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UNFITTED FINITE ELEMENT METHODS FOR THE STOKES
PROBLEM USING THE SCOTT-VOGELIUS PAIR

Haoran Liu, PhD

University of Pittsburgh, 2022

In this thesis, we construct and analyze two unfitted finite element methods for
the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. For
both methods, for k£ > d, where d is the dimension of the space, the velocity space
consists of continuous piecewise polynomials of degree k, and the pressure space
consists of piecewise polynomials of degree £ — 1 without continuity constraints. The
discrete piecewise polynomial spaces are defined on macro-element triangulations
which are not fitted to the smooth physical domain.

The first unfitted finite element method we propose is a finite element method
with boundary correction for the Stokes problem on 2D domains. We introduce a
Lagrange multiplier space consisting of continuous piecewise polynomials of degree
k with respect to the boundary partition to enforce the boundary condition as well
as to mitigate the lack of pressure robustness. We show the well-posedness of the
method by proving several inf-sup conditions. In addition, we show this method has
optimal order convergence rate and yields a divergenece-free velocity approximation.

The second unfitted finite element method we propose is a CutFEM for the
Stokes problem on both 2D and 3D domains. Boundary conditions are imposed via
penalization through the help of a Nitsche-type discretization. We ensure the stabil-
ity with respect to small and anisotropic cuts of the bulk elements by adding local
ghost penalty stabilization terms. We show the method is well-posed and possesses

a divergence—free property of the discrete velocity outside an O(h) neighborhood of

v



the boundary. To mitigate the error caused by the violation of the divergence-free
condition around the boundary, we introduce local grad-div stablization. Through
the error analysis, we show that the grad-div parameter can scale like O(h™1), allow-
ing a rather heavy penalty for the violation of mass conservation, while still ensuring

optimal order error estimates.
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1.0 Introduction

1.1 Finite Element Methods Applied to the Stokes Problem on
Polytopal Domains

The Navier-Stokes equations are a fundamental model of incompressible flows.
This model has wide applications in science and engineering. For instance, it can be
used to model fluid flows in a pipe or a channel, or the air flows around the wings
of an airplane. For a domain Q C R?, where d € {2,3}, and a time interval (0,T),
where T' < oo, a simple form of the Naiver-Stokes equations assumes constant fluid

density, and is given as follows:

ou—vAu+ (u-V)u+Vp=f in €, (1.1.1a)

divu=0 inQ (1.1.1b)

where u is the velocity of the fluid, p is the pressure, and v is the viscosity, which
is assumed to be constant. The right-hand function f stands for the external force,
and the nonlinear term (u - V)u stands for the inertial force. The Laplacian term
Awu represents the viscous effects of the fluid. The second equation represents the
incompressibility of the fluid.

As a constrained system of partial differential equaitons, the Navier-Stokes equa-
tions pose some mathematical and numerical difficulties. We consider a basic model,
the stationary Stokes equations, to highlight and focus on this coupling and to study
the divergence-free constraint. The Stokes equations with Dirichlet boundary condi-

tions are given as:



—vAu+Vp=f in €, (1.1.2a)
divu =0 in €, (1.1.2b)

u=g on OSL. (1.1.2¢)

Since the system of Stokes equations does not have the nonlinear term (u - V)u and
is not time-dependent, it is obvious that this model problem is much simpler than
the Navier-Stokes equations. For simplicity, we set g = 0.

We multiply a test function v from H{(€2) to both sides of (1.1.2a), and a test
function ¢ from L3(f2) to both sides of (1.1.2b), then integrate both sides of the
equations. Using integration-by-parts, we derive the weak formulation of the Stokes

problem: Find uw € H}(Q) and p € L2(2) such that

v(Vu, Vo) — (p,dive) = (f,v) Vv e HyQ), (1.1.3a)
—(divau, q) =0 Vg€ Li(Q). (1.1.3b)

Here we use (-, -) to denote the L? inner product over €.

To apply finite element methods to (1.1.3), assuming €2 to be a polytopal domain
here, we triangulate the domain €2 into a simplicial mesh 7}, where h stands for the
mesh parameter, and we define the following piecewise polynomial space with respect
to Tp:

Pr(Ty) ={veC(Q):v|lr e P(T) VT € Ty},

Phise(T,) = {v € L*(Q) :v|p € P(T) VT € Tp,}.

We use boldface to denote the counterpart for vector-valued functions and spaces.



Let V,, € H}(Q) and Q, C L(Q) be finite-dimensional spaces consisting of
piecewise polynomials with respect to T,. Then a finite element method for (1.1.2)

based on (1.1.3) reads: Find a u, € V}, and a pj, € @}, such that

v(Vuy, Vv) — (pp,dive) = (f,v) Vovev, (1.1.4a)
—(divup,q) =0 Vg€ Q. (1.1.4b)

We say that the pair of V;, x @), for the finite element method (1.1.4) is stable
if the Ladyzhenskaya—Babuska—Brezzi (LBB) condition is satisfied [8]: there exists a
constant C' > 0 that is independent of the mesh parameter h such that

(divw)q dx
Cllgllzz@) < sup Loldivvlade

Vg € Qn.
vevinior  lvllaie)

Here we list some common choice of stable Stokes pairs [8, 51]:

1. Py—Po: Vi, =Py(T) N HHQ) and Qy, = Pése(Ty,) N L2(Q), where d represents
the dimension of the domain;

2. Taylor-Hood Element: V;, = P(T,) N H}(Q) and Qp, = Pr_1(Tp,) N L3(Q) for
k> 2;

3. MINT element: V;, = (P1(T) + Bar1(Tn)) N HY(Q) and Qp, = P1(Ty,) N LE(Q),
where B, 1(T;) denotes the space of local bubble functions of degree d+ 1. Here,

d represents the dimension of the domain;



1.2 Divergence-free Elements for the Stokes Problem

We say V}, x @), is a conforming, stable, and divergence-free pair for the Stokes
problem if the following conditions with respect to a simplicial triangulation of the

domain (2 are satisfied [21]:

1. The discrete spaces are conforming, i.e., we have Vj, C H}(Q) and Q) C L3(Q);

2. The discrete pair Vj, x @y, is stable, i.e., the Ladyzhenskaja-Babuska-Brezzi (LBB)
condition is satisfied.

3. the pair produces pointwise divergence-free discrete velocity solution w, € V}, for

the Stokes problem.

The third condition is typically satisfied by enforcing the image of the divergence
operator on the velocity space Vj, to be a subset of the pressure space @, i.e.,
divV, C Q). Many finite element methods have been developed over the past years:
Some notable methods that fit this description are Taylor-Hood elements [8], P4 — Py
elements [8], MINI element [1], etc. However, most of those only satisfied the first two
conditions mentioned above, with the mass conservation enforced only weakly. On
the other hand, Scott and Vogelius showed that the Pj, —P%*¢ pair in two dimensions
satisfies all three conditions mentioned above, if the following criteria are met [51, 54]:
(1) the polynomial degree k is greater or equal to 4; (2) the triangulation is quasi-
uniform (this condition can be dropped according to [28]); (3) there are no singular
vertices, i.e., vertices that fall on two straight lines, within the triangulation. Later,
it has been shown on a barycenter refined mesh, if £ > 2 in two dimensions (2], the
pair is stable, conforming and divergence-free. In three dimensions, it has also been
shown that on a barycenter refined quasi-uniform tetrahedral mesh, if £ > 3, the pair

is stable, conforming and divergence-free [55]. Some other examples of finite element



methods that satisfies all three conditions above include Guzmaéan-Neilan elements
[25] and Falk-Neilan elements [21]. In this thesis, we focus on Scott-Vogelius element
for its properties that for k£ > d the pair yields exact divergence-free velocity solutions
and the pair yields stable solution pair on a barycenter refined mesh [14].

Divergence—free schemes have several inherent advantages, e.g., exact conserva-
tion laws for any mesh size and long-time stability [17, 7]. In the case where the
domain €2 is a polytope, divergence—free schemes also provide pressure-robustness;
similar to the continuous setting, modifying the source term in the Stokes problem
by a gradient field only affects the pressure approximation. This invariance leads to a
decoupling in the velocity error, with abstract estimates independent of the viscosity.
Thus, divergence-free schemes may be advantageous for high Reynold number flows
and /or flows with large pressure gradients [49, 50, 38].

The advantages of the divergence-free elements is highlighted through a com-

parison between using Taylor-Hood and Scott-Vogelius for an example problem in

[14]:

Example 1.2.1. Consider the following linear steady Stokes problem in R?, where
Q=1(0,1) x (0,1):

0
—Au + Vp =Ra in Q, (1.2.1a)
Y
Vou=0 in Q, (1.2.1b)
u=0 on 2. (1.2.1c)

Here, the Rayleigh number Ra = 103. The solution to this system is (u,p) =

(0, Bay? — B2) We use Netgen/NGSolve [48] to numerically solve this example. We



set the maximum mesh size to be 0.09. The velocity error ||[Vu — V| r2q) from
the approximation using P, — P; Taylor-Hood is 162.1, which is of the same order
as the Rayleigh number Ra. However, the velocity error |[Vu — Vuy||p2q) from
the approximation using P, — P%*¢ Scott-Vogelius on a barycenter refined mesh is
2.542e-14. The difference comes from the fact that the Scott-Vogelius pair is pressure
robust, i.e., the velocity error can be decoupled from the pressure error, which is one
of the advantages of divergence-free elements, whereas the Taylor-Hood pair is not.
We illustrate the velocity error ||Vu — Vuyl|r2@) in Figure 1 and Figure 2 using

Taylor-Hood and Scott-Vogelius, respectively:
I |

3.939e+02 6.08de+084 1.197e+85 1.793e+05 2.398e+85

Figure 1: H' velocity error using Taylor-Hood
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Figure 2: H'! velocity error using Scott-Vogelius

1.3 Unfitted Finite Element Methods

In contrast to traditional finite element methods (FEMs), where the computa-
tional mesh conform to the physical domain, unfitted finite element methods include
the information of the physical domain without fitting the computational mesh to

the boundary of the physical domain. The most notable advantages of unfitted finite



element methods are that, for dynamic problems with moving boundary, there is no

need to remesh at each time step and that it is easier to handle the problem imposed

on a physical domain where the boundary is implicitly defined.

This thesis explores two classes of unfitted methods: FEMs with boundary cor-

rection and CutFEM. In particular, we look into FEMs with boundary correction

and CutFEM both using divergence-free finite elements.

1.

Boundary Correction

FEMs with boundary correction was first proposed and analyzed in 1972 for the
Poisson problem [12], and the technique has since been improved and refined
recently in [13, 39, 5, 4, 3].

The method starts with a background mesh containing the domain €2, and the
computational mesh simply consists of those elements fully contained in Q. The
method uses a standard Nitsche-based formulation to enforces Dirichlet boundary
conditions via penalization. Since the computational mesh is not conformed to
the physical domain, the boundary condition is corrected using an application of
Taylor’s theorem.

This procedure is rather standard for the Poisson problem, but for the Stokes
problem, inf-sup stability cannot be immediately proved by using standard argu-
ments. This issue has been circumvented in [39, 4] using pressure-stabilization.
However, this added stabilization leads to additional consistency errors and poor
conservation properties.

CutFEM

The precursor of CutFEM was first introduced in [6] for the Poisson problem, and
there were some recent studies of the Stokes problem regarding unfitted variants

of equal order pressure-velocity, Taylor-Hood and several other well-known finite



element methods [15, 11, 27, 30, 34, 35]. The CutFEM poses a similar challenge
as the boundary correction method: the inf-sup stability for the method with a
uniformly bounded, mesh-independent constant cannot be proved using standard
arguments. However, [27] provides a framework to show discrete inf-sup stability

for unfitted finite elements, and we adapted this framework in Chapter 3.

For both methods, unfitted mass-conserving elements for primitive-variable formula-
tions of the Stokes or incompressible Navier-Stokes equations are not well developed.
Based on the known divergence-free property of the Scott-Vogelius pair, in this thesis,
we developed one FEM with boundary correction and one CutFEM.

For the FEM with boundary correction, we construct a boundary correction finite
element method for the Stokes problem based on the Scott-Vogelius pair on Clough-
Tocher splits. By the nature of the Scott-Vogelius pair, we have that the image of
the divergence operator on the velocity space is a subset of the pressure space, and
therefore, the scheme yields divergence-free velocity approximations. As far as we
are aware, this is the first H'-conforming divergence—free finite element method for
incompressible flow on unfitted meshes. By constructing our FEM this way, we get
exact enforcement of conservation laws on any mesh sizes. We carefully design the
computational mesh such that it inherits a macro element structure. By doing so, we
show that the resulting pair is uniformly stable on the unfitted domain with respect
to the discretization parameter. As far as we are aware, this is the first uniform
inf-sup stability result of a divergence-free Stokes pair on unfitted meshes. Because
of the weak enforcement of boundary conditions via penalization, even though the
scheme is divergence-free, it does not have pressure-robustness. We introduce an
additional Lagrange multiplier that enforces the boundary conditions of the normal

component of the velocity to mitigate the lack of pressure robustness in the scheme.



Since mass conservation is a favorable property for numerical solutions to equa-
tions governing the motion of fluids, we develop our CutFEM using the Scott-Vogelius
pair as well. For this method, we impose a boundary condition on a surface cutting
through a background mesh by using the Nitsche method [29], and we add local
ghost penalty stabilization terms to ensure the stability with respect to small and
anisotropic cuts of the bulk elements. The stability of pressure on cut elements
requires an additional ghost penalty term defined on a thin strip of elements in
a proximity of the boundary. The divergence-condition in the mixed formulation
is changed by this additional stabilizing term. Thus, the scheme does not yield
strictly divergence—free velocity approximations. However, we show that pointwise
mass conservation holds in the volume occupied by the fluid except in an O(h) strip.
Moreover, we introduce local grad-div stabilization [42] to minimize the error caused
by the violation of the divergence—free condition.

The remainder of the thesis is structured as follows: In chapter 2, we develop
a boundary correction method based on the Scott-Vogelius pair on Clough-Tocher
splits with macro-element structure: The velocity space consists of continuous piece-
wise polynomials of degree k, and the pressure space consists of piecewise polyno-
mials of degree (k — 1) without continuity constraints. We prove the well-posedness
of the method and show the method converges with optimal order and the velocity
approximation is divergence—free.

In chapter 3, we develop a CutFEM discretization for the Stokes problem based on
the Scott-Vogelius pair. This method does not yield exactly divergence—free velocity
approximations. The CutFEM includes a local grad-div stabilization to mitigate the
error brought by the violation of mass conservation property. We show the well-
posedness of the method and that the method converges with optimal order.

In chapter 4, we present two numerical experiments using the boundary correction

10



method introduced in chapter 2 and two using numerical experiments using the
CwtFEM introduced in chapter 3 to illustrate the theoretic results proved in the
respective chapters. In addition, we conduct two numerical experiments for the

stationary Navier—Stokes equations using CutFEM.

11



2.0 A Divergence-Free Finite Element Method for the Stokes Problem

with Boundary Correction

In this chapter, we develop and analyze a divergence-free finite element method
for the Stokes problem with boundary correction.

We start with a background mesh that completely contains the physical domain
). Then we set the portion of the mesh that is a subset of the closure of the domain
Q) to be the computational domain. We use a standard Nitsche-based formulation
as a basis for the method. The boundary conditions are then enforced through
penalization. Since the computational domain does not conform to the physical
domain, we use Taylor’s theorem to transfer the boundary conditions on the physical
domain to the computational domain.

The methodology is standard for the Possion problem, but not for the Stokes
problem, mainly for the two following reasons:

(1) We cannot immediately prove the inf-sup stability using the standard ap-
proach. The standard inf-sup stability proof requires a decomposition of the Lipschitz
domain into a finite number of strictly star shaped domain; however, for the non-
conforming computational domain, even if the boundary of the physical domain is
smooth enough, and the mesh is shape regular, the number of the strictly star-shaped
domain in the decomposition of the computational domain will become unbounded
as the mesh parameter h goes to 0. Therefore, the positive constant in the inf-sup
condition is unbounded from below. One way to bypass this issue is to add pressure-
stabilization terms to the method. However, adding pressure-stabilization terms will
introduce additional consistency errors. Instead, we design the computational mesh

to be macro element structure preserving and use the framework provided in [27] to

12



show inf-sup stability on the unfitted domain.

