat similar

to that of Ref. [382], Ref. [284] and Ref. [50]. We still utilize the approximation that the

K -correction needed for a given band is a simple (polynomial) function of a galaxy’s redshift

and a quantity that characterizes the galaxy. However, in this work we use rest-frame color

determined in some other pair of bands. This rest-frame color is determined from templates

where SEDs are exceptionally well constrained, such as the optical rest-frame (g − r) band.

Operating under the assumption that at low redshift galaxy SEDs fall into a single parameter

family, we show that with a single color we can anchor the SED and interpolate all other

K-corrected colors. With this approach, as long as one has access to a rest-frame color that

has been K-corrected already, one can determine rest-frame colors for any other bands. We

caution that this assumption generally only applies at low redshift (z < 1) and becomes

much more complex at higher redshift, where the assumption that SEDs fall into a single

parameter family [77, 231, 230] breaks down. We presented a cursory version of this approach

in Ref. [125] in order to determine our rest-frame WISE photometry and expand upon the

method in this work.

This chapter is organized as follows. In Section 5.2.1, we briefly described the data used in

our calculations: spanning from GALEX, SDSS, 2MASS, and WISE detections. Section 5.2.3

details our method for determining K -corrections. In Section 5.3 we compare our computed

rest-frame colors from our K -corrections to literature values. Last, we summarize and discuss

our findings in Section 5.4.

All magnitudes and colors are presented in the AB system in this work. Absolute magni-

tudes are determined using a Hubble constant H0 = 100 km s−1Mpc−1, so they are equivalent

to My−5 log h (where My is the y-band absolute magnitude and h = H0/100) for other values
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of h. Photometry is presented from adopting the notation used in Ref. [31] and Ref. [219],

where an absolute magnitude of passband y at redshift z is denoted as zMy.

5.2 Methods

5.2.1 Observational Data

The data used in this study originates from the GALEX-SDSS-WISE-Legacy Catalogue

2 (GSWLC-2) of Ref. [312, 311], within the redshift range of 0.01 < z < 0.09. This data

spans across the filter range of the GALEX ultraviolet survey FUV/NUV bands [241], the

SDSS optical ugriz bands (DR10; [3]), the 2MASS near-infrared JHKs bands [330], and

the WISE mid-infrared W1/W2/W3/W4 bands [384]. Specifically, the WISE data is from

the “unWISE” reduction of Ref. [211] which is more appropriate for galaxies than the official

pipeline. We use photometric data from the medium-deep GSWLC catalog, where the depth

pertains to the UV photometry from GALEX, which unlike other bands is generally of much

less uniform depth - going from shallow to very deep. While using the medium-deep instead

of the shallow catalog decreases the number of galaxies at our disposal by roughly one half,

the increased signal-to-noise in the UV imagining is a worthwhile trade-off.

For objects within the GSWLC-M2 catalog we have both the observed photometry (and

associated errors) in addition to rest-frame values from the UV to the near IR (exclud-

ing WISE). These rest-frame values were obtained via fits to SED models, as described in

Ref. [312], which we summarize in Section 5.2.2. For convenience we convert the observed

flux (fν) in Jy to AB magnitudes using the relation mAB = −2.5 log10 (fν)+8.90. As a result

all magnitudes presented in this work are in the AB system.

In order to keep our galaxy sample at a maximum we split our data into four different

catalogs: (1) a catalogs consisting of the SDSS ugriz optical bands, (2) a catalog consisting of

the GALEX FUV/NUV bands and the ugriz optical bands which we call UV+optical, (3) a

catalog consisting of the 2MASS J/H/Ks near-IR bands and the ugriz optical bands which

we call near-IR+optical, and (4) a catalog consisting of the WISE W1/W2/W3/W4 mid-IR
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bands, the J/H/Ks near-IR bands, and the ugriz optical bands which we call IR+optical.

This way we can ensure that results from runs of Kcorrect are not driven by a specific set

of bands. For example, an IR prediction can be entirely driven by a fit in the UV+optical

depending on the signal-to-noise of the measurement, particularly because extrapolation is

common for IR SED models.

Before we take further steps in our analysis we exclude all objects that have photometric

values of “NaN”, infinity, or 0, which all indicate missing photometry. When evaluating

the fits for the K -corrections we use a limited redshift range 0.04 < z < 0.09 in order to

avoid selection effects at low redshift (0.01 < z < 0.04), but compute K -corrections for the

full redshift range of our sample. For the fits in the FUV/NUV bands we also exclude

objects that have large GALEX photometric errors. Specifically, in FUV we perform the

K -correction fits restricting to galaxies with errors σmFUV
< 0.12, while in NUV we require

errors σmNUV
< 0.1. We apply similar cuts for objects that have large WISE photometric

errors. These correspond to σmW1
< 0.013, σmW2

< 0.025, σmW3
< 0.15, and σmW4

< 0.25.

These cuts were determined by examining distributions of the errors and how they biased

the K -correction results. Before analyzing our results we do a final clean to remove any

“NaN” or infinity from each catalog for the rare cases that an object did not have a proper

fit in Kcorrect or our own analysis. Within our final wavelength separated catalogs the

optical catalog contains 148,704 galaxies, the UV+optical catalog contains 28,318 galaxies,

the near-IR+optical catalog contains 74,038 galaxies, and the IR+optical catalog contains

40,361 galaxies. Each spans from redshift 0.01 < z < 0.09. The catalogs containing our

K-corrected results and comparison values are publicly available at the catalog section of

our catalog GitHub page.1.

5.2.2 K -corrections from Previous Work

We will be comparing our results from our fit calculations (described in the following

subsection Section 5.2.3) to K -corrections from two other sources as a means to validate our

results.

1https://github.com/cfielder/K-corrections/tree/main/Catalogs
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1. We generated K -corrections with the kcorrect v4.3 software package Ref. [31]. Kcor-

rect is a robust method for determining K -corrections using a combination of SED

templates with SPS models, dust models, and nebular emission models. Kcorrect

uses a non-negative matrix factorization algorithm that creates model based template

sets. A set of five template SEDs are used, which are derived from combinations of 450

[51] SPS models across a wide range of age and metallicity, and 35 ionized gas emission

models from Ref. [193]. After the templates are generated and reduced into 5 sets, lin-

ear combinations of these templates are fit to the measured photometry and respective

photometric errors for each galaxy for which K -corrections are being calculated with a

χ2 minimization technique. This constructs an estimated SED for that galaxy. From the

estimated SED K -corrections and other physical parameters can be determined.

We ran Kcorrect on the observed photometry and associated errors within the GSWLC-

M2 catalog for bands from the UV to IR composed of combinations of subsets of the

wavelength range as described in Section 5.2.1 in addition to the full wavelength range.

Kcorrect can compute K -corrections for all filters considered in this chapter (FUV

through W4). We added an additional error term in quadrature to our inverse variance

maggies equivalent to 1% of the respective observed maggy for the given band to allow

for more flexibility in the models.

2. GSWLC [312, 311] produces K -corrections by performing SED fitting using model SEDs.

For this catalog a Bayesian approach to SED fitting was employed ([313], see also

Ref. [189, 46, 345] for the basis of this method) utilizing the CIGALE SED fitting code

[38], which used a combination of [51] SPS models, dust models, and nebular emission

models. In this approach millions of distinct models are considered individually, rather

than utilizing a linear combination of a smaller number of models (templates) like that

performed by Kcorrect. Additionally, the GSWLC fits employ more recently updated

models. In contrast to the best-fit (χ2 minimization) approach of SED fitting, such as

that employed by Kcorrect, the Bayesian approach determines the full probability

distribution of any parameter. This has the advantage of more robust parameter char-

acterization and uncertainty. The absolute magnitudes derived in the GSWLC catalogs

are determined from the best fit model by comparison between the redshift model fluxes
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and the observations.

We simply adopt these rest-frame magnitudes directly from the catalog, as the GSWLC-

M2 catalog serves as the basis for the data used in the analysis presented here so no

additional conversions or calculations are necessary.

Results from Kcorrect and GSWLC-M2 provide two standards of comparison for our

own derived K -corrections. One of the innate difficulties in determining K -corrections is

the lack of a ”true” answer for any observed galaxy. This makes it challenging to probe any

differences between our own data driven approach and K -corrections from other template

based approaches. Our goal is a method for which results are comparable to those from other

approaches in regimes where we trust the SED templates and a technique that is easier to

implement than those used by Kcorrect and GSWLC.

