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UNFITTED FINITE ELEMENT METHODS FOR THE STOKES

PROBLEM USING THE SCOTT-VOGELIUS PAIR

Haoran Liu, PhD

University of Pittsburgh, 2022

In this thesis, we construct and analyze two unfitted finite element methods for

the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. For

both methods, for k ≥ d, where d is the dimension of the space, the velocity space

consists of continuous piecewise polynomials of degree k, and the pressure space

consists of piecewise polynomials of degree k−1 without continuity constraints. The

discrete piecewise polynomial spaces are defined on macro-element triangulations

which are not fitted to the smooth physical domain.

The first unfitted finite element method we propose is a finite element method

with boundary correction for the Stokes problem on 2D domains. We introduce a

Lagrange multiplier space consisting of continuous piecewise polynomials of degree

k with respect to the boundary partition to enforce the boundary condition as well

as to mitigate the lack of pressure robustness. We show the well-posedness of the

method by proving several inf-sup conditions. In addition, we show this method has

optimal order convergence rate and yields a divergenece-free velocity approximation.

The second unfitted finite element method we propose is a CutFEM for the

Stokes problem on both 2D and 3D domains. Boundary conditions are imposed via

penalization through the help of a Nitsche-type discretization. We ensure the stabil-

ity with respect to small and anisotropic cuts of the bulk elements by adding local

ghost penalty stabilization terms. We show the method is well-posed and possesses

a divergence–free property of the discrete velocity outside an O(h) neighborhood of
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the boundary. To mitigate the error caused by the violation of the divergence-free

condition around the boundary, we introduce local grad-div stablization. Through

the error analysis, we show that the grad-div parameter can scale like O(h−1), allow-

ing a rather heavy penalty for the violation of mass conservation, while still ensuring

optimal order error estimates.
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1.0 Introduction

1.1 Finite Element Methods Applied to the Stokes Problem on

Polytopal Domains

The Navier-Stokes equations are a fundamental model of incompressible flows.

This model has wide applications in science and engineering. For instance, it can be

used to model fluid flows in a pipe or a channel, or the air flows around the wings

of an airplane. For a domain Ω ⊂ Rd, where d ∈ {2, 3}, and a time interval (0, T ),

where T < ∞, a simple form of the Naiver-Stokes equations assumes constant fluid

density, and is given as follows:

∂tu− ν∆u+ (u · ∇)u+∇p = f in Ω, (1.1.1a)

divu = 0 in Ω (1.1.1b)

where u is the velocity of the fluid, p is the pressure, and ν is the viscosity, which

is assumed to be constant. The right-hand function f stands for the external force,

and the nonlinear term (u · ∇)u stands for the inertial force. The Laplacian term

∆u represents the viscous effects of the fluid. The second equation represents the

incompressibility of the fluid.

As a constrained system of partial differential equaitons, the Navier-Stokes equa-

tions pose some mathematical and numerical difficulties. We consider a basic model,

the stationary Stokes equations, to highlight and focus on this coupling and to study

the divergence-free constraint. The Stokes equations with Dirichlet boundary condi-

tions are given as:
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−ν∆u+∇p = f in Ω, (1.1.2a)

divu = 0 in Ω, (1.1.2b)

u = g on ∂Ω. (1.1.2c)

Since the system of Stokes equations does not have the nonlinear term (u · ∇)u and

is not time-dependent, it is obvious that this model problem is much simpler than

the Navier-Stokes equations. For simplicity, we set g ≡ 0.

We multiply a test function v from H1
0 (Ω) to both sides of (1.1.2a), and a test

function q from L2
0(Ω) to both sides of (1.1.2b), then integrate both sides of the

equations. Using integration-by-parts, we derive the weak formulation of the Stokes

problem: Find u ∈H1
0 (Ω) and p ∈ L2

0(Ω) such that

ν(∇u,∇v)− (p, div v) = (f ,v) ∀ v ∈H1
0 (Ω), (1.1.3a)

−(divu, q) = 0 ∀ q ∈ L2
0(Ω). (1.1.3b)

Here we use (·, ·) to denote the L2 inner product over Ω.

To apply finite element methods to (1.1.3), assuming Ω to be a polytopal domain

here, we triangulate the domain Ω into a simplicial mesh Th, where h stands for the

mesh parameter, and we define the following piecewise polynomial space with respect

to Th:

Pk(Th) = {v ∈ C(Ω) : v|T ∈ P(T ) ∀T ∈ Th},

Pdisc
k (Th) = {v ∈ L2(Ω) : v|T ∈ P(T ) ∀T ∈ Th}.

We use boldface to denote the counterpart for vector-valued functions and spaces.
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Let Vh ⊂ H1
0 (Ω) and Qh ⊂ L2

0(Ω) be finite-dimensional spaces consisting of

piecewise polynomials with respect to Th. Then a finite element method for (1.1.2)

based on (1.1.3) reads: Find a uh ∈ Vh and a ph ∈ Qh such that

ν(∇uh,∇v)− (ph, div v) = (f ,v) ∀ v ∈ Vh, (1.1.4a)

−(divuh, q) = 0 ∀ q ∈ Qh. (1.1.4b)

We say that the pair of Vh × Qh for the finite element method (1.1.4) is stable

if the Ladyzhenskaya–Babuška–Brezzi (LBB) condition is satisfied [8]: there exists a

constant C > 0 that is independent of the mesh parameter h such that

C∥q∥L2(Ω) ≤ sup
v∈Vh\{0}

∫
Ω
(div v)q dx

∥v∥H1(Ω)

∀q ∈ Qh.

Here we list some common choice of stable Stokes pairs [8, 51]:

1. Pd − P0: Vh = Pd(Th) ∩H1
0 (Ω) and Qh = Pdisc

0 (Th) ∩ L2
0(Ω), where d represents

the dimension of the domain;

2. Taylor-Hood Element: Vh = Pk(Th) ∩H1
0 (Ω) and Qh = Pk−1(Th) ∩ L2

0(Ω) for

k ≥ 2;

3. MINI element: Vh = (P1(Th) + Bd+1(Th)) ∩H1
0 (Ω) and Qh = P1(Th) ∩ L2

0(Ω),

where Bd+1(Th) denotes the space of local bubble functions of degree d+1. Here,

d represents the dimension of the domain;
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1.2 Divergence-free Elements for the Stokes Problem

We say Vh × Qh is a conforming, stable, and divergence-free pair for the Stokes

problem if the following conditions with respect to a simplicial triangulation of the

domain Ω are satisfied [21]:

1. The discrete spaces are conforming, i.e., we have Vh ⊂H1
0 (Ω) and Qh ⊂ L2

0(Ω);

2. The discrete pair Vh×Qh is stable, i.e., the Ladyzhenskaja-Babuska-Brezzi (LBB)

condition is satisfied.

3. the pair produces pointwise divergence-free discrete velocity solution uh ∈ Vh for

the Stokes problem.

The third condition is typically satisfied by enforcing the image of the divergence

operator on the velocity space Vh to be a subset of the pressure space Qh, i.e.,

divVh ⊂ Qh. Many finite element methods have been developed over the past years:

Some notable methods that fit this description are Taylor-Hood elements [8], Pd−P0

elements [8], MINI element [1], etc. However, most of those only satisfied the first two

conditions mentioned above, with the mass conservation enforced only weakly. On

the other hand, Scott and Vogelius showed that the Pk−Pdisc
k−1 pair in two dimensions

satisfies all three conditions mentioned above, if the following criteria are met [51, 54]:

(1) the polynomial degree k is greater or equal to 4; (2) the triangulation is quasi-

uniform (this condition can be dropped according to [28]); (3) there are no singular

vertices, i.e., vertices that fall on two straight lines, within the triangulation. Later,

it has been shown on a barycenter refined mesh, if k ≥ 2 in two dimensions [2], the

pair is stable, conforming and divergence-free. In three dimensions, it has also been

shown that on a barycenter refined quasi-uniform tetrahedral mesh, if k ≥ 3, the pair

is stable, conforming and divergence-free [55]. Some other examples of finite element

4



methods that satisfies all three conditions above include Guzmán-Neilan elements

[25] and Falk-Neilan elements [21]. In this thesis, we focus on Scott-Vogelius element

for its properties that for k ≥ d the pair yields exact divergence-free velocity solutions

and the pair yields stable solution pair on a barycenter refined mesh [14].

Divergence–free schemes have several inherent advantages, e.g., exact conserva-

tion laws for any mesh size and long-time stability [17, 7]. In the case where the

domain Ω is a polytope, divergence–free schemes also provide pressure-robustness;

similar to the continuous setting, modifying the source term in the Stokes problem

by a gradient field only affects the pressure approximation. This invariance leads to a

decoupling in the velocity error, with abstract estimates independent of the viscosity.

Thus, divergence-free schemes may be advantageous for high Reynold number flows

and/or flows with large pressure gradients [49, 50, 38].

The advantages of the divergence-free elements is highlighted through a com-

parison between using Taylor-Hood and Scott-Vogelius for an example problem in

[14]:

Example 1.2.1. Consider the following linear steady Stokes problem in R2, where

Ω = (0, 1)× (0, 1):

−∆u+∇p = Ra

0
y

 inΩ, (1.2.1a)

∇ · u = 0 inΩ, (1.2.1b)

u = 0 on ∂Ω. (1.2.1c)

Here, the Rayleigh number Ra = 103. The solution to this system is (u, p) =

(0, Ra
2
y2 − Ra

6
). We use Netgen/NGSolve [48] to numerically solve this example. We

5



set the maximum mesh size to be 0.09. The velocity error ∥∇u − ∇uh∥L2(Ω) from

the approximation using P2 − P1 Taylor-Hood is 162.1, which is of the same order

as the Rayleigh number Ra. However, the velocity error ∥∇u − ∇uh∥L2(Ω) from

the approximation using P2 − Pdisc
1 Scott-Vogelius on a barycenter refined mesh is

2.542e-14. The difference comes from the fact that the Scott-Vogelius pair is pressure

robust, i.e., the velocity error can be decoupled from the pressure error, which is one

of the advantages of divergence-free elements, whereas the Taylor-Hood pair is not.

We illustrate the velocity error ∥∇u − ∇uh∥L2(Ω) in Figure 1 and Figure 2 using

Taylor-Hood and Scott-Vogelius, respectively:

Figure 1: H1 velocity error using Taylor-Hood

6



Figure 2: H1 velocity error using Scott-Vogelius

1.3 Unfitted Finite Element Methods

In contrast to traditional finite element methods (FEMs), where the computa-

tional mesh conform to the physical domain, unfitted finite element methods include

the information of the physical domain without fitting the computational mesh to

the boundary of the physical domain. The most notable advantages of unfitted finite

7



element methods are that, for dynamic problems with moving boundary, there is no

need to remesh at each time step and that it is easier to handle the problem imposed

on a physical domain where the boundary is implicitly defined.

This thesis explores two classes of unfitted methods: FEMs with boundary cor-

rection and CutFEM. In particular, we look into FEMs with boundary correction

and CutFEM both using divergence-free finite elements.

1. Boundary Correction

FEMs with boundary correction was first proposed and analyzed in 1972 for the

Poisson problem [12], and the technique has since been improved and refined

recently in [13, 39, 5, 4, 3].

The method starts with a background mesh containing the domain Ω, and the

computational mesh simply consists of those elements fully contained in Ω̄. The

method uses a standard Nitsche-based formulation to enforces Dirichlet boundary

conditions via penalization. Since the computational mesh is not conformed to

the physical domain, the boundary condition is corrected using an application of

Taylor’s theorem.

This procedure is rather standard for the Poisson problem, but for the Stokes

problem, inf-sup stability cannot be immediately proved by using standard argu-

ments. This issue has been circumvented in [39, 4] using pressure-stabilization.

However, this added stabilization leads to additional consistency errors and poor

conservation properties.

2. CutFEM

The precursor of CutFEM was first introduced in [6] for the Poisson problem, and

there were some recent studies of the Stokes problem regarding unfitted variants

of equal order pressure-velocity, Taylor–Hood and several other well-known finite

8



element methods [15, 11, 27, 30, 34, 35]. The CutFEM poses a similar challenge

as the boundary correction method: the inf-sup stability for the method with a

uniformly bounded, mesh-independent constant cannot be proved using standard

arguments. However, [27] provides a framework to show discrete inf-sup stability

for unfitted finite elements, and we adapted this framework in Chapter 3.

For both methods, unfitted mass-conserving elements for primitive-variable formula-

tions of the Stokes or incompressible Navier-Stokes equations are not well developed.

Based on the known divergence-free property of the Scott-Vogelius pair, in this thesis,

we developed one FEM with boundary correction and one CutFEM.

For the FEM with boundary correction, we construct a boundary correction finite

element method for the Stokes problem based on the Scott-Vogelius pair on Clough-

Tocher splits. By the nature of the Scott-Vogelius pair, we have that the image of

the divergence operator on the velocity space is a subset of the pressure space, and

therefore, the scheme yields divergence-free velocity approximations. As far as we

are aware, this is the first H1-conforming divergence–free finite element method for

incompressible flow on unfitted meshes. By constructing our FEM this way, we get

exact enforcement of conservation laws on any mesh sizes. We carefully design the

computational mesh such that it inherits a macro element structure. By doing so, we

show that the resulting pair is uniformly stable on the unfitted domain with respect

to the discretization parameter. As far as we are aware, this is the first uniform

inf-sup stability result of a divergence-free Stokes pair on unfitted meshes. Because

of the weak enforcement of boundary conditions via penalization, even though the

scheme is divergence-free, it does not have pressure-robustness. We introduce an

additional Lagrange multiplier that enforces the boundary conditions of the normal

component of the velocity to mitigate the lack of pressure robustness in the scheme.

9



Since mass conservation is a favorable property for numerical solutions to equa-

tions governing the motion of fluids, we develop our CutFEM using the Scott-Vogelius

pair as well. For this method, we impose a boundary condition on a surface cutting

through a background mesh by using the Nitsche method [29], and we add local

ghost penalty stabilization terms to ensure the stability with respect to small and

anisotropic cuts of the bulk elements. The stability of pressure on cut elements

requires an additional ghost penalty term defined on a thin strip of elements in

a proximity of the boundary. The divergence-condition in the mixed formulation

is changed by this additional stabilizing term. Thus, the scheme does not yield

strictly divergence–free velocity approximations. However, we show that pointwise

mass conservation holds in the volume occupied by the fluid except in an O(h) strip.

Moreover, we introduce local grad-div stabilization [42] to minimize the error caused

by the violation of the divergence–free condition.

The remainder of the thesis is structured as follows: In chapter 2, we develop

a boundary correction method based on the Scott-Vogelius pair on Clough-Tocher

splits with macro-element structure: The velocity space consists of continuous piece-

wise polynomials of degree k, and the pressure space consists of piecewise polyno-

mials of degree (k − 1) without continuity constraints. We prove the well-posedness

of the method and show the method converges with optimal order and the velocity

approximation is divergence–free.

In chapter 3, we develop a CutFEM discretization for the Stokes problem based on

the Scott-Vogelius pair. This method does not yield exactly divergence–free velocity

approximations. The CutFEM includes a local grad-div stabilization to mitigate the

error brought by the violation of mass conservation property. We show the well-

posedness of the method and that the method converges with optimal order.

In chapter 4, we present two numerical experiments using the boundary correction

10



method introduced in chapter 2 and two using numerical experiments using the

CutFEM introduced in chapter 3 to illustrate the theoretic results proved in the

respective chapters. In addition, we conduct two numerical experiments for the

stationary Navier–Stokes equations using CutFEM.
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2.0 A Divergence-Free Finite Element Method for the Stokes Problem

with Boundary Correction

In this chapter, we develop and analyze a divergence-free finite element method

for the Stokes problem with boundary correction.

We start with a background mesh that completely contains the physical domain

Ω. Then we set the portion of the mesh that is a subset of the closure of the domain

Ω̄ to be the computational domain. We use a standard Nitsche-based formulation

as a basis for the method. The boundary conditions are then enforced through

penalization. Since the computational domain does not conform to the physical

domain, we use Taylor’s theorem to transfer the boundary conditions on the physical

domain to the computational domain.

