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Parametric controls for modular quantum computing and quantum devices

Pinlei Lu, PhD

University of Pittsburgh, 2022

In superconducting quantum information, qubits are made from low-loss superconduct-

ing capacitors, inductors, and transmission lines in combination with nonlinear Josephson

elements. In superconducting circuits, the Hamiltonian of the system is very flexible, allow-

ing us to build very nonlinear circuits, like qubits, or very linear circuits, like parametric

amplifiers, or anything in between, simply by changing the size of the Josephson junctions

we use. The challenge is both to explore which circuits are feasible to realize in the labora-

tory and embody just the right Hamiltonian to result in a desired quantum behavior. On

the other hand, parametric controls, as an approach acts on the Hamiltonian parameter,

provides even more potential of realizing different quantum devices for various scenario.

This dissertation begins with a discussion of the theory and simulation of quantum

superconducting circuits, including circuit quantum electrodynamics and electromagnetic

simulation. It next covers the nano-fabrication techniques I used during my PhD. It also

contains a review of microwave measurement techniques for quantum circuits.

The thesis next details the experimental realization of a simple, two-mode, quantum-

limited, Josephson junction based frequency comb, including both the theoretical analysis

on the instability of the circuits and the experiments on frequency and time domain.

More, we have extended the Hamiltonian engineering techniques to realize a paramet-

rically driven, modular architecture for coupling superconducting qubits. We have realized

a ‘tree’ of microwave modes, which can mediate long-range interactions between individual

bits by a series of parametric interactions. This architecture, in contrast to the current re-

liance on the field nearest-neighbor interaction, realizes a far denser of network of interaction

between qubits, and thus makes the challenge of achieving large-scale quantum machines less

daunting.

In the end, my research has shown that devices that are thought of as very different

(qubits and amplifiers) can be built and controlled very similarly. In ongoing work detailed

iv



in the final sections of this thesis, we have used our growing command of parametric control

and Hamiltonian engineering to extend the idea of many-to-many connections among modes

via a central SNAIL to realize a 4 transmon ‘quantum module’.
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1.0 Introduction

You can never represent yourself totally .... to seek self -knowledge is to embark on a
journey which ... will always be incomplete, cannot be charted on a map, will never halt,
cannot be described.
– Douglas Hofstadter

Due to the quarantine, I’ll only be telling inside jokes.
- Meme from internet found at the start of the third year of COVID-19

Why do people want to read yet another dissertation related to quantum computation?

What does a graduate student do in a superconducting quantum computing lab? How can

so many seemingly random science projects relate to each other? If there is one element

threading my whole graduate study, what is it? How will we organize a six-year study into

just 200 pages? The purpose of this introductory chapter is trying to answer these question

by going through my personal experience during my study. The intent is to give new students

coming to this field some basic insights; if this can give you one extra perspective on your

research, it will have been a worthwhile effort

My story begins in Sec. 1.1 with the basic understanding of quantum engineering and my

current research direction. In Sec. 1.2, I will cover all research projects I have participated

in and try to find a connection between them. Next, Sec. 1.3 presents an important element,

parametric control, which overtook the Hatlab during my time in graduate school, and

discuss why it could change the game in superconducting systems. Last, in Sec. 1.4, I’ll lay

out the overall structure of this thesis

1.1 Quantum engineering and quantum computation

Quantum mechanics famously allows objects to be in two places at the same time. The

same principle can be applied to information, represented by bits: quantum bits can be both

zero and one at the same time. The field of quantum information science seeks to engineer

real-world devices that can store and process information using quantum states. It is be-
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Figure 1: Quantum architecture adapted from Ref. [4] a) Surface-code structure; b)

Modular structure.

lieved that computers operating according to such principles will be capable of solving some

important problems exponentially faster than existing classical computers, while quantum

networks have provable security guarantees. However, constructing such systems is a signif-

icant challenge, as quantum effects and hence quantum information, are extremely fragile,

and typically die very quickly due to unwanted interactions with their environment.

For decades, quantum computing has been viewed as a futuristic technology–one will

change the world if it ever evolves from the fantastical to the practical. However, machines

must contain far more qubits than they do today to become useful. Moreover, we must

protect quantum computers from errors by spreading information across multiple physical

qubits, requiring still more qubits. Companies such as IBM and Google are currently mount-

ing a direct assault on the problem by simply building bigger in their chosen architecture,

the so-called surface code [1, 2, 3].

In academic research, we cannot match these efforts; on the other hand, it is not clear

that we should try. Instead, we can best benefit the field by searching for new qubits,

controls, and architectures that can allow us to shortcut this grind, producing machines that

can operate better with far fewer qubits. As we do this, however, we must keep in mind that
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single- and two-qubit experiments are not enough to truly prove ideas out, which must scale

to the thousand plus qubit level. Instead, we must push ourselves to design systems that are

both inventive enough to be interesting and big enough to be convincing.

In my research at the University of Pittsburgh, I have been working towards such a goal,

seeking to create a quantum network with dense local couplings among multiple quantum

objects. More importantly, these couplings not only have enough coherence to produce

high-quality nearest-neighbour couplings [1, 2, 3], which the surface code is based on, also

can be generally applied on multi-layer structure. That’s why we chose modular quantum

architecture as an alternative to connecting several small “quantum modules” via parametric

coupling onto a quantum bus [5, 6, 7, 8]. In my most recent experiment[4] in partnership

with Chao Zhou, we realized a parametrically driven, modular architecture for coupling

superconducting qubits. We envision a “tree” of microwave modes that can mediate long-

range interactions between individual bits through a series of parametric interactions. This

architecture, in contrast to the current reliance in the field of nearest-neighbor pair-wise

interactions builds a much denser network of gates between qubits, and thus makes the

challenge of achieving large-scale quantum machines less daunting.

1.2 Different researches in superconducting quantum computing

On the other hand, studying in a superconducting quantum computing lab doesn’t mean

the only job is making a quantum computer. In my research I have tried multiple projects, in-

cluding traveling wave gate design, quantum-limited amplifier operation, two-mode squeezed

light readout, etc. I must admit during each process, I never thought they had deep con-

nections with each other. However, at the end of the day, I have come to realize that each

project, while different on the surface, relies on a common set of techniques and ways of

thinking.

The first project I have participated is designing a traveling wave gate for the flying

microwave photon qubits. Even though this project didn’t turn into a device in the end, it

was my entry point to circuit quantum electrodynamics (cQED) [9, 10, 11, 12, 13] which is the
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single most important and powerful tool in superconducting systems. It is no exaggeration

to say that most projects across so many groups and years, all start from circuit QED.

It is the study of the interaction of nonlinear superconducting circuits, acting as artificial

atoms or as qubits for quantum information processing, with quantized electromagnetic

fields in the microwave frequency domain. Moreover, circuit QED has led to advances in the

fundamental study of light-matter interaction, in the development of quantum information

processing technology, and in the exploration of novel hybrid quantum systems [14]. With

the help from Prof. Hatridge and Prof. Mong, we have explored lots of different combination

of circuit design and Hamiltonian engineering with continue and discrete variables crossing

the whole system. I analyzed the system from the very first Lagrangian to the different

driven frame under different approximations. I have really come to appreciate the time we

have spent together on understanding this theory, which gave me a very solid cornerstone

for my next several projects.

Then, I got the chance of working with Tzu-chiao Chien and Olivia Lanes on parametric

amplifier design which give me lots of chances studying simulation, fabrication and low-

Q mode measurement [15]. This period of time helped me gather lots of experience as a

quantum hardware researcher: the simulations which connect the Hamiltonian and physical

objects and the fabrication which brings them reality. Next, we cool the samples down to

cryogenic temperature (< 20mK) and measure them with radio frequency (RF) instruments.

All these experiences continued throughout my PhD, however, if there is one thing I learned

from Tzu-chiao and Olivia, it is that every tiny step in the whole process matters in the end,

including a small 3D structure overlap in fabrication and the fine details of the attenuation

arrangement along the fridge input lines.

Later, I have participated in another project with Xi Cao and Gangqiang Liu on two-

mode squeezed light readout. From this project, I started learning qubit measurement and

operation [16]. One of my key contributions, together with Chao Zhou, was to develop the

whole setup of qubit measurement based on FPGA-based Keysight electronics with Python

operational code. During this process, I gained experience on both software programming

and hardware design. Also, I realized that graduate school, especially in an experimental

lab, required me to master not only quantum physics, but also plumbing, electricity, coding,
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machining and so on. Also after this project, I have grown strong interest on quantum

computation and parametric control

Next, I started an independent experimantal project in collaboration with a theory group

from Princeton University, working with Saeed Khan and Prof. Hakan Tureci on a Josephson

junction-based frequency comb. I used everything I had learned in my first years in the lab,

and in close collaboration with Saeed, we together finished the project and I produced my

first first-author publication [17]. This experience taught me how hard it could be to complete

a whole science project, starting from the theory design, to the fabrication and measurement

and repeating these over and over. The final part, writing the manuscript, was also a big

challenge for me. In the end, however, it all pays off, since every tiny step in science is

irreplaceable.

Finally, Chao Zhou and I have paved the way to build a modular quantum computer

using parametric controls. This time, we almost start from scratch: the fridge input and

output lines had to be carefully designed to protect the coherence of the system, plus a

great deal of work on all filters, attenuators and isolators we have designed for packaging our

machine. The quantum computer software platform required at least three major upgrades

during the project, not only to catch up with the progress with the hardware, but also to

suit the more and more complicated needs of our experiments. I still remember the day we

first made a Bell state in the experiment, I felt so touched that I thought “this is something

I want to do my whole life. And I believe this is also something I want more people to feel

one time in their life.”

1.3 Parametric control changes the game

Among my many projects while in graduate school, I find parametric controls to be the

single thread tying all my projects together. However, the definition of this term can be a

bit difficult. “A parametric oscillator is a driven harmonic oscillator in which the oscillations

are driven by varying some parameter of the system at some frequency, typically different

from the natural frequency of the oscillator.” Above is from Wikipedia [18], the definition of
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‘parametric oscillator’. However, when people first hear about parametric control in quantum

systems, I don’t think this definitions helps them at all; or at least I personally felt confused

by it for a period of time. After several years’ study, I think a more accurate description

is actually from optics. In the optical system, An optical parametric oscillator (OPO) is a

parametric oscillator that oscillates at optical frequencies. It converts an input laser wave

(called ”pump”) with frequency ωp into two output waves of lower frequency (ωs, ωi) by means

of second-order nonlinear optical interaction. The sum of the output waves’ frequencies is

equal to the input wave frequency: ωp = ωs + ωi. For historical reasons, the two output

waves are called ”signal” and ”idler”, where the output wave with higher frequency is the

”signal” [19].

The reason I think this makes more sense is that two keywords it has mentioned: (fre-

quency) ‘convert’ and ‘nonlinear’ interaction. Almost the first requirement of a parametric

system is a nonlinear term in the Hamiltonian, which can be (counting the number of raising

and lower operators) third order, fourth order, or even higher. Then, by sending a ‘pump’

tone into the system, these terms can generate some extra interaction not present in the

undriven system, which includes but is not limited to: Rabi oscillation, photon conversion,

amplification and so on. Actually, almost every experiment I have participated, there is one

or more parametric interactions inside controlling the system.

For example, the very first example from Hatlab is quantum-limited amplification [20],

and this is also a very classical application of parametric control in superconducting quantum

system. By pumping the frequency summation of two modes with the third order nonlinearity

in the system, the photon number in both modes can be amplified by 100 times more or even

more with only a bit more than a half photon of added noise. In practice, this amplification

process can also use fourth order term and not limited to single mode ‘phase sensitive’

amplification and two mode ‘phase preserving’ amplification [15, 21, 22, 23].

Then, later in our lab, Xi Cao and Maria Mucci have also developed a technique using

parametric control to change a qubit’s bath temperature (M. Mucci, X. Cao, et al. in

preparation). Here, they use a third order nonlinearity to couple the qubit with a lossy

mode, and then by pumping the transition between a qubit state and the lossy mode, they

can drive the system and have the qubit to nearly any state they want.
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Next, in our recent modular quantum computer experiment, we have again utilized para-

metric controls on qubit operation, including both single- and two- qubit gates [4], [M. Xia,

et al. in preparation]. At the end of the day, for a 4-bit quantum system, we have used

a single pump line realizing all ten possible operations: four families of single-qubit gates

and six two-qubit gate pairs. The details we will cover in the following sections, but in as a

preview: the third order term naturally enables singe qubit Rabi oscillations with two pump

photons and two qubit interactions with one pump photon.

However, this is very far away from the end of parametric control in quantum systems.

Just the experiments I can think about are following: First, parametric readout. Since

we have already integrated parametric single-qubit gate and two-qubit gate together, why

can’t we also try parametric readout? There are dispersive terms hidden in the fifth order

nonlinear terms, this could be a good target for design. Second, entanglement stabilization.

There are already lots of non-Hermitian Hamiltonian engineering [24, 25] based on parametric

controls. As we already can connect multiple desired modes and engineering system bath

via parametric systems, I don’t think this should be very far away. Last, One benefit of

parametric control is that it doesn’t limit the number of parametric tones in the system.

Based on the single- and two- qubit gates, I think we can think more aggressively about

multiple qubits gates, including three- or even four- qubit gates, which can boost quantum

computing operational speed by requiring building larger unitaries directly instead of only

relying on two-qubit gates.

1.4 Dissertation organization

My thesis is organized as follows: First, Chapter 2 builds the cornerstone of the whole

structure, theory and simulation, where the theory focuses on circuit QED, and the sim-

ulation section presents how to transfer from a Hamiltonian into a physical object using

simulation tools. Next, Chapter 3 is devoted to superconducting device fabrication which

can bring the simulated object to the life. Next, in Chapter 4, I work through the basics of

RF measurement on a cold sample. At the same time, I also introduce a crucial component
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I spent a lot of time on during my graduate study: parametric gate tune up.

Chapter 5 described my first independent project, realizing a Josephson junction based

frequency comb via quantum engineering. More specifically, we start by discussing the insta-

bilities of a particular non-linear two-mode system; and then use a strong drive with weak

nonlinearity to generate a comb spectrum in the frequency domain; the chapter concludes

with comments about system coherence and chaos.

Next, in Chapter 6, I discuss our efforts to build a modular quantum computer using

all techniques I have detailed up to this point, including Hamiltonian engineering, nano-

fabrication, and quantum architecture design together with lots and lots of parametric gate

tuneup. I show how to make the first part of a modular quantum computer, a quantum state

router, where we combine a waveguide and center SNAIL together.

Lastly, Chapter 7 discusses a bit about our ongoing progress on the second part of the

modular quantum computer, a 4-bit quantum module, the conclusions I have drawn from

my work, and ends with the my future outlook.
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2.0 Theory and simulation

2.1 Circuit QED

In the 1980s the first Josephson junction-based superconducting circuits were invented

to explore quantum mechanical effects at the macroscopic level[26]. Since the early 2000s,

these circuits, have been realized as qubits and have been studied intensely for potential

applications in quantum computation and quantum information science. While atomic cavity

QED[27] inspired many of the early developments of these superconducting circuits, the

truth that a superconducting system can be made to strongly and controllably interact with

microwave photons and also store the quantized electromagnetic filed led to the creation

of the field of circuit QED. Very soon, circuit QED plays an essential role in all current

approaches to quantum information processing with superconducting circuits, and it allows

the study and control of light-matter interaction at the quantum level in unprecedented

details.

For over 20 years, circuit QED has been developed rapidly and systematically. While

it built its success on strongly-coupled qubit-cavity experiments [9, 10, 11, 12, 13], it had

also been firmly established as a versatile platform to realize a broader variety of quantum

nonlinear systems [28]. Josephson-junction based superconducting circuits have also enabled

devices from quantum-limited amplifiers [29, 30, 31, 32, 33] and single-microwave photon

detectors [34, 35, 36, 37] with application ranging from quantum information processing to

the search for dark matter axions, to hybrid quantum systems [14].

In this section, instead of reviewing the broad set of concepts realized from circuit QED,

I’m going to focus on three major parts I have been studied and explored during my doc-

toral: superconducting circuit elements; measurement in circuit QED and parametric driven

system.
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2.1.1 Superconducting circuit elements

Since the first cooper pair box qubit has been invented in 2000 [38, 39], various kinds

of superconducting circuit elements have been created for all different purposes, including

quantum-limited amplifiers, photon detectors, fast switches and qubits. By changing the

combination and the size of the capacitance, inductance and the most important part, the

nonlinear inductance, Josephson-junction, the circuit can perform different functions, also

weaken different kinds of noise effects. Here I am going to take several elements as examples

explaining the philosophy behind circuit QED, and the applications of different combinations.

2.1.1.1 The quantum LC resonator and transmon in circuit QED

Before we describe something nontrivial, let’s start from the easiest model, the LC res-

onator, to get the idea of circuit QED and make the symbols consistent.

a) b)

V
 (
𝚽

) 
(a

. u
.)

𝚽/𝚽00

...

ħωr
|0〉

|1〉

|2〉

|3〉

C L

Figure 2: The quantum LC oscillator. a) Schematic of LC resonator. b) Harmonic

potential versus flux of the LC circuit with Φ0 = h/2e the flux quantum.

As shown in Fig 2a), an LC oscillator is characterized by its inductance L and capacitance

C, where they can also be derived as angular frequency ωr = 1/
√
LC and characteristic

impedance Zr =
√
L/C. The total energy of the circuit can be written as:

HLC =
Q2

2C
+

Φ2

2L
, (1)
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where Q is the charge on the capacitor and Φ is the flux threading the inductor. Here the

definition of charge and flux are inherited from classical circuit, where Q(t) =
∫ t

t0
I(t′)dt′ and

Φ(t) =
∫ t

t0
V (t′)dt′ where the voltage and current are zero at time t0.

Very naturally, this expression gives us an analogy of a mechanical oscillator with conju-

gate variables Q and Φ. Therefore, quantization will automatically apply to the Hamiltonian

with the commutation relation:

[Φ̂, Q̂] = iℏ (2)

Then, it is useful to further introduce the standard annihilation â and creation â† operators

of the the LC oscillator, where they have been defined as:

Φ̂ = ΦZPF(â
† + â) Q̂ = iQZPF(â

† − â) (3)

with the characteristic magnitude of the zero-point fluctuations of the flux ΦZPF =
√

ℏZr/2

and the charge QZPF =
√

ℏ/2Zr. Now, the Hamiltonian can be rewritten as:

ĤLC = ℏωr(â
†â+ 1/2) (4)

with eigenstates â†â |n⟩ = n |n⟩ for n = 0, 1, 2, .... Here, I want to emphasize that after the

quantization of circuit, â† physically creates a photon of frequency ωr stored in the circuit,

and â destroy one.

Till here, we have completed quantization of LC oscillator. Before we move on, the very

first question we ask is that is it possible to operate the circuit in a regime where quantum

effects are important? For this to be the case, there are at least two conditions that must

be satisfied:

First, the system need to decouple enough from the noisy world. In other words, the

quality factor Q = ωr/κ, where κ is the bandwidth of the cavity, should be big enough that

the energy levels are much narrower than their separation.

Second, the temperature of the system needs to be low enough. We should keep in mind

the truth that, 1GHz × h ∼ 50mK × kb, and the thermal energy kbT of the environment

should be way much smaller than the energy separation ℏωr.

With these two conditions satisfied, a simple LC oscillator can be operated in the quan-

tum regime, which means that the circuit can be initialized in its ground state |n = 0⟩ by

waiting for several times (∼ 5) of photon lifetimes Tκ = 1/κ.
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2.1.1.2 Josephson junction (JJ) and JJ-based qubit

Now we can introduce some non-trivial elements into the system. Here, ‘nontrivial’

comes from the fact that even though the oscillator we discussed above can be prepared in

the quantum mechanical ground state, it is still very hard to directly observe clear quantum

behavior. Or in quantum computation language, without some degree of nonlinearity, en-

coding and manipulating quantum information in such system becomes almost impossible.

Fortunately, now we can introduce one of the most important elements in superconducting

circuit, Josephson junction (JJ), with decent nonlinearity while avoiding extra losses.

Here, I’m going to skip most of the details of the JJ, but emphasize two important

Josephson relations:

I = Ic sinφ (5)

V =
Φ0

2π
· dφ
dt

or φ(t) = 2π
Φ(t)

Φ0

= 2π

∫
dt′V (t′)

Φ0

(6)

where the first one indicates the relation between supercurrent I and the phase φ difference

between the superconducting condensates (superconducting order parameters), here Ic is

the junction’s critical current. And the second one reveals the time dependence of the phase

different related to the voltage across the junction, where Φ0 = h/2e is the flux quantum.

Notice here, sometimes, we can see ϕ0 in other articles, where ϕ0 = ℏ/2e represents reduce

flux quantum. And another thing here, superconducting phase φ is a compact variable,

φ = φ+ 2π, and Φ can take arbitrary real values with ‘mod 2π’.

Taken together, Josephson relation actually connect current I and flux Φ, where geo-

metric inductance has a very similar relation: Φ = LI. For this reason, we also treated

Josephson junction as a nonlinear inductor with following inductance:

LJ(Φ) =

(
∂I

∂Φ

)−1

=
Φ0

2πIc

1

cos (2πΦ/Φ0)
(7)
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Notice here, the inductance of Josephson junction depends on flux Φ. Furthermore, we can

make analogy of the energy stored in the linear inductor: E =
∫
dtV (t)I(t) = Φ2/2L, we

have

E =

∫
dtV (t)I(t) =

∫
dt

(
dΦ

dt

)
I = Ic

∫
dt

(
dΦ

dt

)
sin

(
2πΦ

Φ0

)
= −EJ cos

(
2πΦ

Φ0

)
(8)

With EJ = Φ0Ic/2π the Josephson energy. This quantity is proportional the rate of tun-

nelling of Cooper pairs across the junction.

After we have figured out the junction energy part, there are tons of freedom shunting

the junction with all kinds of elements. The most common one is a capacitively shunted

Josephson junction as shown in Fig. 3 a).

a) b) c) d)

Transmon Quantronium Flux qubit Fluxonium

Figure 3: JJ-based qubit. By combining Josephson junction with other elements, there

are lots of possibilities for all kinds of qubits. In general, different designs bring different

sensitivity to the environment. Based on the requirement, we can choose different structure

for use.

For this particular one, the quantized Hamiltonian reads:

Ĥ =
(Q̂−Qg)

2

2(CS + CJ)
− EJ cos

(
2π

Φ0

Φ̂

)
= 4EC(n̂− ng)

2 − EJ cos φ̂ (9)

Where CS and CJ are shunt capacitance and junction’s capacitance, normally CS ≫ CJ , here

we also define C = CS+CJ . For the Q̂ and Φ̂ are conjugate operators that are similar as the

one in LC oscillator. In second equal sign, we have also defined n̂ = Q̂/2e as charge number
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operator, the phase operator φ̂ = (2π/Φ0)Φ̂ and charging energy EC = e2/2(CS + CJ).

Another parameter we haven’t introduced is a possible offset charge ng = Qg/2e due to

capacitive coupling of the transmon to the external charges. This term is unavoidable for

capacitive coupling element, however, by controlling the ration between EJ and EC , we can

change the system’s sensitivity to the offset charge. A very famous work from J. Koch in

2007[40], where he carefully compare the relation between sensitivity and EJ/EC . And in

the end, he make the conclusion that when EJ/EC ≫ 1, the variance of the charge degree

of freedom is large and the variance of its conjugate variable φ̂ is correspondingly small. In

this situation, it is instructive to rewrite Eq. 9 as:

Ĥ = 4EC n̂+
1

2
EJ φ̂

2 − EJ(cos φ̂+
1

2
φ2) (10)

And because ∆φ̂ =
√

⟨φ̂2⟩ − ⟨φ̂⟩2 ≪ 1, therefore the Hamiltonian can be truncated to its

first nonlinear correction:

Ĥtransmon = 4EC n̂+
1

2
EJ φ̂

2 − 1/4!EJ φ̂
4 (11)

which is so-called the transmon energy.

Next, it is naturally to introduce creation and annihilation operators chosen to diagonal-

ize the first two terms, where:

φ̂ =

(
2EC

EJ

)1/4

(b̂† + b̂)

n̂ =
i

2

(
EJ

2EC

)1/4

(b̂† − b̂)

(12)

Now the equation finally leads to:

Ĥtransmon =
√

8ECEJ b̂
†b̂− EC

12
(b̂† + b̂)4 ≈ ℏωq b̂

†b̂− Ec

2
b̂†b̂†b̂b̂ (13)

where ℏωq =
√
8ECEJ − EC . There is approximation where we only keep terms that have

the same number of creation and annihilation operations. The approximation holds because

any terms with an unequal number of b̂ and b̂† will be oscillating in a frame rotating at ωq.

If the frequency of these oscillations is larger than the prefactor of the oscillating term, then

this term rapidly averages out and can be neglected. This Rotating-Wave Approximation

(RWA) is valid if ℏωq ≫ Ec/4, an inequality that is easily satisfied in the transmon regime.
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2.1.1.3 Exchange interaction between a transmon and an oscillator

Having introduced the two main characters in this section, the quantum harmonic oscil-

lator and the transmon artificial atom, we are now ready to consider their interaction. As

we have just described, because of the large size coming from the requirement of having a

low charging energy (big capacitance), transmon qubit is very easily capacitively coupled to

microwave resonators, as shown in Fig. 4.

Figure 4: Schematic representation of a transmon qubit coupled to a resonator

There are tons of literature have systematically derived the Hamiltonian of the circuit.

There are two of them I personally feel super useful and insightful during my graduate study:

One is K. Geerlings’s dissertation [41], and another one is a review of circuit QED [9]. I

don’t think it is necessary repeating the work, the only point I want to restate here is the

result of the Hamiltonian:

Ĥ/ℏ = ωrâ
†â+ ωq b̂

†b̂+
α

2
b̂†b̂†b̂b̂+ χâ†âb̂†b̂ (14)

where α = −EC is the anharmonicity of the qubit, and χ = −2 g2EC

∆(∆−α)
is the dispersive

coupling between cavity and qubit.

We will discuss more details in Sec. 2.1.2 about how do we use this Hamiltonian to

perform measurement in qubit-cavity system.
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2.1.1.4 Superconducting Nonlinear Asymmetric Inductive eLement (SNAIL)

Except for the above JJ-based qubits, there are lots of other JJ-based elements that have

been broadly used in quantum-limited amplifier, qubit coupler, bath engineering and so on.

And one of the elements, that has been used several times during my graduate study, is

Superconducting Nonlinear Asymmetric Inductive eLement (SNAIL) [42]. In this section,

I’m going to carefully derive the Hamiltonian details related to SNAIL and introduce some

basic applications people have utilized.

The SNAIL consists of a superconducting loop of n large Josephson junctions and a single

smaller junction with tunneling energies EJ and αEJ respectively (again EJ = φ2
0/LJ). The

inductive energy of SNAIL can be written as:

USNAIL(φ) = −αEJ cos(φ)− nEJ cos

(
φext − φ

n

)
(15)

where φ is the superconducting phase across the small junction, and φext = 2πΦext/Φ0 is the

reduced applied magnetic flux threading the SNAIL loop.

Through numerical minimization of Eq. 15, we analyze the SNAIL’s mixing capabilities

by Taylor expanding about the minimum φmin to obtain the effective potential for φ̃ =

φ− φmin:

Ueff (φ̃)/EJ = c2φ̃
2 + c3φ̃

3 + c4φ̃
4 + ... (16)

Experimentally, we choose n = 3 for Dolan bridge fabrication process, and we specialize

all further analysis to the case n = 3, so we can have all coefficients as:

c2 =
1

6

(
cos

(
φext − φmin

3

)
+ 3α cos(φmin)

)
c3 =

1

54

(
cos

(
φext − φmin

3

)
− 9α cos(φmin)

)
c4 = − 1

648

(
cos

(
φext − φmin

3

)
+ 27α cos(φmin)

) (17)

Furthermore, quantization can be achieved in the canonical way by replacing the flux

amplitudes of the equivalent oscillators by operators as:
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Figure 5: SNAIL expansion coefficient. Assume α = 0.25 and EJ = 1, we numerically

calculate all coefficients with different external flux threading the SNAIL.

φ̃ =

√
ℏ
2
Zeff

(
a+ a†

)
(18)

In order to easily compare all terms’ magnitude later, here we explicitly write down all

the expansion of 2nd, 3rd, 4th order terms in the Hamiltonian.

c2

(√
ℏ
2
Zeff

)2

(a† + a)2 + c3

(√
ℏ
2
Zeff

)3

(a† + a)3 + c4

(√
ℏ
2
Zeff

)4

(a† + a)4

= c2
ℏ
2
Zeff

(
2a†a+ a†a† + aa+ 1

)
+ c3

ℏ 3
2

2
√
2
Z

3
2
eff

(
a†a†a† + 3a†a†a+ 3a†aa+ aaa+ 3a† + 3a

)
+ c4

ℏ2

4
Z2

eff

(
a†a†a†a† + 4a†a†a†a+ 6a†a†aa+ 4a†aaa+ aaaa+ 12a†a+ 6a†a† + 6aa

)
(19)

As we can see, there are multiple nonlinear terms in the Hamiltonian which may matter

during the parametric process. I’m going to pick up several reasonable parameters and insert

into the expression to compare the magnitude of these terms with external flux.

Assuming α = 0.25, ωs(φext=0) = 5(2π)GHz, EJ = 2.166 ∗ 10−22 (LJ = 0.5 nH). Then

we first can plot the modulation of SNAIL with flux:
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Figure 6: SNAIL frequency modulation. With the external flux threading the SNAIL,

the frequency of SNAIL modulate from 2 to 5 GHz.

Next we can compare the following terms: 3rd order: a†a†a†, a†a†a, 4th order: a†a†a†a†,

a†a†a†a, a†a†aa with flux as shown in Fig. 7.

One thing need to be noticed here: by carefully tuning up the flux biasing the SNAIL,

we can find a good point where Kerr terms approaches zero. However, in the parametric

regime, when the circulating photon inside the SNAIL becomes larger, the even higher order

terms show up, and the effective Kerr term can not be ignored in the system.

In the experimental scenario, we generally apply different pumping tone onto the device,

which will result in different rotating frames. I’m going to analyze the details in different

frames in section 2.1.3.

2.1.2 Measurement in circuit QED

Circuit QED has been developed as a super powerful tool in superconducting system,

including circuit analysis, Hamiltonian engineering, electromagnetic field simulation and etc.

And one other important application is the measurement, not only the steady state solution,

but also dynamical response. Analyzing the physics process of measurement can give us a

rough idea of quantum operation in the later sections.
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Figure 7: SNAIL 3rd order and 4th order magnitude with flux. We calculate the

exact magnitude of the 3rd and 4th terms to have a straight idea of how big are these terms.

2.1.2.1 Steady state solution of cavity measurement

In this section, we start from measurement of a linear mode, focusing on comparing the

classical method and quantum method with both reflection and transmission analysis. As

shown in Fig. 8, we take a series LCR oscillator as the example, and use the classical method

to calculate the cavity response [43].