5.2.3 Deriving Data Driven K -corrections

Our approach to determining K -corrections is based on the simplifying assumption that

galaxy SEDs at low redshift are a single parameter family. This assumption stems from

applications of dimensionality reduction methods, like principal component analysis, that

find galaxy spectra can be described with only a single parameter [231, 230, 77]. Likewise,

previous work has shown that K -corrections can be approximated by an analytical function

of redshift parameterized by a single quantity that characterizes the galaxy, like observed

color [70, 284, 16] or Dn4000 [375].

In this work, we leverage rest-frame color as our single parameter, i.e., it serves as

our means of mapping to the SED shape. We choose a rest-frame color that can be well-

determined by another K -correction method and bootstrap off of that reference color to

determine K -corrections for the rest of the SED. While the assumption of this direct mapping

of a single rest-frame color to SED shape is not perfect due to the ambiguity of contributions

to the SED at fixed rest-frame color [78, 232], it is sufficient to first order out to z = 1 [230],

whereas our galaxy sample only spans from 0.01 < z < 0.09.

Our approach for calculating K -corrections is the construction of a function that produces

rest-frame absolute magnitude given (1) the apparent magnitude of the band that needs to
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be corrected, (2) the apparent magnitude of another band to serve as an anchor, (3) rest-

frame color in a pair of bands, and (4) redshift. The band that we refer to as the “anchor”

is necessary for connecting the observed-frame to the rest-frame. Our method requires a

K -corrected galaxy color calculated from another method (such as the ones described in

Section 5.2.2). We recommend the selection of high signal-to-noise bands for the reference

rest-frame color and the anchor band, hence our use of (g − r) and mr in this work. Some

caution is warranted in using 0(g−r), as galaxies that span a large range in (NUV −r) (4–6;

i.e., green valley and truly quiescent galaxies) will end up with the same (g − r) of ∼ 0.75.

For the UV bands we tested other rest-frame colors such as 0(u− r) and yielded comparable

results to the 0(g − r) derivation.

To determine the function from which we derive rest-frame colors, we perform a series

of polynomial fits that are outlined in the following algorithm. These fits are tempered by

various error cuts that determine which quantities are used for which fits. In the following, Y

will refer to our generalized target band, which can be any band of interest except r, which

is the anchor band.

1. The initial fits: Determine fits of the observed (anchor - target band) color as a function

of redshift, in bins of rest-frame color.

We approximate our K -corrections as an analytical function of redshift parameterized

by rest-frame color. Thus we define a K -correction as Kcorr = f(z) × (r − Y ), where z

is redshift, f(z) is a polynomial function to be determined, r is the anchor band, and

Y is the band for which a K -correction is needed. First we determine the polynomial

relationships between the observed color in a pair of bands (one of which serves as the

anchor, and one of which is the desired target band) and redshift, in bins of the rest-

frame color in another (e.g., optical) pair of bands. The relationship between these three

quantities is exemplified in Fig. 5.1 where we plot observed (r − i) color as a function

of redshift, with the points colored by rest-frame (g − r). It is clear that the change

in (r − i) can be quantified by the rest-frame color and redshift. We use small bins of

rest-frame color (∼ 20 in total) with an approximately equal number of objects per bin.

In the work presented here we use bins of rest-frame (g− r) color, but any other reliable

color measurement can be used.
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Figure 5.1: Observed (r−i) color plotted as a function of redshift for our galaxy sample. We have color coded
the points by rest-frame 0(g − r) color where purple corresponds to more blue galaxies and red corresponds
to more red galaxies. It is evident that observed color is correlated with rest-frame color (and redshift). By
obtaining the fit coefficients in bins of the rest-frame color (see Fig. 5.2) we can quantify how the observed
color changes relative to the rest-frame color across redshift space.
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Figure 5.2: An example of our first order polynomial fits. Here i-band is the band we desire to K-correct
and r-band serves as the anchor. We plot the observed (r − i) color as a function of redshift for our sample
after it has been split into 22 bins in 0(g − r) with ∼ 5435 objects per bin. Points from 3 of these bins are
plotted, which are labeled according to the average 0(g − r) color per bin. The black dashed lines represent
the fits to Equation 40 for each bin plotted, performed using a Huber regression. The fits are a sensible
representation of the data and not swayed by outliers.
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Figure 5.3: Linear term coefficients (a1) from the initial fit (i.e., the fit of observed color as a function of
redshift in bins of rest-frame color, 0(g − r)) as function of the central 0(g − r) of each bin are plotted as
blue points. For reference, three of the initials fits from which the a1’s are derived are depicted in Fig. 5.2.
We perform a linear fit for a1 as a function of the center of our 0(g − r) bins with a Huber regression
(Equation 42), which is plotted here as a black dashed line. A linear fit is a sufficient approximation due to
the relatively small scatter. None of the a1 points in this band were excluded from the fit but the NMAD
cutoff, but the Huber regression is robust to the reddest point.
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In each bin we perform a polynomial fit to determine the relationship between observed

color and redshift. We compute both linear and quadratic fits for all bands for comparison

purposes but note our work favors the linear approach, which is further discussed in

Section 5.3.2. Our plots and tables generally show results from linear fits for the initial

polynomial fits. Our function is defined as

(r − Y )obs = f(z) = a0 + a1z + a2z
2, (40)

where a0 is the constant term, a1 is the linear coefficient, and a2 is the quadratic co-

efficient. We parameterize Equation 40 using a Huber regression technique [172], a

method that is robust to outliers. These fits are implemented via scikit− learn

(sklearn.linear model.HuberRegressor; [286]), where we set the parameter that con-

trols the number of samples to be counted as outliers ϵ = 1.01. The smaller ϵ is the more

robust to outliers the model is (where 1 is the minimum). For the linear case a2 is set to

0. Thus, for each bin in rest-frame color we determine the fit coefficients a0, a1, and a2

separately (or just a0 and a1 for the linear case).

We take the additional step of weighting in these fits. The weights are based upon

redshift such that higher redshift objects do not dominate the fits for observed color vs.

z in the redder 0(g − r) bins since these bins are more populated. For a single bin in

0(g− r) we split the objects into 40 bins in redshift space. Using these redshift bins and

the counts in each bin Nbin we build a function Nbin = f(zcen) where zcen is the center of

the redshift bin. This fit is performed using the Ref. [364] scipy.interpolate.interp1d

method. With this function we pass in the redshift of each individual galaxy in the given

0(g−r) bin to obtain the Nbin. So this means we figure out which redshift bin the galaxy

belongs in and the associated number of galaxies that belonged in that bin (Nbin). This

value is used for the weighting for that specific galaxy, which means that galaxies that

fall into the same redshift bin will have the same weighting. The weights are defined as:

w =
1

(NMAD(r − Y )obs)2
< Nbin >

Nbin

, (41)

where (NMAD(r − Y )obs) is the normalized median absolute deviation of the observed

color and < Nbin > is the mean number of galaxies in the 40 bins. Generally this
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down-weights bins with large numbers of objects which is especially important in the

redder 0(g − r) bins that predominantly have higher redshift objects skewing our fits.

These weights are then utilized in the aforementioned Huber regression of Equation 40

by assigning them as sample weight = w.

As an example we show fits where Y is the SDSS i-band. A linear fit for observed (r− i)

as a function of redshift is illustrated in Fig. 5.2. We have elected to present 3 bins in

0(g − r) instead of the full set of 22 for clarity. Each bin contains approximately 5435

galaxies. The points show all of the galaxies within the respective bin, while the black

dashed lines show the result of the linear fit using Equation 40 (a2 = 0). While the

bin with blue points could also be fit but a quadratic, overall results are more stable by

employing linear fits.

2. The secondary fits: Determine fits of the previous fit coefficients as a function of mean

rest-frame color.

Second, we fit for the linear dependence of each of the fit coefficients (a1 and a2) on the

mean rest-frame color within a bin. Namely we determine a1(mean rest-frame color) and

a2(mean rest-frame color). We express these fits as

a1 = b1⟨0(g − r)⟩ + b0 (42)

and

a2 = c1⟨0(g − r)⟩ + c0, (43)

where b0, b1, c0, and c1 are fit coefficients and intercepts. These fits are calculated using

the Huber regression as before. Therefore we assume a linear dependence between each

coefficient and the rest-frame reference color. For these secondary fits we also tested up

to fifth order polynomials as well as logarithmic and exponential functions, but found

that a linear fit performed just as well if not better than these more complex functions.