(2) A divergence-free method for the Stokes problem with boundary correction
is not pressure robust. This is caused by the fact that we use a Nitsche-based formu-
lation, which enforces the boundary conditions weakly via penalization. We address
this issue by introducing a Lagrange multiplier space, which consists of continuous
piecewise quadrtic polynomials with respect to the partition of the boundary of the
computational domain, to enforce the boundary conditions of the normal compo-
nent of the velocity. This Lagrange multiplier is an approximation of the pressure
restricted to the computational boundary. By introducing the Lagrange multiplier
space, we mitigate the lack of pressure-robustness of the method. This leads to a
weakly-coupled velocity error estimate, where the dependence of the velocity error

on the viscosity is weakened by a higher-order power of the mesh parameter h.

2.1 Preliminaries

We consider the Stokes problem on a two-dimensional open, bounded domain

Q C R?,

—vAu+Vp=f in €, (2.1.1a)
divu=0  inQ, (2.1.1b)
u=g on 02, (2.1.1c)

where v > 0 is the viscosity constant. For simplicity in the presentation, we present
the results regarding to the problem with homogeneous boundary condition, i.e,
g = 0. The extension from the homogeneous boundary conditions to the non-

homogeneous boundary conditions is relatively straight-forward [31].

13



2.1.1 Computational Domain

Let S C R? to be an open polygon such that Q C S. Let 8, be a triangulation S
consists of shape regular triangles, which means that there exists a constant py € R

such that
diamT

7|2

max < Po
TeSy p ’

where |T'| denotes the measure of the triangle 7' in R?. We further assume that the
triangulation §; is quasi-uniform: there exists a constant p € R such that

IIlE.l)(TEgh ‘T‘ < p
minpes, |7

We define h = maxpes, diam7’, hyx = diam(K') and h, = diam(e).
We call the mesh §;, the background mesh, and we define the computational mesh

Ty, to be a subset of §;,, where
Th:{TEShZ TCQ}

Correspondingly, we have the computational domain €2, defined as

Qh:int< g T) c Q.

TeTy

The unrefined computational domain is illustrated in Figure 3. Furthermore, we
define the set of all boundary edges of T}, to be €5,
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Figure 3: €1}, is the domain consisting of triangles with blue edges.

By connecting the three vertices to the barycenter of each triangle T' € §, we
split each triangle into three and thus we get the Clough-Tocher refinement 8 of 8.
We use K to denote the triangles in the Clough-Tocher refinement 8. We define
the Clough-Tocher refinement T¢ of T}, as

Tr={Ke8': KCT, 3T €T}

By our definition, for each K € T§, the parent triangle T', where K C T, is an

element of T,. We emphasize that

T £ {K eS8 KcQ}.

Therefore, we preserve the macro-element structure that is needed to prove the sta-
bility of the Scott-Vogelius pair.
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Figure 4: T5' consists of triangles with blue edges.

From Figure 4, we see that the corresponding computational domain of T is
Q, as well. Moreover, €P is also the set of boundary edges of T¢. For a piecewise

smooth function ¢ on 0€);,, we denote

qds = qds.
fo o=

eESE €

2.2 Boundary Transfer Operator

We assume the boundary 0f2 of the domain to be sufficiently smooth. Let ¢ be
the signed distance function of the domain 2 such that we have ¢(x) < 0 for = € Q,
and ¢(z) > 0 for x ¢ Q. Then the unit outward normal vector is n = % . Let
7 > 0 be a positive real number. Then I, = {z € R? : |¢(x)| < 7} is a tubular

region around the boundary 02 of the domain 2. Based on [23, Lemma 14.16] and
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[12], we have that there exists a real number 75 > 0 such that the closest-point map
p: Iy, — 09 is well-defined, and we have the identity p(z) = z — ¢(z)n(p(z)) for
all x € I';,.

In order to define the boundary correction method, we want to have a well-
defined map M : 09, — 02 which transfers every point on the boundary of the
computational domain 9€2j, to a corresponding point on the boundary of the physical
domain 0€). Let I : 02, — €2, be the identity map. Then the transfer direction
vector is defined as 9(x) = (M — I)(x) for all z € 0€,. The transfer distance is the

magnitude of the transfer direction vector,

One of the common choices for the map M is the closet-point projection p mentioned
above. Suppose that the computational domain €0, approximates the physical do-
main {2 well enough such that the distance between 0€2;, and 0 is less than the
constant 7y mentioned above. Then the map p : 02, — 01 is well-defined. More-
over, from the identity p(z) = = — ¢(z)n(p(z)), and the fact that ¢(z) < 0 for all
x € 0f)y,, we see that the transfer direction coincides to the outward normal vector
of physical boundary 0f2, and the transfer distance is d(z) = |¢(z)| for all = € 0%,.

Another possible choice for the transfer direction is the direction same as the
unit outward vector n;, of the computational boundary 9€2;,. Generally in this case,
we have 6(x) > |¢(x)|. This choice of transfer direction creates a larger discrepancy
between 6(x) and |¢(z)| than the choice of transfer direction where the transfer
direction vector is (p — I)(x) for all x € 0€Q,. However, this choice results in easier

implementation.

17



In the rest of this chapter, we do not specify the map M explicitly. Instead,
we make the assumption that the transfer distance §(z) is sufficiently small in com-
parison to the mesh parameter h. Similar to [12, 13, 12, 5, 4, 3], the stability and
convergence analysis in this chapter only requires this assumption. The formal as-
sumption is given below in the stability analysis section after we define the finite
element method.

Now we define the boundary transfer operator.

The idea of the boundary transfer operator stems from the Taylor expansion.
Recall that for a function f : R? — R2?, 2 € R", a is a unit vector in R”, and ¢ is a

scalar, then Taylor expansion of f is

flo+ia) =3 200 @)

j= 0

LIt] 2L (). Note that the k%" order polynomial

oal

The k' order polynomial of fis > o =0 i
of f(x + ta) is an approximation of f at x + ta from z.
Setting d = /6, we use k' order Taylor polynomial of v expanded at z in the

direction of d to define the boundary transfer operator:

k

1

(Spv)(z) = Z ﬁ 8d3< ), for x € 0Q,
Jj=

Since 0 = M — I, we see that (Spv)(x) is an approximation of v at x4+0 = Mz from

X.

18



2.3 A Divergence-Free Finite Element Method with Boundary

Correction

For a subset D C 2, we use Px(D) to denote the polynomials on D with degree
at most k. We use the boldface P (D) to denote the vector-valued polynomials on
D with degree at most k.

Then we define the velocity space and pressure space to be the Scott-Vogelius
pair with respect to Clough-Toucher splits as follows:

Vi, ={ve H'(Q,): v|x € Pu(K) VKE‘J’ff,/ (v-ny)ds =0},
o0,

Qn="{q€ L*(W): qlx € Pr1(K) VK € T3},

Analogously, we define the velocity space with boundary conditions and pressure

space with zero mean constraint to be

Qn = Qun N LA().

Furthermore, we define the Lagrange multiplier space and the Lagrange multiplier

space with zero mean constraint to be

X, ={pcCON): ple € Prle) Ve &P

)O(h:{,ueXh:/ pds =0},
o0,

respectively.

Now, we define the mesh-dependent bilinear forms

Vu:Vvdx—/ a—u-vd8+/ a—rv-(Shu)ds,
o

ap(w, v :y<
n(w, ) aq, Oy, a0, Oy

Qp,
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+3 / hie(shu) - (Syv) ds).

(v (0op)) = = [ (volgdet [ oomids
b (v, (¢, 1)) = — / (divo)gds + / (810) - ).

where o > 0 in a(+,-) is a penalty parameter.
We get the bilinear form ay(-,-) from the standard non-symmetric “Nitsche bi-

linear form” associated with the Laplace operator:

ou ov o
Vu:Vvd:v—/ —-vds—i—/ — - (u)ds + /—u-vds
/Qh o0, Oy aq, Ony, (u) 6; ehe( )- ()

by changing the u in the third term to S,u, and the u, v in the fourth term to S,u,
Spv, respectively [41, 46]. We make the change to improve the consistency of the
scheme.

The non-symmetry of the Nitsche bilinear form is referring to the different sign in
front of the term fth 887’; - ds and the term faﬂh aaT“h -v ds. The reason we based our
bilinear form a(-, -) on the non-symmetric Nitsche bilinear form is that the bilinear
form with boundary correction based on the symmetric Nitsche bilinear form still
results in a non-symmetric bilinear form [12, 39]. However, if the bilinear form is
based on the non-symmetric version of Nitsche bilinear form, the penalty parameter
o will be less restrictive to ensure stability.

The two bilinear forms by, (-, (-, -)) and b5 (-, (-, -)) are two bilinear forms associated
with the continuity equations. The only difference between the two is that b, (-, (-, -))
does not have the boundary correction, whereas b5 (-, (+,)) does.

We set the method as follows:
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find (wp, pn, A\n) € Vi X Qp, x X, such that

ap(up, v) + bp(v, (pn, A\n)) = f-vder Yo eV, (2.3.1a)

Qp

by (wn, (¢, ) =0 ¥(g, 1) € Qn X Xp. (2.3.1b)

We choose the zero-mean constraint Lagrange multiplier space X p in the formu-
lation of the method because we want to mod out the constants to ensure that the
method is not ill-posed. Indeed, suppose we use the Lagrange multiplier space X}
without the zero-mean constraint. Then due to the condition fth (v-mp)ds =0

from the definition of the discrete velocity space V},, we have
bp(v,(0,1)) =0 Yv eV,

Moreover, the condition f th(” -my,)ds = 0 in the definition of Vj, is necessary
to show that the method yields a divergence-free velocity solution as we show in the

next section.

2.3.1 Divergence-Free Property

Lemma 2.3.1 (Divergence—free property). If (wp,pn, A\n) € Vi X Qn, x X, satisfies
(2.3.1), then divuy, = 0 in Q.

Proof. For the Stokes pair V}, x @h, since we have the constraint that for v € V,,
fﬁﬂh v-nds =0, by the divergence theorem, we have [, divvdr = [, v-nds=0.
Thus we have that the div operator maps from V}, to @h, ie, divuy, € @h. We set
q =divuy, and g =0 in (2.3.1b). Then we have

0 = by, (wn, (g, 1)) = b (n, (divu, 0)) = —[[div /|72,

Thus, divu, = 0. O
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2.4 Stability Analysis of the Finite Element Method

Throughout this chapter, the constants C' and c¢(with or without subscripts)
denote some positive constants that are independent of the mesh parameter h and
the viscosity. We conduct our stability analysis and convergence analysis under the
assumption mentioned in section 2.2: the transfer distance d(x) is sufficiently small
compared to the mesh parameter h, i.e, the distance between the boundary of the
PDE domain €2 and the boundary of the computational domain €2, is sufficiently
small relative to the mesh parameter h. Before we formally state the assumption,

we first define for a boundary edge e € €5,

Je = max d(x).

ree

Now we state the assumption formally:

max h;lée <cs <1, for ¢s sufficiently small. (A)
e€éy

Assumption (A) ensures that the distance between 02 and 0%, is of order O(h),
where the constant c; is sufficiently small. Similar assumptions have been made in
[12, 43, 39, 5, 4]. In practice, the small distance between 02 and 92, can be achieved
by shifting the position of the nodes on 02, along the direction n as explained in
[5, Remark 3].

Before we show the continuity and coercivity of the bilinear forms, we want to
first define some norms for the finite element spaces.

We define three H'-type norm on Vj, + H*™1(Q), so that we apply the norms to
both the velocity solution of the PDE and the velocity solution of the FEM:

lollz = [Vl + D he 1SwolZ2),

eGEf

22



I3 = 1Vola@,) + D bt lolliae)

EESE

o117 = vlli + D kel VollZe).

eeﬁf

In addition, we define a H~'/2type norm on the Lagrange multiplier space Xj,:

Hﬂ”2—1/2,h = Z he”MH%?(e)-

ecel
Finally, we define a norm on the pair COQh X )E'h as
1@ )l == llall 22y + el -1/2.0-

In the next lemma, we show that if the Assumption (A) is satisfied, then the three
H'-type norms on V;, + H*T1(Q) are equivalent.

Lemma 2.4.1. Assuming (A), there holds for all v € V},

Y b MISk =l < CGlIVY)Za,),

ecél
= (2.4.1)
Y b Skl < Cllvll? e
6685
In particular, || - ||n, || - l1.n, and ||| - ||n are equivalent on V.
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Proof. By the definition of S, we have

k .
_ _ (070 2
e Sv0 = ol = Yot [ 155 ds
=1 e

for e € 5.
By trace and inverse inequalities, the shape-regularity of Tj, and (A), there holds

for e € €5,

O j j
1 (1628 s < O Dl
< COPh ||Vl 2a

< CFNVV|iar, J=12, ..k (2.4.2)

where T, € T, satisfies e C 9T, and D7 is the j'* derivative of v. The estimate
(2.4.2) implies the first inequality in (2.4.1). The estimate (2.4.2) also implies the

second inequality in (2.4.1) since

k .
i
S h ISl < € 30 S0 [ s < Clol

eceP eceP 7=0
The second inequality in (2.4.1) immediately yields ||v]|, < C|v]l1 from the
definition of || - || and || - ||1 4. Moreover, standard arguments involving the trace
and inverse inequalities show ||v||, < [[[v]||n < CJ|v||n on V4. Thus, to complete the
proof, it suffices to show ||v||1, < C||v]|p.

We once again use (2.4.2) to obtain

Z he ol <2 Z he H1Sholl72) + 2 Z he H1Shv — o720

ectB ectB eceB
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k :
O
<2 Y b Sl + 0 Y Y [161] 50 s
j=17e

ectB ectB

<2 Z h[Sholl 2y + ClIVO|Z2(q,)-

eESE

This inequality implies ||v]]1 5 < C||v||5-

O
2.4.1 Continuity and Coercivity of the Bilinear Forms
Lemma 2.4.2. There holds
|an(v, w)| < ca(1 + o)v|[[v]|lall[wl]ln Vo, w € Vi + H (), (24.3)
(o, (g, 1)) < Cllollual(g.)] Wg.u) € Onx Xy (244)
|bn(v, (q. 1)) = b (v, (, 1))] < Cesl|vllinll(a, )] Vv € Vi, ¥(g, 1) € Qn x X,
(2.4.5)
105, (v, (g, 1)) | < C(1+cs)[[v][1nll(g, ) V(q, 1) € Qn x X (2.4.6)

Proof. The proof of the continuity estimate of (2.4.3) is given in [5, Proposition
1] (with superficial modifications). We show the details for the completeness of the
proof.

From the definiton of a(+,-) and the Cauchy-Schwarz inequality, we get

ov
ap(v,w)| = |v Vv : Vwdr — — -wds
(. w)] =l ( | o,
ow o
i /dﬂ 5 (Swv)ds + > /eh_e<s"”) - (Sphw) ds>\

eeﬁf

1 _1
< V<||VU||L2(Q)||VW||L2(Q> + |2 Vv - np| 2200, |02 W] L200,)
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1 1 1 1
-+ Hh?Vw 'nh”LQ((‘)Qh)Hh QShUHLQ((‘)Qh) —|—O'Hh 2SthL2(8Qh)Hh QSthL2(89h)),
Using the definition of ||| - |||, and the equivalence between ||| - ||| and || - ||, we have

_1
|h™2wl[p200,) < Cill[v]llall[wl]]s,

1
HhEV’U . nh||L2(8Qh)

and

1229w - 71200, < Collw]ln
Combined the above results with the definition of ||| - |||5, we have
|an(v, w)| < V<|||vH|h|||'w|||h + Cilljolllallfwllln + Coll[oflalllwllls + <7|HU|||hH|wH|h)-
Then we find ¢, such that
|an(v, w)| < co(1 + o)v|[[v]|lall[w]]l

The continuity estimate of by(-,-) (2.4.4) follows directly from the Cauchy-Schwarz

inequality:

(v, (g, )l < | [ (divo)gde|+] [ (v-n,)uds]
Qp oy,

_1 1
< OVl 2o llallzzn) + Co D e 2 vl e@h?lpllrze  (24.7)

6685

By the definition of ||v||1 n, we have
IVl r2(0,) < [lvln-

Applying Cauchy-Schwarz inequality, we have

_1 1 3 1 1
> he ol h? lllzze < (D2 A0l )" (D helluliag)

6685 eESE 668}?

