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Accuracy and Simplicity in One-Equation Turbulence Models

Kiera Kean, PhD

University of Pittsburgh, 2022

Human life faces challenges including climate change and energy transformation

that require predictive accuracy in numerical simulations of fluid motion. However,

the complex structure and dynamics of turbulence combined with computational

limitations create a fundamental barrier. Turbulence is both rich in scale and chaotic

in time, thus time accurate predictions of turbulent flows are out of reach for many

important applications. If direct numerical simulations are not feasible, we turn to

turbulence modeling. Unfortunately, many inexpensive popular models lack a strong

theoretical backbone. They rely on data fitting and calibration, and have limited

generality. Higher accuracy models, e.g., large eddy simulation models, are more

expensive and remain infeasible for many large applications.

We seek models that efficiently and accurately capture important flow charac-

teristics. Eddy viscosity models, which model the effect of unresolved scales with

enhanced dissipation, are the most commonly used today. In particular, we consider

the one-equation model of Kolmogorov and Prandtl, where turbulent kinetic energy

is modeled with the k-equation.

The scaling of the time averaged energy dissipation rate as U3

L
is fundamental, and

has been proved mathematically and supported experimentally. Nonetheless, this law

is violated in numerical tests of popular models. Numerical dissipation introduced

by commonly used multistep methods is a potential cause or contributing factor.

We explore the effects of numerical dissipation in multistep methods applied to the

Navier-Stokes equations on this scaling, showing the treatment of the convective
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term may greatly effect the scaling of the total energy dissipation rate even for low

Reynolds number flows.

Additionally, any eddy viscosity models themselves may overdissipate, particu-

larly in the presence of boundary layers. We address this problem by changing the

framework through which we view the development of turbulence models. Rather

than calibrating a model with data, which can lead to needless complexity and a lack

of generality, we look to create models that fit the true behavior of the underlying

equations. By enforcing correct near wall behavior of the turbulent viscosity through

a new turbulence length scale, we prevent overdissipation in the long time average

while minimizing computational complexity.

Motivated by enforcing model accuracy in the near wall area, the inclusion or ex-

clusion of viscous diffusion in the k-equation is debated. By examining the derivation

of the k-equation, we show that inclusion leads to incorrect near wall asymptotics.

However, the exclusion of the term may be ill posed in the continuous case, leading

solver failures and ill conditioning. We address this by proposing alternate regular-

ization strategies that are not based on physical parameters.
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1.0 Introduction

Difficulties in predictions arise as turbulence is both chaotic in time and rich in

scale. Deterministic chaos occurs when a small perturbation in initial condition leads

to exponential separation of bounded trajectories, Lorenz’s butterfly effect. The sep-

aration of trajectories leads to a finite predictability horizon, as initial conditions

are not perfectly known. Analytic upper bounds give a O (Re−3) window of accurate

prediction. Next, turbulent flows contain large and small eddies, each with a charac-

teristic time and length scale that must be resolved. The time scale of small eddies is

proportional to O
(
Re−1/2

)
, and the length scale is proportional to O

(
Re−3/4

)
. This

renders direct numerical simulations of flows impossible in many technologically im-

portant applications within time and resource constraints. Though turbulence in a

pipe flow begins around Re ∼ 3 × 103 and may be fully resolved, a model airplane

has Re ∼ 2.5 × 106, and a typical commercial jet has Re ∼ 1.1 × 108, where full

resolution cannot be expected.

There is still no one approach that can solve this problem, there are more than

can be contained in this work. To offer context for other current thrusts in the pursuit

of time accurate fluid flows, we will briefly discuss some methods not considered in

this dissertation. This is with the understanding that these ideas can and should

be explored in tandem with the work in this dissertation in the future as we build

towards a more complete understanding of fluid modeling. Ideas for such work will

be discussed Chapter 6 where we present open problems and future works.

The richness of scales seen in fluid flows require fine meshes and thus solving

large linear systems. As the Reynolds number increases, storage requirements and

solve time may quickly exceed computational resources. Reduced order models (see
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[38], [18], [57]) decrease computational expense by using problem data or offline

pre-computation to dramatically lower the degrees of freedom. Additionally, meth-

ods such as artificial compression and penalty methods perturb the incompressibilty

constraint and allow us to decouple velocity and pressure. Artificial compressibility

models allow for a lagged pressure term, leading to a velocity only system and an

algebraic update of the pressure. For example, [55] shows a 3-8 times speed increase

in artificial compressibility tests. Penalty methods result in a velocity only system,

which further decreases storage costs and solve times, extending the boundary of

what is computable. These methods may be sensitive to the choice of penalty pa-

rameter; this is addressed in recent work by adaptive, algorithmic selection of the

penalty parameter [46], [82].

Adaptive timestepping methods increase accuracy and efficiency particularly in

flows that vary dramatically over time. Selecting the largest timestep that keeps

error below a preset tolerance increases efficiency. However, these methods do not

necessarily inherent the stability properties of the constant timestep analogues. [48],

[49] presents a timestepping method that is unconditionally G-stable under variable

timesteps. Other timestepping advancements include variable step, variable order

algorithms [16], [17]. These select the order that allows for the largest timestep

while keeping error below a set tolerance and may further decrease computation

time and expense by minimizing total timesteps without sacrificing accuracy.

The chaotic dynamics of fluid flow are best addressed by ensemble simulations.

Perturbing initial conditions, calculating multiple trajectories, and averaging this

collection of trajectories results in an increased predictability horizon. However, this

process may be computationally expensive and require large amounts of storage.

Recent ensemble algorithms allow for a single coefficient matrix and a block linear

solve. Further, the kinetic energy in the ensemble fluctuations can be used in eddy
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viscosity turbulence models.

At low Reynolds numbers, we may use direct numerical simulations (see [64],

[60]). For extremely high Reynolds number flows, direct numerical simulation be-

comes impossible. We turn here to turbulence models, which truncate the scales that

are directly calculated and model the effect of what is not directly calculated. These

models vary in complexity and accuracy. More accurate models, e.g., large eddy

simulations (LES), directly calculate large scales and model only small scales (see

[43], [81]). However, for high Reynolds number flows, they remain out of reach. For

example, it is predicted that full LES for simulation of airplane wings will be com-

putationally infeasible until 2045 [71]. Reynolds Averaged Navier-Stokes (RANS)

models model flow averages over finite or infinite time windows. Due to their sim-

plicity and comparative lack of computational expense, RANS models are the most

popular choice for many current applications. In particular, one equation eddy vis-

cosity models are commonly used.

This dissertation addresses practical aspects of turbulence models. First, the goal

of such models is to accurately capture important flow behavior for use in application.

This goal may be hard to quantify, particularly when the true behavior is not known.

In light of this, we focus on the energy dissipation rate. It is a physical fact, proven

through experiment and backed by theory that the time averaged energy dissipation

rate will scale uniformly in the Reynolds number as U3

L
. Still, many turbulence

models violate this, and we see growth in the energy dissipation rate as the Reynolds

number increases. This also manifests as incorrect flow behavior in the simulation,

e.g., driving a time dependent flow to steady state. For example, the Smagorinski

model, an algebraic eddy viscosity turbulence model, is known to overdissipate in the

presence of boundary layers, requiring ad hoc solutions such as Von Driest damping

[61]. Additionally, time discretization schemes may add numerical dissipation to the

3



viscous and model dissipation, potentially contributing to or causing overdissipation.

Chapter 2 presents mathematical and fluid dynamical preliminaries that are used

throughout the dissertation, and ensures notational consistency. Chapter 3 presents

analysis of numerical dissipation for multistep methods. In this chapter, we analyze

the Navier-Stokes equations without turbulent viscosity to isolate the effects of the

numerical dissipation caused by the timestepping method. We briefly discuss the

extension to turbulence models.

Chapter 4 presents a method for analyzing eddy viscosity turbulence models in

shear flow applications. We also present new turbulence length scale for use in the

k-equation of Kolmogorov and Prandtl, which is designed to enforce correct near wall

behavior of the turbulent viscosity. Chapter 5 further investigates the k-equation,

demonstrating that the exclusion of viscous dissipation is the correct choice for model

accuracy. We explore the effect of this on conditioning of the numerical system, and

we suggest regularization strategies. Finally, chapter 6 presents conclusions and open

problems.
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2.0 Preliminaries

We will begin with consideration of the Navier-Stokes equations. Beyond math-

ematical mysteries and analytic interest, accurate simulation of fluid flow is vital for

a variety of applications. However, in practice, with current computational capac-

ity, time accurate simulations of high Reynolds number turbulent flows remain out

of reach. This chapter will introduce notation and present basic results that will

be used throughout the remainder of this work. Additionally, we will present some

basic energy results from the Navier-Stokes equations, and present the derivation of

Prandtl and Kolmogorov’s k-equation.

2.1 Mathematical Preliminaries

Here, we present mathematical and notational preliminaries that will be used

throughout this document. It is difficult to present these preliminaries absent mo-

tivation; it is similarly difficult to present the motivating equations without this

notation and basic results. The motivation for these preliminaries will follow imme-

diately in this introductory chapter.

The Lp(Ω) norm will be denoted as The L2(Ω) norm will be denoted ∥ · ∥Lp(Ω).

The L2(Ω) norm as as ∥ · ∥L2(Ω) = ∥ · ∥. In cases where the domain may be unclear,

the subscript may be used. The standard L2 inner product is denoted (·, ·).

We will use Cauchy-Schwarz inequality,

(x, y) ≤ ∥x∥∥y∥ (2.1.1)
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the polarization identity,

(x, y) =
1

2

(
∥x∥2 + ∥y∥2 − ∥x− y∥2

)
(2.1.2)

and Young’s inequality:

ab ≤ 1

2ε
a2 +

ε

2
b2 for a, b ≥ 0, ε > 0. (2.1.3)

In general, we will consider the velocity space X and pressure space Q.

X := H1
0 (Ω)

d =
{
v ∈ H1(Ω)d : v|∂Ω = 0

}
Q := L2

0(Ω) =

{
q ∈ L2 :

∫
Ω

q dx = 0

}
.

The velocity space will be altered in situations where no slip boundary conditions are

not used. For example, in the case of periodic boundary conditions, we will consider

velocity functions that satisfy the periodic boundary conditions and have zero mean.

If at any point, the changes affect the results in this preliminary section, it will be

noted.

For both periodic and no slip boundary conditions, for v ∈ X we have the

Poincaré-Friedrich’s inequality

∥v∥ ≤ CPF∥∇v∥. (2.1.4)

We define the space H−1 as the dual space of X. The associated dual norm is

given

∥f∥−1 := sup
0 ̸=v∈X

(f, v)

∥∇v∥
.

Clearly, we have (f, v) ≤ ∥f∥−1∥∇v∥ ∀v ∈ X. We also define

V := {v ∈ X : ∇ · v = 0} .
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We define the trilinear form

b(u, v, w) := (u · ∇v, w) ∀u, v, w ∈ H1(Ω)2

and the explicitly skew-symmetric trilinear form

b∗(u, v, w) :=
1

2
(b(u, v, w)− b(u,w, v)) ∀u, v, w ∈ H1(Ω)2.

It is sometimes convenient to consider equivalent notions for the trilinear form.

Lemma 2.1.1. Let u, v, w ∈ X. Then

(u · ∇v, w) = (∇ · (v ⊗ u), w)− ((∇ · u)v, w)

and

(u · ∇v, w) = −(u · ∇w, v)− ((∇ · u)v, w).

Proof. The first is immediate by the definition of divergence and tensor product.

The second follows from applying integration by parts.

Corollary 2.1.1. We may rewrite the explicitly skew symmetric trilinear form in

two forms

1. b∗(u, v, w) = (u · ∇v + 1
2
(∇ · u)v, w)

2. b∗(u, v, w) = (∇ · (v ⊗ u)− 1
2
(∇ · u)v, w)

Additionally, if u ∈ V , b(·, ·, ·) is skew symmetric, and we have the following equali-

ties.

1. b(u, v, w) = −b(u,w, v)

2. b(u, v, w) = b∗(u, v, w)

3. b(u, v, w) = (∇ · (v ⊗ u), w)

7



2.1.1 Fluid Dynamics Preliminaries

2.2 Navier-Stokes Equations

A thorough and insightful derivation of the Navier-Stokes equations can be found

in [9]. Many useful results, historical notes, and other details may be found in [45].

Here, we will present a basic overview to allow for unified notation in future sections.

Here, we consider Ω to be a connected, open, bounded domain in Rd, with d = 2, 3

as the spacial dimension. The incompressible Navier-Stokes equations with no slip

boundary conditions are given:

∂u

∂t
+ u · ∇u− ν△u+∇p = f,∇ · u = 0

u(x, 0) = u0(x), u|∂Ω = 0.

(2.2.1)

Here, u is the fluid velocity, p is the pressure, f is a body force, and ν is the

kinematic viscosity.

It can be useful to rescale the Navier-Stokes. Let U be a reference velocity, L a

reference length, T = L
U
, u∗ = u

U
, x∗ = x

L
and t∗ = t

T
. Then, (2.2.1) is equivalent to

the following nondimensionalized system (see pg 100 of [45].

∂u∗

∂t∗
+ u∗ · ∇∗u∗ − ν

LU
△∗u∗ +∇∗p = f,∇∗ · u∗ = 0. (2.2.2)

The Reynolds number, Re = LU
ν

determines the flow characteristics.

The following results are useful, and the proofs are simple and illuminating, and

are thus included.

Theorem 2.2.1. Let u be a solution to 2.2.1. Then the kinetic energy in u is

bounded uniformly in time. The time averaged average energy dissipation rate is also

uniformly bounded in time.
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Proof. Multiply (2.2.1) by u and integrate over Ω. By skew symmetry of the non-

linear term, we have:
1

2

d

dt
∥u∥2 + ν∥∇u∥2 = (f, u).

Integrating this term from 0 to T results in the energy equality: current kinetic energy

plus the total energy dissipated over time is equal to the energy input through the

body force plus the initial kinetic energy.

Using the definition of the inverse norm and Young’s inequality, we have

1

2

d

dt
∥u∥2 + ν

2
∥∇u∥2 ≤ 1

2ν
∥f∥2−1. (2.2.3)

By Poincaré’s inequality

1

2

d

dt
∥u∥2 + ν

2C2
P

∥u∥2 = 1

2ν
∥f∥2−1.

Then, by use of an integrating factor or Gronwall’s inequality, we have

∥u(t)∥2 ≤ ∥u(0)∥2 +
∫ t

0

1

ν
∥f∥2−1exp

{
ν

C2
P

(s− t)

}
ds < C(ν, f, u(0)).

That is, the kinetic energy ∥u∥2 is bounded independent of time.

Time averaging (2.2.3), we get

1

T
∥u(T )∥2 + 1

T

∫ T

0

ν∥∇u∥2 dt ≤ 1

ν
∥f∥2−1 +

1

T
∥u(0)∥2 < C(ν, f, u(0)). (2.2.4)
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2.3 Turbulence Modeling

It is impossible to sum up the theory of turbulence briefly, we seek to touch on

the relevant background to this dissertation. More details are found in [65],[45]. The

richness of scales spatially of turbulence leads directly to the necessity of turbulence

modeling. The action of the nonlinearity is to break down large eddies, and is the

dominant effect in all but the smallest scales. At the smallest scales, the viscous

effects dominate, and energy is dissipated. The problem then is the scales at which

this dissipation occurs; the smallest relevant scales are O
(
Re−3/4

)
for three dimen-

sional flow. Thus, failing to resolve these scales will result in underdissipation, and

nonphysical checkerboard oscillations on the mesh.

We will focus herein on eddy viscosity models. Eddy viscosity models, the most

common turbulence models used today, model the overall dissipative effects of tur-

bulent fluctuations on the mean with an enhanced viscosity. In this section, we will

examine the derivation of RANS eddy viscosity models. We will also consider briefly

the derivation of the k-equation, used to model turbulent kinetic energy for use in

calculations of eddy viscosity.

2.3.1 Eddy Viscosity Turbulence models

In practice, we consider turbulence models to predict averages to the Navier-

Stokes equations (e.g. spatial averages, infinite time averages, small time averages,

or ensemble averages). Consider a general averaging operator with the properties

that ¯̄u = ū and uv̄ = ūv̄. W can then decompose the velocity u into the mean and

fluctuations, u = u+ u′, with the property that u′ = 0.

10



We may average (2.2.1). Derivatives will commute with averaging:

ut + u · ∇u− ν△ū+∇p̄ = f̄ . (2.3.1)

As u is divergence free, we have

u · ∇u = ∇ · (u⊗ u) .

Properties of the averaging operator gives us

∇ · (u⊗ u) = ∇ · (ū⊗ ū) +∇ ·
(
u′ ⊗ u′

)
.

Then, we have the Reynolds averaged Navier-Stokes equations

ut + ū · ∇ū+∇ ·
(
u′ ⊗ u′

)
− ν△ū+∇p̄ = f̄ , (2.3.2)

where u′ ⊗ u′ are the Reynolds stresses, or the effect of the fluctuations on the mean

flow. It was conjectured by Boussinesq in 1877 [2] that this effect is overall dissipative.

In practice, unresolved eddies in these fluctuations may combine to larger eddies,

adding energy to the mean flow, a phenomenon known as backscatter (corrected eddy

viscosity models, which add terms to model backscatter, are explored in [35]). It was

proved by Layton in [51] that in the long time average, the effect is indeed dissipative

(see also [36]). Thus, modeling the Reynolds stresses with an enhanced viscosity and

modification to the pressure term is simple and computationally inexpensive method

to model turbulent flows. Let v ≈ ū. Then, we have

vt + v · ∇u− ν△v −∇ · (νT∇sv) +∇p = f, ∇ · v = 0. (2.3.3)

Where νT is the turbulent viscosity. Dimensional arguments set νT = µℓ
√
k. Here,

µ is a calibration constant, typically 0.2 to 0.6, and often 0.55, p. 114,[65]. ℓ is

the turbulent length scale, and k models the kinetic energy in turbulent fluctuations,

11



1
2
|u′|2. The specific model depends the choice of ℓ and how k, an unknowable quantity,

is modeled. They are determined ad hoc either by an algebraic formula (0-equation

model), or auxiliary equations (e.g., k-equation, ε-equation, etc.). We will consider

the 1-equation model of Prandtl [67] and Kolmogorov [41], where k is the solution

to the k equation and ℓ is a prescribed length scale.