The methodology is standard for the Possion problem, but not for the Stokes

problem, mainly for the two following reasons:

(1) We cannot immediately prove the inf-sup stability using the standard ap-

proach. The standard inf-sup stability proof requires a decomposition of the Lipschitz

domain into a finite number of strictly star shaped domain; however, for the non-

conforming computational domain, even if the boundary of the physical domain is

smooth enough, and the mesh is shape regular, the number of the strictly star-shaped

domain in the decomposition of the computational domain will become unbounded

as the mesh parameter h goes to 0. Therefore, the positive constant in the inf-sup

condition is unbounded from below. One way to bypass this issue is to add pressure-

stabilization terms to the method. However, adding pressure-stabilization terms will

introduce additional consistency errors. Instead, we design the computational mesh

to be macro element structure preserving and use the framework provided in [27] to

12



show inf-sup stability on the unfitted domain.

(2) A divergence-free method for the Stokes problem with boundary correction

is not pressure robust. This is caused by the fact that we use a Nitsche-based formu-

lation, which enforces the boundary conditions weakly via penalization. We address

this issue by introducing a Lagrange multiplier space, which consists of continuous

piecewise quadrtic polynomials with respect to the partition of the boundary of the

computational domain, to enforce the boundary conditions of the normal compo-

nent of the velocity. This Lagrange multiplier is an approximation of the pressure

restricted to the computational boundary. By introducing the Lagrange multiplier

space, we mitigate the lack of pressure-robustness of the method. This leads to a

weakly-coupled velocity error estimate, where the dependence of the velocity error

on the viscosity is weakened by a higher-order power of the mesh parameter h.

2.1 Preliminaries

We consider the Stokes problem on a two-dimensional open, bounded domain

Ω ⊂ R2,

−ν∆u+∇p = f in Ω, (2.1.1a)

divu = 0 in Ω, (2.1.1b)

u = g on ∂Ω, (2.1.1c)

where ν > 0 is the viscosity constant. For simplicity in the presentation, we present

the results regarding to the problem with homogeneous boundary condition, i.e,

g = 0. The extension from the homogeneous boundary conditions to the non-

homogeneous boundary conditions is relatively straight-forward [31].
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2.1.1 Computational Domain

Let S ⊂ R2 to be an open polygon such that Ω ⊂ S. Let Sh be a triangulation S

consists of shape regular triangles, which means that there exists a constant ρ0 ∈ R

such that

max
T∈Sh

diamT

|T | 12
< ρ0,

where |T | denotes the measure of the triangle T in R2. We further assume that the

triangulation Sh is quasi-uniform: there exists a constant ρ ∈ R such that

maxT∈Sh|T |
minT∈Sh|T |

< ρ.

We define h = maxT∈ShdiamT , hK = diam(K) and he = diam(e).

We call the mesh Sh the background mesh, and we define the computational mesh

Th to be a subset of Sh, where

Th = {T ∈ Sh : T̄ ⊂ Ω̄}.

Correspondingly, we have the computational domain Ωh defined as

Ωh = int
( ⋃

T∈Th

T̄
)
⊂ Ω.

The unrefined computational domain is illustrated in Figure 3. Furthermore, we
define the set of all boundary edges of Th to be EB

h .
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Figure 3: Ωh is the domain consisting of triangles with blue edges.

By connecting the three vertices to the barycenter of each triangle T ∈ S, we

split each triangle into three and thus we get the Clough-Tocher refinement Sct of S.

We use K to denote the triangles in the Clough-Tocher refinement Sct. We define

the Clough-Tocher refinement Tct
h of Th as

Tct
h = {K ∈ Sct

h : K ⊂ T, ∃T ∈ Th}.

By our definition, for each K ∈ Tct
h , the parent triangle T , where K ⊂ T , is an

element of Th. We emphasize that

Tct
h ̸= {K ∈ Sct

h : K̄ ⊂ Ω̄}.

Therefore, we preserve the macro-element structure that is needed to prove the sta-
bility of the Scott-Vogelius pair.
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Figure 4: Tct
h consists of triangles with blue edges.

From Figure 4, we see that the corresponding computational domain of Tct
h is

Ωh as well. Moreover, EB
h is also the set of boundary edges of Tct

h . For a piecewise

smooth function q on ∂Ωh, we denote∫
∂Ωh

q ds =
∑
e∈EB

h

∫
e

q ds.

2.2 Boundary Transfer Operator

We assume the boundary ∂Ω of the domain to be sufficiently smooth. Let ϕ be

the signed distance function of the domain Ω such that we have ϕ(x) < 0 for x ∈ Ω,

and ϕ(x) ≥ 0 for x ̸∈ Ω. Then the unit outward normal vector is n = ∇ϕ
|∇ϕ| . Let

τ > 0 be a positive real number. Then Γτ = {x ∈ R2 : |ϕ(x)| < τ} is a tubular

region around the boundary ∂Ω of the domain Ω. Based on [23, Lemma 14.16] and
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[12], we have that there exists a real number τ0 > 0 such that the closest-point map

p : Γτ0 −→ ∂Ω is well-defined, and we have the identity p(x) = x− ϕ(x)n(p(x)) for

all x ∈ Γτ0 .

In order to define the boundary correction method, we want to have a well-

defined map M : ∂Ωh −→ ∂Ω which transfers every point on the boundary of the

computational domain ∂Ωh to a corresponding point on the boundary of the physical

domain ∂Ω. Let I : ∂Ωh −→ ∂Ωh be the identity map. Then the transfer direction

vector is defined as d(x) = (M − I)(x) for all x ∈ ∂Ωh. The transfer distance is the

magnitude of the transfer direction vector,

δ(x) = |d(x)|.

One of the common choices for the mapM is the closet-point projection p mentioned

above. Suppose that the computational domain Ωh approximates the physical do-

main Ω well enough such that the distance between ∂Ωh and ∂Ω is less than the

constant τ0 mentioned above. Then the map p : ∂Ωh −→ ∂Ω is well-defined. More-

over, from the identity p(x) = x − ϕ(x)n(p(x)), and the fact that ϕ(x) < 0 for all

x ∈ ∂Ωh, we see that the transfer direction coincides to the outward normal vector

of physical boundary ∂Ω, and the transfer distance is δ(x) = |ϕ(x)| for all x ∈ ∂Ωh.

Another possible choice for the transfer direction is the direction same as the

unit outward vector nh of the computational boundary ∂Ωh. Generally in this case,

we have δ(x) ≥ |ϕ(x)|. This choice of transfer direction creates a larger discrepancy

between δ(x) and |ϕ(x)| than the choice of transfer direction where the transfer

direction vector is (p − I)(x) for all x ∈ ∂Ωh. However, this choice results in easier

implementation.
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In the rest of this chapter, we do not specify the map M explicitly. Instead,

we make the assumption that the transfer distance δ(x) is sufficiently small in com-

parison to the mesh parameter h. Similar to [12, 13, 12, 5, 4, 3], the stability and

convergence analysis in this chapter only requires this assumption. The formal as-

sumption is given below in the stability analysis section after we define the finite

element method.

Now we define the boundary transfer operator.

The idea of the boundary transfer operator stems from the Taylor expansion.

Recall that for a function f : R2 −→ R2, x ∈ Rn, a is a unit vector in Rn, and t is a

scalar, then Taylor expansion of f is

f(x+ ta) =
∞∑
j=0

1

j!
|t|j ∂

jf

∂aj
(x).

The kth order polynomial of f is
∑∞

j=0
1
j!
|t|j ∂jf

∂aj (x). Note that the k
th order polynomial

of f(x+ ta) is an approximation of f at x+ ta from x.

Setting d = d/δ, we use kth order Taylor polynomial of v expanded at x in the

direction of d to define the boundary transfer operator:

(Shv)(x) =
k∑

j=0

1

j!
(δ(x))j

∂iv

∂dj
(x), for x ∈ ∂Ωh

Since d =M − I, we see that (Shv)(x) is an approximation of v at x+ d =Mx from

x.
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2.3 A Divergence-Free Finite Element Method with Boundary

Correction

For a subset D ⊂ Ω, we use Pk(D) to denote the polynomials on D with degree

at most k. We use the boldface Pk(D) to denote the vector-valued polynomials on

D with degree at most k.

Then we define the velocity space and pressure space to be the Scott-Vogelius

pair with respect to Clough-Toucher splits as follows:

Vh = {v ∈H1(Ωh) : v|K ∈ Pk(K) ∀K ∈ Tct
h ,

∫
∂Ωh

(v · nh) ds = 0},

Qh = {q ∈ L2(Ωh) : q|K ∈ Pk−1(K) ∀K ∈ Tct
h };

Analogously, we define the velocity space with boundary conditions and pressure

space with zero mean constraint to be

V̊h = Vh ∩H1
0 (Ωh),

Q̊h = Qh ∩ L2
0(Ωh).

Furthermore, we define the Lagrange multiplier space and the Lagrange multiplier

space with zero mean constraint to be

Xh = {µ ∈ C(∂Ωh) : µ|e ∈ Pk(e) ∀e ∈ EB
h }

X̊h = {µ ∈ Xh :

∫
∂Ωh

µ ds = 0},

respectively.

Now, we define the mesh-dependent bilinear forms

ah(u,v) = ν
(∫

Ωh

∇u : ∇v dx−
∫
∂Ωh

∂u

∂nh

· v ds+
∫
∂Ωh

∂v

∂nh

· (Shu) ds,
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+
∑
e∈EB

h

∫
e

σ

he
(Shu) · (Shv) ds

)
,

bh(v, (q, µ)) = −
∫
Ωh

(div v)q dx+

∫
∂Ωh

(v · nh)µ ds,

beh(v, (q, µ)) = −
∫
Ωh

(div v)q dx+

∫
∂Ωh

((Shv) · nh)µ ds,

where σ > 0 in ah(·, ·) is a penalty parameter.

We get the bilinear form ah(·, ·) from the standard non-symmetric “Nitsche bi-

linear form” associated with the Laplace operator:∫
Ωh

∇u : ∇v dx−
∫
∂Ωh

∂u

∂nh

· v ds+
∫
∂Ωh

∂v

∂nh

· (u) ds+
∑
e∈EB

h

∫
e

σ

he
(u) · (v) ds

by changing the u in the third term to Shu, and the u, v in the fourth term to Shu,

Shv, respectively [41, 46]. We make the change to improve the consistency of the

scheme.

The non-symmetry of the Nitsche bilinear form is referring to the different sign in

front of the term
∫
∂Ωh

∂v
∂nh

·u ds and the term
∫
∂Ωh

∂u
∂nh

·v ds. The reason we based our

bilinear form ah(·, ·) on the non-symmetric Nitsche bilinear form is that the bilinear

form with boundary correction based on the symmetric Nitsche bilinear form still

results in a non-symmetric bilinear form [12, 39]. However, if the bilinear form is

based on the non-symmetric version of Nitsche bilinear form, the penalty parameter

σ will be less restrictive to ensure stability.

The two bilinear forms bh(·, (·, ·)) and beh(·, (·, ·)) are two bilinear forms associated

with the continuity equations. The only difference between the two is that bh(·, (·, ·))

does not have the boundary correction, whereas beh(·, (·, ·)) does.

We set the method as follows:

20



find (uh, ph, λh) ∈ Vh × Q̊h × X̊h such that

ah(uh,v) + bh(v, (ph, λh)) =

∫
Ωh

f · v dx ∀v ∈ Vh, (2.3.1a)

beh(uh, (q, µ)) = 0 ∀(q, µ) ∈ Q̊h × X̊h. (2.3.1b)

We choose the zero-mean constraint Lagrange multiplier space X̊h in the formu-

lation of the method because we want to mod out the constants to ensure that the

method is not ill-posed. Indeed, suppose we use the Lagrange multiplier space Xh

without the zero-mean constraint. Then due to the condition
∫
∂Ωh

(v · nh) ds = 0

from the definition of the discrete velocity space Vh, we have

bh(v, (0, 1)) = 0 ∀v ∈ Vh.

Moreover, the condition
∫
∂Ωh

(v · nh) ds = 0 in the definition of Vh is necessary

to show that the method yields a divergence-free velocity solution as we show in the

next section.

2.3.1 Divergence-Free Property

Lemma 2.3.1 (Divergence–free property). If (uh, ph, λh) ∈ Vh × Q̊h × X̊h satisfies

(2.3.1), then divuh ≡ 0 in Ωh.

Proof. For the Stokes pair Vh × Q̊h, since we have the constraint that for v ∈ Vh,∫
∂Ωh

v ·n ds = 0, by the divergence theorem, we have
∫
Ω
div v dx =

∫
∂Ω
v ·n ds = 0.

Thus we have that the div operator maps from Vh to Q̊h, i.e, divuh ∈ Q̊h. We set

q = divuh and µ = 0 in (2.3.1b). Then we have

0 = beh(uh, (q, µ)) = beh(uh, (divuh, 0)) = −∥divuh∥2L2(Ωh)
.

Thus, divuh ≡ 0.
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2.4 Stability Analysis of the Finite Element Method

Throughout this chapter, the constants C and c(with or without subscripts)

denote some positive constants that are independent of the mesh parameter h and

the viscosity. We conduct our stability analysis and convergence analysis under the

assumption mentioned in section 2.2: the transfer distance δ(x) is sufficiently small

compared to the mesh parameter h, i.e, the distance between the boundary of the

PDE domain Ω and the boundary of the computational domain Ωh is sufficiently

small relative to the mesh parameter h. Before we formally state the assumption,

we first define for a boundary edge e ∈ EB
h ,

δe := max
x∈ē

δ(x).

Now we state the assumption formally:

max
e∈EB

h

h−1
e δe ≤ cδ < 1, for cδ sufficiently small. (A)

Assumption (A) ensures that the distance between ∂Ω and ∂Ωh is of order O(h),

where the constant cδ is sufficiently small. Similar assumptions have been made in

[12, 43, 39, 5, 4]. In practice, the small distance between ∂Ω and ∂Ωh can be achieved

by shifting the position of the nodes on ∂Ωh along the direction n as explained in

[5, Remark 3].

Before we show the continuity and coercivity of the bilinear forms, we want to

first define some norms for the finite element spaces.

We define three H1-type norm on Vh +H
k+1(Ω), so that we apply the norms to

both the velocity solution of the PDE and the velocity solution of the FEM:

∥v∥2h = ∥∇v∥2L2(Ωh)
+
∑
e∈EB

h

h−1
e ∥Shv∥2L2(e),
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∥v∥21,h = ∥∇v∥2L2(Ωh)
+
∑
e∈EB

h

h−1
e ∥v∥2L2(e),

|||v|||2h = ∥v∥2h +
∑
e∈EB

h

he∥∇v∥2L2(e).

In addition, we define a H−1/2-type norm on the Lagrange multiplier space X̊h:

∥µ∥2−1/2,h =
∑
e∈EB

h

he∥µ∥2L2(e).

Finally, we define a norm on the pair Q̊h × X̊h as

∥(q, µ)∥ := ∥q∥L2(Ωh) + ∥µ∥−1/2,h.

In the next lemma, we show that if the Assumption (A) is satisfied, then the three

H1-type norms on Vh +H
k+1(Ω) are equivalent.

Lemma 2.4.1. Assuming (A), there holds for all v ∈ Vh,∑
e∈EB

h

h−1
e ∥Shv − v∥2L2(e) ≤ Cc2δ∥∇v∥2L2(Ωh)

,

∑
e∈EB

h

h−1
e ∥Shv∥2L2(e) ≤ C∥v∥21,h.

(2.4.1)

In particular, ∥ · ∥h, ∥ · ∥1,h, and ||| · |||h are equivalent on Vh.
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Proof. By the definition of Sh, we have

h−1
e ∥Shv − v∥2L2(e) =

k∑
j=1

h−1
e

∫
e

|δ|2j
∣∣∂jv
∂dj

∣∣2 ds,
for e ∈ EB

h .