However, not all calculated a1’s and a2’s are necessarily used in this fit, as in many bands

the a1’s or a2’s have a large amount of scatter. We use an NMAD cutoff to determine

which a1’s and a2’s are fit in addition to the Huber’s robustness to outlier, as we found

that in some bands the Huber still struggled with some of the fits. The NMAD cutoff is
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derived from the residual of the initial fit. In each 0(g− r) bin we calculate the difference

between the predicted (r− Yobserved) and the actual (r− Yobserved) for each galaxy. Then

we calculate the normalized median absolute deviation for the residual in the respective

0(g − r) bin. Bins where the NMAD < 2.5min(NMAD) are excluded from the fits of a1

and a2 as a function of mean rest-frame color.

Our i-band example continues in Fig. 5.3, which illustrates the secondary fit. In blue

points we plot the a1’s determined from the fitting procedure in (i) as a function of the

mean 0(g − r) for each of the bins that underwent the initial fit. The black dashed

line marks the resulting linear fit from the Huber regression for this ”secondary” fit

(Equation 42). For this band, none of the a1’s were excluded by the NMAD cutoff.

For full data sets where a large number of galaxies require k-corrections, binning in a rest-

frame color is not necessary once a1(mean rest-frame color) have been determined. The

fit coefficients can be evaluated for any given object given its rest-frame color (0(g − r)

in our example). We do not determine a fit for a00(g − r) because at a redshift of 0 a0

corresponds to the mean rest-frame color, based on the simple argument that at redshift

0 (r − Y )observed must be equal to 0(r − Y ) as there are no redshift effects. In terms of

Equation 40 f(0) = a0 = 0(r − Y ). We cannot simply solve for a0 as then we would

assume the mean rest-frame color for all objects. Instead we make small adjustments to

the observed photometry with a1 to obtain 0(r − Y ).

3. Determine whether to use a “constant” a1.

As mentioned above, our final derived K -corrections (see Fig. 5.9) will all be determined

from linear fits (a2 = 0 in Equation 40 and we do not use Equation 43). However, for

some bands it is better to use a constant linear term a1 instead of a rest-frame color

dependent a1. In these cases the resultant a1’s from the initial fit are all approximately

the same value, causing the secondary fit to be approximately a flat line. For these bands

instead of calculating a1 as a function of mean rest-frame color, as described in (ii), we

simply use the median of the a1’s. The results become far more stable if we switch to

using a constant value for a1, as opposed to letting it remain as a function.

To determine whether to use a constant a1 we take a statistical approach. First we
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determine the NMAD of the a1’s predicted for each 0(g − r) bin (which we refer to as

a1,pred) from the fit of a1 as a function of mean 0(g − r) (Equation 42). We refer to this

quantity as σc (σc = NMAD(a1,pred)). Then we determine the NMAD of a1−a1,pred which

we call σ. The ∆χ2 between the constant and the linear fit is defined as

∆χ2 = N(1 − σ2
c

σ2
) (44)

where N is the number of 0(g − r) bins used in the initial fit in (i) that pass the NMAD

cutoff in (ii). Then we define ∆AIC (the Akaike Information Criterion, a robustness test;

Ref. [5]) as

∆AIC = 2 + ∆χ2, (45)

as we have 2 free parameters from the linear fit. For photometric bands where ∆AIC

< −10 we use a linear fit for a1 and for photometric bands where ∆AIC ≥ −10 we use

a “constant” a1, meaning that we calculate the median of the a1’s determined in (i).

Bands for which we use a “constant” a1 derived from Kcorrect 0(g − r) are: JHKs,

and W1/W2/W3/W4. Bands for which we use a constant a1 derived from GSWLC-M2

0(g− r) are: z, Ks, W1, W2, and W4. All other bands use what we refer to as a “linear”

a1, referring to solving Equation 42.

4. Using the coefficient fits and algebra, determine colors and absolute magnitudes.

At this stage we now have a function that predicts the observed color (r − Y ) as a

function of the rest-frame color in another pair of bands and the redshift. Using our

previous discussion of a0 in (ii) we can re-write Equation 40 as:

(r − Y )obs = 0(r − Y ) + a1z + a2z
2 (46)

Thus by subtracting a1z and a2z
2 from observed color, rest-frame color can be obtained

(i.e., a k-corrected color). We can simplify our rest-frame color as

0(r − Y ) = (r − Y )obs − a1z − a2z
2 = mr −mY − a1z − a2z

2 (47)
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If one is interested in absolute magnitude instead of color, then one must have access to

a k-corrected version of the anchor band. To solve for 0MY instead of 0(r−Y ), color can

be split into magnitude components in the following way:

0(r − Y ) =0 Mr −0 MY
0MY =0 Mr +0 (r − Y ). (48)

0MY is the final k-corrected absolute magnitude.

5. Determine errors on K-corrections˙

Errors attributed to this K-correction method are determined statistically. Because our

final results are derived from either a linear fit for the a1’s or constant a1’s we present

this calculation for linear fits.

The formula to describe our errors can be derived from Equation 47 using propagation

of errors. The resulting formula is:

σ(0(r − Y )) =
√
σ2
mr

+ σ2
mY

+ (zσa1)
2. (49)

We have dropped the a21σ
2
z term as σz is negligible for this local sample of galaxies. Thus

we need to determine σa1 for results with either linear a1 or constant a1. For linear

a1, σa1 is calculated by a bootstrap method. For each band we bootstrap the a1’s and

corresponding mean 0(g − r) of the ∼ 20 bins 100 times. In each bootstrap iteration

we perform a Huber regression as in (ii), Equation 42, which yields 100 b0’s and b1’s.

Then for each galaxy we can determine 100 a1’s with Equation 42 by plugging in the

galaxy’s 0(g − r). Lastly we calculate the standard deviation of the bootstrapped a1’s

and multiply by redshift, which gives us our zσa1 term.

For constant a1 bootstrapping is not necessary. Instead we define σa1 = NMAD(a1)√
0.64N

. We

define σa1 this way because we use the median a1, and the standard deviation of the

median scales as 1√
0.64N

.

For convenience purposes we keep systematic (photometry measurement error, e.g., σmy)

documented separately from errors attributed to the K-correction method (zσa1). When

applicable errors are combined in quadrature.
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Tables of b0 and b1 for determining a1, and the median a1’s for our data are available in

Table 5.1 (Kcorrect derived) and Table 5.2 (GSWLC-M2 derived) of Section 5.5. The

functions used to determine our b0’s, b1’s, median a1’s and other related quantities in addition

to sample code are provided at our K-correction GitHub2 page for public use.

5.3 Results

We test our results by comparing to two other K-correction methods performed on the

same data: the standard software Kcorrect, and SED fitting results from the GSWLC-M2

catalog [312, 311] which are described in Section 5.2.1. In our work the rest-frame values

from which we determine our fits are from either the GSWLC-M2 catalog calculations or the

Kcorrect calculations. Depending on which K -correction method we wish to compare our

calculations to we use the respective rest-frame color.

While there are discrepancies between K -corrections calculated between any two meth-

ods, with our results in general agreement with other methods for well-behaved bands we

can be confident in our simplified approach.

5.3.1 Distributions of Rest-frame Colors

We start with a generalized comparison to Kcorrect and GSWLC-M2. In Fig. 5.4

normalized histograms depict results for colors across the wavelength range. We derive

these respective to the catalog to which they are being compared. For example we derive

0(u− r) utilizing 0(g− r) from Kcorrect when comparing to Kcorrect results. The step

histograms denote our derived results, and the lightly shaded histograms denote results from

the two comparison methods. Blue histograms come from Kcorrect and orange histograms

come from GSWLC.

Foremost, we do not expect all results to be 1 : 1 with each other due to the nature of

fitting and how the K -corrections are approximated in each method. The relatively large

2https://github.com/cfielder/K-corrections
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scatter of individual K -corrections has been exemplified in the literature (see e.g., [284], Fig.

3, [70], Fig. 2). We do find that, in general, the distributions of our K-corrected colors are

in good agreement with those derived from other methods. In many cases our results are in

better agreement with the respective comparison work than Kcorrect and GSWLC-M2

are with each other. However, there are some notable differences.