2.3.2 The k-equation

Here, we briefly derive the k-equation. Detailed derivations are found, for exam-

ple, in [8] p.99, Section 4.4, [56] p.60, Section 5.3 or [65] p.369, Section 10.3. Here,

we seek more to clarify the origin of the various terms in the k-equation to shed light

on the question of the inclusion or exclusion of the ν△k term, which we explore more

fully in Chapter 5.

To derive an equation for the energy in the turbulent fluctuations, 1
2
|u′|2 we begin

by taking the dot product of (2.2.1) and u and averaging, and subtracting the dot

product of (2.3.2) and ū:

utu− ūtū+ u · ∇uu− (ū · ∇ūū+∇ · (u⊗ u) ū)

−ν△uu+ ν△ūū+(∇p)u−∇p̄ū = 0.
(2.3.4)

We use the following properties of the averaging operator:

uv =ūv̄ + u′v′

uvw =u′v′w′ + u′v′w̄ + u′w′v̄ + v′w′ū+ ūv̄w̄.

Then, (2.3.4) simplifies to

u′tu
′ + u · ∇uu− (ū · ∇ūū+∇ · (u⊗ u) ū)− ν△u′u′ +∇p′u′ = 0. (2.3.5)

12



Addressing the nonlinear terms, we have

u · ∇uu− ū · ∇ūū = ū · ∇u′u′ + u′ · ∇u′ū+ u′ · ∇ūu′ + u′ · ∇u′u′. (2.3.6)

Derivative rules can be applied to each term:

ū · ∇u′u′ = 1

2
ū · ∇(|u′|2)

u′ · ∇u′ū = ∇ · (u′ ⊗ u′)ū

u′ · ∇ūu′ = (u′ ⊗ u′) : ∇ū

u′ · ∇u′u′ = 1

2
∇ · (|u′|2u′)

Note the second term will cancel with the Reynolds stresses in (2.3.5). Further:

u′tu
′ =

1

2
|u′|2

△u′u′ = 1

2
△(|u′|2)− |∇u′|2

Then, we may substitute in k = 1
2
|u′|2 in (2.3.5)

kt + ū · ∇k + (u′ ⊗ u′) : ∇ū+ 1

2
∇ ·
(
|u′|2u′

)
+∇p′u′ − ν△k + ν|∇u′|2. (2.3.7)

Following (2.3.3), the energy lost to the mean flow by turbulent fluctuations is input

in our equation for the energy in these turbulent fluctuations:

u′ ⊗ u′ : ∇ū ≈ −νT |∇sv|2

by the gradient-diffusion hypothesis [26], we have:

1

2
∇ ·
(
|u′|2u′

)
+∇p′u′ ≈ −∇ · νT∇k.

13



Finally, ε′ = ν|∇u′| is the dissipation rate. The expected scaling is u3

ℓ
, which leads

to the term being independently modeled by Kolmogorov and Prandtl as

ν|∇u′|2 ≈ k3/2

ℓ
.

The material derivative of k is exact. We recall ū is approximated with v in

(2.3.3) We then have the k-equation as

kt + v · ∇k −∇ · (νT∇k)− ν△k + k3/2

ℓ
= νT |∇sv|2. (2.3.8)

It may seem natural to leave the term ν△k for the reason that it appears directly

in the derivation. When we consider the near wall asymptotics of this term in

conjuncture with the near wall asymptotics of the modeled terms, exclusion is more

accurate.
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3.0 Numerical Dissipation in Multistep Methods

The richness of scales found in fluid flows requires A-stable time stepping meth-

ods. Full analysis of one and two step A-stable linear multistep methods applied

to the incompressible Navier-Stokes equations is found in Girault and Raviart [28].

Limitations of computational resources inherent in fluid flow simulations have fre-

quently led to the choice of the backward Euler time discretization. This method,

however, is known to introduce numerical dissipation, which can push flow to lower

Reynolds number states. Second order A-stable methods in almost all cases add

numerical dissipation as well, though they are less dissipative than the backward

Euler method. Higher order A-stable multistep methods do not exist [12]; we will

not address second order methods k-step multistep methods with k > 2, however the

extension to higher order G-stable multistep methods is clear.

In the continuous time, it holds that the time averaged energy dissipation rate

is bounded above by U3

L
(c1 + c2Re

−1). The question then arises if a similar bound

can be found for the combined viscous and numerical dissipation, uniform in the

Reynolds number and independent of the timestep size.

Herein, we will consider this for a number of perturbed problems. Section 3.1

presents preliminary results and notation for the consideration of discrete time prob-

lems. Section 3.2 considers the fully implicit time discretization for both the one step

method backward Euler and a general, A-stable two step method. We show that this

result is analogous to the continuous time setting. Section 3.3 extends results to a

nonconstant forcing term.

Section 3.4 discusses linearly implicit treatment of the nonlinear term, commonly

implemented due to computational limitations. Here, we show that a first order
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extrapolation in the nonlinear term is analogous to continuous results independent

of timestep size, but that this result does not hold for higher order extrapolations.

Numerical tests to confirm theoretical results are given in section 3.5. Finally, we

discuss the extension to turbulence models and other conclusions in 3.6.

3.1 Notation and Preliminaries

In addition to notation and preliminaries introduced in 2.1, we introduce notation

specific to this chapter. We will consider herein body force driven flow with no slip

boundary conditions, where f is assumed to be zero at the boundary. The analysis

will extend immediately to body force driven flow in a periodic box. In particu-

lar, we will see no additional terms from boundary contributions when performing

integration by parts.

We define a generic k-step linear multistep method (LMM) applied to the problem

y′ = f(t, y) and normalized by enforcing
∑k

j=0 βj = 1 as

k∑
i=0

αiy
n+i = h

k∑
j=0

βjf(t
n+j, yn+j) (3.1.1)

and define the corresponding one leg method (OLM)

k∑
i=0

αiy
n+i = hf(

k∑
j=0

βjt
n+j,

k∑
j=0

βjy
n+j). (3.1.2)

If f is linear, these methods are identical, hence if a LMM is A-stable, the corre-

sponding OLM is A-stable as well. We will analyze herein OLM methods, as they are

considered better choices for stiff nonlinear problems [13], and the implementation,

requiring a single function evaluation per timestep, is more efficient. We will also
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focus on 1 and 2-step methods that are A-stable, though there exist k-step second

order A-stable methods for k > 2.

Definition 3.1.1. The finite and infinite time average of a sequence is given by

⟨ϕ⟩N :=
1

N

N−1∑
n=0

ϕn+1, ⟨ϕ⟩∞ = lim sup
N→∞

⟨ϕ⟩N ,

In both cases, it holds

⟨|ϕψ|⟩ ≤
〈
|ϕ|2
〉1/2 〈|ψ|2〉1/2 .

Definition 3.1.2. The large force scale and the large length scale. The length scale

is used to define the Reynolds number

F =

√
1

Ω
∥f∥2

L =min

|Ω|1/3, F(
1
|Ω|∥∇f∥2

)1/2 , F

∥∇f∥L∞(Ω)



It can be easily verified that L has units of length, moreover 1
|Ω|∥∇f∥

2 ≤ F 2

L2 and

∥∇f∥L∞(Ω) ≤ F
L
.

The definition of the large scale velocity, U , will depend on the time stepping

scheme and will be specified later. As we consider body force driven flow, it is natural

to consider U to be a be a discrete analogue to the infinite time and space average

of the velocity:

U ≈
(
lim sup
T→∞

1

T

∫ T

0

1

|Ω|
∥u∥2 dt

)1/2

.
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3.2 Fully Implicit Timestepping Methods

3.2.1 Backward Euler

The backward Euler (BE) time discretization is given by

yn+1 − yn = hf(tn+1, yn+1). (3.2.1)

We consider fully implicit BE applied to the Navier-Stokes equations. We assume

that f is constant and divergence free. Let k > 0 be the fixed timestep, let tn = kn

be the nth timestep and T = kN be the final time. Set u0 = u0(x). We then seek

un+1 that solves

un+1 − un

k
+ un+1 · ∇un+1 − ν△un+1 +∇pn+1 = f

∇ · un+1 = 0.

(3.2.2)

Or we seek un+1 ∈ V such that for all v ∈ X

(
un+1 − un

k
, v

)
+ b(un+1, un+1, v) + ν

(
∇un+1,∇v

)
−
(
pn+1,∇ · v

)
= (f, v)

(3.2.3)

Take v = un+1, take the spacial average, use skew symmetry of the nonlinear

term and apply the polarization identity 2.1.2:

1

2|Ω|k
(
∥un+1∥2 − ∥un∥2 + ∥un+1 − un∥2

)
+

ν

|Ω|
∥∇un+1∥2 = 1

|Ω|
(f, un+1). (3.2.4)

This equation is directly analogous to (2.2.3), with the addition of numerical dissi-

pation.
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Definition 3.2.1. The viscous dissipation rate (per unit volume), ε0, and numerical

dissipation rate (per unit volume), εN , are

εn+1
0 :=

ν

|Ω|
∥∇un+1∥2

εn+1
N :=

1

|Ω|k
∥un+1 − un∥2.

Definition 3.2.2. For the BE time discretization, we have the following definition

for U

UN =

(
1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

)1/2

U =

(
lim sup
N→∞

1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

)1/2

.

Theorem 3.2.1. Let {un}n∈N ⊂ X = H1
0 (Ω) be the sequence of functions defined by

(3.2.3). Let f be constant in time, divergence free, and zero on the boundary. Then,

⟨ε0 + εN⟩∞ ≤ U3

L

(
2 + Re−1

)
.

Proof. Apply Cauchy-Schwarz inequality (2.1.1) to the right hand side of (3.2.4):

1

2k

(
∥un+1∥2 − ∥un∥2 + ∥un+1 − un∥2

)
+ ν∥∇un+1∥2 = ∥f∥∥un+1∥. (3.2.5)

Take the finite time average:

1

2T ||Ω|
∥uN∥2 − 1

2T |Ω|
∥u0∥2 + 1

N

N−1∑
n=0

(
1

2
εn+1
N + εn+1

0

)

≤

(
1

N

N−1∑
n=0

1

|Ω|
∥f∥2

)1/2(
1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

)1/2

.

(3.2.6)
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Equivalently

1

2T |Ω|
∥uN∥2 − 1

2T |Ω|
∥u0∥2 +

〈
1

2
εN + ε0

〉
N

≤ FUN . (3.2.7)

In the long time average, initial and final kinetic energy will disappear, as both terms

are O
(
1
T

)
. We now look to bound F in terms of flow variables. Take v = f in (3.2.3)

F 2 =

(
un+1 − un

k
, f

)
+ b(un+1, un+1, f) + ν(∇un+1,∇f). (3.2.8)

We note pressure terms drop out as f is divergence free. As un+1 is divergence

free, we may use an alternate form of the trilinear form b, (2.1.1), and then apply

integration by parts:

F 2 =
1

|Ω|

(
un+1 − un

k
, f

)
+

1

|Ω|
(∇ · (un+1 ⊗ un+1), f) +

ν

|Ω|
(∇un+1,∇f)

=
1

|Ω|

(
un+1 − un

k
, f

)
− 1

|Ω|
(un+1 ⊗ un+1,∇f) + ν

|Ω|
(∇un+1,∇f).

(3.2.9)

We now take the time average:

F 2 =
1

|Ω|
1

N

N−1∑
n=0

(
un+1 − un

k
, f

)
+

1

N

N−1∑
n=0

1

|Ω|
(un+1 ⊗ un+1,∇f)

+
1

|Ω|
1

N

N−1∑
n=0

ν

|Ω|
(∇un+1,∇f)

= I.+ II.+ III.

(3.2.10)

We will address these terms successively.
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Term I. is a simple telescoping sum:

I. =
1

|Ω|
1

N

N−1∑
n=0

(
un+1 − un

k
, f

)
=

1

N |Ω|

(
uN − u0

k
, f

)
=

1

T |Ω|
(
uN − u0, f

)
.

(3.2.11)

Addressing term II., we use Hölder’s inequality, Cauchy Schwarz, and definitions

3.1.2, 3.2.2

II. =
1

N

N−1∑
n=0

1

|Ω|
(
un+1 ⊗ un+1,∇f)

)
≤ ∥∇f∥L∞(Ω)

1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

≤ F

L

1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

≤ F

L
U2
N

=
F

UN

U3
N

L
.

(3.2.12)

Addressing term III., we use the Cauchy Schwarz inequality in space and time

and Young’s inequality, and definition 3.1.2. This results in the following string of
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inequalities:

III. =

〈
ν

|Ω|
(∇u,∇f)

〉
N

≤
〈
F

UN

ν

|Ω|
∥∇u∥2

〉1/2

N

〈
UN

F

ν

|Ω|
∥∇f∥2

〉1/2

N

≤ 1

2

F

UN

〈
ν

|Ω|
∥∇u∥2

〉
N

+
1

2

UN

F

〈
ν

|Ω|
∥∇f∥2

〉
N

≤ 1

2

F

UN

⟨ε0⟩N +
1

2

UN

F

νF 2

L2

≤ 1

2

F

UN

(
⟨ε0⟩N +

UU2
N

L

ν

LU

)
.

(3.2.13)

Combining all terms in our estimate (3.2.10), we have

F 2 ≤ 1

T |Ω|
(
uN − u0, f

)
+

F

UN

(
1

2
⟨ε0⟩N +

1

2

ν

LU

UU2
N

L
+
U3
N

L

)
. (3.2.14)

Immediately, from (3.2.7), we have

O

(
1

T

)
+

〈
1

2
εN + ε0

〉
N

≤ FUN ≤ O

(
1

T

)
+

(
1

2
⟨ε0⟩N +

1

2

ν

LU

UU2
N

L
+
U3
N

L

)
.

(3.2.15)

Then, by rearranging and taking T → ∞ we may conclude

⟨εN + ε0⟩∞ ≤
( ν

LU
+ 2
) U3

L
. (3.2.16)
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3.2.2 General Two Step Methods

When analyzing the numerical dissipation of a multistep method, it is useful

to consider the framework of G-stability. For one step methods and second order

two step methods, this is equivalent to the notion of A stability [1] but allows for a

more convenient framework for which to to discuss the numerical dissipation of these

methods.

3.2.2.1 A-stability

We recall a linear multistep method is A-stable if the stability region includes

the entire left half of the complex plane.

Definition 3.2.3. A multistep method is A-stable if applied to the problem

y′(t) = eλt

y(0) = 1

we have y(t) → 0 as t→ ∞ when Re(λ) < 0.

Common A-stable methods are backward Euler, the trapezoid method, and sec-

ond order backwards differentiation method.

Theorem 3.2.2. All second order, two-step methods in form (3.1.1) or (3.1.2) have

the following conditions on the coefficients:

• α0 = −1 + α2, α1 = 1− 2α2

• β0 =
1
2
− α2 + β2, β1 =

1
2
+ α2 − 2β2

These methods are A-stable for α2 ≥ 1
2
, β2 > α2

2
and strongly A-stable for α2 >

1
2
, β2 >

α2

2
.

Proof. See Girault and Raviart pg 182.
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3.2.2.2 G-Stability

We briefly present an overview of G-stability for two step methods. Full details

can be found in [5].

Definition 3.2.4. Let G be a 2 × 2 real symmetric positive definite matrix. Then,

if y⃗ = [y1, y2]T is a vector of functions,

∥y⃗∥2G =
2∑

i,j=1

gij(y
i, yj) = y⃗TGy⃗ (3.2.17)

Definition 3.2.5. A method in the form 3.1.1 or 3.1.2 is said to be G-stable if there

exists real symmetric positive definite G such that the matrix

G̃ =


α0β0 + g11 α0β1 + g12 α0β2

α1β0 + g12 α1β1 − g11 + g22 α1β2 − g12

α2β0 α2β1 − g12 α2β2 − g22


has symmetric positive definite real part.

The utility of this definition is apparent when we set Y n = [yn, yn+1] and Ỹ n =

[yn−1, yn, yn+1]. Then,

Ỹ T
n G̃Ỹn =

2∑
i,j=0

(
αiy

n−1+i, βjy
n−1+j

)
+

2∑
i,j=1

gij
(
yn−1+i, yn−1+j

)
−

2∑
i,j=1

gij
(
yn+i, yn+j

)
.

(3.2.18)

Crucially,
2∑

i,j=0

(
αiy

n+i, βjy
n+j
)
= ∥Y n+1∥2G − ∥Y n∥2G + Ỹ T

n G̃Ỹn.

This allows us to explicitly calculate the numerical dissipation in the method. Indeed,

given α2 and β2 such that α2 ≥ 1
2
, β2 >

α2

2
and α0, α1, β0, β1 as defined in 3.2.2, we

have
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G =

 λ− α0β0 2λ+ 1
2
(α1β2 + α2β1)

2λ+ 1
2
(α1β2 + α2β1) α2β2 − λ



and

G̃ = λ


1 −2 1

−2 4 −2

1 −2 1



where

λ =
1

2
(α0β2 + α2β0) .