By trace and inverse inequalities, the shape-regularity of Th and (A), there holds

for e ∈ EB
h ,

h−1
e

∫
e

|δ|2j
∣∣∂jv
∂dj

∣∣2 ds ≤ Cδ2je h
−2
e ∥Djv∥2L2(e)

≤ Cδ2je h
−2j
e ∥∇v∥2L2(Te)

≤ Cc2jδ ∥∇v∥2L2(Te)
j = 1, 2, ..., k, (2.4.2)

where Te ∈ Th satisfies e ⊂ ∂T , and Dj is the jth derivative of v. The estimate

(2.4.2) implies the first inequality in (2.4.1). The estimate (2.4.2) also implies the

second inequality in (2.4.1) since

∑
e∈EB

h

h−1
e ∥Shv∥2L2(e) ≤ C

∑
e∈EB

h

k∑
j=0

h−1
e

∫
e

|δ|2j
∣∣∂jv
∂dj

∣∣2 ds ≤ C∥v∥21,h.

The second inequality in (2.4.1) immediately yields ∥v∥h ≤ C∥v∥1,h from the

definition of ∥ · ∥h and ∥ · ∥1,h. Moreover, standard arguments involving the trace

and inverse inequalities show ∥v∥h ≤ |||v|||h ≤ C∥v∥h on Vh. Thus, to complete the

proof, it suffices to show ∥v∥1,h ≤ C∥v∥h.

We once again use (2.4.2) to obtain∑
e∈EB

h

h−1
e ∥v∥2L2(e) ≤ 2

∑
e∈EB

h

h−1
e ∥Shv∥2L2(e) + 2

∑
e∈EB

h

h−1
e ∥Shv − v∥2L2(e)
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≤ 2
∑
e∈EB

h

h−1
e ∥Shv∥2L2(e) + C

∑
e∈EB

h

h−1
e

k∑
j=1

∫
e

|δ|2j
∣∣∂jv
∂dj

∣∣2 ds
≤ 2

∑
e∈EB

h

h−1
e ∥Shv∥2L2(e) + C∥∇v∥2L2(Ωh)

.

This inequality implies ∥v∥1,h ≤ C∥v∥h.

2.4.1 Continuity and Coercivity of the Bilinear Forms

Lemma 2.4.2. There holds

|ah(v,w)| ≤ c2(1 + σ)ν|||v|||h|||w|||h ∀v,w ∈ Vh +H3(Ωh), (2.4.3)∣∣bh(v, (q, µ))∣∣ ≤ C∥v∥1,h∥(q, µ)∥ ∀(q, µ) ∈ Q̊h × X̊h, (2.4.4)∣∣bh(v, (q, µ))− beh(v, (q, µ))
∣∣ ≤ Ccδ∥v∥1,h∥(q, µ)∥ ∀v ∈ Vh, ∀(q, µ) ∈ Q̊h × X̊h,

(2.4.5)∣∣beh(v, (q, µ))∣∣ ≤ C(1 + cδ)∥v∥1,h∥(q, µ)∥ ∀(q, µ) ∈ Q̊h × X̊h (2.4.6)

Proof. The proof of the continuity estimate of (2.4.3) is given in [5, Proposition

1] (with superficial modifications). We show the details for the completeness of the

proof.

From the definiton of ah(·, ·) and the Cauchy-Schwarz inequality, we get

|ah(v,w)| = |ν
(∫

Ωh

∇v : ∇w dx−
∫
∂Ωh

∂v

∂nh

·w ds

+

∫
∂Ωh

∂w

∂nh

· (Shv) ds+
∑
e∈EB

h

∫
e

σ

he
(Shv) · (Shw) ds

)
|

≤ ν
(
∥∇v∥L2(Ω)∥∇w∥L2(Ω) + ∥h

1
2∇v · nh∥L2(∂Ωh)∥h

− 1
2w∥L2(∂Ωh)
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+ ∥h
1
2∇w · nh∥L2(∂Ωh)∥h

− 1
2Shv∥L2(∂Ωh) + σ∥h−

1
2Shv∥L2(∂Ωh)∥h

− 1
2Shw∥L2(∂Ωh)

)
,

Using the definition of ||| · |||h, and the equivalence between ||| · |||h and ∥ · ∥1,h we have

∥h
1
2∇v · nh∥L2(∂Ωh)∥h

− 1
2w∥L2(∂Ωh) ≤ C1|||v|||h|||w|||h,

and

∥h
1
2∇w · nh∥L2(∂Ωh) ≤ C2|||w|||h.

Combined the above results with the definition of ||| · |||h, we have

|ah(v,w)| ≤ ν
(
|||v|||h|||w|||h + C1|||v|||h|||w|||h + C2|||v|||h|||w|||h + σ|||v|||h|||w|||h

)
.

Then we find c2 such that

|ah(v,w)| ≤ c2(1 + σ)ν|||v|||h|||w|||h

The continuity estimate of bh(·, ·) (2.4.4) follows directly from the Cauchy-Schwarz

inequality:

|bh(v, (q, µ))| ≤ |
∫
Ωh

(div v)q dx|+ |
∫
∂Ωh

(v · nh)µ ds|

≤ C1∥∇v∥L2(Ωh)∥q∥L2(Ωh) + C2

∑
e∈EB

h

h
− 1

2
e ∥v∥L2(e)h

1
2∥µ∥L2(e) (2.4.7)

By the definition of ∥v∥1,h, we have

∥∇v∥L2(Ωh) ≤ ∥v∥1,h.

Applying Cauchy-Schwarz inequality, we have∑
e∈EB

h

h
− 1

2
e ∥v∥L2(e)h

1
2
e ∥µ∥L2(e) ≤

( ∑
e∈EB

h

h−1
e ∥v∥2L2(e)

) 1
2
( ∑

e∈EB
h

he∥µ∥2L2(e)

) 1
2

≤ ∥v∥1,h∥µ∥−1/2,h.

26



Combining the two inequalities above with (2.4.7) and using the definition of ∥(q, µ)∥,

we find a constant C independent of the mesh such that

|bh(v, (q, µ))| ≤ C1∥v∥1,h∥q∥L2(Ωh) + C2∥v∥1,h∥µ∥−1/2,h

≤ C|v∥1,h∥(q, µ)∥.

This third estimate (2.4.5) follows from the definition of the forms, the Cauchy-

Schwarz inequality, and (2.4.2):

∣∣bh(v, (q, µ))− beh(v, (q, µ))
∣∣ = ∣∣∣ ∑

e∈EB
h

∫
e

(
(v − Shv) · nh

)
µ ds

∣∣∣
≤ C

( ∑
e∈EB

h

k∑
j=1

h−1
e

∫
e

|δ|2j
∣∣∂jv
∂dj

∣∣2)1/2∥µ∥−1/2,h

≤ Ccδ∥v∥1,h∥µ∥−1/2,h.

From (2.4.4) and (2.4.5) and using the triangle inequality, we have

|beh(v, (q, µ))| ≤ |bh(v, (q, µ))|+ |beh(v, (q, µ))− beh(v, (q, µ))|

≤ C(1 + cδ)∥v∥1,h∥(q, µ)∥

Lemma 2.4.3. Suppose that Assumption (A) is satisfied for cδ sufficiently small.

Then there holds,

c1ν∥v∥21,h ≤ ah(v,v) ∀v ∈ Vh,

for c1 > 0 independent of h and ν, and for any positive penalty parameter σ > 0.
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Proof. By definition of the bilinear form ah(·, ·),

ah(v,v) = ν
(
∥∇v∥2L2(Ωh)

+
∑
e∈EB

h

(∫
e

∂v

∂nh

· (Shv − v) ds+ σ

he
∥Shv∥2L2(e)

))

A discrete trace inequality with (2.4.1) yields∣∣∣ ∑
e∈EB

h

∫
e

∂v

∂nh

· (Shv − v) ds
∣∣∣ ≤ Ccδ∥∇v∥2L2(Ωh)

. (2.4.8)

Thus, we find

ah(v,v) ≥ ν
(
(1− Ccδ)∥∇v∥2L2(Ωh)

+
∑
e∈EB

h

σ

he
∥Shv∥2L2(e)

))
≥ Cν∥v∥2h ≥ Cν∥v∥21,h

for cδ sufficiently small and for σ > 0.
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2.4.2 Inf-Sup Conditions

In this section we prove the discrete inf-sup (LBB) condition for the Stokes pair

V̊h × Q̊h with stability constants independent of h and the inf-sup condition for

the Lagrange multiplier part of the bilinear form bh(·, ·). We use these two inf-sup

conditions to derive the inf-sup condition for the bilinear form bh(·, ·) in the next

section.

The LBB stability for this pair is well-known (cf. [2, 45, 26]) for the fixed polyg-

onal domain; however, we cannot extend these results to the unfitted domain Ωh

directly. In particular, the proofs in [2, 45, 26] (directly or indirectly) rely on the

Nečas inequality:

ch∥q∥L2(Ωh) ≤ sup
v∈H1

0 (Ωh)\{0}

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

∀q ∈ L2
0(Ωh)

for some ch > 0 depending on the domain Ωh. As explained in [27], it is unclear if

the constant ch in this inequality is independent of h.

To extend the LBB condition to an unfitted domain Ωh with a constant that is

independent of h, we combine the local stability of the Scott-Vogelius pair with the

stability of the Pk × Pk−2 pair. For a (macro) element T ∈ Th, we define the local

spaces with boundary conditions

V0(T ) = {v ∈H1
0 (T ) : v|K ∈ Pk(K) ∀K ⊂ T, K ∈ Tct

h },

Q0(T ) = {q ∈ L2
0(T ) : q|K ∈ Pk−1(K) ∀K ⊂ T, K ∈ Tct

h }.

We first state a local surjectivity [26, Theorem 3.1] of the divergence operator acting

on these spaces.
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Lemma 2.4.4. For every q ∈ Q0(T ), there exists v ∈ V0(T ) such that div v = q

and ∥∇v∥L2(T ) ≤ β−1
T ∥q∥L2(T ). Here, the constant βT > 0 depends only on the shape-

regularity of T .

Proof. The proof for the general cases can be found in [26, Theorem 3.1]. Here we

present a simpler proof for the 2D case.

Set Z(T ) = {v ∈ V0(T ) : div v = 0}. Since v ∈ H1
0 (T ) and v is piecewise

polynomial of degree k on K ⊂ T and K ∈ Tct
h , we have ψ ∈ H2

0 (T ) such that

v = curlψ, and ψ is piecewise polynomial of degree k + 1 on K ⊂ T and K ∈ Tct
h .

Set Σ(T ) = {ψ ∈ H2
0 (T ) : ψ ∈ Pk+1(K)}. Clearly, we have Z(T ) = curlΣ(T ).

Note that if ψ ∈ Σ(T ), and curlψ = 0, then ψ ∈ R. Since ψ|∂T = 0, we have

that ψ ≡ 0 on T . Since the curl operator has trivial kernel for Σ(T ), we have

dimΣ(T ) = dimcurlΣ(T ). From [19], we get dimΣ(T ) = 3
2
k2 − 9

2
k + 3. By the

rank-nullity theorem, we have

dimdivV0(T ) = dimV0(T )− dimZ(T )

= dimV0(T )− dimΣ(T )

= 2(1 + 3(k − 1) +
3

2
(k − 1)(k − 2))− (

3

2
k2 − 9

2
k + 3)

=
3

2
k2 +

3

2
k − 1

= 3 · 1
2
k(k + 1)− 1

= dimQ0(T )

Thus, we have shown that the divergence operator is surjective from V0(T ) to Q0(T ).

Next we use a scaling argument to show ∥∇v∥L2(T ) ≤ β−1
T ∥q∥L2(T ).

Let T̂ be a reference triangle, and T̂ ct be the CT refinement of T̂ .

30



Claim: for any q̂ ∈ Pdisc
k−1(T̂

ct) ∩ L2
0(T̂ ), there exists a v̂ ∈ Pk(T̂

ct) ∩H1
0 (T̂ ) such

that d̂iv v̂ = q̂ and ∥∇̂v̂∥L2(T̂ ) ≤ C∥q̂∥L2(T̂ ). Proof of the claim: We set Ẑ = {ŵ ∈

Pk(T̂
ct) ∩ H1

0 (T̂ ) : d̂iv ŵ = 0}, and Ẑ⊥ = {v̂ ∈ Pk(T̂
ct) ∩ H1

0 (T̂ ) :
∫
T̂
∇̂v̂ : ∇̂ŵ =

0, ∀ŵ ∈ Ẑ}.

Since for all v̂ ∈ Ẑ⊥, ∥d̂iv v̂∥L2(T̂ ) = 0 implies that v̂ = 0. Thus, ∥d̂iv v̂∥L2(T̂ ) is

a norm for v̂ ∈ Ẑ⊥. Therefore, by the equivalence of norms, we have ∥∇̂v̂∥L2(T̂ ) ≤

C∥d̂iv v̂∥L2(T̂ ), for all v̂ ∈ Ẑ⊥.

By the same counting argument showed above, we have that d̂iv : Pk(T̂
ct) ∩

H1
0 (T̂ ) → Pdisc

k−1(T̂
ct) ∩ L2

0(T̂ ) is surjective. We select v̂ ∈ Pk(T̂
ct) ∩H1

0 (T̂ ) such that

d̂iv v̂ = q̂.

We write v̂ = ẑ + v̂⊥, where ẑ ∈ Ẑ and v̂⊥ ∈ Ẑ⊥.

Since d̂iv ẑ = 0, we have d̂iv v̂⊥ = d̂iv v̂ = q̂, and therefore,

∥∇̂v̂⊥∥L2(T̂ ) ≤ C∥d̂iv v̂⊥∥L2(T̂ ) = C∥q̂∥L2(T̂ ).

This completes the proof of the claim.

Let q ∈ Pdisc
k−1(T

ct) ∩ L2
0(T ). We set q̂ : T̂ → R such that q̂(x̂) = q(x), where

x = FT (x̂). FT is a linear map where FT (x̂) = Ax̂+b. Thus, we have q̂ ∈ Pdisc
k−1(T̂

ct)∩

L2
0(T̂ ). By claim, there exists v̂ ∈ Pk(T̂

ct)∩H1
0 (T̂ ) such that v̂ = q̂ and ∥∇̂v̂∥L2(T̂ ) ≤

C∥q̂∥L2(T̂ ).

We set v ∈ Pk(T
ct) ∩ H1

0 (T ) such that v(x) = Av̂(x̂). Then (div v)(x) =

(d̂iv v̂)(x̂) = q̂(x̂) = q(x).

Hence, we have

∥∇v∥2L(T ) =

∫
T

|∇v|2 dx = 2|T |
∫
T̂

|A∇̂v̂A−1|2 dx

≤ C|T |∥∇̂v̂∥2L2(T )

≤ C|T |∥q̂∥L(T̂ )
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≤ C∥q∥L2(T ).

We set βT = C−1, and we have the desired result.

For the next step, we use the stability of the Pk×Pk−2 pair on unfitted domains.

This result can be found in [27, Theorem 1, Section 6.3, Remark 1].

Lemma 2.4.5. Define the space of piecewise polynomials of degree (k − 2) with

respect to the mesh Th:

Y̊h = {q ∈ L2
0(Ωh) : q|T ∈ Pk−2(T ) ∀T ∈ Th} ⊂ Q̊h.

There exist β0 > 0 and h0 > 0 such that for h ≤ h0, there holds

sup
v∈V̊h\{0}

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

≥ β0∥q∥L2(Ωh) ∀q ∈ Y̊h.

Combining Lemma 2.4.4 and Lemma 2.4.5, we derive the following discrete inf-

sup (LBB) condition for the Stokes pair V̊h×Q̊h with stability constants independent

of h:

Lemma 2.4.6 (Inf-Sup Stability I). There exists β1 > 0 independent of h such that

sup
v∈V̊h\{0}

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

≥ β1∥q∥L2(Ωh) ∀q ∈ Q̊h.

for h ≤ h0.
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Proof. This proof essentially follows arguments from [2, 45, 26] using Lemma 2.4.4

and 2.4.5.