Our results in the 2MASS bands from either derived source are in excellent agreement

with each other and the results from Kcorrect. However, the GSWLC-M2 results are

more peaked. Such discrepancies in the near-IR 2MASS bands in the GSWLC-M2 catalog

may result from a couple of factors. Templates in the IR are typically of lower quality than

in the optical, particularly because there are few spectra fully observed from the UV-IR.

Therefore some assumptions are required in the less constrained bands. For example, there

is uncertainty of how asymptotic giant branch (AGB) stars contribute to stellar population

synthesis models. In particular, thermally pulsating AGB (TP-AGB) stars may contribute

a significant portion of light to the IR portion of an SED but how much is unknown [78].

The IR portion of the SED is also further complicated by contributions of dust emission. It

is likely the case here that the discrepancy of the GSWLC-M2 results is driven by the SED

fits preferentially constrained in the UV and optical where models have more certainty.

While small, we note that discrepancies in the FUV , NUV , and u bands are likely a

result of (1) the high sensitivity of UV co lours to minimal amounts of star formation, (2)

the uncertainty of contributions of post-AGB and extreme horizontal branch stars, and (3)

complexity of dust absorption and scattering [78]. Simple stellar populations, which are

the backbone of SPS model SED based approaches, may not adequately capture the UV

sensitivity to star formation, and dust and unusual stellar populations further complicate

these effects.

In Fig. 5.4 it appears that there are also discrepancies of note in the optical bands

(particularly g and i). However, across wavelength space the differences between results

are no more than ∼ 0.1 magnitudes and agree on average at the 0.05 magnitude level after

exploration of the NMAD and root mean squared error between our results and the respective

literature result. Differences are more pronounced in the optical given the narrow range of

color space that they span. While the 0(g−r) results presented here are calculated in bins of
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Figure 5.4: Histograms of rest-frame colors comparing K -correction methods for GALEX FUV/NUV , SDSS
uriz, and 2MASS J/H/Ks bands. We show our calculated rest-frame colors derived from Kcorrect (blue
line) and GSWLC-M2 (orange line) and those calculated using the Kcorrect software (blue shaded) or in
the GSWLC-M2 catalog (orange shaded). In general, our rest-frame colors derived from both Kcorrect
and GSWLC-M2 are in excellent agreement with each other. In the 2MASS bands, our rest-frame colors
derived from Kcorrect and GSWLC-M2 are self-consistent and in agreement with the Kcorrect colors;
however, the GSWLC-M2 colors show more peaked distributions likely caused by uncertainties in modeling
unusual older stellar populations (TP-AGB stars, post-AGB stars, and extreme HB stars). The offsets in
0(g − r) are likely due to the fact that our rest-frame colors are derived from 0(g − r) for both catalogs.
Overall, our rest-frame colors for these bands are well-matched to each other and to those from Kcorrect
and GSWLC-M2.
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0(g− r), which is redundant, we also derived 0(g− r) from computing 0(g− i) and 0(r− i) in

bins of 0(g− r) and then combining results. The results were similar, so we present the more

straightforward result here. We want to emphasize that the bluest galaxies in Kcorrect and

GSWLC-M2 have derived 0(g−r) colors redder than ours starting at z ∼ 0.03. Additionally,

the rest-frame color derived from the SED fitting techniques is redder than the observed

color for these very blue objects, contrary to the expected blue-ward shift in the optical post

K -correction. The likely culprit is either a lack of SED templates for the most extremely

blue galaxies, or some lacking or excess contribution from the dust absorption and nebular

emission models. Investigations in small redshift bins of rest-frame (g − r) color show that

the red sequence is more consistent at different redshift with our K -correction method than

0(g − r) color derived using Kcorrect.

Fig. 5.5 depicts the same comparisons as Fig. 5.4 for the WISE bands. The GSWLC-

M2 did not perform SED fitting directly with the WISE bands [311], so those values are

not included. Overall, we observe very consistent results with those of Kcorrect except

in the W4 band. This miss-match in distributions between results of Kcorrect and the

distributions of the observed photometry and our own derived rest-frame photometry can

largely be attributed to the lack of dust emission modeling in Kcorrect. Therefore any

rest-frame W2 through W4 results obtained via Kcorrect could be incorrect due to the

lack of these types of models.

To check the performance of our K -corrections we examine colors in small redshift bins.

We choose narrow bins as there should be minimal color variance across the galaxy sample,

meaning they should all have approximately the same observed frame SED. Fig. 5.6 shows

results of this analysis for a selection of colors across our wavelength range. We plot contours

for 0.04 < z < 0.045 (blue) and 0.075 < z < 0.08 (orange). On our x-axis we plot 0(g − r).

The left column depicts contours using observed colors and the right column depicts contours

for rest-frame colors. These specific rest-frame colors are derived from Kcorrect 0(g − r).

For objects that have been properly K-corrected, the contours should line up better in the

rest-frame column than the observed-frame column. This is indeed the case for our bands,

which indicates that our K -corrections are working as expected. Plots made for Kcorrect

and GSWLC-M2 rest-frame colors can be made, with similar results, save for (W4−r) which
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is dramatically offset in the Kcorrect results. While (FUV − r) exhibits minimal change,

this is also the case for Kcorrect and GSWLC-M2.

5.3.2 Extrapolations to z=0

At redshift 0, by definition a K -correction must be 0. This means that any difference

between observed colors (or magnitudes) and rest-frame colors (or magnitudes) at redshift

0 must also be 0. As we showed in Section 5.2.3 our K -corrections are defined to follow this

relationship. However, this is not enforceable for methods that incorporate SED/template

fitting. We compare our K-correction colors to that of Kcorrect and GSWLC-M2 in

Fig. 5.7 and Fig. 5.8 for optical and UV/near-IR bands, respectively. We plot the color

difference as a function of redshift where, for example, ∆(u − r) = (u − r) −0 (u − r) or

the difference between the observed-frame color and rest-frame color. We specifically plot

the means of these color differences across 12 bins in redshift space. Blue points correspond

to K-corrected results using our method with a linear fit and orange points correspond to

K-corrected results using our method with a quadratic fit. Grey points correspond to results

from Kcorrect (left column) and GSWLC (right column).

The blue points also have representative error bars plotted that include both systematic

errors and K-correction errors, for which the K-correction errors are described in (v) of

Section 5.2.3. We must take a few additional steps for these plots, as we are showing the

means in bins. The error attributed to the K-correction does not diminish when determining

means. So for the K-correction error we simply compute ⟨σa1z⟩. We define the random error

on the mean as σsys = σ(∆)√
Nbin

. The total error on the means is thus these two contributions

added in quadrature.

Because our galaxy sample only extends down to redshift 0.01, we must extrapolate to

z = 0. This is done with a linear interpolation for color difference as a function of the red-

shift of the bin center (zcen), utilizing the scipy.interpolate.interp1d class from Ref. [364].

These extrapolations are plotted as dashed lines, which ideally should pass through the ori-

gin. Our linear and quadratic fits do so in most cases (with some scatter), in contrast to

fits from Kcorrect and GSWLC-M2 for many bands. This directly demonstrates the im-
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Figure 5.6: Contour plots of galaxies in two narrow redshift bins 0.04 < z < 0.045 (blue) and 0.075 < z < 0.08
(orange). We plot a variety of colors across our wavelength range as a function of 0(g − r). The left
column shows these colors in the observed-frame and the right shows these colors in the rest-frame, using
our K -correction results. We plot narrow redshift bins as the observed SEDs of the galaxies should be
approximately the same. It is evident that for all colors the contours of both redshift bins align closely in
the rest-frame in contrast to the observed-frame. This is the expected result for successful K -corrections and
similar results are observed in Kcorrect and GSWLC-M2 (save for (W4− r)).
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proved accuracy of our K-correction method compared to SED-fitting K-correction methods.

Additionally these figures exemplify that in most cases a linear function of redshift is a better

choice than a quadratic one for deriving our relationship between observed color, redshift, and

rest-frame color. First, the linear fit derives very comparable results to the quadratic fit and

is much simpler to implement. Second, the linear fit results more consistently pass through

the origin than the quadratic fit results. It is also worth noting that despite the difference in

the techniques, the relative shapes of the results in both Kcorrect and GSWLC-M2 agree

well. Likewise the relative shapes of our results, regardless for which source the rest-frame

band is used, are also in agreement in both linear and quadratic initial fits.