This allows us to easily write any method in terms of an energy difference and

numerical dissipation:

2∑
i,j=0

(
αiy

n+i, βjy
n+j
)
= ∥Y n+1∥2G − ∥Y n∥2G + λ∥un+1 − 2un + un−1∥2. (3.2.19)

These results may be verified by direct calculation, and were first proved by

Dahlquist in [11].
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3.2.3 Long Time Energy Dissipation

We consider a general A-stable, second order, two step method applied to the

Navier-Stokes equations. Again, we assume f is constant and divergence free, and

that we have initial conditions u−1 and u0 given. We additionally define

un+1
β =

2∑
i=0

βiu
n−1+i

and seek un+1 such that

1

k

2∑
i=0

αiu
n−1+i + un+1

β · ∇un+1
β − ν△un+1

β +∇pn+1
β = f

∇ · un+1 = 0.

(3.2.20)

Or, seek un+1 ∈ V such that for all v ∈ X

1

k

(
2∑

i=0

αiu
n−1+i, v

)
+
(
un+1
β · ∇un+1

β , v
)
+ ν

(
∇un+1

β ,∇v
)
+
(
pn+1
β ,∇ · v

)
= (f, v).

(3.2.21)

By setting un+1
β = v, dividing by domain volume, and using that our method is

G-stable, we have

1

k|Ω|
(
∥Un+1∥2G − ∥Un∥2G + λ∥un+1 − 2un + un−1∥2

)
+
ν

Ω
∥∇un+1

β ∥2 = (f, un+1
β ).

(3.2.22)

Again, this is analogous to the continuous time setting with the addition of numerical

dissipation.
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Definition 3.2.6. For a general two step method, we define the viscous energy dissi-

pation rate (per unit volume), ε0 and the numerical energy dissipation rate (per unit

volume) as

εn+1
0 =

ν

Ω
∥∇un+1

β ∥2

εn+1
N =

1

k|Ω|
λ∥un+1 − 2un + un−1∥2.

Definition 3.2.7. For a general two step one leg method, we define the velocity

scales

UN =
1

N

N−1∑
n=0

1

|Ω|
∥un+1

β ∥2

U = lim sup
N→∞

UN .

Theorem 3.2.3. Let {un}n∈N ⊂ X = H1
0 (Ω) be the sequence of functions defined by

(3.2.21). Let f be constant in time, divergence free, and zero on the boundary. Then,

⟨ε0 + 2εN⟩∞ ≤ U3

L

(
2 + Re−1

)
Proof. This proof is, with the exception of the time discretization term, identical

to 3.2.1, thus repeated details will be excluded. Apply Cauchy-Schwarz inequality

(2.1.1) to the right hand side of (3.2.22):

1

k|Ω|
(
∥Un+1∥2G − ∥Un∥2G + λ∥un+1 − 2un + un−1∥2

)
+
ν

Ω
∥∇un+1

β ∥2 = 1

|Ω|
∥f∥∥un+1

β ∥.

(3.2.23)

Take the finite time average:

1

2T ||Ω|
∥UN∥2G − 1

2T |Ω|
∥U0∥2G +

1

N

N−1∑
n=0

(
εn+1
N + εn+1

0

)
≤

(
1

N

N−1∑
n=0

1

|Ω|
∥f∥2

)1/2(
1

N

N−1∑
n=0

1

|Ω|
∥un+1

β ∥2
)1/2

.

(3.2.24)

27



Equivalently

1

2T |Ω|
∥UN∥2G − 1

2T |Ω|
∥U0∥2G + ⟨εN + ε0⟩N ≤ FUN . (3.2.25)

We now look to bound F in terms of flow variables. Take v = f in (3.2.21)

F 2 =
1

|Ω|

(
1

k

2∑
i=0

αiu
n−1+i, f

)
+ b(un+1

β , un+1
β , f) +

ν

|Ω|
(∇un+1

β ,∇f). (3.2.26)

Again, pressure terms drop out as f is divergence free. Treating the nonlinear term

as before and taking the finite time average yields

F 2 =
1

|Ω|
1

N

N−1∑
n=0

(
1

k

2∑
i=0

αiu
n−1+i, f

)
+

1

N

N−1∑
n=0

1

|Ω|
(un+1

β ⊗ un+1
β ,∇f)

+
1

|Ω|
1

N

N−1∑
n=0

ν

|Ω|
(∇un+1

β ,∇f)

= I.+ II.+ III.

(3.2.27)

Addressing term I., we use that
∑2

i=0 αi = 0. (Indeed, for a general consistent

k-step method,
∑k

i=0 αi = 0.). Then, we have α0 = −(α1 + α2). Hence

α2u
n+1 + α1u

n + α0u
n−1 = α2u

n+1 + (α1 + α2)u
n −

(
α2u

n + (α1 + α2)u
n−1
)
.

(3.2.28)

We then can rewrite I. so it is a telescoping sum:

I. =
1

|Ω|
1

Nk

N−1∑
n=0

(
α2u

n+1 + (α1 + α2)u
n −

(
α2u

n + (α1 + α2)u
n−1
)
, f
)

=
1

|Ω|
1

Nk

(
α2u

N + (α1 + α2)u
N−1 −

(
α2u

0 + (α1 + α2)u
−1
)
, f
)

≤ 1

T

(
α2

(
∥uN∥+ ∥u0∥

)
+ (α1 + α2)

(
∥uN−1∥+ ∥u−1∥

)
∥f∥

)
= O

(
1

T

)
.

(3.2.29)
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Treatment of terms II. and III. will be unchanged. As before,

II. ≤ F

UN

U3
N

L

III. ≤ 1

2

F

UN

(
⟨ε0⟩N +

UU2
N

L

ν

LU

)
.

Combining all terms in our estimate (3.2.27), we have

F 2 ≤ +
F

UN

(
1

2
⟨ε0⟩N +

1

2

ν

LU

UU2
N

L
+
U3
N

L

)
. (3.2.30)

Immediately, from (3.2.25), we have

O

(
1

T

)
+ ⟨εN + ε0⟩N

≤ FUN ≤ O

(
1

T

)
+

(
1

2
⟨ε0⟩N +

1

2

ν

LU

UU2
N

L
+
U3
N

L

)
.

(3.2.31)

Then, by rearranging and taking T → ∞ we may conclude

⟨2εN + ε0⟩∞ ≤
( ν

LU
+ 2
) U3

L
. (3.2.32)
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3.3 Nonconstant Forcing Term

We consider the case where f is not constant, but bounded. A key difference

here is the alteration of the time scale. In the case where f is constant, the timescale

is the large eddy turnover time, L
U
and the scaling of the energy dissipation rate, U3

L

can be considered:
U3

L
=

U2

L/U
=

kinetic energy

time
.

However, when f varies in time, a new timescale is induced, which depends on the

rate of change of the force:

τf =
⟨∥f∥⟩
⟨∥ft∥⟩

.

Then, we expect uniform in the Reynolds number,

⟨ε⟩ ≲ max

{
U3

L
,
U2

τf

}
.

In the discrete setting, we may define τf analogously, and we expect the same

scaling. We assume that f and ft are uniformly bounded in time, and that f is

divergence free. For simplicity, we will examine this with the backward Euler time

discretization, extension to a general two step method will be analogous in principal

but more notationally complex.

We define U and UN as in 3.2.2. Let fn = f(tn) = f(nk).

Definition 3.3.1. We define the finite and long time averages of f and the time

scale induced by f as

FN =

(
1

N

N−1∑
n=0

1

|Ω|
∥fn+1∥2

)1/2

F = lim sup
N→∞

FN

τf =
F(

lim supN→∞
1
N

∑N−1
n=0

1
|Ω|∥

fn+1−fn

k
∥2
)1/2 .
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As f varies in time, slight modification in the definition of length scale is required.

Definition 3.3.2. The large length scale L is given by

L = min

|Ω|1/3, F〈
1
|Ω|∥∇fn+1∥2

〉1/2
∞

,
F

∥∇f∥L∞(0,T ;L∞(Ω))

 .

Backward Euler applied to the Navier-Stokes equations with nonconstant force

is as follows:

un+1 − un

k
+ un+1 · ∇un+1 − ν△un+1 +∇pn+1 = fn+1

∇ · un+1 = 0

(3.3.1)

or, we seek un+1 ∈ V such that ∀v ∈ X

(
un+1 − un

k
, v

)
+
(
un+1 · ∇un+1, v

)
+ ν

(
∇un+1,∇v

)
−
(
pn+1,∇ · v

)
=
(
fn+1, v

)
.

(3.3.2)

Theorem 3.3.1. Let {un} ⊂ X = H1
0 (Ω) be the sequence of functions given by

(3.3.2). Let f be uniformly bounded in time, vanish on the boundary, and divergence

free. Let numerical and viscous dissipation be defined as in 3.2.1. Then,

⟨ε0 + εN⟩∞ ≤ U3

L

(
2 + Re−1

)
+ 2

U2

τf
.
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Proof. As before, we take v = un+1 in (3.3.2). Polarization and Cauchy-Schwarz in

space and time on the right hand side yields

1

2|Ω|T
(
∥uN∥2 − ∥u0∥2

)
+ ⟨2εN + ε0⟩N

≤

(
1

N

N−1∑
n=0

1

|Ω|
∥fn+1∥2

)1/2(
1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

)1/2

= FNUN .

(3.3.3)

We bound FN by taking v = fn+1 and taking the time and space average:

F 2
N =

1

N

N−1∑
n=0

1

|Ω|

(
un+1 − un

k
, fn+1

)
+

1

N

N−1∑
n=0

1

|Ω|
b(un+1, un+1, fn+1)

+
1

N

N−1∑
n=0

ν

|Ω|
(
∇un+1,∇fn+1

)
= I.+ II.+III.

(3.3.4)

Addressing each term:

I. =
1

N

N−1∑
n=0

1

|Ω|

(
un+1 − un

k
, fn+1

)

=
1

|Ω|k
1

N

N−1∑
n=0

((
un+1, fn+1

)
−
(
un, fn+1

))
=

1

|Ω|k

(
1

N

N−1∑
n=0

(
(un, fn) +

(
uN , fN

)
−
(
u0, f 0

))
− 1

N

N−1∑
n=0

(
un, fn+1

))

=
1

|Ω|T
((
uN , fN

)
−
(
u0, f 0

))
− 1

N

N−1∑
n=0

1

|Ω|

(
un,

fn+1 − fn

k

)

≤ O

(
1

T

)
+

(
1

N

N−1∑
n=0

1

|Ω|
∥un∥2

)1/2(
1

N

N−1∑
n=0

1

|Ω|

∥∥∥∥fn+1 − fn

k

∥∥∥∥2
)1/2

.

(3.3.5)
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We note that

(
1

N

N−1∑
n=0

1

|Ω|
∥un∥2

)1/2

=

(
∥uN∥2 − ∥u0∥2

N
+

1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

)1/2

≤ O

(
1

N1/2

)
+ UN .

Then, continuing our bound of term I.:

I. ≤ UN

(
1

N

N−1∑
n=0

1

|Ω|

∥∥∥∥fn+1 − fn

k

∥∥∥∥2
)1/2

+ O

(
1

N1/2
+

1

T

)

≤ FN

UN

U2
N

(
1
N

∑N−1
n=0

1
|Ω|

∥∥∥fn+1−fn

k

∥∥∥2)1/2

FN

+ O

(
1

N1/2
+

1

T

)
.

(3.3.6)

Our bounds for terms II. and III. are virtually unchanged from previous argu-

ments. As before, we may rewrite the nonlinear term using that un+1 is divergence

free:

II. =
1

N

N−1∑
n=0

1

|Ω|
(
un+1 ⊗ un+1,∇fn+1)

)
≤ ∥∇f∥L∞(0,T ;L∞(Ω))

1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

≤ F

L

1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

≤ F

L
U2
N

=
F

UN

U3
N

L
.
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Addressing term III.:

III. =

〈
ν

|Ω|
(∇u,∇f)

〉
N

≤
〈
FN

UN

ν

|Ω|
∥∇u∥2

〉1/2

N

〈
UN

FN

ν

|Ω|
∥∇f∥2

〉1/2

N

≤ 1

2

FN

UN

〈
ν

|Ω|
∥∇u∥2

〉
N

+
1

2

UN

FN

ν

〈
1

|Ω|
∥∇f∥2

〉
N

≤ 1

2

FN

UN

(〈
ν

|Ω|
∥∇u∥2

〉
N

+
U2
N

F 2
N

ν

〈
1

|Ω|
∥∇f∥2

〉
N

)
.

Inserting this into our bounds on FN , we have

F 2
N ≤ O

(
1

N1/2
+

1

T

)
+
FN

UN

U2
N

(
1
N

∑N−1
n=0

1
|Ω|

∥∥∥fn+1−fn

k

∥∥∥2)1/2

FN

+
FN

UN

F

FN

U3
N

L
+

1

2

FN

UN

(〈
ν

|Ω|
∥∇u∥2

〉
N

+
U2
N

F 2
N

ν

〈
1

|Ω|
∥∇f∥2

〉
N

)
(3.3.7)

or

FNUN ≤ O

(
1

N1/2
+

1

T

)
+ U2

N

(
1
N

∑N−1
n=0

1
|Ω|

∥∥∥fn+1−fn

k

∥∥∥2)1/2

FN

+
F

FN

U3
N

L
+

1

2

(〈
ν

|Ω|
∥∇u∥2

〉
N

+
U2
N

F 2
N

ν

〈
1

|Ω|
∥∇f∥2

〉
N

)
.

(3.3.8)

We may combine with (3.3.3), take T → ∞, and rearrange terms. Note both O
(
1
T

)
and O

(
1
N

)
terms will drop out, and FN → F,UN → U .

1

2
⟨εN + ε0⟩∞ ≤ U2

(
limN→∞

1
N

∑N−1
n=0

1
|Ω|∥

fn+1−fn

k
∥2
)1/2

F

+
U3

L
+

1

2

νU2

F 2

〈
1

|Ω|
∥∇f∥2

〉
∞
.

Using definition of τf and L:
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⟨εN + ε0⟩∞ ≤ 2
U2

τf
+
U3

L

(
2 +

ν

LU

)
. (3.3.9)

If f is constant, we recover the result from theorem 3.2.1. If f is highly oscillatory,

τf will be very small, and we will expect the new term to dominate.

3.4 Treatment of Nonlinear Term

We have thus far proved results for a fully implicit time discretization scheme,

however the fully implicit method is expensive computationally, as we must solve a

nonlinear system every timestep. In practice, this requires an iterative method (e.g.

Newton’s method) with a good initial guess for un+1, (e.g. un+1 ≈ un or un+1 ≈

2un−un−1). As fluid flow simulations stress computational resources under the best

circumstances, alternative treatment of the nonlinear term is usually implemented.

In the case of backward Euler, this means replacing un+1 ·∇un+1 with u∗ ·∇un+1

where u∗ ≈ un+1. A common choice is u∗ = un. This choice is a first order ap-

proximation to un+1 and will prevent achieving higher order results with the use of

time filters [29]. However, it does not require additional storage or initialization. A

second order approximation to un+1 is 2un − un−1. This choice allows for order of

higher accuracy with filters, at the cost of additional storage.

For a general two step method, a second order approximation to un+1
β is needed

to maintain the order of the scheme. In practice, we replace un+1
β · ∇un+1

β with
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un+1
β∗ · ∇un+1

β , where

un+1
β∗ =

(
1

2
+ α2

)
un +

(
1

2
− α2

)
un−1 = un+1

β − β2
(
un+1 − 2un − un−1

)
This is a second order approximation as (un+1 − 2un − un−1) ≈ k2utt(t

n), however

we do not have any a priori bound on the second time derivative of the velocity.

We now consider the effect of this linearization on the long time energy dissipation

rate. By skew-symmetry, we have b(un, un+1, un+1) = 0 and b(un+1
β∗ , un+1

β , un+1
β ) = 0.

Indeed, the only change to our bound occurs in the nonlinear term when bounding F.

We consider the first order and second order approximations in the nonlinear term,

where the results differ.

Theorem 3.4.1. Let u0 be given. Let f be constant, divergence free, and vanish on

the boundary. Let un+1 ∈ X = H1
0 (Ω) be generated such that for all v ∈ X,

(
un+1 − un

k
, v

)
+ b(un, un+1, v) + ν

(
∇un+1,∇v

)
+
(
pn+1, v

)
= (f, v)

and let ε0, εN , UN , U be defined as in 3.2.1. Then, independent of k,

⟨εN + ε0⟩∞ ≤ U3

L

(
2 + Re−1

)
.

Proof. Take v = un+1. There is no difference in our initial bound, and thus it holds

O

(
1

T

)
+

〈
1

2
εN + ε0

〉
∞

≤ FUN .

Bounding F, the only difference is to the nonlinear term. It holds that

b(un, un+1, f) =

∫
Ω

∇ · (un+1 ⊗ un)f dx,
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thus

F 2 =
1

|Ω|
1

N

N−1∑
n=0

(
un+1 − un

k
, f

)
+

1

N

N−1∑
n=0

1

|Ω|
(un+1 ⊗ un,∇f)

+
1

|Ω|
1

N

N−1∑
n=0

ν

|Ω|
(∇un+1,∇f)

= I.+ II.+ III.

(3.4.1)

From before,

I. = O

(
1

T

)
(3.4.2)

and

III. ≤ 1

2

F

UN

(
⟨ε0⟩N +

UU2
N

L

ν

LU

)
. (3.4.3)

Finally, a minor modification is made to our bound of the nonlinear term:

II. =
1

N

N−1∑
n=0

1

|Ω|
(
un+1 ⊗ un,∇f)

)
≤ ∥∇f∥L∞(Ω)

1

N

N−1∑
n=0

1

|Ω|
∥un∥∥un+1∥

≤ F

L

(
1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2

)1/2(
1

N

N−1∑
n=0

1

|Ω|
∥un∥2

)1/2

≤ F

L
UN

(
1

N

N−1∑
n=0

1

|Ω|
∥un+1∥2 + ∥u0∥2 − ∥uN∥2

N

)1/2

=
F

UN

U2
N

L

(
U2
N + O

(
1

N

))1/2

.