For a q ∈ Q̊h, we set q̄ to be the piecewise average of q on each macro element

T ∈ Th: q̄|T = |T |−1
∫
T
q dx∀T ∈ Th. Then, we have q − q̄ is mean value zero on

each macro element T ∈ Th. Thus, we have q − q̄|T ∈ Q0(T ) for each T ∈ Th. Using

Lemma 2.4.4, for each T ∈ Th, we find v1,T ∈ V0(T ) such that div v1,T = (q − q̄)|T
and ∥∇v∥L2(T ) ≤ β−1

T ∥q − q̄∥L2(T ). Then we define v1 such that v1|T = v1,T for all

T ∈ Th. Then we have div v1 = q − q̄ on Ωh, and ∥∇v1∥ ≤ β−1
∗ ∥q − q̄∥L2(Ωh), where

β∗ = minT∈Th βT . Since βT are all independent of h, we have β∗ independent of h.

Since we have∫
Ωh
(div v)q̄ dx

∥∇v∥L2(Ωh)

=

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

+

∫
Ωh
(div v)(q̄ − q) dx

∥∇v∥L2(Ωh)

,

and, from the Cauchy Schwarz inequality, we have∫
Ωh
(div v)(q̄ − q) dx

∥∇v∥L2(Ωh)

≤
∥∇v∥L2(Ωh)∥q − q̄∥L2(Ωh)

∥∇v∥L2(Ωh)

for all v ∈ V̊h\{0}, we derive

sup
v∈V̊h\{0}

∫
Ωh
(div v)(q̄ − q) dx

∥∇v∥L2(Ωh)

≤ ∥q − q̄∥L2(Ωh). (2.4.9)

Since ∥∇v1∥ ≤ β−1
∗ ∥q − q̄∥L2(Ωh) and div v1 = q − q̄ on Ωh, we have∫

Ωh
(div v1)(q − q̄) dx

∥∇v1∥L2(Ωh)

=
∥q − q̄∥2L2(Ωh)

∥∇v1∥L2(Ωh)

≥
∥q − q̄∥2L2(Ωh)

β−1∥q − q̄∥L2(Ωh)

= β∥q − q̄∥L2(Ωh).
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Thus we have

∥q − q̄∥L2(Ωh) ≤ β−1 sup
v∈V̊h\{0}

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

. (2.4.10)

Combining Lemma 2.4.5, (2.4.9) and (2.4.10), we have

β0∥q̄∥L2(Ωh) ≤ sup
v∈V̊h\{0}

∫
Ωh
(div v)q̄ dx

∥∇v∥L2(Ωh)

≤ sup
v∈V̊h\{0}

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

+ ∥q − q̄∥L2(Ωh)

≤ (1 + β−1
∗ ) sup

v∈V̊h\{0}

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

.

Using the triangle inequality and (2.4.10), we have

∥q∥L2(Ωh) ≤ ∥q− q̄∥L2(Ωh) + ∥q̄∥L2(Ωh) ≤
(
β−1
∗ + β−1

0 (1+ β−1
∗ )
)

sup
v∈V̊h\{0}

∫
Ωh
(div v)q dx

∥∇v∥L2(Ωh)

.

Since both β∗ and β1 are independent of the mesh parameter h, we have β−1
∗ +

β−1
0 (1 + β−1

∗ ) independent of the mesh parameter h. By setting β1 = β−1
∗ + β−1

0 (1 +

β−1
∗ ), we complete the proof.

The next lemma states the inf-sup condition for the Lagrange multiplier part of

the bilinear form bh(·, ·).

Lemma 2.4.7 (Inf-Sup Stability II). Assume the triangulation Th is quasi-uniform.

Then there holds

sup
v∈Vh\{0}

∫
∂Ωh

(v · nh)µ ds

∥v∥1,h
≥ β2∥µ∥−1/2,h ∀µ ∈ X̊h. (2.4.11)

for some β2 > 0 independent of h.
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Proof. On the boundary of the computational domain Ωh, we have equal number

of edges and vertices. We label the boundary edges as {ej}Nj=1 = EB
h , and denote

the boundary vertices by {aj}Nj=1 = VB
h , labeled such that ej has vertices aj and

aj+1, with the convention that aN+1 = a1. For a boundary edge e ∈ EB
h , let M

e
h =

{mj}k−1
j=1 denote the canonical interior degrees of freedom on the edge e, and set

MB
h = ∪e∈EB

h
Me

h. Let nj be the normal vector of ∂Ωh restricted to the edge ej, and

let tj be the tangent vector obtained by rotating nj 90 degrees clockwise. Without

loss of generality, we assume that tj is parallel to aj+1−aj. We further denote by VC
h

the set of boundary corner vertices, i.e., if aj ∈ VC
h , then the outward unit normals

nj,nj−1 of the edges touching aj are linearly independent. The set of flat boundary

vertices are defined as VF
h = VB

h \VC
h . Note that nj = nj−1 and tj = tj−1 for aj ∈ VF

h .

We let hI ∈ Xh denote the continuous, piecewise linear polynomial with respect

to the partition EB
h satisfying hI(aj) =

1
2
(hej−1

+hej). Given µ ∈ X̊h, we let Ph(hIµ) ∈

X̊h be the L2-projection of hIµ, i.e.,∫
∂Ωh

Ph(hIµ)κ ds =

∫
∂Ωh

hIµκ ds ∀κ ∈ X̊h.

We then define v ∈ Vh by the conditions

(v · nj)(aj) = Ph(hIµ)(aj), (v · nj−1)(aj) = Ph(hIµ)(aj) ∀aj ∈ VC
h ,

(v · nj)(aj) = Ph(hIµ)(aj), (v · tj)(aj) = 0 ∀aj ∈ VF
h ,

(v · nj)(mj) = Ph(hIµ)(mj), (v · tj)(mj) = 0 ∀mj ∈ Me
h,∀e ∈ EB

h .

(2.4.12)

All other (Lagrange) degrees of freedom of v are set to zero.
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Since (v · nj − Ph(hIµ))|ej is a polynomial of degree k on each ej ∈ EB
h , and

v · nj = Ph(hIµ) at (k + 1) distinct points on ej, we have v · nj − Ph(hIµ)|ej = 0.

Thus by shape regularity,∫
∂Ωh

(v · nh)µ ds =

∫
∂Ωh

Ph(hIµ)µ ds =

∫
∂Ωh

hIµ
2 ds ≥ C∥µ∥2−1/2,h. (2.4.13)

It remains to show that ∥v∥1,h ≤ C∥µ∥−1/2,h to complete the proof.

For K ∈ Tct
h , let VB

K ,V
C
K ,V

F
K ,M

B
K be the sets of elements in VB

h ,V
C
h ,V

F
h ,M

B
h

contained in K̄, respectively. By a standard scaling argument and (2.4.12), we get

(m = 0, 1)

∥v∥2Hm(K) ≤ C
∑

cj∈VB
K∪MB

K

h2−2m
ej

|v(cj)|2 (2.4.14)

= C
( ∑

aj∈VC
K

h2−2m
ej

|v(aj)|2 +
∑

cj∈VF
K∪MB

K

h2−2m
ej

|Ph(hIµ)(cj)|2
)
.

Claim: |v(aj)| ≤ C|Ph(hIµ)(aj)| for all aj ∈ VC
K , where C > 0 is uniformly

bounded and independent of h, nj and nj−1.

Proof of the claim: Assume that VC
K is non-empty for otherwise the proof is

trivial. For aj ∈ VC
K , we write v(aj) in terms of the basis {tj, tj−1}, use (2.4.12), and

apply some elementary vector identities:

v(aj) =
1

tj−1 · nj

(v · nj)(aj)tj−1 +
1

tj · nj−1

(v · nj−1)(aj)tj (2.4.15)

= Ph(hIµ)(aj)
( 1

tj−1 · nj

tj−1 +
1

tj · nj−1

tj

)
= Ph(hIµ)(aj)

(tj − tj−1

tj · nj−1

)
.
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We now show
∣∣ tj−tj−1

tj ·nj−1

∣∣ is bounded. Write tj = (cos(θj), sin(θj))
⊺ with θj−1, θj ∈

[−π, π], so that

tj − tj−1

tj · nj−1

=
(cos(θj)− cos(θj−1), sin(θj)− sin(θj−1))

⊺

sin(θj − θj−1)
.

Since

lim
θj→θj−1

(cos θj − cos θj−1, sin θj − sin θj−1)
⊺

sin (θj − θj−1)
= lim

θj→θj−1

(− sin θj, cos θj)
⊺

cos (θj − θj−1)

= (− sin θj−1, cos θj−1)
⊺,

and due to the shape regularity of the mesh, we conclude
∣∣ tj−tj−1

tj ·nj−1

∣∣ is bounded in the

case |tj · nj−1| ≪ 1, in particular, for “nearly flat boundary vertices”. Therefore,∣∣ tj−tj−1

tj ·nj−1

∣∣ ≤ C on shape-regular triangulations for some C > 0 independent of h and

{nj−1,nj}. With (2.4.15), this yields |v(aj)| ≤ C|Ph(hIµ)(aj)| for all aj ∈ VC
K , which

concludes the proof of the claim.

Applying the claim to (2.4.14) and a scaling argument yields

∥v∥2Hm(K) ≤ C
∑

cj∈VB
K∪MB

K

h2−2m
ej

|Ph(hIµ)(cj)|2 ≤ C
∑
e∈EB

h

aj∈ē: aj∈VB
K

h1−2m
e ∥Ph(hIµ)∥2L2(e).

Therefore, by an inverse inequality and shape-regularity of Tct
h ,

∥v∥21,h = ∥∇v∥2L2(Ωh)
+
∑
e∈EB

h

1

he
∥v∥2L2(e)

≤ ∥∇v∥2L2(Ωh)
+ C

∑
K∈Tct

h

h−2
K ∥v∥2L2(K) ≤ C

∑
e∈EB

h

h−1
e ∥Ph(hIµ)∥2L2(e).
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Finally, using the L2-stability of Ph(hIµ) and the quasi-uniform assumption, we have

∥v∥21,h ≤ C
∑
e∈EB

h

h−1
e ∥Ph(hIµ)∥2L2(e)

≤ Ch−1∥Ph(hIµ)∥2L2(∂Ωh)
≤ Ch−1∥hIµ∥2L2(∂Ωh)

≤ C∥µ∥2−1/2,h.

(2.4.16)

Combining this estimate with (2.4.13) yields the desired inf-sup condition (2.4.11).

Remark 2.4.8. The proof of Lemma 2.4.7, and in particular the proof of the claim,

relies on the continuity properties of the Lagrange multiplier space at nearly flat

corner vertices.

2.4.3 Main Stability Results

With Lemma 2.4.6 and Lemma 2.4.7, we show the main inf-sup condition for the

bilinear form bh(·, ·) in the next theorem. We show inf-sup condition for the bilinear

form with boundary correction term beh(·, ·) in the corollary after.

Theorem 2.4.9. Assume Th is quasi-uniform. Then there exists β > 0 depending

only on β1 and β2 such that

β∥(q, µ)∥ ≤ sup
v∈Vh\{0}

bh(v, (q, µ))

∥v∥1,h
∀(q, µ) ∈ Q̊h × X̊h. (2.4.17)

Proof. We use Lemmas 2.4.6 and 2.4.7 and follow the arguments in [32, Theorem

3.1].

Fix (q, µ) ∈ Q̊h × X̊h.
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We first bound the Lagrange multiplier part of the bilinear form bh(·, (·, ·)) using

Lemma 2.4.7. The statement (2.4.11) implies the existence of v2 ∈ Vh such that

∥v2∥1,h ≤ 1 and ∫
∂Ωh

(v2 · nh)µ ds ≥ β2∥µ∥−1/2,h.

Then, we use the LBB condition for the unfitted domain to bound the divergence

part of the bilinear form bh(·, (·, ·)). By Lemma 2.4.6 there exists v1 ∈ V̊h satisfying

∥∇v1∥L2(Ωh) = ∥v1∥1,h ≤ 1 and

−
∫
Ωh

(div v1)q ≥ β1∥q∥L2(Ωh).

Set v = cv1 + v2 for some c > 0, so that ∥v∥1,h ≤ (1 + c), and

−
∫
Ωh

(div v)q dx ≥ cβ1∥q∥L2(Ωh) − ∥div v2∥L2(Ωh)∥q∥L2(Ωh)

≥ cβ1∥q∥L2(Ωh) −
√
2∥∇v2∥L2(Ωh)∥q∥L2(Ωh)

≥ cβ1∥q∥L2(Ωh) −
√
2∥v2∥1,h∥q∥L2(Ωh)

=
(
cβ1 −

√
2
)
∥q∥L2(Ωh).

Because v1|∂Ωh
= 0, we have∫

∂Ωh

(v · nh)µ ds =

∫
∂Ωh

(v2 · nh)µ ds ≥ β2∥µ∥−1/2,h.

Therefore,

bh(v, (q, µ)) ≥
(
cβ1 −

√
2
)
∥q∥L2(Ωh) + β2∥µ∥−1/2,h

≥ (1 + c)−1
((
cβ1 −

√
2
)
∥q∥L2(Ωh) + β2∥µ∥−1/2,h

)
∥v∥1,h

for some c > 0 sufficiently large.

Now we set β = min{ cβ1−
√
2

1+c
, β2

1+c
} to get the desired results.
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Corollary 2.4.10. Provided Assumption (A) is satisfied and the mesh Th is quasi-

uniform, there exists βe > 0 independent of h such that there holds

βe∥(q, µ)∥ ≤ sup
v∈Vh\{0}

beh(v, (q, µ))

∥v∥1,h
∀(q, µ) ∈ Q̊h × X̊h. (2.4.18)

Proof. From Theorem 2.4.9, and the triangle inequality, we have

β∥(q, µ)∥ ≤ sup
v∈Vh\{0}

bh(v, (q, µ))

∥v∥1,h

= sup
v∈Vh\{0}

bh(v, (q, µ)) + beh(v, (q, µ))− bh(v, (q, µ))

∥v∥1,h

≤ sup
v∈Vh\{0}

bh(v, (q, µ))

∥v∥1,h
+ sup

v∈Vh\{0}

|beh(v, (q, µ))− bh(v, (q, µ))|
∥v∥1,h

. (2.4.19)

From Lemma 2.4.2, we have

sup
v∈Vh\{0}

|beh(v, (q, µ))− bh(v, (q, µ))|
∥v∥1,h

≤ sup
v∈Vh\{0}

Ccδ∥v∥1,h∥(q, µ)∥
∥v∥1,h

= Ccδ∥(q, µ)∥. (2.4.20)

Combining (2.4.19) and (2.4.20), we get

β∥(q, µ)∥ ≤ sup
v∈Vh\{0}

beh(v, (q, µ))

∥v∥1,h
+ Ccδ∥(q, µ)∥ ∀(q, µ) ∈ Q̊h × X̊h.

For cδ to be sufficiently small, β−Ccδ is positive and set βe = β−Ccδ. We then get

the desired result (2.4.18).

With the main inf-sup condition from Theorem 2.4.9, we now show the following

stability estimates.
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Theorem 2.4.11. Let (uh, ph, λh) ∈ Vh × Q̊h × X̊h satisfy (2.3.1). Then, provided

cδ in Assumption (A) is sufficiently small and the mesh Th is quasi-uniform, there

holds

ν∥uh∥1,h + ∥(ph, λh)∥ ≤ C∥f∥−1,h, (2.4.21)

where ∥f∥−1,h = supv∈Vh\{0}

∫
Ωh

f ·v dx

∥v∥1,h
. Consequently, there exists a unique solution

to (2.3.1).

Proof. We prove this Theorem using an energy argument. Setting v = uh in

(2.3.1a), (q, µ) = (ph, λh) in (2.3.1b), and subtracting the resulting expressions yields

ah(uh,uh) =

∫
Ωh

f · uh dx+

∫
∂Ωh

(
(Shuh − uh) · nh

)
λh ds.