5.3.3 Spectral Energy Distributions

Spectral energy distributions (SEDs) are an excellent test of our K-correction results.

In this subsection we compare our K -corrected rest-frame photometry to that of our other

sources of K -corrected photometry and the observed photometry for a couple of galaxies.

Because our galaxy sample is at such a low redshift, the K-correction in each band should

be relatively small and mirror the shape of the observed SED.

To determine luminosity we use similar derivations to those presented in Section 4.3

of Ref. [125], which we also summarize here. Because the r-band serves as the anchor in

our K-correction derivations we can derive fluxes relative to the r-band. We use 0Mr from

Kcorrect and GSWLC-M2 respective to which K-correction source we compare to. The

luminosity of r-band is derived as

log (νrLν,r) = log νr +
(0Mr − 34.04)

−2.5
, (50)

which is derived from the relation for converting flux to AB magnitudes in combination with

the area of a 10 pc radius sphere to convert flux to luminosity. The error on this quantity

via propagation of errors is equivalent to

σlog(νrLν,r) = 0.4σ0Mr
. (51)
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Figure 5.7: Plots of the mean difference between observed and rest-frame color (e.g., ∆(u− r) = (u− r)−0

(u− r)) as a function of 12 redshift bins for optical colors. Blue points depict our K-corrected results with
a linear initial fit, and orange points depict results for a quadratic fit. Grey points show results from the
corresponding source denoted at the column title. The colored dashed lines depict a linear extrapolation
to redshift 0. Our results all approach the origin closely, as they should by construction and under the
expectation that are redshift 0 the K -correction should be 0. However, this is not necessarily the case for
K -corrections that rely on SED fitting.

229



0.3

0.2

0.1

0.0

0.1

(F
U

V
r)

KCORRECT

Linear
Quadratic
Previous Work

GSWLC-M2

0.3

0.2

0.1

0.0

0.1

(N
U

V
r)

0.3

0.2

0.1

0.0

0.1

(J
r)

0.3

0.2

0.1

0.0

0.1

(H
r)

0.000 0.025 0.050 0.075
Redshift

0.3

0.2

0.1

0.0

0.1

(K
s

r)

0.000 0.025 0.050 0.075
Redshift

Figure 5.8: Same as Fig. 5.7 but for UV and near-IR bands. Our results perform just as well as if not better
than those from SED fitting.
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For the other bands we use our derived colors 0(r − Y ) to first determine the flux ratio

relative to the r-band

log

(
fν,r
fν,Y

)
=

0(r − Y )

−2.5
. (52)

This formula is based on the definition of observed AB magnitude. We can then derive

luminosity for other bands utilizing the equivalence of flux ratios to luminosity ratios. Our

final SED luminosities are

log (νYLν,Y ) = log (Lν,r) − log

(
fν,r
fν,Y

)
+ log (νY ), (53)

where log (νYLν,Y ) is in units of Watts. The corresponding errors are defined as

σlog νLν,x = 0.4
√

σ2
mr

+ σ2
mY

+ (zσa1)
2σ2

0Mr
, (54)

which can be derived from propagation of errors and plugging Equation 47 into Equation 52.

In Fig. 5.9, we plot the SEDs of two galaxies from our sample. These galaxies share

the same 0(g − r) color of 0.667 but reside at two different redshifts with the lower redshift

galaxy plotted in blue and the higher redshift galaxy plotted in orange. The normalization of

the lower redshift object is offset such that the two galaxies can be plotted without overlap.

Open circles with error-bars show results from our work, which are derived using either a

linear or constant a1 in Section 5.2.3. For all bands other than r, we do not plot the σ0Mr

term in Equation 54 as this error is covariant across all bands. This quantity is small and

challenging to infer from the plots; σ0Mr
= 0.0012 for the low redshift plot and σ0Mr

= 0.0032

for the higher redshift plot. Triangular points show the K -corrections for these galaxies from

Kcorrect (left panel) and GSWLC-M2 (right panel). Lastly, star points show the observed

fluxes of the same galaxies, normalized to match in the r-band.

As a means to compare these two galaxies we also plot an SED template galaxy from

the Ref. [50] nearby galaxy SED atlas - NGC 4138. The magnitudes of the templates were

converted to fluxes (as described in 4.2.2 of Ref. [125] utilizing the AB magnitude definition),

and then normalized in r-band. For each of the 129 galaxy SED templates in the atlas we
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calculate the chi-squared of the difference between the brightnesses of each of our selected

galaxies and that of the templates:

χ2 =
∑(

log νLatlas
ν − log νLgalaxy

ν

σlog νLν

)2

. (55)

σlog νLν combines in quadrature the total error in the galaxy SED for a given band, the

uncertainties in the Ref. [50] photometry, and log10 (1.1), which corresponds to a 10% error

in νLν . This additional 10% error is added to account for systematic uncertainties in the

photometry such that optical bands do no dominate the χ2 values given their intrinsically

small uncertainties.

The template plotted in gray in Fig. 5.9 corresponds to the spectrum of the NGC 4138

template, which had the smallest χ2 compared to both galaxies selected from our sample.

Dashed portions of the plotted template indicate regions of the spectrum that were modeled,

while solid portions of the template indicate regions of the spectrum that were observed.

We do not expect this template to directly match the photometry of either selected galaxy

but to provide a means of comparison. This spectrum also exemplifies the use of modeling

required in the UV and IR for empirical SED templates.

One can draw several conclusions from Fig. 5.9. First, our K -corrected photometry is

reasonably close to that of other methods of producing K -corrected photometry in addition to

the observed photometry. At our low redshift range the rest-frame photometry should not be

substantially different from the observed photometry, which is the case for our results. When

combined, we have results that resemble an SED reasonably well, while making minimal

assumptions about how an SED should look.

Second, it is evident that k-correct fails in giving a reasonable result for W4 band

K -corrections which is further supported by the results shown in Fig. 5.5. In Fig. 5.9 the

brightness of the lower redshift galaxy’s W4 band from Kcorrect is so low that it overlaps

with the other galaxy’s observed brightness. For the higher redshift galaxy the W4 point is

below the y-axis range. Our K -correction approach supplies reasonable results for W4. By

construction our method cannot stray too far from the observed photometry, so even bands

like W4 that have low signal-to-noise ratios can be reasonably constrained. In that same
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vein our K -correction method has more flexibility than standard SED fitting where multiple

bands are forced to match the templates.

5.4 Conclusions

In this work, we present a new, empirically-driven method for obtaining K -corrections.

Our method is inspired by the polynomial based K-correction methods of Ref. [16] and

Ref. [70], where we exploit the parameterisation of K -corrections by an analytical function

of redshift and color [382, 284]. At low redshift (z < 1), SEDs fall into a single parameter

family where a single rest-frame color allows us to infer the full SED shape - an inference

made from results describing spectra by a single parameter in reduced dimensional space

[77, 231, 230]. Our method limits the dependence on SED templates by interpolating using

a rest-frame color for which SEDs are well-constrained. We perform a series of linear fits to

construct a function that maps observed color and redshift to rest-frame color.

There are a number of pieces of evidence that prove our data driven approach to deter-

mining K -corrections is yielding sensible results. Throughout this work we compare to the

oft-used kcorrect v4.3 software of Ref. [31] and the derived results in the GSWLC-M2

catalog [312, 311], both of which utilize SED fitting in different ways (see Section 5.2.2).