(3.4.4)

We note that this additional term will go to zero as either k → 0 or T → ∞.

Recombining our estimates, rearranging as before, and taking T → ∞ yields

⟨εN + ε0⟩∞ ≤ U3

L

(
2 +

ν

LU

)
. (3.4.5)
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The key here is that the infinite time average of un will equal the infinite time

average of un+1 independent of the size of the time step. This will not hold for any

other case; un+1
β∗ approximates un+1

β , but this approximation depends on the time

step size and the second time derivative, and the difference will not vanish in the

infinite time average.

Definition 3.4.1. We define the following large scale, finite time averaged velocities:

UN =

(
1

N

N−1∑
n=0

1

|Ω|
∥un+1

β ∥2
)1/2

and

U∗
N =

(
1

N

N−1∑
n=0

1

|Ω|
∥un+1

β∗ ∥2
)1/2

.

And their infinite time averaged counterparts

U = lim sup
N→∞

UN

and

U∗ = lim sup
N→∞

U∗
N .

Theorem 3.4.2. Let f be divergence free, constant in time, and vanish on the bound-

ary. Let initial conditions u−1 and u0 be given, and let un+1 ∈ X = H1
0 (Ω) be

generated such that for all v ∈ X,(
1

k

2∑
i=1

αiu
n−1+i, v

)
+ b(un+1

β∗ , un+1
β , v) + ν

(
∇un+1

β ,∇v
)
+
(
pn+1
β , v

)
= (f, v).

Let ε0, εN , UN , U be defined as in theorem 3.2.3. Then, we have

⟨2εN + ε0⟩∞ ≤ 2
U∗U2

L
+
U3

L
Re−1.
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Proof. Again, we see that the only change is made to the nonlinear term when

bounding F . As before, we have:

1

2T |Ω|
∥UN∥2G − 1

2T |Ω|
∥U0∥2G + ⟨εN + ε0⟩N ≤ FUN (3.4.6)

and

F 2 =
1

|Ω|
1

N

N−1∑
n=0

(
1

k

2∑
i=0

αiu
n−1+i, f

)
+

1

N

N−1∑
n=0

1

|Ω|
(un+1

β ⊗ un+1
β∗ ,∇f)

+
1

|Ω|
1

N

N−1∑
n=0

ν

|Ω|
(∇un+1

β ,∇f)

= I.+ II.+ III.

(3.4.7)

With no modifications

I. = O

(
1

T

)
and

III. ≤ F

UN

(
1

2
⟨ε0⟩N +

1

2

ν

LU

UU2
N

L

)
.

Bounding term II:

II. =
1

N

N−1∑
n=0

1

|Ω|
(
un+1
β ⊗ un+1

β∗ ,∇f)
)

≤ ∥∇f∥L∞(Ω)
1

N

N−1∑
n=0

1

|Ω|
∥un+1

β∗ ∥∥un+1
β ∥

≤ F

L

(
1

N

N−1∑
n=0

1

|Ω|
∥un+1

β ∥2
)1/2(

1

N

N−1∑
n=0

1

|Ω|
∥un+1

β∗ ∥2
)1/2

≤ F

L
UNU

∗
N

≤ F

UN

U2
NU

∗
N

L
.

(3.4.8)
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Combining our estimates, rearranging, and taking T → ∞ yields

⟨2εN + ε0⟩∞ ≤ 2
U2U∗

L
+

ν

LU

U3

L
.

This result is independent of the size of the timestep, k. However, U ≈ U∗ only

when the time step is sufficiently small. To consider the effect of the size of the

timestep, we reconsider our bound of term II.

II. =
1

N

N−1∑
n=0

1

|Ω|
(
un+1
β ⊗ un+1

β∗ ,∇f
)

=
1

N

N−1∑
n=0

1

|Ω|
(
un+1
β ⊗ un+1

β ,∇f
)
+

1

N

N−1∑
n=0

1

|Ω|
(
un+1
β ⊗ (un+1

β∗ − un+1
β ),∇f

)
≤ ∥∇f∥L∞(Ω)

1

N

N−1∑
n=0

1

|Ω|
∥un+1

β ∥2 + ∥∇f∥L∞(Ω)
1

N

N−1∑
n=0

1

|Ω|
∥un+1

β∗ − un+1
β ∥∥un+1

β ∥

≤ F

L
U2
N +

F

L

1

N

N−1∑
n=0

1

|Ω|
β2∥un+1 − 2un + un−1∥∥un+1

β ∥2

≤ F

UN

(
U3
N

L
+ β2

U2
N

L

1

N

N−1∑
n=0

1

|Ω|
∥∥un+1 − 2un + un−1

∥∥2) .
Taking N to infinity and using this in our estimate, we have

⟨2εN + ε0⟩∞ ≤ 2
U3

L
+

ν

LU

U3

L
+ β2k

2U
2

L

1

N

N−1∑
n=0

1

|Ω|

∥∥∥∥un+1 − 2un + un−1

k2

∥∥∥∥2 . (3.4.9)

We do not have any a priori bound on the last term, and it may grow as U

increases, leading to overdissipation as the Reynolds number increases.

Remark 3.4.1. When analyzing time discrete eddy viscosity turbulence models, the

eddy viscosity is separate from the timestepping scheme. Thus, if the treatment of

the nonlinear term leads to overdissipation in the NSE, it will have the same effect

with eddy viscosity turbulence models.

40



3.5 Numerical Experiments

In this section, we investigate numerically the effect of the time discretization

scheme on the long time energy dissipation rate. Numerical tests were performed

using the FEniCS software suite [54]

3.5.1 Problem Setting

The problem setting is the same used in [55]. We consider flow between offset

cylinders in three dimensions. Let r1 = 1, r2 = 1/10, c1 = 1, c2 = 0, and h = 1. The

domain is given by

Ω =
{
(x, y, z) : x2 + y2 ≤ r21, (x− c1)

2 + (y − c2)
2 ≥ r22, and 0 ≤ z ≤ h

}
.

The flow was initialized at rest, and driven by a counterclockwise rotational body

Figure 1: We consider flow between offset cylinders. The domain and a top view of

the mesh are pictured.

force

f(x, y, z, t) = min {t, 1}
(
−4y

(
1− x2 − y2

)
, 4x

(
1− x2 − y2

)
, 0
)
.
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Figure 2: Q-criterion for ν = 1
250

using LIBE.

No slip boundary boundary conditions were imposed. To vary the Reynolds number,

the viscosity was varied. U is a calculated quantity, and L is fixed and equal to

|Ω|1/3 = (.99π)1/3 ≈ 1.4597.

The P 2−P 1 Taylor-Hood element pair was used for spacial discretization. Fully

resolving the Taylor microscale was shown in [50] to be necessary for the correct

scaling of the energy dissipation rate for fully developed turbulent flow.

Definition 3.5.1. We define the Taylor microscale as

λT (u) :=

( 1
15
⟨∥∇u∥2⟩∞
⟨∥u∥2⟩∞

)−1/2

.

To avoid spacial discretization affecting the energy dissipation rate, we ensure

that λT (u
h) ≲

√
30
2
Re−1/2L is O (1). In practice, we refined the mesh to ensure that

λT (u
h) < 4

√
30

2
Re−1/2L.
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To ensure that calculations were efficient, the degrees of freedom were varied with

the Reynolds number. Preliminary tests to determine if the mesh was sufficiently

fine confirmed that mesh effects had a great effect on the total energy dissipation

rate, and that the mesh width affects both ε0 and εN .

3.5.2 Total Dissipation versus Reynolds Number

Here, we test two different time discretization methods. We vary the Reynolds

number to test the effect of numerical dissipation on the total dissipation rate, to

examine if a U3

L
bound is seen uniformly in Re.

3.5.2.1 Backward Euler

We tested the linearly implicit backward Euler time discretization with u∗ = un.

Theorem 3.4.1 suggests that the first order method with first order linearization of

the convective term is the only not fully implicit method in which the time step size

will not affect the total dissipation. We selected k = .05, which is sufficiently large

that numerical dissipation is not small compared to viscous dissipation when the

flow is not steady. We note that when the flow is steady, the numerical dissipation,

which is a discrete approximation to the first derivative, vanishes.

The viscosity ν was varied from ν = 1
60

to ν = 1
1000

, with corresponding Reynolds

numbers Re ≈ 100 to Re ≈ 4565. The flow evolved from T = 0 to T = 20, and

reached an approximate steady state by T = 10. The infinite time average of relevant

quantities was approximated by the finite average between T = 10 and T = 20.

Figure 3 confirms that with the choice of k = .05, the numerical dissipation is

not small compared to the viscous dissipation. Figure 4 shows the time evolution of

the kinetic energy for the different values of ν tested.
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(a) Rate of viscous energy dissipation (b) Rate of numerical energy dissipation

Figure 3: Using LIBE with k = .05, at high Reynolds numbers, the numerical

dissipation rate is similar in size to the rate of viscous dissipation.

Figure 4: Using LIBE, the kinetic energy increases as ν decreases despite increased

numerical dissipation.

Figure 5 shows the time averaged total dissipation versus the Reynolds number,

fit to y = a + bRec with Matlab’s nonlinear least squares. The initial condition

given was (a, b, c) = (2, 1,−1) as suggested by the analysis. Though constants are

affected by the specific definition of U and L, we see the expected power of −1.1001 ≈
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Figure 5: Using LIBE with k = .05, we see correct scaling of the average total

dissipation rate despite the large timestep.

−1. Despite the large time step and the significant impact of numerical dissipation,

correct scaling was seen.

3.5.2.2 Second Order A-stable Method

We repeated the test with the second order Backward Differentiation Formula

(BDF2), an A-stable method with α2 =
3
2
and β2 = 1, and the corresponding second

order approximation to un+1
β :(

3un+1 − 4un + un−1

2k
, v

)
+ ν

(
∇un+1,∇v

)
+ b∗(2un − un−1, un+1, v)

− (pn+1,∇ · v) = (f, v) .

(3.5.1)
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(a) Rate of viscous energy dissipation (b) Rate of numerical energy dissipation

Figure 6: Using BDF2 with k = .05, at high Reynolds numbers, the numerical

dissipation rate is much larger than the viscous dissipation rate.

(a) Evolution of ∥un+1∥2 (b) Evolution of ∥2un − un−1∥2

Figure 7: Using BDF2 with k = .05, U ≈ U∗. Large numerical dissipation leads to

decreased kinetic energy as ν decreases.

Again, k = .05 was the timestep size. A benefit to using higher order methods

is that we expect to be able to take larger timesteps while maintaining accuracy.

However, (3.4.9) indicates that too large a timestep may lead to overdissipation.

Figure 6 shows that indeed, the numerical dissipation is much larger than the viscous

dissipation. Though figure 7 shows that U and U∗ are similar, figure 8 shows that
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Figure 8: Numerical Dissipation in BDF2 is proportional to (∥un+1∥2−∥2un−un−1∥2).

when we have a large difference between un+1
β and un+1

β∗ , the numerical dissipation is

large.

Further, this spike in numerical dissipation pushes the flow to a lower Reynolds

number state, i.e., U is smaller than expected. The numerical dissipation is large

enough that we see overdissipation not predicted in 3.4.2.

3.5.3 Higher Order Extrapolation in Nonlinear Term

The results in section 3.5.2.2 were somewhat surprising. Numerical dissipation

in the second order method was much higher than the numerical dissipation in the

backward Euler method, to the point where the flow was pushed to a much lower

Reynolds number compared to the backward Euler method. For example, with

ν = 1
500

, we saw Re ≈ 2000 with the LIBE time discretization, and Re ≈ 500 when

using BDF2. This effect was also seen for flows near steady state. Table 1 shows

BDF2 pushes flow to a much lower Reynolds number than LIBE.
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Figure 9: Using BDF2 with k = .05, we do not see the correct scaling of the average

total dissipation rate due to the large timestep.

Analysis suggests that this must be caused by the treatment of the nonlinear

term, and the extra term on the upper bound of our energy dissipation that comes

from a second order approximation to un+1
β . To investigate this, we fix ν = 1

150
and

ν = 1
250

, and vary the timestep k. We also test using a second order approximation

to un+1 in the backward Euler scheme, which will be referred to as LIBE2:

(
un+1 − un

k
, v

)
+ b∗(2un − un−1, un+1, v) + ν

(
∇un+1,∇v

)
+
(
pn+1,∇ · v

)
= (f, v).

We obvserved similar results for LIBE2 and BDF2 (see Figure 10, Figure ??).

For large time steps, we see that the numerical dissipation is large, correspondingly,

the Reynolds number is low as the flow was pushed to steady state by the increased
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ν ReBDF2 ReLIBE

1
100

221.9 237.9

1
150

265.8 431.2

1
200

321.7 857.6

1
300

389.5 1077

1
400

454.1 1571

1
500

508.1 2093

1
750

626.7 3341

Table 1: Large numerical dissipation in BDF2 drives the flow to a lower Reynolds

number state. The effect is amplified for small values of ν.

(a) LIBE (b) LIBE2 (c) BDF2

Figure 10: Average Dissipation vs k, ν = 1
250

. Total dissipation is near constant for

LIBE, in contrast to LIBE2 and BE.

dissipation. This appears to confirm that the second order approximation un+1 ≈

2un − un−1 leads to overdissipation with large time steps. Though the numerical

dissipation decreased with the timestep, even for the relatively low Reynolds number

flows tested, the dissipation was still larger with LIBE2 and BDF2 than when using

LIBE.
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(a) LIBE (b) LIBE2 (c) BDF2

Figure 11: Re versus k, ν = 1
250

. The Reynolds number is near constant for LIBE,

even for large timesteps. A small timestep is required for LIBE2 and BDF2 to see

the correct Reynolds number.

3.6 Conclusions

We showed that over dissipation is not expected for body force driven flow for

any one or two step fully implicit one leg method, or for the LIBE method. We

demonstrated numerically that we may see overdissipation in one or two step methods

when higher order approximations are made in the linearization of the convective

term. This preliminary work suggests multiple avenues that should be explored

when analyzing energy dissipation rates, and highlights that the time discretization

may have as large an effect or greater than the spacial discretization on the energy

dissipation rate, with the area of greatest effect being the treatment of the nonlinear

convective term.

This is particularly of interest when we consider turbulence modeling. Direct

numerical simulations, which fully resolve all relevant time and length scales in the

Navier-Stokes equations are unlikely to introduce numerical dissipation due to the

small time step. However, flow averages are smoother, and we may expect to take
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larger timesteps when modeling them. We saw numerically that overdissipation was

present even at relatively low Reynolds number flows when using BDF2. Thus,

it is very possible that a poor choice of timestepping scheme or timestep size may

contribute to overdissipation in body force driven turbulence.
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4.0 A New Turbulence Length Scale

4.1 Introduction

Predicting turbulent flows in practical settings means solving models intended

to predict averages of solutions of the Navier-Stokes (NS) equations. Among a wide

variety of approaches, summarized in Wilcox [80], eddy viscosity URANS (unsteady

Reynolds Averaged NS) models are used in many applications. Many are based on

the 1-equation model of Prandtl [67] and Kolmogorov [41]. This was derived in 3.1

and is given by

vt + v · ∇v −∇ · ([2ν + νT ]∇sv) +∇p = f(x, y, z),

∇ · v = 0, and νT = µℓ
√
k, (4.1.1)

kt + v · ∇k −∇ · ([ν + νT ]∇k) +
1

ℓ
k
√
k = νT |∇sv|2.

Following for example [56] and [80] p.37 eq. (3.9), v approximates a finite time

window average of the Navier-Stokes velocity u

v(x, y, z, t) ≃ u(x, y, z, t) =
1

τ

∫ t

t−τ

u(x, y, z, t′)dt′. (4.1.2)

The fluctuation is u′ = u− u. Its associated turbulent kinetic energy, approximated

by the k-equation solution, is ktrue =
1
2
|u− u|2. In (4.1.1) ν is the kinematic viscosity,

p is a pressure, initial and boundary conditions for v and k will be specified, f is the

body force (here f = 0), ∇sv is the symmetric part of∇v and νT is the eddy viscosity.

Here, we will consider the model with the included ν△k term, as it is commonly used

52



in practical numerical tests. Further consideration to inclusion versus exclusion of

this term is given in chapter 5.

The Kolmogorov-Prandtl relation is νT = µℓ
√
k where µ is a calibration constant,

typically 0.2 to 0.6, and often 0.55, [14] p. 114,[65]. The turbulence length-scale

ℓ = ℓ(x, y, z, t) is specified to complete the model. In current practice, ℓ varies from

model to model, subregion to subregion (requiring their locations, [72]) and must be

specified by the user; see [80], [70] for many examples.

This lack of a simple, effective, and universal specification of ℓ is one disadvantage

of 1−equation models like (4.1.1). Another disadvantage, shared by many eddy

viscosity models, is that model dissipation often exceeds energy input and leads to

lower Reynolds number solutions.

Herein we analyze a specification of ℓ with greater universality and improved

model dissipation

ℓ = min

{
√
2k1/2τ, 0.41d

√
d

L

}
, where (4.1.3)

d = wall distance, τ = averaging window, L = global length scale.