From the parameter in the Fig. 8, we can first define following numbers:

Qint = ω0L/R

Qext = ω0L/Z0

ω0 = 1/
√
LC

(20)

At steady state condition, the reflection can be written as:

Γ =
V −
0

V +
0

=
Zl − Z0

Zl + Z0

(21)

where Zl(ω) ≈ R + j 2L∆, and ∆ = ω − ω0 to the first order. In order to compare with

quantum method, the expression can be written in terms of Qint, and Qext:
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Figure 8: Cavity measurement (steady solution). a, c) Classical circuit representation

of an RLC oscillation, where Z0 is the transmission impedance, V +
0 , V

−
0 are signal sending in

and coming out, separately, and V +
1 is the output of another port. b, d) Quantum schematic

representation of a linear mode, where the frequency is ω0, and the mode is represented by

operator a; ain, aout represent the input and output for each port.

V −
0

V +
0

=
R + j 2L∆− ω0L/Qext

R + j 2L∆+ ω0L/Qext

=
ω0(1/Qint − 1/Qext) + j 2∆

ω0(1/Qint + 1/Qext) + j 2∆
(22)

At the same time, we can also derive the relation in quantum representation. Notice here

the decay rate of each port is κ = ω0/Q. We start from equation of motion and input-output

theory:

˙̂a =
i

ℏ
[Ĥsys, â]−

κ

2
â+

√
κextâin

âout = âin −
√
κextâ

(23)

For the Ĥsys, we only consider it as a linear oscillator, where Ĥsys = ω0â
†â. For the Heisenberg

equation of motion, we want to add a comment here: The equation itself describes the time
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evolution of the field amplitude â inside the cavity, and the amplitude â experiences decay at

a rate κ/2, where κ = κint+κext. At the same time, its fluctuations a constantly replenished

via the quantum noise entering through the various port of the cavity with a total rate
√
κext.

In order to solve the steady state solution, we can simply Fourier transform the equation

of motion to get:

iωâ[ω] = iω0â[ω]−
κ

2
â[ω] + 2

√
κextâin[ω]

(κ+ 2i∆)â[ω] = 2
√
κextâin[ω]

(24)

Then use input-output theory to get an expression with only âin and âout:

(κ+ 2i∆)(âin[ω]− âout[ω]) = 2κextâin[ω]

âout[ω] = âin[ω]

(
κint − κext − 2i∆

κint + κext − 2i∆

) (25)

At this point, we can easily see:

V −
0

V +
0

=
âout[ω]

âin[ω]
(26)

One interesting thing, if we look closer, we can find is that here j = −i, which is coming

from electronic engineering convention. After we have the steady state solution, we can start

playing around with the parameters and see what’s the difference between different choices.

Here is an example where we change the ratio between external Q and internal Q. As

we can see from Fig. 9 b), when κext < κint, the port is under-coupled, and the phase wrap

across the whole mode is smaller than π; if κext = κint, the port is critical-coupled, and the

phase wrap is exactly π; last, κext = κint, the port is over-coupled, and the phase wrap is 2π.

The reason we cared about the port coupling is that this can give us a straightforward idea

about how good the port is. If κext < κint, this may indicate the system has unwanted losses

we didn’t realize; If κext ≫ κint, it is either a lossy cavity designing for fast readout, or we

may need a weak port to fit internal Q.
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Figure 9: Reflection measurement of cavity (frequency domain). a) Vector Network

Analyzer (VNA) is usually used for measuring steady state in frequency domain. b) Three

different classical port coupling: under-couple, critical-couple and over-couple. For the com-

plex part, we choose plus sign to match the result coming from VNA.

Similar idea for the transmission response. Here we skip the classical method, and use

the quantum method to derive it again. Assume the signal send into port 0, and calculate

both output from port 0 and port 1:

˙̂a =
i

ℏ

[
Ĥsys, â

]
− κ

2
â+

√
κ0ext

â0out = â0in −
√
κ0extâ

â1out =
√
κ1extâ

(27)

Then, the same Fourier transformation apply on the first equation and substitute â as

propagation operators, and following two equations can be derived:

â0out[ω] = âin[ω]

(
κint + κ1ext − κ0ext − 2i∆

κ− 2i∆

)
â1out[ω] = â0in[ω]

(√
κ0extκ

1
ext

κ− 2i∆

) (28)
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For the port 0, the only difference is now the external loss from port 1 becomes an

internal loss for port 0. In another word, if we see from port 0, we couldn’t identify if the

information leaks from port 1 or from the internal. And for the transmission response â1out,

two external couplings have multiplied together, which means we cannot extract the port

coupling separately. However, from the expression, we still can get totally decay rate from

the bandwidth (BW).

2.1.2.2 Dynamic response of cavity measurement

After we have derived the steady state solution, the dynamic response is just a Fourier

transform away. Let’s take the reflection response as an example:

âout[t] = F−1 [âout[ω]] = F−1

[
âin[ω]

(
κint − κext − 2i∆

κint + κext − 2i∆

)]
(29)

Using convolution theorem: F−1{f · g} = F−1{f} · F−1{g}, we can analytically solve the

time dynamics:

âout[t] = −κext
∫ t

−∞
âin(τ) exp

[(κ
2
+ iω0

)
(τ − t)

]
dτ + âin(t) (30)

Similar idea for the transmission response:

â1out[t] = −
√
κ0extκ

1
ext

∫ t

−∞
â0in(τ) exp

[(κ
2
+ iω0

)
(τ − t)

]
dτ (31)

Basically, the main difference between transmission and reflection is that the latter also

has the incoming wave in it. That’s why the transmission signal is purer than reflection

and is better for the following amplifier (harder to saturate). In Fig. 10, we take a flat top

signal as an example for incoming signal and calculate different responses under different

conditions.

Notice here, after a period of time (≈ 3 to 5× 1/κ), the response enter into steady state.

Depending on the drive frequency we send into the system, the corresponding value should

be consistent with the solution we get from steady state calculation.
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Figure 10: Cavity measurement (time domain) a). Time domain measurement instru-

ment, including Arbitrary Waveform Generator (AWG) and digitizer. One example of the

incoming signal is a finite flat top pulse; b) Different dynamical responses based on different

conditions (∆/κ).

2.1.2.3 Dispersive readout and qubit measurement

Next, we can consider a little more complicated system, a cavity dispersively coupled

with a qubit. Considering the Hamiltonian as following:

Ĥ = ωcĉ
†ĉ+ ωq q̂

†q̂ + α(q̂†q̂†q̂q̂) + χ(q̂†q̂ĉ†ĉ) = (ωc + χ⟨q̂†q̂⟩)ĉ†ĉ+ ωq q̂
†q̂ + α(q̂†q̂†q̂q̂) (32)

Where, ωc, q are the resonance frequency of cavity and qubit, α is the anharmonicity of qubit

and χ is the dispersive coupling between two modes. The critical term q̂†q̂ĉ†ĉ changes the

cavity resonance frequency depending on the occupation of qubit.

As shown in Fig. 11, when qubit in state |g⟩ (⟨q̂†q̂⟩ = 0) and state |e⟩ (⟨q̂†q̂⟩ = 1), the

cavity shows different response.
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Figure 11: Dispersive readout (steady solution). When qubit has different population,

the cavity has different resonance frequencies.

Because of this state-dependent resonance, it gives us an idea of measuring the state of

qubit by measuring the response of cavity. If we recall the dynamic response of cavity, both

reflection and transmission, there is a exp
[(

κ
2
+ iω0

)]
term in the integration, which tells us

the response depends on the resonance of the cavity. More specifically, assuming ωg
c = ωc

when qubit in ground state and ωe
c = ωc − χ when qubit in excited state, and we directly

drive at ωd = ωc−χ/2, then if κ > χ, we can get two same magnitude response but different

phase; if κ ≪ χ, the magnitude of the response is the same, but the phase is also the same

(phase wrapping). In practice, if we want to have an optimized readout, the cavity drive

frequency highly depends on χ/κ.

One example has been showing in Fig. 12, and another technique we generally do is

integrating the whole cavity response (sometimes with a weighted function) to get a signal

point on the I-Q plane. After thousands repetition, all points forming two Gaussian blobs

where the centers corresponding to the two resonances’ steady state solutions, and sigma

represents half-photon noise after amplification.

2.1.3 Parametric driven system

Last but not least in this section, I want to discuss a very common technique during my

graduate study, parametric driven system. A parametric driven system can be treated as a

driven oscillator in which the oscillations are driven by varying some parameter of the system
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Figure 12: Dispersive readout (dynamical solution). a) Cavity response when qubit in

different states; b) After integration, data has been plotted on I-Q plane.

at some frequency, typically different from the natural frequency of the oscillator. A simple

example of a parametric oscillator is a child pumping a playground swing by periodically

standing and squatting to increase the amplitude of the swing’s oscillations.

In the quantum physics, a parametric system often comes with frequency conversion,

photon amplification and circulation. And with some Hamiltonian engineering help, we find

a parametric system can realize lots of application, such as parametric amplifiers, two-qubit

gates, quantum state router and bath engineering.

Let’s start from a simple example explaining the techniques of parametric system. In

general, a parametric system’s Hamiltonian can be divided into two parts: first, the oscil-

lator modes, no matter linear or nonlinar modes; second, nonlinear term across the whole

system. Here the nonlinear term could come from the modes themselves, like Josephson

Ring Modulator (JRM), or from another mode coupling to all other oscillator modes. As

shwon in Fig. 14, it is a simple three modes parametric system.

One thing I want to point out is that depending on the nonlinear terms we choose, it

can be three-wave mixing, like SNAIL or JRM; or four-wave mixing, like Josephson junc-

tion coupler; or even high order nonlinear terms. Based on the operation we want, different

numbers of pump photon will be sent into the coupler generating effective multi-body inter-
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Figure 13: Everything can be parametric. Here are several examples involved with

parametric system. a), c) and d) are systems we have realized in our lab, and we are

currently making more.

actions. In the following text, I’m going to use a example where two linear modes coupled

to a SNAIL mode to explain the idea of a parametric driven system and how we use the

three-wave mixing term to generate an iSWAP gate.

The schematic representation is shown in Fig. 15, and the Hamiltonian can be written

as:

Ĥ0/ℏ = ω1ĉ1
†ĉ1 + ω2ĉ2

†ĉ2 + gc1s(ĉ1
†ŝ+ ĉ1ŝ

†) + gc2s(ĉ2
†ŝ+ ĉ2ŝ

†) + ωsŝ
†ŝ+ g3(ŝ+ ŝ†)3 (33)

We first ignore the nonlinear term and focus on the linear part. This step is quite

similar as we described in Sec. 2.1.1.2, where we treat the nonlinear parts as perturbations

in the Hamiltonian. The second order terms can be diagonalized first: then all three modes:

ĉ1, ĉ2, ŝ become dressed mode. Here for simplicity, we use the same operators for the dressed
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Figure 14: Parametric coupling overview. A classical three-wave mixing device. All

three modes have been coupled together via the three-mode coupler in the middle. Thus,

three-wave mixing terms are across the whole system with all combinations

SC1 C2

Figure 15: Schematic representation of three-body parametric system. C1 and C2

are two linear modes which are both coupled to the center SNAIL mode.

modes. Next, for the nonlinear term, the dressed modes automatically inherits all third order

nonlinearity with different coefficients. There are totally 24 different nonlinear terms after

we expand the bracket, but most of them are relatively small in the rotation frame without
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any other processing. The term we are going use for the parametric analysis is:

gc1c2s
(
ĉ1

†ĉ2ŝ+ ĉ1ĉ2
†ŝ†
)

(34)

Here gc1c2s is the 3-wave-mixing coefficient. In the weak coupling regime where ( g
∆
)cis ≲ 0.1,

the coefficient gc1c2s is approximately g3(
g
∆
)c1s(

g
∆
)c2s, where ∆cis = ωci − ωs.

The idea of parametric gate is that there is a hidden two-body interaction inside the three-

body mixing term. To realize a photon conversion between two cavities, we apply a strong

single-tone pump on the SNAIL at the frequency difference of two cavities, ωp = |ωc1 − ωc2|.

The time-dependent pumping term can be written as ĤP/ℏ = ϵ(t)(ŝ + ŝ†), where ϵ(t) is

represented by:

ϵ(t) =

ϵ
x(t) cos(ωpt) + ϵy(t) sin(ωpt), 0 < t < tg

0, otherwise,

(35)

The total system Hamiltonian under pumping can be written as Ĥ ′ = Ĥ0+ĤP . To study

the effect of this pumping term in the total Hamiltonian, we apply a unitary transformation

on Ĥ with displacement operator:

D(t) = exp[(zs† − z∗s)], (36)

where z = − (ϵx+iϵy)/2
ωp−ωs

e−iωpt + (ϵx−iϵy)/2
ωp+ωs

eiωpt. This results in a new Hamiltonian ĤD, in which

the ĤP term is canceled and ŝ → ŝ − z. Specifically, the 3-wave mixing term in Eq. 107

becomes:

gc1c2sĉ1
†ĉ2

(
ŝ
(ϵx + iϵy)/2

ωp − ωs

e−iωpt − (ϵx − iϵy)/2

ωp + ωs

eiωpt

)
+ h.c. (37)

Then we apply a rotating frame transformation at the frequency of all modes in the

system:

R(t) = exp
[
iωsŝ

†ŝ+ i
(
ωc1 ĉ1

†ĉ1 + ωc2 ĉ2
†ĉ2
)]
, (38)

Note that ωp =
∣∣ωci − ωcj

∣∣. All the other frequency differences in the system are assumed

several bandwidth away from the pumping frequency. Then the only non-resonating term

after the transformation is
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ĤRWA = η gc1c2s

(
ĉ†1ĉ2 + ĉ1ĉ

†
2

)
, (39)

where η = (ϵx + iϵy)ωs/(ω
2
d − ω2

s).

Eq. 39 shows that the pumping tone at ωp = |ωc1 − ωc2| activates the spontaneous photon

conversion process between cavity modes c1 and c2. And the conversion speed mainly depends

on the pumping strength. By controlling the length of the pump, iSWAP1/n gates can be

performed between the two modes. Moreover, this parametric pumping scheme is not limited

on single process: if there are multiple modes in the system, multiple tones can be apply

simultaneously to generate multi photon conversion or any other desired processes together.

2.2 Practical device simulation and its philosophy

After doing analysis above, now we finally have a circuit that can solve some particular

questions. Next question that comes up naturally is that how we can realize it in real life.

Then the very first step in solving this problem will be how do we transform a given schematic

circuit into a real 2D or 3D object.

In the following sections, I’m going to use the example of the transmon + cavity system

(i.e. Fig. 4) to explain the philosophy of simulation. Specifically, in Sec. 2.2.1, I’m going

to discuss some choices of 2D/3D structures of linear mode, and a ‘shoebox’ cavity will be

used explaining details in simulation; then in Sec. 2.2.2, two main ideas, black-box quanti-

zation and energy-participation-ratio, will be introduced to simulate most parameters of the

transmon object, and again, a transmon in a ‘shoebox’ cavity will be used to discuss details.

2.2.1 Resonator mode

Continuing from Sec. 2.1.1.1, quantum harmonic oscillator can be made in different styles,

and the LC oscillator could be one example. Another important example in circuit QED

are microwave resonator, which can be divided into two main fields: 2D resonators, where
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the electromagnetic field is confined in a planar structure, and 3D resonators, where in a

three-dimensional volume.

Regarding 2D resonators, lots of discussions can already be found in different literature

[43, 9], and I’m not going to explain details here. However, I’d still like to emphasize

here, entering the quantum regime for a given mode m requires two condition: one is that

hωm ≫ kBT and the other is the linewidth κm ≪ ωm. Of course, after almost 20 years

developing, both of conditions can already be easily realized in the experiment. However,

there are still physical origin that not be fully understood. For example, dielectric losses

at interfaces and surfaces can be important limiting factors to the internal quality factor of

resonators. And one solution is to lower the ratio of the field energy stored at interfaces and

surfaces to the energy stored in vacuum.

b)a)

Figure 16: ‘Shoe-box’ cavity and coaxial cavity. a) Schematic representation of a

‘shoebox’ cavity. The right-hand side shows the electronic field of first four TEmnl modes

obtained from Ansys HFSS. b) Schematic representation of a coaxial λ/4 cavity. And the

electric field distribution shows the evanescent field rapidly decays from the top of the inner

conductor.

That’s why introducing 3D resonator could be a shortcut for this problem, since in

three-dimension structure, the surface participation ration can be as small as 10−7 [44]. In

practice, 3D resonators comes in many shapes and sizes for different practical purposes. As

illustrated in Fig. 16, two popular designs, ‘shoebox’ and coaxial cavity, have often been

used in designing 3D structure.

In ‘shoebox’ cavity, the resonator is just simply vacuum surrounded on all sides by

superconductor, typically aluminum, to minimize surface losses. And the mode resonance is
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the discrete set of TE and TM cavity modes of frequency [43]:

ωmnl = c

√(mπ
a

)2
+
(nπ
b

)2
+

(
lπ

d

)2

, where m,n, l ∈ Z (40)

where c is the speed of light, and a, b, d are the cavity dimensions. Of course, in most

scenarios, the first fundamental mode will be used as the linear object. However, sometimes,

by carefully designing the frequency distribution, a rectangular waveguide can also be treated

as a coupling bus [4] or multimode Purcell filter [40]. On the other hand, coaxial λ/4 cavity

let the electromagnetic field of the fundamental mode concentrating near the post, and

exponentially decay from the top of the inner conductor.
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Figure 17: Surface current and seam loss in 3D resonator. a) The vector of surface

current on the y-z plane of the inner conductor in the ‘shoebox’ cavity. b) Schematic rep-

resentation of seam location on the cavity. c) The relation between common logarithm of

quality factor and the seam position, here the seam offset is calculated based on the midpoint

of z-axis on cavity.

Again, as shown in Fig. 16, from the distribution of electromagnetic field inside the

3D structure, we already have a rough idea about the thing we’re going to build. And by

changing the dimensions, the frequency of the designed mode can be as close as the theory

required, and before introducing any loss elements, the quality factor will be infinitely large.

However, in the real life, there are unavoidably different loss we need to consider in the

simulation. and the very first one is the seam between metals. In Fig. 17 a), I have plotted

the vector of current on the surface of the inner conductor in the ‘shoebox’ cavity. And in

32



the real life, due to the finite width of seam, there will be always current passing through

the seam.

Now, we can also quantify the dependence of seam losses on the cavity geometry. The

details can be found in Brecht et al. 2015 [45], here I’m going to summarize the expression

in the following:

Pdis =
1

2Gseam

L

∫
seam

|J⃗s × l̂|2dl. (41)

1

Qi

=
1

ω

Pdis

Etot

=
1

Gseam

L
∫
seam

|J⃗s × l̂|2dl
ωµ0

∫
tot

|H⃗|2dV
(42)

The first one shows the relation between the dissipation power and the surface currents, and

the seam has been treated as a distributed port around a path l⃗ with a total length L and

total conductance Gseam. The second one assumes the only loss is coming from the seam,

where the mode frequency is ω and Etot is total energy over the volume V inside the cavity.

From these equations and the known field of the cavity, we can calculate the quality

factor of the mode limited by the seam loss. For example, considering the TE101 mode of the

‘shoebox’ cavity, and we assume the seam is along y-axis, by sweeping the z-axis position,

we can calculate the internal quality factor at different point, as shown in Fig. 17 c). From

the simulation, for the ‘shoebox’ cavity, the best seam location is the mid-point along z-axis,

and this also gives us the principles drawing the real metal for machining.

One last thing completing the 3D resonator design is the external coupling to the envi-

ronment, or in other word, the wave port in the system. In most scenario, designing the wave

port could be a tricky problem. However, it can also be summarized into a single question,

how strong the coupling do you want for different modes? Let’s take ‘shoebox’ cavity as

the example again: if I want to measure the internal quality factor of the TE110 mode, and

assume the only loss comes from the seam. Based on the fact that the internal Q is around

107, the external Q will be also approximately the same to measure that precision in the

experiment.

Then by looking at the electric field distribution in Fig. 16 a), the rough position of the

port will be around the corner of the cavity as shown in Fig. 18 a) to minimize the quality

33



a) b)

Pin length (mm)

Lo
g(

Q
ua

nl
ity

 fa
ct

or
)

3.0

4.0

5.0

6.0

7.0

0.0 1.0 2.0

8.0

3.0 4.0

Pin length

10 mm

Figure 18: Cavity probe and the corresponding quality factor. a) External port

position to minimize external Q. b) Relation between pin length and external quality factor

(log scale), here, zero-point is based on the surface of inner conductor.

factor. Next, by sweeping the pin length, the corresponding length can be determined for

the required external Q. However, in some scenarios, resonate mode is not the only mode

that coupled to the external port. And for different purpose, different quantities will be

calculated.

2.2.2 Transmon mode

After figuring out the shape of the resonator, in order to observe quantum behavior in

the system, now we need to introduce some nonlinearity into the simulation. The general

idea, instead of directly simulating nonlinearity, will be considering the coupling between

multi modes. For example, if we want to put a transmon qubit into a ‘shoebox’ cavity, we

actually model an LC oscillator, generally on a substrate (such as sapphire), and put it into

the cavity. By calculating the effective impedance [46] or energy participation ratio [47], we

can figure out the effect of nonlinearity applying onto the whole system.

Most of the math details have already been discussed in the previous sections. Here I’m

going to use a specific example to introduce the steps of simulation. As shown in Fig. 19 a),

transmon has been constructed as a capacitor shunted with a lumped inductor which forming

two parts of the energy: EJ and EC . From above analysis in Sec. 2.1.1.2, we already have

an estimate on the magnitude of these two number, which makes our simulation easier. By
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Figure 19: Transmon design and its coupling. a) Schematic of transmon design, where

two big green pads forming the capacitor part of the mode also the antenna capturing cavity

field; the small rectangular block is the lumped inductor representing Josephson-junction in

the system. By changing the shape and size of antenna, also the magnitude of inductor, the

frequency of transmon can be easily controlled. b) By sweeping the width and length of the

antenna, the frequency can vary from 4 to 7 GHz. c) Similar idea, by changing the shape of

antenna, the coupling between transmon and cavity will be different, resulting in different

dispersive shift in the experiment.

changing the shape of the antenna (length, width and gap), the capacitance of the transmon

will change. After assigning a lumped inductor with a reasonable inductance, the frequency

of the mode will vary correspondingly. One example is shown in Fig. 19 b), where I change

the antenna length and width, the frequency of the mode varies from 4 GHz to 7 GHz.

After that, the most important step is calculating the coupling between modes or in

other word, dispersive shift between qubit and cavity. Despite the math details, the truth of

coupling is actually the transmon antenna trying to capture the electric field of the cavity,

which will be a dipole-field interaction. So again, the key factor affecting the magnitude of

coupling will be the shape of the antenna and the position of the transmon itself. For the

different experiments and purposes, we may pick up different couplings. And in most cases,

another important parameter related to the coupling is the decay rate κ of the cavity mode,
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which will be addressed later. Here, at this moment, we can just use the same scan in the

last paragraph to show the idea of controlling the coupling in the system.
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Figure 20: Waves In Space Purcell Effect (WISPE).

Finally, we can start considering where the port should be. Depending on the truth

that we probably want to maximize the coherence of qubit, the port should be minuscule

(Qqubit
ext ≈ 108) coupled to the qubit mode. At the same time, if we also want a fast readout

for the resonator mode, the port will be reasonably strong (Qcavity
ext ≈ 103) coupled to the

resonator mode. Or in summary, we can define a Waves In Space Purcell Effect (WISPE)

factor:

W =
E⃗c · E⃗q

|E⃗q|2
(43)

where E⃗c and E⃗q are the electric fields of resonator and transmon, correspondingly. Then,

by plotting W factor on the surface of the inner conductor inside the cavity, an optimized

point where we can not only drive easily on the cavity but also keep the qubit coherence will

be pinpointed. For example, continued from previous qubit and cavity design, we put two

more qubits on the side inside the cavity for A-B comparison.

In Fig. 20 b), the W factor has been plotted on the surface of the cavity inner side. After

the optimized point has been decided, by sweeping the pin length, the pin length will be

determined to fulfill both conditions. As we can see in Fig. 20 b), in order to get the cavity

external Q around 4000, the pin length will be 4mm.
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At this point, the simulations have almost done, we can proceed to the next step, bring-

ing the simulation to real life, including machining and fabrication. In practice, there are

still several loss points that could be easily overlooked. For example, the higher harmonic

modes of the cavity, quasi-particles in Josephson junction [48], surface loss [49] and etc.

With the development of superconducting system, we have started seeing people reach over

milliseconds transmon modes and over seconds resonator modes. This still could be a very

broad field waiting for people reaching another level.
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3.0 Fabrication and Characterization

This chapter presents the superconducting fabrication techniques I have used during my

graduate studies. Although the specifics may not be directly relevant to other fabrication

projects and materials, I believe these recipes share some basic principles that can be easily

adopted from one project to another. Many of the techniques in this chapter have already

been discussed repeatedly in the literature; but there are usually steps missing or overlooked.

Here I have tried to go through carefully and step-by-step the fabrication of Josephson

junction with different styles, which could be a very good introduction for new students

coming into this field or starting in the Hatlab.

Aluminum

Aluminum

Aluminum oxide

1 µm 

1 mm

Single step EBL

Pre-patterned large feature
Ta/Al/NbTi/NbTiN... 

Al/AlOx JJ

1 mm

Large feature

Al/AlOx JJ
Aluminum

Figure 21: JJ-based superconducting circuit fabrication. In our lab, most supercon-

ducting circuit fabrication focuses on making high quality Josephson junctions with precise

critical currents. We adopt two basic and general fabrication techniques: first, single step

EBL, in which we use EBL to finish all the features in one exposure and deposit metal once.

Another way is patterning the large structures first and then only using EBL to write JJs,

which are usually ohmically connected to the large features.

In our lab, the superconducting circuit fabrication focuses almost exclusively on JJ-

based devices. In lots of scenarios, making the sure JJs are as well controlled as possible

is the primary consideration. During my PhD, our lab has worked in two primary styles

of fabrication (as shown in Fig. 21). Before 2019, single step E-beam Lithography (EBL)

was generally used, which means the whole pattern of the chip, including the Josephson
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junctions, will be done in a single EBL write step. The metal is then deposited in a single

step through the resultant mask. Even though this way is more straightforward, the writing

time (typically overnight) and stability in our older Raith E-line EBL were a big challenge.

Moreover, the residues of resist and the interactions between the Josephson junctions and

the surrounding big features can be quite challenging. For example, typically, we have to

write several hundreds of microns of the antennas that form our transmons before the dose in

a dose test resembled the dose of an actual transmon. After 2019, we rebuilt the fabrication

following Houck’s tantalum transmons, with kind assistance from Andrew Houck and Alex

Place [50]. Rather than finishing everything in one step, we first fabricate all large features

in tantalum (Ta), adding the aluminum (Al) JJs in a final step.

In this chapter, I’ll first discuss basic fabrication techniques before discussing specific

issues with Josephson junction fabrication. This is covered in two sections. in Sec. 3.1,

several basic superconducting fabrication steps are presented in detail. Then in Sec. 3.2,

I will focus on fabrication of different sizes and shapes of Josephson junctions in different

scenarios via the tools we have introduced.

3.1 Superconducting circuit fabrication steps

In this section, I present three main fabrication steps. The first step is the fabrication of

large features (∼> 5µm) with Al or Ta. The second step is depositing metal for subsequent

patterning. Finally comes JJs fabrication with e-beam lithography. Details of common

recipes are shown at the end of this section in a table for readers’ easy use.

3.1.1 Large feature fabrication

Typically, superconducting circuits have been fabricated on silicon or sapphire substrates.

In the Hatlab we use only two wafer types: silicon wafer (exclusively for amplifiers) which

are double-sided polished with thickness of 250µm, resistance around 3000−5000Ω/cm and

crystal direction (100). Silicon wafers allow for conducting layers at room temperature to
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reduce effects of static discharge, while becoming insulators at low temperature. They are

also much easier to saw. Everything else is patterned on sapphire wafers (in early years from

University Wafers and now from Crystek) with thickness of 430µm, double-sided polished

with crystal direction in C-M plane. Sapphire substrates are often believed to have less

internal loss, thus potential higher Qs in microwave circuits. However, some groups and

also major organizations such as IBM show excellent performance in Silicon qubits and

circuits[51].

Before doing anything else, we generally clean the wafer (sapphire or silicon) by sonicating

in acetone and isopropyl alcohol (IPA) for 5 minutes, then hard baking at 175 ◦C for 3 minutes

to remove any potential particles or residues.

Next comes large feature fabrication. Here, large features refer to any metal of size

bigger than 5µm, which can be directly patterned with optical lithography. Practically, this

includes ground planes for lumped elements, coplanar waveguides and other transmission

lines, antennas or capacitor designs in superconducting circuits, (e.g. transmon-like circuits)

and so on. In short, this process has the following five sub-steps:

1. Metal deposition

2. Spinning optical resist

3. Optical lithography

4. Metal etching

5. Stripping resist.

Note that this is a subtractive process in which we first cover the entire wafer in metal and

then remove it where we don’t want it to be in the final circuit.

Metal deposition. We’ll cover the details in Sec. 3.1.2. For now, assume we have suc-

cessfully deposited the large features we need. Normally, the metal will be a superconductor,

and for us, we most often use aluminum or tantalum for this step.

Next, spinning optical resist. In general, there are many aspects that need to be

considered in choosing the right resist. For example, the chemicals we are going to use in

the following step (i.e. wet etching, R.I.E., etc.), the thickness of resist we need, and the
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uniformity of the result. Here, due to the fact that we are going to go through several strong

acid procedures, we have chosen AZ1518 as our mask.

One important thing to remember for spinning the resist is that you want absolute

uniformity and consistency every time you execute the procedures. The recipe we are using

is following:

Table 1: AZ1518 spinning recipe

Step Description

1 20s 500 RPM with 100 RPM/s

2 20s 1000 RPM with 100 RPM/s

3 90s 4000 RPM with 500 RPM/s

4 30s 0 RPM with 500 RPM/s

5 Bake on hot plate at 100 ◦C for 3 mins.

And for uniformity’s consideration, the center of the round wafer need to be put at the

center of the spinner using an aligner; for non-round shape wafer, a pre-deposited marker

can be used to keep the same position for each spinning.

Then, optical lithography. Immediately after spinning the resist (to prevent any

unnoticed exposure on the resist), a direct photolithography can be applied on the sample.

In our lab, we have used the Heidelberg MLA100 direct write lithographer to carry out the

process. One thing to notice here is that an inverse pattern is written on the chip, which

means unwanted metal will be etched away in the later process. After that, by immersing

the chip in the AZ300 MIF solution at room temperature for 85 seconds followed by rinsing

in DI water for 30 seconds, the chip can be properly developed. Before we move on, we

generally bake the chip again at 115 ◦C for 2 minutes to keep the sample dry.

Metal etching. After putting the inverse mask on top of the metal we have deposited

on the substrate, we can etch the unwanted metal away. In order to clean any residues

coming from previous steps, we first put the sample into the plasma asher to let oxygen

plasma remove hydrocarbons. Here, the asher has been set to 30 mTorr O2 with 20W/200W

RF/ICP coil power for 120 seconds. Then, based on the material we have deposited, the
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whole wafer is dipped into tantalum etchant 111 for 26 seconds or aluminum etchant type

A for 4 minutes. According to Houck’s lab’s latest result [50], for tantalum etching, very

small differences in etching time could result in different performance. Maybe in the future,

diluted tantalum etchant 111 or dry etching [52] could be tried for tantalum etching.

Stripping resist. Last, the sample is sonicated in toluene, acetone, methanol and IPA

(‘TAMI-cleaned’) for 5 minutes each to fully remove any residue resist or other chemicals.