By using (2.4.1), and the definition of ∥ · ∥−1/2,h, and the Cauchy-Schwarz inequality

we have∫
∂Ωh

(
(Shuh − uh) · nh

)
λh ds =

( ∑
e∈EB

h

h−1
e ∥Shuh − uh∥2L2(e)

) 1
2
( ∑

e∈EB
h

he∥λh∥2L2(e)

) 1
2

≤ Ccδ∥uh∥1,h∥λh∥−1/2,h. (2.4.22)

We apply the coercivity result in Lemma 2.4.3, the Cauchy-Schwarz inequality, and

(2.4.22) to get

νc1∥uh∥21,h ≤ ah(uh,uh)

≤ ∥f∥−1,h∥uh∥1,h + Ccδ∥uh∥1,h∥λh∥−1/2,h. (2.4.23)

On the other hand, we use inf-sup stability (2.4.17) and triangle inequality to

conclude

β∥(ph, λh)∥−1/2,h ≤ sup
v∈Vh\{0}

bh(v, (ph, λh))

∥v∥1,h
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≤ sup
v∈Vh\{0}

∫
Ωh
f · v dx− ah(uh,v)

∥v∥1,h

≤ sup
v∈Vh\{0}

∫
Ωh
f · v dx
∥v∥1,h

+ sup
v∈Vh\{0}

|ah(uh,v)|
∥v∥1,h

.

Using the continuity estimate (2.4.3) and the definition of ∥(ph, λh)∥, we get

β∥λh∥−1/2,h ≤ β∥(ph, λh)∥ ≤ ∥f∥−1,h + C(1 + σ)ν∥uh∥1,h. (2.4.24)

Inserting this estimate into (2.4.23), we obtain

ν
(
c1 − Ccδβ

−1(1 + σ)
)
∥uh∥1,h ≤ (1 + Ccδβ

−1)∥f∥−1,h.

Thus, ∥uh∥1,h ≤ Cν−1∥f∥−1,h for cδ sufficiently small. This, combined with (2.4.24),

yields the desired stability result (2.4.21).

2.5 Convergence Analysis of the Finite Element Method

In this section, we show that the solution of the finite element method (2.3.1)

converges with optimal order provided the exact solution is sufficiently smooth.

Throughout this section, we assume that the hypotheses of Theorem 2.4.11 are sat-

isfied, i.e., Assumption A is satisfied and the mesh Th is quasi-uniform.
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2.5.1 Consistency Estimates of the Method

The following lemma bounds the boundary correction operator acting on the

exact velocity function. Note that since we assume homogeneous Dirichlet boundary

condition on ∂Ω, there holds Shu + Rhu = 0, where Rhu is the Taylor remainder.

The result is essentially an estimate on Rhu and follows from similar arguments in

[3, Proposition 3] (also see [12]).

Lemma 2.5.1. For any u ∈Hk+1(Ω) ∩H1
0 (Ω), there holds∑

e∈EB
h

h−1
e

∫
e

∣∣Shu
∣∣2 ds ≤ Ch2k∥u∥2Hk+1(Ω).

Proof. For a boundary edge e ∈ EB
h with endpoints a1, a2, let x(t) = a1 + th−1

e (a2 −

a1) (0 ≤ t ≤ he) be its parameterization, and introduce the 2D parameterization

for the area between the computation boundary ∂Ωh and the physical boundary ∂Ω

corresponding to each boundary edge e: φ(t, s) = x(t) + sd(x(t)) for 0 ≤ t ≤ he and

0 ≤ s ≤ δ(x(t)). The Taylor remainder estimation with Shu+Rhu = 0 yields

|Shu(x(t))| = |Rhu(x(t))| =
1

k!

∣∣∣ ∫ δ(x(t))

0

∂k+1u

∂dk+1
(φ(t, s))(δ(x(t))− s)k ds

∣∣∣.
Applying the Cauchy-Schwarz inequality, we obtain

|Shu(x(t))| ≤ Cδ(x(t))k+1/2
(∫ δ(x(t))

0

∣∣∂k+1u

∂dk+1
(φ(t, s))

∣∣2 ds)1/2,
and therefore

h−1
e ∥Shu∥2L2(e) ≤ Ch−1

e δ2k+1
e

∫ he

0

∫ δ(x(t))

0

∣∣∂k+1u

∂dk+1
(φ(t, s))

∣∣2 ds dt
≤ Ch2ke

∫ he

0

∫ δ(x(t))

0

∣∣∂k+1u

∂dk+1
(φ(t, s))

∣∣2 ds dt,
where we used Assumption A in the last inequality. The estimate in Lemma 2.5.1

now follows from a change of variables (cf. [43, 3]) and summing over e ∈ EB
h .
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Lemma 2.5.2. There holds for all u ∈Hk+1(Ω) ∩H1
0 (Ω),∣∣∣− ν

∫
Ωh

∆u · v dx− ah(u,v)
∣∣∣ ≤ Cνhk∥u∥Hk+1(Ω)∥v∥1,h ∀v ∈ Vh. (2.5.1)

If divu = 0 in Ω, then

∣∣beh(u, (q, µ))∣∣ ≤ Chk∥u∥Hk+1(Ω)∥(q, µ)∥ ∀(q, µ) ∈ Q̊h × X̊h.

Proof. Using the integrate-by-parts technique, we have

−ν
∫
Ωh

∆u · v dx = ν
(∫

Ωh

∇u : ∇v dx−
∫
∂Ωh

∂u

∂nh

· v ds
)
.

Then by the definition of ah(·, ·), we have∣∣∣−ν ∫
Ωh

∆u ·v dx−ah(u,v)
∣∣∣ = ν

∣∣∣ ∑
e∈EB

h

∫
e

∂v

∂nh

·(Shu) ds+
∑
e∈EB

h

σ

he

∫
e

(Shu) ·(Shv) ds
∣∣∣.

Next, we estimate the two terms on the right hand side of the above equality by using

the Cauchy-Schwarz inequality, trace and inverse inequalities, along with Lemmas

2.4.1 and 2.5.1 as follows:∣∣∣ ∑
e∈EB

h

∫
e

∂v

∂nh

· (Shu) ds
∣∣∣ ≤ ( ∑

e∈EB
h

he

∫
e

∣∣ ∂v
∂nh

∣∣2 ds)1/2( ∑
e∈EB

h

h−1
e

∫
e

|Shu|2 ds
)1/2

≤ Chk∥u∥Hk+1(Ω)∥v∥1,h,

and∣∣∣ ∑
e∈EB

h

σ

he

∫
e

(Shu) · (Shv) ds
∣∣∣ ≤ σ

( ∑
e∈EB

h

h−1
e

∫
e

|Shu|2 ds
)1/2( ∑

e∈EB
h

h−1
e

∫
e

|Shv|2 ds
)1/2

≤ Chk∥u∥Hk+1(Ω)∥v∥1,h.

Thus, the first estimate (2.5.1) holds.
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Similarly, another use of the Cauchy-Schwarz inequality with Lemma 2.5.1 yields

∣∣beh(u, (q, µ))∣∣ = ∣∣∣ ∑
e∈EB

h

∫
e

(Shu · nh)µ ds
∣∣∣

≤
( ∑

e∈EB
h

h−1
e

∫
e

|Shu|2 ds
)1/2( ∑

e∈EB
h

he∥µ∥2L2(e)) ds
)1/2

≤ Chk∥u∥Hk+1(Ω)∥µ∥−1/2,h,

and this completes the proof.

2.5.2 Approximation Properties of the Kernel

We define the discrete kernel as

Zh = {v ∈ Vh : beh(v, (q, µ)) = 0, ∀(q, µ) ∈ Q̊h × X̊h}.

Note that if v ∈ Zh, then div v = 0 in Ωh (cf. Lemma 2.3.1), and∫
∂Ωh

((Shv) · nh)µ ds = 0 ∀µ ∈ X̊h. (2.5.2)

In this section, we show that the kernel Zh has optimal order approximation

properties with respect to divergence-free smooth functions. Finally, we define the

orthogonal complement of Zh as

Z⊥
h := {v ∈ Vh : (v,w)1,h = 0 ∀w ∈ Zh},

where (·, ·)1,h is the inner product on Vh that induces the norm ∥ · ∥1,h.

Lemma 2.5.3. There holds

βe∥w∥1,h ≤ sup
(q,µ)∈Q̊h×X̊h\{0}

beh(w, (q, µ))

∥(q, µ)∥
∀w ∈ Z⊥

h .
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Proof. The result follows from Corollary 2.4.10 and standard results in mixed finite

element theory (cf. [9, Lemma 12.5.10]).

Theorem 2.5.4. For any u ∈Hk+1(Ω) ∩H1
0 (Ω) with divu = 0, there holds

inf
w∈Zh

|||u−w|||h ≤ Chk∥u∥Hk+1(Ω). (2.5.3)

Proof. Let v ∈ Vh be arbitrary. By Lemma 2.5.3, we find y ∈ Z⊥
h such that

beh(y, (q, µ)) = beh(u− v, (q, µ)) ∀(q, µ) ∈ Q̊h × X̊h,

and

∥y∥1,h ≤ Cβ−1
e ∥u− v∥1,h,

where C > 0 is the continuity constant of the bilinear form beh (cf. (2.4.6)). Similarly,

we find z ∈ Z⊥
h satisfy

beh(z, (q, µ)) = −beh(u, (q, µ)) ∀(q, µ) ∈ Q̊h × X̊h.

Then w := v + y + z ∈ Zh, and

∥u−w∥1,h ≤ ∥u− v∥1,h + ∥y∥1,h + ∥z∥1,h

≤ (1 + Cβ−1
e )∥u− v∥1,h + ∥z∥1,h.

By Lemma 2.5.3 and Lemma 2.5.2,

βe∥z∥1,h ≤ sup
(q,µ)∈Q̊h×X̊h\{0}

beh(u, (q, µ))

∥(q, µ)∥
≤ Chk∥u∥Hk+1(Ω),

and so, by Lemma 2.4.1,

|||u−w|||h ≤ |||u− v|||h + C∥v −w∥1,h ≤ C
(
|||u− v|||h + ∥u−w∥1,h

)
≤ C(1 + β−1

e )
(
|||u− v|||h + ∥u− v∥1,h + hk∥u∥Hk+1(Ω)

)
∀v ∈ Vh.

Taking v to be the nodal interpolant of u, we obtain the desired result.
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2.5.3 Error Estimates of the Method

In this section, we show an error estimate for both velocity and pressure. Both

error estimates are of optimal order. In particular, we show that with the inclu-

sion of the Lagrange multiplier in the method, there is an additional power of h in

the velocity error, compensating its dependence on the inverse of the viscosity and

mitigating the lack of pressure robustness.

Theorem 2.5.5. Suppose that the solution of (2.1.1) has regularity (u, p) ∈Hk+1(Ω)∩

H1
0 (Ω)×H1(Ω). Furthermore, without loss of generality, assume that p|Ωh

∈ L2
0(Ωh).

Then,

∥u− uh∥1,h ≤ C
(
hk∥u∥Hk+1(Ω) + ν−1 inf

µ∈Xh

∥p− µ∥−1/2,h

)
, (2.5.4a)

∥p− ph∥L2(Ωh) ≤ C(νhk∥u∥Hk+1(Ω) + inf
µ∈Xh

∥p− µ∥−1/2,h + inf
qh∈Q̊h

∥p− qh∥L2(Ω)),

(2.5.4b)

∥p̊− λh∥−1/2,h ≤ C
(
νhk∥u∥Hk+1(Ω) + inf

µ∈Xh

∥p− µ∥−1/2,h

)
, (2.5.4c)

where p̊ := p− 1
|∂Ωh|

∫
∂Ωh

p ds. In particular, if p ∈ Hk+1(Ω) there holds

∥u− uh∥1,h ≤ C
(
hk∥u∥Hk+1(Ω) + ν−1hk+1∥p∥Hk+1(Ω)

)
, (2.5.5a)

∥p− ph∥L2(Ωh) ≤ C
(
νhk∥u∥Hk+1(Ω) + hk∥p∥Hk(Ω)

)
, (2.5.5b)

∥p̊− λh∥−1/2,h ≤ C
(
νhk∥u∥Hk+1(Ω) + hk+1∥p∥Hk+1(Ω)

)
. (2.5.5c)

Proof. Let w ∈ Zh be arbitrary. Note that we have mean value zero constraint for

v · nh on ∂Ωh for all v ∈ Vh. Denote µ̊ = µ− 1
|∂Ωh|

∫
∂Ωh

µ ds ∈ X̊h.

Then we have∫
∂Ωh

(v · nh)(λh − µ̊) ds =

∫
∂Ωh

(v · nh)(λh − µ) ds
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We then have, for all v ∈ Zh and µ ∈ Xh,

ah(uh −w,v) =
∫
Ωh

f · v − ah(w,v)− bh(v, (ph, λh))

= −ν
∫
Ωh

∆u · v dx− ah(w,v)−
∫
∂Ωh

(v · nh)(λh − p) ds

= −ν
∫
Ωh

∆u · v dx− ah(w,v)−
∫
∂Ωh

(v · nh)(µ− p) ds

−
∫
∂Ωh

(v · nh)(λh − µ̊) ds.

Therefore by Lemma 2.5.2, the continuity of ah(·, ·) (cf. (2.4.3)), and the Cauchy-

Schwarz inequality,

ah(uh −w,v) ≤ C
(
νhk∥u∥Hk+1(Ω) + ∥p− µ∥−1/2,h

)
∥v∥1,h

+ ah(u−w,v)−
∫
∂Ωh

(v · nh)(λh − µ̊) ds

≤ C
(
νhk∥u∥Hk+1(Ω) + ν(1 + σ)|||u−w|||h + ∥p− µ∥−1/2,h

)
∥v∥1,h

−
∫
∂Ωh

(v · nh)(λh − µ̊) ds.

We then use (2.5.2) and (2.4.1) to obtain∫
∂Ωh

(v · nh)(λh − µ̊) ds =

∫
∂Ωh

(
(v − Shv) · nh

)
(λh − µ̊) ds ≤ Ccδ∥v∥1,h∥λh − µ̊∥−1/2,h.

Setting v = uh − w, applying the coercivity of ah(·, ·) and Theorem 2.5.4, we

obtain

c1ν∥uh−w∥1,h ≤ C
(
ν(1+σ)hk∥u∥Hk+1(Ω)+∥p−µ∥−1/2,h+cδ∥λh− µ̊∥−1/2,h

)
(2.5.6)

for w ∈ Zh satisfying (2.5.3).
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Next, let Ph ∈ Q̊h be the L2-projection of p and note that, due to the definitions

of the finite element spaces,
∫
Ωh
(div v)(p− Ph) dx = 0 for all v ∈ Vh. This identity,

along with the inf-sup stability estimate given in Theorem 2.4.9 yields

β∥(ph − Ph, λh − µ̊)∥ ≤ sup
v∈Vh\{0}

bh(v, (ph − Ph, λh − µ̊))

∥v∥1,h

= sup
v∈Vh\{0}

bh(v, (ph − p, λh − µ̊))

∥v∥1,h
.

Using Lemma 2.5.2, we write the numerator as

bh(v, (ph − p, λh − µ̊)) = bh(v, (ph, λh))− bh(v, (p, µ̊))

=

∫
Ωh

f · v dx− ah(uh,v) +

∫
Ωh

(div v)p dx−
∫
∂Ωh

(v · nh)µ ds

≤ Cνhk∥u∥Hk+1(Ω)∥v∥1,h + ah(u− uh,v)

−
∫
∂Ωh

(v · nh)(µ− p) ds.