The main result herein, theorem 4.4.1 is that with (4.1.3) for shear flows, this over

dissipation does not happen: the model’s energy dissipation rate is consistent with

its energy input rate. The intent of the minimum in (4.1.3) is to select ℓ =
√
2k1/2τ

in the flow’s interior and the new value ℓ = 0.41d
√

d
L
near walls. Other realizations

of this intent are possible, e.g., (4.1.5). The question of which realization of this

intent best models the intermediate region is open and cannot be resolved by the

volume averaged analysis herein. The traditional value of the Von Karman constant,

0.41, is retained in (4.1.3). Prandtl [66] described ℓ as ”... the diameter of the masses

of fluid moving as a whole in each individual case”. This diameter is constrained
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by nearby walls leading to the classical ℓ = 0.41d and here 0.41d
√

d
L
. Prandtl also

mentioned a second possibility, ”...or again, as the distance traversed by a mass of

this type before it becomes blended in with neighboring masses...” This remark can

be interpreted as ℓ = |u′(x, t)|τ , i.e., the distance a fluctuating eddy travels in one

time unit. As |u′| ≃
√
2k1/2, away from walls we specify the kinematic relation

ℓ =
√
2k(·)1/2τ. (4.1.4)

4.1.1 Justification of New Length Scale

The (dimensionally consistent) near wall ℓ = 0.41d
√

d
L
is a deviation from ac-

cepted practice, so justification is necessary. Expansions in the wall normal distance

following p. 283 in [65] indicate that the true turbulent kinetic energy ktrue =

1
2
|u− u|2 → 0 like O(d2) at walls. This rate implies that ktrue satisfies

ktrue = 0 and ∇ktrue · n = 0 at the wall.

The eddy viscosity should have a similar near wall behavior since, modulo pressure

terms, µℓ
√
k∇sv ≃ u′u′ → 0 at walls like O(d2). If ktrue replaces k in νT , then

µℓ
√
ktrue∇sv = O(d2) near walls with ℓ = 0.41d. However, the solution to the

k−equation satisfies only one boundary condition, k = 0 at the wall. Since the

model includes the term −ν△k, the solution to the k equation (intended to model

ktrue) should have

k = 0 at the wall, and k(d) = O(d) as the wall is approached.

This (incorrectly) implies µℓ
√
k∇sv → 0 at walls like O(d+1.5) when ℓ = 0.41d. This

is one reason for evaluations such as Pope [65] p. 434 Section 11.7.2 that ” ... the
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specification ℓ = 0.41y is too large in the near wall region...” as well as ad hoc

addition of van Driest damping. The modification ℓ = 0.41d
√

d
L
in (4.1.3) ensures

νT = O(d2) correctly in the model at points where ∇sv is neither zero nor infinity.

The question arises of why not simply specify ℓ =
√
2k(·)1/2τ as in [47]. The

positive results in [47] were for turbulence induced by a body force with f(x) = 0 on

∂Ω which excludes shear flows. The physical difference in the settings (summarizing

the introduction of Phillips [63]) is that in shear flows the near wall region produces

small scales which dominate ktrue, while when shear flows are excluded in [47], small

scales are produced only through the nonlinearity.

4.1.2 Related work

The energy dissipation rate is a fundamental statistic of turbulence, e.g., [65],

[77]. Its balance with energy input rates, ⟨ε⟩ = O(U
3

L
), is observed in physical

experiments [77]. In 1992, Doering and Constantin [21] established a direct link

between phenomenology and NSE predicted energy dissipation through upper bounds

consistent with the O(U
3

L
) rate. This work builds on [4], [32] and has developed in

many important directions, e.g., [22], [32], [77], [78], [39], [79]. Remarkably, an O(U
3

L
)

lower bound has recently been proven in [10] for stochastically forced shear flow.

Model over-dissipation, producing a lower Re flow, is due to the action of turbu-

lent viscosity terms on small scales generated by breakdown of large scales through

the nonlinearity or in the boundary layer. ⟨ε⟩ has been analyzed for some simpler

models, e.g., [43], [44] (showing a dramatic difference between shear and no shear

cases), and [61]. The kinematic length scale ℓ =
√
2k1/2τ occurred naturally in an

ensemble algorithm in []JL14b and was highly developed by Teixeira and Cheinet
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[75] and [76] (see equation (7) on p. 2699), with near-wall transition to ℓ = 0.41d by

ℓ = θ(0.41d) + (1− θ)
(√

2k1/2τ
)
, with θ = e−d/100. (4.1.5)

The global specification ℓ =
√
2k1/2τ was proven in [47] not to over-dissipate with

shear excluded (and boundary layers negligible). This work leads to the problem

considered herein to analyze shear/boundary layer induced model dissipation.

Since τ in (4.1.2), (4.1.3) is user supplied, it can be determined by the time

scales required in an application or related to a time step. The latter blurs the

line between URANS and time filtered large eddy simulation, [68], as noted in the

abstract of [24] ”...most of the unsteady approaches ... can be regarded as a temporally

filtered approach.” The time scale τ can also be regarded as a fundamental time

scale of turbulence such as τ = k/ε, e.g., [7]. Other natural choices of τ include

τ ≃ △/U,△ = an estimate of layer-width [75] and τ = 0.76/N,N = a selected-

frequency, [15].

4.2 Shear Flow

We analyze energy dissipation caused by the boundary layer for shear flow with

zero body force, building on analysis in the pioneering paper [21] and early work of

Hopf [31]. Let the flow domain Ω = (0, L)3and select ℓ−periodic boundary conditions

in x, y and no-slip at z = 0, z = L. The wall is fixed at z = 0 and the wall at z = L
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slides with velocity (U, 0, 0):

Boundary Conditions :

moving top lid: v(x, y, L, t) = (U, 0, 0)

fixed bottom wall: v(x, y, 0, t) = 0

periodic side walls:
v(x+ L, y, z, t) = v(x, y, z, t),

v(x, y + L, z, t) = v(x, y, z, t).

(4.2.1)

On this domain the wall normal distance is d = min{z, L− z}. Since time averages

of the velocity satisfy the same shear boundary conditions as the NSE solution, the

correct boundary condition for k(x, y, z, t) is

k(x, y, 0, t) = k(x, y, L, t) = 0 and L− periodicity in x, y.

Since k has homogeneous boundary conditions, non-zero initial conditions must be

specified; otherwise, if k(x, y, z, 0) = 0, then k(x, y, z, t) ≡ 0 thereafter.

4.2.1 Notation and preliminaries

Definition 4.2.1. The finite and long time averages of a function ϕ(t) are

⟨ϕ⟩T =
1

T

∫ T

0

ϕ(t)dt and ⟨ϕ⟩∞ = lim sup
T→∞

⟨ϕ⟩T .

These satisfy ⟨⟨ϕ⟩∞⟩∞ = ⟨ϕ⟩∞ and

⟨ϕψ⟩T ≤
〈
|ϕ|2
〉1/2
T

〈
|ψ|2

〉1/2
T
, ⟨ϕψ⟩∞ ≤

〈
|ϕ|2
〉1/2
∞

〈
|ψ|2

〉1/2
∞ . (4.2.2)

A weak solution of the model momentum equation for shear flow problem satisfies

the initial condition and

(vt, w) + ([2ν + νT ]∇sv,∇sw) + (v · ∇v, w) = 0 (4.2.3)
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for all test functions w, with ∇ · w = 0, L−periodic in x and y and w(x, y, 0, t) =

0, w(x, y, L, t) = 0. If ϕ is a divergence free function extending the shear boundary

conditions (4.2.1) into Ω, formally taking the inner product with w = v − ϕ and

expanding gives

1

2

d

dt
||v||2 +

∫
Ω

[2ν + νT ]| ∇sv|2dx =

= (vt, ϕ) +

∫
Ω

[2ν + νT ]∇sv : ∇sϕdx+ (v · ∇v, ϕ).

Definition 4.2.2. The total energy dissipation rate (per unit volume) is

ε(v) =
1

|Ω|

∫
Ω

[2ν + νT ]|∇sv(x, t)|2dx.

While a new ℓ gives a new model, existence of weak solutions to models of this

type is treated comprehensively in [8] and [3]. Herein, we assume that a weak solution

of the model (4.1.1), (4.1.3) with shear boundary conditions (4.2.1) exists, k ≥ 0 and

solutions satisfy the energy inequality

1

2

d

dt
||v||2 +

∫
Ω

[2ν + νT ]| ∇sv|2dx ≤ (4.2.4)

(vt, ϕ) +

∫
Ω

[2ν + νT ]∇sv : ∇sϕdx+ (v · ∇v, ϕ).

Using the energy inequality the appendix gives a proof of the following bounds.

Proposition 4.2.1. Consider the 1−equation model (4.1.1), (4.1.3) with shear

boundary conditions (4.2.1). The following are uniformly bounded in T :

||v(T )||2,
∫
Ω

k(T )dx,

∫
Ω

νT (·, T )dx,〈
1

L3

∫
Ω

| ∇sv|2dx
〉

T

,

〈
1

L3

∫
Ω

1

l
k
√
kdx

〉
T

,

〈
1

L3

∫
Ω

[2ν + νT ]| ∇sv|2dx
〉

T

.
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Proof. In this proof of Proposition 4.2.1, C will denote any quantity uniformly

bounded in time. The energy inequality and equality for v and k state

1

2

d

dt
||v||2 +

∫
Ω

[2ν + νT ]| ∇sv|2dx ≤

(vt, ϕ) +

∫
Ω

[2ν + νT ]∇sv : ∇sϕdx+ (v · ∇v, ϕ),

and

∫
Ω

ktdx+

∫
Ω

1

ℓ
k
√
kdx =

∫
Ω

νT |∇sv|2dx.

Pick θ, 0 < θ < 1. Multiply the second equation by θ and add to the first. Using

d
dt
||ϕ||2 = 0 the sum becomes

d

dt

(
1

2
||v||2 − (v, ϕ) +

1

2
||ϕ||2 + θ

∫
Ω

kdx

)
+∫

Ω

[2ν + (1− θ)νT ]| ∇sv|2 + θ
1

ℓ
k
√
kdx ≤ (4.2.5)∫

Ω

[2ν + νT ]∇sv : ∇sϕdx+ (v · ∇v, ϕ).

For this proof choose β = 1
8
Re−1 (rather than β = 1

8
Re−1

eff ). Consider now the three

terms on the above RHS. For the last, nonlinear term, the estimate proven below is

(v · ∇v, ϕ) ≤ C + βRe

∫
Sβ

2ν| ∇sv|2dx ≤ C +
1

8

∫
Ω

2ν| ∇sv|2dx.

The second term is subsumed in the LHS of 4.2.5. The first term on the RHS is

bounded by the Cauchy-Schwarz-Young inequality in a standard way as

∫
Ω

2ν∇sv : ∇sϕdx ≤ C +
1

8

∫
Ω

2ν| ∇sv|2dx
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with the second term on the RHS again subsumed. The remaining term on the RHS

involves νT . As a first step we again apply the Cauchy-Schwarz-Young inequality in

a standard way and then use the direct calculation of | ∇sϕ|2 to give

∫
Ω

νT∇sv : ∇sϕdx ≤ 1− θ

2

∫
Ω

νT | ∇sv|2dx+ 1

2(1− θ)

∫
Ω

νT | ∇sϕ|2dx

≤ 1− θ

2

∫
Ω

νT | ∇sv|2dx+ µ

2(1− θ)

(
U

βL

)2 ∫
Sβ

l
√
kdx.

Collecting these terms gives

d

dt

(
1

2
||v − ϕ||2 + θ

∫
Ω

kdx

)
+

∫
Ω

[
3

2
ν +

1− θ

2
νT

]
| ∇sv|2 + θ

1

ℓ
k
√
kdx ≤

≤ C +
µ

2(1− θ)

(
U

βL

)2 ∫
Sβ

l
√
kdx.

For the last term we apply Hölder’s inequality with exponents 3 and 3/2 as follows

∫
Sβ

ℓ
√
kdx =

∫
Sβ

ℓ4/3 · ℓ−1/3
√
kdx ≤

(∫
Sβ

ℓ−1k+3/2dx

) 1
3
(∫

Sβ

(
ℓ4/3
)3/2

dx

) 2
3

1

2(1− θ)

(
U

βL

)2 ∫
Sβ

µℓ
√
kdx ≤ 1

3

∫
Ω

1

ℓ
k
√
kdx+

2

3

[
1

2(1− θ)

(
U

βL

)2
]3/2 ∫

Sβ

ℓ2dx.

We thus have

d

dt

(
1

2
||v − ϕ||2 + θ

∫
Ω

kdx

)
+

+

∫
Ω

[
3

2
ν +

1− θ

2
νT ]| ∇sv|2 + θ

2

1

ℓ
k
√
kdx ≤ C + C∗

∫
Sβ

ℓ2dx, (4.2.6)

where

C∗ =
2

3

[
1

2(1− θ)

]3/2(
U

βL

)3

.
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The result now follows by standard differential inequalities provided there is an α > 0

with ∫
Ω

1

ℓ
k
√
kdx ≥ α

∫
Ω

kdx and

∫
Sβ

ℓ2dx ≤ C <∞.

These two depend on the choice of ℓ = min
{√

2k1/2τ, 0.41d
√

d
L

}
. By selecting the

last argument in the minimum, the condition
∫
ℓ2dx ≤ C < ∞ holds. By selecting

the first term in the minimum (and noting that then 1
ℓ
k
√
k = 1√

2τ
k) the condition∫

1
ℓ
k
√
kdx ≥ α

∫
kdx holds. Thus the uniform bounds follows.

4.3 Energy dissipation in shear flows

To formulate our first main result we first present a definition of the effective

viscosity νeff (≥ ν), the average viscosity in the boundary layer Sβ, and a few

related quantities. These are well defined due to the uniform bounds in Proposition

2.3.

Definition 4.3.1. The effective viscosity of solutions of (4.1.1) under (4.2.1) is

νeff :=

〈
1
|Ω|

∫
Ω
[2ν + νturb(·)]|∇sv|2dx

〉
∞〈

1
|Ω|

∫
Ω
|∇sv|2dx

〉
∞

.

The large scale turnover time is T ∗ = L/U . The Reynolds number and effective

Reynolds number are

Re =
U L

ν
and Reeff =

U L

νeff
.

Let β = 1
8
Re−1

eff and denote the region Sβ by

Sβ = {(x, y, z) : 0 ≤ x ≤ L, 0 ≤ y ≤ L, (1− β)L < z < L} .
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The average viscosity, ν, in Sβ is denoted

ν :=

〈
1

|Sβ|

∫
Sβ

[2ν + νT ]dx

〉
∞

, where |Sβ| = βL3.

Generally, the ratio of the effective and average viscosity is an important statistic.

Theorem 4.3.1. Suppose νT ≥ 0. Let v be a weak solution of

vt + v · ∇v −∇ · ([2ν + νT ]∇sv) +∇p = 0, and ∇ · v = 0

under (4.2.1) satisfying the energy inequality (4.2.4). Then, provided ν, νeff are well

defined,

⟨ε⟩∞ ≤
{
5

2
+ 8

ν

νeff

}
U3

L
.

Remark 4.3.1. The multiplicative constants 5/2, 8 are the result of a series of in-

equalities in the proof. It is likely that a different proof could result in smaller values.

For more general problems ν, the average viscosity in the boundary layers, should be

defined to include both upper and lower layers. Due to the symmetries of this specific

shear flow, the lack of a body force and Galilean invariance, it suffices to define ν in

Definition 4.3.1 as the average in the upper layer near z = L.

The proof begins with the background flow from Doering and Constantin [21],

ϕ(z) = [ϕ̃(z), 0, 0]T where

ϕ̃(z) =

 0, z ∈ [0, L− β L]

U
β L

(z − (L− β L)), z ∈ [L− β L, L]
β =

1

8
Re−1

eff .

This function ϕ(z) is piecewise linear, continuous, divergence free and satisfies the

boundary conditions. We will need the following values of norms of ϕ.
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Lemma 4.3.1. We have ∇ · ϕ = 0 and

||ϕ ||L∞(Ω) = U, || ∇ϕ ||L∞(Ω) =
U
β L
,

||ϕ ||2 = 1
3
U2 β L3, || ∇ϕ ||2 = U2 L

β
.

With this choice of ϕ, time averaging the energy inequality ((4.2.4)) over [0, T ]

and normalizing by |Ω| = L3 gives

1

2TL3
||v(T )||2 +

〈
1

L3

∫
Ω

[2ν + νT ]| ∇sv|2dx
〉

T

≤ (4.3.1)

1

2TL3
||v(0)||2 + 1

TL3
(v(T )− v(0), ϕ) +

〈
1

L3
(v · ∇v, ϕ)

〉
T

+〈
1

L3

∫
Ω

[2ν + νT ]∇sv : ∇sϕdx

〉
T

.

Recall β = 1
8
Re−1

eff . Due to Proposition 2.3, (4.3.1) can be written as

⟨ε⟩T ≤ O(
1

T
) +

〈
1

L3
(v · ∇v, ϕ)

〉
T

+

〈
1

L3

∫
Ω

[2ν + νT ]∇sv : ∇sϕdx

〉
T

(4.3.2)

The right-hand side (RHS) has two terms shared by the NSE, (v·∇v, ϕ) and
∫
2ν∇sv :

∇sϕdx. The main issue is thus the third term,
∫
νT∇sv : ∇sϕdx. Before treating

that we recall the analysis of Doering and Constantine [21] and Wang [78] for the

first two. For the nonlinear term
〈

1
L3 (v · ∇v, ϕ)

〉
T
, denoted NLT , we have

NLT =

〈
1

L3
(v · ∇v, ϕ)

〉
T

=

〈
1

L3
([v − ϕ] · ∇v, ϕ)

〉
T

+

〈
1

L3
(ϕ · ∇v, ϕ)

〉
T

≤

〈
1

L3

∫
Sβ

|v − ϕ||∇v||ϕ|+ |ϕ|2|∇v|dx

〉
T

≤ 1

L3

〈∥∥∥∥v − ϕ

L− z

∥∥∥∥
L2(Sβ)

||∇v||L2(Sβ)||(L− z)ϕ||L∞(Sβ) + ||ϕ||2L∞(Sβ)
||∇v||L1(Sβ)

〉
T

.
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On the RHS, ||ϕ||2L∞(Sβ)
= U2. We calculate ||(L− z)ϕ||L∞(Sβ) =

1
4
βLU. Since v − ϕ

vanishes on ∂Sβ, Hardy’s inequality, the triangle inequality and a calculation imply

∥∥∥∥v − ϕ

L− z

∥∥∥∥
L2(Sβ)

≤ 2 ∥∇(v − ϕ)∥L2(Sβ)
≤ 2 ∥∇v∥L2(Sβ)

+ 2 ∥∇ϕ∥L2(Sβ)

≤ 2 ∥∇v∥L2(Sβ)
+ 2U

√
L

β
.