And before the next step, we also put the chip into piranha solution (2 : 1 H2SO4 and H2O2)

for 20 minutes followed by rinsing in three cups of DI water, 10 seconds each. In the end, the

sample is rinsed in the IPA one more time for 30 seconds and baked at 175 ◦C for 5 minutes.

3.1.2 Metal deposition

Metal deposition can be tricky and complicated during the fab process. The whole

process normally includes three steps: first, ion milling; then, environment conditioning;

last, metal deposition. For each step, there are several parameters that could be optimized

to get a proper result. However, to prevent main points have been distracted, we use several

recipes as examples and explain the purpose of each step.

First, ion milling. A very similar step we have used in plasma asher, ion milling is

the process of removing the top amorphous layer on a material to reveal the pristine sample

surface for high-resolution imaging and post-processing. One example of recipe is following:

As we can see from the recipe, ion milling is a physical etching process whereby the ions

of an inert gas (e.g. Ar) are accelerated from a wide beam ion source into the surface of a

substrate in vacuum which can also be described as ‘ionic sandblasting’.

The steps themselves are pretty straightforward. First, Ar is admitted in the proximity

of a filament, then by DC discharging the filament, electrons are produced by thermionic

emission. These electrons in turn ionize some Ar gas atoms.

After we stabilize the gas injection, the power of ion source and accelerator are directly

related to the milling strength. In general, higher strength can remove the amorphous layer

more efficiently, however, sometimes we also use suspending structures which are very easily

destroyed by those ions (e.g. in Fig. 32 a3)). The number we have recorded in the recipe
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Table 2: Ion milling

Step Description

1 Gas inject: Argon (Ar) until 8.0 sccm in chamber

2 Start DC discharging ion beam to 40V

3 Gas stable: Change Ar to required pressure: 4.0 sccm

4 Ramping up ion beam to 400V and 22mA with 80V acceleration voltage

5 Wait recipe time: 30 seconds

6 Turn off ion beam

7 Turn off Ar

could be a good start developing new one in the future.

Then, environmental conditioning. Before the deposition, we perform another step

called conditioning. The purpose of this step is to make sure the machine always starts with

the same environment. Titanium thin film is used as an adhesive thin film to hold particles

on the chamber wall which can prevent unwanted particles from falling on the chips.

Lastly, metal deposition. In our lab, depositing thin film on a substrate could use

either sputtering coating or e-beam evaporation methods. As shown in Fig. 22, sputtering

coating is a physical vapor process which starts by electrically charging a sputtering cathode

which in turn forms a plasma causing material to be ejected from the target metal. We can

think that the material is bonded to the cathode, and the magnetron sputtering gun is used

to ensure stable and uniform erosion of the material. At a molecular level, the target material

is directed at the substrate through a momentum transfer process. The high energy target

material impacts the substrate and is driven into the surface of the substrate, forming a very

strong bond at an atomic level. The material becomes a permanent part of the substrate,

rather than an applied coating or plating of the surface. The benefit of sputter coating is

the stable plasma created, which in turn provides a more uniform deposition, meaning the

coating is consistent and durable.
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Figure 22: Sputtering and e-beam evaporation. a) Sputtering coating. Sputtered

atoms ejected from the target impact energetically on the substrate or vacuum chamber

(causing resputtering), sometimes, magnetron is also used behind the negative cathode to

trap electrons over the negatively charged target material so they are not free to bombard

the substrate, allowing for faster deposition rates. b) E-Beam or Electron Beam Evaporation

is a form of Physical Vapor Deposition in which the target material to be used as a coating

is bombarded with an electron beam from a charged tungsten filament to evaporate and

convert it to a gaseous state for deposition on the material to be coated. Here QCM stands

for quartz crystal microbalance which is an extremely sensitive mass balance that measure

nanogram to microgram level changes in mass per unit area.

Another method of vapor deposition is e-beam evaporation, which first generates an

electron beam by a charged tungsten filament under high vacuum. Then the target metal

anode is bombarded with the electron beam (e-beam) to transform into the gaseous phase.

These atoms then precipitate into solid form, coating everything in the vacuum chamber

(within line of sight).

In the end, one major difference between sputtering and e-beam evaporation is direction-

ality, where the first has better uniformity in sacrifice of directionality, and the second can

control direction precisely without any sacrifice at some level. Someone may argue e-beam

44



evaporation has limitation on uniformity, however, the use of masks and planetary motion

(both rotatory and tilting motion) can mitigate this problem.

3.1.3 E-beam lithography (EBL)

Sapphire/Si substrate

MMA(8.5) MAA EL 13
PMMA 950K A4

Sapphire/Si substrate

MMA(8.5) MAA EL 13
PMMA 950K A4

E-Beam (strong dose)

Sapphire/Si substrate

Sapphire/Si substrate

Even stronger dose:

Strong dose

Sapphire/Si substrate

MMA(8.5) MAA EL 13
PMMA 950K A4

undercutundercut

Sapphire/Si substrate

Clean bridge

Spin double layer
e-beam resisit

a) b) c) d) e)

Figure 23: Double layers of resists for EBL. a) First two different resists are spun on

top of the substrate. In general, the top resist is stronger than the bottom (e.g. MMA and

PMMA); b, c) By changing the dose factor of e-beam, either both resists or only the bottom

one is removed; at the same time, proximity effect can be observed in the bottom one. d, e)

By adding undercut around strong dose, a very sharp edge can be created in bottom layer.

Also, a floating layer can be created by tuning a proper dose.

Now we’re ready for some small (< 5µm) features’ fabrication. In our lab, e-beam has

been used on resist to form a mask that is generated in a mask design software. The Raith

e-LINE system we have has a maximum accelerating voltage up to 30 kV and the area dose

we set up in the machine is 300µC/cm. The whole process has exactly the same steps as its

large feature fabrication; however, there are some details that are totally different.

First, instead of single layer resist, double layers of resists have been chosen where the

bottom one is methyl methacrylate (MMA) and the top one is poly-methyl methacrylate

(PMMA). Due to the relatively weak chemical bond, MMA is easier to remove than PMMA.

There are several reasons we have chosen these two; one of the main reason is for making a
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suspending bridge (as shown in Fig. 23). We also find double layers of resists make lifting off

small features much easier than the single layer does, where the unwanted metal and wanted

metal may form a connection after deposition.

To be specific, the resists we are using are MMA(8.5) MAA EL 13 and PMMA 950K

A4, and the spinning recipe has been attached in Table. 3. The process itself is pretty

straightforward, but there are two things I want to point out: First, even though the volume

of resist is labeled, in the real process, it is very hard to control the exact volume since we

want to prevent any air bubbles. Maybe a better way to control volume could be explored.

Second, in the 6th step, cooling down the substrate with compressed N2, can efficiently

improve the uniformity of second layer.

Table 3: Double layers of resists

Step Description

1 First layer: MMA EL 13: 240mL

2 10s 500 rpm with 100 RPM/s

3 90s 2000 rpm with 500 RPM/s

4 30s 0 rpm with 500 RPM/s

5 Bake the substrate for 90 sec at 175 ◦C

6 Cool down the substrate and clean the spinner

7 Second layer: PMMA 950K A4: 210mL

8 10s 500 rpm with 100 RPM/s

9 90s 3000 rpm with 500 RPM/s

10 30s 0 rpm with 500 RPM/s

11 Bake the substrate for 90 sec at 175 ◦C

Regarding lithography process, the very first thing to be considered is the accumulation

of negative charge during the e-beam writing. Compared to silicon with 0.1Ω ·m resistivity,

sapphire has 1014Ω ·m resistivity at room temperature, which make the sapphire substrate

a very good reservoir accumulating negative charge. As shown in Fig. 24, depositing another

thin (40 nm) film of aluminum can efficiently solve the problem. Later, the thin film can
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Figure 24: Anti-charge layer. Here the thickness of each layer doesn’t indicate any real

thickness. a) For the conductive substrate, like silicon, the charges can go through the

substrate and dissipate into the ground. b) Without anti-charge layer, sapphire substrate

could be a great reservoir accumulating negative charges, very soon the resists will be over

exposed. c) By depositing a thin anti-charge layer (i.e. 40 nm aluminium), the negative

charges could distribute into the ground.

be easily removed using different solution (e.g. MF-319). People also have started using

high resistivity silicon wafer these days; an anti-charge layer is also required in this scenario.

And there are other options for an anti-charge layer. For example, Espacer, an aqueous

solution that doesn’t contain any organic solvent, is another choice if metal contamination

is a problem during the process. Another thing is that we have found different thicknesses

of aluminum film could result in different doses in EBL. However, no significant quality

difference has been observed in the later process.

Following the regular EBL process laid out, the coming step will vary for different cir-

cuit designs and instruments used. Specifically, due to the features’ sizes and shapes, the

proximity effect of the electron beam can be an extremely concerning point regarding the

quality of exposure. We’ll try to give some examples and analyze the difficulties of making

them, especially making Josephson junctions, in Sec. 3.2. At this point, let’s just say the

resist has been successfully exposed. Next, we remove the anti-charge layer. In our lab, we

put the chip in MF-319 for 4 minutes at room temperature, followed by rinsing in DI water.
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After that, the wafer is ready for developing.
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Figure 25: post-EBL developing. a) Details of post-EBL developing: a1) the submersible

magnetic stirrer; a2) 3D printed holder for stirrer and beaker inside cold bath; a3) Developing

setup; a4) chip holder for fixing the developing position and direction. b) The temperature

of developing solution has been tracked with or without magnetic stirrer.

In order to control the speed of development and increase the success rate, the developing

process is finished in a cold bath at 4 ◦C. The solution we are using is a mix of IPA and

DI water with 2.4 : 1 mass ratio. Again, to strictly control the environment, a submersible

magnetic stirrer (as shown in Fig. 25 a1)) has been used in this process. Moreover, both the

depth and direction of the wafer inside the beaker need to be consistent between each run

to minimize any environmental fluctuation. One bonus point of using the magnetic stirrer

is that the solution is well-mixed after a shorter time. In general, the chip is put into the

solution for 2 minutes and then rinsed in DI water for another 30 seconds.

After that, the sample is ready for deposition. Because of the precise mask design, it is

suited for directional deposition using the e-beam evaporation process. Most of JJs in our

lab are fabricated during this step, and based on the techniques people use, the deposition

rate, angle and thickness of the thin film can be precisely controlled to get high quality JJs.

In the end, the unwanted deposited metal need to be lifted off. We are using hot acetone

for the stripping process. Typically, the chip is immersed in the acetone at 80 ◦C for 2-3

hours depending on the samples’ size. We don’t have any solid evidence showing too long
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stripping time damages the sample. Using room temperature acetone can also strip the

resist. It is safer with room temperature acetone; however, the process requires about twice

the time.

3.1.4 Summarized recipe

In this section, the several processes mentioned above have been summarized step-by-

step in table format for easy use. The four processes include: 1. Aluminum base layer 2.

Tantalum base layer; 3. Sapphire dielectric deposition; 4. EBL procedure and dicing process.

Table 4: Al base layer

Aluminum coating

Clean wafer: Sonicating in Acetone, IPA and DI water for 5

mins each;

Deposition: Deposit 150nm Al on cleaned Si wafer;

Photolithography

AZ1518 resist (20s 500 RPM; 20s 1000 RPM; 90s 4000 RPM;

30s 0 RPM)

then heat 3 mins on hotplate at 100 ◦C.

Doing MLA writing with 200 mJ/µm2 dose setting.

Developing: 85s in AZ300 MIF; and rinse in DI water.

Heat 2 mins on hotplate at 115 ◦C.

Aluminum Etching

Asher cleaning: 2 mins in 30 mTorr O2 with 20W/200W

RF/ICP coil power.

Al etching: Stirring in Aluminum etchant A for 4 mins; then

clean it with 3 cups of DI water;

Clean wafer: Sonicating in Acetone, IPA and DI water for 5

mins each;
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Table 5: Ta base layer

Tantalum coating

Deposition;

Piranha-clean: 2:1 H2SO4 and H2O2 for 20 mins; And stir-

ring in 3 cups of DI water after; dipping into IPA to clean

in the end.

Heat 5 mins on hotplate at 140 ◦C.

Photolithography

AZ1518 resist (20s 500 RPM; 20s 1000 RPM; 90s 4000 RPM;

30s 0 RPM) then heat 3 mins on hotplate at 100 ◦C.

Doing MLA writing with 210 mJ/µm2 dose setting.

Developing: 85s in AZ300 MIF; and rinse in DI water.

Heat 2 mins on hotplate at 115 ◦C.

Tantalum Etching

Asher cleaning: 2 mins in 30 mTorr O2 with 20W/200W

RF/ICP coil power.

Tantalum etching: Stirring in Tantalum etchant 111 for 30

secs; then clean it with 3 cups of DI water.

Sonicating in toluene, acetone, methanol and IPA (“TAMI-

cleaned”) for 5 mins each.

Piranha-clean again.

Heat 5 mins on hotplate at 140 ◦C.
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Table 6: Sapphire dielectric deposition

Sapphire dielectric

AZ1518 resist (20s 500 RPM; 20s 1000 RPM; 90s 4000 RPM;

30s 0 RPM) then heat 3 mins on hotplate at 100 ◦C.

Doing MLA writing with 200 mJ/µm2 dose setting.

Developing: 85s in AZ300 MIF; and rinse in DI water.

Heat 2 mins on hotplate at 115 ◦C.

Asher cleaning: 2 mins in 30 mTorr O2 with 20W/200W

RF/ICP coil power.

Deposition: Deposit 60nm Sapphire on developed wafer;

Lifting off: Sonicating in Acetone, IPA and DI water for 15

mins each;
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Table 7: E-beam Lithography(EBL) procedure and dicing procedure

E-beam Lithography

Spin: MMA El13 (10s 500 RPM; 5s 2000 RPM; 90s 2000

RPM; 10s 0 RPM) heat 90s at 175 ◦C.

2nd Layer: Then PMMA 950K A4 (10s 500 RPM; 5s 3000

RPM; 90s 3000 RPM; 10s 0 RPM) heat 15mins at 175 ◦C.

Anti-charge layer: deposit 40 nm Al on the chip.

EBL writing

Remove anti-charge layer: 4 mins in MF-319; and rinse in

DI water.

Developing: stirring in IPA/DI water (2.4:1 mass ration) at

4 ◦C for 2 mins; Then rinse in DI water for 30s.

Plassys: Double-angle deposition.

Lifting off: 2 hours in hot (80 ◦C) acetone, then briefly son-

icate.

Dicing

Protecting Layer: S1805 (5s 500RPM; 60s 1000RPM) heat

3 mins at 80 ◦C.

Dicing.

Clean protecting layer: rinse in acetone for 10s.
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3.2 Josephson junction fabrication

Now after all the details we have discussed in the previous section, we’re finally ready

to make some Josephson junctions. In order to make the junction precious enough (as

close as designed), people have tried lots of different methods for different sizes and shapes

of junctions. In our lab, the two main ways of making JJs are the Dolan technique and

Manhattan technique. This section starts from introducing these two ways, then shares

some basic difficulties we have encountered during fabrication. In the end, the pros and cons

are discussed to let people choose which way is better for a specific sample.

3.2.1 Dolan technique

Sapphire/Si substrate Sapphire/Si substrate Sapphire/Si substrate

d1

d2

W

θ t

L

a) b)

Figure 26: Dolan bridge with double angle deposition. a) Dolan bridge with double

layers of resists then deposit aluminum with two different angles; b) JJ size’s dependence.

Depending on the evaporation angle, the shadow image of the mask is projected onto different

position on the substrate. By carefully choosing the angle for each material to be deposited,

adjacent openings in the mask can be projected on the same spot, creating an overlay of two

thin films with a well-defined geometry.

The Dolan technique traces back to 1977 [53]. It is also called Niemeyer-Dolan technique,

since Niemeyer first used this idea to make the junctions [54]. Normally, people think of
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this technique as shadow evaporation, which is a thin-film lithographic method to create

nanometer-sized overlapping structures.

As shown in Fig. 26, the key feature in the Dolan technique is the suspending bridge

which can be created using double layer resist (shown in Fig. 23). Then, metal deposition is

deposited with mask. In our lab, the JJs are mainly made of Al−AlOx−Al, which makes the

whole deposition process only need one type of metal with an oxidation step in between the

two depositions. By carefully choosing the deposition angle during the e-beam evaporation

process (discussed in Sec. 3.1.2), an overlay of two thin films can be created.

The regular recipe in our lab of the double angle deposition is following:

Table 8: Double angle deposition

Step Description

1 20 nm aluminum deposition at rate of 0.5 nm/s with 50 ◦

2 Oxidation process with O2 @ 95mbar for 30 minutes.

3 Another 30 nm aluminum deposition at rate of 0.5 nm/s with −50 ◦

To calculate the junction size exactly, based on the parameters labeled on the Fig. 26 b),

the overlay width W can be calculated as :

W = 2d2/ tan θ − L (44)

where d2 is the thickness of the MMA resist, θ is the deposition angle, and L is the width of

suspending bridge. Normally, θ and L are fixed between different runs, and the sizes of JJs

A can be easily controlled by changing the structures of bridges.

As shown in Fig. 27, the blue regions (weak dose blocks) in the GDSII files can be

treated as the suspending area, and the red regions (strong dose blocks) are deposited in two

different angles which can overlay with each other. Normally, based on the oxidation time

and oxygen pressure we have used during the deposition procedure, the current density Jc

of JJs is fixed between different samples. Then the critical current of JJs Ic can be easily

calculated as Ic = Jc · A.
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c)a) b)
Strong dose Weak dose

Small JJ Medium JJ Big JJ

Figure 27: SEM images of small, medium and Big JJs. The first row represents the

corresponding GDSII files for fabrication, where red blocks mean stronger dose in EBL and

blue ones mean weaker dose. And the second row is the associated SEM images.

However, in real life, the Dolan technique is sometimes tricky to implement, regardless

of the size of the JJs. For instance, when several in-series JJs (normally, odd number of) are

needed, they can be realized using the Dolan technique. However, due to the close proximity

effect, the JJs are never symmetric. In order to solve this problem, several different dose

tests need to be performed. In general, people can apply different dose factors on each red

block shown in Fig. 28 a), or an intentionally asymmetric design can be used to compensate

for the proximity effect.

Regarding small JJs, more challenges arise. Let alone the proximity effect, which can be

solved by adding more blocks with different doses to correct, there are still lots of fluctuations

on deposition angles, thickness of resists, and oxidation layer growth. It is quite common

that the junction ends up having a different size than designed. Moreover, because we’re

trying to use the overlay of two different depositions, the edge of each deposition becomes

very critical. Additionally, the side of the resist is not as sharp as we expect. All of these

factors lead us to the fact that the exact size of JJs cannot be easily controlled.

From the experience in our lab, we think reproducible results rely on a controllable

environment, which includes every step starting from spinning resist until stripping the
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Strong dose Weak dose

Figure 28: JJs fabrications could be hard. a). One difficulty could be the asymmetry

of JJs in series. And based on the SEM results, intentionally controlling different blocks’

size could be a solution for a given size JJ. b) Another one is that the edge of the small JJ’s

bridge is not as sharp as expected which results in fluctuated overlay width. If the finger’s

width can be easier to control, the finger crossing pattern may be used in the design.

resist. As we have discussed in the previous section, all parameters in each step have been

strictly recorded, and we also try our best to minimize any uncontrolled process including

random hand movement (one example is shown in Fig. 25). Furthermore, we’re also trying

to develop new patterns forming the JJs. Instead of using the edge of each deposition, the

finger crossing feature (as shown in Fig. 28 b)) may have better performance under some

conditions. Even though we don’t have solid proof that controlling the width of fingers is

actually easier than controlling the deposition shift, the former is more dependent on a stable

dose and the latter is more dependent on the thickness of resist and deposition angle.

One thing we want to emphasize here is that in the experiments, the resistances of JJs are

first measured before we cool down the sample. Via the Ambegaokar-Baratoff relation

[55], we can derive the corresponding critical current Ic in the superconducting regime from

the resistance RN at normal state regime (∆ = 0).

LJ =
ℏ
π∆

RN =
φ0

Ic
(45)

56



where ∆ is the superconducting energy gap and φ0 is the reduced flux quantum.

In the experiments, we often use this relation to decide the JJ’s inductance before we cool

down the sample. However, it is important to realize that: first, RN is the junction’s normal

state resistance or tunneling resistance which only considers the resistance coming from

metal-insulator-metal tunneling. This number can be precisely measured around 1.4−4.2K,

and the room temperature resistance we generally measured includes not only tunneling

resistance but also electrical resistance. Since both parts relate to the temperature, there is

a coefficient between room temperature resistance RJ and tunneling resistance RN . In our

lab, we assume RJ = 1.12RN ; however, please keep in mind this number can vary between

different antenna shapes and probe positions. At the same time, the superconducting energy

gap for different thickness of aluminum film might also be different. The number we generally

use is 182.412µeV, even though different numbers can be found in other articles [56].

Based on the above truth, we’d like to keep the deposition thickness and antenna shapes

the same across samples. By fitting the relation between resistance measured at room tem-

perature RJ and LJ calculated after cool down, a confident coefficient can be extracted in a

period of time (half year to a year).

3.2.2 Manhattan technique

Correspondingly, the Manhattan technique is a younger technique [57], which was first

developed in 2008. This technique can easily print large scale/numbers of qubits, and the

overall pattern is like the ‘Avenue’ and ‘Street’ in Manhattan - that’s where the name

came from. And more interestingly, compared to the Dolan technique, where the metal is

deposited at symmetric angle, in Manhattan technique, the metal is actually deposited at

perpendicular angle.

For the single JJ design, the mask is simple, with only a cross where the JJ forms. Here,

even without suspending structure, we still use double layers as resist for the following two

reasons: 1. The metal is easier to strip, especially with a small deposition angle when the

metal is connected together. 2. The thickness of resists can be stacked up. Notice here,

you actually want the thickness of the resist for the Manhattan technique to be as large as
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Figure 29: Manhattan pattern for JJ fabrication. a) Schematic representation of

the Manhattan pattern, where the red and blue blocks indicate aluminum deposition with

perpendicular planar angle; b) 3D representation of two deposition. By depositing at different

angles, two sets of overlapping strips are formed. c) Based on the thickness of resists and

the width of strips, the deposition angles have a minimum value.

possible instead of carefully controlling it to get designed junctions. For the second point,

Fig. 29 is clearer to explain. As we can see, the perpendicular deposition will deposit all

metal on the resist, as long as arctan θ > d/W . That’s also why we want a thick stack to

allow making as big JJs as possible.

And one advantage of Manhattan technique is the precision for the small junctions since

now the size of junctions is related to the width of the trenches and how clean they are.

Without suspending structure, the ion milling before deposition could be much stronger

than before, since the resist itself is actually very hard to destroy. In this case, by ion

milling the trench with stronger power only, the mask can have better shape. One way we

can calibrate for the stability of this technique is by sweeping both the dose factor and the

junction area to see how sensitively the resistance changes. As shown in Fig. 31, we find the

relation is pretty linear (∼ 1%) at some ranges. When the JJs are too small, the deviation

becomes relatively large.

Again, even though we’re trying to claim Manhattan pattern is better for making small
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Figure 30: SEM images of Manhattan pattern stability analysis. a) SEM image of

Manhattan pattern and the corresponding GDSII file; b) By changing the dose factor and

the width of the strips, the resistances of formed JJs are tracked. c) By fitting the relation

between resistance and 1/area, first order linear relation can be extracted (i.e. R = k/A).
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Figure 31: The effect of different antenna shapes on resistances. a) Two different

shapes of antenna in the tranmon design; b) Fitted relation between junctions’ size and

resistances.
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JJs because of its stability, the resistance between different designs and patterns for various

experiments still can be different because of the proximity effect. In this case, we think a

dose test for each different sample is still necessary if a precise resistance is needed.

3.2.3 Summary

a1) Bridge dose too weak

Bridge dose too strong
a2)

b1)Descum too strong

Residue beneath bridge

a3)

a4)

b2)

'Avenue' too wide

Lift-off problem

Need better undercuta5)

Deposition angle distorted
a6)

Figure 32: Failed examples of JJs fabrication. a) Possible failed reasons for Dolan

bridge technique. Notice here, the reasons causing failed JJs are not excluded, most of time

the failure is coming from many aspects; b) Possible failed reasons for Manhattan technique.

In the end of this section, we want to restate the difficulty of making junctions. Even

though with industry has joined the game, and lots of large scale junctions have been made

in the last three to five years, the quality of single junction is still be a topic people are trying

to explore. In order to give the readers a more straightforward vision of failure during the

fabrication, Fig. 32 shows several failed examples of making JJs both in Dolan techniques

and Manhattan techniques. For each failure, the reasons may be due to multiple aspects,

which also means the problem probably can be fixed in various ways. Despite the fact that

sometimes changing a parameter in one step results in another failure in the other step, it

is still worth trying different combinations to get a stable pattern.

Comparing the two different techniques we have discussed, we think the Dolan technique

is still very good making different sizes’ junctions, ranging from 0.01µm2 to 10µm2, as long
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as with a stable pattern the junctions can be made consistently. Moreover, it is very simple

making several odd numbers of junctions in series.

On the other hand, the Manhattan technique is really good at making small, precise

junctions. Getting rid of suspending features in small junction fabrication offers the chance

to aggressively ion mill and clean the substrate with mask before metal deposition, which

results in a more controllable junction fabrication. Nonetheless, designing multiple junctions

in series or fabricating large junctions sometimes can be quite grueling with this technique.

a)
SNAIL All Al JPC Array of SQUIDs

b) c)

Figure 33: SEM of different devices. Here, we show some real examples of superconduct-

ing device based on Josephson junctions.

Lastly, we’d like to present several examples of real samples in our lab. Most of the

fabrications we have done are related to the JJs themselves and based on the requirements

we need. The JJs can be shunted with different sizes of capacitors and inductors. With all

the techniques discussed and a bit of imagination, quantum engineering could be as easy as

building Lego blocks.
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4.0 Hardware Philosophy and Setup

After two chapters, we have completed the theory and prepared the sample, now we

can finally cool down the sample and start measurement. Generally speaking, quantum

measurements can be divided into two main categories: steady-state measurements and

dynamical measurements. Most of the time, the former can be directly done in the frequency

domain and the latter is done in the time domain. Sometimes the two kinds of measurements

overlap to capture the whole picture. As shown in Fig. 34, choosing the right tools for specific

jobs can be a challenge sometimes.

Thus, this chapter is divided into three sections and is following the same organization

followed in Ch.3. First, we discuss the basic measurement techniques in different domains

in Sec. 4.1, then in Sec. 4.2, qubit measurement is used as an example to go through all the

techniques and also the tools we have used during the calibration and optimization of qubit

operations. Last, Sec. 4.3 introduces parametric operations in experiments and explains the

details on how to tuneup and calibrate a good parametric gate.

4.1 Basic measurement techniques

This section focuses on basic techniques that have been used in quantum measurement,

which can be divided into frequency domain and time domain. Instead of discussing the

quantum mechanics behind the measurement, I want the reader to have a clearer vision on

how to operate different instruments for various measurements.

4.1.1 Frequency domain measurement

For the frequency domain measurements, the two most important instruments are the

vector network analyzer (VNA) and the spectrum analyzer (SA). The VNA always compares

the signal coming out from the dilution refrigerator with the signal sent in, while the SA
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Figure 34: Introduction of superconducting circuits measurement. In most of the

cases, quantum measurement is trying to figure out either steady state solutions or dynamics

responses for a given system by using both frequency domain and time domain techniques

to fully characterize the system under study.

monitors the power coming out in a range of frequencies. In the following part, I am going to

introduce several experiments that these two instruments can perform to give an idea about

what we can do with them.

VNA experiment. First, a very common experiment that a VNA can do is measuring

the scattering parameters of a linear mode or a nonlinear mode with small anharmonicity

(α/κ < 0.1). The steady state solution has already been predicted in Sec. 2.1.2. As we

have calculated in theory section, the mode we measured could have reflection response or
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transmission response. But in practice, since the cryogenic input and output are always

different, which means we always measure S21 =
V −
2

V +
1

|V +
2 =0 in the VNA.

Another common experiment a VNA can perform is two-tone spectroscopy. It is a very

useful tool in the dispersive coupled system, and we are going to introduce several examples

in the qubit measurement experiments (Sec.4.2). The general idea of spectroscopy is using

VNA to constantly measure one of the coupled mode, and another generator is used to sweep

the frequency on the other mode. If two modes have dispersive coupling between them, when

the generator ‘hits’ another mode, the response in the VNA will be different. By doing this,

we can find a high-Q mode easily or a nonlinear mode.

SA experiment. The SA is widely used in amplifier measurements, which is not this

thesis’ topic. However, we still want to emphasize here that the SA can measure the back-

ground noise from the output. For example, in the cryogenic output line, the signal goes

through three amplifiers: quantum-limited amplifier (JPC, TWPA, ...), HEMT @ 4K stage,

and room temperature amplifier. One quick thing people could test is turning on the am-

plifier from high temperature to low temperature one by one and monitor the background

noise change. If the noise doesn’t change, that may be because the amplifier just turned on

has very limited gain; however, if the noise increases too much, that may indicate the noise

of this amplifier is too high.

One other thing SA can do is calibrate input signals. For the next section, time domain

measurement, the quality of the input signal is a critical component which could relate

to many aspects of the experiment. First, since most of the signal we are sending into

the system is finite, choosing a good modulated signal is important because their Fourier

transformation could be very bad (spurious tones, higher harmonics, and wide primary

tone from short pulses) in frequency domain. Second, all signals go through lots of room

temperature RF elements before they are sent into the fridge. For each element, they could

have very different saturation power, working range, insertion loss and multi-port unbalance,

which could distort the signal dramatically. Because of all the above reasons, if we always

check the signal in SA before sending it into the fridge, we can save lots of time and trouble.
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4.1.2 Time domain measurement

Another big category of the measurement is time domain measurement. In time domain

measurement, we use an arbitrary waveform generator (AWG) sending a signal into the

system in ns scale and demodulate the output in a digitizer also in ns scale. The whole

process involve several RF elements for frequency conversion, up-conversion for input and

down-conversion for output. As shown in Fig. 35, it forms a closed loop from input to

output. More importantly, the whole setup makes a copy of the input, and mixes with the

demodulate generator forming a reference signal to cancel any hardware drifts.

Let’s take a close look at the readout setup. First, the AWG generates a signal shape

(e.g. a Gaussian shape) and then the signal mixes with the LO generator at mode frequency

to create a Gaussian modulated signal: s1(t) = A(t) cos(ωa · t + ϕ1). Here A(t) is the pulse

shape, ωa is the mode frequency and ϕ1 is the random phase coming from the first generator.

Then the signal s1 is sent into the fridge to interact with the system, and carry both

amplitude and phase information coming out from the fridge: s2(t) = B(t) cos(ωa · t+ ϕ1 +

ϕ(t), where B(t) and ϕ(t) is the complex information we cared about. The signal first go

through an image rejection (IR) mixer, where the LO is the second generator with frequency

ωa − 50MHz. Here the 50MHz difference makes the signal down-convert to 50MHz and

the reason we choose 50MHz is because our digitizer sample rate is 500MSample/s, and it

is much harder to extract complex information from a DC signal. One more point I want

to make here is the reason we choose IR mixer is because it can generate both LO-RF and

RF-LO signal, in our case it is +50MHz and −50MHz. And these two signal automatically

average together, resulting in half (power) background noise in the result.