< vl nllpll=1/2,n-
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Combining the two inequalities above with (2.4.7) and using the definition of ||(¢, u)||,

we find a constant C' independent of the mesh such that

bn(v, (¢, )] < Cil|vlikllallzz,) + Callvlliallpll-1/2,n
< Clollipll(g, )]

This third estimate (2.4.5) follows from the definition of the forms, the Cauchy-

Schwarz inequality, and (2.4.2):

‘bh (q, 1)) — b5 (v, (q, ) |_‘Z/ (v — Spv) - nh)udfs’

ectB

<o( X 30n [ %) el

eESB Jj=1

< Ccsl|vlfnll pll=1/2,n-

From (2.4.4) and (2.4.5) and using the triangle inequality, we have

105 (v, (¢, )| < [br(v, (g, )] + [b5 (v, (g, 1)) — by (v, (g, 1))
< C(1+cs)l|vll1nll(g, w

]

Lemma 2.4.3. Suppose that Assumption (A) is satisfied for cs sufficiently small.
Then there holds,

C1V||’U||ih < ap(v,v) Yv € Vj,

for ¢c1 > 0 independent of h and v, and for any positive penalty parameter o > 0.
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Proof. By definition of the bilinear form ay (-, -),

ov o
IV (Spw — ) ds + h—||5hv||§2(e)))

e 87lh e

an(v,v) = V<||V’U||L2 o)t D (

ecé B

A discrete trace inequality with (2.4.1) yields
( Z /(M (Spv — v ds‘ < Cos||Voll72q,)- (2.4.8)
Thus, we find

o
an(v,9) > v((1 = Ccs) Vol + D —ISwwliiae) ) = Cvllvlli > Cvfjolf,

eE&E

for ¢ sufficiently small and for o > 0.
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2.4.2 Inf-Sup Conditions

In this section we prove the discrete inf-sup (LBB) condition for the Stokes pair
Vi, x COQh with stability constants independent of h and the inf-sup condition for
the Lagrange multiplier part of the bilinear form b,(-,-). We use these two inf-sup
conditions to derive the inf-sup condition for the bilinear form by(-,-) in the next
section.

The LBB stability for this pair is well-known (cf. [2, 45, 26]) for the fixed polyg-
onal domain; however, we cannot extend these results to the unfitted domain €2
directly. In particular, the proofs in [2, 45, 26] (directly or indirectly) rely on the

Necas inequality:

P A G\ L L VAT

veri @0} IVPlz20,)

for some ¢, > 0 depending on the domain ;. As explained in [27], it is unclear if
the constant ¢;, in this inequality is independent of h.

To extend the LBB condition to an unfitted domain €2;, with a constant that is

independent of A, we combine the local stability of the Scott-Vogelius pair with the

stability of the Py x Py_o pair. For a (macro) element T' € Ty, we define the local

spaces with boundary conditions

Vo(T) ={v e Hy(T) : v|x € P(K)VK CT, K € T},
Qo(T)={qe Li(T): qlx €Pr1(K)VK CT, K € T§'}.

We first state a local surjectivity [26, Theorem 3.1] of the divergence operator acting

on these spaces.
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Lemma 2.4.4. For every q € Qo(T), there exists v € Vo(T) such that divev = q
and ||Vl 2y < 6:,:1HQHL2(T). Here, the constant fr > 0 depends only on the shape-
reqularity of T.

Proof. The proof for the general cases can be found in [26, Theorem 3.1]. Here we
present a simpler proof for the 2D case.

Set Z(T) = {v € Vo(T) : divv = 0}. Since v € Hy(T) and v is piecewise
polynomial of degree k on K C T and K € T¢, we have ¢ € HZ(T) such that
v = curly, and v is piecewise polynomial of degree k +1 on K C T and K € T§'.

Set X(T) = {¢p € HY(T) : ¥ € Pry1(K)}. Clearly, we have Z(T) = curl (7).
Note that if ¢ € 3(T), and curly) = 0, then ¢ € R. Since ¥|sgr = 0, we have
that ©» = 0 on 7. Since the curl operator has trivial kernel for X(7"), we have
dimX(T) = dimcurl (7). From [19], we get dim¥(T) = 2k* — 3k + 3. By the

rank-nullity theorem, we have

dimdiv V5(T') = dimVy(T') — dimZ(T)
= dimVy(T') — dim%(T)

:2(1+3(k—1)+g(k:—1)(k—2))—(;kQ—ngrB)
3,3
=5k k-1

1

= dimQ(T')

Thus, we have shown that the divergence operator is surjective from V4(T') to Qo(T).
Next we use a scaling argument to show ||Vl r2r) < 87" ||qll z2()-

Let T be a reference triangle, and T be the CT refinement of T'.
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Claim: for any ¢ € Pés¢(T) 0 L2(T), there exists a © € P(T) N HE(T) such
that dive = § and H@f)HLQ(T) < Cl[qllz2(7y- Proof of the claim: We set Z={we
P(T) N HY(T) : divap = 0}, and Z*+ = {6 € Py(T) N HY(T) : [,V : Vi =
0, Vo € Z}.

— e

Since for all & € Z1, ||d/i;f7||L2(T) = 0 implies that © = 0. Thus, ||gi;ﬁ||L2(TA) S

a norm for & € Z+. Therefore, by the equivalence of norms, we have H@f:” ) <
C||div o]l o 7, for all & € Z*.

By the same counting argument showed above, we have that div : ka(TCt) N
HY(T) — Pdisc(Tet) 0 LA(T) is surjective. We select & € Py (T) N HL(T) such that
dive = g.

We write & = £ + 9+, where 2 € Z and o+ € Z*.

—

Since div z = 0, we have div ot = diveo = q, and therefore,
||V@L||L2(T) < Cl|div ﬁJ_HLQ(T) = CH@”H(T)-

This completes the proof of the claim.

Let g € Pyise(T) N LE(T). We set ¢ : T — R such that §(#) = g(z), where
© = Fp(&). Fris a linear map where Fy(#) = AZ+b. Thus, we have § € P%s¢(T)N
L2(T). By claim, there exists © € P, (T) N HL(T) such that ¥ = § and ||@13||L2(T) <

C|\@|’L2(T)-
We set v € Pp(T%) N H(T) such that v(x) = Ao(z). Then (dive)(z) =

(divo)(z) = 4(2) = q(z).
Hence, we have
V02, = / Vol dz = 2\T|/ ATHA2 da
T T
< C|T\|Wﬁ\|i2m

< Ol gy
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< Cllglle2(a)-
We set Br = C~!, and we have the desired result. ]

For the next step, we use the stability of the P x P;_, pair on unfitted domains.

This result can be found in [27, Theorem 1, Section 6.3, Remark 1].

Lemma 2.4.5. Define the space of piecewise polynomials of degree (k — 2) with

respect to the mesh Ty,:
Vi ={q € LA : qlr € Pro(T) VT € Ty} C Q.

There exist By > 0 and hg > 0 such that for h < hg, there holds

Jo, (divv)gdz
sup

veV;\{0} V] 12,)

> Bollall 2 Vg € Y),.

Combining Lemma 2.4.4 and Lemma 2.4.5, we derive the following discrete inf-
sup (LBB) condition for the Stokes pair W X COQh with stability constants independent
of h:

Lemma 2.4.6 (Inf-Sup Stability I). There exists 51 > 0 independent of h such that

Jo, (divv)gdz
sup

veV,\{0} V] L2,)

> Billqll 20 Vg € Q.

for h < hyg.
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Proof. This proof essentially follows arguments from [2, 45, 26] using Lemma 2.4.4
and 2.4.5.

For a q € COQh, we set ¢ to be the piecewise average of ¢ on each macro element
T € Tp: qlr = |T|™" [, qdz¥T € Tj. Then, we have ¢ — ¢ is mean value zero on
each macro element 7' € Tj,. Thus, we have q — q|r € Qo(T') for each T' € Tj,. Using
Lemma 2.4.4, for each T € T}, we find vy 7 € Vo(T') such that divvy,r = (¢ — §)|r
and | Vv|z2¢ry < B7'llg — @llz2(r). Then we define vy such that vi|r = vy 7 for all
T € Tp,. Then we have dive; = ¢ — g on Q, and ||[Vui|| < 8;71q — @l 12(a,), where
B« = mingeg, fr. Since Br are all independent of h, we have 3, independent of h.

Since we have

th(diV v)qdz B th(diV v)qdx th(diV v)(G—q)dx
Vol L2(qy) IVol| 220, Vo2 )

Y

and, from the Cauchy Schwarz inequality, we have

Jo, (div o) (7 — ¢) dx < IVollz@yllg = dllzz)

IVoll2@y  — Vol 22,
for all v € V;\{0}, we derive
Jo, (divo)(q — q) dx _
sup o < llg = @llr2n)- (2.4.9)
veV,\{0} INEIPEIGH

Since ||Voi|| < ;g — @l 12(0,) and dive, = ¢ — g on Qy, we have

Jo,(divor)a— @) dz g — qllj2q,

Vo1 20, INEAFZES

lg — Q_H%?(Qh)
— B7la = dllzzen

= Blla — @l r2y)-
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Thus we have

Jo, (divv)gdz

lg — gl < 871 (2.4.10)
" vevinioy  1V0ll2@y)
Combining Lemma 2.4.5, (2.4.9) and (2.4.10), we have
B Jo, (divv)gdz
Boll@l| L2, £ sup hv
veV;\{0} IV 12,)
Jo (divwv)gdx B
sup th + [lg = allz2on)
veVL\{0} IVl 20,
divw)qdx
<(1+p87Y) sup Jo, (v e)
veV,\{0} Vo2,
Using the triangle inequality and (2.4.10), we have
Jo, (divv)gdz

lall 22 < lla— allrz@n + 1@l 22 < (B + By 11+ 51) S
vevingor  I1VOllz2an)

Since both 3, and 3; are independent of the mesh parameter h, we have 5! +
By 11+ B71) independent of the mesh parameter h. By setting 81 = 8.1 + 8,1 (1 +

B:1), we complete the proof. -

The next lemma states the inf-sup condition for the Lagrange multiplier part of
the bilinear form by (-, -).

Lemma 2.4.7 (Inf-Sup Stability II). Assume the triangulation Ty, is quasi-uniform.
Then there holds

P R e
sup

> Bollull-rjon iy € X (2.4.11)
veV;\{0} 0[],

for some Py > 0 independent of h.
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Proof. On the boundary of the computational domain 2;,, we have equal number
of edges and vertices. We label the boundary edges as {e; é_\le = &8 and denote
the boundary vertices by {aj};\’zl = VP, labeled such that e; has vertices a; and
aj+1, with the convention that ayy1 = a;. For a boundary edge e € €8, let M§ =
{mj};?;ll denote the canonical interior degrees of freedom on the edge e, and set
MP = Ucees M. Let m; be the normal vector of 9§, restricted to the edge e;, and
let t; be the tangent vector obtained by rotating m; 90 degrees clockwise. Without
loss of generality, we assume that ¢; is parallel to a;y; —a;. We further denote by V¢
the set of boundary corner vertices, i.e., if a; € V¢, then the outward unit normals
n;,n;_; of the edges touching a; are linearly independent. The set of flat boundary
vertices are defined as Vi = VE\V¢. Note that n; = n;_; and t; = t;_; for a; € VI

We let h; € X}, denote the continuous, piecewise linear polynomial with respect
to the partition &F satisfying hr(a;) = 2 (he,_,+he,). Given p € X, we let Py(hrp) €
X, be the L2-projection of hzu, i.e.,

/ Py(hrp)k ds :/ hruk ds Vi € X,
o, o,

We then define v € V}, by the conditions

(v -m;)(a;) = Pu(hip)(ay), (v-m;-1)(a;) = Pu(hip)(ay) Va; €V,

(v-n;)(a;) = Pu(hrp)(ay), (v-t;)(a;) =0 Va; € Vy,

(v -my)(my) = Pu(hrp)(my),  (v-t;)(m;) =0 Vm; € Mj, Ve € €.
(2.4.12)

All other (Lagrange) degrees of freedom of v are set to zero.
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Since (v - n; — Py(hrp))le, is a polynomial of degree k on each e; € €F, and
v-n; = P,(hrp) at (k+ 1) distinct points on e;, we have v - n; — Py(hgpu)le, = 0.
Thus by shape regularity,

/ (v na)puds = / Pu(hap)ds — / hids > ClplPypn (2413)
o, o, oy,
It remains to show that ||v||1;, < CJlu||-1/2,, to complete the proof.

For K € T¢, let VB,V VE MZE be the sets of elements in V2 V¢ VE M5

contained in K, respectively. By a standard scaling argument and (2.4.12), we get

(m=0,1)

0l3m <C Y B o(e)? (2.4.14)
c; EVEUME
=o(X @+ Y KR )
ajEV%; CjEVf{UME

Claim: |v(a;)] < C|Py(hiu)(a;)| for all a; € V&, where C' > 0 is uniformly
bounded and independent of i, n; and n;_;.

Proof of the claim: Assume that V¢ is non-empty for otherwise the proof is
trivial. For a; € V§, we write v(a;) in terms of the basis {¢;,¢;_ }, use (2.4.12), and
apply some elementary vector identities:

! (v-mn;)(a;)t1 + ;(U -mn;1)(a;)t; (2.4.15)

vila;) =
( ]) tj—l Ny tj TS

1 1
= Pl (o) (7t + o)
J— J J J—

= Pl (o) (3=,

tj LTES
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We now show ‘%| is bounded. Write t; = (cos(f;),sin(6;))T with 6,_1,60; €

timn,;_

[—m, 7], so that

t;—t;_1  (cos(f;) —cos(f;_1),sin(0;) — sin(ﬁj,l))T.

t]’ LTES Sin(ﬁj — 9]‘71)
Since

lim (cos@; — cosb;_y1,sinf; —sinf; )7 _ im (—sinb;, cos ;)7

0;—0;_1 sin (0; — 6,-1) 0;-0;-1 cos (0; — 0;_1)

= (— sin 6]',1, COS 0‘7‘,1)1-,

and due to the shape regularity of the mesh, we conclude ‘%| is bounded in the
J J—

case [t; - m;_1| < 1, in particular, for “nearly flat boundary vertices”. Therefore,

tjftjfl
tj-n]-_l

{n;_1,m;}. With (2.4.15), this yields |v(a;)| < C|Py(hru)(a;)| for all a; € V¢, which

} < C on shape-regular triangulations for some C' > 0 independent of A and

concludes the proof of the claim.

Applying the claim to (2.4.14) and a scaling argument yields

[0l Gy <C D> B Pu () ()P <C > B Pa(hap) 172 e)-
c;eVEUME ecep
a;€e: ajEVE

Therefore, by an inverse inequality and shape-regularity of J§,

1
olli, = HV’UH%Q(Qh) + Z h—||’0||%2(e)

eGEE
< IVol72q,) +C Z hilloll7zge) < C Z he I Pu(Pa) |72 e -
KeTgt eEEE

37



Finally, using the L2-stability of P, (hru) and the quasi-uniform assumption, we have

1ol3 < C D A I Palhu)ll7e
cce? (2.4.16)

< O Pu(hup)lli2 o0,y < Ch™HIhanlz200,) < CllelZjon-

Combining this estimate with (2.4.13) yields the desired inf-sup condition (2.4.11).
O]

Remark 2.4.8. The proof of Lemma 2.4.7, and in particular the proof of the claim,
relies on the continuity properties of the Lagrange multiplier space at nearly flat

corner vertices.

2.4.3 Main Stability Results

With Lemma 2.4.6 and Lemma 2.4.7, we show the main inf-sup condition for the
bilinear form by, (-, -) in the next theorem. We show inf-sup condition for the bilinear

form with boundary correction term b5 (-, -) in the corollary after.
Theorem 2.4.9. Assume T, is quasi-uniform. Then there exists 5 > 0 depending
only on By and By such that

Blaml < sup 22l (@)

V(q, M) S @h X Xh. (2417)
veV,\{0} [v][1,n

Proof. We use Lemmas 2.4.6 and 2.4.7 and follow the arguments in [32, Theorem
3.1].
Fix (q7 :u) € @h X Xh-
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We first bound the Lagrange multiplier part of the bilinear form by(-, (-, -)) using
Lemma 2.4.7. The statement (2.4.11) implies the existence of vy € V}, such that

|lva]l1n < 1 and

[ mads = allal-s o
oy,

Then, we use the LBB condition for the unfitted domain to bound the divergence
part of the bilinear form by, (-, (-, -)). By Lemma 2.4.6 there exists v; € V, satisfying

Vo2 = [[o1][1p < 1 and

_/ (divoi)g = Billal 2
Qp,

Set v = cv; + vy for some ¢ > 0, so that ||v||;4 < (1 +¢), and

—/ (divo)gdz > cbillqll 2, — 1div el 2, llall 22
Qp

> cByllqll r2n) — V2Vl 20 14l £2an)
> cBillqll 2 — V2| vallinllal 2
= (B — V2)lall 2 (-

Because v, = 0, we have

/(WWW@:/(WWWWQ@WHmw
oy,

oy,

Therefore,

bu(v, (g, 1)) = (cBr — V2)|lallL2gn) + Bollill =120
>(1+c¢)" ((cﬁl —V2)lqll 20 + 52||M||—1/2,h> [][1,n

for some ¢ > 0 sufficiently large.