Our K -corrected photometry is in agreement with K -corrected photometry of the same ob-

jects for both comparison methods, particularly at UV and optical wavelengths (see e.g.,

Fig. 5.4). Likewise our K -corrected photometry produces sensible looking galaxy SEDs,

similar to both comparison methods (see Fig. 5.9). We also have better agreement across

redshift in color-color space with our rest-frame colors than our observed-frame colors, as

exemplified in Fig. 5.6. This is the expected behavior of photometry that has been correctly

K -corrected. Lastly, our K -corrections go to zero at redshift zero, as shown in Fig. 5.7 and

Fig. 5.8, as expected by the definition of the K -correction . However, SED fitting methods

cannot directly enforce this, as exemplified by their differences in the figures. Our method

is driven by and stays close to the observations in the band of interest rather than follow a

model which can yield larger deviations. This allows us to K-correct bands that are poorly
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Figure 5.9: Derived SEDs for two galaxies from our sample which share the same 0(g− r) = 0.667 but reside
at two different redshifts. The lower redshift galaxy is plotted with blue points and offset from the higher
redshift galaxy in the y-axis for clarity. Stars are plotted at the observed fluxes. Triangles are plotted at the
luminosity determined from the rest-frame magnitudes derived via Kcorrect (left panel) and GSWLC-M2
(right panel). Circles with error bars show our resulting luminosities from our K-correction method. As
a means of comparison we plot the spectrum of NGC 4138 from the Ref. [50] galaxy SED atlas in gray,
with dashed lines showing modeled portions of the spectra and solid lines showing the observed portions of
the spectra. This template had the lowest χ2 of the difference between the photometry of the two galaxies
shown and the template (formalized in r-band). While we do not expect a direct match to a template, we
provide it as a means of comparison to help guide the eye. We can conclude that our K-correction method
provides reasonable estimates for even the weakly constrained WISE bands, where Kcorrect fails in W4
and GSWLC lacks. The rest-frame W4 prediction of the higher redshift galaxy lies below the y-axis range
and the rest-frame prediction for the lower redshift galaxy overlaps with the observed photometry of the
higher redshift galaxy. Given the redshifts of these objects and our data driven approach, our K -corrected
magnitudes cannot significantly deviate from the observed photometry, which allows us to K-correct even
low signal-to-noise bands like W3 and W4.
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constrained by templates and have low signal-to-noise ratios.

There are also notable discrepancies between our K -corrected photometry and that of

Kcorrect and GSWLC-M2, which mostly occur in the infrared bands. First, as seen in

Fig. 5.4, the rest-frame photometry in the 2MASS JHKs bands is more peaked compared

to the other histograms. However, our derivations from both Kcorrect and GSWLC-M2

are in excellent agreement with each other and that of Kcorrect. This highlights one of

advantage of our approach. SED model uncertainties in the IR due to contributions from

AGB stars may result in incorrect K -corrections . Higher signal-to-noise optical portions

may also drive SED fits resulting in incorrect K -corrections . Empirical SED models are also

more poorly constrained at non-optical wavelengths due to a lack of spectral measurements

that in turn produce uncertain SED fits. The other notable discrepancy is that of the

WISE W4 band, noted in Fig. 5.5 and Fig. 5.9. The predicted Kcorrect W4 band rest-

frame photometry is severely offset from our predictions, while our results utilizing either

Kcorrect or GSWLC-M2 optical colors are in good agreement with each other and with

Kcorrect results in the other WISE bands. We suspect that the Kcorrect templates

are making un-physical assumptions, yielding an unexpected result. Most notable is the lack

of dust emission modeling in Kcorrect, a feature of increasing importance for the WISE

bands. In contrast, our data-driven approach entirely avoids issues of template fit failures

and model issues by only relying on well-constrained rest-frame optical colors.

Our data driven K -correction approach is particularly suitable for calculations in bands

where templates are not well constrained or readily available. In our previous work of

Ref. [125] in constructing a UV-IR SED for the Milky Way we required WISE-band K -corrections

- bands sensitive to dust content and dust luminosity (which are consequently a constraint

on star formation rate, see e.g., Ref. [311]). Because WISE-band K -corrections were not

readily accessible we developed the approach presented here for determining K -corrections

.
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5.5 Tables of Polynomial Functions

In this section we present the derived intercept (b0) and coefficient (b1) for the secondary

fits described in (ii) of Section 5.2.3. For bands where a “constant” a1 is a statistically better

choice (see (iii) of Section 5.2.3) in which we use the median of the a1’s determined in the

first fit ((i) of Section 5.2.3) we present the median a1 instead (med. a1). Table 5.1 presents

results where the Kcorrect 0(g− r) serves as the reference rest-frame band and Table 5.2

presents results where GSWLC-M2 0(g − r) serves as the reference rest-frame band.

The b0 and b1 quantities specifically come from Equation 42. The reader can use these

quantities and their chosen rest-frame color band to determine a1. Then using Equation 46

one can obtain rest-frame color for the bands of interest. For example, with optical SDSS

r as the anchor band, if one wished to determine rest-frame quantities for optical z-band

with Table 5.1 or Table 5.2, a1 can be solved as: a1 = b0 = b01(g − r) where 0(g − r) is the

rest-frame color of the galaxy or galaxies of interest. Then one can solve for rest-frame color

by calculating 0(r − z) = (r − z)obs − a1z. For bands that use median a1, the first equation

can be skipped. To determine, for example, rest-frame W4 measurements one can simply

compute 0(r −W4) = (r −W4)obs − (med. a1)z.

In addition to these tables we provide code for determining med. a1, b0 and b1 or other

related quantities at our GitHub repository for full public access for adaption to any other

project, under a CC BY-SA 4.0 license.
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Kcorrect Derived Coefficients

Passband med. a1 b0 b1

FUV -18.557 30.780

NUV -7.311 13.429

u 2.503 -7.553

g 0.172 -2.849

i 2.609 -2.887

z 1.816 -1.440

J 1.009

H 1.189

Ks 3.946

W1 3.945

W2 5.520

W3 6.252

W4 9.394

Table 5.1: Table of Kcorrect 0(g − r) derived quantities for the median a1’s, intercept (b0), and slope
(b1) for all bands considered in this work. Depending on the band it is statistically more sensible to either
simply used the median derived a1’s or to fully solve a1 = b0 + b01(g− r). In either case, rest-fame colors can
then be determined with the relation 0(r − Y ) = (r − Y )obs − a1z where Y is the band for which rest-frame
quantities are to be derived.
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GSWLC-M2 Derived Coefficients

Passband med. a1 b0 b1

FUV -11.243 19.597

NUV -4.251 8.790

u 3.986 -9.244

g 1.089 -4.069

i 2.088 -2.089

z 0.777

J 4.345 -4.506

H 6.955 -7.721

Ks 3.687

W1 3.548

W2 5.391

W3 21.736 -25.185

W4 9.277

Table 5.2: Same as Table 5.1 but for quantities derived utilizing GSWLC-M2 0(g − r). Note that the same
passbands may work preferentially with median a1’s for one catalog that do not in the other.
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6.0 Conclusion

In this dissertation I have focused on the use of statistical techniques and models to

address inconsistencies between simulations and observations and determine various global

properties of the Milky Way. This has allowed me to paint a more comprehensive portrait of

the Milky Way than ever before, putting together the puzzle pieces on how to bridge the gap

between the galactic and extragalactic, both theoretically and observationally. The Milky

Way is the ultimate laboratory for deciphering the many facets of galaxy formation and

evolution, which makes the task of placing the Milky Way amongst it peers and correctly

comparing it to simulations of crucial importance.

6.1 Summary of Previous Chapters

In Chapter 2 I explored one of the disconnects between N-body simulations and models of

halos used to interpret lensing observations. This study serves as a backbone in interpreting

how we connect observations and simulations and demonstrates the important role subhalos

have in our studies of halo evolution. In this chapters I utilize least squared fitting in order

to test a variety of dark matter halo density distributions and how they are impacted by

the presence of subhalos. Overall in this chapter I find that density profiles of the smooth

halo component (without subhalos) differ substantially from the conventional halo density

profile, declining more rapidly at large radii. I also find that concentrations derived from

smooth density profiles exhibit less scatter at fixed mass and a weaker mass dependence

than standard concentrations. Both smooth and standard halo profiles can be described by

a generalized Einasto profile, an Einasto profile with a modified central slope, with smaller

residuals than either an NFW or Einasto profile. These results hold for both Milky Way-

mass and cluster-mass halos. This new characterization of smooth halo profiles can be useful

for many analyses, such as lensing and dark matter annihilation, in which the smooth and

clumpy components of a halo should be accounted for separately.
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In Chapter 3 I directly compare subhalo abundances between different dark matter halos

of the same mass of the Milky Way. This chapter addresses one of the small scale discrepan-

cies in ΛCDM - the missing satellites problem - and places the Milky Way dark matter halo

in a theoretical extragalactic context. Motivated by recent studies that identified ways in

which the Milky Way is atypical, I investigate how the properties of dark matter halos with

mass comparable to our Galaxy’s — including concentration, spin, shape, and scale factor of

the last major merger — correlate with the subhalo abundance. Using zoom-in simulations

of Milky Way-like halos, I build two maximum likelihood models of subhalo abundance as

functions of host halo properties. From these models I conclude that the Milky Way most

likely has fewer subhalos than the average halo of the same mass. A result that implies

that models tuned to explain the missing satellites problem assuming typical subhalo abun-

dances for our Galaxy may be over-correcting. This also raises the issue of simulators calling

an object Milky Way-like by considering mass alone, which this chapter demonstrates is

ill-advised.