After mixing, the signal becomes s3(t) = B(t) cos(50MHz · t+ϕ1−ϕ2+ϕ(t)), where ϕ2 is

the random phase coming from the second generator. At the same time, a copy of generator

one also mixes with generator two to create a reference signal sr(t) = C cos(50MHz · t +

ϕ1−ϕ2). At this point, the logic looks obvious: we want to use the reference signal to cancel

the random process drift in s3(t), but this process cannot automatically finish in any RF

element, which means we need to calculate it in the software.

So, both sr(t) and s3(t) send into the digitizer, and we use a digitized 50MHz oscillator
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Figure 35: Interferometric readout setup. Schematic representation of an input-output

measurement setup with interferometric readout.

to demodulate both signal:

Ĩ =

∫
t

s(t) · cos(50MHz · t)dt

Q̃ =

∫
t

s(t) · sin(50MHz · t)dt
(46)

After demodulation, we can get four arrays: Ĩs, Q̃s for s3(t) and Q̃s, Q̃s for sr(t). Next,

we need to rotate the random phase drift away from the real signal:
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I = (Ĩs · Q̃s + Q̃s · Q̃s)/

√
(Q̃s

2
+ Q̃s

2
)

Q = −(Ĩs · Q̃s + Q̃s · Q̃s)/

√
(Q̃s

2
+ Q̃s

2
)

(47)

Now the I, Q are the real demodulation of signal coming out from the fridge. If the

system we probed is a cavity, the I, Q are the cavity response in the I −Q plane.

Above is the basic principle of the time domain measurement. In practice, based on the

different manipulation of the qubit and cavity, the experiment could become very compli-

cated. However, in the end, the last thing we measure is always a cavity response carrying

the system information. We start introducing more complicated experiment in the next

section.

4.2 Qubit measurement and calibrations

In this section, we take transmon qubit measurement as an example going through all

the steps during the measurement using techniques we have mentioned in the previous sec-

tion. After reading this section, we want the readers to have a straight idea about what is

measurement, and how to calibrate a qubit from the very scratch.

4.2.1 Frequency domain measurement

4.2.1.1 Identify cavity mode

Everything starts from the frequency domain, and for transmon qubit measurement, even

before we try to find the qubit frequency, we need to figure out the readout mode information

first. And in most cases, this mode is a cavity mode, no matter in 2D or 3D.

Following the protocol, we have introduced in Sec. 4.1.1, we can find the cavity mode

and get the basic information, frequency f and decay rate κ, about the cavity. Then the

first interesting thing happens, a quick check to see if there is a qubit or not.
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Figure 36: Cavity response and high power response..

Based on the truth that transmon qubit has a strong anharmonicity (∼ 200MHZ) and

relatively strong coupling between cavity and qubit (g/∆ ∼ 0.1, where g is the coupling

strength, and ∆ = ωc − ωq is the frequency difference between two modes), the cavity itself

also has a self-anharmonicity around 10−100KHz. As long as we have successfully put over

100 photons into the cavity, the cavity response will be distorted naturally, which can prove

the existence of qubit (as shown in Fig. 36 b)).

4.2.1.2 CW spectroscopy

Next, find the frequency of qubit, CW spectroscopy. Again, for the Hamiltonian of

qubit-cavity system, we have

Ĥ = ωcc
†c+ ωqq

†q + α(q†q†qq) + χ(q†qc†c) = (ωc + χ⟨q†q⟩)c†c+ ωqq
†q + α(q†q†qq) (48)

where, ωc, ωq are the resonant frequency of qubit and cavity; and α, χ is the anharmonicity

of qubit and dispersive coupling between qubit and cavity. One thing we noticed from

Hamiltonian, due to the existence of qubit and dispersive coupling between two modes, the

occupation in the qubit mode automatically changes the cavity frequency which means if we

can use another generate trying to ‘hit’ qubit frequency, then the cavity response will also

change. That is also the key point of two-tone spectroscopy.
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In practice, 1). we first move to cavity resonate frequency, then change the frequency

span on VNA to 0Hz. Then 2). a second generator is used to send a continues wave into

qubit drive port, and by sweeping the frequency of the second generator, if the qubit mode

has been ‘hit’, the cavity response in VNA will be changed. One thing that needs to be

clarified is this protocol is a good example of quantum Zeno effect: when one generator is

trying to drive the qubit, the VNA keeps measuring cavity to reset the qubit (or with small

possibility, qubit jumps). On the other hand, because the cavity has been driven all the time,

there is a relatively not small amount (∼ 10 ∼ 100) of photons inside the cavity resulting

in qubit frequency shift. With all the above, in order to get a clear spectroscopy, the power

of both generator and VNA, and also VNA center frequency need to be fine-tuned. Last,

there is also one bonus point of CW spectroscopy: most of the cases, because the qubit drive

is strong enough, not only f q
ge transition, but also f q

ef and 1
2
f q
gf can be observed during the

protocol.

4.2.2 Time domain measurement

After figuring out the basic parameters of two modes, we can move on to time domain

measurement, analyzing more details on qubit itself. In the following, I’m going to first intro-

duce qubit routine examination, then briefly discuss some other parameters’ measurement,

optimization and benchmarking techniques are presented in the end.

4.2.2.1 Qubit routine examination

Cavity response. First, examining cavity by sending some photon into system. With

the development of quantum operation, cavity drive signal could be exotic for different

purpose: e.g. bright states’ readout [58], fast reset of cavity, increasing measurement fidelity.

Here, we’re just going to use a flat top modulated signal as an example, explaining the basic

technique of measuring qubit via measuring cavity. A finite tanh function has been used for

the modulated signal: s(t) = tanh (k · t− b)− tanh k · (t− w)− b, where k can be treated

as ramp rate, b is the truncated point, and w is the signal width. Like we have calculated

cavity response in Sec. 2.1.2, and by applying the techniques we have introduced in Sec. 4.1.1,
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the exact same response we have predicted from theory can be presented from experiments.

More interestingly, if the experiment has been repeated multiple times (depends on SNR),

the averaged data is the solution of the cavity response, and the standard deviation is the

amplified half photon noise determined by the Heisenberg uncertainty. At this point, we can

also integrate the response to get a Gaussian blob where the center is at n̄κTm, where n̄ is

the average driving strength, κ is the cavity decay rate and Tm is the measurement length.

By keeping increase the driving strength or measurement length, two blobs may show up

due to the dispersive shift and finite temperature of qubit, where the angle between them is

2 · arctan (χ/κ), where χ is the dispersive shift between qubit and cavity.
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Figure 37: Cavity response and histogram. a) Demodulation of cavity response; b)

Calculate the magnitude of cavity response, one is calculating
√
Ī2 + Q̄2 (Mag py), and

another is calculating
¯√

I2 +Q2 (Mag FPGA); c) The cavity response in I-Q plane; d)

10,000 repetition of measurement histogram.

A good cavity readout and histogram has been shown in Fig .37. After we have deter-

mined the best cavity driving frequency and π-pulse for qubit, we can calculate the mea-
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surement fidelity as : ∑(∣∣∣∣ Histoe∑
Histoe

− Histog∑
Histog

∣∣∣∣) · 1
2

(49)

A high fidelity readout could make the following qubit measurement much easier, and

provide the conditions for complicated experiments. A simple example is that we can add an

extra measurement before every sequence to reset qubit, and only select ground state results

for following sequences. However, for routine measurement, this is not necessary. As long as

we have the ability of probing the cavity, we can start measuring the qubit as follows:

Pulse spectroscopy. Since in CW spectroscopy, we cannot control the exact photon

in cavity or qubit (again, Zeno effect), and due to the AC Stark shift, the f q
g e transition we

find could be off by several MHz. The very first thing we can do is finding a more precise

resonate frequency of qubit by pulse spectroscopy.

A very long (several times longer than qubit coherence time) and weak qubit drive has

been first applied on the qubit to saturate the qubit to ρ = |g⟩⟨g| + |e⟩⟨e| (a purely mixed

state), then applying a cavity drive to measure the state of qubit. By sweeping the frequency

of qubit drive, once the cavity response shows difference, indicating the qubit has been ‘hit’.

In this scenario, we have guaranteed that the cavity is almost empty when probe the qubit

which can give us a precise resonate frequency. In practice, the qubit coherence time could

vary a lot, sometimes a very long coherence time qubit may need over 100µs pulse to saturate,

which results in a very narrow peak in the spectroscopy. Sometimes, in order to save some

time, a shorter ( 5 − 10µs) pulse could use to do a rough spectroscopy, however, different

amplitudes may need to be tried in case accidentally drive qubit back to ground state.

After that, π-Pulse tune up. After we have found qubit frequency, we can start

controlling qubit starting from tuning up a π-pulse on qubit driving from the ground state

to excited state. Here, the driving pulse we have chosen is a Gaussian modulated signal,

since the Fourier transform of Gaussian is still Gaussian making the pulse can be easily

controlled in both time and frequency domain. By sweeping the amplitude of the Gaussian

pulse, a beautiful sinusoidal trace can be observed, which is also been called as power Rabi

oscillation. In one example shown in Fig. 38, the qubit start from ground state, after half
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Figure 38: Qubit routine examination. The routine examination including the following

steps: 1. Pulse spectroscopy to find qubit frequency, here the x-axis is the Single Side Sand

(SSB) frequency which is easily swept in AWG; 2. Rough π-pulse tune up; 3. Use a short

T2 Ramsey measurement to find a more accurate qubit frequency; 4. Redo π-pulse tune up;

5. T1 measurement; 6. Real T2 Ramsey measurement; 7. T2 Echo measurement.

period of sinusoidal trace, the qubit reaches excited state, and the corresponding amplitude

is the π-pulse amplitude.

Then, T1 measurement. In order to measure the energy decay of qubit, the only thing

we need is driving the qubit to excited state, which is actually can be any population except

for the thermal equilibrium state, and after a various width of time, measuring qubit. No

matter where the qubit starts, you can see an exponential decay of the qubit population to

the thermal equilibrium state. By fitting the trace to y = A exp(−t/T1) + b, the T1 decay

can be extracted. Also, here b can roughly indicate the thermal population of qubit mode.

Next, T2 Ramsey, and T2 echo measurement. Except for the energy decay, there is

also phase decoherence Tϕ. In the experiment, it could be very hard to directly separate two
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losses. Instead, we can measure T2 of the qubit, which is defined as 1/T2 = 1/(2 T1) + 1/Tϕ.

The sequence is still quite easy: applying two π/2-pulse on qubit and vary the time width

between them, following by an immediate measurement. After the first π/2-pulse, the qubit

starts decoherence and decay at the same time. Depending on the qubit drive is exactly

on resonance or not, the qubit and the driving signal may oscillate at different frequency,

which results in the next π/2-pulse could lead the qubit onto any point of the projection

on Z-axis. This is a very good way to precise tune up the qubit frequency to 1/T2 level

by fitting the result to y = A exp(−t/T2) · cos(δt + ϕ) + b. One trick we have always done

is after T2 Ramsey measurement, we can also add one more π-pulse between two π/2-pulse

to echo any low frequency decoherence noise by flipping the qubit from | + X⟩ to | − X⟩.

For example, if you have intentionally driven qubit several kHz away, the echo pulse can

automatically correct the off-resonance drive and extract T2 from an exponential decay:

y = A exp(−t/T1) + b. On the other hand, if you have observed a big difference between

T2R and T2E, the qubit may suffer from low frequency noise, but if T2R ≈ T2E < 2 T1, the

qubit suffers from high frequency noise. Sometimes, you may find your T2E is smaller than

T2R, which definitely violates the physics of law. We think the reasons could be the qubit is

not stable and the decoherence vary a lot in a short period of time, or you just don’t have a

good enough π-pulse, especially after you have changed driving frequency of qubit recently.

4.2.2.2 Other parameters

Except for the above measurements, there are also several parameters that related to

the performance of the qubit. Multiple mature protocols have already been developed to

perform the measurement, here I’m going to take some examples explaining the idea of these

protocols and discuss the points of measuring these parameters. One thing that need to

be noticed here is that the most obstacle of different protocols is actually coming from the

truth that the noise and error could come from lots of aspects, like state preparation and

measurement (SPAM) error, gate error, or hardware instability. How to isolate all errors

from the measurement itself could be a very challenge question. Even though the protocols

could have limitations, it is still very valuable understanding the idea behind the protocols.
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Anharmonicity α measurement. Two-tone spectroscopy is a very good tool to probe

different transitions in the system. Since the π-pulse has already tuned up, we can directly

prepare the qubit to excited state and then sweeping the driving frequency to ‘hit’ the f q
ef

transition. Then the anharmonicity can be simply calculated as α = f q
ge − f q

ef for transmon-

like qubit.

The reasons we cared about anharmonicity are following: first, for transmon-like qubit,

α = −EC , where EC is the capacitance energy of transmon qubit. This number can directly

give us an idea between simulation and fabrication, since EL could be much harder to

directly measure. Second, after tuning up the e− f pulse, other protocols becomes possible,

one simple example is shelving the qubit [59] to increase measurement fidelity.

Dispersive shift χ measurement. The difficulty of measuring χ highly depends on

the ratio between χ and κ, the decay rate of cavity. With a big χ/κ, we can weakly populate

the cavity and at the same time doing the spectroscopy, as shown in Fig. 39. This is also a

common way of calibrating the photon number in a linear mode, especially a high Q linear

mode, by fitting the coherent state distribution.
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Figure 39: Dispersive shift measurement. a) When χ > κ, we can first populate cavity

and do pulse spectroscopy on qubit. b) When χ < κ, we can selectively measure steady

states of cavity.

On the other hand, for small χ/κ (< 1), pulse spectroscopy is relatively hard since multi-
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ple peaks could be not differentiable at all. However, if we recall the definition of dispersive

shift from Sec. 2.1.1.2, χ is actually twice the frequency difference of cavity when qubit in

ground state and in excited state. Since qubit state can already be easily manipulated in time

domain, then the only problem is how do we know the cavity resonance frequency at given

condition in time domain. As we have recalled, cavity response is the dynamical solution at

driving frequency, as long as a long enough pulse (> 5/κ) driving cavity to its steady state,

we can integrate the time domain data and treat it as the steady state response at particular

frequency. Then simply sweeping the cavity driving frequency, we can generate the exact

same response from VNA. Now the protocol becomes straightforward: we prepare the qubit

to ground and excited state separately, and then sweep the cavity driving frequency.
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Figure 40: Rabi population measurement and temperature coherence relation.

a) From the two oscillations amplitudes, an estimate of the population and its associated

standard deviation can be calculated from Pe = Ae/(Ae+Ag). b) With different devices, we

have observed a strong relation between qubit |e⟩ state population and 1/T1.

One example is shown in Fig. 39, we can see two clear separable trace representing the

frequency domain cavity response when qubit in ground or excited state. By fitting these

two response to its analytical solution (in Sec.2.1.2), dispersive shift can be calculated as

χ = 1
2

(
f c
g − f c

e

)
. One more point that can be emphasized here is that by sweeping the

cavity driving frequency, we can also find a point where the cavity response has the most big
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difference when qubit in different states. This point is also the best cavity driving frequency

for good readout.

Population measurement. One of the common technique measuring the qubit pop-

ulation is ‘Rabi population measurement’ (RPM), which has been well introduced in K.

Geerlings’s dissertation [41]. Here, we just use a measurement example showing the idea of

RPM. Moreover, we have kept tracking the population of a same qubit in multiple cooldowns.

By changing the packaging and shelving of the system, we can intentionally change the qubit

temperature. At the same time, we have found the decay rate of the qubit has a very linear

relation with the qubit temperature.

At this point, we have figured out most related parameters of a cavity-qubit system, here

we use a table of results at the end showing our lab’s current (2021’s) progress on this kind

of system:

Table 9: A general cavity qubit system parameters.

Cavity frequency (GHz) 6.998044

Cavity κ (MHz) 2.385

Qubit frequency (GHz) 4.867723

α (MHz) 188

χ (MHz) 0.504

χ/κ 0.211

T1 (µs) 92.9

T2R (µs) 48.8

T2E (µs) 60.0

nthermal 3.39%

4.2.2.3 Optimization and benchmarking

After we have measured all numbers we cared about the system, next step we need to

do is fine-tuning up the gate and benchmark how good the gate is. At this moment, we
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only have a single qubit involved in the whole system, so the target will be how good a

single-qubit gate can be tuned.

First, we need to understand where the gate error could come from. In most of the

sense, all errors can be divided into two parts: hardware side and physics side. For the

hardware part, it is mostly because of the driving power, detuning and X-Y skewness; and

for the physics part, it is often due to the coherence and the Hamiltonian of the system.

Apparently, coherence limit is not something that can be fixed in room temperature, however,

Hamiltonian limit may could be fixed using pulse engineering techniques (not always).

Let’s start from hardware error. In general, after a good π-pulse tune up, the gate error

is smaller than 1%. In order to correct this 1%, we need to first amplify this error using

some pulse combination. One straightforward idea is using multiple π-pulse to accumulate

single-qubit gate error. At the same time, via sweeping the driving power and detuning, an

optimized gate can be easily found.

Another idea fixing the hardware error is ‘AllXY’ sequence, which has been introduced

in Dr. Reed’s thesis [60] in details. The benefit of ‘AllXY’ is that by using 21 difference pulse

combinations, the most three common hardware errors, power, detuning and X-Y skewness

have different sensitivities, and different patterns of the experiment results reveal different

errors in the gates. Here we use an experiment data to show how convenient this approach

fine-tuning up the π-pulse.

For the physics error, the sources could come from many aspects. As I have mentioned,

sometimes the coherence limit gives us the upper limit of the gate fidelity. But on the

other hand, there are also lots of approaches trying to suppress the gate time to get higher

fidelity. For example, a Gaussian-modulated pulse is not necessary the best pulse shape,

since it is always during the ramping process. One extreme approach is Gradient Ascent

Pulse Engineering (GRAPE) [61], where you literally program each single time bin of the

pulse. With the large freedom and good calculation power, a best optimized pulse should be

able to find. However, the cap of this approach in the end is how much power you can send

into the system: at some point, because of the power you need for the single-qubit gate is too

high, the dilution fridge will warm up first. Alternatively, according to Mingkang’s work (in

preparation) using parametric single-qubit gate, if the gate is not necessary on resonance, it
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can solve a nature conflict between strong qubit drive and long coherence time. The details

of the parametric gate is going to be discussed in the later section.

Another kind of error in the physics side is the infinite energy level in the transmon qubit.

When a g−e transition is fast enough, it is inevitable that part of the photon leak into f state

or even high energy level. Fortunately, tuning up a good gate doesn’t care what happened

during the pulse, but only after the pulse. A very mature approach, Derivative Removal by

Adiabatic Gate (DRAG) [61], can be adapted here to prevent leaking into high-energy level

after the pulse. By adding a derivative of the original pulse onto the perpendicular driving

axis, the leaking error can be fixed till the first order level. In practice, two combinations in

’AllXY’ sequence can perfectly amplify the high level leaking effect with different sign. By

sweeping the DRAG factor, we can easily find the optimized point.

With the development of quantum operation techniques, there are lots of new idea that

have been invented. There are even companies focusing on optimizing gate performance on

software level, like Q-CTRL. However, as a quantum engineer background, I think under-

standing where the error comes from and what’s the physics limitation mean more to develop

better techniques.

Benchmarking. After gate optimization, we want to know how good our gate really is.

The idea of gate benchmarking is trying to separate the gate error and SPAM error, then

using the Clifford gates set to move the qubit onto each polar point on the Bloch sphere

to test all combinations of Clifford gates, no matter single-qubit gate or two-qubit gate.

A mature example is randomized benchmarking (RB) [62, 63] and interleaved randomized

benchmarking (iRB) [64] for measuring single gate fidelity. Since both theory and experiment

have already been well introduced in the literature, this section we’re going to only focus on

how do we realize the protocol in our lab, a superconducting transmon system.

Single-qubit RB. For the single-qubit gate, there are 24 Clifford gates. Here, we write

down all 24 gates decomposed by πx, πy, πx/2 and πy/2 in the Table. 10 (The end of this

chapter).

Alternatively, we can also add virtual-Z gate for decomposition, which can reduce the

number of gates per Clifford from 1.875 to 1.167. However, we don’t think it is necessary

for gate benchmarking using virtual-Z gate, still, it can test if phase tracking work in the
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system. After the gates has all been decomposed, in practice, we only need to generate a

sequence of random number from 1 to 24, and then calculate which Clifford gate can bring

the qubit state back to ground state using brute force sweeping. Here we show an example of

single-qubit RB result in our lab in Fig. 41. According to the fitting result, we can calculate

the average Clifford gate error is r = (1− 0.9988)/2 = 0.0006, in this case, each single qubit

gate fidelity is 99.968%.
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Figure 41: Single-qubit gate RB. Here the trace has been fitted to y = Apm + B, wehre

A and B absorb state preparation and measurement errors as well as the error on the final

gate, and m is the number of Clifford gate. The average gate error rate r is defined as

r = 1− p− (1− p)/d, where d is the dimension of qubits’ space.

Two-qubit RB. For the two-qubit Clifford gates set, there are totally 11,520 gates.

The math details behind it could be massive, here we take a shortcut, defining four distinct

classes of the two-qubit Clifford group. Before we introduce all four classes, we first define

two gates group: Ci is the group of single-qubit Clifford gate (which has 24 different elements)

and Si = {I, RS, R
2
S} where RS = exp[−i(X + Y + Z)π/(3

√
3)]. The latter group is simply

the rotation that exchanges all the axes of the Bloch sphere (from x− y − z to y − z − x).

In practice, Si can be written as:

Now, the first class, which consists of 576 elements (242), represents all single qubit

Clifford operations.
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RS

RS2
=

RZ(π/2) RX(π/2)

RZ(π) RX(π/2) RZ(π/2)

RZ Virtual gate

C1

C2

The second class, iSWAP-like class, has 5184 elements (242 × 32) and represents all

combinations of the following sequences:

C1

C2

S1

S2

The third class, CNOT-like class, also has 5184 elements (242 × 32):

C1

C2

S1

S2

And the last is SWAP-like class, and contains 576 elements (242):

C1

C2

We think this is the optimal decomposition of the two-qubit Clifford group in terms of

number of iSWAP gate as it can be shown that implementing a CNOT requires two iSWAPs

and a SWAP requires three. However, we don’t think this is a general expression for all

two-qubit Clifford gates. If the building block is
√
iSWAP, there is better decomposition

[65] possible. Back to the topic, since we use iSWAP as our building block, the following

replacements for the two-qubit entangling gates of the above classes has been used:
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=
RZ(-π/2)

RX(π/2)

RX(π/2)

RZ(π/2) RZ(π/2)

=
RX(-π/2)

RX(-π/2) RX(-π/2)

After all Clifford gates have been prepared, we can follow the same order as single-qubit

RB protocol to finish the benchmarking. In general, there is no other difference between

single-qubit and two-qubit RB.

Except for the randomized benchmarking, there is also an interleaved randomized bench-

marking to test single gate fidelity. And the only difference in the sequence is for each original

Clifford gate in the sequence, there is an extra added Clifford gate, no matter single-qubit

gate or two-qubit gate. By doing this, we can interleave any specific gate we want to test,

more specifically, we can separate this single gate error from all other gates’ error. This is

especially useful in testing two-qubit gate. In this case, if we obtain a fitted parameter p̄

from RB and p from iRB, we can calculate the single gate error as:

rC =
(d− 1)(1− p̄/p)

d
(50)

Again, we use a lab’s current (2021’s) result as an example to show the two-qubit RB

result:

From the fitting result, we can calculate the iSWAP gate fidelity is 98.2%. However, by

comparing the result with interleaving with identity gate, we can claim that our two-qubit

gate is only limited by the coherence of the system. The next step we can improve is either

have a better coherence time or faster gate speed.
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Figure 42: Two-qubit RB. One useful experiment we can do is interleaving both two-qubit

gate and identity gate with same time. By doing this, we can determine if the gate is only

limited by the coherence of the system or not.

4.3 Parametric gate tune up

During my graduate study, one important gates set family I have used is the parametric

gate, including single-qubit and two-qubit gate. The theory behind parametric gate has

already been discussed in Sec. 2.1.3, and in this section, we’re going to only focus on three-

wave mixing parametric gate by coupling the qubits onto a SNAIL element which generates

three-wave coupling across the whole system.

4.3.1 Single-qubit parametric gate tune up

For the single-qubit parametric gate, we’re considering the following simplified Hamilto-

nian system:

Ĥ0/ℏ = ωqâ
†â+

α

2
â†â†ââ+ geff

(
â+ â†

)
⟨ŝ†ŝ⟩ (51)
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As we have mentioned in theory, this process transfer two pumping photons into a single

qubit photon. The only difference comparing to the on resonance drive is that all pumping

photon is half resonance. Even though due to the existence of AC Stark shift, the pumping

frequency is not exactly half of the f q
ge transition, but lots of techniques above can be directly

adopted in parametric gate.

Find the time Rabi for the parametric process. Just like single-qubit on resonance

gate starting from pulse spectroscopy, the first step tuning up parametric gate is also using

spectroscopy to find the transition. Using the same protocol as mentioned in two-tone

spectroscopy, we can sweep the frequency near the 1
2
f q
ge to find the right transition fre-

quency. Next, instead of power Rabi we have used in π-pulse tune up, we can do a time Rabi

with frequency tuning to generate a ‘chevron’ pattern Rabi oscillation like in Fig. 43. The

reason we don’t use power Rabi in the parametric system is because the pumping frequency

is dependent on the pumping amplitude that comes from AC Stark shift. Power Rabi cannot

separate these two freedoms, making the tuning up process even harder. And by looking at

the ‘chevron’ pattern, the first point reaching the excited state is the condition forming the

parametric π-pulse gate.

Fine-tuning the parametric π-pulse. Similarly, fine-tuning the parametric gate

adopt the same idea: accumulating errors to amplify the syndromes, and multiple π-pulse,

different pulses combinations can be used again. In Mingkang’s work (in preparation), he has

systematically introduced how to tune up the single-qubit parametric gate from rough-tuning

to fine-tuning with different sequences. One example is shown in Fig. 44.

Track the phase change. One last thing I want to emphasize here is the phase tracking

during a parametric gate. Because the resonance frequency of qubit could change during

the parametric pumping process, the qubit could capture some extra phase. Understanding

where the phase comes from and tracking the phase change is a very important part of

operations.

In order to easily explain and track the phase change, we have used a flat top (finite

tanh) function as the modulated signal. The phase change can be divided into two parts:

the constant phase change coming from the ramping process and the time-dependent phase

change coming from the frequency difference between driving frame and resonance frame.
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Figure 43: Time Rabi of single-qubit parametric process. Here, the y-axis is the

parametric pumping length, the x-axis is the pumping frequency, and the color represents

the qubit |g⟩ state population. In general, the center of the first blue zone is the condition

of a π-pulse.

The first part is very easily to understand, because when the pump signal starts ramping,

the amplitude of the drive keeps changing during this process, resulting in the resonate

frequency of the qubit is also changing. However, it is not necessary to make the pump

frequency change with the driving amplitude, (even though this could be a solution.) as

long as the ramping width is same, we can average the phase difference:∫ t0+tramp

t=t0

∆(t)dt = ∆̄ · tramp = ϕc (52)

to compensate every time there is a ramping process. And In practice, there is no problem

directly sweeping the compensation phase to find the optimized point.

The second part is relatively interesting, because we need to understand a fact that

everything keeps oscillating even you didn’t look at it. This truth has already been used

in T2 Ramsey experiment, where we have intentionally driven the qubit off-resonance, we

can see the measurement results is oscillating between |g⟩ and |e⟩ states. Notice this is not

because the qubit is oscillating, but there is frequency difference between qubit drive and
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Figure 44: Tuning up the parametric single-qubit gate. In general, tuning up process

can be divided into three steps: 1. pre-tuneup to find a rough single-qubit gate; 2. By using

difference pulses combinations, fine-tuning different parameters separately; 3. Using iRB to

accumulate the errors in a large scale to do a very fine-tuning.

qubit resonance. Similar idea, it is inevitable that the qubit driven frame and non-driven

frame are different with each other. In order to solve this problem, we need to add an extra

phase in the qubit driven frame. Assume the qubit non-driven resonance frequency is f q
ge and

the driven resonance is f̃ q
ge = f q

ge + δp, then at each time t in sequence, the phase difference

between two frames is δp · t. In this case, every time a parametric single-qubit gate has been

used, we simply add an extra phase δp · t on it, the problem can be solved. It is also not a

problem if an on-resonance gate and a parametric gate haven been used simultaneously.

4.3.2 Two-qubit parametric gate tune up

Before we move on to the two-qubit gate, one thing we want to emphasize here again

is that all gate operations are based on non-phase modulation AWG with RF generator

mixing together. And till this point, we assume all single qubit gates have already been well

tuned and phase locked. In the following section, iSWAP is taken as an example explaining

the technique of tuning up a parametric gate. We believe different two-qubit gates have
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Figure 45: Phase tracking of the parametric single-qubit gate. a) Schematic represen-

tation of the driven frame and non-driven frame. b) The phase compensation mainly comes

from the ramping process and pumping duration, where the latter relates to the gate time

in the sequence. c) One example of finding the ramping phase compensation by preparing

the qubit to | − Y ⟩ then sweeping the phase of the second π/2-pulse.

different techniques to operate, however, for all parametric gates, they should share the

same principles.

Find the photon conversion between two modes. It starts from a very similar

protocol in single-qubit gate tuneup: finding the photon exchanging process. Since iSWAP

exchanges the photon between two qubits, for a three-wave mixing parametric system, the

pumping frequency is the frequency difference between two qubits. So we can again start

from ‘two-tone spectroscopy’ around |ω2 − ω1|. After we find a rough pumping frequency,

the pump length and pump frequency can be simultaneously swept to generate a two-qubit

‘chevron’ pattern Rabi oscillation between two qubits.

Fine-tuning a photon conversion gate. By looking at ‘chevron’ pattern between

two qubits, we can first find a rough photon conversion gate. The reason we cannot call

it a iSWAP gate but a photon conversion gate is because the phase change could be very

complicated, which will be addressed later. Back to the topic, after we have rough tuned,

we can apply multiple gates to accumulate the errors. In practice, we find the most efficient
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Figure 46: Time Rabi of two-qubit parametric process. Here, the y-axis is the para-

metric pumping length, the x-axis is the pumping frequency, and the color represents the

qubit |g⟩ state population. In practice, we can measure two qubits simultaneously, monitor-

ing the photon moves back and forth.

tuneup approach is applying even number of gates, i.e. num = 2, 4, 6, 8, ..., 2n + 1, then

measure two qubit simultaneously. At the same time, we tune the gate amplitude, gate

frequency and gate width separately, till we see two longest exponential decay on qubits.

After this approach, the gate error can reach smaller than 0.5%. Due to the coherence limit,

we couldn’t make any better two-qubit gate before I graduate.

Track the phase change. Now finally the fun part. Even though in the Schrödinger

picture, for the given effective two-body coupling Ĥg = geff(a
†b+ab†), the evolution operator

U = exp iĤgt at t = π/(2geff) is exactly an iSWAP gate (e.g. geff = 10MHZ, iSWAP takes

25 ns). However, in the real life, due to the truth of RF mixing, the phase change is way more

complicated than simulation. Let’s use a simple protocol to explain the process: Fig. 47.