Thus we have the estimate

NLT ≤ βLU

4

1

L3

〈
2||∇v||2ℓ2(Sβ) + 2U

√
L

β
||v||L2(Sβ)

〉
T

+
U2

L3

〈
||∇v||L1(Sβ)

〉
T
. (4.3.3)

For the last term on the RHS, Hölders inequality in space then in time implies

U2

L3

〈
||∇v||L1(Sβ)

〉
T

=
U2

L3

〈∫
Sβ

|∇v| · 1dx

〉
T

≤ U2

L3

〈√∫
Sβ

|∇v|2dx
√
βL3

〉
T

≤ U2
√
β

L3/2

〈√∫
Sβ

|∇v|2dx

〉
T

≤ U2
√
β

L3/2

〈∫
Sβ

|∇v|2dx

〉1/2

T

.

Increase the integral’s domain from Sβ to Ω, use (as ∇ · v = 0) ||∇v||2 = 2||∇sv||2

and β = 1
8
Re−1

eff . Rearranging and using the arithmetic-geometric inequality gives

U2

L3

〈
||∇v||L1(Sβ)

〉
T
≤ U2

√
β

〈
1

L3

∫
Ω

2|∇sv|2dx
〉1/2

T

≤

≤ U2

√
2

8

1

LU

〈
1

L3

∫
Ω

νeff |∇sv|2dx
〉1/2

T

≤
(
U3

L

)1/2
1

2

〈
1

L3

∫
Ω

νeff |∇sv|2dx
〉1/2

T

≤ 1

2

U3

L
+

1

8

〈
1

L3

∫
Ω

νeff |∇sv|2dx
〉

T

.
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Similar manipulations yield

1

4
βLU

1

L3

〈
2U

√
L

β
||v||L2(Sβ)

〉
T

≤ 1

2
βLU

〈
1

L3
||∇v||2L2(Sβ)

〉
T

+
1

8

U3

L

≤ 1

8

〈
1

L3
νeff ||∇sv||2L2(Sβ)

〉
T

+
1

8

U3

L
.

Using the last two estimates in the NLT upper bound (4.3.3), we obtain

NLT ≤ 2β
LU

νeff

〈
1

L3
νeff ||∇sv||2L2(Sβ)

〉
T

+
5

8

U3

L
.

Thus,

⟨ε⟩T ≤ O(
1

T
) +

1

4

〈
1

L3
νeff ||∇sv||2L2(Ω)

〉
T

+
5

8

U3

L
+

+

〈
1

L3

∫
Ω

[2ν + νT ]∇sv : ∇sϕdx

〉
T

.

Consider now the last term on the RHS. Since ϕ is zero off Sβ,〈
1

L3

∫
Ω

[2ν + νT ]∇sv : ∇sϕdx

〉
T

=

〈
1

L3

∫
Sβ

[2ν + νT ]∇sv : ∇sϕdx

〉
T

≤ 1

2
⟨ε⟩T +

1

2

〈
1

L3

∫
Sβ

[2ν + νT ]

(
U

βL

)2

dx

〉
T

≤ 1

2
⟨ε⟩T +

1

2

(
U

βL

)2

β

〈
1

βL3

∫
Sβ

[2ν + νT ]dx

〉
T

.

Thus

1

2
⟨ε⟩T ≤ O(

1

T
) +

1

4

〈
1

L3
νeff ||∇sv||2L2(Ω)

〉
T

+

+
5

8

U3

L
+
β

2

(
U

βL

)2
〈

1

βL3

∫
Sβ

2ν + νTdx

〉
T

.
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As T → ∞

〈
1

βL3

∫
Sβ

2ν + νTdx

〉
T

→ ν and

〈
1

L3
νeff ||∇sv||2L2(Ω)

〉
T

→ ⟨ε⟩∞ .

Thus,

(
1

2
− 2βReeff

)
⟨ε⟩∞ ≤ 5

8

U3

L
+

1

2

(
U

βL

)2

βν ≤
[
5

8
+

1

2β
Re−1

eff

ν

νeff

]
U3

L
.

The choice β = 1
8
Re−1

eff implies 2βReeff = 1/4, completing the proof since

⟨ε⟩∞ ≤ 5

2

U3

L
+

1

2

(
U

βL

)2

βν =

[
5

2
+ 8

ν

νeff

]
U3

L
.

4.4 Application to a 1-equation URANS model

We now apply Theorem 3.2 to (4.1.1), (4.1.3). The main work will be in estimat-

ing ν
νeff

.

Theorem 4.4.1. Let v be a weak solution of (4.1.1), (4.1.3) under (4.2.1) satisfying

the energy inequality (4.2.4). We have

⟨ε⟩∞ ≤

[
5 + 32

ν

νeff
+

(
0.412 2

√
2µ2

4

)
τ

T ∗

]
U3

L
.
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Remark. We note that ν
νeff

≤ 1 (and possibly << 1) and for µ = 0.55,

0.412 2
√
2µ2/4 ≃ 0.017978.

proof. The upper bound ℓ ≤ 0.41d
√

d
L
is used in the boundary layer region to

estimate ν as follows

ν =

〈
1

βL3

∫
Sβ

2ν + νTdx

〉
∞

≤ 2ν +

〈
1

βL3

∫
Sβ

µ

(
0.41d

√
d

L

)
k

1
2dx

〉
∞

≤ 2ν + 0.41µ
1

L1/2

1

βL3

〈∫
Sβ

(L− z)+3/2 k1/2dx

〉
∞

≤ 2ν + 0.41µ
1

L1/2

1

βL3

〈√∫
Sβ

(L− z)3 dx

√∫
Sβ

kdx

〉
∞

≤ 2ν +
0.41µ

2

1

L1/2
β

〈√∫
Sβ

kdx

〉
∞

, hence

ν ≤ 2ν +
0.41µ

2
Lβ

√〈
1

L3

∫
Ω

kdx

〉
∞
. (4.4.1)

Next use the k−equation to estimate
∫
kdx. We have

∫
Ω

ktdx+

∫
Ω

1

ℓ
k
√
kdx =

∫
Ω

νT |∇sv|dx. (4.4.2)

By the choice of ℓ, 1
ℓ
k
√
k is bounded below by 1√

2τ
k because

1

ℓ
k
√
k = max

 1√
2τ
,

√
k

0.41d
√

d
L

 k ≥ 1√
2τ
k.

The long time averaging of
∫
ktdx is zero. Since 1√

2τ
k ≤ 1

ℓ
k
√
k, we have

1√
2τ

〈
1

|Ω|

∫
Ω

kdx

〉
∞

≤
〈

1

|Ω|

∫
Ω

1

ℓ
k
√
kdx

〉
∞

=

〈
1

|Ω|

∫
Ω

νT |∇sv|2dx
〉

∞
= ⟨ε⟩∞ .
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Thus,
〈

1
|Ω|

∫
Ω
kdx

〉
∞

≤
√
2τ ⟨ε⟩∞. Using this upper estimate in (4.4.1) we obtain

ν ≤ 2ν +
0.41µ

2
Lβ

√〈
1

L3

∫
Ω

kdx

〉
∞

≤ 2ν +
0.41 4

√
2µ

2
Lβτ 1/2

√
⟨ε⟩∞.

Divide by νeff , use T
∗ = L/U, β = 1

8
Re−1

eff and rearrange. This gives

ν

νeff
≤ 2

ν

νeff
+

0.41 4
√
2µ

2

1

8

L1/2

U3/2

√
τ

T ∗

√
⟨ε⟩∞.

Using this estimate in Theorem 4.3.1 gives

⟨ε⟩∞ ≤
[
5

2
+ 16

ν

νeff

]
U3

L
+

[
0.41 4

√
2µ

2

√
τ

T ∗

√
U3

L

]√
⟨ε⟩∞.

The arithmetic-geometric mean inequality then completes the proof:

⟨ε⟩∞ ≤

[
5 + 32

ν

νeff
+

0.412 2
√
2µ2

4

τ

T ∗

]
U3

L
.
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4.5 A Numerical Illustration

One important failure mode of eddy viscosity models is over dissipation leading

to lower Reynolds number type solutions. In this scenario, as Re increases, layers and

internal small scales sharpen. As a result ⟨ε⟩ grows as Re increases. Theorem 4.4.1

predicts that this does not happen. We now test this prediction by solving the model

with increasing Re, refining the mesh near the wall each step and calculating ⟨ε⟩.

(We do not test if the dependence of ⟨ε⟩ on ν
νeff

, τ and µ is as predicted in Theorem

4.4.1) This question of dependence of ⟨ε⟩ on Re is the first main question in an eddy

viscosity model. The results of the computations are consistent with the theoretical

prediction that ⟨ε⟩ does not blow up as Re increases. While Theorem 4.4.1 does

not predict it, the test are also consistent with the typical dependence of ⟨ε⟩ on Re

for the Navier-Stokes equations. The results were obtained on a workstation with a

program developed with the FEniCS software suite [54]. The code can be found on

GitHub at https://github.com/kierakean/1eqnRANS-FEM.

4.5.1 Problem Setting

We examined the classical Taylor-Couette flow between counter-rotating cylin-

ders for rotations well above, e.g. [69], those yielding stable patterns, [74]. The

domain is given by

Ω = {(x, y, z) : r2inner ≤ x2 + y2 ≤ r2outer, 0 ≤ z ≤ zmax},

with rinner = .5, router = 1, zmax = 2.2. Figure 12. (a) depicts the domain Ω.

We imposed periodic boundary conditions in the z direction. The outer cylinder

was held fixed and the flow was driven by the rotation of the inner cylinder. The
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(a) The Domain Ω.
(b) The mesh viewed from the
top.

Figure 12: The unstructured mesh used in the numerical experiments.

angular velocity of the inner cylinder, ωinner was smoothly increased from zero at

T = 0 to ωinner = 4 at T = 5. Plots of flow statistics indicated that statistical

equilibrium was reached around T = 20 so we give snapshots below at T = 30. We

chose final time T = 40 and time averaged over 20 ≤ t ≤ 40. The time scale was

chosen to be τ = 0.1.

Initialization. The model is turned on with a non-zero k(x,5) at T = 5 when the

inner cylinder has been spun up to its full angular velocity. We use a k initialization

standard for turbulent flow in a square duct, Wilcox [80], given by

k(x, 5) = 1.5|v(x, 5)|2I2, where I = turbulence intensity ≃ 0.16Re−1/8.

The mesh. We used an unstructured mesh that was refined around the inner

and outer boundaries, as can be seen from the top of the mesh in Figure 12 (b). We

did preliminary tests at Reynolds number Re = 1000 by refining the mesh until ⟨ε⟩

70



was unchanged on three successive refinements. These parameters yielded a Taylor

number of

Ta :=
ω2rinner(router − rinner)

3

ν2
= 106.

We then did all reported tests on the coarsest mesh that produced the same value

of ⟨ε⟩.

Tests were run with varying Reynolds numbers by varying the viscosity ν from

3 × 10−3 to 5 × 10−4 (Ta ≃ 1010 to 2.5 × 1017). Persistent vortices, marked by the

Q-criterion, are plotted for two Reynolds numbers in Figure 13.

(a) ν = .003 : Clear coherent
vortices.

(b) ν = .0005: Vortices not
axisymmetric.

Figure 13: Q-criterion at T = 30.

We used the P 2 − P 1 Taylor-Hood element pair. The velocity space, Xh and

pressure space, Qh had 948, 000 and 44, 600 degrees of freedom, respectively. We

used the time stepping scheme backward Euler plus time filter from [30] for the

momentum and continuity equation. The added time filter increased accuracy and

reduced numerical dissipation making the calculated ⟨ε⟩ more accurate. We used

Backward Euler for the k equation. This choice smoothed the k(x, t) evolution and
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reduced solver issues. We took △t = 1e − 2 and ran the simulation from T = 0 to

T = 40.

4.5.2 Energy Dissipation Rate

In Figure 14 ε(t) is plotted as a function of time. The jump at T = 5 corresponds

to when the k equation (and thus the turbulent viscosity) is turned on.

Figure 14: The energy dissipation rate over time.

To find the dependence on the Reynolds number, we plotted <ε>
U3

L

as a function

of Reynolds number, and fit to y = a+ bRec using Matlab’s nonlinear least squares

tool. The initial guess chosen for the (iterative) solver was y = .05 + 5Re−1.

Figure 15 shows that the long time average of the energy dissipation rate for

the model scales like a constant plus the inverse of the Reynolds number, ⟨ε⟩ ≃

(0.05 + 4.8Re−1) U3

L
, consistent with our analysis.
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Figure 15: The energy dissipation rate over time.

4.6 Conclusions and open problems

The work herein was motivated by the idea that models more closely reflecting

the global kinetic energy balance in turbulence can be simpler and require fewer

calibration parameters for accuracy. One important aspect of kinetic energy balance

is the averaged energy dissipation rate, ⟨ε⟩, in turbulence models matching averaged

energy input rates, U3

L
, as they do for the NSE. For 4.1.1 this matching, related to

models not over dissipating solutions, depends on the choice of the turbulence length

scale ℓ, the decision to include or exclude the term −ν△k in the k−equation and (in

numerics) numerical dissipation in the methods used.

For the turbulence length scale, away from walls we used the simple and universal

kinematic specification ℓ =
√
2k1/2τ . Near walls it is necessary to match the near

wall behavior of νT to that of the Reynolds stress −u′u′. Including the term −ν△k,

matching requires near wall behavior ℓ = O(d3/2). With this matching, model energy
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dissipation rates do match input rates, as desired for accuracy. For implementation,

ℓ = min
{√

2k1/2τ, 0.41d
√

d
L

}
retains the issue of specifying the wall distance but

it does not require pre-determining fluid sub-regions.

The 1−equation model studied has been used in many numerical codes, yet open

problems abound. The important analytic problems of existence and positivity of k,

while open for the new length scale, seem within reach given the advances in theory

presented in Chacon-Rebollo and Lewandowski [8].

The model parameters used in our tests were µ = 0.55 and von Karman con-

stant 0.41. These values are classical for ℓ = 0.41d. Recalibration may be nec-

essary. The numerical illustration found that with these parameter values ⟨ε⟩ ≃

(0.05 + 4.8Re−1) U3

L
. The Re→ ∞ limiting value 0.05 includes numerical dissipation

and grid effects. It is slightly smaller that the best estimate for the NSE of 0.088 of

Doering and Constantine [21].
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5.0 Conditioning of Super-Muckenhoupt Degenerate Elliptic Boundary

Value Problems

5.1 Introduction

The question of inclusion or exclusion of −ν△k is debated. It is linked poten-

tially to the specification of ℓ, possible ill-posedness of the continuum model and

corresponding ill conditioning of the spacial numerical discretization, and may heav-

ily effect near wall behavior of the model, and correspondingly dissipation rates. In

theory, this term is often omited, in numerical tests solver failure may be seen when

this term is excluded. However, precise study of the effect of exclusion remains for

the most part completely open. Motivited by this question, in this chapter we ex-

amine the effect of the exclusion on the condition number through the analysis of

the degenerate elliptic problem problem

−∇ · (d2∇k) = f (5.1.1)

a linearized, simplified version of the term

−∇ · (νT∇k)

where d is the wall normal distance

d(x) = inf
y∈∂Ω

|x− y|.

Section recalls the derivation of the k-equation given in section 2.3.2 to show the

exclusion of −ν△k is the correct choice to correctly capture near wall asymptotics.

Section 5.3 briefly touches on existing theory of degenerate elliptic boundary value

75



problems. Estimates on condition number are proved in section 5.5, as well as brief

discussion of the effect of additional lower order terms. Finally, 5.6 discusses regu-

larization strategies applied to the Super-Muckenhoupt degenerate elliptic boundary

value problem, which may be extended to the full k-equation.

5.2 The k-Equation

We recall the 1-equation turbulence model of Prandtl and Kolmogorov, where

v approximates an average of the Navier-Stokes velocity, and k approximates the

turbulent kinetic energy. The turbulent viscosity is given by νT = µℓ
√
k, where ℓ is

a chosen length scale.

vt + v · ∇v −∇ ·
(
[2ν + νT (·)]∇sv

)
+∇p = f(x)

∇ · v = 0

kt + v · ∇k −∇ ·
(
νT (·)∇k

)
+

1

ℓ
k
√
k = νT (·)|∇sv|2.

(5.2.1)

We recall the derivation of the k-equation. In particular, prior to any simplifica-

tions, we have

u′tu
′ + u · ∇uu− (ū · ∇ūū+∇ · (u⊗ u) ū)− ν△u′u′ +∇p′u′ = 0. (5.2.2)

We the consider the near wall behavior of each term. As u goes to zero at the wall,

ū and u′. Each term in this equation goes to zero at the walls. Expanding terms and

substituting the definition of k, and modeling the terms arising from the nonlinear

term, we have:

kt + v · ∇k −∇ · (νT∇k)− ν△u′u′ = νT |∇sv|2. (5.2.3)
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We recall νT models Reynold’s stresses and goes to zero at the wall. In fact, all terms

will go to zero at the wall, preserving what is true for the exact equation. This only

changes when we consider the expansion

−ν△u′u′ = −ν△k + ν|∇u′|2.

Individually, the terms on the right hand side do not vanish at the wall. The sum

will vanish as the left hand side goes to zero at the wall. Thus to preserve accurate

behavior of the model, we should model −ν△u′u′ with terms that go to zero at the

wall, either by subtractive cancellation or by terms that are individually O (d).