Now we set § = min{%i, 1B_fc} to get the desired results. O
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Corollary 2.4.10. Provided Assumption (A) is satisfied and the mesh Ty, is quasi-

uniform, there exists B, > 0 independent of h such that there holds

be v,(q, U ~ ¥,
Bl < sup Oy e G x K (2.4.18)
vevinfor  1vllin

Proof. From Theorem 2.4.9, and the triangle inequality, we have

bu(v, (¢,
Bl )l < sup 2 (@:n)
vevi{op 17l
= sup bh(”, (qa :u)) + b;zl(’l)? (q’ M)) _ bh(’v, (q’ ,U))
VeV 0} vl1n
S sup M + sup |bh(v7 (CI7 ILL)) — bh(’l), (q, H’))| . (2419)
vevivor (2l vEVL\{0} [v]l1n

From Lemma 2.4.2, we have

sup Ibh(’v,(q,u))—bh(%(q,ﬂ))lS sup Cesl|v1nll (g, 1)l

veV,\{0} ||U||1,h veV,\{0} v

= Cesll(g, I (2.4.20)

1,h

Combining (2.4.19) and (2.4.20), we get

by (v, (q, . .
Bl < swp DL ool W) € On x X
veV,\{0} ||’U||1,h

For ¢ to be sufficiently small, g — C'cs is positive and set . = 8 — C'cs. We then get
the desired result (2.4.18). O

With the main inf-sup condition from Theorem 2.4.9, we now show the following

stability estimates.
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Theorem 2.4.11. Let (up, pp, An) € Vi X CO)h x X, satisfy (2.3.1). Then, provided
cs in Assumption (A) is sufficiently small and the mesh Ty, is quasi-uniform, there

holds

vl[wnllen 4+ 11(@n AL < CHF -1, (2.4.21)
_ th fude . . .
where || fll-1n = SUDyev;\ (0} tor— - Consequently, there exists a unique solution
to (2.3.1).
Proof. We prove this Theorem using an energy argument. Setting v = wuy in

(2.3.1a), (¢, ) = (pn, An) in (2.3.1b), and subtracting the resulting expressions yields

ah(uh, uh) = f - Up dx + / ((Shuh - uh) . nh) )\h ds.
o0y,

Qp,

By using (2.4.1), and the definition of || - ||_1/2, and the Cauchy-Schwarz inequality

we have
[ (=) ma)vids = (3 b S = wnlfs)” (3 mllle)
8Qh B B
e€ly e€ly
< Cesllunll1nllAnll-1/2,n- (2.4.22)

We apply the coercivity result in Lemma 2.4.3, the Cauchy-Schwarz inequality, and
(2.4.22) to get

VClHUhH%,h < ap(up, up)

< N fll-epllwnllin + Cesllunllunll Al -1/2,n- (2.4.23)

On the other hand, we use inf-sup stability (2.4.17) and triangle inequality to

conclude

b (v, A
Bl (pn, Al =172 < sup w
vevinior  lIvlln
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th f-vdx — ap(up,v)

< sup
veV,\{0} [v]l1,n
-vdx
< o dm T U an(w, )|
vevinfor  10]lin vevinfoy |1Vl

Using the continuity estimate (2.4.3) and the definition of ||(pn, An)||, we get
BlIAN —1/2.0 < Bl (ns M)l < N Fll-1n + C(1+ o)v|lun |1 n- (2.4.24)
Inserting this estimate into (2.4.23), we obtain
v(er = Cesf (14 0) funllin < (1+ CesB ) fll -1

Thus, ||upl|in < Cv=t| fl|-1.n for ¢s sufficiently small. This, combined with (2.4.24),
yields the desired stability result (2.4.21).

2.5 Convergence Analysis of the Finite Element Method

In this section, we show that the solution of the finite element method (2.3.1)
converges with optimal order provided the exact solution is sufficiently smooth.
Throughout this section, we assume that the hypotheses of Theorem 2.4.11 are sat-

isfied, i.e., Assumption A is satisfied and the mesh T}, is quasi-uniform.
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2.5.1 Consistency Estimates of the Method

The following lemma bounds the boundary correction operator acting on the
exact velocity function. Note that since we assume homogeneous Dirichlet boundary
condition on 0f2, there holds S,u + R,u = 0, where R,u is the Taylor remainder.
The result is essentially an estimate on R,u and follows from similar arguments in

[3, Proposition 3] (also see [12]).

Lemma 2.5.1. For any w € H*"*(Q) N H}(Q), there holds

> by /\Shuy ds < Ch*||w]| i o

ecel

Proof. For a boundary edge e € £ with endpoints ay, ag, let z(t) = a; + th ' (ag —
a;) (0 <t < he) be its parameterization, and introduce the 2D parameterization
for the area between the computation boundary 02, and the physical boundary 0f2
corresponding to each boundary edge e: ¢(t,s) = z(t) + sd(z(t)) for 0 < ¢ < h, and
0 < s <d(x(t)). The Taylor remainder estimation with S,u + R,u = 0 yields

3(z(t)) gh+lq,
[Shu(z(t))] = |Ryu(z k,]/ adkﬂ (io(t, s))(a(z(t))—s)kds).

Applying the Cauchy-Schwarz inequality, we obtain

5(z(t))  htlq, 1/2
Siala(v)] < Coa@) ([ | S et Pas)

and therefore

Sl < cptgz [ [0 olt,s))|* ds di
e H hu”Lz(e — e Ve |8dk+1 75))‘ S

he ak—H 9
<Ch2k/ / 8d’“+1 (p(t,s))|" dsdt,

where we used Assumption A in the last inequality. The estimate in Lemma 2.5.1

now follows from a change of variables (cf. [43, 3]) and summing over e € 2. [

43



Lemma 2.5.2. There holds for all w € H*™(Q) N H}(Q),
- ”/ﬂ Au vz — ay(w,v)| < Cvilulpa@lolin Yo e Vi (251)
h
If divu =0 in Q, then
|05 (w, (q, )| < COFlull el (@ )]l Vg, 1) € Qn X X
Proof. Using the integrate-by-parts technique, we have
—1// Au-vdxzy< Vu : Vodr — — vds)
Qp, Qn

oy, 3nh

Then by the definition of a(-,-), we have

’—I/ Au vdx—ay(u,v ‘—V‘Z/an (Spu) d5+z /Shu (Spv) ds|.
h

Next, we estimate the two terms on the right hand side of the above equality by using
the Cauchy-Schwarz inequality, trace and inverse inequalities, along with Lemmas

2.4.1 and 2.5.1 as follows:

’Z/ < (Spu) ds| <

(30 [lgmltae) (2 s as) ™

ectP
< C’hk\|u||Hk+1(Q)||v||1,h,
and
o
by h_e/e(shm (Sw)ds| <o (> h;l/elshufds (> ne /IShUIst
eceB eceB eceP

< ChM|Ju|| grsr gy 01,0

Thus, the first estimate (2.5.1) holds.
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Similarly, another use of the Cauchy-Schwarz inequality with Lemma 2.5.1 yields

eeB
1/2 1/2
< (X nt [f1swul ds) (3 bl 4s)
eceB € ectl

< CR||[wl| g |l 12,0,

and this completes the proof. ]

2.5.2 Approximation Properties of the Kernel
We define the discrete kernel as
Zy={v e Vy: bi(v,(q,1) =0, V(g 1) € Qn x Xn}.

Note that if v € Z,, then divev = 0 in ), (cf. Lemma 2.3.1), and

/ (Spv) - mp)pds =0 Y€ X, (2.5.2)
o,

In this section, we show that the kernel Zj; has optimal order approximation
properties with respect to divergence-free smooth functions. Finally, we define the

orthogonal complement of Z; as
Zir ={vecV,: (vw),=0 Yw € Z},

where (-, )14 is the inner product on Vj, that induces the norm || - ||1 .

Lemma 2.5.3. There holds

b¢ (w, (q,
Bellwllin < sup bi(w, (¢, 1))

Yw € Zj'.
(q,1)€QRx X\ {0} H(q’ M)H
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Proof. The result follows from Corollary 2.4.10 and standard results in mixed finite
element theory (cf. [9, Lemma 12.5.10]). O
Theorem 2.5.4. For any uw € H*(Q) N H (Q) with divu = 0, there holds
inf [[lu—w||y < Ch*||ul| ey (2.5.3)
weZp

Proof. Let v € V}, be arbitrary. By Lemma 2.5.3, we find y € Z;* such that

b (y, (g, 1)) = U (w — v, (q, 1)) Vg, 1) € Qn x X,

and
lyllin < CB7Huw — o1,

where C' > 0 is the continuity constant of the bilinear form b7 (cf. (2.4.6)). Similarly,

we find z € Zj- satisfy
Ui (2, (0, 1) = =b5.(w, (g, 1)) V(g p) € Qn x X
Then w:=v+y+ 2z € Z;,, and

lw—wljin < [lu—vllin+ Yyl + 2l

< (14 OB lu = vlln + |2 1.
By Lemma 2.5.3 and Lemma 2.5.2,

b (u, (q,
Bellz]|1,n < sup M

< Chk“uHH’H'l(Q)a
(¢:1)EQn x X\ {0} (g, )l

and so, by Lemma 2.4.1,

e = wllln < fllw = vl + Cllv = wllin < C(llw = vlln + [u —wlin)

< O+ 57 (Il = wlll + 1w — ol + Bl i) Yo € Vi

Taking v to be the nodal interpolant of w, we obtain the desired result. O
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2.5.3 Error Estimates of the Method

In this section, we show an error estimate for both velocity and pressure. Both
error estimates are of optimal order. In particular, we show that with the inclu-
sion of the Lagrange multiplier in the method, there is an additional power of h in
the velocity error, compensating its dependence on the inverse of the viscosity and

mitigating the lack of pressure robustness.

Theorem 2.5.5. Suppose that the solution of (2.1.1) has reqularity (u, p) € H*1(Q)N
H}(Q)x HY(Q). Furthermore, without loss of generality, assume that plo, € L3(Q4).
Then,

[ =l < C(A*||ul| i) + v~ #ien)gh D = el -1/2.0) (2.5.4a)
Ip = pall 2,y < CWh*|lull i) + inf [[p = pll-1j2n + inf [lp—gnllz2),
HEXR qhEQR
(2.5.4b)
b= Mall—1jon < c(yhkuunmﬂ(m + inf lp = pell=1/2.), (2.5.4¢)
where p :=p — m fth pds. In particular, if p € H*Y(Q) there holds
lw —upl1p < O(thUHHkH(Q) + V_lhk+1||p||H’“+1(Q))7 (2.5.5a)
Ip = pallzzn) < C(h*ullgea @) + R Ipl ar@) (2.5.5b)
17 = Anll—1/2n < C(thHuHHk"H(Q) + thHPHHHI(Q))- (2.5.5¢)

Proof. Let w € Z;, be arbitrary. Note that we have mean value zero constraint for
v -ny, on 082, for all v € V},. Denote 1 = u — IB_Sllhl fmh nds € )D(h.

Then we have

/mhw-nh)(xh jyds = /mhw-nh)(xh ) ds
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We then have, for all v € Zj, and p € X,
ap(up — w,v) = / fv—ap(w,v) —bu(v, (pr, An))
Qpn
= —1// Au - vdr — ap(w,v) —/ (v-ny) (A —p)ds
Q oy,
= —V/ Au - vdr — ap(w,v) —/ (v-np)(u—p)ds
Qh, 8Qh
—/ (v - 1) O — i) dis.
oy,

Therefore by Lemma 2.5.2, the continuity of ap(+,-) (cf. (2.4.3)), and the Cauchy-
Schwarz inequality,
an(wy — w,v) < C(Wh*||ull gri o) + Ip = el -1/2.0) 0]l
+ap(u —w,v) — / (v-np) (A, — 1) ds
o
< C(vh*||lull o) + v+ 0)lllw = wllln + llp = sl -1/20) [0]1.n

— / (’U . ’I’Lh)(Ah — /O/J) ds.
oy,

We then use (2.5.2) and (2.4.1) to obtain

/ (v 1) O — 1) ds = / (0 — Sy) - 1) O — 1) ds < CesllllunlMn — fll—1jon.
8Qh 8Qh

Setting v = u;, — w, applying the coercivity of ay(-,-) and Theorem 2.5.4, we

obtain
evv|fun — ]l < COAL+ 0 g oy + o=l 1+ csll M| -1j20) (2:5.6)

for w € Z), satisfying (2.5.3).
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Next, let Py, € Qh be the L%-projection of p and note that, due to the definitions
of the finite element spaces, th (divw)(p — Pp) dz = 0 for all v € V},. This identity,

along with the inf-sup stability estimate given in Theorem 2.4.9 yields

7 b v, _P,>\ —

veV,\{0} [v][1,n
— sup br(v, (ph — P, An — 1))
veVu\{0} [v][1.n

Using Lemma 2.5.2, we write the numerator as

bn(v, (P — ps An — 1)) = br(v, (Pr, An)) — bi(v, (p, 1))
= f-vdx—ah(uh,v)—i—/

(divv)pdx — / (v-ny)pds
Qp, Qp,

oy,

< Cvb®||ul| grsroyl|vllin + an(u — up, v)
[ ) s
o0,

By continuity and the Cauchy-Schwarz inequality;,

Bl (on = Puy An — i) || < C(wh*||ul| grr () + cov(1+ o)l — wnlln + lp — g2l -1/2.)
(2.5.7)

(WA [l o) + c2v(L+ o) (llw = wlln + llun — wllin) + 1P = gl -125)

<C
< C(v(1+ o)h*|[ull o) + cav(L+ o) lun = wlin + lp = sl -1/2)-
Inserting this estimate into (2.5.6), we get

v(er — CB ' ea(1 4 0)cs) |lun — wl1p < Cr(1+ o)h¥||ul| grs) + Cllp — pll—1/2.1-
(2.5.8)
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Using the approximation properties of the discrete kernel once again (cf. Theorem

2.5.4), and for ¢s sufficiently small,
[w = unlhp < C(W*|ull ey + v inf [[p—pll-1/on)-
HEXH

This establishes the velocity estimate (2.5.4a).
To obtain the estimate for the pressure approximation (2.5.4b), we use the tri-

angle inequality and the approximation properties of the L2-projection:

12 = pulleen) < lpw — Pallz2@,) + inf |l — anll2c0)-

an€Qn

Inserting (2.5.7) and (2.5.8) into the right-hand side yields the desired bound for the
pressure. Likewise, combining (2.5.7) and (2.5.8) yields

||I5 - )\h||—1/2,h < C<th||u||Hk+1(Q) + #ien)gh (||p - M||71/2,h + ||p - ﬁ||71/2,h)>-

Applications of the Cauchy-Schwarz inequality show ||p — fi||_1/2n < C|lp — pl|-1/2,1
on quasi-uniform meshes, and therefore (2.5.4c¢) holds.

Next, we estimate the term inf,ex, ||[p — pl|-1/24 for p € H*(Q). With an
abuse of notation, let u; denote the kth degree nodal Lagrange interpolant of p
on €2, with respect to T5'. Notice that prlan, € Xn. Applying a trace inequality,
followed by standard interpolation estimates and shape regularity of J¢, we obtain

for each e € 7

lp = pillZe) < C(hlip = nalliae,) + kel V(0 = p0)llZ2(r,) < CREH Pl r,)

where T, € T satisfies e C 9T,. We thus conclude from the definition of || - ||_1/2,
that
: k+1
ulen)gh 1 — pll—1j2n < CREH|pl| s - (2.5.9)
Finally, the estimates (2.5.5a)-(2.5.5¢) follow from (2.5.4a)-(2.5.4c), interpolation
estimates, and (2.5.9). O
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3.0 A CutFEM Divergence—Free Discretization for the Stokes Problem

CuwtFEM [10] is one of the prevalent classes of unfitted finite element method that
uses a Nitsche-based formulation. The basic idea is to enforce boundary conditions
via penalization, and to add ghost penalty stabilization.

Several rigorous stability and convergence analysis of the unfitted finite elements
have been done since the a CutFEM was introduced in [6]. For instance, the P2?¢ —
P unfitted finite element was studied in [16], and the optimal order of convergence
was achieved in the energy norm.