Start at t = T b
0 , two qubits have been pre-selected to ground state without any phase,

then two generators with SSB have been used to control qubits (not necessary). We record

the driving phase is following: φa = (Ga + Sa) · T b
0 and φb = (Gb + Sb) · T b

0 . Notice here,

we assume all SSB generated from AWG also carry phase (also explained in 4.3.1), which
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Figure 47: Phase tracking of two qubit gate. Here t1/2 is the time in each sequence and

T is absolute time from powering on the generators, and superscript b and a represents before

and after the pulse. While Ga/b/s, Sa/b/s represent corresponding generator and single-side

band (SSB) frequency.

could be different for other pulse programming technique. After the first single qubit gates,

both qubits start oscillating at their resonate frequency, ωa/b. Since Ga/b + Sa/b = ωa/b, we

can assume driving pulse and qubit oscillate at same frequency (this is also one benefit to

let SSB carry phase). There are potentially virtual-Z gates following the sequence, where we

can record all virtual phase before two-qubit gates as ϕa, ϕb.

Next, we send parametric pumping tone into the system, where the generator accumu-

lated phase is φs = Gs · T b
1 . Deriving from the evolution operator U , we have:

U = exp i


0 0 0 0

0 0 gefft+ φs 0

0 gefft− φs 0 0

0 0 0 0

 =


1 0 0 0

0 cos(gefft) i sin(gefft)e
iφs 0

0 i sin(gefft)e
−iφs cos(gefft) 0

0 0 0 1

 . (53)

which forms an iSWAP gates’ set family. Due to the truth that only off-diagonal elements

have phase added, assuming t = π/(2geff) doesn’t lose generality for the gates’ family.
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Before we track the phase change, let’s quick review what happened with iSWAP gate

with initial state ψi = (|α| exp(iϕα), |β| exp(iϕβ), |γ| exp(iϕγ), |η| exp(iϕη))
T :

ψt = U(iSWAP)ψi = (|α| exp(iϕα), i|γ| exp(iϕγ), i|β| exp(iϕβ), |η| exp(iϕη))
T (54)

Since iSWAP swap the phase of two middle elements in ψ, let’s deal with virtual phase

first:

U(iSWAP)Z1(ϕa)Z2(ϕb) =


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

 ·


1 0 0 0

0 eiϕa 0 0

0 0 1 0

0 0 0 eiϕa

 ·


1 0 0 0

0 1 0 0

0 0 eiϕb 0

0 0 0 eiϕb



=


1 0 0 0

0 0 ieiϕb 0

0 ieiϕa 0 0

0 0 0 ei(ϕa+ϕb)



(55)

In order to carry on the virtual phase, there are two ways we can do:

1. Manually exchange (ϕa, ϕb) in the software.

2. Add extra phase on parametric pump: U = exp i(Ĥgt+ ϕp), where φp = ϕb−ϕa when

ωb < ωa or vice versa.

For the iSWAP, there is no difference on both ways, however, for the iSWAP gates’ set

family, the first one doesn’t work, but the second still holds based on:

exp
(
i(Ĥgt)

)
Z1(ϕa)Z2(ϕb) = Z1(ϕa)Z2(ϕb) exp

(
i(Ĥgt+ ϕb − ϕa)

)
(56)

Then parametric pumping phase accumulation. Assuming the pumping pulse is a flat

top modulated signal with finite width of ramp-up and ramp-down, due to the non-zero AC

Stark shift in the system, both qubits have a fixed phase change during the ramping time and

a pulse width dependent phase change during the flat top time. In practice, these two kinds

of phases can be counted together as φtwo,a, φtwo,b, which can be fixed by adding virtual-Z

gates on both qubits immediately after two-qubit gate.
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However, there is one more compensation that could be easily overlooked. Before the

two qubit gate, the accumulated real phase of two qubit can be written as: φa = (Ga +

Sa) · T b
0 + ωa · t1 and φb = (Gb + Sb) · T b

0 + ωb · t1. And if we assume, ω̃a/b is the average

resonate frequency during pumping, and ∆̃ is the frequency difference. Then ∆̃ is also the

pumping frequency we sent into the system, Gs+Ss = ∆̃. After two qubit gate, φa becomes

(Gb + Sb) · T b
0 + ωb · t1 + ∆̃ · T b

1 . Ignoring absolute phase at this moment (phase relate to T ),

let’s focus on relative phase first. With time moving on, the qubit is going to keep oscillating

at their own resonate frequency, which means ωb · t1 + ∆̃ · (T b
1 − T b

0 ) actually determines the

driving axis for the following pulse. In order to let driving pulse and qubit oscillate at the

same phase, we can calculate:

φs̃ = ωa · (T b
1 − T b

0 )− (ωb · t1 + ∆̃ · (T b
1 − T b

0 )) = (∆− ∆̃) · t1 (57)

As we can see, there is a time dependent phase difference for every time a two qubit gate has

applied, and two qubits has exact same phase offset with different sign. In this case, we can

either add (∆− ∆̃) · t1 onto the parametric pumping signal or on each qubit with different

sign.

Again, similar idea for the absolute phase, but even more tricky. For φa, excluding the

relative phase, it still has (Gb+Sb) ·T b
0 +(Gs+Ss) ·T b

0 left. And this part need to align with

(Ga + Sa) · T b
0 for each sequence repetition. Apparently, SSBs generated from AWG have

been synchronized through the digital board, which could be done in software. On the other

hand, generators’ phase could be random if we cannot control the absolute time between

each sequence repetition, which is exactly the situation we have in our lab. To solve this

problem, we have intentionally chosen |Ga − Gb| = Gs to cancel absolute phase generated

from generators. Moreover, during the experiment, we have found different generators could

have different random phases over hours even an external rubidium clock and temperature

control have been used. To stabilize the phase drift, we have used the same technique in

interferometric readout: by mixing Ga and Gb to generate the LO signal for parametric

pumping, all random phase drifts can be automatically cancelled, and |Ga − Gb| = Gs also

holds in this situation.
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One thing I want to point out is that this also proves the benefits of direct digital synthesis

(DDS) in signal generation. DDS can much more easily control all phases across the whole

system, which is a crucial point in parametric control. Even though, we still need to consider

all phase drifts from physics side, e.g. AC Stark shift, any phase drifts in hardware side can

be monitored and corrected.

At this point, the iSWAP gate has finally been applied without any additional phase

recorded in software. In summary, there are four parts that need to be considered during

two qubits parametric gate: 1. Pumping phase (ϕa − ϕb) to compensate virtual phase; 2.

Pumping phase (∆−∆̃) · t1 to compensate AC Stark shift difference between qubits; 3. Each

qubit adding constant phase offset due to its own AC Stark shift; 4. Using Ga and Gb to

mix the LO signal for parametric pumping to cancel any hardware phase drifts.

After that, the following pulses can be treated the same way we have described from

start, no matter single-qubit or two-qubit gates.
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Table 10: Single qubit Clifford sequences. The average gate number (decomposed

without virtual-Z gate) per Clifford is 1.875 if identity gate has also been considered.

Effective gate Sequences No VZ with VZ

Identity

C1 ‘I’ ‘I’

C2 πx/2, πy/2, −πx/2 πz/2

C3 πx, πy πz

C4 πx/2, −πy/2, −πx/2 −πz/2

π-pulse

C5 πy πy

C6 πx/2, πy/2, πx/2 πx, −πz/2

C7 πx πx

C8 πx/2, −πy/2, πx/2 πx, πz/2

−πy/2-pulse

C9 πx, πy/2 πz, −πy/2

C10 −πy/2 −πy/2

C11 −πy/2, πx/2 −πy/2, πx/2

C12 −πy/2, −πx/2 −πy/2, −πx/2

πy/2-pulse

C13 πx, −πy/2 πz, πy/2

C14 πy/2, −πx/2 πy/2, −πx/2

C15 πy/2 πy/2

C16 πy/2, πx/2 πy/2, πx/2

−πx/2-pulse

C17 −πx/2, −πy/2 −πx/2, −πy/2

C18 −πx/2, πy/2 −πx/2, πy/2

C19 −πx/2, πy πx/2, πz

C20 −πx/2 −πx/2

πx/2-pulse

C21 πx/2, −πy/2 πx/2, −πy/2

C22 πx/2 πx/2

C23 πx/2, πy −πx/2, πz
C24 πx/2, πy/2 πx/2, πy/2

92



5.0 Josephson-Junction based Frequency comb

5.1 Introduction to frequency comb

While the circuit QED (cQED) architecture has built its success on strongly-coupled

qubit-cavity experiments [10, 12, 13, 9], it has also been firmly established as a versatile plat-

form to realize a broader variety of quantum nonlinear systems [28]. A key factor determining

the breadth of realizable quantum nonlinear devices, and thus feasibility of future applica-

tions, is understanding the diverse dynamical regimes enabled by Josephson-junctions [17].

A nonlinear dynamical regime that has yet to be realized via a Josephson-junction me-

diated Kerr nonlinearity is that of frequency comb formation. Distinct from Kerr-nonlinear

amplifiers which operate in regimes with at least one classically stable fixed point in phase

space, frequency comb formation is marked by a system undergoing stable periodic excursions

around unstable fixed points. In the optical domain, coherently-driven microresonators uti-

lizing the Kerr nonlinearity have emerged as the leading platform for frequency comb genera-

tion [66, 67, 68, 69, 70, 71]; however the typically weak Kerr nonlinearity of optical microres-

onators [72] means that contemporary comb generation requires ∼ µW power input [73], cor-

responding to millions of circulating cavity photons [74]. Similar results have been achieved

in superconducting circuits using the weak nonlinearity of kinetic-inductance in very long

resonators [75]. As a result, vacuum fluctuations amplified by the comb-generating nonlinear

process are much weaker in comparison [76].

In this section [17], we harness the Josephson junction to realize a minimal version

of Kerr-mediated microwave frequency combs based on a recent theoretical proposal [78].

Our minimal realization within cQED consists of just two coupled modes, of which only

one possesses a Kerr nonlinearity furnished by Josephson junctions, as shown in Fig. 49.

Although our device is based on familiar cQED components, it operates in a distinct regime

within the landscape of nonlinear cQED devices: while strongly-coupled like transmon-cavity

systems [40], its nonlinearity is in fact weaker and is operated under much stronger driving.

On the other hand, the device exhibits stronger couplings yet smaller detunings and weaker
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Figure 48: Frequency comb. (a) In general, frequency comb in time domain is a series

of wave packets with the same time interval. After Fourier transform, multiple signals

with the same spacing can be observed in frequency domain. (b) In optical domain, there

are two ways generating frequency comb: supercontinuum comb and Kerr-comb[72]. (c)

Multiple applications have been applied using frequency comb in optical regime, including

spectroscopy, metrology and pulse generation[77]. (d) The same idea has been applied in

microwave regime where people use superconducting circuits with tiny Kerr[75].

drives than Kerr-mediated bifurcation and parametric amplifiers [79, 32]. This allows us to

realize an unstable regime where a single frequency drive tone generates coherent frequency

combs over a large parameter space.

Crucially, the strong engineerable nonlinearities in cQED and operation at cryogenic

temperatures brings quantum fluctuations to the fore ahead of thermal and dephasing ef-

fects in our comb synthesizer: the phase coherence of the generated combs is fundamentally

limited by vacuum fluctuations that are amplified by the nonlinear comb-generating process
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Figure 49: As described in the theory proposal[78], the superconducting circuit forming

frequency comb is very common in circuit QED[9]. As shown in the figure, with stronger an-

harmonicity in the nonlinear mode, the circuit can be a general cavity + transmon system[40];

On the contrary, decreasing the anharmonicity will result in a semi-classical Josephson para-

metric amplifier[32, 80].

itself. A microscopic nonlinear quantum theory of our two-mode device, in addition to pro-

viding precise operating parameters for this comb-generating regime, enables us to quantify

this quantum limit on comb phase coherence. By also characterizing and explaining the

dependence of coherence on operating parameters like detuning and drive power, we provide

a detailed quantitative study of the phase coherence of frequency combs near the quantum

limit.

Built up of fundamentally quantum components, we believe this highly-controllable

cQED realization can serve as a necessary building block for Kerr-nonlinear systems operat-

ing in classically-unstable and deeply-quantum regimes, exploring dynamics beyond coherent
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frequency comb formation. For certain parameter regimes, our device exhibits temporal in-

stabilities marked by large, irregular excursions in phase space, distinct from regular comb

dynamics and reminiscent of chaos. More excitingly, while our work indicates that strong

quantum fluctuations limit the coherence of generated frequency combs, they are also fea-

tures of deeply-quantum regimes necessary for displaying quantum effects such as squeezing,

entanglement, and generation of non-Gaussian states. Our realization thus marks a promis-

ing first step in exploring the potentially competing role of strong quantum fluctuations in

quantum dynamics within classically unstable regimes.

5.2 Theory analysis

5.2.1 Stochastic description of quantum dynamics via the Positive-P represen-

tation

The Hamiltonian of our device consists of a linear mode â with uncoupled resonant

frequency ωa, linearly coupled with strength g to a nonlinear mode b̂ with uncoupled resonant

frequency ωb; see Fig. 52(a). The linear mode is driven by a coherent tone with frequency

ωd and amplitude η, and the system Hamiltonian in the frame rotating with this drive takes

the form:

Ĥ/ℏ = −∆daâ
†â−∆dbb̂

†b̂− Λ

2
b̂†b̂†b̂b̂

+ g(â†b̂+ âb̂†) + η(â+ â†)

(58)

where ∆da/db = ωd − ωa/b and Λ > 0 is the strength of the Kerr nonlinearity.

The derivation of the system Hamiltonian and master equation we consider in this section

is quite standard in cQED; in particular, it may be found in detail in the previous work [78],

and we thus do not repeat the derivation here. Instead, we begin with the master equation

description, derive its corresponding classical description making use of a positive-P phase-

space description, and analyze the stability of the resulting system.
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For convenience, we reproduce here the master equation describing the dynamics of the

two-mode system:

˙̂ρ = −i[Ĥ, ρ̂] + κD[â]ρ̂+ γD[b̂]ρ̂+ γφD[b̂†b̂]ρ̂ (59)

where the system Hamiltonian in the frame rotating with the drive is given by Eqs. 58.

In the weakly nonlinear regime relevant to the experiment, Λ/κ ∼ O(10−2) − O(10−3),

strong driving leads to large mode occupations ∼ O(102) − O(103), rendering the standard

master equation and even stochastic wavefunction approaches intractable for direct simula-

tion. Such operating regimes are particularly suited to analysis using a phase-space approach

to the dynamics of the density operator ρ̂. In this section, we describe the approach used

in this work, that of the Positive-P representation of the density operator, and the resulting

stochastic differential equations (SDEs) it yields.

We employ a representation of the density operator in a non-diagonal coherent state

basis over both modes â and b̂:

ρ̂(t) =

∫
d2ζ P (ζ⃗ , t) Ξ̂α ⊗ Ξ̂β

≡
∫
d2ζ P (ζ⃗ , t) ·

|α⟩
〈
α†∗
∣∣

eαα† ⊗
|β⟩
〈
β†∗
∣∣

eββ† (60)

where ζ⃗ = (α, α†, β, β†) are complex variables describing a classical phase space, ζ⃗ ∈ C4. For

convenience of notation, we use ζi to refer to the ith element of the vector ζ⃗, for i = 1, . . . 4,

and define d2ζ ≡
∏

i d
2ζi as the integration measure over the entire phase space.

Eq. (60) is simply an expansion of ρ̂(t) in terms of non-diagonal projection operators

Ξ̂α⊗ Ξ̂β, with weights given by the time-dependent function P (ζ⃗ , t). For the above definition

of Ξ̂α⊗ Ξ̂β, P (ζ⃗ , t) is a positive-definite function that satisfies a Fokker-Planck equation, and

therefore may be meaningfully thought of as a classical distribution function; in particular,

P (ζ⃗ , t) is referred to as the Positive-P distribution[81, 82].

dζ⃗ = A⃗c(ζ⃗)dt+
√
ΓB1(ζ⃗)dW⃗1(t) +

√
γφB2(ζ⃗)dW⃗2(t) (61)
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where dW⃗i are vectors of real, independent Wiener increments. The noise matrices B1, B2

are related to the square root of the diffusion matrix, Dst = BstB
T
st, where Bst =

√
ΓB1 +

√
γφB2. They can be written compactly in block form:

B1 =

 0 0

b1 0

 , B2 =

0 0

0 b2

 (62)

where the 2-by-2 component matrices b1 and b2 are given by:

b1 =

eiθ/2β 0

0 e−iθ/2β†

 , b2 =

√
β†β

2

 eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

 (63)

Finally, we have defined the parameters Γ and θ via:

Γeiθ ≡ iΛ− γφ =⇒ Γ =
√

Λ2 + γ2φ, θ = arctan

(
− Λ

γφ

)
(64)

Eqs. (61) are the central equations we employ to analyze the dynamics of the two-mode

system.

5.2.2 Classical limit, fixed points, and linear stability

While Eqs. (61) describe the quantum dynamics of the two-mode system, they also allow

us to analyze a well-defined classical limit, where the stochastic terms in Eqs. (61) vanish.

Clearly, the dephasing contribution ∝ √
γφB2 can be dropped by setting γφ = 0. However,

simply setting taking Λ = 0 will render the two-mode system linear and eliminate the comb

dynamics we are interested in.

Instead, a simple scaling argument allows us to understand the classical limit of the

two-mode system. We consider reducing the nonlinearity by a factor Λ → Λ/k (k > 1), and

simultaneously transforming ζ⃗ →
√
kζ⃗, η →

√
kη. Under this transformation, we find that

Eqs. (61) become (γφ = 0):

dζ⃗ = A⃗c(ζ⃗)dt+
1√
k

√
ΛB1(ζ⃗)dW⃗1(t) (65)

More precisely, the drift vector A⃗c(ζ⃗) is invariant under this transformation, while the

stochastic terms are scaled by a factor of 1/
√
k. Physically, this transformation indicates
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that as the strength of the nonlinearity decreases, the deterministic dynamics remain un-

changed provided the drive is suitably increased, upto a scaling of the mode amplitudes

ζ⃗. The stochastic dynamics, on the other hand, are suppressed. The appropriate classical

limit that retains nonlinear dynamics can thus be realized by considering weak nonlinearities

under sufficiently strong driving. The dynamical equations that describe this classical limit

are thus given by:

dζ⃗ = A⃗c(ζ⃗)dt (classical limit, k → ∞) (66)

Upon dropping the stochastic terms, it is clear to see from the now ordinary differential

equations above (when written out) that α† = α∗, β† = β∗; as a result, the deterministic

dynamics in the classical limit, Eqs. (66), can finally be written down entirely in terms of α,

β:

α̇ =
(
i∆da −

κ

2

)
α− igβ − iη (67a)

β̇ =
(
i∆db −

γ

2

)
β + iΛ|β|2β − igα (67b)

For completeness, we note here that the above system is the same as that obtained by writing

down the equations of motion for operator averages {⟨â⟩, ⟨b̂⟩}, neglecting correlations (namely

performing replacements of the form ⟨b̂†b̂b̂⟩ → ⟨b̂†⟩⟨b̂⟩⟨b̂⟩), and finally replacing operator

expectation values by complex amplitudes, {⟨â⟩, ⟨b̂⟩} → {α, β}; the derivation here provides

some context to the approximations underlying this dropping of correlations.

The linearity of both mode â and the coupling ∝ g enables the linear mode to be

integrated out, leading to a single effective dynamical equation for the nonlinear mode am-

plitude [78]:

β̇ =
(
i∆db −

γ

2

)
β + iΛ|β|2β − igχaη

− g2

∫ t

0

dτ F (τ)β(t− τ) (68)

where we have introduced the linear mode susceptibility χa = (−i∆da+
κ
2
)−1, and where the

memory kernel for the self-interaction is given by:

F (τ) = e(i∆da−κ/2)τ (69)
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The classical steady-state of the two-mode system (ᾱ, β̄) may be obtained by setting

˙̄β = 0 in Eq. (68). This requirement simplifies the self-interaction term and is exactly

equivalent to performing a Markov regime reduction of the same. The result is a cubic

polynomial in |β̄|2 that can be solved exactly for the steady-state nonlinear mode amplitude

β̄: [(
∆̃db + Λ|β̄|2

)2
+
γ̃2

4

]
|β̄|2 = g2|χa|2η2 (70)

where we have introduced the renormalized nonlinear mode detuning and damping param-

eters respectively:

∆̃db = ωd − (ωb + g2|χa|2∆da)

γ̃ = γ + g2|χa|2κ (71)

The steady-state linear mode amplitude may then be determined by requiring ˙̄α = 0 in

Eq. (67a), which simply relates ᾱ to β̄:

ᾱ = −χa

(
igβ̄ + iη

)
(72)

Once the steady-state amplitudes (ᾱ, β̄) have been determined, we perform a stability

analysis for small fluctuations around these steady-state(s). Formally, such an analysis can

be performed on the linearized version of the effective nonlinear mode dynamical equation,

which can be studied analytically exactly in the Laplace domain, and is particularly tractable

for the special case where ∆da = 0. Full details of such an analysis are provided in Ref. [78].

However, the current experiment explores more general operating conditions where ∆da ̸=

0 in general. In this case, it proves most convenient to simply perform a numerical stability

analysis based on the Jacobian matrix of the original two-mode system. Performing the

linearized stability analysis requires expanding Eqs. (66) around the classical steady state

(ᾱ, β̄). For notational convenience, we define the vector of steady-state amplitudes Z⃗ and

small fluctuations, z⃗(t) respectively:

Z⃗ = (ᾱ, ᾱ∗, β̄, β̄∗)T (73a)

z⃗(t) = (δα(t), δα∗(t), δβ(t), δβ∗(t))T (73b)
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Then, we expand the variables ζ⃗(t) around the steady-state Z⃗:

ζ⃗(t) = Z⃗ + z⃗(t) (74)

and linearize Eqs. (66) in small fluctuations z⃗(t), obtaining the set of equations:

dz⃗

dt
= J[Z⃗] · z⃗(t) (75)

where J[Z⃗] defines the Jacobian matrix of the two-mode system evaluated at the classical

steady-state; its entries are given by Jij = ∂jA
i
c, where A

i
c is the ith element of A⃗c; more

explicitly the Jacobian matrix takes the form:

J[Z⃗] =


+i∆da − κ

2
0 −ig 0

0 −i∆da − κ
2

0 ig

−ig 0 +i∆db − γ
2
+ i2Λ|β̄|2 iΛ(β̄2)

0 ig −iΛ(β̄∗)2 −i∆db − γ
2
− i2Λ|β̄|2

 (76)

The stability of Eqs. (75) is determined by the eigenvalues of the above Jacobian matrix,

obtained by setting detJ = 0; these are used to determine the stability boundaries, and in

Fig. 50 of the following section.

5.2.3 Numerical phase diagram and Lyapunov stability

Regions in the classical phase diagram with no stable fixed points, can give rise to a rich

class of dynamics. Amongst various metrics to characterize such dynamics, we employ the

standard technique of computing the maximal Lyapunov exponent λM, which describes the

sensitivity of dynamical trajectories to small perturbations in the long-time limit.

The maximal Lyapunov exponent λM we calculate is plotted for Device A parameters in

drive-∆db space in Fig. 50; the panel on the right framed in blue shows the region of drive-∆db

space which will be explored later (also in experiments). The blank regions indicate regions

where λM < 0, indicating a stable fixed point; perturbations near this point decay over time,

settling back towards the fixed point. This is visible in the projection of the steady-state

dynamics onto the nonlinear mode phase space, plotted in Fig. 50 (a); in the long time limit,

the system has returned to the stable fixed point indicated by the orange cross. The gray
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Figure 50: Calculated maximal Lyapunov exponent λM in Drive-∆db space. The

panel on the right framed in blue indicates the detuning range explored in Figs. 2, 3 of the

main text. Solid orange curve indicates the linear stability boundary. In the white regions,

λM < 0 is negative and the system is therefore stable. In the light gray regions, λM ≈ 0,

indicating a stable limit cycle. The dark regions are where λM > 0, and the system exhibits

chaotic dynamics. Typical long-time dynamics projected in the nonlinear mode phase space

are plotted in (a)-(c) corresponding to dynamics in the stable fixed point, stable limit cycle,

and chaotic regimes respectively.

regions indicate λM ≈ 0, signifying a stable limit cycle attractor [83]. Steady-state dynamics

here follow a stable phase space orbit, as shown in Fig. 50 (b), around a classically unstable

fixed point (green square). The periodic orbits yield combs in the frequency domain, as

observed in Fig. 50.
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Finally, the dark regions indicate λM > 0. Here, perturbations grow without bound

over time, manifesting in dynamical chaos observed in numerical simulations of the classical

system. The steady-state dynamics plotted in Fig. 50 (c) show how over time a single fixed

orbit does not emerge and the system explores a large region of phase space in an irregular

manner. The region framed in blue in the phase diagram describes the detuning range

explored in the experiment, Figs. 2, 3 of the main text, where the system exhibits stable

limit cycle dynamics, consistent with observations in the main text. However, for much

more negative ∆db it is possible to observe chaos with the same system. This indicates the

potential of the two-mode system for controlled studies of chaos in the quantum regime.

5.2.4 Quantum simulations: comb coherence and estimating pure dephasing

rate

dζ⃗(t) = A⃗c(ζ⃗) dt+Bst(ζ⃗ ,Λ, γφ)dW⃗ (t) (77)

Simulating Eqs. (61) allows us to calculate the output coherence function:

G(1)(τ) = lim
t→∞

⟨I(t)I(t+ τ)⟩ − ⟨I(t)⟩2

⟨I(t)2⟩ − ⟨I(t)⟩2
(78)

This enables us to extract the coherence time Tcoh. The only parameter required to

simulate the SDEs that we are unable to directly measure is the pure dephasing rate γφ;

the weak nonlinearity of the nonlinear mode prevents standard Ramsay measurement of the

pure dephasing rate, and indirect methods based on cavity measurement are limited by the

large disparity between the dephasing rate and the cavity linewidth κ.

However, the coherence of frequency combs is affected by the known nonlinearity and

the unknown pure dephasing rate; as a result, by simulating Eqs. (77) for various values of

γφ and comparing with experimental observations, we can estimate γφ. In Fig. 51, we show

the numerically obtained value of Tcoh across the same cross-section of the phase diagram

included in the main text, Fig. 2(b), for γφ/(2π) ∈ [0.0, 1.0, 2.0, 3.0] kHz. Also shown is the

experimental result. From these results we conclude that the pure dephasing rate may be
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Figure 51: Coherence times as a function of γφ. Colored lines and points show numer-

ically obtained Tcoh values from the simulation of Eqs. (77) as a function of drive power,

while dashed-diamonds indicate experimental values.

well approximated to lie within γφ/(2π) ∈ [1.0, 3.0] kHz. Furthermore, the best fit is found

to be for γφ/(2π) ≃ 2.0 kHz.

5.3 Nearly quantum-limited Josephson-junction Frequency Comb synthesizer

5.3.1 System schematic and device overview

In our experiment (Fig. 52(c)), the nonlinear mode is realized as a Superconducting

QUantum Interference Device (SQUID) [84] array: Device A: 25 SQUIDs; Device B: 5

SQUIDs. The SQUIDs act together as a flux-tunable, nonlinear inductor, which is shunted

with a planar interdigitated capacitor/antenna to form a nonlinear microwave mode. Weakly

asymmetric SQUIDs (with critical current ratio of 1.2:1) are used to build up the array, al-

leviating otherwise large hysteresis effects at the cost of a reduction in tunability of the

nonlinear mode frequency [85]. The device is deposited on a sapphire substrate and capaci-

tively coupled to the λ/4 mode of a coaxial 3-D copper cavity [86]. This driven-dissipative
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system is then described by the master equation:

˙̂ρ = −i[Ĥ, ρ̂] + κD[â]ρ̂+ γD[b̂]ρ̂+ γφD[b̂†b̂]ρ̂ (79)

which includes linear damping rates κ (γ) for modes â (b̂), and pure dephasing (γφ) for

the flux-tunable nonlinear mode; thermal fluctuations are neglected. By sweeping the flux

through the SQUIDs to tune the nonlinear mode frequency, and making a measurement

of the reflection coefficient S11(ω), we extract (Fig. 52(c)) a coupling strength of g/2π =

87.6956MHz between the modes, and linear mode damping rate κ/2π = 10.9308MHz. Via

pump-probe measurements 5.4.2 we also extract a Kerr nonlinearity of Λ/2π = 5.96 kHz, such

that Λ/κ ∼ 10−3, stronger than typical values of ∼ 10−5 for optical microresonators [72].
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Figure 52: System schematic and flux sweep. (a) The two-mode device can be rep-

resented by a single cavity mode (blue, ωa) coupled linearly to a single Kerr mode (red,

ωb). (b) Circuit QED implementation of the schematic in (a). The nonlinear mode induc-

tance is formed by 25 Superconducting QUantum Interference Devices (SQUIDs) in series;

False-color SEM image of a component SQUID indicates the small asymmetry employed to

alleviate hysteresis. The SQUID array is coupled to an antenna that both forms the capaci-

tance of the nonlinear mode and controls its dipole coupling with the linear mode; the latter

is the λ/4 mode of a coaxial 3-D cavity, fabricated of copper to permit the passage of an

external DC flux that threads all the SQUIDs. The input signal drives the cavity through

port 1, and S11(ω) is monitored. (c) Color plot of reflected signal vs. frequency from port

1 (S11(ω)) for a range of applied coil bias currents/applied SQUID fluxes. The linear and

nonlinear mode frequencies are highlighted by blue squares and red dots respectively. By

fitting for the bare mode frequencies, we determine g/2π = 87.6956 MHz, as well as the bare

mode frequencies, represented by the dashed lines.

As shown in Fig 52, we create a comb in this device by driving with a carefully chosen,

single microwave drive of strength η at frequency ωd, which interacts with the device to
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create a series of tones at regularly spaced output frequencies (the ‘comb’). The linear mode

plays the role of mediating a delayed self-interaction of the nonlinear mode (right panel),

with kernel F (τ) = e−τ/χa . In the strong coupling regime, the interaction’s non-Markovian

nature fundamentally modifies the nonlinear mode’s stability, enabling comb formation.

Table 11: Device parameters. Coupling strength g, nonlinearity Λ, and bare cavity damp-

ing rate κ for Device A (25 SQUIDs) and Device B (5 SQUIDs); nonlinearity suppression by

a factor ∼ 25 is measured, as designed.

Device A (25 SQUIDs) Device B (5 SQUIDs)

ωb/2π(GHz) 4.956806 4.951073

g/2π(MHz) 87.6956 89.25

Λ/2π(MHz) 5.96× 10−3 152.6× 10−3

κ/2π(MHz) 10.9308 22.84

5.3.2 Comb generation and phase diagram

Analysis of this system in Ref. [78] showed that the linear mode effectively equips the

nonlinear mode with a delayed self-interaction (see Fig. 52(a)), whose influence is dictated

by the coupling g and the linear mode susceptibility χa = (−i∆da +
κ
2
)−1. Under suitable

coupling, drive, and detuning conditions, this two-mode system can go beyond typical bifur-

cation dynamics associated with Kerr nonlinear devices to exhibit frequency comb formation.