By continuity and the Cauchy-Schwarz inequality,

β∥(ph − Ph, λh − µ̊)∥ ≤ C
(
νhk∥u∥Hk+1(Ω) + c2ν(1 + σ)|||u− uh|||h + ∥p− µ∥−1/2,h

)
(2.5.7)

≤ C
(
νhk∥u∥Hk+1(Ω) + c2ν(1 + σ)

(
|||u−w|||h + ∥uh −w∥1,h

)
+ ∥p− µ∥−1/2,h

)
≤ C

(
ν(1 + σ)hk∥u∥Hk+1(Ω) + c2ν(1 + σ)∥uh −w∥1,h + ∥p− µ∥−1/2,h

)
.

Inserting this estimate into (2.5.6), we get

ν
(
c1 − Cβ−1c2(1 + σ)cδ

)
∥uh −w∥1,h ≤ Cν(1 + σ)hk∥u∥Hk+1(Ω) + C∥p− µ∥−1/2,h.

(2.5.8)

49



Using the approximation properties of the discrete kernel once again (cf. Theorem

2.5.4), and for cδ sufficiently small,

∥u− uh∥1,h ≤ C
(
hk∥u∥Hk+1(Ω) + ν−1 inf

µ∈Xh

∥p− µ∥−1/2,h

)
.

This establishes the velocity estimate (2.5.4a).

To obtain the estimate for the pressure approximation (2.5.4b), we use the tri-

angle inequality and the approximation properties of the L2-projection:

∥p− ph∥L2(Ωh) ≤ ∥ph − Ph∥L2(Ωh) + inf
qh∈Q̊h

∥p− qh∥L2(Ωh).

Inserting (2.5.7) and (2.5.8) into the right-hand side yields the desired bound for the

pressure. Likewise, combining (2.5.7) and (2.5.8) yields

∥p̊− λh∥−1/2,h ≤ C
(
νhk∥u∥Hk+1(Ω) + inf

µ∈Xh

(
∥p− µ∥−1/2,h + ∥p̊− µ̊∥−1/2,h

))
.

Applications of the Cauchy-Schwarz inequality show ∥p̊− µ̊∥−1/2,h ≤ C∥p− µ∥−1/2,h

on quasi-uniform meshes, and therefore (2.5.4c) holds.

Next, we estimate the term infµ∈Xh
∥p − µ∥−1/2,h for p ∈ Hk+1(Ω). With an

abuse of notation, let µI denote the kth degree nodal Lagrange interpolant of p

on Ωh with respect to Tct
h . Notice that µI |∂Ωh

∈ Xh. Applying a trace inequality,

followed by standard interpolation estimates and shape regularity of Tct
h , we obtain

for each e ∈ EB
h ,

∥p− µI∥2L2(e) ≤ C
(
h−1
e ∥p− µI∥2L2(Te)

+ he∥∇(p− µI)∥2L2(Te)

)
≤ Ch2k+1

e ∥p∥2Hk+1(Te)
,

where Te ∈ Tct
h satisfies e ⊂ ∂Te. We thus conclude from the definition of ∥ · ∥−1/2,h

that

inf
µ∈Xh

∥p− µ∥−1/2,h ≤ Chk+1∥p∥Hk+1(Ω). (2.5.9)

Finally, the estimates (2.5.5a)-(2.5.5c) follow from (2.5.4a)-(2.5.4c), interpolation

estimates, and (2.5.9).
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3.0 A CutFEM Divergence–Free Discretization for the Stokes Problem

CutFEM [10] is one of the prevalent classes of unfitted finite element method that

uses a Nitsche-based formulation. The basic idea is to enforce boundary conditions

via penalization, and to add ghost penalty stabilization.

Several rigorous stability and convergence analysis of the unfitted finite elements

have been done since the a CutFEM was introduced in [6]. For instance, the Pbubble
1 −

P1 unfitted finite element was studied in [16], and the optimal order of convergence

was achieved in the energy norm.

In this chapter, we construct and analyze a CutFEM for the Stokes problem

based on the Scott-Vogelius pair Pk − Pdisc
k−1 on Clough-Tocher splits. For CutFEM,

we start with a background mesh Sh, that contains the physical domain Ω similar to

the construction of the Boundary Correction method. However, we have two com-

putational domain in this case. One is an interior computational domain consists of

all the triangles in Sh that are strictly contained in Ω̄; the other one is an exterior

computational domain that consists of both the triangles in the interior computa-

tional domain and the triangles in Sh that are cut by the boundary of the physical

domain.

Similar to the Boundary Correction method, the discrete inf-sup condition can-

not be immediately obtained by standard results due to the unfitted nature of the

method. The uniform stability results with respect to the mesh parameter h have

been shown for many unfitted finite elements over the years. The uniform stability

condition was shown for the lowest order Taylor-Hood element P2 − P1 in [33]. The

same uniform stability condition was also shown for a wider range of elements in-

cluding Pk+1 − Pk, where k ≥ 1 and Pk+d − Pk, where d = 2 if the problem is in
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2D and d = 3 if the problem is in 3D in [27]. We show the same uniform results for

the general Scott-Vogelius pair Pk − Pdisc
k−1 on Clough-Tocher splits, using the same

technique used in the Boundary Correction project and the framework provided in

[27]. Additionally, even though we cannot produce a exactly divergence-free veloc-

ity solution like in the domain-fitted case, because of the ghost penalty terms in

the CutFEM, we still show a divergence-free property for the velocity solution on a

mesh-dependent interior domain.

3.1 Preliminaries

We consider the Stokes problem on a bounded, open domain Ω ⊂ Rd with smooth

boundary:

−∆u+∇p = f in Ω, (3.1.1a)

divu = 0 in Ω, (3.1.1b)

u = 0 on Γ := ∂Ω. (3.1.1c)

We embed the PDE domain Ω into an open, polytopal domain to formulate the finite

element method for 3.1.1. Let S ⊂ Rd be a polygon where Ω ⊂ S. Denote the quasi-

uniform triangulation of S with shape-regular triangles by Sh, and every T ∈ Sh is

a closed set. Then, we define the interior computational mesh and the associated

domain:

Ti
h = {T ∈ Sh : T̄ ⊂ Ω̄}, Ωi

h = int
( ⋃
T∈Ti

h

T̄
)
⊂ Ω̄.
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By connecting the vertices of each triangle T ∈ Sh to its barycenter, we obtain the

Clough-Tocher refinement of Sh, S
ct
h . We then define the analogous set with respect

to the Clough-Tocher refinement:

T
ct,i
h := {K ∈ Sct

h : K ⊂ T, ∃T ∈ Ti
h}.

Remark 3.1.1. Note that

Ωi
h = Int

( ⋃
K∈Tct,i

h

K̄
)
.

However,

T
ct,i
h ⊂ {K ∈ Sct

h : K ⊂ Ω}

and this inclusion is generally strict.

On the interior domain, we define Fi
h to be the set of (d−1)-dimensional interior

faces of the unrefined triangulation Ti
h. We also let

TΓ
h := {T ∈ Sh : measd−1(T ∩ Γ) > 0}, ΩΓ

h = Int
( ⋃

T∈TΓ
h

T̄
)

to be the set of simplices that cut through the interface Γ and the corresponding

domain, respectively.

Define

Te
h := {T ∈ Sh : T ∈ Ti

h or T ∈ TΓ
h}, Ωe

h = Int
( ⋃

T∈Te
h

T̄
)

to be the set of triangles that are either interior or cut through the interface Γ and

the corresponding domain, respectively. We refer to these quantities as the exterior

triangulation and exterior domain, respectively. The analogous sets with respect to

the Clough-Tocher refinement are given by

T
ct,Γ
h := {K ∈ Sct

h : K ⊂ T, ∃T ∈ TΓ
h},
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T
ct,e
h := {K ∈ Sct

h : K ⊂ T, ∃T ∈ Te
h}.

Note that now we have

ΩΓ
h = Int

( ⋃
K∈Tct,Γ

h

K̄
)
, and Ωe

h = Int
( ⋃

K∈Tct,e
h

K̄
)
.

In Figure 5, we illustrate the different computational mesh in different colors.

Figure 5: T
ct,Γ
h consists of triangles with red edges. T

ct,i
h consists of triangles with

blue edges. Tct,e
h consists of all the colored triangles.

Remark 3.1.2. Note that, in general, there exists K ∈ T
ct,Γ
h such that K̄ ∩ Ω̄ = ∅.

We illustrate those triangles in Figure 6. Consequently, in the finite element method

presented below, there exists active basis functions with support strictly outside the

physical domain Ω.

54



Figure 6: The green triangles are K ∈ T
ct,Γ
h where K̄ ∩ Ω̄ = ∅

We define the sets of faces:

FΓ := {F : F is a face in TΓ
h , F ̸⊂ ∂Ωe

h},

Fe := {F : F is an interior face in Te
h},

Fct,Γ := {F : F is a face in T
ct,Γ
h , F ̸⊂ ∂Ωe

h},

Fct,e := {F : F is an interior face in T
ct,e
h }.

For K ∈ T
ct,Γ
h , we define KΓ = K ∩Γ, so that

∑
K∈Tct,Γ

h
|KΓ| = |Γ|. For a simplex

K, we set hF = diam(F ), and for a face F , we set. Note that, because of the quasi-

uniformity and shape-regularity assumption, there holds hK ≈ h := maxT∈Th hT for

all K ∈ T
ct,e
h and hF ≈ h for all F ∈ Fct,e. We denote by n an outward normal

of a domain which will be clear from its context. The constant C (with or without

subscripts) will denote a generic positive constant that is independent of h, how the

boundary Γ cuts the mesh, or any method-dependent parameters.
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Same as the previous chapter, we use Pk(D) to denote the polynomials on D

with degree at most k, for a subset D ⊂ Ω, and the boldface Pk(D) to denote the

vector-valued polynomials on D with degree at most k, for a subset D ⊂ Ω.

For an integer k ≥ d, define the finite element spaces with respect to T
ct,e
h :

Vh = {v ∈H1(Ωe
h) : v|K ∈ Pk(K) ∀K ∈ T

ct,e
h ,

∫
∂Ωi

h

v · n = 0},

Qh = {q ∈ L2(Ωe
h) : q|K ∈ Pk−1(K) ∀K ∈ T

ct,e
h ,

∫
Ωi

h

q = 0},

and the analogous spaces with respect to the interior mesh

V i
h = {v ∈H1

0 (Ω
i
h) : v|K ∈ Pk(K) ∀K ∈ T

ct,i
h },

Qi
h = {q ∈ L2

0(Ω
i
h) : q|K ∈ Pk−1(K) ∀K ∈ T

ct,i
h }.

The definitions of the spaces imply that the divergence maps Vh into Qh. Like-

wise, the divergence maps V i
h into Qi

h.

3.2 A Divergence-Free CutFEM

We modify the finite element method proposed in [27, Section 3.2] based on the

Scott-Vogelius pair:

We first define a mesh-dependent bilinear form with grad-div stabilization:

ah(u,v) := (∇u,∇v) + γ(divu, div v) + sh(u,v) + jh(u,v) + ηjh(u,v),

where (·, ·) denotes the L2 inner product over Ω, γ ≥ 0 is the grad-div parameter,

and η > 0 is a Nitsche-type penalty parameter,

sh(u,v) = −
∫
Γ

((n⊺∇u) · v + (n⊺∇v) · u),
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jh(u,v) =
∑

K∈Tct,Γ
h

1

hK

∫
KΓ

u · v,

jh(u,v) =
∑

F∈Fct,Γ

k∑
ℓ=1

h2ℓ−1
F

∫
F

[∂ℓnu][∂
ℓ
nv].

We use ∂ℓnv to denote the derivative of order ℓ of v in the direction n, and [w]|F
denotes the jump of a function w across F . The continuity equations are discretized

via the bilinear form

b(p,v) := −(p, div v) +

∫
Γ

(v · n)p.

The finite element method reads: Find (uh, ph) ∈ Vh ×Qh such that

{ ah(uh,vh) + b(ph,vh) = (f ,vh),

b(qh,uh)− 1
1+γ

Jh(ph, qh) = 0
(3.2.1)

for all vh ∈ Vh, qh ∈ Qh, where

Jh(q, p) =
∑

F∈Fct,Γ

k−1∑
ℓ=0

h2ℓ+1
F

∫
F

[∂ℓnq][∂
ℓ
np].

The main differences between our CutFEM discretizations and the other CutFEM

discretizations [11, 10, 30, 27] are the terms jh(u,v), and Jh(q, p). In particular, for

jh(u,v), and Jh(q, p), instead of summing over all faces F in FΓ, we are now summing

over all faces F from Fct,Γ. Such faces may be completely outside the physical domain

Ω.

Note that although for the term jh(u,v), we modified it to be summing over the

triangles K ∈ T
ct,Γ
h from summing over the triangles T ∈ TΓ

h , we have
⋃

K∈Tct,Γ
h

|KΓ| =⋃
T∈TΓ

h
|TΓ| = |Γ|. Therefore, jh(u,v) is equivalent to the analogous term in, e.g.,

[27].
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3.2.1 Divergence-Free Property

A domain-fitted Scott-Vogelius FEM produces exactly divergence-free solution,

but due to the stability term Jh(·, ·) in the discrete continuity equations, we do not

have exactly divergence-free velocity solution to (3.2.1) on either the physical or

the computational domain. However, the velocity solution to (3.2.1) does possess a

divergence-free property on a mesh-dependent interior domain which is a subset of

the interior computational domain Ωi
h.

We define the set T̃ct,Γ
h to be the set of all simplices in T

ct,Γ
h together with those

in T
ct,i
h that are touching these simplices :

T̃
ct,Γ
h = {K ∈ T

ct,e
h : measd−1(K̄ ∩ K̄ ′) > 0 ∃K ′ ∈ T

ct,Γ
h }.

This set’s complement is given by a set of interior elements:

T̃
ct,i
h = T

ct,e
h \T̃ct,Γ

h ⊂ T
ct,i
h ,

and we define the domains

Ω̃ct,Γ
h = Int

( ⋃
K∈T̃ct,Γ

h

K̄
)
, Ω̃ct,i

h = Int
( ⋃

T∈T̃ct,i
h

K̄
)
.

We illustrate these two domains in Figure 7:
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Figure 7: T̃h

ct,i
consists of triangles with green edges, Tct,i

h consists of all colored

triangles.

Lemma 3.2.1. (Divergence-free property) Suppose that uh ∈ Vh satisfies (3.2.1).

Then divuh = 0 on Ω̃ct,i
h .

Proof. We show the result in four steps.

1. Fix K∗ ∈ T̃
ct,i
h , and set

q1 =


1 on Ω̃ct,Γ

h ,

−(|Ω̃ct,Γ
h | − |ΩΓ

h|)/|K∗| on K∗,

0 otherwise.

We then have∫
Ωi

h

q1 =

∫
Ω̃ct,Γ

h \ΩΓ
h

q1 +

∫
K∗

q1 = (|Ω̃ct,Γ
h | − |ΩΓ

h|) + |K∗|
(
− (|Ω̃ct,Γ

h | − |ΩΓ
h|)/|K∗|

)
= 0.
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Thus, q1 ∈ Qh. We also have J(ph, q1) = 0 because q1 being constant on Ωct,Γ
h ⊂ Ω̃ct,Γ

h

imples that [∂lnq1] = 0 on all F ∈ Fct,Γ. It then follows from (3.2.1) that

b(q1,uh) =

∫
K∗

q1divuh +

∫
Ω∩Ω̃ct,Γ

h

q1divuh −
∫
Γ

q1(uh · n) = 0

Then by plugging into the values of q1, we have

−(|Ω̃ct,Γ
h | − |ΩΓ

h|)
|K∗|

∫
K∗

divuh +

∫
Ω∩Ω̃ct,Γ

h

divuh −
∫
Γ

uh · n = 0

By the Divergence Theorem, we have
∫
Γ
uh · n =

∫
Ω
divuh and by the definition of

Ω̃ct,Γ
h and Ω̃ct,i

h , we have Ω̃ct,i
h = Ω\(Ω ∩ Ω̃ct,Γ

h ). Therefore,

1

|K∗|

∫
K∗

divuh =
1

|Ω̃ct,Γ
h | − |ΩΓ

h|

(∫
Ω∩Ω̃ct,Γ

h

divuh −
∫
Ω

divuh

)
(3.2.2)

=
−1

|Ω̃ct,Γ
h | − |ΩΓ

h|

∫
Ω̃ct,i

h

divuh.