In this chapter, we construct and analyze a CutFEM for the Stokes problem
based on the Scott-Vogelius pair P, — P¥¢ on Clough-Tocher splits. For CutFEM,
we start with a background mesh §;, that contains the physical domain €2 similar to
the construction of the Boundary Correction method. However, we have two com-
putational domain in this case. One is an interior computational domain consists of
all the triangles in 8 that are strictly contained in €; the other one is an exterior
computational domain that consists of both the triangles in the interior computa-
tional domain and the triangles in §; that are cut by the boundary of the physical
domain.

Similar to the Boundary Correction method, the discrete inf-sup condition can-
not be immediately obtained by standard results due to the unfitted nature of the
method. The uniform stability results with respect to the mesh parameter h have
been shown for many unfitted finite elements over the years. The uniform stability
condition was shown for the lowest order Taylor-Hood element Py — Py in [33]. The
same uniform stability condition was also shown for a wider range of elements in-

cluding Py, 1 — Py, where &k > 1 and Py, g — Py, where d = 2 if the problem is in
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2D and d = 3 if the problem is in 3D in [27]. We show the same uniform results for
the general Scott-Vogelius pair Pj, — P45¢ on Clough-Tocher splits, using the same
technique used in the Boundary Correction project and the framework provided in
[27]. Additionally, even though we cannot produce a exactly divergence-free veloc-
ity solution like in the domain-fitted case, because of the ghost penalty terms in

the CutFEM, we still show a divergence-free property for the velocity solution on a

mesh-dependent interior domain.

3.1 Preliminaries

We consider the Stokes problem on a bounded, open domain  C R? with smooth

boundary:
—Au+Vp=Ff in €, (3.1.1a)
divu=0  inQ, (3.1.1b)
u=0 on [' := 0N. (3.1.1c)

We embed the PDE domain {2 into an open, polytopal domain to formulate the finite
element method for 3.1.1. Let S C R? be a polygon where  C S. Denote the quasi-
uniform triangulation of S with shape-regular triangles by 8, and every T € §, is
a closed set. Then, we define the interior computational mesh and the associated
domain:

T,={Tes:TcQ}, =imt(|JT)ca

TeT}
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By connecting the vertices of each triangle T" € 8 to its barycenter, we obtain the
Clough-Tocher refinement of 8, 8. We then define the analogous set with respect

to the Clough-Tocher refinement:
T ={Ke8': KcT, ITeT,}.

Remark 3.1.1. Note that

=i |J K).
KeTit'

However,
T C{K e s K cQ}

and this inclusion is generally strict.

On the interior domain, we define F to be the set of (d — 1)-dimensional interior
faces of the unrefined triangulation J;. We also let

T} = {T € 8, : measy_1(T NT) > 0}, Q) = Int( U T)
TeT)

to be the set of simplices that cut through the interface I' and the corresponding

domain, respectively.
Define
e . . 3 T e __ T
L={T€8,:TeT,orTeT,}, Qh—Int(UT)
TeTy,
to be the set of triangles that are either interior or cut through the interface I' and
the corresponding domain, respectively. We refer to these quantities as the exterior
triangulation and exterior domain, respectively. The analogous sets with respect to

the Clough-Tocher refinement are given by

Tl = (K eS8t KCT,3r eIt}
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T ={Ke8!: KCT, 3T € T;}.
Note that now we have
o = Int( U R), and € = Int( U f().
KeTihh KeTphe

In Figure 5, we illustrate the different computational mesh in different colors.

1 N //\
0.9
0.8
0.7
0.6
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0.4

0.3

0.2

0.1 = ~
N [

[
0 0.1 0.2 0.3 0.4 0.5 06 07 0.8 0.9 1

Figure 5: TZt’F consists of triangles with red edges. ’.T,Cf’i consists of triangles with

blue edges. T7"° consists of all the colored triangles.

Remark 3.1.2. Note that, in general, there exists K € ‘J',Cf’F such that K N Q = 0.
We illustrate those triangles in Figure 6. Consequently, in the finite element method
presented below, there exists active basis functions with support strictly outside the

physical domain €.
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Figure 6: The green triangles are K € ‘.TZt’F where KNQ =0

We define the sets of faces:

F':={F: Fisafacein 7}, F ¢ 005},
F¢:={F : F is an interior face in T} },
gl .— (F: Fisaface in T, F ¢ 005},

. . . . t,
¢ .= {F : F is an interior face in T} “}.

For K € T0"" we define K = K NT, so that ZKG‘J«Z@F |Kr| = |I'|. For a simplex
K, we set hp = diam(F’), and for a face F', we set. Note that, because of the quasi-
uniformity and shape-regularity assumption, there holds hx ~ h := maxypcq, hy for
all K € T;° and hp =~ h for all F € F¢. We denote by m an outward normal
of a domain which will be clear from its context. The constant C' (with or without
subscripts) will denote a generic positive constant that is independent of h, how the

boundary I' cuts the mesh, or any method-dependent parameters.
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Same as the previous chapter, we use Py(D) to denote the polynomials on D
with degree at most k, for a subset D C €, and the boldface Py (D) to denote the
vector-valued polynomials on D with degree at most k, for a subset D C (2.

For an integer k > d, define the finite element spaces with respect to T7:

Vi = {v e H'(Q) : vlx € Pp(K) VE € T, / v-m =0},
o

Qn={q€L*Q): qlx € Pr_1(K)VK € T;", /Q q =0},
h
and the analogous spaces with respect to the interior mesh
Vi ={ve Hj(2}): v|x € Pp(K) VK € T;""},
Q, ={a€ L) : dlx € Pu1(K) VK € T}

The definitions of the spaces imply that the divergence maps V}, into ). Like-

wise, the divergence maps V}! into Q.

3.2 A Divergence-Free CutFEM

We modify the finite element method proposed in [27, Section 3.2] based on the
Scott-Vogelius pair:

We first define a mesh-dependent bilinear form with grad-div stabilization:
ah(uv ’U) = (VU, V’U) + ’y(le u, div U) + Sh(’u’v ’U) + jh(ua ’l)) + njh(’u’a U))

where (-,-) denotes the L? inner product over Q, v > 0 is the grad-div parameter,

and 1 > 0 is a Nitsche-type penalty parameter,

sp(u,v) = — /F((nTVu) v+ (nTV) - u),
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Jn(u,v) = / U - v,
Kr

Ketr“S T

S Zh% 1 / ul[0lv].

FeFet, I /=1

We use 9‘v to denote the derivative of order £ of v in the direction m, and |[w]|p
denotes the jump of a function w across F'. The continuity equations are discretized

via the bilinear form

bp.v) i= ~(p.dive) + [ (- m)p
r
The finite element method reads: Find (wuy, pn) € Vi, X @, such that

{ ap(wn, vy) + b(ph,vh) = (f,vn),

(3.2.1)
b(Qm Uh) J (ph, qh) 0

for all v, € Vj,, qi € Q},, where

n(gp) = Y Zh%“ / J[04p).

Feget.l' (=0

The main differences between our CutFEM discretizations and the other CutFEM
discretizations [11, 10, 30, 27| are the terms j,(u,v), and J,(¢, p). In particular, for
jn(u,v), and Jy(q, p), instead of summing over all faces F' in F1, we are now summing
over all faces F' from F°''. Such faces may be completely outside the physical domain
Q.

Note that although for the term jj,(u,v), we modified it to be summing over the
triangles K € fof’F from summing over the triangles T' € T}, we have UKET;t,F |Kr| =
UTET}: |Tr| = |I'|. Therefore, j,(u,v) is equivalent to the analogous term in, e.g.,

27].
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3.2.1 Divergence-Free Property

A domain-fitted Scott-Vogelius FEM produces exactly divergence-free solution,
but due to the stability term Jy(-,-) in the discrete continuity equations, we do not
have exactly divergence-free velocity solution to (3.2.1) on either the physical or
the computational domain. However, the velocity solution to (3.2.1) does possess a
divergence-free property on a mesh-dependent interior domain which is a subset of
the interior computational domain .

We define the set (},Cf’r to be the set of all simplices in ‘J'ff’r together with those

in ‘J',Cf’i that are touching these simplices :
T — (K € 7% measy_1(K N K') >0 3K e T},
This set’s complement is given by a set of interior elements:
%}clt,i _ T}clt,e\(}}clt,r c T}clt,i7

and we define the domains

(Nfo’F:Int< U f(), (NZZt’i:Int< U f().

KeThh TeT

We illustrate these two domains in Figure 7:
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Figure 7: ‘.Thc " consists of triangles with green edges, ‘J',it’z consists of all colored

triangles.

Lemma 3.2.1. (Divergence-free property) Suppose that w, € Vi, satisfies (3.2.1).

Then divuy, =0 on ﬁffl

Proof. We show the result in four steps.

1. Fix K, € :Jv'flt’i, and set

1 on flff’r,
=19 =" - [QF])/|K.] on K,
0 otherwise.

We then have

Joa= [ ot [ a= (8= 190 + K- (%57 - 981)/1K.) =o.
z 2,7\,

*
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Thus, ¢; € Q. We also have J(py, q1) = 0 because ¢; being constant on ta,r C ta,r
imples that [9!q;] =0 on all F' € FI. It then follows from (3.2.1) that

b(qr, up) :/ qldivuh+/ - qudivay, —/ql(uh-n) =0
K. onagtt r

Then by plugging into the values of ¢;, we have

QCt,F - QF
| K| . onaytt r

By the Divergence Theorem, we have fr up-n = fQ divu;, and by the definition of
QT and Q4 we have Q5 = Q\(Q N Q). Therefore,

divuy, — divu > 3.2.2
| K. |/ = |QCtF| |QF| onQeh! " Q " ( )

—1

= = div up.
¢ 7F oct,i
Q5| — [h] Jage
2. Fix K € ‘}Zt’i\{K*}, and set
1 on K,
q2 = — ”f(i" on K.,
0 otherwise.

Then ¢s € Qp, and Jy,(pn, g2) = 0. By (3.2.1), we have

K * r

By plugging into the value of ¢, we conclude

. !KI/ .
divuy, = div uy,.
/. s
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We also have the trivial case where

K, .
/ divu, = :K : div uy,
* * K*

We then sum this expression over K € 5’;“ to conclude

. | K| .
divuy, = div uy,.
/f“'z;t,i Z K*| Ky

KeTi

o
.1 Jr.

div uy. (3.2.3)

3. We combine (3.2.2) and (3.2.3) to obtain

. 2 .
/ dive, = — om0 [, AV,
U | h | - | h’ U

/ div up = 0.
act,t
Qh

Using (3.2.2), and noting that K, € ‘},Cfl was arbitrary, we have

which implies

/ divu, =0 VK e T
K

4. Fix K, Ky € T and set

divu, on Kj,
B=4 c on K,

0 otherwise,

where ¢ € R is chosen such that g3 € ;. Then using (3.2.1),

/ |divuy,|? = —c/ divu, = 0.
K K

Thus, divu, =0 on QZ” O
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3.3 Stability Analysis of the CutFEM

In this section, we show the inf-sup stability result for the CutFEM and using
the inf-sup stability to derive a prior estimate.

We first define two mesh-dependent H!-type norms:

lully,, = lulfn ) + nin(w, w) +j,(u, w),

lull;, = lully,, +Yldivall7q).

Note that we have [|div 2|75, < l|2[3; , . for all 2 € Vj. Therefore, by the definition

of the two mesh-dependent norms, we have | 2|y, < (1+7)Y?|

12]|v,,, for all z € V.

Correspondingly, we have an associated dual norm for the right-hand data:

17l = sup 22

veV), ||,U||Vh.

3.3.1 Inf-Sup Stability

Before we prove the main inf-sup stability result for the CutFEM, we first show
a inf-sup condition with respect to the finite element spaces with support only on

the interior computational domain €.

Theorem 3.3.1. There exists a constant 0 > 0 and a constant hg > 0 such that we

have the following result for h < hg

Joyi (divv)
Qz( q
Ollgll 2y < sup  —

Vg € Q). (3.3.1)
veV;\{0} ||U||H1(Q;'L)

The constant 8 > 0 is independent and h.
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Similar to the case in the Boundary Correction finite element method, due to the
unfitted nature of the interior computational domain €}, we cannot extend the stan-
dard LBB stability argument to find a constant # independent of the mesh parameter
h that satisfies the inf-sup condition with respect to the finite element spaces on the
interior mesh.

Note that for the £ > d = 2 case, Theorem 3.3.1 is exactly Lemma 2.4.6, since
Qy, from the previous chapter is exactly the interior computational domain € in this
chapter, and the associated finite element spaces are also the same.

For the k > d = 3 case, we use the stability of the P, — Py pair provided in [27,
Example 6.3] together with a local inf-sup stability result [Lemma 2.4.4] following
the exact same steps from the proof of Lemma(2.4.6) to show Theorem(3.3.1).

Corollary 3.3.2. The following stability is satisfied

b(v,
Oulldlooy < s 20D LG e (332)
veV), ”v”Vo,h

supp(v)CQ%

where 0, > 0 s independent of h and the position of I" in the mesh.

Proof.  Fix some q € Qp, such that glo; € L2(Q4). By [40, Lemma 5.1] for each pair

of triangles K and K, in T§" where K; and K, share a common face, we have

k—1
ol < Clalfagry + - 127 [ Phaas)
1=0
Iterating this estimate and using the definition of J(,-), we have that

lall72@) < lallZae) < Clallia@i) + Tnla, @) (3.3.3)
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Using the inf-sup stability we get from Theorem 3.3.1 we have

f%(div v)q

i) < Cllallaqqy) + Tn(a.a)) < C87'(
L2(Q) L2(Q}) ||UHH1(Q;)

+ Ju(a, q)) (3.3.4)

for some v € V}, with supp(v) C Q3.
Then, since we have v = 0 on QF, j,(v,v) = 0. Then by an inverse inequality we
have
k
oo) = 30 ST [ ot

Fgget,T /=1
Fcos,

<C Z ||V’U||%2(K) < CH"’H?{l(Qg)-

Fct, I’ ct,i
KeTi T ngs

Thus we have [v[[v;, < C|v|g1(q;). Combining this with (3.3.4), we have (3.3.2).
[

3.3.2 A Priori Estimates for the CutFEM

In this section, we derive a priori estimates of the CutFEM, thus showing the
discrete problem (3.2.1) is well-posed.

We first show that the norm || - ||y, is continuous and coercive.

Lemma 3.3.3. There exists constants Cy,, Co > 0 such that

an(u,v) < Collully; [vllv,  Vu,v € Vi + H* (),

CO||v||%,h < ap(v,v) Vv € V.

The proof of the continuity and coervicity of the norm || - ||y;, can be found in
[27]. Using the fact that |2y, < (1+%)"2zllv,, and [|zllvs, < l|2llv;, for all

z €'V}, , we easily extend the results to || - ||v,.
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Theorem 3.3.4. Suppose that (up, pn) € Vi, X Q, satisfies (3.2.1). Then

1
1Pnllz2@) < CA+ )2 Fllvy llwallv, < ClFllvy, (3.3.5)

for some C' > 0 independent of v, h, and the position of I' in the mesh. Consequently,

(3.2.1) has a unique solution.

Proof. We set v, = uy, in the first equation in (3.2.1), and g, = p; in the second

equation of (3.2.1) and subtract the resulting expressions:

ap(up, up) + ! ,YJh(ph;ph) = (f,un).

1+

By the coercivity of ay(.,.) stated in Lemma 3.3.3 and the Cauchy-Schwarz in-

equality, we have

Collunlly, + In(pnspn) < (F;un) <[ Fllvyl[wnllvi.

1
T+~
Using the Cauchy-Schwarz inequality again on the right-hand side, we have

1 2 2
[F v llunllve, < UV + llually,),

and so

Co
2

1
< —|fll3 3.
Jn(Prspn) < 2C’0HfHVh (3.3.6)

2
sl + o

By the inf-sup stability estimate (3.3.2) and the fact that ||z[|v, < (1+7)"?(|z v,

for all z € Vj,, there exists z € Vj, with (1+ )72 | z||y, < 12llv;., = IPnllz2(0) and

9*”1%”%2(9) < b(z,pn) + J;t/2(ph,ph)|’ph||L2(Q)

= (f,z) —an(z,up) + J;/2(phaph)|’ph|lL2(Q)-
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By Lemma 3.3.3 and the Cauchy-Schwarz inequality, we have

1/2
O.lpnlzae) < (£l lZllve + Callzllvillunllvi) + T2 (ons p) pall 20

1
< (A + )2 Fllvy + Callwnllvi) + > 0n 1) lIpall 20 -

Dividing by ||ph||r2() and using (3.3.6), we conclude

O IpnllZa) < 3((L+DUFIY, + Callually,) + Ta(pn, pa))

_ 1
<31+ (1+CI07 + 5 ) 151y

This estimate and (3.3.6) yields the desired result (3.3.5). O

3.4 Convergence Analysis of the CutFEM

In this section we assume that the solution to the Stokes problem (3.1.1a) is
sufficiently smooth, i.e., w € H*2(Q), p € H*1(Q), where we recall k is the poly-
nomial degree in the definition of finite element spaces. Without loss of generality,
we assume that dist(95,0Q) = O(1).