To illustrate this, we plot the classical phase diagram for measured Device A parameters in

Fig. 53(a), as a function of drive detunings ∆da,∆db (see Sec. 5.2.2). For each pair of de-

tunings, we consider a range of experimentally accessible drive powers (-132 dBm to -67

dBm), and classify phases according to the number of fixed points (FPs) and stable fixed

points (SFPs) observable within this driving range. For large |∆da| (small |χa|) relative to g,

only two types of phases are exhibited: blank regions, where the system admits one SFP for

all driving powers considered, or hatched regions, where for some subset of driving powers,

three FPs exist. In either case, at least one fixed point is always stable. These phases are
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reminiscent of the standard Kerr bistability, and unsurprisingly so: in this regime, the effec-

tive coupling g|χa| is weak, and the mediated interaction may be treated within a Markov

approximation.

However, for intermediate |∆da| such that g|χa| ≳ 1 (on resonance, we require g > κ/2,

comfortably satisfied by Device A), the non-Markovian nature of the interaction manifests in

a qualitative change of the nonlinear mode’s stability, marked by regions (shaded red) where

no stable fixed points exist for a subset of the driving powers considered. Here, classical

Lyapunov analysis reveals the possibility of our device exhibiting stable limit cycles with

period T = 2π
∆

and comb-like frequency spectra with spacing ∆, and even chaotic dynamics

deeper into the unstable regime, namely at more negative detunings and stronger drive

powers (see Sec 5.2.3).
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Figure 53: Phase diagram and comb spectrum. (a) Theoretically predicted phase dia-

gram in ∆db-∆da space, indicating observable phases characterized by number and stability

of classical fixed points (FPs) over a range of experimentally accessible drive powers (-132

dBm to -67 dBm). Here, the unstable regime (shaded red) exhibiting no stable fixed points

(SFPs) is entered by fixing the drive frequency to ωd = 4.9085(2π) GHz, varying the nonlin-

ear mode frequency along the direction of the green arrow via a flux sweep, and observing

the output power spectra. (b) Typical power spectra as a function of increasing drive power,

along the indicated cross section of the experimental phase diagram in (c). The theoretical

phase diagram is plotted in the top panel of (c) for comparison.

To observe the response of our quantum device in this rich dynamical regime, we enter

the unstable region along the green arrow in Fig. 53 (a), by fixing the drive frequency so

that ∆da/2π = −47.8MHz, and flux tuning the nonlinear mode frequency. In search of the

frequency domain signature of comb formation, we measure the frequency response in drive-

∆db parameter space using a spectrum analyzer, with typical results at fixed ∆db shown in

Fig. 53(b). At low powers (1), the system exhibits a single frequency response at the drive
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frequency, corresponding to the stable fixed point. However, as the power is increased, a

multifrequency spectrum emerges with equidistant peaks (2 and 3). The spacing ∆ extracted

from these power spectra are used to construct the experimental phase diagram in Fig. 53(c),

with the theoretical result over the same parameter space provided for comparison. We find

remarkable agreement between theory and experiment; only a single fitting offset is used to

account for scaling factors along the drive power axis.

5.3.3 Temporal coherence and dynamical response

Power spectrum measurements provide a key signature of comb formation but are in-

sensitive to the nontrivial phase dynamics of these complex nonlinear solutions. While the

central comb peak has a definite phase set by the incident coherent tone, the relative phase

θ(t) of generated sidebands relative to the central peak phase is free to diffuse [87, 88].

This diffusion sets the comb linewidth and thus provides the ultimate limit to any precision

measurements made using the comb in question [89]. To quantify the phase coherence, we

measure the steady-state first-order temporal coherence function G(1)(τ), defined as [90]:

To do so, we first obtain the time-domain cavity output I(t) using a single side band

(SSB) mixer to downconvert the dominant sideband peak to around the 100 MHz regime,

followed by homodyne detection via a 500 MSample/s digitizer to demodulate the output

signal, and finally compute its time-domain autocorrelation. The normalized coherence

function G(1)(τ) decays from its maximum value of unity (at τ = 0) towards G(1)(τ) = 0

over a timescale Tcoh determined by the loss mechanisms affecting the system dynamics.

We measure G(1)(τ) in the parameter space explored in Fig. 53(c), and extract Tcoh as the

decay constant of the observed function envelopes; the results are plotted in Fig. 54(a).

Focusing in particular on the indicated cross-section at ∆db/2π = 25.2 MHz, we plot the

measured G(1)(τ) functions at positions {1, 2, 3} in the top panel of Fig. 54(c). Outside the

comb regime (1), G(1)(τ) decays on a timescale of ∼ 13 ns, set by the fastest decay rate,

namely the bare cavity loss κ. However, a qualitative change is observed in G(1)(τ) when

the system transitions into the comb regime (2), with a sharp increase in coherence time to

a maximum of 36.7 µs, significantly longer than the timescale set by κ. This observation,
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together with the decrease in Tcoh with increasing drive power (3), highlights a key feature of

the self-oscillating regime: the intrinsic energy loss of the system is overcome and coherence

is therefore no longer determined by the bare energy loss rates.
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Figure 54: Comb coherence. (a) Coherence time Tcoh extracted by measuring G(1)(τ)

(Eq. 78) for the same operating parameters as Fig. 53 b. Inset: approximate Tcoh calculated

using Floquet analysis of linearized SDEs (see text). (b) Cross section of phase diagram along

the dashed line in a, in black. The blue curve and shaded region indicates the theoretically

calculated coherence time due to nonlinearity alone (pure dephasing γφ = 0). The orange

curve shows Tcoh for γϕ = 2.0(2π) kHz, showing good agreement with the experimental result.

(c) Experimental (top panel) and theoretical (lower panel) G(1)(τ) for γφ = 2.0(2π) kHz at

positions 1 (stable regime), 2 (threshold of comb formation), and 3 (higher drive power

in comb regime). (d) Numerical results for variation of coherence time with nonlinearity.

Purple and green points correspond to parameters for Device A (25 SQUIDs) and B (5

SQUIDs) respectively, obtained by varying the nonlinearity alone. Experimental results for

the devices are shown by the orange square and diamond; corresponding G(1)(τ) are marked

by the same symbols in (c). (e) Top panel: I-Q trace at positions {1,2,3}, showing 2-D

projection of the limit cycle orbit which decreases in radius with increasing power. Lower

panel: theoretical effective radius of limit cycle reff (solid blue) and standard deviation of

noise projected tangential to limit cycle, δn (solid red, right hand axis) scaled by their values

at threshold. The relative decrease in reff combined with the increase in δn point towards a

reduction in coherence time with increasing drive power.

This naturally raises the question: what limits the observed phase coherence? The

answer lies in the full quantum description of the strongly-driven, weakly nonlinear two-
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mode system. In this regime, we employ a phase-space approach based on the Positive-P

representation [78, 82, 81], obtaining a set of stochastic differential equations (SDEs) for

phase space variables ζ⃗ = (α, α†, β, β†)T associated with operators (â, â†, b̂, b̂†)T . The SDEs

take the general form:

dζ⃗(t) = A⃗c(ζ⃗) dt+Bst(ζ⃗ ,Λ, γφ)dW⃗ (t) (80)

The deterministic contribution (∝ A⃗c) describes noise-free classical dynamics of the two-

mode system, which yields perfectly coherent combs. The remaining stochastic terms ∝

dW⃗ (t) (vector of independent Wiener increments) then describe deviations from classical

dynamics, here including fluctuations due to the quantum nonlinearity Λ and pure de-

phasing γφ. These fluctuations are ultimately responsible for phase diffusion that lim-

its comb coherence. The stochastic terms take the explicit form Bst(ζ⃗ ,Λ, γφ)dW⃗ (t) =
√
ΓB1(ζ⃗)dW⃗1(t) +

√
γφB2(ζ⃗)dW⃗2(t), where Γ =

√
Λ2 + γ2φ. Crucially, we note that even

in the absence of pure dephasing, γφ → 0, the stochastic terms do not vanish: a contribu-

tion due to the intrinsic nonlinearity of the system always remains, setting a fundamental

limit on comb coherence. This is verified by simulating Eqs. (80) for γφ = 0 and the ex-

perimentally measured nonlinearity of Λ/2π = 5.96 kHz, and obtaining Tcoh[91, 92]; the

results are shown by the blue curve in Fig. 54(b), with the blue shaded region being a 95%

confidence bound accounting for uncertainty in Λ. The maximum Tcoh is thus limited to

around 55 µs by amplified quantum fluctuations due to the device nonlinearity alone under

these operating conditions. This of course exceeds the maximum observed Tcoh since γφ ̸= 0.

For γφ/2π ≃ 2.0 kHz (orange) we find good agreement with experiment (gray); simulated

G(1)(τ) at positions {1, 2, 3} are shown (Fig. 54 c, black) for comparison. The relatively small

γφ is not unexpected given both the narrow modulation range of the asymmetric SQUID

array [85] and operation at Φ/Φ0 ≲ 0.12, close to the flux noise sweet spot (see Fig. 52 (c)).

Since Λ cannot be varied in-situ while holding other parameters fixed, we confirm its

influence on Tcoh by employing Device B; this 5-SQUID device is engineered to have the

same total inductance as Device A, while possessing a 25-fold stronger nonlinearity [93] of

Λ/2π = 152.6 kHz. While we obtain similar multifrequency behavior, coherence times for

this device are much shorter, Tcoh ≲ 1.5 µs (see Fig. 54(c)) for measured and simulated
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G(1)(τ) at typical operating parameters). Although Device B is operated away from the

flux-noise sweet spot, and thus experiences a larger estimated γφ/2π ≃ 30 kHz, we find

that its much stronger nonlinearity is dominant in limiting comb coherence. To confirm the

dependence of Tcoh on Λ and γφ numerically, we simulate Tcoh at fixed positions on the phase

diagrams of both devices, while varying Λ. The results are plotted in Fig. 54(d), in purple

(green) for Device A (Device B) parameters, with the experimental result indicated by the

square (diamond). They are well described by fits to Tcoh = a(γφ + bΛ)−1 (curves); we find

b = (A: 0.40,B: 0.55) ̸= 1, consistent with Λ and γφ-contributions to dephasing originating

from different stochastic terms in Eqs. (80). More importantly, both devices clearly operate

in the regime where bΛ ≳ γφ, and thus Tcoh is predominantly set by the nonlinearity.

However, as observed in Fig. 54(a), Tcoh also depends nontrivially on operating parame-

ters (e.g. drive power, detuning), even if Λ, γφ are held fixed. This dependence is intimately

related to the nature of the dynamical comb regime, where the system traverses a periodic

trajectory in phase space. The shape of this trajectory, which changes with operating pa-

rameters, controls its susceptibility to noise, as well as the noise itself when the latter is

multiplicative (dependent on ζ⃗(t), as Bst is). This connection can be made precise via a

linearized Floquet analysis [94, 88, 95] of the SDEs around the classical limit cycle trajec-

tory ζ⃗c(t). In this weak-fluctuations approach [96], the phase θ(t) of the limit cycle solution

evolves according to the SDE: reff θ̇ = n(t), and the coherence time Tcoh can be related to the

variance of this diffusing phase, T−1
coh ∝ ⟨[θ(T )− θ(0)]2⟩. Here reff is the effective limit cycle

radius, defined via reff∆ =
√

1
T

∫ T

0
dt ||v⃗(t)||2 where v⃗(t) =

˙⃗
ζc(t) is the tangential velocity

of limit cycle traversal. Secondly, n(t) is the projection of stochastic terms Bst(ζ⃗c(t))dW⃗

onto the limit cycle trajectory. Noise projected onto the limit cycle therefore provides an

impulse that causes θ(t) to diffuse, while reff provides an inertial term: the larger the ra-

dius, the more θ(t) resists diffusion. We plot the average projected noise standard deviation,

δn =
√

1
T

∫ T

0
dt ⟨n(t)2⟩ and the effective limit cycle radius reff along the indicated cross-

section of Fig. 54(a), scaled by their values at the threshold of comb formation. The limit

cycle radius (blue) decreases with increasing power; this is also seen experimentally in I-Q

traces (top panel), positions 2 to 3, which can be viewed as a 2-D Poincaré section of the limit

cycle trajectory. Additionally, the noise strength δn (red, right-hand axis) increases, in a
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clear manifestation of its multiplicative nature. Both effects tend to reduce Tcoh, as captured

by both the linearized analysis (Fig. 54(a), inset) and full SDE simulations (Fig. 54(b)).

Finally, we note that multiplicative noise can also manifest in non-exponential decay

of phase coherence. However, for the operating parameters explored in Fig. 54, theoretical

simulations predict deviations from exponential decay to be minimal, and experimentally

observed weak non-exponential signatures (such as (3) in Fig. 54(c)) can be attributed to

electronic 1/f noise. With the use of additional probing systems and judicious choice of

operating parameters[97, 98, 99], this system could be used to study non-exponential phase

decoherence due to quantum fluctuations.

5.3.4 Temporal instabilities and further explorations

While we have demonstrated the formation of stable frequency combs with this minimal

two-mode Kerr system, even more complex dynamical phenomena may be observed deeper

in the regime with no stable fixed points. We explore this region by fixing ωb = 4.91 GHz and

varying ωd instead, now entering the unstable region along the purple arrow in Fig. 55(a).

The experimental phase diagram in Fig. 55(a) plots spacings ∆ where combs are observed,

together with a dark gray region where the spectrum no longer exhibits a comb. The typical

variation in spectrum is shown in Fig. 55(b). For ∆db/2π ≳ −30 MHz, a clear comb spec-

trum is observed with a spacing that varies with ωd; the system polariton frequencies νa, νb

(unchanged with ωd) are marked in dashed pink, confirming that comb peaks do not always

coincide with passive modes of the two-mode system.

For ∆db/2π ≲ −30 MHz, the spectrum abruptly changes, exhibiting a single broad peak

and an increased noise background. Analyzing I-Q traces in Fig. 55(c), dynamics in this

region (2) show large deviations with time and while recurringly confined to a region of phase

space do not follow a regular trajectory, even on short timescales (inset), in stark contrast to

regular periodic dynamics for stable comb operation (1). Note that these temporal instabili-

ties disagree with results of a weak quantum fluctuations analysis in this regime (Fig. 55(a),

inset), which simply predicts frequency combs with finite coherence akin to Fig. 54 (although

instabilities do manifest for more negative detunings. Curiously, quantum dynamics here are
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Figure 55: Temporal instabilities. (a) By fixing ωa, ωb and varying ωd (top panel), the

system can be driven to the regime with no stable fixed points along the purple arrow in

Fig. 53 (a), while leaving the underlying mode structure unchanged. The resulting phase

diagram plotting observed comb spacing ∆ is shown, with the theoretical prediction in

the inset. For ∆db/2π ≲ −30 MHz and strong enough driving, a distinct regime emerges

(dark gray) where the output spectrum broadens significantly. In (b), we show the typical

evolution of the spectrum across the white dashed line, chosen to show a large variation in

comb spacing. In dashed red are the underlying polariton resonances, indicating that the

emergent comb peaks do not exactly coincide with these resonances. (c) Time dynamics as

observed via I-Q traces, with both axes scaled by ⟨A⟩ =
√

⟨I2⟩+ ⟨Q2⟩ at position 1, for

ease of direct comparison. In the stable comb regime (1), the cavity response settles into an

obvious orbit as before; the inset shows a 500 ns trace after t = 40 µs, demonstrating the

stable orbit. In the unstable regime (2), the response shows large deviations over time and

no periodic phase space trajectory is observed.

also too complex to be captured by simulating the exact SDEs in Eqs. (80), which run into

familiar numerical difficulties encountered in the application of phase-space stochastic ap-

proaches to strong-quantum systems [100]. This could be indicative of qualitative deviations
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from classically stable limit cycles not captured by a linearized treatment of quantum fluctu-

ations, and merits further study of this system as a platform for exploring complex dynamics

of quantum nonlinear systems.

5.4 Supplementary experimental details and methods.

5.4.1 Phase diagram for Device B (5 SQUIDs)
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Figure 56: Device B measurements. (a) Flux sweep showing the system polariton modes

and the avoided crossing as the nonlinear mode is swept across the linear mode resonance.

The horizontal blue line indicates the bare linear mode frequency, while the white dashed

line indicates the bare nonlinear mode frequency. (b) Experimental and theoretical phase

diagram in Drive-∆db space, as the nonlinear mode frequency is swept (see schematic in (a)).

The observed comb spacing ∆ in the multifrequency regime is plotted, alongside the single

frequency regime (light gray) and regime with temporal instabilities (dark gray). White

curve in both phase diagrams is the analytically obtained boundary enclosing the classi-

cally unstable region. Orange diamond indicates the drive power (-96 dBm) and detuning

(∆db/2π = −5.87 MHz) for which coherence function results are plotted in Fig. 3(c) of the

main text for Device B.

In addition to Device A, which employs a 25 SQUID array, we explore the impact of

nonlinearity on comb dynamics by fabricating Device B, which employs a 5 SQUID array
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and therefore possesses an approximately 25-fold stronger nonlinearity. In Fig. 56 (a), we

show the flux sweep of this device, indicating the polariton resonances of the two-mode

system. Fitting to the avoided crossing reveals a coupling strength of g/2π = 89.25 MHz,

similar to Device A (by design), and a bare linear mode linewidth of κ/2π = 22.84 MHz.

Having verified that the device satisfies the strong coupling condition g > κ
2
at resonant

driving (∆da = 0, see main text), we can explore the classically predicted unstable regime

as was done for Device A. Fixing the driving frequency at ωd/2π = 4.9085GHz, we change

the external flux through the SQUIDs to sweep the nonlinear mode frequency, as shown

schematically in the top panel of Fig. 56 (a). Device B has a much larger flux modulation

range than Device A, enabling us to explore a wider range of drive-nonlinear mode detunings

∆db. The resulting phase diagram in drive power-∆db space is shown in Fig. 56 (b), with

the theoretically predicted phase diagram shown in the right panel, both plotted with the

same axes. The light gray regions indicate the single frequency regime, which gives way to a

multifrequency comb regime at appropriate drive strengths for small |∆db|. The experiment

and theory agree quite well both in terms of the critical detuning where the combs emerge, as

well as the observed comb spacing. Finally, the orange diamond in the theory plot indicates

the position on the phase diagram for which coherence function results are plotted in Fig. 3

of the main text.

Note that for more negative ∆db, a region (dark gray) emerges where the system exhibits

temporal instabilities similar to Device A, in both the experimental and theoretical phase

diagrams. Numerical simulations here indicate that the system exhibits chaotic dynamics

(maximal Lyapunov exponent λM > 0). We also find greater disparity between experiment

and theory here; in addition to possible deviations from classical predictions due to quantum

effects, the dynamics exhibit temporal instabilities that require careful processing. Such

dynamical regimes therefore merit further detailed investigation. The white contour in both

figures depicts the analytically predicted unstable region, as determined by the linearized

dynamics; it agrees well with both experiment and numerical simulations, in particular for

small |∆db|.
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5.4.2 Kerr nonlinearity measurement

To demonstrate the dependence of comb coherence on the quantum nature of the device

nonlinearity, knowledge of this engineered Kerr nonlinearity strength is of crucial impor-

tance. Typically, one would do so via a standard pump-probe measurement that measures

the Kerr-induced frequency shift of the nonlinear mode as the pump power incident on it

increases. However, for the two-mode system such a measurement accesses the frequency

shift of the renormalized polariton modes of the system, which of course depends on the

degree of hybridization between linear and nonlinear modes. In this section we clarify how

measured polariton mode frequency shifts can be used to extract the bare nonlinear mode

Kerr interaction strength.

We begin by rewriting below, for convenience, the full system Hamiltonian (ℏ = 1) from

Eq. 58 in Seq. 5.2.1:

Ĥ = −∆daâ
†â−∆dbb̂

†b̂− Λ

2
b̂†b̂†b̂b̂+ g(â†b̂+ âb̂†) + η(â+ â†) (81)

Next, we consider the linear Hamiltonian ĤL that determines the polariton modes:

ĤL = ωaâ
†â+ ωbb̂

†b̂+ g(â†b̂+ âb̂†) ≡
(
â† b̂†

)ωa g

g ωb


︸ ︷︷ ︸

HL

â
b̂

 (82)

which is obtained from Eq. (58) by neglecting the nonlinearity and drive terms, and returning

to the lab frame. The above Hamiltonian may be diagonalized by introducing the matrix

of eigenvectors P and diagonal matrix of eigenvalues D for the matrix HL, such that HL =

PDP−1. The Hamiltonian then becomes:

ĤL = νaĉ
†
aĉa + νbĉ

†
bĉb,

ĉa
ĉb

 = P−1

â
b̂

 , D =

νa 0

0 νb

 (83)

which serves to define the polariton modes ĉa, ĉb, and corresponding frequencies νa, νb.

We can now rewrite the Kerr nonlinear term of the full Hamiltonian, Eq. (58), in the

polariton basis. Writing the nonlinear term ĤΛ as:

ĤΛ = −Λ

2
b̂†b̂†b̂b̂ (84)
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Figure 57: Kerr nonlinearity measurement. (a) Left column: schematic showing the

pump-probe setup. Note that modes shown are polariton modes, not the bare modes. A

strong pump tone (orange) is applied 5 linewidths positively detuned from ĉb (see text), and

the modified polariton resonance frequency identified using a weak probe (purple). Increas-

ing polariton mode occupation n̄b by increasing pump tone power, the frequency shift ∆νb

of polariton mode is measured versus n̄b for various detunings between the bare linear and

nonlinear modes, ∆ab = ωa − ωb. Lines are fits to −Λbn̄b + ϵO(n̄2
b) where higher order terms

∝ ϵ become important as pump power increases. The fits are used to extract the polariton

mode nonlinearity Λb. With decreasing detuning ∆ab, the initial slope of the fit decreases, in-

dicating a decrease in the strength of the ĉb mode nonlinearity as the hybridization increases.

(b) Measured Kerr nonlinearity Λb of polariton mode ĉb (red circles) extracted from (a), as

a function of detuning ∆ab. Solid blue line is the best fit to Eq. (92), with the obtained fit

value of Λ/2π = 5.96 kHz. The shaded region indicates the 2σ confidence interval for the fit.

and noting from Eq. (83) that:

b̂ = P21ĉa +P22ĉb =
∑
n

P2nĉn (85)

the nonlinear Hamiltonian in terms of polariton modes takes the form:

ĤΛ = −Λ

2

∑
nmrs

P∗
2nP

∗
2mP2rP2sĉ

†
nĉ

†
mĉrĉs ≡ −Λ

2

∑
nmrs

Anmrsĉ
†
nĉ

†
mĉrĉs (86)

Therefore, the coupling transforms the localized nonlinearity of mode b̂ into self- and cross-

Kerr interactions between the polariton modes of the system. The Kerr-induced frequency
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shift observed for either polariton mode will be a combination of these terms, making it

complicated to determine in general.

However, we can obtain a simplified expression by assuming operation near a stable

fixed point and assuming a strong polariton mode occupation, both conditions that are

expected to be valid for the typical pump-probe measurement scheme. The experimental

scheme proceeds similarly to the case for a single nonlinear mode: a strong pump tone is

applied to the system at a positive detuning of five linewidths away from polariton mode

ĉb, predominantly pumping this mode, although also residually (weakly) pumping mode ĉa

(see schematic in Fig. 57 (a)). The resulting steady-state polariton amplitudes, and therefore

occupations, can be conveniently determined by first obtaining the nonlinear and linear mode

amplitudes β̄, ᾱ by solving Eqs. (B6) and (B8) respectively, reproduced below:[(
∆̃db + Λ|β̄|2

)2
+
γ̃2

4

]
|β̄|2 = g2|χa|2η2 (87a)

ᾱ = −χa

(
igβ̄ + iη

)
(87b)

recalling the renormalized nonlinear mode detuning and damping parameters respectively:

∆̃db = ωd − (ωb + g2|χa|2∆da)

γ̃ = γ + γφ + g2|χa|2κ (88)

where χa = (−i∆da +
κ
2
)−1. Then, the steady-state polariton amplitudes, c̄a, c̄b, are easily

determined via the transformation matrix introduced in Eq. (83):c̄a
c̄b

 = P−1

ᾱ
β̄

 (89)

Finally, the application of a weak probe determines Kerr-mediated frequency shifts, as dic-

tated by the nonlinear Hamiltonian, Eq. (86). We are only interested in shifts to the polariton

mode ĉb; the corresponding terms of the nonlinear Hamiltonian are given by:

ĤΛ ≈− Λ

2

[
A2222ĉ

†
bĉb + 4A2121ĉ

†
aĉa + 2A2221ĉ

†
bĉa + 2A2122ĉ

†
aĉb

]
ĉ†bĉb

+ (ĉ†aĉa − only and non Kerr shift terms) (90)
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We now perform a semiclassical approximation, linearizing the above Hamiltonian around

the fixed point defined by Eqs. (89), under which the effective Kerr-mediated shift ∆νb of

the polariton frequency νb is given by:

∆νb = −Λ
[
A2222|c̄b|2 + 2A2121|c̄a|2 + 2A2221c̄

∗
b c̄a +A2122c̄

∗
ac̄b
]

(91)

Finally, the effective measured Kerr constant Λb is obtained by determining the frequency

shift per photon occupying the polariton mode, n̄b = |c̄b|2:

Λb = −∆νb
n̄b

= Λ

[
A2222 + 2A2121

|c̄a|2

|c̄b|2
+ 2A2221

c̄a
c̄b

+A2122

c̄∗a
c̄∗b

]
(92)

Clearly, ∆νb and the measured Kerr constant Λb depend on Anmrs and consequently on the

detuning between the bare linear and nonlinear modes, ∆ab = ωa−ωb, as well as the strength

of their coupling g. As a result, both will vary as the nonlinear mode frequency ωb is swept,

even though the bare nonlinear mode Kerr constant Λ remains unchanged. In addition to this

dependence on ωb, Eq. (92) also accounts for the small but nonzero occupation of polariton

mode ĉa due to this mode being weakly driven, and the corresponding cross-Kerr shifts this

mediates.

Experimentally, a single pump-probe measurement with pump frequency ωP at a fixed

nonlinear mode frequency populates the polariton mode ĉb as the pump power P is increased.

We first calibrate the polariton mode occupation with the applied pump power via n̄b =

|c̄b|2 = κb

∆2
P+(κb/2)2

P
ℏωP

, where κb is the linewidth of polariton mode ĉb, and ∆P = 5κb is the

detuning between the pump frequency and the bare polariton mode frequency [92]. The

observed frequency shift ∆νb as a function of n̄b is shown in Fig. 57 (a) for various detunings

between the bare linear and nonlinear modes ∆ab. By fitting the observed frequency shift to

n̄b, we obtain the measured polariton mode Kerr constant Λb. Each such measurement yields

Λb at the given ∆ab. By sweeping the nonlinear mode frequency, we obtain Λb as a function

of ∆ab, with the results plotted in red in Fig. 57 (b). Note that as the detuning ∆ab decreases,

the measured Kerr nonlinearity strength also decreases, since increased hybridization dilutes

the nonlinearity of the originally nonlinear mode. By fitting the experimental results to

Eq. (92) with the bare nonlinearity Λ as the only fitting parameter, we obtain the solid

blue curve in Fig. 57 (b), with the fit value Λ/2π = 5.96 kHz. The shaded blue region
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indicates the 2σ confidence interval of the fit, which finally yields the bare nonlinearity of

Λ/2π = 5.96± 0.2 kHz for Device A.

5.4.3 Typical Kerr nonlinearity strength of optical microresonators

In this subsection we calculate the typical Kerr nonlinearity strength, or equivalently

the Kerr-mediated frequency shift per photon, for nonlinear optical microresonators. For an

optical microresonator with center frequency ωop, refractive index n, second-order nonlinear

refractive index n2, and mode volume V0, the Kerr shift per photon, Λop is given by [71]:

Λop =
ℏω2

0cn2

n2V0
(93)

where c is the speed of light in vacuum. Using parameter values for silicon nitride optical mi-

croresonators [72] - a popular and successful material choice - we have: ωop/(2π) = 100 THz

(equivalently, wavelength λ ≃ 1.55 µm), n = 2, n2 = 2.5× 10−19 m2 W−1, and V0 = (λ/n)3,

we obtain:

Λo/(2π) ≃ 100 Hz (94)

which is about two orders of magnitude lower than the realized Λ for Device A. Optical

microresonators are engineered to have high quality factors; we consider a large value of Q ≃

107. For ωop/(2π) = 100 THz, this implies microresonator loss rates of κop/(2π) ≃ 10 MHz.

As a result, the ratio of Λop to the loss rate is Λop/κop ≃ 10−5, again about two orders of

magnitude smaller than the smallest value realized by devices in our experiment.
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Figure 58: Non-exponential signatures of phase decoherence. Top panels: Theoreti-

cally calculated decay of G(1)(τ) peaks as a function of time in logscale (red), and exponential

fit (orange). Left and right plots correspond to G(1)(τ) plotted in Fig. 3(c), positions (2) and

(3) respectively of the main text. Lower panels: Same as the top panel, but now showing ex-

perimentally obtained decay of G(1)(τ) peaks as a function of time (black). In addition to the

exponential fit (orange), a Gaussian fit is also shown (green), corresponding to contributions

from 1/f noise.

5.4.4 Non-exponential signatures in phase decoherence

Generally, the multiplicative nature of the noise described by Eqs. (80) allows for non-

exponential decay of the phase coherence captured by G(1)(τ). Signatures of this can be

124



better seen by extracting the theoretically calculated coherence function peaks and plotting

in logscale, as shown in Fig. 58, top panel. However, we find numerically that these nonex-

ponential signatures are minor in the explored parameter regime, as can be seen by the very

small deviation from a straight line in logscale. As a result the theoretical decay envelope

can be considered to be exponential to a very good approximation.

For the experimentally-obtained coherence function, we have also observed that the decay

envelope of the correlation function is not always perfectly exponential. We believe that the

observed experimental decay is further complicated by signatures of 1/f noise in the system,

which would lead to a Gaussian decay envelope. From typical plots of the coherence function

peaks as a function of time in logscale, we find that the actual experimental decay envelope

is quite close to exponential, but with some signatures of Gaussian decay. Fig. 3(c) at

position 3 is a somewhat atypical example, with more pronounced nonexponential features;

we usually find decay characteristics more similar to Fig. 3(c), position 2.

Various techniques have been developed to characterize environmental noise in nature and

artificial spin systems [Nature Physics 7, 565(2011), Nature Communications 4, 2337 (2013),

Nature Physics, 15, 1123 (2019)]. However, the efficacy of these methods requires sensitivity

to the specific frequency distribution of the noise, e.g.: large anharmonicity, thus limiting

our ability to remove this noise contribution from the experimental results, or include its

effect on the theoretical calculations. Noting further that we generally find the experimental

decay to be close to exponential just like the theoretical results in this parameter regime, we

have used an exponentially decaying envelope to fit to both theory and experiment results

and extract the coherence time. Furthermore, adding a probing system to characterize the

environmental noise can also be a future research about quantum coherence in the unstable

regime.