2. Fix K ∈ T̃
ct,i
h \{K∗}, and set

q2 =


1 on K,

− |K|
|K∗| on K∗,

0 otherwise.

Then q2 ∈ Qh, and Jh(ph, q2) = 0. By (3.2.1), we have

b(ph, q2) =

∫
K

q2divuh +

∫
K∗

q2divuh −
∫
Γ

q2(uh · n) = 0.

By plugging into the value of q2, we conclude∫
K

divuh =
|K|
|K∗|

∫
K∗

divuh.
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We also have the trivial case where∫
K∗

divuh =
|K∗|
|K∗|

∫
K∗

divuh

We then sum this expression over K ∈ T̃
ct,i
h to conclude∫

Ω̃ct,i
h

divuh =
∑

K∈T̃ct,i
h

|K|
|K∗|

∫
K∗

divuh.

=
|Ω̃ct,i

h |
|K∗|

∫
K∗

divuh. (3.2.3)

3. We combine (3.2.2) and (3.2.3) to obtain∫
Ω̃ct,i

h

divuh = − |Ω̃ct,i
h |

|Ω̃ct,Γ
h | − |ΩΓ

h|

∫
Ω̃ct,i

h

divuh,

which implies ∫
Ω̃ct,i

h

divuh = 0.

Using (3.2.2), and noting that K∗ ∈ T̃
ct,i
h was arbitrary, we have∫

K

divuh = 0 ∀K ∈ T̃
ct,i
h .

4. Fix K,K† ∈ T̃
ct,i
h , and set

q3 =


divuh on K†,

c on K,

0 otherwise,

where c ∈ R is chosen such that q3 ∈ Qh. Then using (3.2.1),∫
K†

|divuh|2 = −c
∫
K

divuh = 0.

Thus, divuh = 0 on Ω̃ct,i
h .
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3.3 Stability Analysis of the CutFEM

In this section, we show the inf-sup stability result for the CutFEM and using

the inf-sup stability to derive a prior estimate.

We first define two mesh-dependent H1-type norms:

∥u∥2V0,h
= |u|2H1(Ω) + ηjh(u,u) + jh(u,u),

∥u∥2Vh
= ∥u∥2V0,h

+ γ∥divu∥2L2(Ω).

Note that we have ∥div z∥2L2(Ω) ≤ ∥z∥2V0,h
, for all z ∈ Vh. Therefore, by the definition

of the two mesh-dependent norms, we have ∥z∥Vh
≤ (1+γ)1/2∥z∥V0,h

, for all z ∈ Vh.

Correspondingly, we have an associated dual norm for the right-hand data:

∥f∥V ′
h
= sup

v∈Vh

(f ,v)

∥v∥Vh

.

3.3.1 Inf-Sup Stability

Before we prove the main inf-sup stability result for the CutFEM, we first show

a inf-sup condition with respect to the finite element spaces with support only on

the interior computational domain Ωi
h.

Theorem 3.3.1. There exists a constant θ > 0 and a constant h0 > 0 such that we

have the following result for h ≤ h0

θ∥q∥L2(Ωi
h)
≤ sup

v∈V i
h\{0}

∫
Ωi

h
(div v)q

∥v∥H1(Ωi
h)

∀q ∈ Qi
h. (3.3.1)

The constant θ > 0 is independent and h.
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Similar to the case in the Boundary Correction finite element method, due to the

unfitted nature of the interior computational domain Ωi
h, we cannot extend the stan-

dard LBB stability argument to find a constant θ independent of the mesh parameter

h that satisfies the inf-sup condition with respect to the finite element spaces on the

interior mesh.

Note that for the k ≥ d = 2 case, Theorem 3.3.1 is exactly Lemma 2.4.6, since

Ωh from the previous chapter is exactly the interior computational domain Ωi
h in this

chapter, and the associated finite element spaces are also the same.

For the k ≥ d = 3 case, we use the stability of the Pd − P0 pair provided in [27,

Example 6.3] together with a local inf-sup stability result [Lemma 2.4.4] following

the exact same steps from the proof of Lemma(2.4.6) to show Theorem(3.3.1).

Corollary 3.3.2. The following stability is satisfied

θ∗∥q∥L2(Ω) ≤ sup
v∈Vh

supp(v)⊂Ωi
h

b(v, q)

∥v∥V0,h

+ J
1/2
h (q, q) ∀ q ∈ Qh, (3.3.2)

where θ∗ > 0 is independent of h and the position of Γ in the mesh.

Proof. Fix some q ∈ Qh, such that q|Ωi
h
∈ L2

0(Ω
i
h). By [40, Lemma 5.1] for each pair

of triangles K1 and K2 in Tct
h where K1 and K2 share a common face, we have

∥q∥2L2(K1)
≤ C

(
∥q∥2L2(K2)

+
k−1∑
l=0

h2l+1
F

∫
F

[∂lnq]
2ds
)
.

Iterating this estimate and using the definition of Jh(·, ·), we have that

∥q∥2L2(Ω) ≤ ∥q∥2L2(Ωe
h)
≤ C

(
∥q∥L2(Ωi

h)
+ Jh(q, q)

)
. (3.3.3)
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Using the inf-sup stability we get from Theorem 3.3.1 we have

∥q∥2L2(Ω) ≤ C(∥q∥2L2(Ωi
h)
+ Jh(q, q)) ≤ Cθ−1

(∫
Ωi

h
(div v)q

∥v∥H1(Ωi
h)

+ Jh(q, q)
)

(3.3.4)

for some v ∈ Vh with supp(v) ⊂ Ωi
h.

Then, since we have v = 0 on ΩΓ
h, jh(v,v) = 0. Then by an inverse inequality we

have

jh(v,v) =
∑

F∈Fct,Γ

F⊂∂Ωi
h

k∑
ℓ=1

h2ℓ−1
F

∫
F

[∂ℓnv]
2

≤ C
∑

K∈T̃ct,Γ
h ∩Tct,i

h

∥∇v∥2L2(K) ≤ C∥v∥2H1(Ωi
h)
.

Thus we have ∥v∥V0,h
≤ C∥v∥H1(Ωi

h)
. Combining this with (3.3.4), we have (3.3.2).

3.3.2 A Priori Estimates for the CutFEM

In this section, we derive a priori estimates of the CutFEM, thus showing the

discrete problem (3.2.1) is well-posed.

We first show that the norm ∥ · ∥Vh
is continuous and coercive.

Lemma 3.3.3. There exists constants Ca, C0 > 0 such that

ah(u,v) ≤ Ca∥u∥Vh
∥v∥Vh

∀u,v ∈ Vh +H
k+1(Ωe

h),

C0∥v∥2Vh
≤ ah(v,v) ∀v ∈ Vh.

The proof of the continuity and coervicity of the norm ∥ · ∥V0,h
can be found in

[27]. Using the fact that ∥z∥Vh
≤ (1 + γ)1/2∥z∥V0,h

and ∥z∥V0,h
≤ ∥z∥Vh

, for all

z ∈ Vh , we easily extend the results to ∥ · ∥Vh
.
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Theorem 3.3.4. Suppose that (uh, ph) ∈ Vh ×Qh satisfies (3.2.1). Then

∥ph∥L2(Ω) ≤ C(1 + γ)
1
2∥f∥V ′

h
, ∥uh∥Vh

≤ C∥f∥V ′
h
, (3.3.5)

for some C > 0 independent of γ, h, and the position of Γ in the mesh. Consequently,

(3.2.1) has a unique solution.

Proof. We set vh = uh in the first equation in (3.2.1), and qh = ph in the second

equation of (3.2.1) and subtract the resulting expressions:

ah(uh,uh) +
1

1 + γ
Jh(ph, ph) = (f ,uh).

By the coercivity of ah(., .) stated in Lemma 3.3.3 and the Cauchy-Schwarz in-

equality, we have

C0∥uh∥2Vh
+

1

1 + γ
Jh(ph, ph) ≤ (f ,uh) ≤ ∥f∥V ′

h
∥uh∥Vh

.

Using the Cauchy-Schwarz inequality again on the right-hand side, we have

∥f∥V ′
h
∥uh∥Vh

≤ 1

2
(∥f∥2V ′

h
+ ∥uh∥2Vh

),

and so

C0

2
∥uh∥2Vh

+
1

1 + γ
Jh(ph, ph) ≤

1

2C0

∥f∥2V ′
h
. (3.3.6)

By the inf-sup stability estimate (3.3.2) and the fact that ∥z∥Vh
≤ (1+γ)1/2∥z∥V0,h

for all z ∈ Vh, there exists z ∈ Vh with (1 + γ)−
1
2∥z∥Vh

≤ ∥z∥V0,h
= ∥ph∥L2(Ω) and

θ∗∥ph∥2L2(Ω) ≤ b(z, ph) + J
1/2
h (ph, ph)∥ph∥L2(Ω)

= (f , z)− ah(z,uh) + J
1/2
h (ph, ph)∥ph∥L2(Ω).
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By Lemma 3.3.3 and the Cauchy-Schwarz inequality, we have

θ∗∥ph∥2L2(Ω) ≤
(
∥f∥V ′

h
∥z∥Vh

+ Ca∥z∥Vh
∥uh∥Vh

)
+ J

1/2
h (ph, ph)∥ph∥L2(Ω)

≤
(
(1 + γ)

1
2 (∥f∥V ′

h
+ Ca∥uh∥Vh

) + J
1/2
h (ph, ph)

)
∥ph∥L2(Ω).

Dividing by ∥ph∥L2(Ω) and using (3.3.6), we conclude

θ2∗∥ph∥2L2(Ω) ≤ 3
(
(1 + γ)(∥f∥2V ′

h
+ C2

a∥uh∥2Vh
) + Jh(ph, ph)

)
≤ 3(1 + γ)

(
1 + C2

aC
−2
0 +

1

2C0

)
∥f∥2V ′

h
.

This estimate and (3.3.6) yields the desired result (3.3.5).

3.4 Convergence Analysis of the CutFEM

In this section we assume that the solution to the Stokes problem (3.1.1a) is

sufficiently smooth, i.e., u ∈ Hk+2(Ω), p ∈ Hk+1(Ω), where we recall k is the poly-

nomial degree in the definition of finite element spaces. Without loss of generality,

we assume that dist(∂S, ∂Ω) = O(1).

Because ∂Ω is Lipschitz there exists an extension of p, which we also denote by

p, such that p ∈ Hk+1(S) and (cf. [53])

∥p∥Hℓ(S) ≤ C∥p∥Hℓ(Ω) for ℓ = 0, 1, . . . , k + 1. (3.4.1a)

An analogous extension of u is done in the following manner. First, write the velocity

in terms of a potential function u = ∇×ψ. Then for u ∈Hk+2(Ω), it satisfies that

ψ ∈Hk+3(Ω) and ∥ψ∥Hℓ+1(Ω) ≤ C∥u∥Hℓ(Ω) for ℓ = 0, 1, . . . k+2 [24, 18]. We extend

ψ to S in a way such that ∥ψ∥Hℓ(S) ≤ C∥ψ∥Hℓ(Ω) for ℓ = 0, 1, . . . , k + 3, and let ω
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be a smooth cut-off function with compact support in S and ω ≡ 1 in Ω. We then

define the velocity extension as u = ∇× (ωψ), so that u is divergence-free, vanishes

on ∂S, and

∥u∥Hℓ(S) ≤ C∥u∥Hℓ(Ω) for ℓ = 0, 1, . . . , k + 2. (3.4.1b)

Remark 3.4.1 (Consistency). Since we assume the exact solution to be smooth enough,

all the ghost-penalty terms and Nitsche term from the discrete problem will vanish

when we insert u and p into (3.2.1). Thus, the method (3.2.1) is consistent. In

particular, there holds

{ ah(u,vh) + b(p,vh) = (f ,vh),

b(qh,u)− 1
1+γ

Jh(p, qh) = 0
(3.4.2)

for all vh ∈ Vh, qh ∈ Qh.

The following lemma is a direct application of [20, Lemma 4.10].

Lemma 3.4.2. For T ∈ Te
h, define ωT = ∪T ′∈Te

h

T̄∩T̄ ′ ̸=∅
T̄ ′ to be the patch of neighboring

elements of T . We further define the O(h) strip around Γ:

ωΓ =
⋃

T∈TΓ
h

ωT .

Then there holds

∥v∥L2(ωΓ) ≤ Ch
1
2∥v∥H1(S) ∀v ∈ H1(S).

We also require a trace inequality suitable for the CutFEM discretization (see,

e.g., [29, 27]).
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Lemma 3.4.3. For every K ∈ T
ct,Γ
h it holds

∥v∥L2(KΓ) ≤ C(h
− 1

2
K ∥v∥L2(K) + h

1
2
K∥∇v∥L2(K)) ∀v ∈ H1(K), (3.4.3)

with a constant C independent of v, T , how Γ intersects T , and h < h1 for some

fixed h1 > 0.

Consider the finite element subspace of pointwise divergence-free functions:

Zh = {wh ∈ Vh : divwh = 0 in Ωe
h}.

This subspace enjoys full approximation properties in the sense of the following

lemma.

Lemma 3.4.4. For u, the divergence-free extension of the solution to (3.1.1), it

holds

inf
wh∈Zh

∥u−wh∥H1(T ) ≤ ChkT |u|Hk+1(ωT ) ∀T ∈ Te
h. (3.4.4)

Consequently, if u ∈Hk+2(Ω),

inf
wh∈Zh

∥u−wh∥Vh
≤ C

(
hk∥u∥Hk+1(Ω) + η

1
2hk+

1
2∥u∥Hk+2(Ω)

)
.

Proof. We first prove the approximation property (3.4.4).Here we consider the three-

dimensional case; the analogous 2D arguments are similar (and simpler).

We first construct a Fortin operator using the recent results in [22]. For T ∈ Te
h,

let T ct denote the local triangulation of four (sub)tetrahedra, obtained by performing

a barycenter refinement of T .

We define the polynomial spaces:

Pk(T
ct) = {v ∈ L2(D) : v|K ∈ Pk(K) ∀K ∈ T ct}, P̊k(T

ct) = Pk(T
ct) ∩ L2

0(D),

Pc
k(T

ct) = [Pk(T
ct) ∩H1(D)]3, P̊

c

k(T
ct) = Pc

k(T
ct) ∩H1

0 (D),
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where D = int(∪K∈T ctK̄). We also define the smooth space

M̊k+1(T
ct) = {κ ∈ P̊

c

k+1(T
ct) : curlκ ∈ P̊

c

k(T
ct)}.

It follows from [22, Lemma 4.16] that there exists an operator Π0,T : H1(T ) →

P̊
c

k(T
ct) uniquely determined by the conditions∫

T

(Π0,Tv) · curlκ =

∫
T

v · curlκ ∀κ ∈ M̊k+1(T
ct), (3.4.5a)∫

T

(div (Π0,Tv))κ =

∫
T

(div v)κ ∀κ ∈ P̊k−1(T
ct). (3.4.5b)

Next we show a stability estimate for the operator using a scaling argument.