Prandtl and Kolmogorov model ε′ as k3/2

ℓ
. With common choice of length scales,

ℓ =
√
2kτ or ℓ = .41d, this term will vanish at the wall. However, ν△k will not, so

there is no chance of subtractive cancellation.

Remark 5.2.1. The length scale given in Chapter 4

ℓ = min

{
√
2kτ, .41d

√
d

L

}

is based on the assumption that k = O (d). In this case, we may include ν△k as

k3/2

ℓ
= O (1), and there is a chance of subtractive cancellation.

The term ν△k in the interior of the domain is generally very small compared to

other terms. However, at the wall, it is the only term that is nonzero, and is thus

both dominant and leads to incorrect near wall asymptotics of the model. Thus,

exclusion of this term is the correct choice for model accuracy.
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Remark 5.2.2. In practice, the turbulent viscosity is often lagged. Thus, we treat νT ,

which models Reynolds stresses, as a general O (d2) term. We consider the kinematic

length scale, ℓ =
√
2kτ to arrive at a simplified model

kt + v · ∇k −∇ · (d2∇k) + 1

µ
√
2τ
k = νT |∇sv|2

k|∂Ω = 0

(5.2.4)

and the degenerate elliptic counterpart

−∇ · (d2∇k) + 1

µ
√
2τ
k = νT |∇sv|2

k|∂Ω = 0.

(5.2.5)

5.3 General Degenerate Elliptic Boundary Value Problems

Degenerate elliptic and semielliptic partial differential equations have many ap-

plications for which existence and uniqueness of solutions have been studied, see

[62],[52]. However, the nature of solutions is related specifically to the individual

problem, and broad application is not necessarily possible. Chapter 6 of [27] explores

a perturbed problem in a similar form as (5.3.2), however conditions on exponents

exclude the specific problem we look to study in 5.1.

Motivated by (5.2.4), we consider the following elliptic boundary value problem:

−∇ ·
(
a(x)∇u(x)

)
+ Lower Order Terms =f(x) x ∈ Ω

u =0 x ∈ ∂Ω
(5.3.1)
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This is degenerate when a(x) = 0 at some point in Ω. Commonly studied are equa-

tions degenerating at a point occur when angular symmetry is used for dimension

reduction.

Herein, we consider the case of degenerate equations where a(x)|∂Ω = 0. In

particular, the following PDE:

−∇ ·
(
[dα(x) + a0]∇u(x)

)
+ a1u = f(x)u|∂Ω = 0 (5.3.2)

with weak form ∫
Ω

(
[dα(x) + a0]∇u∇v

)
+ a1uv dx =

∫
Ω

fv dx. (5.3.3)

Analysis of (5.3.2) with a1, a2 = 0 is complete in the case where α < 1. In

this case, dα is a Muckenhoupt weight [23], and the PDE will satisfy a nonuniform

ellipticity condition (see [58]). Theory is complete in the continuous setting. Ad-

ditionally, [59] contains complete numerical analysis of the Muckenhoupt weighted

elliptic problems. The super-Muckenhoupt case is where α ≥ 1. In this case, the

continuum problem is ill-posed, as there is no way to make sense of the boundary

condition.

Remark 5.3.1. The boundary condition cannot be imposed in any meaningful way

for (5.1.1). We may easily construct a sequence ui such that ui|∂Ω = 0, ui approaches

a nonzero constant and ∫
Ω

|d∇ui|2 dx→ 0.

That is, we can determine a solution at best up to a constant, but the problem is ill

posed as we cannot meaningfully set boundary values.

We also examine the effect of the inclusion of the lower order term, i.e. considering

a1 > 0. We show that the addition of the lower order term leads to equivalent scaling

of condition numbers as the nondegenerate case, with or without lower order terms.
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5.4 Notation and Preliminaries

In this section, we define notation and state assumptions about our finite element

space. Let Ω be a convex polyhedral subset of RN . Let Th be a regular triangular-

ization of Ω and let h be the minimum meshwidth. We assume there exists some

C <∞ such that ∀T ∈ Th, diam(T ) < Ch.

Let Xh ⊂ H1
0 (Ω) be a finite dimensional subspace, such that for u ∈ Xh, u|T is

continuous for all T ∈ Th. Let {φi}mi=1 be a basis for this space.

Remark 5.4.1. The dimension of the finite element space, m, will scale like h−N .

Define

a(u, v) =

∫
Ω

[dα + a0]∇u∇v dx+
∫
Ω

a1uv dx.

This bilinear form is continuous and symmetric. However, it is degenerate in the

continuous setting when a1 = 0. We will definite the finite element stiffness matrix

associated with a(·, ·):

Aij = aα(φj, φi).

Let u⃗ = [v1, v2, ...vm]
T , u⃗ = [u1, u2, ...um]

T and u, v ∈ Xh such that u =
∑m

i=1 uiφi,

v =
∑m

i=1 viφi. Then

v⃗TAαu⃗ = a(u, v)

Remark 5.4.2. All norms are equivalent in finite dimensions, however the equiva-

lence may depend on mesh width and spacial dimension. In particular, the relation-

ship between the | · |l2 norm of the vector of coefficients and the ∥ · ∥L2(Ω) norm of the

function is given by

|u|2l2 ≈ CΩh
−N∥u∥2L2(Ω).
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We will consider the condition number in the 2-norm. Define

κ =
λmax

λmin

Where λmax, λmin are the maximum and minimum eigenvalues of the stiffness matrix

A respectively. If A is nonsymmetric, this is the spectral condition number, which is

a lower bound for the true condition number

κ = ∥A∥∥A−1∥.

Further, as A is symmetric, maximum and minimum eigenvalues can be calcu-

lated as the maximum and minimum of the Rayleigh quotient:

λmin = min
u∈Rm,u̸=0

u⃗TAαu⃗

u⃗T u⃗
= min

u∈Xh,u̸=0

aα(u, u)

CΩh−N∥u∥2
(5.4.1)

λmax = max
u∈Rm,u̸=0

u⃗TAαu⃗

u⃗T u⃗
= max

u∈Xh,u̸=0

aα(u, u)

CΩh−N∥u∥2
. (5.4.2)

5.5 Condition Number Estimates

In this section, we prove a standard Hardy Inequality for completeness, and

extend the result to weights not in the Muckenhoupt class. We then use this analysis

to estimate condition numbers of the linear system associated with (5.3.2).
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5.5.1 Muckenhoupt Case

For clarity and concision, the following theorem and proof is offered in one di-

mension. Extending to higher dimensions is directly analogous. Standard techniques

also allow extension to general convex domains.

Theorem 5.5.1. Let Ω = [0, L] ⊂ R, and let β < 1. Then, there exists a constant,

C(β, L) such that for all u ∈ H1
0 (Ω),∫

Ω

|u|2 dx ≤ C(β, L)

∫
Ω

dβ|u′(x)|2 dx.

Proof. Let x ∈ Ω. Then, d(x) = min x, L− x.

Now, let u ∈ H1
0 (Ω).

|u(x)| = |u(x)− u(0)| =

∣∣∣∣∣
∫ x

0

u′(t) dt

∣∣∣∣∣
= |u(L)− u(x)| =

∣∣∣∣∣
∫ L

x

u′(t) dt

∣∣∣∣∣.
Then, by properties of absolute value and Cauchy-Schwarz

|u(x)|2 =

∣∣∣∣∣
∫ x

0

u′(t) dt

∣∣∣∣∣
2

≤

(∫ x

0

|u′(t)| dt

)2

=

(∫ x

0

|u′(t)|tβ/2t−β/2 dt

)2

≤
∫ x

0

|u′(t)|2tβ dt
∫ x

0

t−β dt.

A similar chain of inequalities and a change of variables will show

|u(x)|2 ≤
∫ L−x

0

|u′(t)|2sβ ds
∫ L−x

0

s−β dt.
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If x < L
2
, we use the first inequality and d = t, if x > L

2
we use the second

and d = s. In either case, we may then extend our integral to the entire domain,

preserving the inequality as all quantities are positive.

|u(x)|2 ≤
∫ L

0

|u′(t)|2dβ dt
∫ L

0

t−β dt.

We set

C̃(β, L) =

∫ L

0

t−β dt

and note that this is finite as β < 1.

Now, we can integrate again over the entire domain. Let C(β, L) = C̃(β, L)L

∫
Ω

|u(x)|2 dx ≤ C̃(β, L)

∫ L

0

(∫ L

0

|u′(t)|2dβ dt

)
dx

≤ C(β, L)

∫ L

0

∣∣∇u(x)∣∣2dβ dx.

Remark 5.5.1. In future sections, we will suppress the dependence on L as we

consider a fixed domain, and write the constant Cβ = C(β, L).

5.5.2 Non-Muckenhoupt weights

We now consider the case in which α ≥ 1.

We begin by dividing the domain into a near wall region and an interior region.

Let Tb ⊂ Th be all elements in the mesh that are on the boundary. Let Ti be all

remaining interior elements. Correspondingly, Ωb =
⋃

T∈Tb ,Ωi =
⋃

T∈Ti . We note

that for x ∈ Ωi, d(x) ≥ h.
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Proposition 5.5.1. If T ∈ Tb,

∫
T

|∇u(x)|2dβ dx

is a norm.

Proof. Scaling and sub-additivity are clear. Suppose

∫
T

(dβ/2|∇u(x)|)2 dx = 0.

Then, dβ/2|∇u(x)| = 0 on T . Except on a set of measure zero, d > 0, thus |∇u| = 0

on T . As u|T is a continuous polynomial and u = 0 at at least one point as u is on

the boundary, u = 0 on T.

Remark 5.5.2. As u is continuous on Ω, in particular Ωb,

∫
Ωb

|∇u(x)|2dβ dx

and ∫
Ω

|∇u(x)|2dβ dx

are norms for all β. However, this does not hold on Ωi as ∇u = 0 does not imply

u = 0 on interior elements.

Theorem 5.5.2. Let u ∈ Xh. Let β < 1, α ≥ β. Then, there exists C < ∞ which

depends on β, |Ω|, and mesh regularity such that

∫
Ω

|u|2 dx ≤ Chβ−α

∫
Ω

dα|∇u|2 dx.
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Proof. We split the domain into boundary and interior region:

∥u∥2 ≤ Cβ

∫
Ω

|∇u(x)|2dβdx

= Cβ

(∫
Ωb

|∇u(x)|2dβdx+
∫
Ωi

|∇u(x)|2dβdx
)

≤ Cβ

(∫
Ωb

|∇u(x)|2dβdx+
∫
Ωi

|∇u(x)|2 d
α−β

hα−β
dβdx

)
≤ Cβ

(∫
Ωb

|∇u(x)|2dβdx+ hβ−α

∫
Ωi

|∇u(x)|2dαdx
)
.

(5.5.1)

Next, we examine Ωb. We look element by element. A change of variables (x̂ = x
h
)

gives us:

∫
T

|∇u(x)|2dβdx =

∫
T̂

|h−1∇̂û(x̂)|2(hd̂)βh−Ndx̂

= hβ−2h−N

∫
T̂

|∇̂û(x̂)|2d̂βdx̂.
(5.5.2)

By norm equivalence, we have
∫
T̂
|∇̂û(x̂)|2d̂βdx̂ ≤ CT

∫
T̂
|∇̂û(x̂)|2d̂αdx̂, where CT

does not depend on h.

Then

hβ−2h−N

∫
T̂

|∇̂û(x̂)|2d̂βdx̂ ≤ CTh
β−2h−N

∫
T̂

|∇̂û(x̂)|2d̂αdx̂

= CTh
β−2h2−αh−N

∫
T̂

|h−1∇̂û(x̂)|2(hd̂)αdx̂

= CTh
β−α

∫
T

|∇u(x)|2dαdx.

(5.5.3)

Or, overall

∫
T

|∇u(x)|2dβdx ≤ CTh
β−α

∫
T

|∇u(x)|2dαdx. (5.5.4)

Then, let CT = maxT∈Tb CT
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∫
Ωb

|∇u(x)|2dβdx =
∑
T∈Tb

∫
T

|∇u(x)|2dβdx

≤
∑
T∈Tb

CTh
β−α

∫
T

|∇u(x)|2dαdx

≤ CTh
β−α

∫
Ωb

|∇u(x)|2dαdx.

(5.5.5)

Now, we recombine with our previous estimate.

∥u∥2 ≤ Cβ

(∫
Ωb

|∇u(x)|2dβdx+
∫
Ωi

|∇u(x)|2dβdx
)

≤ Cβh
β−α
(
CT

∫
Ωb

|∇u(x)|2dαdx+
∫
Ωi

|∇u(x)|2dαdx
)

= CβCTh
β−α

∫
Ω

|∇u(x)|2dαdx.

(5.5.6)

5.5.3 Condition Number

We look to estimate the maximum and minimum eigenvalues of Aα and their

dependence on h, α and N .

Let u ∈ Xh. Apply theorem 5.5.2 and remark 2.1.4 to bound a(u, u) below

a(u, u) =

∫
Ω

[dα + a0]|∇u|2 dx+
∫
Ω

a1|u|2 dx

=

∫
Ω

dα|∇u|2 dx+ a0∥∇u∥2 + a1∥u∥2

≥
(
Chα−β + a0CP + a1

)
∥u∥2.

(5.5.7)

Then, immediately we have ∀u ∈ Xh,

a(u, u)

CΩh−N∥u∥2
≥ Chα−β + a0CP + a1

CΩh−N
.
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Thus, by 5.4.1,

λmin ≥ Chα−β + a0CP + a1
CΩh−N

We recall that α ≥ β so the exponent of h in the numerator is positive. If both

a0 and a1 = 0, we we have λmin = O
(
hN+α−β

)
. However, if we either include lower

order terms or if the equation is nondegenerate, their contribution will dominate the

numerator as h→ 0 and we see λmin = O
(
hN
)
.

It is equally simple to bound a(u, u) above. By a standard inverse inequality,

∥∇u∥2 ≤ Cinvh
−2∥u∥2.

Let dmax = maxx∈Ω d(x). Thus:

a(u, u) =

∫
Ω

[dα + a0]|∇u|2 dx+
∫
Ω

a1|u|2 dx

= (a0 + dmax)∥∇u∥2 + a1∥u∥2

≤
(
(a0 + dmax)Cinvh

−2 + a1
)
∥u∥2

(5.5.8)

We then have
a(u, u)

CΩh−N∥u∥2
≤ (a0 + dmax)Cinvh

−2 + a1
CΩh−N

and by 5.4.2

λmax ≤ (a0 + dmax)Cinvh
−2 + a1

CΩh−N
.

As h→ 0, the numerator is dominated by (a0+dmax)Cinvh
−2 regardless of inclu-

sion or exclusion of lower order terms and whether or not the problem is degenerate.

Then, we have λmax = O
(
hN−2

)
.

Putting the two estimates together, we have

κ =
λmax

λmin

=
(a0 + dmax)Cinvh

−2 + a1
Chα−β + a0CP + a1

.
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5.5.4 Numerical Tests

Here, we look to numerically investigate the sharpness of our estimates of eigen-

values and condition number. Tests were performed using FEniCS software suite

[54]. The domain chosen was a unit circle in two dimensions. Tests on the effects of

the degeneracy at the boundary were performed varying α while fixing a0 = a1 = 0.

To test the effects of lower order terms, α = 2 was fixed and tests were performed

with a0 = 0, 1 and a1 = 0, 1. In all tests, a we used Lagrange basis functions with

polynomial degree = 1.

5.5.4.1 Effects of Degeneracy at the Boundary

Section 5.5.3 predicts that the minimum eigenvalue will scale like O
(
hN+α−β

)
for β ≤ α, β < 1. We test α = 0, .5, 1, 2, and 3. For α < 1, we expect scaling

like O
(
hN
)
, for α ≥ 1 we select β = 1 − ε and expect O

(
hα+N−1

)
. We expect the

maximum eigenvalue to scale like O
(
hN−2

)
regardless of α.

In our tests, we take N = 2. Expected scaling of the minimum eigenvalue for

α = 0, α = .5 is O (h2) , we see O (h1.976) and O (h2.025) respectively, i.e. scaling is

as predicted. For α = 1, we expect scaling like O (h2+ε) and see O (h2.237) , slightly

worse than expected but not catastrophically so. We expect scaling of O (h3+ε) and

O (h4+ε) for α = 2, 3 respectively. The actual scaling, O (h3.044) and O (h3.998) reflects

the predicted results.

5.5.4.2 Effects of lower order terms

Tests were preformed with a0 = 0, 1 and a1 = 0, 1. The predicted behavior is that

it will minimum eigenvalue scale like O (h2) in all tests except when lower order terms
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Figure 16: Minimum eigenvalue scales like hN−1+α for α ≥ 1, hN−1 for α < 1.

Maximum eigenvalue scales like hN−2

are excluded and the equation is degenerate. The observed behavior was as expected.

When a0 ̸= 0, the equation was not degenerate and as expected, the eigenvalues like

O (h2), regardless of the addition of lower order terms. We also confirmed that the

addition of lower order terms did ameliorate the degeneracy at the boundary, that is

for a0 = 0, a1 = 1 we saw the expected O (h2) behavior of the minimum eigenvalue.

Echoing the previous test, the degenerate equation with no lower order terms scaled

like O (h3) . In both cases, maximum eigenvalue is virtually independent of h.

5.6 Regularization

There are many applications where it is necessary to solve ill posed problems, or ill

conditioned problems with noisy data, hence there exist a wide range of regularization

strategies as well as methods for selecting regularization parameters, see [42],[40],[53].
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Figure 17: Minimum and maximum eigenvalues varying a0, a1 agree with theory:

lower order terms alleviate ill conditioning

We will consider these regularization strategies applied to our simplified degenerate

elliptic problem, 5.3.2. In particular, though our matrix is ill conditioned, it is

positive and invertible, and we do not need to consider strategies designed to handle

problems that are not.