Because 0f2 is Lipschitz there exists an extension of p, which we also denote by

p, such that p € H*1(S) and (cf. [53])

An analogous extension of u is done in the following manner. First, write the velocity
in terms of a potential function u = V x 4. Then for u € H*"2(Q), it satisfies that
W € H3(Q) and [|9| ey < Clul ey for £ =0,1,.. . k+2 [24, 18]. We extend
¥ to S in a way such that ||| ges) < Ol|9||peq) for £ =0,1,...,k+ 3, and let w
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be a smooth cut-off function with compact support in S and w = 1 in 2. We then
define the velocity extension as u = V x (w)), so that w is divergence-free, vanishes
on 0S5, and

wl[ ey < Cllul|gey  for £=0,1,...k+2. (3.4.1b)

Remark 3.4.1 (Consistency). Since we assume the exact solution to be smooth enough,
all the ghost-penalty terms and Nitsche term from the discrete problem will vanish
when we insert w and p into (3.2.1). Thus, the method (3.2.1) is consistent. In

particular, there holds

{ an(w,vp) + b(p,vn) = (£, vn), (3.4.2)

b(qn, w) — 73 Jn(p, qn) = 0
for all v, € Vi, qn € Q.
The following lemma is a direct application of [20, Lemma 4.10].
Lemma 3.4.2. For T' € T}, define wr = Uregs T’ to be the patch of neighboring

TOT'#£0
elements of T. We further define the O(h) strip around I':

Wwr = U wr.

TeT!

Then there holds
0]l 2y < ChZ 0|l Vo € HY(S).

We also require a trace inequality suitable for the CutFEM discretization (see,

e.g., [29, 27]).
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Lemma 3.4.3. For every K € T5°" it holds
[vllz2 ey < Clhg Wl 22y + R I VOll2) Vo € HY(K), (3.4.3)

with a constant C' independent of v, T, how T intersects T, and h < hy for some

fizxed hy > 0.

Consider the finite element subspace of pointwise divergence-free functions:
Zy, = {’U)h eV, :divw, =0 in QZ}

This subspace enjoys full approximation properties in the sense of the following

lemma.

Lemma 3.4.4. For u, the divergence-free extension of the solution to (3.1.1), it

holds
inf ||u — wh”Hl(T) S Ohl%|u|Hk+1(wT) VT € (.TZ. (3.4.4)

wrEZ}

Consequently, if w € H*2(Q),

. 1 1
JnE = wnlly, < OOl o) + 730 fulisen).

Proof.  We first prove the approximation property (3.4.4).Here we consider the three-
dimensional case; the analogous 2D arguments are similar (and simpler).

We first construct a Fortin operator using the recent results in [22]. For T" € T¥,
let T denote the local triangulation of four (sub)tetrahedra, obtained by performing
a barycenter refinement of 7.

We define the polynomial spaces:

Pe(T) = {v € L*(D) : v|g € Pu(K) VK € T}, Pu(T) = Pr(T) N L3(D),
PL(T) = [Pi(T) N H'(D)P, PL(T) = Pi(T") N Hy(D),
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where D = int(Ugere K). We also define the smooth space
My (T) = {k € Py | (T) : curl k € Py (T)}.

It follows from [22, Lemma 4.16] that there exists an operator Iy : H(T) —

P (T) uniquely determined by the conditions

/(HO’T’U) ~curlk = / v-curlk Vi € My (T, (3.4.5a)

T T

/(div (Il rv))k = /(div v)K Vi € Py (T). (3.4.5b)
T T

Next we show a stability estimate for the operator using a scaling argument.

To ease presentation, set vy = Iy rv. Let T = {% : x € T} be a dilation of T,
and define vy € ?k(TCt) as v7(2) = vp(x) with = hri, so that dvy = h;léfﬁT. In
particular, div vy = h;ld/i;'f)T and curl Kk = h;lglﬁ K. Using a change of variables

and equivalence of norms, we compute

hEluvaH%?(T) = ‘|V1A)TH%2(T)
r - curl &2 - div ori |2
~ sup fT/\T—A sup ‘[TA—T
ReMy(Ter) | [lcurl K| o 7 REPy_1 (Tet) 1Al 2z
B hi® [ vr - (hreurl k) |2 hy? [ (hrdivor)k
= sup o1 . sup =7
REMo 1 (T) v leurl & z2(r) KEPK_1(Te") 7 6l
v-curl K |2 divo)k |2
=hy®  sup —fT ‘ +hy' sup —fT( ) ‘
wedty,, (rery | lcurl &z wepp_yrery | IEl 2
< hp® vl Zer) + hyt | div vl 2z )
Hence, we have
||VH07T’U||L2(T) < C(HV’UHLQ(T) + h}lH'vHLz(T)) Yv € Hl(T) (346)
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Then we first set I, : H'(Q) — PL(T¢) C Vj, be the kth degree Scott-Zhang
interpolant which satisfies (k > 3) [52]

/ ILiv = / v for all faces in Tj, VYo € H'(Q), (3.4.7)
F F

and I, : H'(Q°) — Vj, such that ITy|; = Iy 7 for all T € T¢.
Then we define the operator I, : H'(Q§) — V}, as

Hh = Ih + ]._.[0(1 — Ih),
where 1 is the identity operator. Moreover, for all v € H'(Q°), we have

J

If u is divergence—free, then Il,u € Z;,. Therefore by the definition of II;, and

(div (TI,v))q = / (dive)g Vg€ Pr_1(T7°).

e e
h Qh

the H'-stability of this operator,

inf |V (1 — wp) |2y < 9w~ )|y

wpEZ},
< [V(w = Thyw)|[ 2y + V(T (1 = In)w)| 21

S C(”V(u — Ihu)HLQ(T) + h;IH'UJ — IhuHLQ(T))-

We then use the approximation properties of the Scott-Zhang interpolant to obtain
the result (3.4.4).
Note that by the extension of u, we have diva = 0 in QF. Thus we have

div (u — wy,) = 0 in QF for wy, € Z,.
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Using Lemma 3.4.3, we bound the penalty part in |[u — wy||v;, as follows:

Jn(w—wpu—wn) = Y bt — wiFag,
KeTihh
<C Y (Mellu = williag + V(@ = wi)|f2)  (348)
KeTiht

< CH [l ) < CH* ulffeoage

where for the last inequality we used an inverse estimate, (3.4.1) and Lemma 3.4.2.

This yields the bound [[u — wy |y, < C(h*|lw| g ) + ﬁ%thr%HuHHk’“(Q))- O

Theorem 3.4.5. The following error estimate holds
1 1 1 1
lw—wn v, +(1+7) "2 [lp—pnllr2(0) < C(thUHHHI(Q)JF(lJF’YQ+772)hk+2HUHH'M(Q)

+ (072 + (L+ ) 2) R 2 Ipll o) + (1 + 7)2h’“|\pHH’«<m> - (34.9)

Proof. To show the error bounds, we start with a standard argument. Let wj, € Z,,
be a function in the discrete kernel satisfying estimate (3.4.4). Setting e; = u,—wy, €

V), we have, thanks to the coercivity result in Lemma 3.3.3:
Co||€1||%/h < ap(er, e;g). (3.4.10)

Denote by p, € @) the L?*-projection of p onto Qy,, and set q; = p, — pp. It
follows from (3.3.2) that there exists v € V}, with supp(v) C €, such that

_ . _1
Cillarl72) < b(v.ar) + Cr Valar,ar), with (1+9) 2 [[vlly, < [lvllvg,, = llarllz2),

(3.4.11)

6*

where €7 = %, and 6, is the inf-sup constant given in Corollary 3.3.2.
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From (3.4.10), (3.4.11), (3.2.1), and the consistency identity (3.4.2), we conclude
that for any o > 0 it holds

Collerlls;, + CrallglZz ) + (1 +7)7" = aCr ) Ju(ar, ar) (3.4.12)
< an(er, er) +blav, qr) + (1 + ) " Jn(ar, qr)
= ap(er, ef +av) +ble; + aw, qp) — bler, qr) + (1 +7) " Jular, a1) — an(er, av)
= ap(u — wy, e + av) + ble; + av,p — pr) — b(u — wy, qr)
+ (1 +7) " I — Drar) — an(er, aw)
=L+ 1o+ I3+ 1y + Is.

We now estimate the right-hand side of (3.4.12) term-by-term.
Using the continuity result in Lemma 3.3.3 and the approximation results in

Lemma 3.4.4, we bound
Il S Ca||€]+0é’l)”vh”u—whHVh (3413)
< Cler + avlly, (thuHHHl(Q) +ophpEts ||u|ka+2(Q))

1 1 1
< C(llerllvi + a(t+ ) larllzay) (Bl o + 0t ull o)

where we used (3.4.11) in the last inequality.
We now estimate the second term in the right-hand side of (3.4.12) in two steps.

First, using approximation properties of the L?-projection, we get

o~ . 1 _1
(Pn — p,diver) < (14+7)72(pn — pllrz@ llerllvi, < (1497205 pllr@yllervi.-
(3.4.14)

Likewise,

(ﬁh — p, adiv ’U) < OathpHHk(Q) ||q1||L2(Q). (3.4.15)
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We apply the trace inequality (3.4.3) and standard approximation properties of
the L?-projection to estimate the boundary integral in b(er + v, p—py), noting that

v=0onI":

/ G —p)er+av) < 3 1B — pllsa el
T

KeTihh
B R 1/2 3 1/2
< (X b - pliegen) (X whillerlliz)
KeTiht KeTiht

_1 _1 1
< On 208 |pll v lerllvi, € O™ 2B 2 Il s o ller [l
(3.4.16)

where we used the Cauchy-Schwarz inequality in the second inequality and Lemma

3.4.2 in the last inequality. Summing (3.4.14)—(3.4.16) we obtain

_1 _1opad
o < C (™l @yllar oy + (1 4+ )8 Dl ey + 17 5054 Dbl s o ) lesllv, ).
(3.4.17)
To estimate I3, we first note that, due to (3.4.3), finite element inverse inequali-

ties, and (3.3.3), there holds

Z hKHQIH%?(KF) <C Z HQIH%Q(K) < O(Hq“%Q(Q) + Jh(QI;Q[))'
KeTghh KeTth
Therefore, thanks to div (u — w;,) = 0 and the estimate (3.4.8), we have

1/2 ~ 1
L (Y melarlin) (3 bl wilfau )

ct, T’ ct,I’
KeTy, KeTy

/2

11
< C(HQIH%Q(Q) + Jnlar, q1) 2R T2 ||[u| ez
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We proceed with estimating terms in the right-hand side of (3.4.12). For the
fourth term we get, using the trace inequality (3.4.3), approximation properties of

the L?-projection, and Lemma 3.4.2,

1 R 1 1 B 1
Lo < (L4792 (0 = Prop — Di) i (ar, a1) < CR* 2 (1 +3) Ml a1y 7 (ar. ar)-
(3.4.18)
For the last term in (3.4.12) we have (using (3.4.11))

G
1

22
Cia

Co

Co
1

Is < ol < =llerli, + il (3.4.19)

C2a?(1 +~
leslf, + Car(l )
0

We apply the estimates (3.4.13)—(3.4.19) to (3.4.12) getting
Collerlly;, + Crallarlliz i) + (1 +) " — aCy ) Jular ar)
< C((HGIHVh + a1+ 7)2lgrl 2@) (B |wll e @) + 02 B8 2 ] ie )
lexlv,

_1 _1 1
+ ah¥llar 2Pl + ((1+7) 20 pllxcoy + 05053 [pll s o

i 1 _
+ (larll ez + I (ar, a) P2 (Jw| ey + (1 +7) 1||pHHk+1(Q)))

Co C2a?(1 + )

+ Pllerlfy, + = ol

We apply the Cauchy-Schwarz inequality several times and rearrange terms to

obtain
Colles]ly, + (Cra — Ca*(14+9)) larllaq) + (L +7) " — aCr ) nlar, ar)

< c((h%nunmm 2 sy ) + (@ + DL +9) 2l

+ n_1h2k+1||p||§{k+l(g) + Ol_lh%—i_l(“uH%{H?(Q) +(1+ 7)_2”]7”?1’““(9))) )
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We now take v = C(1+ )7L, with C' > 0 sufficiently small to obtain

Collerlly, + €1+ 1) (larllizo) + Jular, ar)

< C<h2k||u||?{k+1(g) +(1+ 7)_1h2k||p||§{k(g) +(1+n+ 7)h2k+1||u||§{k+2(9)

+ 7+ (1 7)_1)h2k+lllpllék+1(g)> -

Finally, we apply the triangle inequality, the divergence-free property of u and wy,
and approximation properties (3.4.4) to obtain the error estimate (3.4.9).

]

Remark 3.4.6. The pressure dependence in velocity error (3.4.9) arises from the vi-
olation of mass conservation in the boundary strip and the penalty treatment of
the boundary condition. The violation of the divergence-free constraint in a bound-
ary strip can be partially mitigated by taking grad-div parameter v = O(h™!) and
Nitsche parameter n = O(h™!), which seem to be the optimal choice with respect to
the error analysis in the energy norm. This can be contrasted to v = O(1) for the

Taylor-Hood element.
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4.0 Numerical Experiments

This Chapter consists of three sections. In the first two sections, we perform two
numerical experiments for FEM with boundary correction developed in Chapter 2,
and two numerical experiments using Netgen/NGSolve [48] with ngsxfem add-on [37]
for CutFEM in Chapter 3, respectively. We also compare the numerical results with
the theories developed in the respective chapters; In the third section, we present two

numerical experiments for the stationary Navier-Stokes problem using CutFEM.

4.1 Boundary Correction

4.1.1 Circle

In this numerical experiment, we perform a series of tests of the finite element

method (2.3.1). The domain for these tests is a circle given via a level set function:

Q= {(x,y) € R?: ¢(x,y) < 0}, (4.1.1)

where

o(x,y) = /(r —0.5)2 + (y — 0.5)2 — 0.2.

We use the Scott-Vogelius pair Py — P4¢ on Clough-Toucher splits for the finite
element spaces.
We set, the background polygon to be the unit square S = (0,1)2, and the back-

ground mesh 8, to be a sequence of type I triangulations of S, i.e., a mesh obtained by
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drawing diagonals of a cartesian mesh. Then we perform the barycenter refinement
to obtain 8¢

We obtain the extension direction d by solving an auxiliary 2 X 2 nonlinear
system at each quadrature point of each boundary edge of T§*. In particular, for

each quadrature point (z,y) € 98, we find (z.,y.) € 0N such that
(2w, y) = 0, (ng(x*,y*))J‘ ((z,y) — (24, 94)) = 0,

and set d = ((z,y) — (2.,9:))/1(x,y) — (24, 9.)| and §(z,y) = [(z,y) — (T4, ys)|.
The first equation ensures that (x,,y.) is on the boundary 0f2, whereas the second
equation states that d is parallel to the outward unit normal of 9 at (., y.).

For the Nitsche penalty parameter in ay(-, ), we set the value n = 40 throughout
the experiment.

The experiment consists of two groups of tests, where the difference of the two
groups of tests is the viscosity parameter v in the bilinear form ay(-,-). In the first
group, we set v = 107!; in the second group, we set v = 107°. For each group, we
perform the tests 5 times on a sequence of meshes with the mesh parameter i being
0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

2002 — x4+ 025+ y* —y)(2y — 1)

2 yh2 (4.1.2)
—2(2? —x+0.25 +y? —y)(2z — 1)

g
I
3
I
—_
=2
S
|
<

Correspondingly, we have the right-hand function

v(16 — 32y) + 40z(2? — y?)
v(32z — 16) — 40y(z* — y?)
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We state the L? error results for the velocity ||u — usl/12(q,), the L? error results
for the pressure |[p—pn| r2(q,), and the H'-type error results for the velocity ||V (u—

up)||2(q,) and their respective rate of convergence in Table 1 and Table 2.