The studies explored in Chapter 4 are aimed at directly quantifying bulk photometric

properties of the Milky Way. I demonstrated the use of a machine learning technique - Gaus-

sian process regression - to more astronomical applications. This model is trained on SDSS

galaxies to map galaxy properties (stellar mass, apparent axis ratio, star formation rate,

bulge-to-total ratio, disk scale length, and bar vote fraction) to UV (GALEX FUV/NUV ),

optical (SDSS ugriz) and IR (2MASS JHKs and WISE W1/W2/W3/W4) fluxes and un-

certainties. With these models I estimate the photometric properties of the MW, resulting

in a full UV-to-IR spectral energy distribution (SED) as it would be measured externally,

viewed face-on. I confirm that the Milky Way lies in the green valley in optical diagnostic

diagrams, but show for the first time that the MW is in the star-forming region in standard

UV and IR diagnostics—characteristic of the population of red spiral galaxies. Although

the GPR method predicts one band at a time, the resulting MW UV–IR SED is consistent

with SEDs of local spirals with characteristics broadly similar to the MW, suggesting that

these independent predictions can be combined reliably. This UV–IR SED will be invalu-

able for reconstructing the MW’s star formation history using the same tools employed for

external galaxies, allowing comparisons of results from in situ measurements to those from
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the methods used for extra-galactic objects.

Chapter 5 explores an issue that stemmed from Chapter 4 - namely that we were unable

to obtain rest-frame brightnesses for a couple of our mid-infrared bands (W3 and W4) due

to the lack of tools available. Rest-frame photometric properties depend on K -corrections,

which convert between flux in observed band(s) to flux in rest-frame band(s). K -corrections

serve as a critical means of comparing galaxies at various redshifts. Said corrections often rely

on fits to empirical or theoretical spectral energy distribution (SED) templates of galaxies.

For bands in which such constraints are lacking this chapter address this shortcoming by

developing an empirically-driven approach to K -corrections. I perform a polynomial fit for

the K -correction as a function of a galaxy’s rest-frame color determined in well-constrained

bands (e.g., 0(g − r)) and redshift, exploiting the fact that galaxy SED’s can be described

as a one parameter family at low redshift (0.01 < z < 0.09). For bands well-constrained

by SED templates, the empirically-driven K -corrections are comparable to the SED fitting

method of kcorrect and SED template fitting employed in the GSWLC-M2 catalog (the

updated medium-deep GALEX–SDSS–WISE Legacy Cataloger). This method dramatically

outperforms the available SED fitting K -corrections for WISE W4 and mitigates incorrect

template assumptions and enforces the K -correctionto be 0 at z = 0. Such a tool can be

useful in many aspects of astronomy, beyond my own.

6.2 Potential Future Work

The conclusions of each chapter contains several ideas on potential direct extensions of

this work. Here I focus on a number of ways in which we can continue narrowing our picture

of the Milky Way, how it compares to galaxies, and ways in which the Milky Way can tell

us about dark matter and galaxy formation.

The UV-to-IR SED for the Milky Way which I have constructed in Chapter 4, can serve

as a critical tool for assessing models used in constructing hydrodynamical simulations of the

Milky Way. Namely do the SEDs derived from simulated Milky Ways match the SED derived

from observations. By fitting this SED with one or multiple of the many available SED
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fitting codes, we can determine detailed star formation histories, dust reddening properties,

and metallicites of the the Milky Way and/or Milky Way analogs. This enables a variety

of checks that can be performed to test consistency between properties that are inferred

from SEDs and those measured from stars. For example, we have measured the SFR of the

MW (see Ref. [216]), so we expect analysis of the SED to recover this result. These checks

provide tests of models (such as population synthesis or dust models) used to generate galaxy

properties and assign photometry, extinction, etc. to hydrodynamical simulations of Milky

Way-like galaxies. This modeling can also allow us to test the relatively unconstrained

contributions of certain objects to SEDs such as the effect of thermally-pulsing asymptotic

giant branch stars to the near-IR luminosity in stellar population synthesis models.

The results of Chapter 3 show that the Milky Way appears to be atypical in its satellite

population and mass assembly history. Ref. [119] finds that the assembly history of the Milky

Way is only reproduced in 0.65% of Milky Way-mass EAGLE galaxies. This assembly history

should be closely related to the local environment surrounding our Galaxy, and environment

has been found to play a key role in the formation and evolution of galaxies [357, 289, 33].

Due to its proximity, the Milky Way’s environment has been studied extensively. A number

of future projects on the study of galaxy environments can prove useful in our understanding

of galaxy evolution. For example, Ref. [217] found that the Milky Way has an anomalously

small disk scale length. Standard galaxy evolution theory assumes that merger history and

the angular momenta of the halo is correlated with the disk size. In Chapter 3 I found

that halos similar to the Milky Way in properties beyond mass typically also have fewer

subhalos and more quiet merger histories. By selecting disk galaxies in SDSS and utilizing

the upcoming DESI bright galaxy sample for environmental measurements we can directly

determine if galaxies with shorter scale lengths (like the MW) also possess fewer satellites.

This project will also allow us to assess whether dark matter halo properties correlate with

scale length in the manner predicted by standard disk formation theory, establishing to what

degree additional physics (e.g., feedback effects) might be needed to explain the observed

trends. One could also build a model using Gaussian process regression in order to predict

galaxy environment from a limited set of observed properties, particularly deviations from

the luminosity-size relation. Galaxy environments tend to be noisy (e.g., if one were to rely
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on the morphology-density relation). A model that relies on galaxy properties instead can

prove to be much more robust and useful for surveys in which it is difficult to measure local

environments.

The gas content of a galaxy is an important counterpart to stellar populations as gas

flows through the stellar life cycle. Neutral atomic hydrogen (HI) is a tracer of the overall gas

content of a galaxy. It has been well established that galaxies undergoing star formation have

a much larger neutral gas content than galaxies that are not. Cold gas, namely molecular

hydrogen (H2) and the CO molecule, probes gas cloud counts and the fuel supply for star

formation. Determining the HI mass of the Milky Way is important for a variety of stud-

ies such as comparisons of star formation efficiency between our Galaxy and extragalactic

objects, studies of HI scaling relations, and exploring the origins of the Kennicutt-Schmidt

law. However, such gas measurements are poorly constrained within the Milky Way due to

distance ambiguities and the sensitivity to assumptions about MW structure. By utilizing a

GPR model, like that introduced in Chapter 4, trained on physical galaxy properties to infer

HI, H2 and CO gas masses from HI-MaNGA/ALMA/ALMaQUEST data in order to predict

bulk gas masses for the Milky Way we can bypass issues resulting from our location in the

disk. These predictions can be compared to current gas mass inferences for the Milky Way

and allow us to more directly constrain the current fuel for star formation within the Milky

Way. This in turn will allow us to better pinpoint the gas accretion history of the Milky Way

and tie it in to the known merger history which will provide insight into the mechanisms

that formed the bulge (or pseudo-bulge) of the Milky Way.

Galaxy spectra are a useful tool for determining the abundances of stellar populations

within a galaxy, which reveal details such as elemental abundances and gas content. A full

predicted spectrum for the Milky Way will allow us to link the MW to external galaxies

more directly, which can greatly constrain our determination of how the MW has evolved

and enable much more precise MW simulation efforts. Such a project would expound upon

the GPR technique demonstrated in Chapter 4, in which one could us a GPR in order

to predict every wavelength of the MW’s spectrum. Instead of training the regression to

predict broadband photometric fluxes, the Gaussian process can fit for the relationships

between galaxy properties and the flux at each wavelength using spectra obtained from SDSS
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and/or the DESI bright galaxy survey. This model will be completely empirical (beyond the

modeling used to determine galactic properties), and would not rely on any templates or

other assumptions other than the relationship between galaxy properties and spectra; this

means this model can also be adapted for other galaxies where full spectra cannot be obtained

(e.g., large surveys like Vera Rubin LSST where exhaustive spectral follow-up is not feasible).
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Appendix Modern Milky Way Analog Searches

This Appendix provides the updated code for finding Milky Way analog galaxies, original

released in Ref. [219]. While selecting analogues is no longer the technique we use to constrain

Milky Way photometric predictions, Milky Way analogues (and analogue finding in general)

still have a variety of relevant applications to address other science questions. For example,

we have been working with students who are searching for stellar analogues using our code.