5.4.5 Cavity ringdown method and theoretical simulations

Even when a two-level description of the nonlinear mode is not feasible, Eqs. (95) indicate

that under weak driving it should still be possible to observe the effect of pure dephasing

on the nonlinear mode moments. To do so, one would ideally like to probe the nonlinear
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mode dynamics directly, without having to observe the linear mode. This requires effectively

decoupling the nonlinear mode from the linear mode (by being detuned far away) while still

retaining a coupling to the outside world. However, the 3-D transmon design isolates the

nonlinear mode from a direct coupling to the environment, successfully allowing for a much

higher-Q nonlinear mode than lumped-element or coplanar waveguide architectures. While

this design usefully reduces both the relaxation rate γ and pure dephasing rate γφ [101], it

also means that we only have direct access to linear mode quadratures, Îa, Q̂a.

d

dt
v⃗ = Mv⃗ + d⃗ (95)

As such, one is restricted to determining the dephasing rate by monitoring moments of

cavity quadratures. The approach one would employ is a ringdown setup [91]: a coherent

drive is placed on the system to initialize it to a nontrivial state in phase space, following

which the drive is turned off and the resulting ringdown dynamics of the measured first

and second order cavity moments recorded as the two-mode system returns to the undriven

steady-state. Comparing the rates of relaxation for first and second order moments then

enables a calculation of the pure dephasing rate γφ.

To explore the feasibility of such an approach, we perform numerical simulations of

Eqs. (95) under this ringdown setup. We assume a much larger pure dephasing rate γφ/2π =

50.0 kHz than estimated for either of our devices, for reasons that will become clear shortly.

The typical initialization and ringdown evolution is shown in Fig. 59 (a). The drive η is

turned on at t = −0.8 µs, and then turned off at t = 0, following which the cavity undergoes

relaxation to return to the undriven steady-state. The ringdown dynamics are shown in

Fig. 59 (b) for two different detunings between the linear and nonlinear modes, ∆ab. We

fit exponentials with decay constants λ1, λ2 to the moments ⟨Îa(t)⟩, ⟨Â2
a(t)⟩ (see Eq. (96)

respectively, and define the dephasing rate experienced by the linear mode as γaφ = λ1−λ2/2.

When the detuning is large compared to the coupling (i), the linear and nonlinear modes are

effectively decoupled, so that the linear mode should experience no pure dephasing and γaφ is

vanishingly small. With decreasing detuning (ii), the linear and nonlinear modes hybridizes,

and the linear mode inherits some dephasing, so that γaφ increases.
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Figure 59: Theoretical analysis of dephasing in the linear regime via cavity ring-

down. (a) Typical dynamics of cavity quadrature moments under the initialization drive

(gray region) and when the drive is turned off (blank region), displaying ringdown. (b) (i)

and (ii) show ringdown dynamics for ⟨Îa(t)⟩ (top panel) and ⟨Âa(t)⟩ (bottom panel) at the

indicated values of detuning ∆ab between the linear and nonlinear mode in (c). Also shown

are fits to exponential decays; the top (bottom) panel shows fits with rates determined by the

eigenvalue λ1 (λ2) for ⟨Îa(t)⟩ (⟨Âa(t)⟩), computed from the dynamical matrixM1 (M2) in the

ringdown regime (η = 0). (c) Extracted decay rates from ringdown dynamics as a function

of ∆ab. For (b), (c), we choose the actual nonlinear mode dephasing rate γφ/2π = 50.0 kHz,

which is larger than the estimated dephasing rates in the comb generation regimes for both

experimental devices.

Â2
j ≡ Î2j + Q̂2

j = ⟨d̂†j d̂j⟩ (96)

The dephasing experienced by the linear mode γaφ as a function of ∆ab is plotted in

Fig. 59 (c), scaled by λ2/2. While in principle such an approach may be used to extract the

pure dephasing rate γφ, Fig. 59 (c) brings to light a number of technical difficulties. Firstly,

the variation due to pure dephasing is superimposed on the very fast cavity decay rate;

the relative difference in decay rates ∼ γφ/κ is therefore very small and difficult to extract

experimentally, even though we have assumed a dephasing rate here much larger than those
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obtained in the main text. In contrast, spectroscopy of the two-level system compares γφ

directly to γ. Secondly, since this is a direct temporal measurement, its accuracy is limited

by the DAC resolution. Small changes in the very short cavity relaxation time are therefore

more uncertain.

Both these issues mean that obtaining the pure dephasing rate from direct cavity ring-

down measurements under moderate to strong hybridization is likely to be inaccurate. As a

result, we instead employ the strategy of obtaining γφ in the nonlinear regime, in particular

within the frequency comb regime. Here, the effect of the bare mode decay rates γ and

κ is overcome since the system starts to undergo self-oscillation, as discussed in the main

text. Then, the comb coherence is limited entirely by the nonlinearity strength and the pure

dephasing rate. By measuring the nonlinearity strength via a pump-probe measurement of

the hybridized system, as discussed in Section 5.4.2, we are able to use SDE simulations of

comb coherence to obtain an estimate of γφ.

5.5 Conclusion

We have realized a minimal two-mode Kerr system for generating coherent frequency

combs under excitation by a single coherent tone. The phase coherence of the generated

combs is fundamentally limited by the intrinsic nonlinearity strength in the quantum modes

which form the device. The excellent agreement between theory and experiment points

toward a highly controllable experimental platform for the study of complex nonlinear dy-

namics in the quantum regime. Our device realizes a classically-unstable Kerr-nonlinear

regime, ideally suited to understand the potentially competing role of strong quantum fluc-

tuations as a source of decoherence and non-classicality in moderate to strongly nonlinear

quantum devices.

Finally, the versatility of the cQED platform admits extensions of our device to multi-

mode systems, and to realizations employing tunable parametric couplers [42], paving the

way towards an in-situ engineerable multifrequency light source. Such frequency combs could

enable multiplexed quantum measurement [102] using a single monochromatic incident tone.
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The generated combs could also function as multifrequency pumps to phase-coherently drive

multiple parametric processes simultaneously in a single device for Hamiltonian engineering

applications [21, 103, 104, 105]. This could include the intriguing possibility of multifre-

quency pumps exhibiting non-classical coherence, using comb generators operating in the

deep-quantum regime.
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6.0 Modular quantum computer

6.1 Introduction to modular quantum computer

Building quantum information processors of increasing size and complexity requires

meticulous management of both qubit-environment and qubit-qubit interactions. Suppress-

ing interaction with the external environment has always been recognized as the central

difficultly in maintaining coherence in a system. In the long term this challenge will be

met by fault tolerantly encoding much smaller logical machines inside a qubit fabric; in the

present so-called Noisy Intermediate-Scale Quantum (NISQ) era we must simply run short

circuits. However, in both the short and long term we face choices about which architecture

of machine we build. In many current large-scale processors based on a monolithic fabric of

nearest-neighbor interactions we pay a price in spectator qubit errors and cross-talk [1, 2, 3]

as well as the fabrication cost of needing all components to perform flawlessly on a single

die [106].

Modular quantum systems offer a very promising alternate route to large scale quantum

computers, allowing us to sidestep many of these difficulties, and instead operate using

smaller, simpler quantum modules linked via quantum communication channels[5, 6, 7, 8].

Such machines allow us to replace faulty components and test sub-units separately, which

can greatly ease requirements for flawless fabrication, while also allowing distant qubits to

communicate with many fewer intermediate steps, potentially enhancing fidelity in near-term

quantum[107].

The key element that determines the performance of a modular machine is its quantum

communication bus. For atomic scale qubits (which form the basis for many of the early

proposals for modular quantum computing) communicating using optical-frequency states, it

is infeasible to couple photons into a communication channel with very high efficiency. This

loss of information precludes light from simply being transferred from module to module,

instead one must herald instances in which transmission is successful [108, 109, 110, 111, 112].

However, once light has been coupled into an optical fiber, it can be readily distributed over
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kilometer and longer distances, which readily supports long-range entangled state generation

and distributed quantum computation[113, 114]. In superconducting circuits, there have also

been several recent demonstrations of similar measurement-based protocols[115, 35, 116, 117].

However, superconducting circuits can also transfer states directly. For this form of direct

state exchange we require strong, switchable couplings from module to the communication

channel to enable rapid operations, low losses in the channel, and a dense, reconfigurable

network of couplings among many modules[118, 119]. Realizations to date have focused on

pairs of quantum modules, with transmission-line based ‘quantum bus’ communication chan-

nels and controllable module-bus couplings based on the nonlinearity of Josephson junctions

[120, 121, 122, 123, 124, 125, 126, 127] or driven exchange via a driven, nonlinear coupling

mode [128, 129, 130].

In this chapter, we propose and experimentally implement a new scheme for creating a

modular superconducting network, which instead creates a nonlinear ‘quantum state router’

with fixed, dispersive couplings to individual quantum modules. The strong, parametrically

driven nonlinearity of the quantum state router allows us to only virtually occupy its modes,

and thus achieve efficient operations over the router with only modest requirements for

router quality. There is no use of measurement in the router system, operations over the

bus can be thought of as direct, parametrically actuated gates between quantum modules.

The state router naturally supports all-to-all coupling among several quantum modules, and

is naturally extensible to a larger modular network. We have realized the quantum state

router using a Superconducting Nonlinear Assymetric Inductive eLement (SNAIL)-based

nonlinearity[42], and used it to operate a four module quantum processor.

6.2 Theory of router operation

The basic structure of our modular quantum computer consists of two major parts: a

quantum state router and multiple modules, as shown in Figure 60. Each module consists

of a variable number of qubits (one in our present experiment) which have controllable local

coupling with each other. In each module, there should also be at least one ‘communication’

131



mode which couples to both the qubits in the module and the quantum state router. This

communication mode can either be a qubit, or, as in our work, a long-lived harmonic oscillator

which can store information for exchange over the router.

Figure 60: Schematic representation and picture of the modular quantum com-

puter device. (a) Basic structure of our modular quantum computer, in which a number of

quantum modules are connected via their communication modes to a quantum state router.

(b) Coupling scheme between the router and four communication modes. The brown dashed

square represent the router with four waveguide modes (W1 −W4) and a SNAIL (S). Each

waveguide mode is dispersively coupled to a single communication cavity mode (C1 − C4).

(c) Schematic drawing of the full system consisting four modules and the central quantum

state router. The colored curves inside the router represent the E electric field distribution

of the first four waveguide TE10n(n = 1, 2, 3, 4) eigenmodes. The SNAIL chip (represented

in red) is placed at a location where it couples to all the waveguide modes being used. Each

module (for M2 to M4) consists of a qubit (Q2 − Q4), a communication cavity (C2 − C4)

and a readout cavity (for module M1 the qubit has been omitted). (d) Photograph of the

assembled device.

We have realized our modular quantum computer as a 3D superconducting circuit, and

have adopted several design rules to guide our efforts. First, the communication modes

we use are superconducting 3D cavities, rather than qubits, as they accommodate multiple

qubit encoding schemes, including both the Fock encoding we use in this work as well as
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cat states[131], binomial encodings[132], GKP-encodings[133], etc. This allows our router

to be compatible with a wide array of future module designs. Secondly, we emphasize the

“modularity” of our system in the additional sense that each module and the router itself exist

as independent units which can operate individually, instead of the whole system forming

a monolithic block. This offers a tremendous advantage in the laboratory, as defective

components can be easily replaced, and the different components can be tested separately

and then assembled. Thirdly, the router operates via coherent photon exchange based on

parametric driving of a 3-wave-mixing Hamiltonian, in which the third order non-linearity

is introduced by a SNAIL device. Finally, we have designed the router to minimize both the

need for precise frequency matching between router and module modes, and also minimize

the requirements for high Q router elements. To accomplish this, we couple all modes in the

computer dispersively.

The only nonlinear element is a central SNAIL-mode S (with corresponding annihilation

operator ŝ), which is very strongly coupled to an input line for strong parametric driving, and

flux biased via a nearby copper-sheathed electromagnet. As such, it has a low quality factor

Q (∼ 10, 000). The remainder of the router is composed of a rectangular, superconducting

3D waveguide. The first four transverse electric modes (TE10i, i = 1, 2, 3, 4) of the waveguide

Wi (with operators ŵi) are each used as an intermediate mode coupling to both the SNAIL

and a corresponding communication mode Ci (with operator ĉi in the ith module). The

SNAIL is flux biased to a point where its even order non-linear terms are negligible[42, 105]

while the third order term is strong, resulting in the Hamiltonian of the router, which has

been divided into mode energies, interactions, and nonlinear terms, respectively:

ĤR/ℏ = ĤR,0/ℏ+ ĤR,int/ℏ+ ĤR,nl/ℏ (97)

=

[
ωsŝ

†ŝ+
∑
i

ωwi
ŵi

†ŵi

]
+

[∑
i

gwis(ŵ
†
i ŝ+ ŵiŝ

†)

]
+
[
gsss(ŝ+ ŝ†)3

]
.

In this Hamiltonian, the waveguide modes are naturally orthogonal, and each is coupled

to the SNAIL with strength gwis; gsss is the strength of the SNAIL’s third-order term. We
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parametrically drive photon exchange between a pair of waveguide modes by driving the

SNAIL at the difference of their frequencies. This scheme has been long used in parametric

amplifiers and circulators, where it goes by the name ‘noiseless photon conversion’ [134, 21,

103]). To have independently controllable couplings, we have chosen the SNAIL frequency

and waveguide dimensions so that all mode frequencies and frequency differences are unique,

with all difference frequencies below the lowest mode frequency (see Fig. 61)

As all frequencies are widely separated, we can rediagonalize the system to eliminate the

interaction term, slightly shifting all mode frequencies and definitions(for simplicity’s sake

we omit any change of variable representation for the new, hybrid eigenmodes), and inducing

all possible self- and cross-three-wave couplings among the waveguide modes and SNAIL.

This is analogous to common techniques used in circuit QED[46, 47], with a third- rather

than fourth-order nonlinearity. Retaining only the parametric coupling terms we will use in

the router, which is safe as long as all other processes are well separated from any desired

process in frequency, we write the effective Hamiltonian of the router as

Ĥeff
R /ℏ = ĤR,0/ℏ+

∑
i ̸=j

geffwiwjs
(ŵ†

i ŵj ŝ+ ŵiŵ
†
j ŝ

†). (98)

The effective three-wave interaction strengths are given by, geffwiwjs
≈ 6gsss(

g
∆
)wis(

g
∆
)wjs,

where ∆wis = ωwi
− ωs. Note, however, that in our experiment we never directly populate

these waveguide modes or drive their difference frequencies. Instead, these terms serve as a

‘scaffold’ in the router to create similar terms among the module communication modes, as

detailed below. The hybridization strengths ( g
∆
)wis are key parameters as they both limit the

eventual parametric coupling strengths and determine how much longer-lived the waveguide

modes can be compared to the low-Q SNAIL mode.

Next, we combine our router with the modules’ communication modes. As shown in

Fig. 60 b), we accomplish this by creating four modules, each containing one mode with a

frequency near one of the router’s waveguide modes, and coupled to the router via an aper-

ture in their shared wall. This coupling is again deliberately dispersive, with the strength

controlled by a combination of waveguide-communication mode detuning, coupling aper-

ture size, and placement along the router’s length. The router plus communication mode
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Hamiltonian is written as:

ĤRC/ℏ = ĤR/ℏ+ ĤC,0/ℏ+ ĤRC,int/ℏ (99)

= ĤR/ℏ+

[∑
i

ωci ĉi
†ĉi

]
+

[∑
i

gciwi
(ĉ†i ŵi + ĉiŵ

†
i )

]
.

The second and third terms denote the communication mode’s energy and the communication

mode-waveguide mode interactions, respectively. As before, we diagonalize this Hamiltonian

to eliminate the direct interactions among the modes without changing variable representa-

tion, and neglect all but the cavity-cavity third order interactions to find the new effective

Hamiltonian for the composite router plus communication modes system:

Ĥeff
RC/ℏ = ĤR,0/ℏ+ ĤC,0/ℏ+

∑
i ̸=j

geffcicjs(ĉ
†
i ĉj ŝ+ ĉiĉ

†
j ŝ

†). (100)

The new effective three body interaction strength is geffcicjs ≈ geffwiwjs
( g
∆
)ciwi

( g
∆
)cjwj

.

The use of a network of hybridization, linking the cavity modes to the central SNAIL

via intermediate cavity modes comes with advantages: choosing each dispersive coupling

g/∆ ≃ 0.1 the communication modes can live up to 104 times longer than the SNAIL

mode and 100 times longer than the waveguide modes, greatly decreasing the need for long

lifetime components in the router. More, the dispersive couplings and parametric driving

are insensitive to modest errors in mode frequencies, again reducing the need for precision

fabrication, unlike photon exchange techniques based on resonant mode couplings[135, 123].

It is certainly possible to remove the intermediate waveguide modes in a monolithic version

of our design, though this comes with both greatly reduced flexibility in combining disparate

elements and more stringent requirements for the SNAIL’s lifetime.

In operation, the parametrically driven two-body exchange rate, for example between

modes Ci and Cj, is
√
nsg

eff
cicjs

, where ns is the pump strength expressed as a photon number

(see Sec. 6.5.2.1). It is here that we find the price for our hybridization network: the effective

three body coupling has been greatly reduced (geffcicjs ≃ 6× 10−4gsss). To achieve rapid gates

with feasible pump strengths, we must both engineer gsss to be large and carefully design the

pump line (and the SNAIL itself) to tolerate very strong drives to compensate this dilution

of nonlinearity.
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It is also important to note that Eq. 100 represents only our desired coupling terms, in

practice all modes inherit both self- and cross- three-wave mixing terms from the SNAIL. Of

particular concern are couplings between a cavity and non-adjacent waveguide modes (e.g.

C3 to W4), in practice we choose a minimum waveguide to cavity spacing of ∼ 100MHz

to suppress cross-talk with these couplings. This difference frequency is comparable to the

anharmonicity of transmon qubits; similarly, we can use variants of the DRAG[61] technique

to drive rapid iSWAP gates among the communication modes without leakage to unwanted

modes (see Sec.6.5.3).

6.3 Experimental results

In table 12 we list the measured parameters of all key modes in our device. All numbers

have been directly measured and calibrated in the experiments at the operation bias of the

SNAIL, they are also used in our master equation simulations (see Methods, Numerical simu-

lations in main text). The measurement fidelity is calculated using single qubit tomography.

The single qubit gate fidelity is measured using interleaved randomized benchmarking[136].

Table 12: Devices parameters.

Q2 Q3 Q4 C1 C2 C3 C4 SNAIL††

ω/2π (GHz) 3.067984 4.040709 3.566572 4.477662 4.812500 5.474195 6.180769 3.914900

T1 (µs) 60.442 9.065 8.385 22.771† 27.230 13.795 20.065 0.975

T2R (µs) 18.386 6.295 7.997 44.643† 47.320 11.303 22.691 1.05124

T2E (µs) 23.745 7.568 8.018

α/2π (MHz) -141.3 -118.1 -125.8

χqc/2π (MHz) -0.112 -1.719 -0.862

Measurement fidelity * 93.61% 83.00% 88.00 %

Single gate error ** 0.48% ± 0.04% 3.74% ± 0.5% 3.21% ± 0.6%

* Calculated from single qubit’s tomography measurement
** Calculated from randomized benchmarking of single qubit gates [136]
† Measured using coherent state
†† Measured at operation point

One natural advantage of our router design is that the parametric pumps are all well-
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separated in frequency from all modes. This allows us to protect all quantummodes while still

strongly pumping the parametric processes. As we can see from Fig 61, the communication

modes and SNAIL mode itself are all at least 2GHz higher than the parametric pumping

frequencies.

Figure 61: Frequency spectrum of all linear modes, SNAIL mode and pumping

frequency. Since the maximum pumping frequency on the SNAIL fmax
pump ≈ fc4 − fc1 =

1.704 GHz, which is way below the waveguide cutoff frequency fcutoff = fw1 = 4.528 GHz.

The router naturally protects pumping tones from propagating into modules. Meanwhile,

the frequency of communication modes don’t have to be precisely controlled, so the router

can be easily adaptive to different modules. Also, since the maximum pumping frequency is

also lower than the SNAIL frequency fmax
pump < fs = 3.915 GHz, a low-pass-filter (e.g. VLF-

2250+) is added to the SNAIL pump port, so that strong pump can be applied to SNAIL

while the SNAIL mode lifetime is still protected.

6.3.1 Basic router characterization with coherent states

For initial experiments, we connected our router to four simple modules, but omitted

the module qubits. Each communication mode is driven and read out via a ‘weak’ port

whose induced relaxation rate is much smaller than the mode’s internal loss rate. Figure 62a

shows an experimental pulse sequence for swapping coherent states between the module

communication modes C2 and C4. First, a short on-resonance drive is applied to C4 through

the weakly coupled port, which creates a coherent state in this cavity. Then, a pump tone is

applied to the SNAIL mode near the C2−C4 difference frequency: ωp = ωc4 −ωc2 + δ, where
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δ is the pump detuning relative to the measured frequency difference between two cavity

modes. Meanwhile, the light in these two cavities are monitored by receiving the I-Q voltage

leaking out from each cavity’s weakly coupled port. By varying the applied pump frequency

and time, we can determine both the swap rate and resonant condition for pumping.

The experiment results are shown in Fig. 62b, c. There is good agreement between the

envelope of the swap trace (green and purple lines) and the hybridized decay trace, indicating

that the state is only swapping between these two cavities without leaking into other modes,

and that the fidelity of state exchange is mainly limited by the lifetime of these two cavities.

The same experiment was performed for all the six possible pairs of the four communication

modes, the fastest full-swap time was 375 ns, and the slowest was 1248 ns, with an average

swap time of ∼ 760 ns (see Sec. 6.5.2.2). On average, the pump frequency required to fully

swap light between the two cavities was detuned by several hundred kHz (−416 kHz for the

data in Figure 62). We attribute this to a combination of SNAIL- and communication-mode

static and dynamic Kerr effects. This has strong parallels to saturation effects in parametric

amplifiers [137, 105, 80, 138], though here the primary consequence is just that we must

track these shifts in our control electronics.

6.3.2 Operation as a modular quantum computer with single-qubit modules

Next, we added the transmon qubits to complete modules 2-4 (Module one’s qubit was

omitted), and operated the full device as a small, modular, quantum computer. Each single-

qubit-module consists of one communication cavity Ci, one transmon Qi and one readout

cavity Ri. The machine’s layout is shown schematically in Fig. 60 c). For simplicity, our qubit

states throughout the system are the Fock states |0⟩ and |1⟩, although the communication

modes could in principle support a variety of more complex encodings. We create intra-

module gates between the qubit and cavity in each module using qubit-cavity cross-Kerr to

implement doubly-driven parametric photon exchange (see Ref. [35, 120, 125] and Sec. 6.5.3

for details), which are indicated as paired drives in Fig. 63 b).

In the simple algorithms that follow we refer to the operation of these exchange interac-

tions as variations on iSWAP gate, as is typical for gates based on coherent photon exchange

138



pulse duration (μs)

C4

C2

t
SNAIL

b

c

0

V
re

c 
(a

rb
.u

ni
ts

)

V
re

c 
(a

rb
.u

ni
ts

)

pu
ls

e 
du

ra
tio

n 
(μ

s)
0

10

20

30

pump detuning (KHz)
0-600 -600

-1

0

C4, I C2, I

C2, Q

0

10

20

30
C4, Q

1

-1

1

a

0

0 10 20 30

Hybridized 
decay

C2
C4

-416 KHz Pump Detuning

Figure 62: Coherent state exchange between communication cavities. (a) Pulse

sequence of the swap experiment. We begin by displacing one cavity to create a coherent

state, which we then swap between a pair of cavities by applying a parametric drive to the

SNAIL. We continuously monitor the I-Q voltage in each cavity during the swap process.

(b) In- and quadrature-phase received voltage from the two cavities versus pulse duration

and pump detuning from the nominal difference frequency. The dashed vertical line denotes

the optimal detuning frequency for full photon exchange. (c) Line-cut of (b) at the optimal

full-swap detuning. The grey dashed envelope represents the theoretical hybridized decay

trace of C2 and C4, given by exp[−2t(1/τ2 + 1/τ4)], where τ2 and τ4 are the decoherence

times of C2 and C4, respectively.

[128, 35, 129, 125, 127, 130]. We exclusively use these gates to swap coherent states or Fock

states fully from a source cavity to a formerly empty target cavity. In this scenario the gates
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Figure 63: Fock state swap experiment between remote qubits. (a) Illustration of

the photon swap protocol, in which a photon, originating in Q2 is fully swapped to C2, and

then, depending on the variable inter-module pulse duration, routed to Q4 or returned to Q2.

(b) Experiment pulse sequence. A photon is created in Q2, then swapped to C2. Next it is

swapped (or not) to C4 with a variable duration inter-module iSWAP pulse, and finally the

light in C2,4 are routed via further intra-module iSWAP to their respective qubits, which are

then measured. The upper black bar indicates the total experimental duration with τ . (c)

Measurement result of Q2 and Q4 for different SNAIL pump detuning and duration. Here

the color of 2D sweep indicates the measurement along qubits’ z-axis. (d) A cut of the swap

data along the dotted line indicated in (c). The green triangles and purple circles and are

Q2 and Q4 data, respectively, and the dashed lines are the corresponding simulation results.

act as a combination of SWAP and a z-rotation for both Fock and coherent states. However,

this analogy breaks down for both intra- and inter-module exchange of Fock states between a
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qubit and cavity and a pair of cavities, when we consider arbitrary pulse lengths and certain

joint qubit-cavity or cavity-cavity Fock states (e.g. |1, 1⟩). For this reason some researchers

choose to refer to such gates between pairs of cavities as ‘beam splitters’[125, 139] for their

obvious resemblance to the optical component of the same name. This analogy, however,

fails for our qubit-cavity interactions, and so we choose instead to refer to these gates via the

exponent which determines their unitary relative to a full iSWAP gate, i.e., a
√
iSWAP is

described by U
1
2
iSWAP. As we only swap light into empty qubits/cavities in our protocols, and

so never occupy states containing two or more photons, this inexact analogy will yield both

a simple graphical and conceptual picture of our gates as well as correct intuition about the

system’s evolution during our protocols. This issue, however, must obviously be revisited for

alternate qubit encoding choices, and when both send- and receive- modes are in arbitrary

states (for instance, for coherent states between cavities the identification of the gates as

iSWAP is again exact). For further discussion see Sec. 6.5.1.

We next use the module transmons and intra-module iSWAP operations to swap Fock

states across the router, transferring single photons between distant qubits as shown in

Fig. 63 a), b). The protocol begins with all qubits and cavities prepared in their ground

states. A Rx(π) pulse is first applied to Q2 and brings it to the excited state. Next, an intra-

module iSWAP gate is performed between Q2 and C2. This fully swaps the excitation from

Q2 to C2. Third, the photon is swapped between C2 and C4 across the router by pumping on

the SNAIL mode, just as demonstrated in Figure 62. The SNAIL pump duration is varied,

which will result in an effective Rabi oscillation between the two qubits when the protocol is

completed. Finally, we apply two more intra-module iSWAP gates, C2 to Q2 and C4 to Q4,

which fully transfer the states of C2 and C4 to their module qubits, which are then measured

simultaneously using dispersive readout of the readout (R) modes. The results are shown

in Fig. 63 c) and 63 d). The transfer fidelity between Q4 and Q2 is 72.5 ± 1.17 %. We

perform Lindblad master equation simulations assuming ideal interactions, with the only

defects being all modes’ measured coherences(see Methods); the simulation results (dotted

curves) show good quantitative agreement with our data, indicating that, as with coherent

state operation, the primary fidelity limit in our system is the ratio of gate time to our

modes’ coherence times. The uncertainty given for the Fock state transfer fidelity, and all
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following quoted fidelities, is calculated following the ‘bootstrap method’ in[140, 141]. No

correction is applied for State Preparation and Measurement (SPAM) errors. Details of

our data processing and experimentally determined SPAM errors can be found in Methods,

Sec. 6.4.

6.3.3 Inter-module Bell state generation

Next, we use such a gate, a
√
iSWAP, created by shortening the first intra-module

iSWAP gate from Figure 63 by close to 1/2 in duration to create inter-module Bell states.

The
√
iSWAP has the effect of taking the single photon in the qubit and coherently ‘sharing’

it between the qubit and cavity, creating a Bell state between the two modes. Overall, the

sequence first creates a Bell-pair inside a module, and then shifts the communication cavity’s

component to a qubit in a second module. The quantum circuit is shown in Fig. 64 a). To-

mography is performed on both qubits, while the communication cavities are not measured.

The measurement results are shown in Fig. 64 b). From this tomographic data, we can

reconstruct the density matrix of the Q2 and Q4. We achieve a Bell fidelity of 76.9± 0.76 %.

The same experiments were performed on the other two qubit pairs Q2 − Q3 and Q4 − Q3)

with fidelity of 58.7 ± 2.40 % and 68.2 ± 0.83 %, respectively. The results were again com-

pared with Lindblad master equation simulations (red rectangles in Fig. 64 b), and show

that the dominant source of infidelity remains the modes’ lifetimes.

6.3.4 Parallel operations

Another advantage of our architecture is that we can drive multiple parametric opera-

tions in the router simultaneously, which enables parallel operation and new ways to create

entanglement. We have demonstrated the simplest implementation of parallel operations by

swapping light between two pairs of modules simultaneously. Here, M2 and M4 are treated

as one sub-system, while M3 and M1 form a second. We swap a photon from Q2 to Q4 and

Q3 to C1 across the router simultaneously. The gate sequence is shown in Fig. 65 a1). The

two cross module swap interactions, C2 − C4 and C3 − C0, are turned on simultaneously

by pumping the SNAIL mode at the two frequency differences using a room-temperature
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Figure 64: Inter-module Bell state generation. (a) Quantum circuit for generating a

Bell state between Q2 and Q4. Entanglement is first generated between Q2 and C2 using

a
√
iSWAP gate, the cavity component is then moved to Q4 using two full-iSWAP gates.

(b) Tomography of the joint Q2,Q4 Bloch vector, in which each bar represent a joint mea-

surement of the two qubits in the basis indicated (I indicates no measurement). Here the

black bars indicate the experiment result, the red rectangles are master-equation simulation

results, while the gray rectangles are the target pure Bell state. The fidelity to target Bell

state 1√
2
(|01⟩+ |10⟩) is 76.9± 0.76%, which agrees very well with the simulation prediction

of 77.2%.

combiner. The SNAIL pumps are applied for a variable period. The protocol concludes

with SWAP gates between all cavity-qubit pairs and measurement of all qubits. The results

(Fig. 65 a2) show that Fock states can swap between both pairs of modules simultaneously

without interference or enhanced relaxation, as shown by comparison to master equation

simulations. The drive frequencies for parallel swap processes in the router needs frequency

adjustments on order ∼100 kHz compared to the single iSWAP case, which we attribute

to dynamic and static cross-Kerr effects due to the paired SNAIL drives. We reduced the

pump strengths, slowing the gates from 600 ns to 1300 ns as we saw excess decoherence when

running two parallel processes at maximum pump strength. We do not believe this is a

fundamental limitation, but can be improved in future experiment by optimized SNAIL and

router design.
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Figure 65: Parallel iSWAP, GHZ and W state generation experiments. (a1) Gate

sequence for parallel photon exchange over the router. (a2) Photon population of all three

qubits vs. router swap time. The dots here are the experimental results, and the corre-

sponding dashed lines are simulation results. (b1) GHZ state generation sequence. (b2)

GHZ state generation density matrix reconstructed from tomography. Here the size of each

block represents the magnitude of each element in density matrix, and the 2-D color scale

represents each element’s phase as a function of both color and magnitude, with bright col-

ors for large elements fading to neutral gray for small magnitudes to avoid drawing the eye

to small, noisy matrix elements. The observed fidelity state is 48.9 ± 5.27 % (c1) W state

generation pulse sequence. Together, the iSWAP2 arctan(
√
2)/π and ‘V-iSWAP’ gates create a

W state distributed across Q2, C3, and C4. The subsequent iSWAPs redirect the latter two

components to Q3 and Q4, respectively. (c2) Hinton diagram of results of W-state generation

sequence; the observed fidelity state is 53.4± 2.56 %.