Results for v = 107! Results for v = 107!
h |lu—unl[z2q,) | Rate || h |V(u—up)|[z20,) | Rate
0.200 || 9.244e-03 0.200 || 1.998e-01
0.100 || 2.050e-03 2.173 || 0.100 || 2.633e-02 2.924
0.050 || 3.229e-04 2.667 || 0.050 || 7.150e-03 1.881
0.025 || 3.578e-05 3.174 || 0.025 || 1.862¢-03 1.941
0.013 || 3.798e-06 3.236 || 0.013 || 4.750e-04 1.971
Results for v = 107° Results for v = 107°
h |u—unl[z2q,) | Rate || A |V(u—up)|[20,) | Rate
0.200 || 1.324e+01 0.200 || 1.517e+02
0.100 || 2.328e-01 5.830 || 0.100 || 2.842e+00 5.738
0.050 || 3.282e-02 2.826 || 0.050 || 4.134e-01 2.782
0.025 || 3.172e-03 3.371 || 0.025 || 5.385e-02 2.941
0.013 || 2.177e-04 3.865 || 0.013 || 8.199¢-03 2.715

Table 1: L? error and H!-type error for velocity and their respective rate of conver-

gence with v = 107! and v = 107° on domain (4.1.1) with exact solution (4.1.2).
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Results for v = 1071

h 1P = pullz2n) Rate
0.200 || 5.115e-02

0.100 || 1.754e-02 1.544
0.050 || 4.190e-03 2.065
0.025 || 1.060e-03 1.983
0.013 || 2.672e-04 1.988

Results for v = 107°

h 1P = pullz2on) Rate
0.200 || 2.887e-02

0.100 || 9.424e-03 1.615
0.050 || 2.863e-03 1.719
0.025 || 7.992e-04 1.841
0.013 || 2.103e-04 1.926

Table 2: L? error for pressure and rate of convergence with v = 107! and v = 107°

on domain (4.1.1) with exact solution (4.1.2).

From Table 1 and Table 2, we see that, for v = 107°, the velocity error is larger
than that for v = 10~!. However, the pressure error is less than that for v = 107!,
This is consistent with the theoretic results from the error analysis. In both cases
when v = 107! and v = 107°, the pressure error in L? norm converges with order
2, which is the optimal order convergence rate. When v = 107!, we find that the
convergence rate for the velocity error in L? norm is of order 3, and the velocity error

in H'-type norm is of order 2, which both are the optimal order convergence rates
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with respect to the respective space and norm; However when v = 107°, we find that
the convergence rate for the velocity error in L? norm is of order 4 and the velocity
error in H'-type norm is of order 3. This behavior is consistent with the results
from Theorem 2.5.5. By Theorem 2.5.5, we have that, if the solution is smooth,
then ||V(u — up)||120,) = O(R* + v~ 'h*). Since v = 107°, v~! is a large number.
Therefore h® becomes the dominant term, and increases the rate of convergence of
the error estimate by 1.

We plot the errors from Table 1 and Table 2 in Figure 8 to illustrate the conver-

gence rate of the solutions in graph.
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Figure 8: Errors for the velocity and pressure on domain (4.1.1) with varying mesh

size.

The data in Table 3 is the divergence of the velocity ||div wp|| 2, for the two
groups of tests with v = 107! and v = 1075.
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v=10" v=10"°
h |div wp || 20, h |div wp || 20,
0.200 || 6.951e-12 0.200 || 6.881e-08
0.100 || 7.949e-14 0.100 || 4.884e-10
0.050 || 3.375e-13 0.050 || 2.551e-10
0.025 || 1.096e-12 0.025 || 3.795e-10
0.013 || 5.176e-12 0.013 || 2.286e-10

Table 3: Divergence of velocity in L? norm on the domain (4.1.1).

For v = 1071, the divergence of velocity slightly increases as the mesh is refined
due to round-off error and the increase in condition number for the linear system,
but it remains close to 0; when v = 1075, the divergence of velocity decreases as the
mesh is refined, and it remains close to 0. This observation is consistent with the

results from Lemma 2.3.1.

4.1.2 Flower-shaped domain

In this numerical experiment, we perform a series of tests of the finite element
method (2.3.1). The domain for these tests is a flower-shaped domain given via a

level set function [36]:
Q= {(z,y) € R*: ¢(z,y) < 0}, (4.1.3)

where

y— 0.5

o(x,y) = /(z —0.5)2 + (y — 0.5)2 — V0.1 — L sin(6 tan_l(x Y

12

))-
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We use the Scott-Vogelius pair Py — P45¢ on Clough-Toucher splits for the finite
element spaces.

We set, the background polygon to be the unit square S = (0,1)?, and the back-
ground mesh &, to be a sequence of type I triangulations of S, i.e., a mesh obtained by
drawing diagonals of a cartesian mesh. Then we perform the barycenter refinement
to obtain 8¢

We obtain the extension direction d by solving an auxiliary 2 x 2 nonlinear
system at each quadrature point of each boundary edge of T§*. In particular, for

each quadrature point (z,y) € 98, we find (z.,y.) € 0 such that
¢(x*,y*) =0, (v¢(x*’y*>>1_ ) ((:U?y) - (:L‘*,y*)) =0,

and set d = ((2,y) = (24, 9:))/[(x,y) = (2, 92)| and o(z,y) = |(z,y) — (2., p.)].

The first equation ensures that (z,,y.) is on the boundary 0f2, whereas the second
equation states that d is parallel to the outward unit normal of 09 at (., y.).

For the Nitsche penalty parameter in ay(+, ), we set the value n = 40 throughout
the experiment.

The experiment consists of two groups of tests, where the difference of the two
groups of tests is the viscosity parameter v in the bilinear form ay(-,+). In the first
group, we set v = 107!; in the second group, we set v = 1075, For each group, we
perform the tests 5 times on a sequence of meshes with the mesh parameter h being
0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

2002 — 2+ 025+ 9% —y)(2y — 1
we |2 S T S IR )
—2(2? —x+0.25 +y? —y)(2z — 1)
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Correspondingly, we have the right-hand function

v(16 — 32y) + 40z(2? — y?)

I= v(32z — 16) — 40y(2? — ?)

We state the L? error results for the velocity ||u — wp||12(q,), the L? error results
for the pressure ||p—pnl|12(0,), and the H'-type error results for the velocity ||V (u—

)| 12(0,) and their respective rate of convergence in Table 4 and Table 5.

Results for v = 1071 Results for v = 107!
h |lu—upl[z20,) | Rate || A |V (u—un)| 20, | Rate
0.200 || 2.045e-02 0.200 || 4.814e-01
0.100 || 3.467e-03 2.561 || 0.100 || 8.760e-02 2.458
0.050 || 2.074e-05 4.183 || 0.050 || 2.019¢-03 3.081
0.025 || 2.673e-06 3.239 || 0.025 || 5.512e-04 2.052
0.013 || 4.215e-07 2.636 || 0.013 || 1.393e-04 1.963
Results for v = 107 Results for v = 107
h |lu—unl[z20,) | Rate || A |V(u—up)| 20, | Rate
0.200 || 8.312e+00 0.200 || 1.404e+02
0.100 || 2.335e-01 5.154 || 0.100 || 6.294e+00 4.479
0.050 || 2.954e-03 3.571 || 0.050 || 1.163e-01 3.261
0.025 || 3.086e-04 3.571 || 0.025 || 1.174e-02 3.625
0.013 || 2.078e-05 3.849 || 0.013 || 1.047e-03 3.449

Table 4: L? error and H'-type error for velocity and their respective rate of conver-

gence with v = 107" and v = 107° on domain (4.1.3) with exact solution (4.1.4).
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Results for v = 107!
h 1P = pullz2n) Rate
0.200 || 2.113e+00
0.100 || 1.648e-01 3.681
0.050 || 1.155e-03 4.053
0.025 || 2.902e-04 2.184
0.013 || 7.341e-05 1.961
Results for v = 107
h 1P — prllz2n) Rate
0.200 || 4.411e-02
0.100 || 6.201e-03 2.830
0.050 || 7.179¢-04 1.762
0.025 || 2.189e-04 1.878
0.013 || 5.592e-05 1.947

Table 5: L? error for pressure and rate of convergence with v = 107! and v = 10°

on domain (4.1.3) with exact solution (4.1.4).

From Table 4 and Table 5, we see that, for v = 107°, the velocity error is larger
than that for v = 10~!. However, the pressure error is less than that for v = 107!,
This is consistent with the theoretic results from the error analysis.. In both cases
when v = 107! and v = 107°, the pressure error in L? norm converges with order
2, which is the optimal order convergence rate. When v = 107!, we find that the
convergence rate for the velocity error in L? norm is of order 3, and the velocity error

in H'-type norm is of order 2, which both are the optimal order convergence rates
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with respect to the respective space and norm; However when v = 107°, we find that
the convergence rate for the velocity error in L? norm is of order 4 and the velocity
error in H'-type norm is of order 3. This behavior is consistent with the results
from Theorem 2.5.5. By Theorem 2.5.5, we have that, if the solution is smooth,
then ||V(u — up)||120,) = O(R* + v~ 'h*). Since v = 107°, v~! is a large number.
Therefore h® becomes the dominant term, and increases the rate of convergence of
the error estimate by 1.

We plot the errors from Table 4 and Table 5 in Figure 9 to illustrate the conver-

gence rate of the solutions in graph.
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Figure 9: Errors for the velocity and pressure on domain (4.1.3) with varying mesh

size.

The data in Table 6 is the divergence of the velocity ||div wp| 2, for the two
groups of tests with v = 107! and v = 1075.
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v=10" v=10"°
h |div wp || 20, h |div wp || 20,
0.200 || 1.112e-12 0.200 || 1.11013e-08
0.100 || 5.049e-13 0.100 || 5.17554e-09
0.050 || 3.384e-13 0.050 || 4.26814e-10
0.025 || 1.776e-13 0.025 || 4.83809e-11
0.013 || 4.032e-12 0.013 || 1.09424e-12

Table 6: Divergence of velocity in L? norm on the domain (4.1.3)

For v = 1071, the divergence of velocity slightly increases as the mesh is refined
due to round-off error and the increase in condition number for the linear system,
but it remains close to 0; when v = 1075, the divergence of velocity decreases as the
mesh is refined, and it remains close to 0. This observation is consistent with the

results from Lemma 2.3.1.

4.2 CutFEM

In this section, we use Netgen/NGSolve [48] with the ngsxfem extension [37] for
the CutFEM numerical experiments. Throughout this section, we use the finite ele-
ment methods (3.2.1) introduced in the third chapter for our numerical experiments,
with one slight modification for the ghost penalty terms stated in [44] as we now
explain.

For any F € %' we define wp := K; U Ky, where F' C 0K, N 0K,. Then, for
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a polynomial v that is defined on wp, we denote v; to be v restricted to K;, where
¢t = 1,2. Then we canonically extend both v; and v, to Ky and K7, respectively.
Finally, we define [v],,.(xz) = vi(x) — va(x) for © € wp. Then we define the two

modified stabilization term:

Jhm (W, ) Z / Vs (4.2.1)

T (D5 Z / (4.2.2)

From [44, Lemma 3.1] and [44, Remark 6] we see that both j, ,,,(-,-) and Jy (-, ")
have ghost penalty mechanisms, and are bounded above by j, (-, ) from the bilinear
form ay(-,-) in (3.2.1) and J,(-,-) from the second equation of (3.2.1).

For the convenience of implementation, we use jj, ,,(-,-) and Jy (-, ") to replace
in(,-) and Jp(+,-) in (3.2.1) during the following numerical experiments.

We conduct total of two numerical experiments. For each experiment, we perform
a series of tests of the finite element method (3.2.1). The domain for these tests is a

6-petal flower-shaped domain given via a level set function [36]:
Q= {(z,y) € R*: ¢(z,y) < 0}, (4.2.3)

where

o(z,y) =/ (x —0.5)2 4 (y — 0.5)2 — V0.1 — % sin(6 tan’l(x

In the first experiment, we use the Scott-Vogelius pair Py — P%¢ on Clough-
Toucher splits for the finite element spaces; in the second experiment, we use the

Scott-Vogelius pair P3 — P4s¢ on Clough-Toucher splits for the finite element spaces.
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We set the background polygon to be the unit square S = (0,1)?, and the back-
ground mesh 8, to be a sequence of Delaunay triangulations. Then we perform the
barycenter refinement to obtain 8¢.

Each experiment consists of three groups of tests, where the difference of the
three groups of tests is the Nitsche penalty parameter 7 and the grad-div parameter
7 in the bilinear form ap(+,-). In the first group, we set n = 100 and v = 0; in the
second group, we set n = 100 and v = 10h~?; in the third group, we set n = 10h~*
and v = 10h~!. For each group, we perform the tests 5 times on a sequence of meshes
with the mesh parameter h being 0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

(22 +y? — 1)(8x2y + 2> + 5y* — 1) 1
u = , p=10((z* —y*)* - 6) (4.2.4)
—dz(2® + 1y - 1)Ba? + 2 +y—1)

Correspondingly, we have the right-hand function

(—144x2y — 16y® — 242* — T2y + 16y + 16) + 40x(z* — y?)
162(172% + 9y? + 3y — 7) — 40y(z? — y?)

4.2.1 Scott-Vogelius pair when k£ = 2

In Table 7 and Table 8, we have the results for L? error of velocity |lw—u|| 120,
the H'-type error of velocity ||V (u—wuy)||12(q) and L? error of pressure ||p—pa||r2@)
and their respective rates of convergence for each of the three groups. In each of the
three groups, we find that the convergence rate for the velocity error in L? norm is
of order 3, and the velocity error in H'-type norm is of order 2, and the pressure
error in L? norm is of order 2, which are all the optimal order convergence rates with

respect to the respective space and norm.

90



We plot the error results from Table 7 and Table 8 in Figure 10 to illustrate the
convergence rates.

We present divergence of the velocity for the three groups of tests in Table 9. We
notice that the divergence of velocity solution on the domain decreases drastically in
the cases where v = 10h™! from that in the case where v = 0. This behavior aligns
with the theoretic results that the violation of the divergence-free constraint in a
boundary strip can be partially mitigated by taking grad-div parameter v = O(h™1).

Finally, we have the plot of both velocity solution and pressure solution in L?2-
norm, where the Nitsche parameter is set to be n = 10h~! and the grad-div parameter

is set to be v = 10h~!, on the mesh with mesh parameter h = 0.025 in Figure 11.
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n =100, v=20

h lw — wn|| 2 Rate | ||V(uw —up)||r2@) | Rate
0.200 | 2.372e-03 1.180e-01

0.100 | 4.533e-04 2.388 | 3.882¢-02 1.604
0.050 || 5.657e-05 3.002 | 1.097e-02 1.823
0.025 || 7.627¢-06 2.891 | 3.045e-03 1.849
0.013 || 1.018e-06 2.905 | 8.100e-04 1.910

n = 100, v = 10h~1

h lw — wn|| L2 Rate | ||V(uw —up)||12@) | Rate
0.200 | 4.507e-03 1.689¢-01

0.100 | 5.926e-04 2.927 | 4.662e-02 1.857
0.050 || 7.036e-05 3.074 | 1.270e-02 1.876
0.025 | 8.710e-06 3.014 | 3.257e-03 1.963
0.013 | 1.076e-06 3.017 | 8.392e-04 1.956

n =101 v = 10h""

h lw — wn|| 2 Rate | ||V(uw —up)||r2@) | Rate
0.200 | 4.027e-03 1.575e-01

0.100 | 5.926e-04 2.765 | 4.662e-02 1.756
0.050 || 7.511e-05 2.980 | 1.308e-02 1.834
0.025 | 9.998e-06 2.909 | 3.347e-03 1.966
0.013 || 1.161e-06 3.106 | 8.572e-04 1.965

Table 7: L? and H'-type error for velocity and respective convergence rates with
different Nitsche penalty parameters n and grad-div parameters v on domain (4.2.3)

with exact solution (4.2.4).
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n =100, v=20

h o = pull2(0) Rate
0.200 || 1.132e-01

0.100 | 2.343e-02 2.272
0.050 | 7.250e-03 1.692
0.025 | 2.208e-03 1.715
0.013 || 6.176e-04 1.838

n =100, v = 10r~!

h 1P — pullr2@) Rate
0.200 | 2.780e-01

0.100 | 4.152e-02 2.743
0.050 | 1.185e-02 1.809
0.025 || 2.678e-03 2.146
0.013 | 6.947e-04 1.947

n =101 v = 10h""

h o — pull2(0) Rate
0.200 || 2.129e-01

0.100 || 4.152e-02 2.358
0.050 | 1.404e-02 1.564
0.025 || 3.561e-03 1.979
0.013 | 1.089e-03 1.709

Table 8: L? error for pressure and convergence rate with different Nitsche penalty pa-

rameters 7 and grad-div parameters v on domain (4.2.3) with exact solution (4.2.4).
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Figure 10: Errors for the velocity and pressure on domain(4.2.3) with varying mesh

sizes.
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(|div w20
h n =100, v =0 n =100,y =10h"' | n=10r"", v =10n""
0.200 | 4.505¢-02 5.959¢-03 4.346e-03
0.100 | 9.165¢-03 7.992e-04 7.992e-04
0.050 | 2.502¢-03 8.346¢-05 1.190e-04
0.025 | 3.984e-04 8.650e-06 2.124e-05
0.013 | 6.464e-05 1.088¢-06 3.710e-06

Table 9: Divergence of velocity in L? norm on the domain (4.2.3).