The statistical method of using Milky Way analogues was presented first in Ref. [219],

as a way to determine the Galaxy’s photometric properties to high precision. The physical

properties used in this work included stellar mass and star formation rate, properties that

have been shown to be closely correlated with galaxy luminosity and color [19], in addition

to an inclination cut for high fidelity results. This work relies on the key assumption that

galaxies that match the Milky Way in stellar mass and star formation rate should also have

similar photometric properties to the Milky Way.

In summary, this was done by constructing a sub-sample of galaxies whose distributions of

stellar mass and star formation rate match the probability distributions of these quantities for

the Milky Way. To select an analogue, first a pair of values is drawn from the fiducial Milky

Way stellar mass and star formation rate probability distribution function (independently).

Then from the sample of galaxies an object within 1% of the drawn pair is selected. If

one cannot be found tolerance of up to 3% is allowed. This draw and search is performed

5,000 times. Afterwards objects that are edge on and disk dominated are excluded. This

yielded 3,402 objects of which 935 were unique galaxies. Duplicates are necessary so that the

property values for the Milky Way analogues match the posterior distribution of the Milky

Way properties (stellar mass and star formation rate).

There are several drawbacks to this analogue finding method, which we address in this

paper with both an updated algorithm in addition to a new method for determining Milky

Way photometric properties without the use of analogue galaxies (see Section 4.3.2). One

such drawback, which we focus on in this subsection, is the slow algorithm. Another high-

dimensional drawback, which we expand upon in Section 4.3.1, is the diminished number
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of Milky Way analogue galaxies as we expand to higher-dimensional parameter space. We

would like to add that despite these drawbacks the application of Milky Way analogues (and

analogue finding in general) is still relevant to many other studies outside of photometric

predictions.

The original analogue search algorithm is a simple geometric search for objects in the

catalog within that lie within up to 3% of the Milky Way draw. While a first pass of

selecting analogues only takes a few minutes, calculating systematics such as Eddington bias

can require many iterations of selecting analogue samples (see Section 4.9 for details on

Eddington bias). This process can be very time intensive (∼ 1 day in time space). The

time insensitivity is one of the major motivators to switching to a different type of search

algorithm, namely a binary tree.

We have translated the code from IDL to Python and made use of a k-d tree, which is

a binary tree with points in k-dimensional space [24]. This tree is a very useful structure

for multidimensional searching. This search method is significantly more efficient than the

geometric search - analogues can be selected in an order of seconds, and systematics can be

calculated in minutes. First all values within the volume-limited catalog are standardized

by the Milky Way properties. For example the mean Milky Way stellar mass is subtracted

from the stellar mass of each galaxy in the catalog and then the resulting value is divided

by the standard deviation of the Milky Way’s stellar mass. This ensures that all of the data

is on the same scale when put into the tree. Finally, using the Ref. [364] spatial.cKdDTree

we construct a k-d tree from this scaled data.

Then, as in the original algorithm, a point can be drawn randomly from the fiducial

probability distribution function of the Milky Way parameters of interest. For the purposes

of this example we will consider a pair of values in stellar mass and star formation rate

(M∗, SFR). This pair of values must also be standardized, as the tree contains standardized

observations. Using this pair we then query the k-d tree for the 7 nearest neighbors to this

pair within the tree. We chose 7 as our optimum values via k-s statistical tests for M∗ and

SFR as a function of neighbor number - 7 neighbors had the optimum convergence. We also

employ an upper bound to the neighbor distance. All neighbors selected must be within

6 − σ of the Milky Way mean properties.
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After the 7 nearest neighbors to this draw in Milky Way parameters space are selected,

a single analogue must be chosen from these neighbors. We elect to assign weights to each

neighbor based on their distance in parameter space from the query point. Our weights (w)

are equal to

w =
e−d2/2∑
(e−d2/2)

, (56)

where d is the Euclidean distance in parameter space of the neighbor (e.g., d(x⃗, y⃗) =√∑n
i=1(xi − yi)2 for two n-dimensional vectors). Then a Milky Way analogue is selected

from a random draw amongst these neighbors, using these weights. The analysis then pro-

ceeds as outlined in Ref. [219].

We present in Fig. A1 a comparison in log star formation rate (log (SFR) [M⊙yr−1])

versus log mass (log (M∗) [M⊙]) space of Milky Way analogous selected from the Ref. [219]

method in orange and this updated method in purple. The inner and outer ellipses mark the

1σ and 2σ covariance of the analogues. These ellipses overlap almost identically from both

samples. In the parameter histograms we also include the fiducial Milky Way probability

distribution function for comparison, denoted by a black line. The analogues from both

algorithms overlap closely and match the Milky Way PDF well. In addition our optical

photometric results via this new algorithm are within 1σ of the values reported in Ref. [219]

and often are almost identical. This streamlined algorithm for selecting Milky Way analogues

drastically reduces how time intensive analogue selection and analysis can be. Additionally

it is easy to scale the k-d tree method to more than two parameters, which will allow us

to better constrain the Milky Way photometric properties. This updated code is publicly

available at the Milky Way Analogue GitHub page1.

1https://github.com/cfielder/Milky-Way-Analogs
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Figure A1: Log star formation rate (log(SFR) [M⊙yr
−1]) as a function of log mass (log(M∗) [M⊙]) for the

Milky Way analogues selected in Ref. [219] (orange) and in this work (purple). Points that appear darker
have been selected more times as an analogue than the fainter points. The corresponding ellipses note the
1σ and 2σ covariance for the analogue sample which overlap almost perfectly from both sources. We also
include histograms of the selected analogue’s mass and star formation rate. For reference the black lines
indicate the fiducial Milky Way PDF for of stellar mass and star formation rate. It is evident that the new
analogue selection algorithm yields very similar results to the previous algorithm, and that the new method
matches with the fiducial Milky Way PDF slightly better.
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[133] Anna Gallazzi, Stéphane Charlot, Jarle Brinchmann, Simon D. M. White, and
Christy A. Tremonti. The ages and metallicities of galaxies in the local universe.
Monthly Notices of the Royal Astronomical Society, 362(1):41–58, 9 2005.

[134] Melanie A. Galloway, Kyle W. Willett, Lucy F. Fortson, Carolin N. Cardamone, Kevin
Schawinski, Edmond Cheung, Chris J. Lintott, Karen L. Masters, Thomas Melvin, and
Brooke D. Simmons. Galaxy Zoo: the effect of bar-driven fuelling on the presence of
an active galactic nucleus in disc galaxies. Monthly Notices of the Royal Astronomical
Society, 448(4):3442–3454, 4 2015.

[135] L. Gao, J. F. Navarro, C. S. Frenk, A. Jenkins, V. Springel, and S. D. M. White. The
Phoenix Project: the dark side of rich Galaxy clusters. Monthly Notices of the Royal
Astronomical Society, 425(3):2169–2186, 9 2012.

[136] L. Gao, S. D. M. White, A. Jenkins, F. Stoehr, and V. Springel. The subhalo pop-
ulations of ΛCDM dark haloes. Monthly Notices of the Royal Astronomical Society,
355:819–834, 12 2004.

[137] Liang Gao, Julio F. Navarro, Shaun Cole, Carlos S. Frenk, Simon D. M. White,
Volker Springel, Adrian Jenkins, and Angelo F. Neto. The redshift dependence of
the structure of massive Λ cold dark matter haloes. Monthly Notices of the Royal
Astronomical Society, 387(2):536–544, 6 2008.

[138] Liang Gao and Simon D. M. White. Assembly bias in the clustering of dark matter
haloes. Monthly Notices of the Royal Astronomical Society, 377(1):L5–L9, 4 2007.

269



[139] Shea Garrison-Kimmel, Philip F. Hopkins, Andrew Wetzel, Kareem El-Badry,
Robyn E. Sanderson, James S. Bullock, Xiangcheng Ma, Freeke van de Voort, Zachary
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