Though our data may have minimal noise compared to data collected with im-

precise instruments, the right hand side vector is not exact, and the accuracy may

depend on mesh size, quadrature scheme, and smoothness of the function. Exact

estimates for how many digits are accurate are problem dependant. We also have an

estimate for the condition number of the linear system that is dependent on mesh

width. This will allow us to consider regularization strategies that may be extended

to the full k-equation in place of the ν△k term.

The key here is that these regularization strategies are based on estimates of

problem noise, and are implemented to improve conditioning of the linear system and

increase accuracy in the computed solution. In contrast, ν is a physical parameter
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that dictates the behavior of the flow but has no effect or relation to the noise in the

data. Thus, using it as a regularization parameter is absurd.

5.6.1 Regularization for General Ill-Posed Problems

We will present for completeness two basic error estimates. Here, we assume

that A is a symmetric positive definite matrices, and we will consider the l2 operator

norm:

∥A∥ = max
x⃗∈Rn\{0}

∥Ax⃗∥2
∥x⃗∥2

.

We recall that

ρ(A) ≤ ∥A∥2,

and that if A is normal, this becomes an equality.

We seek x⃗true such that

Ax⃗true = b⃗true. (5.6.1)

However, we also assume that we do not know b⃗true. That is, we have b⃗ such that

∥⃗b− b⃗true∥ = O (noise). We then will solve

Ax⃗ = b⃗ (5.6.2)

and we seek to minimize

∥x⃗true − x⃗∥.

First, we present two simple lemmas

Lemma 5.6.1. Let A a be symmetric positive definite and µ > 0. Then,

∥(A+ µI)−1| ≤ 1

µ
.
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Proof. The eigenvalues of (A+ µI)−1 are given by 1
λi+µ

where λi is an eigenvalue of

A. As λi > 0, each eigenvalue of (A+ µI)−1 is bounded by 1
µ
.

As (A+ µI)−1 is symmetric positive definite, the norm is bounded by 1
µ

Lemma 5.6.2. Let A be symmetric positive definite. Then for any µ,

∥(A+ µI)−1A∥ ≤ 1.

Proof. First, the eigenvalues of (A+ µI)−1A are given by

λi
λi + µ

,

where λi is an eigenvalue of A. Next, as (A + µI)−1A is symmetric positive definite

(it is more clear that [(A+ µI)−1A]−1 = A−1(A+ µI) is symmetric positive definite,

a symmetric positive definite matrix will have a symmetric positive definite inverse).

As all eigenvalues are clearly bounded above by 1, so is the ℓ2 norm of the

matrix.

Then, we have the following simple error estimates

Theorem 5.6.1. Let x⃗ solve Ax⃗ = b⃗ and let x⃗true solve Ax⃗true = b⃗true. Then,

∥x⃗true − x⃗∥
∥x⃗∥

≤ ∥A∥∥A−1∥∥⃗btrue − b⃗∥
∥⃗btrue∥

.

Proof. Subtract (5.6.2) from (5.6.1)

A(x⃗true − x⃗) = b⃗true − b⃗,

A is invertible.

x⃗true − x⃗ = A−1(⃗btrue − b⃗).
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Matrix norms are sub-multiplicative. Thus, we have

∥A−1(⃗btrue − b⃗)∥ ≤ ∥A−1∥∥⃗btrue − b⃗∥

and

∥Ax⃗true∥ ≤ ∥A∥∥x⃗true∥.

Thus, dividing by ∥⃗btrue∥ = ∥Ax⃗true∥, using sub-multiplicativity, and rearranging, we

have
∥x⃗true − x⃗∥

∥x⃗∥
≤ ∥A∥∥A−1∥∥⃗btrue − b⃗∥

∥⃗btrue∥
.

Theorem 5.6.2. Let x⃗ solve (A+ µI)x⃗ = b⃗ and let x⃗true solve Ax⃗true = b⃗true. Then,

∥x⃗true − x⃗∥ ≤ 1

µ
∥⃗btrue − b⃗∥+ c∥A−1∥µ.

Proof. We have

(A+ µI)(x⃗true − x⃗) = b⃗true − b⃗+ µx⃗true.

A+ µI is invertible.

x⃗true − x⃗ = (A+ µI)−1(⃗btrue − b⃗) + (A+ µI)−1µx⃗true

Taking the norm of both sides and using sub-multiplicitivity on the first term, we

have

∥x⃗true − x⃗∥ = ∥(A+ µI)−1∥∥⃗btrue − b⃗∥+ ∥(A+ µI)−1µx⃗true∥.

As A and µI are symmetric positive definite, we have 1
λ
= ∥(µI)−1∥ ≤ ∥(A+ µI)−1∥:

∥x⃗true − x⃗∥ =
1

λ
∥⃗btrue − b⃗∥+ ∥(A+ µI)−1µx⃗true∥.
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For the second term, we use that x⃗true ∈ R(A), i.e. there exists some y⃗ =

A−1x⃗true. Then, using lemma 5.6.2

∥(A+µI)−1µx⃗true∥ = µ∥(A+µI)−1AA−1x⃗true∥ ≤ µ∥Ax⃗true∥∥(A+µI)−1A∥ ≤ c∥A−1∥.

This gives us

∥x⃗true − x⃗∥ ≤ 1

µ
∥⃗btrue − b⃗∥+ cµ∥A−1∥.

For a result in terms of relative errors, use ∥y⃗∥ ≤ ∥A−1∥∥x⃗true∥, ∥A∥∥x⃗true∥, and use

as before that
1

∥A∥∥x⃗true∥
≤ 1

∥Ax⃗true∥
=

1

∥⃗btrue∥
.

This leads immediately to

∥x⃗true − x⃗∥
∥x⃗true∥

≤ ∥A∥
µ

∥⃗btrue − b⃗∥
∥⃗btrue∥

+ µ∥A−1∥.

The preceding theorems offer insight into the choice of regularization. Without

regularization, we have

Relative Error ≤ κ(A)Relative Noise

or

Error ≤ ∥A−1∥Noise.

With regularization, we chose µ such that µ ≈ O
(
(Noise)1/2

)
Error ≤ O

((
∥A−1∥Noise

)1/2)
.

Thus, for very ill posed problems, it is necessary to add regularization, as all

data inherently contains some noise, even if at the level of machine precision. We
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note that with minor modifications, µI may be replaced with an easily invertible

matrix S with ∥S∥ ≈ µ. With no information about problem structure, the choice

µI is logical, more information about the particular structure of A may lead us to

a different choice. Further, in terms of implementation, adding µM where M is the

finite element mass matrix, or µS where S is the finite element stiffness matrix may

be the simplest option, where µ is chosen as before.

5.6.2 Regularization for Degenerate Elliptic Boundary Value Problems

Applying standard regularization techniques to the ill-posed, super Muckenhoupt

degenerate elliptic boundary value problem is relatively straightforward.

We have seen that adding a lower order term improves the condition number,

resulting in scaling that is equivalent to the nondegenerate problem as h → 0. Esti-

mating the noise is heavily problem dependent, and the dependence of the condition

number on the mesh width has been thoroughly examined in this chapter. The

simplest method is to consider the perturbed problem

−∇ · (d2∇k) + µk = f.

We recall the scaling of the norm (or largest eigenvalue) of the finite element mass

matrix is O
(
hN
)
, thus µ can be selected to minimize error based on estimates of

noise and mesh width as well as the spacial dimension.

We also may perturb the problem as

−∇ · (d2∇k)− µ△k = f,

where the scaling of the finite element mass matrix is like O
(
hN−2

)
. Again, the

scaling of µ is selected to minimize the error best given the spacial dimension and
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estimates of noise and mesh width. The selection of µ = ν does not take this into

account. Improved solver performance may be expected due to additional regular-

ization, however there is no guarantee that ν is of the correct size to also minimize

errors.

Remark 5.6.1. Noise is estimated from problem data, model accuracy, and mesh

width. Heuristics exist for this estimation.

∥A−1∥ = 1
λmin

≈ hN−1+α. Then, for use in the k-equation, µ may be chosen to be

approximately
(
O (Noise)hN+1

)1/2
to minimize error.

5.7 Conclusion

We proved a simple estimate on the condition number of the stiffness matrix of a

simplified, linearized problem and showed numerically that we observe the predicted

scaling. We also discuss regularization options to address the ill conditioning of the

linear system, which may be extended to improve solver performance in the full

k-equation. Recalling the motivation of the k-equation and its derivation, propose

regularization independent of physical parameters. We also note that we expect the

lower order terms from the time derivative and the modelled dissipation of turbulent

kinetic energy to also provide regularization that should ameliorate the ill effects of

the boundary degeneracy.

While leaving open the question of existence of solutions, we show that due to

the inclusion of lower order terms, the inclusion or exclusion of the term ν△k does

not affect the spectral conditioning of the linear system, independent of the near wall

behavior of νT . Then, if the problem is ill-posed, it is not reflected in this condition
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6.0 Conclusions and Open Problems

From aeronautics to climate models, from extracting oil from the ground to the

flow of coolant in nuclear reactors, there are a wide range of applications where accu-

rate fluid flow simulations offer great benefit to human life. However, fully resolving

complex flows remains computationally infeasible for many important applications,

and models that seek to resolve this are faced with myriad issues as well. This dis-

sertation seeks to address a few key practical difficulties faced while simulating these

flows. These problems, individually and together, open new research directions to

explore as we strive towards the elusive goal of time accurate predictions of high

Reynolds number flows.

Chapter 3 demonstrates numerically that some treatment of the nonlinear con-

vective term in conjunction with a large timestep may lead to dramatic overdissi-

pation in body force driven flow. We recall that we must decrease the time step

as the Reynolds number increases to fully resolve the smallest eddies; it is unclear

the relation between the time step size restriction for second order methods is more

restrictive than the condition to fully resolve small eddies.

However, we also consider eddy viscosity turbulence models, e.g. chapter 4, which

model averages of the flow. These averages evolve more smoothly in time and we may

expect to be able to take larger time steps, particularly with higher order methods.

However, the eddy viscosity model is independent of the treatment of the nonlinear

term. It is possible that additional dissipation caused by the choice of linearization

of the convective term would adversely affect the total dissipation rate, leading to

overdissipation unrelated to the choice of eddy viscosity model.

As we have identified a potential problem in simulations of body force driven
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flow, it is important to consider remedies. Time filters to raise the order of a scheme

or decrease numerical dissipation have been studied in [20], [73], and used in section

4.5. Investigating the effectiveness of such filters in controlling numerical dissipation

and recovering the correct scaling of the energy dissipation rate is an open problem.

Further, time adaptivity to control numerical dissipation by controlling the ra-

tio of numerical to viscous dissipation was introduced in [6], and could potentially

increase accuracy and efficiency while preventing overdissipation in the long time av-

erage. Figure 8 indicates that controlling ∥un+1
β ∥2 − ∥un+1

β∗ ∥2 may control the added

dissipation due to the higher order approximation in the nonlinear term. Analyzing

the long time energy dissipation rate for such adaptive timestepping methods remains

an important issue in addressing efficiency and accuracy in fluid flow calculations.

Lastly, [50] offers a calculable quantity to ensure that that the mesh will not effect

the scaling of the energy dissipation rate. Developing an analogous result for the

time discretization would be valuable.

In body force driven flow, U depends on the dissipation and force, and cannot

be prescribed directly, in contrast to some boundary driven flows. Crucially, we

saw that this leads to two velocity scales defined by the timesstepping scheme for

second order linearly implicit treatment of the nonlinearity. The difference in U

and U∗, which correlated with overdissipation, may not be present in such boundary

driven flow (e.g. chapter 4). There, the definition of U is independent of the energy

dissipation rate or time discretization scheme. This overdissipation was not seen

in the numerical tests in 4.5, however, the timestep was small and a time filter to

control numerical dissipation was used. In practice, many important applications

are boundary driven, hence continuing this analysis to the case where the fluid is

driven by boundary conditions and not a body force is of great interest. Careful

analysis and numerical testing of the effect of numerical dissipation and in particular
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the treatment of the nonlinear term in these applications is important.

Chapter 4 analyzes a new turbulence length scale that leverages true near wall

asymptotics to ensure the correct energy dissipation rate. Correcting near wall

asymptotics of νT directly can be seen in [37], where the near wall behavior of νT

is enforced to be O (d2), a choice that guarantees the model will not overdissipate.

These promising results indicate that turbulence models based on strong mathemati-

cal foundations that respect the true behavior may lead to more accurate simulations

of fluid flows, in particular in the consideration of the energy dissipation rate.

In particular, extensions to ensemble algorithms is one of great interest. These

algorithms, in addition to extending predictability horizons in the calculation of the

mean flow offer an estimate for turbulent kinetic energy with the kinetic energy in

the ensemble fluctuations. This choice of k will be O (d2) automatically, making it a

natural choice for eddy viscosity turbulence models. This allows for length scales that

avoid the occasionally expensive calculation of near wall distance. This is explored

in [34], [33].

Artificial compressibility was combined with ensembles in [25], where an increase

in speed was seen in the ensemble calculations. Using this method for increased effi-

ciency in calculations to approximations to k has not yet been explored. [19] presents

analysis of energy dissipation rate for flows with grad-div stabilization. Extending

this analysis to penalty type methods and penalty ensembles remains open as well.

This extension aligns conceptually with the principle of discovering models that are

efficient, simple, and accurate to the true behavior of the modeled equations.

Chapter 5.2 discusses an simplification of the k-equation which is ill-posed in the

continuous case. We explore the ill-conditioning caused by this in k-equation when

the ν∆k term is omitted. Analysis of the condition number suggests that the time

dependant elliptic problem will not be ill conditioned. Further exploration of causes
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of solver failure with the exclusion of the term may be considered. Regardless, we

present a basic strategy for regularization of the ill conditioned linear systems arising

from the simplified version of the k-equation. We suggest that this regularization

strategy, based on problem data not on physical parameters, may offer the same

benefit as the addition of the viscous term while respecting the near wall behavior.

Numerical exploration of the near wall behavior of the calculated k with the exclusion

and inclusion of the regularization terms should be performed, and considered for

multiple choices of turbulence length scales.
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[3] Buĺıček, M., and Málek, J. Large data analysis for Kolmogorov’s two-equation
model of turbulence. Nonlinear Analysis: Real World Applications 50 (Nov 2016).

[4] Busse, F. The optimum theory of turbulence. 77–121.

[5] Butcher, J. C. Thirty years of G-stability. BIT 46, 3 (Sep 2006), 479–489.

[6] Capuano, F., Sanderse, B., De Angelis, E., and Coppola, G. A minimum-
dissipation time-integration strategy for large-eddy simulation of incompressible tur-
bulent flows. In AIMETA 2017 Proceedings of the XXIII Conference of the Italian
Association of Theoretical and Applied Mechanics (Sept. 2017), pp. 2311–2323.

[7] C.G. Speziale, R. A., and Anderson, E. A new mixing length formulation for
the eddy-diffusivity closure. AIAA J. 30 (1992).

[8] Chacon Rebollo, T., and Lewandowski, R. Mathematical and numerical foun-
dations of turbulence models and applications, 2014 ed. Modeling and simulation in
science, engineering & technology. Birkhauser Boston, Secaucus, NJ, June 2014.

[9] Chorin, A. J., and Marsden, J. E. A mathematical introduction to fluid me-
chanics, 3 ed. Texts in Applied Mathematics. Springer, New York, NY, June 2000.

[10] Chow, Y. T., and Pakzad, A. On the zeroth law of turbulence for the stochasti-
cally forced Navier-Stokes equations. Discrete and Continuous Dynamical Systems -
B 27, 9 (2022), 5181–5203.

102



[11] Dahlquist, G. On the relation of G-stability to other stability concepts for linear
multistep methods.

[12] Dahlquist, G. On accuracy and unconditional stability of linear multistep methods
for second order differential equations. BIT 18, 2 (jun 1978), 133–136.

[13] Dahlquist, G. On one-leg multistep methods. SIAM Journal on Numerical Analysis
20, 6 (1983), 1130–1138.

[14] Davidson, P. Turbulence, 2 ed. Oxford University Press, London, England, July
2015.

[15] Deardorff, J. Clear and cloud-capped mixed layers, their numerical simulation,
structure and growth and parameterisation. In Seminar on the Treatment of the
Boundary Layer in Numerical Weather Prediction, 6-10 September 1976 (Shinfield
Park, Reading, 1976), ECMWF, ECMWF, pp. 234–284.

[16] DeCaria, V. Variable stepsize, variable order methods for partial differential equa-
tions. Sep 2019.

[17] DeCaria, V., Guzel, A., Layton, W., and Li, Y. A variable stepsize, variable
order family of low complexity. SIAM Journal on Scientific Computing 43, 3 (2021),
A2130–A2160.

[18] DeCaria, V., Iliescu, T., Layton, W., McLaughlin, M., and Schneier, M.
An artificial compression reduced order model. SIAM Journal on Numerical Analysis
58, 1 (2020), 565–589.

[19] DeCaria, V., Layton, W., Pakzad, A., Rong, Y., Sahin, N., and Zhao, H.
On the determination of the grad-div criterion. Journal of Mathematical Analysis and
Applications 467, 2 (2018), 1032–1037.

[20] DeCaria, V., Layton, W., and Zhao, H. A time-accurate, adaptive discretiza-
tion for fluid flow problems. arXiv, 2018.

103



[21] Doering, C. R., and Constantin, P. Energy dissipation in shear driven turbu-
lence. Phys. Rev. Lett. 69 (Sep 1992), 1648–1651.

[22] Doering, C. R., and Foias, C. Energy dissipation in body-forced turbulence.
Journal of Fluid Mechanics 467 (2002), 289–306.

[23] Dyda, B., Ihnatsyeva, L., Lehrbäck, J., Tuominen, H., and Vähäkangas,
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