0.0000+00 3.529e-01 7.8570-01 1.6590+00 1.411e+00 0.666e100 4.9082-01 8.4160-01 1.26%¢100 1.683e100

Figure 11: Aboslute values of velocity (left) and pressure (right) solutions on a flower-

shaped domain, when h = 0.025 and n = v = 10h™L.

95



4.2.2 Scott-Vogelius pair when £ =3

In Table 10 and Table 11, we have the results for L? error of velocity ||u—wup || 12(q),
the H'-type error of velocity ||V (u —uy)||12() and L? error of pressure |[p — pp|| 120
and their respective rates of convergence for each of the three groups. In each of the
three groups, we find that the convergence rate for the velocity error in L? norm is
of order 4, and the velocity error in H!-type norm is of order 3, and the pressure
error in L? norm is of order 3, which are all the optimal order convergence rates with
respect to the respective space and norm.

We plot the error results from Table 10 and Table 11 in Figure 12 to illustrate
the convergence rates.

We present divergence of the velocity for the three groups of tests in Table 12. We
notice that the divergence of velocity solution on the domain decreases drastically in
the cases where v = 10h~! from that in the case where v = 0. This behavior aligns
with the theoretic results that the violation of the divergence-free constraint in a
boundary strip can be partially mitigated by taking grad-div parameter v = O(h™1).

Finally, we have the plot of both velocity solution and pressure solution in L?2-
norm, where the Nitsche parameter is set to be n = 10h~! and the grad-div parameter

is set to be v = 10h~1, on the mesh with mesh parameter h = 0.025 in Figure 13.
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n =100, v=20

h lw — wn|| 2 Rate | ||V(uw —up)||r2@) | Rate
0.200 | 7.504e-03 2.864e-01

0.100 || 1.081e-05 9.439 | 5.775e-04 8.954
0.050 || 5.527e-07 4.290 | 6.179e-05 3.224
0.025 | 3.385e-08 4.029 | 7.093e-06 3.123
0.013 || 2.181e-09 3.956 | 9.030e-07 2.974

n =100, v = 10r~!

h lw — wn|| L2 Rate | ||V(uw —up)||12@) | Rate
0.200 || 1.209e-02 3.747e-01

0.100 || 1.138e-05 10.05 | 6.151e-04 9.251
0.050 || 5.763e-07 4.304 | 6.530e-05 3.236
0.025 | 3.435e-08 4.068 | 7.285e-06 3.164
0.013 | 2.207e-09 3.960 | 9.155e-07 2.992

n =101 v = 10h""

h lw — wn|| 2 Rate | ||V(uw —up)||r2@) | Rate
0.200 || 1.182e-02 3.306e-01

0.100 || 1.138e-05 10.02 | 6.151e-04 9.070
0.050 || 5.801e-07 4.294 | 6.650e-05 3.209
0.025 | 3.474e-08 4.062 | 7.423e-06 3.163
0.013 | 2.224e-09 3.965 | 9.304e-07 2.996

Table 10: L? and H!'-type error for velocity and respective convergence rates with
different Nitsche penalty parameters n and grad-div parameters v on domain (4.2.3)

with exact solution (4.2.4).
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n =100, v=20

h 1P — pullr2@) Rate
0.200 | 2.614e-01

0.100 | 1.013e-03 8.011
0.050 || 1.313e-04 2.948
0.025 || 1.719e-05 2.933
0.013 | 2.336e-06 2.879

n =100, v = 10r~!

h 1P — pullr2@) Rate
0.200 || 6.384e-01

0.100 || 1.157e-03 9.108
0.050 || 1.441e-04 3.005
0.025 || 1.786e-05 3.012
0.013 || 2.399e-06 2.896

n =101 v = 10h""

h P — pullr2@) Rate
0.200 || 5.873e-01

0.100 || 1.157e-03 8.988
0.050 | 1.464e-04 2.982
0.025 || 1.814e-05 3.013
0.013 | 2.423e-06 2.904

Table 11: L? error for pressure and convergence rate with different Nitsche penalty

parameters 7 and grad-div parameters v on domain (4.2.3) with exact solution

(4.2.4).
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Figure 12: Errors for the velocity and pressure on domain(4.2.3) with varying mesh

sizes.
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(|div w20
h n =100, v =0 n =100,y =10h"' | n=10r"", v =10n""
0.200 || 2.092¢-01 2.021e-02 1.487¢-02
0.100 | 1.966e-04 1.002¢-05 1.002e-05
0.050 | 1.832¢-05 5.644¢-07 6.999¢-07
0.025 | 1.583¢-06 3.494e-08 5.567¢-08
0.013 | 1.372¢-07 1.984¢-09 4.556e-09

Table 12: Divergence of velocity in L? norm on the domain (4.2.3).

Figure 13: Aboslute values of velocity (left) and pressure (right) solutions on a flower-

shaped domain, when h = 0.025 and n = v = 10h~L.
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4.3 CutFEM for the stationary Navier-Stokes Problem

In this section, we use Netgen/NGSolve [48] with ngsxfem add-on [37] to conduct

two numerical tests for the stationary Navier-Stokes equations:

—vAu+ (u-V)u+Vp=f in , (4.3.1a)
dive =0 in (4.3.1b)
u=>0 on 0f2 (4.3.1¢)

4.3.1 CutFEM for the stationary Navier-Stokes Problem on a flower-

shaped domain

For this test, the domain is a 6-petal flower-shaped domain given via a level set

function [36]:

Q= {(x,y) € R?: ¢(x,y) < 0}, (4.3.2)
where
= /(z —0.5)? 05)% — V01 — — sin(6 tan~" (L2
8(a,9) = V& 057 1 (5 05 — V0T — o sin(Gtan~ (L02)).

We use the finite element methods (3.2.1) introduced in chapter 3 for our numer-

ical experiments with two modifications.

1. For the convenience in implementing this method, we use jj, (-, ) and Ju (-, ")
in (4.2.1) and (4.2.2) to replace j,(+,-) and Jp(+,-) in (3.2.1).
2. We add the non-linear term (u-Vu, v) and a skew-symmetrize term (5 (div u)u, v)

to the bilinear form ay(+,-) in (3.2.1).

101



We set the background polygon to be the unit square S = (0,1)?, and the back-
ground mesh &, to be a sequence of Delaunay triangulations of S. Then we perform
the barycenter refinement to obtain 8.

We set the Nitsche parameter n = 10h71.

The experiment consists of three groups of tests, where the difference of the three
groups of tests is the grad-div parameter ~ in the bilinear form ay(-,-). In the first
group, we set v = 0; in the second group, we set v = 100; in the third group, we set
v =10hn"1.

For each group, we perform the tests 5 times on a sequence of meshes with the
mesh parameter h being 0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

2(2* =2 +025+y* —y)(2y — 1
u = ( v -9y =1 . p=10(2* — y*)>2 (4.3.3)
—2(z* -+ 025+ y* —y)(2z — 1)

Correspondingly, we have the right-hand function

We use the lowest order Scott-Vogelius pair Py — Pfise.

In Table 13 and Table 14, we state the results for the L? error of velocity ||u —
up||12(0), the H'-type error of velocity |V (u — up)|12(0), the L? error of pressure
0 — prllz2), and ||div |20y and their respective rates of convergence. When
v = 0, we find that the convergence rate for the velocity error in L? norm is of order
3, and the velocity error in H'-type norm is of order 2, the pressure error in L? norm
is of order 2, which are are of optimal order with respect to the space and norm. In

the cases v = 100 and v = 10h™!, the velocity error in L? norm and the velocity
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error in H!'-type norm exhibit optimal order convergence rate. However, the rate of
convergence of pressure error ||p — pp||r2(q) drops to 1.674 when v = 100; the rate of
convergence of pressure error ||p — pa||r2() drops to 0.411 when v = 10h~*. On the
other hand, we observe the size of the divergence of velocity decreases significantly
as the grad-div parameter 7 increases.

We plot the error results from Table 13 and Table 14 in Figure 14 to illustrate
the convergence rates.

Finally, in Figure 15, we plot the absolute values of velocity solution and pressure
solution, where the Nitsche parameter is set to be = 10h~! and the grad-div
parameter is set to be v = 10h~!, on the mesh with mesh parameter h = 0.05 in

Figure 15.
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7=0

h lw —wun|| 2@ | Rate | [|[V(u —wup)|2@) | Rate || [|div (us)||r2() Rate
0.200 || 6.812e-04 2.460e-02 1.060e-02

0.100 || 9.643e-05 2.821 | 6.671e-03 1.883 || 2.866e-03 1.887
0.050 || 8.172e-06 3.561 | 1.491e-03 2.162 || 4.978e-04 2.525
0.025 | 8.664e-07 3.238 | 3.780e-04 1.980 || 1.072e-04 2.215
0.013 | 1.089e-07 2.992 | 9.714e-05 1.960 || 3.120e-05 1.781

v =100

h |lw —un| 2@ | Rate | [[V(u —up)||2@) | Rate || [|div (us)||r2() Rate
0.200 || 5.733e-04 2.348e-02 6.522e-04

0.100 || 8.049e-05 2.832 | 6.351e-03 1.886 || 1.835e-04 1.830
0.050 || 7.531e-06 3.418 | 1.454e-03 2.127 || 6.483e-05 1.501
0.025 | 9.106e-07 3.048 | 3.695e-04 1.976 || 2.183e-05 1.570
0.013 || 1.041e-07 3.129 | 9.352e-05 1.982 || 7.504e-06 1.541

v =10r"!

h lw —wun|| 2@ | Rate | [[V(u —up)||2@) | Rate || [|div (us)||r2() Rate
0.200 || 5.720e-04 2.330e-02 9.033e-04

0.100 || 8.049e-05 2.328 | 6.351e-03 1.875 || 1.835e-04 2.299
0.050 || 8.071e-06 3.318 | 1.467e-03 2.114 || 5.950e-05 1.625
0.025 || 1.061e-06 2.927 | 3.747e-04 1.969 | 2.074e-05 1.520
0.013 | 1.388e-07 2.934 | 9.659¢-05 1.956 || 7.182¢-06 1.530

Table 13: L? and H'-type error for velocity and divergence of velocity in L*-norm

and respective convergence rates with different grad-div parameters v = 0, v = 100,

v = 10h~! on domain (4.3.2) with exact solution (4.3.3).
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||p —thL2(Q)

h v=0 Rate || v =100 Rate | v = 10h~! Rate
0.200 || 5.053e-02 7.720e-02 7.504e-02

0.100 || 6.889e-03 2.875 || 6.882e-03 3.488 || 6.882e-03 3.447
0.050 || 1.297e-03 2.409 || 1.904e-03 1.854 || 2.835e-03 1.279
0.025 || 2.942e-04 2.140 || 4.444e-04 2.099 || 1.124e-03 1.335
0.013 || 7.527e-05 1.967 || 1.393e-04 1.674 || 8.451e-04 0.411

Table 14: L? error for pressure and convergence rate with different grad-div param-

eters v = 0, v = 100, v = 10h~" on domain (4.3.2) with exact solution (4.3.3).
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Figure 14: Errors for the velocity and pressure and the divergence of velocity in

L*-norm on domain(4.3.2) with varying mesh sizes.
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Figure 15: Aboslute values of velocity (left) and pressure (right) solutions on a flower-

shaped domain, when h = 0.05 and = v = 10h~L.

4.3.2 Schafer-Turek benchmark

In this subsection, we conduct the Schéfer-Turek benchmark test [47] for the
stationary Navier—Stokes problem (4.3.1) using the CutFEM scheme (3.2.1) with the

same modification as the previous test:

1. For the convenience in implementing this method, we use j; (-, ) and Jy (-, )
in (4.2.1) and (4.2.2) to replace j,(-,-) and Ju(-,-) in (3.2.1).
2. We add the non-linear term (u-Vu, v) and a skew-symmetrize term (5 (div u)u, v)

to the bilinear form ay(+,-) in (3.2.1).
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Figure 16: Domain of the Schafer-Turek benchmark test.

The domain of the test €2 is the interior of a rectangle with length 2 and width
0.41 with a circle removed as shown in Figurel6. The circle is given by the following

level set:

V(z —0.2)2 + (y — 0.2)2 — 0.0025 = 0. (4.3.4)

The geometry of the domain represents a 2D channel with a circular obstacle
which is positioned slightly off the center of the channel. The flow comes in from the
left side of the channel and goes out from the right side of the channel. We set the
viscosity of the flow v = 0.001.

We name parts of the boundary of 2 as follows:

[t is the left side of the rectangle;
["wan is the top and bottom sides of the rectangle;

[outier is the right side of the rectangle;

= W o=

Ly is the circle given by (4.3.4).

We set the background polygon to be the 2x0.41 rectangle S, and the background
mesh §8; to be the Delaunay triangulations of S with A = 0.05. In this test, the cut

elements are the elements that are cut by the circle (4.3.4). The test problem has
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the following Dirichlet conditions:

6y(0.41—y)
u = 0412 on [inlet, (4.3.5a)
0
u = on I'ey, (4.3.5b)
u=>0 on I'yan. (4.3.5¢)

We enforce the boundary conditions (4.3.5a) and (4.3.5¢) strongly by including those
conditions into the finite element space, while we enforce the boundary condition
(4.3.5b) weakly though the CutFEM scheme (3.2.1). We set the Nitsche parameter
n = 10h~! and the grad-div parameter v = 10h~!. We use the Scott-Vogelius pair

P3 — Pdisc. We plot the norm of the velocity approximation of this test in Figure 17.

109



4.0896e-81

3.0872e-01

2.08d8e-01

1.92de-01

6.000e+00

vﬂ ‘WG\
jri \“,A

ﬂ 7|
. Zﬁ =

_vr jé K

r\.m s,
,27
\\

7 .:

.., Lvr

S

\ﬁ‘w
ﬂ.m%%‘» .
...v%b%b(\) s,
GZOANEOBNZ

£

:_

L

B

E

0
Av

Figure 17: Absolute value of velocity solution of Schafer-Turek benchmark test, with

h

0.05 and v = 0.001.
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5.0 Conclusions

In this thesis, we constructed two unfitted finite element methods for the Stokes
problem based on the Scott-Vogelius pair on Clough-Tocher splits and provided nu-
merical experiments using these two schemes.

In Chapter 2, we constructed a uniformly stable and divergence-free method on
an unfitted domain for Stokes problem on 2D domains. Although the method is
not pressure robust, by using a Lagrange multiplier to enforce normal boundary
condition, we reduced the influence of pressure on the velocity error. The theoretical
analysis showed that the method converges with optimal order.

In Chapter 3, we constructed a uniformly stable CutFEM on an unfitted domain
for Stokes problem on both 2D and 3D domains. Although this scheme does not
produce an exact divergence—free velocity approximation, the discrete velocity is
divergence—free outside an O(h) neighborhood of the boundary. We used local grad-
div stablization to mitigate the error caused by the violation of the divergence-free
condition around the boundary. We showed the scheme converges with optimal order
even with a rather heavy penalty for the violation of mass conservation.

In chapter 4, we conducted numerical experiments for both the boundary cor-
rection method proposed in chapter 2 and the CutFEM proposed in chapter 3. The
numerical results were consistent with the theoretical analysis for both methods pro-
vided in the respective chapters. In addition, we extended the CutFEM numerical
experiments to a stationary Navier-Stokes problem on a simply connected domain
and a non-simply connected domain.

Although the discussion in chapter 2 does not go beyond the scope of the 2D

setting, some of the results can be easily extended to 3D. For example, the discrete
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inf-sup condition (LBB) in Lemma 2.4.6 can be extend seamlessly into 3D. However,
the extension of some other results may not be as obvious. For instance, the proof of
the inf-sup condition for the velocity-Lagrange multiplier pair relies heavily on the
geometry of the computational domain, and its extension to the 3D setting requires
a more careful study in the future.

It is also worth mentioning that although for the proposed method in Chapter
3, the finite element space is the Scott-Vogelius pair on Clough-Tocher splits, the
results can be extended to the Scott-Vogelius pair on Powell-Sabin splits in a 2D

setting.
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