As further proof of the quantum coherence of parallel operations in the router, we also

repeated the Bell state generation protocol between Q2 and Q4 with the M1 −M3 iSWAP

activated in parallel. Again, the pump strengths were decreased, slowing the inter-module
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swap time. We achieved a Bell state fidelity of 68.1 ± 0.79 %, while the simulated fidelity

is 68.4 %. Here the decrease of fidelity compared to the single Bell state generation process

(which has a fidelity of 76.9 ± 0.76 %) is due to the longer gate time used for the C2 − C4

iSWAP in the presence of a parallel iSWAP operation (see details in Sec. 6.5.4). Currently,

the utility of this multi-parametric gate is limited by this slowdown compared to individual

iSWAPs. However, we believe this kind of multi-parametrically-pumped process should be

further investigated, as it could also be used to generate other multi-qubit gates in one step.

Given the overhead in composing multi-qubit gate with a series of two-qubit and single-qubit

gates (for example decomposing a Toffoli gate into 6 C-NOTs), performing multi-qubit gates

in this way might still give better performance in terms of gate fidelity by shortening overall

sequence time/gate count even if operating at a lower rate.

Full-router sequences To this point, we have listed only state fidelities, which are

limited both by the mode lifetimes in our system, as well as the number of gates required

to perform both intra- and inter-module operations in the same pulse sequence. We can

estimate the performance of the router itself by estimating the ‘average’ fidelity of the inter-

module gates. Given the average gate time of Tgate,avg ≃ 760 ns, and the average decoherence

time of our communication modes of TC,avg ≃ 22µs we find Favg = 1− Tgate,avg

TC,avg
= 0.97. Even

given this performance, extending to still longer sequences which can entangle all qubits in

the system is very challenging due to the further decay caused by increased gate count and

the delicacy of larger entangled states. Nevertheless, we implemented two further router-wide

sequences to demonstrate further capabilities of our system.

First, we explored the use of two simultaneous swap processes which link one ‘source’

cavity to two ‘target’ cavities, which we refer to as a ‘V-iSWAP’. As shown in Sec. 6.5.2.3,

this form of swap for a certain duration empties the source cavity, coherently and symmet-

rically swapping its contents into the target cavities. By combining the V-iSWAP with a

(iSWAP)2 arctan(
√
2)/π (which leaves 1/3 photon in the source mode) as shown in Fig. 65c1,

we can take a single photon from Q2 and use our inter-module V-iSWAP to create a W-state

shared among all three modules. We achieve a fidelity for this state of 53.4 ± 2.56 % (see

state reconstruction in Fig. 65 c2).

We also sought to create a GHZ state shared among all three modules’ qubits. As we
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implement it in Fig. 65 b1), this protocol require one additional entangling gate: an intra-

module CNOT. We achieve this using a state selective qubit π-pulse [142]. We reconstruct the

final state from tomography as shown in Fig. 65 b2), and find a fidelity of 48.9±5.27 %, just

below the threshold for provable entanglement. While both results fall below the threshold

for provable entanglement, they point to our ability to implement an extensive gate set in

the router.

6.4 Methods

Device fabrication The device in Fig. 60 d) contains a SNAIL on a sapphire chip, three

transmon qubits on individual sapphire chips, and multiple 3D resonator modes coupled with

each other as shown in Fig. 60 c). The coupling between the SNAIL and waveguide modes

is determined by the shape of the SNAIL antenna (Extended Data Fig. 66 b), which is

fabricated using photolithography and acid etching from a 200-nm thin tantalum film on

a c-plane sapphire substrate[50]. Two windows were opened on the 3D waveguide above

and below the SNAIL chip to place a copper magnet and a pump port into the waveguide

close to the SNAIL to enable flux bias and strong pumping (Extended Data Fig. 66 a).The

antennae of the transmon qubits are fabricated using the same tantalum etching technique,

while both the SNAIL and transmon junctions are made of Al-AlOx-Al layers fabricated

using a standard Dolan bridge method.

SNAIL mode characterization. The SNAIL mode is characterized by measuring

the transmission signal from the SNAIL pump port to a side port on the waveguide using

a network analyzer. By sweeping the bias current applied to the magnet (Extended Data

Fig. 66 c) we can measure how the frequency of the SNAIL and waveguide modes are changed

by flux biasing the SNAIL loop.

Experimental setup. The modular quantum computer is installed at the base (∼ 18

mK) plate of a cryogenic set-up (Extended Data Figure 1). Here, all pulse sequences are

generated by h Keysight M3202A (1 GSa/s) and M3201A (500 MSa/s) Arbitrary Waveform

Generators (AWGs). The baseband microwave control pulses are generated at an intermedi-
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Figure 66: SNAIL mode details. (a) Physical position of the SNAIL chip and pumping

port. The SNAIL is flux-biased via a copper-sheathed electromagnet protruding into the

waveguide above it, and is strongly coupled to a microwave drive line introduced via an

aluminum cylinder below the SNAIL. (b) False color optical and SEM image of the SNAIL,

indicating its essential components. (c) Color plot of the magnitude of transmission signal

versus the frequency from SNAIL pumping port (|S21(ω)|) for a range of applied coil bias

current/applied SNAIL flux. The dotted lines indicate the dressed modes of the waveguide

modes and snail, as well as the ‘pole mode’ of the aluminum cylinder containing the drive

port. The vertical dark red dash line indicates the operating flux of the SNAIL.

ate frequency (IF) of 100 MHz and upconverted to microwave frequencies using IQ mixers.

Image rejection (IR) mixers have been used for downconverting the detected signals to 50

MHz, which are then digitized using a control system based on Keysight M3102A Analog-

to-Digital converters with a sampling rate of 500 MSa/s and on-board Field-Programmable

Gate Arrays (FPGA) for signal processing.

Numerical simulations. We simulate the behavior of our system by analyzing the

behavior of seven modes participating in the experiments: three qubit modes and four com-

munication modes. We treat the gates as ideal parametric interactions, and work in the rotat-

ing frame of the system. The Hamiltonian, then contains single qubit controls, cavity-cavity

inter-module interactions, and qubit-cavity intra-module interactions listed respectively to

give:
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Figure 67: Schematic of the experimental setup

ĤQC

ℏ
=

∑
m=2,3,4

ηm(q̂
†
m+ q̂m)+

∑
i,j=1,2,3,4

i ̸=j

ηij gcicjs

(
ĉ†i ĉj + ĉiĉ

†
j

)
+
∑

k=2,3,4

ηk gqkqkckck

(
ĉ†kq̂k + ĉkq̂

†
k

)
,

(101)

where q̂i indicates the qubit mode in each module and η(t) represents the time-dependent

strength of a given pulse, which follows the shapes and durations used in the experiment.
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To capture the effects of photon loss and decoherence in the system, we add loss operators

with rates corresponding rates to the measured values listed in the Table. 12 and simulate

the evolution of the system via Lindblad master equation[143] using QuTiP[144]:

ρ̇(t) = − i

ℏ

[
ĤQC(t), ρ(t)

]
+
∑
n

D
[
Ĉn

]
(ρ) (102)

where ρ represents the density matrix of the system and

D[Cn] (ρ) = ĈnρĈ
†
n − 1/2

(
Ĉ†

nĈnρ+ ρĈ†
nĈn

)
(103)

is the interaction between the system and the environment for different collapse operators.

For all experiments reported in the main text, we have applied same pulse sequences in

the simulation, and record the final states after half of the measurement time (to account for

decay during the measurement process). Results are very consistent between experiments

and simulation, which indicates that our device is primarily limited by the coherence times

of our modes.

Data processing. For all quoted fidelities in the main text, we have first reconstructed

the density matrix ρ from tomographic measurements, and for a given target state σ, the

fidelity of the results is calculated using:

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

(104)

Furthermore, a bootstrap method[141] has been used to estimate the uncertainty of the

reported fidelity. In experiments, all final datasets contain more than 10,000 averages; we

restructure the data set into Nboot = 1, 000 data sets each containing N = 10, 000 points

obtained by Monte Carlo sampling of the original set of 10, 000 points. During Monte Carlo

sampling, the probability that a data point is picked is 1/N irrespective of whether it has

been picked before. In the end, we calculate the standard deviation of the bootstrap data

sets sxB .

In general, sxB should have the relation with the uncertainty of the original sample σx

as:
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σx =

√
N

N − 1
sxB (105)

Since, in our case, N = 10, 000 is sufficiently large, the square root can be replaced by unity.

6.5 Supplementary experimental details and methods.

6.5.1 Effect of exchange interaction VS mode type and state encoding

As noted previously, depending on the qubit encoding in Hilbert space of the state being

swapped, the same parametric coupling (i.e. Ĥeff = geffcicj(ĉ
†
i ĉj + ĉiĉ

†
j)) can result in very

different state evolution. To clarify this, we compare different initial states and different

kinds of modes (transmon qubit or cavity) at times t = π/geff, 2π/geff, 3π/geff and 4π/geff.

As shown in Tabel. 13, between two two-level-systems (TLS), the effective conversion

process can perform a perfect iSWAP gate. However, if the coupled objects include one

linear mode, the situation becomes more complicated. For example, in the Fock state basis,

the conversion process between two linear modes is more like a ‘beam splitter’ process[139,

125]; and in the coherent state basis, the process becomes a non-entangling exchange.

6.5.2 Parametric photon iSWAP gate using 3-wave-mixing

6.5.2.1 Parametric regime analysis

Here we analyze the parametric exchange process in the system. Without loss of the

generality, we have excluded the qubit and readout cavity modes from the total Hamiltonian,

and focused on the parametric coupling between the communication cavities.

Ĥ0/ℏ =
∑

i=1,2,3,4

[
ωwi

ŵi
†ŵi + gwis(ŵi

†ŝ+ ŵiŝ
†)
]
+

∑
i=1,2,3,4

[
ωci ĉi

†ĉi + gciwi
(ĉi

†ŵi + ĉiŵi
†)
]

+ ωsŝ
†ŝ+ g3(ŝ+ ŝ†)3,

(106)
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Table 13: Transmon to transmon exchange. We consider the final states of different initial

states under evolution operation Up, where U is defined as U = exp (−iĤt), as t = 2π/geff.

The exponent of U simply means Up = exp (−i Ĥ(pt)). Here, Up creates an iSWAP family

gate between the two qubits; U1/2 =
√
iSWAP could be used to create Bell state given an

initial state |1, 0⟩. Note that U performs an iSWAP gate, which could also be used to create

entanglement between two qubits.

|ψinit⟩ |1, 0⟩ |1, 1⟩ α |0, 0⟩+ β |0, 1⟩+ γ |1, 0⟩+ η |1, 1⟩

U1/2 |ψinit⟩
√
2
2
(|1, 0⟩ −

i |0, 1⟩)

|1, 1⟩ α |0, 0⟩+
√
2
2
(β − iγ) |0, 1⟩+

√
2
2
(γ − iβ) |1, 0⟩+ η |1, 1⟩

U |ψinit⟩ −i |0, 1⟩ |1, 1⟩ α |0, 0⟩ − iγ |0, 1⟩ − iβ |1, 0⟩+ η |1, 1⟩

U3/2 |ψinit⟩ -
√
2
2
(|1, 0⟩+

i |0, 1⟩)

|1, 1⟩ α |0, 0⟩ −
√
2
2
(β + iγ) |0, 1⟩ −

√
2
2
(γ + iβ) |1, 0⟩+ η |1, 1⟩

U2 |ψinit⟩ − |1, 0⟩ |1, 1⟩ α |0, 0⟩ − β |0, 1⟩ − γ |1, 0⟩+ η |1, 1⟩

Table 14: Transmon to cavity exchange. We consider the Fock state basis as for transmon-

cavity coupling, coherent states could result in an even more complicated scenario. Here

the Up operator can still behave like a tunable beam-splitter if either the cavity or qubit is

prepared to an empty/ground state. However, for initial states like |1, n⟩, where n ≥ 1, the

Up operator will no longer keep the state unchanged.

|ψinit⟩ |1, 0⟩ |1, 1⟩ ∗

U1/2 |ψinit⟩
√
2
2
(|1, 0⟩ − i |0, 1⟩)

√
2
2
(|1, 1⟩ − i |0, 2⟩)

U |ψinit⟩ −i |0, 1⟩ −i |0, 2⟩

U3/2 |ψinit⟩ -
√
2
2
(|1, 0⟩+ i |0, 1⟩) −

√
2
2
(|1, 1⟩+ i |0, 2⟩)

U2 |ψinit⟩ − |1, 0⟩ − |1, 1⟩
* Here, the unitary is defined as U = exp (−iĤt′), where t′ = t/

√
2.
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Table 15: Cavity to cavity exchange. For two cavities prepared to Fock states, Up operator

still behaves as a ‘beam splitter’, while for coherent state basis, it will only exchange photon

between the two cavities but will not create entanglement.

|ψinit⟩ |1, 0⟩ |1, 1⟩ |α, 0⟩ |α, β⟩

U1/2 |ψinit⟩
√
2
2
(|1, 0⟩ −

i |0, 1⟩)

√
2
2
(|2, 0⟩ +

|0, 2⟩)

|α/2,−i α/2⟩ |α/2− i β/2, β/2− i α/2⟩

U |ψinit⟩ −i |0, 1⟩ |1, 1⟩ |0,−i α⟩ |−i β,−i α⟩

U3/2 |ψinit⟩ -
√
2
2
(|1, 0⟩+

i |0, 1⟩)

√
2
2
(|2, 0⟩ +

|0, 2⟩)

|−α/2,−i α/2⟩ |−α/2− i β/2,−β/2− i α/2⟩

U2 |ψinit⟩ − |1, 0⟩ |1, 1⟩ |−α, 0⟩ |−α,−β⟩

After re-diagonalizing the second order terms in Eq. 106, all dressed modes in the router

inherit third order nonlinearity. The terms we are going to use for the parametric pumping

scheme are three-wave mixing terms:

gcicjs
(
ĉi

†ĉj ŝ+ ĉiĉj
†ŝ†
)
, (i, j = 1, 2, 3, 4; i ̸= j). (107)

Here the ĉi and ŝ operators represent the dressed modes after re-diagonalization, and gcicjs

is the 3-wave-mixing coefficient. In the weak coupling regime where ( g
∆
)ciwi

, ( g
∆
)wis ∼ 0.1,

the coefficient gcicjs is approximately g3(
g
∆
)ciwi

( g
∆
)wis(

g
∆
)cjwj

( g
∆
)wjs, where ∆wis = ωwi

− ωs.

To realize iSWAP gates between communication cavities based on Eq. 107, we apply

a strong single-tone pump on the SNAIL at the frequency difference of two cavities, ωp =∣∣ωci − ωcj

∣∣, where i, j = 1, 2, 3, 4; i ̸= j. The time-dependent pumping term can be written

as ĤP/ℏ = ϵ(t)(ŝ+ ŝ†), where ϵ(t) is represented by:

ϵ(t) =

ϵ
x(t) cos(ωpt) + ϵy(t) sin(ωpt), 0 < t < tg

0, otherwise,

(108)
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Thus, the total system Hamiltonian under pumping can be written as Ĥ′ = Ĥ0 + ĤP .

To study the effect of this pumping term in the total Hamiltonian, we apply a unitary

transformation on Ĥ with displacement operator:

D(t) = exp[(zs† − z∗s)], (109)

where z = − (ϵx+iϵy)/2
ωp−ωs

e−iωpt + (ϵx−iϵy)/2
ωp+ωs

eiωpt. This results in a new Hamiltonian ĤD, in which

the ĤP term is canceled and ŝ → ŝ − z. Specifically, the 3-wave mixing term in Eq. 107

becomes:

gcicjsĉi
†ĉj

(
ŝ
(ϵx + iϵy)/2

ωp − ωs

e−iωpt − (ϵx − iϵy)/2

ωp + ωs

eiωpt

)
+ h.c. (110)

Then we apply a rotating frame transformation at the frequency of all the router modes

(SNAIL + waveguide) and communication modes in the system:

R(t) = exp

[
iωsŝ

†ŝ+
∑

i=1,2,3,4

i
(
ωwi

ŵi
†ŵi + ωci ĉi

†ĉi
)]
, (111)

Note that ωp =
∣∣ωci − ωcj

∣∣. Assume the all the other frequency differences in the system

are several linewidths away from the pumping frequency. Then the only slowly rotating term

after the transformation is

ĤRWA/ℏ = η gcicjs

(
ĉ†i ĉj + ĉiĉ

†
j

)
, (112)

where η = (ϵx + iϵy)ωs/(ω
2
d − ω2

s).

Equation 112 shows that pumping at ωp =
∣∣ωci − ωcj

∣∣ activates the spontaneous photon
exchange process between communication mode ci and cj. The iSWAP speed depends on the

pumping strength and the three-wave mixing coefficient gcicjs. By controlling the length of

the pulse, iSWAP1/n gates can be performed between the two modes. Also, the existence of

all the 3-wave-mixing terms between different modes allows us to pump multiple parametric

process simultaneously, e.g. we can perform iSWAP gate between two different cavity pairs at

the same time by simultaneously pumping the SNAIL mode at the two difference frequencies.
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6.5.2.2 iSWAP gate time for all six cavity pairs

By preparing coherent states in all four different cavities, we can perform six pairs of

inter-module iSWAP. We list all iSWAP gate times in Table. 16. The average gate time is

760 ns.

Table 16: iSWAP gate times between all six possible communication cavity pairs.

The data is measured by preparing a coherent state in one cavity and swap it to another

cavity. For each swap pair, the listed iSWAP gate time is based on the maximum iSWAP

speed measured by tuning up the SNAIL pump power until we see obvious decrease of mode

lifetime.

iSWAP pair iSWAP time (ns)

C1 ↔ C2 1248

C1 ↔ C3 651

C1 ↔ C4 535

C2 ↔ C3 942

C2 ↔ C4 832

C3 ↔ C4 375

6.5.2.3 Multi-end router iSWAP

One benefit of the router design is that we can apply multiple pump tones on the SNAIL

at the same time to activate multiple exchange processes simultaneously, which give us lots

of freedom for more complicated gates. In order to test this idea, we have designed two

experiments: one realizing multiple iSWAPs in parallel, and a second realizing ”V-iSWAP”

from one source cavity to two target cavities.

The protocol and experimental results are shown in Fig. 68. All protocols are based on

coherent states. First, we have tried the parallel iSWAP (as shown in Sec. 68): Here, C3

and C4 have been first displaced with short Gaussian pulses, then we turn on the iSWAP
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pump on SC1C4 and SC2C3 simultaneously. At the same time, the voltage output from all

the cavities are measured through weakly-coupled ports. Comparing to the single iSWAP,

a small extra pump detuning (∼ −250KHz) has been observed on both pumps, which will

attribute to the dynamic-Kerr from driven SNAIL.

For the ”V-iSWAP”, we have displaced C2 first, then we turn on the SNAIL pumps for

SC2C3 and SC2C4 simultaneously, and similarly, we have recorded the voltage output from all

three cavities. One thing is different from parallel iSWAP is that the rate of two iSWAPs

between each pair need to be precisely identical. In our case, as C3 and C4 have been

perfectly overlapped with each other, thus, C2 to C3 and C2 to C4 share the same iSWAP

rate with each other. Again, a small extra pump detuning (∼ −60KHz) is added on both

pumps to compensate the dynamic-Kerr effect.
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Figure 68: Simultaneous iSWAPs between multiple cavities. (a) Parallel SWAP

between C1, C4 and C2, C3; (a1, a2) Pulse sequence and schematic. (a3) We have rotated the

output results so that the quadrature components equal to zero, and plot only the in-phase

voltages vs time for all four cavities. (b) V-iSWAP from C2 to C3 and C4. In this case, the

light can go back and forth between one cavity and two cavities. We have carefully tuned the

pump frequencies and amplitudes so that the voltage trace for C3 and C4 perfectly overlap

with each other. If C2 is prepared to Fock state |1⟩ at the beginning, and C3 and C4 are

both prepared to empty states, then at the moment when C2 is empty, a bell state is created

between C3 and C4.
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6.5.3 Intra-module iSWAP

The next ingredient, previously termed an intra-module iSWAP[35], swaps information

between qubits and communication cavities. In the experiment, the qubit is first prepared

to its excited state, which gives module state |e0⟩. Next, two side-band tones are applied

near to the qubit and cavity frequencies. Here the detunings are around 10κ (∼ 20 MHz)

away from each mode to avoid any undesired mode excitation. Then, both iSWAP time and

cavity side-band (CSB) detuning δ are swept to determine the optimized iSWAP condition.

The average fidelity of a iSWAP gate is 94%, which is mainly limited by how fast the iSWAP

gate is compared to T1 and Tϕ of qubit and cavity.

6.5.4 Generating Bell states during parallel operations

Due to the coherence time of all modes, the Bell states’ fidelity has been limited by the

iSWAP gate time in all operations. Here we use one example showing the limitation of the

experiments. As we have mentioned in text, because of the saturation power when operating

with multiple tones during parallel operations on the SNAIL, we need to slow down the

iSWAP rate. As shown in Fig. 70, when the iSWAP gate time increase from 600 ns to

1300 ns, the fidelity of bell states decrease from 76.9% to 68.1%, but no additional side effect

is added due to cross-talking or other source.

6.6 Discussion and outlook

In this work we have demonstrated a coherent quantum state router for microwave pho-

tons and used it to realize a small modular quantum computer. A key feature is the use of a

SNAIL mode to create three-wave couplings in the router itself, rather than rely on nonlin-

ear couplers embedded in each module. The router enables us to create all-to-all couplings

among a set of quantum modules, to parametrically drive gates between the communica-

tion modes of those modules, and even create three-qubit and parallel iSWAP operations
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Figure 69: Intra-module iSWAP. (a) Schematic of qubit and communication cavity fre-

quencies and pump tones. Two pump tones have been applied near the qubit and cavity

frequencies to generate iSWAP between qubit and cavity. (b) Schematic and pulse sequence.

The qubit is prepared in its excited state via a Rx(π) pulse at ωq,ge, then two sideband pulses

are applied at ωQSB, detuned by ∆ from ωq,ge, and ωCSB, detuned by ∆+ δ from ωg
c . Finally,

projective measurement is applied to the qubit. Both pulse length, and δ are swept to de-

termine an optimized iSWAP gate. (c) Rabi oscillation of the intra-module iSWAP. The

vertical axis is the pulse time, and the horizontal axis is the CSB detuning δ, where the color

indicates the |g⟩ state population of qubit. (d) Full iSWAP time for all three cavity-qubit

pairs in the system

between multiple pairs of communication modes by applying multiple, simultaneous para-

metric drives.

The current device’s performance (Favg = 0.97 for gates involving the router) is limited

primarily by the qubit/cavity lifetimes involved, though the limitation is primarily in the

modules themselves and due to imperfect quantum engineering. Other recent implementa-

tions of similar quantum modules[125, 120] have achieved much higher coherence time, with

qubit and cavity modes in the 100 − 1000µs range. With modest improvements in lifetime
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Figure 70: Bell stated fidelity versus inter-mdoule iSWAP gate time. The blue line

represents the simulation of the bell state fidelity between Q1 and Q3 when we varying the

inter-module iSWAP gate time. And the 600 ns (1300 ns) iSWAP corresponding to the Bell

state generation without (with) parallel operations.

to ∼ 10µs for our router waveguide modes, which we can achieve by retracting our SNAIL

into a coupling tube[120], our router will be able to provide sub-microsecond, very high fi-

delity gates between millisecond scale communication cavities. Retracting the SNAIL into a

tube adjacent to the waveguide also has the advantage that we can couple a single SNAIL

to multiple router elements, allowing us create inter-router operatoins and hence a scalable

modular network.

One vital question requiring further research is how fast we can ultimately drive gates in

this system. One straightforward route is to further increase the waveguide mode lifetimes

in the router; we can then increase the dispersive coupling strength to their respective

communication modes without decreasing the communication mode lifetimes. Doubling

our current average coupling to g/∆ = 0.2 will immediately push our average gate time to

∼ 100 ns. We must also learn more about how hard we can drive SNAILs with one or more

drive tones. This is directly related to the issue of saturation power in parametric amplifiers,

159



where recent exciting results [105, 145] provide guidance on how we may further optimize

our router. Coupled with stronger module-router couplings, it seems feasible to push our

overall gate time down to as low as tens of nanoseconds in better optimized, next generation

devices.
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7.0 Conclusions and perspectives

7.1 Better quantum state router

The story of the modular quantum computer does not end after the work we have pub-

lished last year. There are ongoing efforts (led by Chao Zhou and Mingkang Xia and certain

to become chapters in their theses) to build a better quantum state router from many per-

spectives. First, we worked to protect the SNAIL from its lossy environment via a ‘seamless’

design (as shown in Fig. 71 a)) and low pass filters with lower out-of-band loss at the SNAIL

frequency. Based on our current SNAIL lifetime (T1 : 2µs and T2 : 3.5µs), the maximum

module coherence we can support is easily around T1 : 2ms and T2 : 3.5ms, or perhaps even

longer.

Second, we have discovered important changes we can make to the machined sample

mounts which host our machines. As will be detailed in forthcoming theses from the group,

a combination of both polishing seams in 6061 aluminum and OFHC copper and placing

the seams to minimize participation in our high Q modes can greatly extend coherence in

the router. New max router lifetime XXX us, module cavity lifetime increased to YYY,

now standard in all our sample mounts. This may also hold for high purity aluminum or

Nb cavities, though it is not clear whether etching or other surface treatments will erase

the effects of starting from a mirror-quality surface. Identifying the reason polishing helps

may offer us new insights, allowing us to use stronger and more convenient materials such

as aluminum alloys, or perhaps pointing the way to how to further improve the quality of

high-purity cavities and sample mounts.

Third, we have improved the system’s coherence by carefully reworking all filters, mag-

netic shields, Eccosorb filters, etc. in the system. We have incorporated these improvements

in an ‘armored’ sample shield with cryoperm which incorporates all the final stage filters very

near the sample, with all components firmly bolted to a single-piece copper sample mount

and allows the whole system to be covered in absorbing Eccosorb foam and almunized mylar.

With the multiple upgrades, we start seeing the coherence of the cavity modes in the
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a) b) c)

'Seamless' SNAIL Mirror polished metal Better packaing with ecosorb filter

Figure 71: Better quantum state router. a) On the one hand, putting the ‘seam’ at the

height with least participation of all the waveguide modes can efficiently prevent the ‘seam’

loss for the router modes; on the other hand, the SNAIL has been designed to put in a single

metal block, which we called ‘seamless’ SNAIL, as we found its participation in seams which

cross the SNAIL’s pads to be too high. b) All aluminum metal forming the waveguide and

cavities has been carefully polished to a ‘mirror’ surface finish, and we find this simple trick

can significantly increase the quality factor contribution due to the seams (see Chao Zhou’s

forthcoming thesis). c) An ‘armored’ cryoperm can has been designed to further suppress

the high-frequency noise and filter, attenuator, and sample thermalization.

system can already reach 200− 500µs, even though the iSWAP gate time we made is only

around 2µs, we see big potential of a much better performance in the short future.

7.2 Compatible quantum module design

We have also been working to develop a quantum module with more than one qubit to

accompany the state router. Since we have already built the quantum state router based on

SNAILs and all-to-all parametric controls, we decided to apply the same ideas to a transmon-

based quantum module. More, because of the simpler two-level energy spectrum the qubit
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has, photon conversion between two modes can naturally become an iSWAP family gates

with no extra effort.

Figure 72: Comparison between Tree 2.0 and quantum module. We have tried a

pretty similar structure between the router and the module, where the former uses SNAIL

couple to linear mode and the latter to nonlinear mode. The operations between each of the

modes are very similar: by parametrically pumping frequency difference between any of the

two modes, the photon can coherently move back and forth between them.

This year, we have successfully made the quantum module comprised of a central SNAIL

coupled with four transmon qubits. Two-qubit interactions are created via three-wave cou-

pling driving the SNAIL at the difference frequency of a pair of qubits. The module’s

architecture allows us to realize all-to-all two-qubit couplings with experimental iSWAP

times of ∼ 300 ns in our prototype. Moreover, we can also drive single qubit gates in the

module as fast as ∼ 20 ns by driving the central SNAIL at one half of each qubit’s resonant

frequency, allowing the entire module’s gates to be implemented via a single drive line. This

’subharmonic’ driving was developed collaboratively among several students in the lab, and

will be featured in a forthcoming publication on which I am a co-author. Some preliminary
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data for the module is shown in Fig. 73. More detailed data and analysis will be published

in later papers and also my colleagues Mingkang Xia and Chao Zhou ’s theses. Furthermore,

our module design is directly compatible with our previously realized quantum state router.

Figure 73: Quantum module preliminary results. a) We have carefully designed all

coherent modes above the filter’s cut-off frequency to let the lossy pumping signal come in

and don’t let the modes’ photon come out. b) Similar idea in the quantum state router, by

parametrically pumping the frequency different between two modes, the photon can go back

and forth between two qubits. c) Moreover, we can also pump half-resonance of each qubit

to perform single-qubit gate with faster rate and no coherence limit.

7.3 Pushing the performance boundary

During the module’s development, we found building the modular quantum computer

based on parametric controls not only has practical use, but also bring lots of new science

question that need to be addressed. One interesting point we are working on is the speed

164



limit of the photon conversion rate. In both router and module experiments, we find a crucial

limit on the parametric pumping strength: as soon as the power is beyond a specific value, the

system will go through a phase transition destroying the whole system’s coherence. We don’t

believe this limit to be including in standard theories for gate speed due to parametric driving

(which depend on an expansion of the Hamiltonian to finite order) [146]. The results look to

relate to the ‘chaotic’ regime of SNAIL itself in which it oscillates across several minima of

its potential. At this moment, we’re trying to find a complete theory explaining the result

and also push the boundary of the parametric system limit via Hamiltonian engineering with

this additional constraint factored in.

Not only this, we’re also exploring the potential of the module we have built. A 4-bit

quantum system with all-to-all interaction is actually not very common in superconducting

circuits because of all kinds of cross talk and frequency crowding problem. During the

experiment, we have already proved multiple parametric interactions do not interfere with

each other, which gives us the possibilities of applying multiple tones at the same time.

In this case, building a three or more-qubit gate is not very far away from what we have

now, which again can provide new ideas of quantum circuits decomposition and algorithm

optimization.

7.4 Outlook

At this point, we have started seeing the vision of the ‘tree’ like modular quantum com-

puter. No matter the router or the module, we think they are compatible enough connecting

with each other. After we have built the ‘Lego’ block step by step, the next step naturally

becomes putting them together and learning the best route to computation power and/or

fault tolerant operation with the least amount of hardware.

We think we’re not very far away from a 20-bit modular quantum computer (1 router + 4

modules), and we keep pushing the boundary of the computers’ performance and the science

we have learned. I think the most important aspect my work has opened is to free us from

the structures of existing couplers and gate methods which favor only short-range, one to
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Figure 74: The future of superconducting modular quantum computer.

one, nearest neighbor architectures like the Heavy Hexagon and square lattice architectures,

and I am both exciting and hopefully that more and more people will start to adopt and

further improve these ideas and used them to power further, more powerful generations of

quantum computers.
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