To ease presentation, set vT = Π0,Tv. Let T̂ = { x
hT

: x ∈ T} be a dilation of T ,

and define v̂T ∈ P̊k(T̂
ct) as v̂T (x̂) = vT (x) with x = hT x̂, so that ∂vT = h−1

T ∂̂v̂T . In

particular, div vT = h−1
T d̂iv v̂T and curl κ = h−1

T ĉurl κ̂. Using a change of variables

and equivalence of norms, we compute

h−1
T ∥∇vT∥2L2(T ) = ∥∇̂v̂T∥2L2(T̂ )

≈ sup
κ̂∈M̊k+1(T̂ ct)

∣∣∣∫T̂ v̂T · ĉurl κ̂
∥ĉurl κ̂∥L2(T̂ )

∣∣∣2 + sup
κ̂∈P̊k−1(T̂ ct)

∣∣∣∫T̂ d̂iv v̂T κ̂

∥κ̂∥L2(T̂ )

∣∣∣2
= sup

κ̂∈M̊k+1(T ct)

∣∣∣h−3
T

∫
T
vT · (hTcurl κ)

h
−1/2
T ∥curlκ∥L2(T )

∣∣∣2 + sup
κ∈P̊k−1(T ct)

∣∣∣h−3
T

∫
T
(hTdiv vT )κ

h
−3/2
T ∥κ∥L2(T )

∣∣∣2
= h−3

T sup
κ̂∈M̊k+1(T ct)

∣∣∣ ∫T v · curl κ
∥curlκ∥L2(T )

∣∣∣2 + h−1
T sup

κ∈P̊k−1(T ct)

∣∣∣∫T (div v)κ∥κ∥L2(T )

∣∣∣2
≤ h−3

T ∥v∥2L2(T ) + h−1
T ∥div v∥2L2(T ).

Hence, we have

∥∇Π0,Tv∥L2(T ) ≤ C
(
∥∇v∥L2(T ) + h−1

T ∥v∥L2(T )

)
∀v ∈H1(T ). (3.4.6)
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Then we first set Ih : H1(Ω) → Pc
k(T

e
h) ⊂ Vh be the kth degree Scott-Zhang

interpolant which satisfies (k ≥ 3) [52]∫
F

Ihv =

∫
F

v for all faces in Te
h ∀v ∈H1(Ωe

h), (3.4.7)

and Π0 :H
1(Ωe) → Vh such that Π0|T = Π0,T for all T ∈ Te

h.

Then we define the operator Πh :H1(Ωe
h) → Vh as

Πh = Ih +Π0(1− Ih),

where 1 is the identity operator. Moreover, for all v ∈H1(Ωe), we have∫
Ωe

h

(div (Πhv))q =

∫
Ωe

h

(div v)q ∀q ∈ Pk−1(T
ct,e
h ).

If u is divergence–free, then Πhu ∈ Zh. Therefore by the definition of Πh and

the H1-stability of this operator,

inf
wh∈Zh

∥∇(u−wh)∥L2(T ) ≤ ∥∇(u−Πhu)∥L2(T )

≤ ∥∇(u− Ihu)∥L2(T ) + ∥∇(Π0(1− Ih)u)∥L2(T )

≤ C(∥∇(u− Ihu)∥L2(T ) + h−1
T ∥u− Ihu∥L2(T )).

We then use the approximation properties of the Scott-Zhang interpolant to obtain

the result (3.4.4).

Note that by the extension of u, we have divu = 0 in Ωe
h. Thus we have

div (u−wh) = 0 in Ωe
h for wh ∈ Zh.
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Using Lemma 3.4.3, we bound the penalty part in ∥u−wh∥Vh
as follows:

jh(u−wh,u−wh) =
∑

K∈Tct,Γ
h

h−1
K ∥u−wh∥2L2(KΓ)

≤ C
∑

K∈Tct,Γ
h

(
h−2
K ∥u−wh∥2L2(K) + ∥∇(u−wh)∥2L2(K)

)
≤ Ch2k∥u∥2Hk+1(ωΓ)

≤ Ch2k+1∥u∥2Hk+2(Ω),

(3.4.8)

where for the last inequality we used an inverse estimate, (3.4.1) and Lemma 3.4.2.

This yields the bound ∥u−wh∥Vh
≤ C

(
hk∥u∥Hk+1(Ω) + η

1
2hk+

1
2∥u∥Hk+2(Ω)

)
.

Theorem 3.4.5. The following error estimate holds

∥u−uh∥Vh
+(1+γ)−

1
2∥p−ph∥L2(Ω) ≤ C

(
hk∥u∥Hk+1(Ω)+(1+γ

1
2+η

1
2 )hk+

1
2∥u∥Hk+2(Ω)

+ (η−
1
2 + (1 + γ)−

1
2 )hk+

1
2∥p∥Hk+1(Ω) + (1 + γ)−

1
2hk∥p∥Hk(Ω)

)
. (3.4.9)

Proof. To show the error bounds, we start with a standard argument. Let wh ∈ Zh

be a function in the discrete kernel satisfying estimate (3.4.4). Setting eI = uh−wh ∈

Vh we have, thanks to the coercivity result in Lemma 3.3.3:

C0∥eI∥2Vh
≤ ah(eI , eI). (3.4.10)

Denote by p̂h ∈ Qh the L2-projection of p onto Qh, and set qI = ph − p̂h. It

follows from (3.3.2) that there exists v ∈ Vh with supp(v) ⊂ Ωi
h such that

C1∥qI∥2L2(Ω) ≤ b(v, qI) +C−1
1 Jh(qI , qI), with (1+ γ)−

1
2∥v∥Vh

≤ ∥v∥V0,h
= ∥qI∥L2(Ω),

(3.4.11)

where C1 =
θ∗
2
, and θ∗ is the inf-sup constant given in Corollary 3.3.2.
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From (3.4.10), (3.4.11), (3.2.1), and the consistency identity (3.4.2), we conclude

that for any α ≥ 0 it holds

C0∥eI∥2Vh
+ C1α∥qI∥2L2(Ω) +

(
(1 + γ)−1 − αC−1

1

)
Jh(qI , qI) (3.4.12)

≤ ah(eI , eI) + b(αv, qI) + (1 + γ)−1Jh(qI , qI)

= ah(eI , eI + αv) + b(eI + αv, qI)− b(eI , qI) + (1 + γ)−1Jh(qI , qI)− ah(eI , αv)

= ah(u−wh, eI + αv) + b(eI + αv, p− p̂h)− b(u−wh, qI)

+ (1 + γ)−1Jh(p− p̂h, qI)− ah(eI , αv)

=: I1 + I2 + I3 + I4 + I5.

We now estimate the right-hand side of (3.4.12) term-by-term.

Using the continuity result in Lemma 3.3.3 and the approximation results in

Lemma 3.4.4, we bound

I1 ≤ Ca∥eI + αv∥Vh
∥u−wh∥Vh

(3.4.13)

≤ C∥eI + αv∥Vh

(
hk∥u∥Hk+1(Ω) + η

1
2hk+

1
2∥u∥Hk+2(Ω)

)
≤ C

(
∥eI∥Vh

+ α(1 + γ)
1
2∥qI∥L2(Ω)

) (
hk∥u∥Hk+1(Ω) + η

1
2hk+

1
2∥u∥Hk+2(Ω)

)
,

where we used (3.4.11) in the last inequality.

We now estimate the second term in the right-hand side of (3.4.12) in two steps.

First, using approximation properties of the L2-projection, we get

(p̂h − p, div eI) ≤ (1 + γ)−
1
2∥p̂h − p∥L2(Ω)∥eI∥Vh

≤ (1 + γ)−
1
2hk∥p∥Hk(Ω)∥eI∥Vh

.

(3.4.14)

Likewise,

(p̂h − p, αdiv v) ≤ Cαhk∥p∥Hk(Ω)∥qI∥L2(Ω). (3.4.15)
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We apply the trace inequality (3.4.3) and standard approximation properties of

the L2-projection to estimate the boundary integral in b(eI +αv, p− p̂h), noting that

v = 0 on Γ:∫
Γ

(p̂h − p)(eI + αv) · n ≤
∑

K∈Tct,Γ
h

∥p̂h − p∥L2(KΓ)∥eI∥L2(KΓ)

≤
( ∑

K∈Tct,Γ
h

η−1hK∥p̂h − p∥2L2(KΓ)

)1/2( ∑
K∈Tct,Γ

h

ηh−1
K ∥eI∥L2(KΓ)

)1/2
≤ Cη−

1
2hk∥p∥Hk(ωΓ)∥eI∥Vh

≤ Cη−
1
2hk+

1
2∥p∥Hk+1(Ω)∥eI∥Vh

,

(3.4.16)

where we used the Cauchy-Schwarz inequality in the second inequality and Lemma

3.4.2 in the last inequality. Summing (3.4.14)–(3.4.16) we obtain

I2 ≤ C
(
αhk∥p∥Hk(Ω)∥qI∥L2(Ω)+

(
(1 + γ)−

1
2hk∥p∥Hk(Ω) + η−

1
2hk+

1
2∥p∥Hk+1(Ω)

)
∥eI∥Vh

)
.

(3.4.17)

To estimate I3, we first note that, due to (3.4.3), finite element inverse inequali-

ties, and (3.3.3), there holds∑
K∈Tct,Γ

h

hK∥qI∥2L2(KΓ)
≤ C

∑
K∈Tct,Γ

h

∥qI∥2L2(K) ≤ C
(
∥q∥2L2(Ω) + Jh(qI , qI)

)
.

Therefore, thanks to div (u−wh) = 0 and the estimate (3.4.8), we have

I3 ≤
( ∑

K∈Tct,Γ
h

hK∥qI∥2L2(KΓ)

)1/2( ∑
K∈Tct,Γ

h

h−1
K ∥u−wh∥2L2(KΓ)

)1/2
≤ C(∥qI∥2L2(Ω) + Jh(qI , qI))

1
2hk+

1
2∥u∥Hk+2(Ω).
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We proceed with estimating terms in the right-hand side of (3.4.12). For the

fourth term we get, using the trace inequality (3.4.3), approximation properties of

the L2-projection, and Lemma 3.4.2,

I4 ≤ (1 + γ)−1J
1
2
h (p− p̂h, p− p̂h)J

1
2
h (qI , qI) ≤ Chk+

1
2 (1 + γ)−1∥p∥Hk+1(Ω)J

1
2
h (qI , qI).

(3.4.18)

For the last term in (3.4.12) we have (using (3.4.11))

I5 ≤
C0

4
∥eI∥2Vh

+
C2

aα
2

C0

∥v∥2Vh
≤ C0

4
∥eI∥2Vh

+
C2

aα
2(1 + γ)

C0

∥qI∥2L2(Ω). (3.4.19)

We apply the estimates (3.4.13)–(3.4.19) to (3.4.12) getting

C0∥eI∥2Vh
+ C1α∥qI∥2L2(Ω) + ((1 + γ)−1 − αC−1

1 )Jh(qI , qI)

≤ C

((
∥eI∥Vh

+ α(1 + γ)
1
2∥qI∥L2(Ω)

)(
hk∥u∥Hk+1(Ω) + η

1
2hk+

1
2∥u∥Hk+2(Ω)

)
+ αhk∥qI∥L2(Ω)∥p∥Hk(Ω) +

(
(1 + γ)−

1
2hk∥p∥Hk(Ω) + η−

1
2hk+

1
2∥p∥Hk+1(Ω)

)
∥eI∥Vh

+ (∥qI∥L2(Ω) + J
1
2
h (qI , qI))h

k+ 1
2 (∥u∥Hk+2(Ω) + (1 + γ)−1∥p∥Hk+1(Ω))

)

+
C0

4
∥eI∥2Vh

+
C2

aα
2(1 + γ)

C0

∥qI∥2L2(Ω).

We apply the Cauchy-Schwarz inequality several times and rearrange terms to

obtain

C0∥eI∥2Vh
+
(
C1α− Cα2(1 + γ)

)
∥qI∥2L2(Ω) + ((1 + γ)−1 − αC−1

1 )Jh(qI , qI)

≤ C

((
h2k∥u∥2Hk+1(Ω) + ηh2k+1∥u∥2Hk+2(Ω)

)
+ (α + 1)(1 + γ)−1h2k∥p∥2Hk(Ω)

+ η−1h2k+1∥p∥2Hk+1(Ω) + α−1h2k+1
(
∥u∥2Hk+2(Ω) + (1 + γ)−2∥p∥2Hk+1(Ω)

))
.
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We now take α = C̃(1 + γ)−1, with C̃ > 0 sufficiently small to obtain

C0∥eI∥2Vh
+ C(1 + γ)−1

(
∥qI∥2L2(Ω) + Jh(qI , qI)

)
≤ C

(
h2k∥u∥2Hk+1(Ω) + (1 + γ)−1h2k∥p∥2Hk(Ω) +

(
1 + η + γ

)
h2k+1∥u∥2Hk+2(Ω)

+ (η−1 + (1 + γ)−1)h2k+1∥p∥2Hk+1(Ω)

)
.

Finally, we apply the triangle inequality, the divergence-free property of u and wh,

and approximation properties (3.4.4) to obtain the error estimate (3.4.9).

Remark 3.4.6. The pressure dependence in velocity error (3.4.9) arises from the vi-

olation of mass conservation in the boundary strip and the penalty treatment of

the boundary condition. The violation of the divergence-free constraint in a bound-

ary strip can be partially mitigated by taking grad-div parameter γ = O(h−1) and

Nitsche parameter η = O(h−1), which seem to be the optimal choice with respect to

the error analysis in the energy norm. This can be contrasted to γ = O(1) for the

Taylor-Hood element.
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4.0 Numerical Experiments

This Chapter consists of three sections. In the first two sections, we perform two

numerical experiments for FEM with boundary correction developed in Chapter 2,

and two numerical experiments using Netgen/NGSolve [48] with ngsxfem add-on [37]

for CutFEM in Chapter 3, respectively. We also compare the numerical results with

the theories developed in the respective chapters; In the third section, we present two

numerical experiments for the stationary Navier-Stokes problem using CutFEM.

4.1 Boundary Correction

4.1.1 Circle

In this numerical experiment, we perform a series of tests of the finite element

method (2.3.1). The domain for these tests is a circle given via a level set function:

Ω = {(x, y) ∈ R2 : ϕ(x, y) < 0}, (4.1.1)

where

ϕ(x, y) =
√

(x− 0.5)2 + (y − 0.5)2 − 0.2.

We use the Scott-Vogelius pair P2 − Pdisc
1 on Clough-Toucher splits for the finite

element spaces.

We set the background polygon to be the unit square S = (0, 1)2, and the back-

ground mesh Sh to be a sequence of type I triangulations of S, i.e., a mesh obtained by
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drawing diagonals of a cartesian mesh. Then we perform the barycenter refinement

to obtain Sct
h .

We obtain the extension direction d by solving an auxiliary 2 × 2 nonlinear

system at each quadrature point of each boundary edge of Tct
h . In particular, for

each quadrature point (x, y) ∈ ∂Ωh, we find (x∗, y∗) ∈ ∂Ω such that

ϕ(x∗, y∗) = 0, (∇ϕ(x∗, y∗))⊥ · ((x, y)− (x∗, y∗)) = 0,

and set d = ((x, y) − (x∗, y∗))/|(x, y) − (x∗, y∗)| and δ(x, y) = |(x, y) − (x∗, y∗)|.

The first equation ensures that (x∗, y∗) is on the boundary ∂Ω, whereas the second

equation states that d is parallel to the outward unit normal of ∂Ω at (x∗, y∗).

For the Nitsche penalty parameter in ah(·, ·), we set the value η = 40 throughout

the experiment.

The experiment consists of two groups of tests, where the difference of the two

groups of tests is the viscosity parameter ν in the bilinear form ah(·, ·). In the first

group, we set ν = 10−1; in the second group, we set ν = 10−5. For each group, we

perform the tests 5 times on a sequence of meshes with the mesh parameter h being

0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

u =

 2(x2 − x+ 0.25 + y2 − y)(2y − 1)

−2(x2 − x+ 0.25 + y2 − y)(2x− 1)

 , p = 10(x2 − y2)2. (4.1.2)

Correspondingly, we have the right-hand function

f =

ν(16− 32y) + 40x(x2 − y2)

ν(32x− 16)− 40y(x2 − y2)

 .
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We state the L2 error results for the velocity ∥u−uh∥L2(Ωh), the L
2 error results

for the pressure ∥p−ph∥L2(Ωh), and the H1-type error results for the velocity ∥∇(u−

uh)∥L2(Ωh) and their respective rate of convergence in Table 1 and Table 2.

Results for ν = 10−1

h ∥u−uh∥L2(Ωh) Rate

0.200 9.244e-03

0.100 2.050e-03 2.173

0.050 3.229e-04 2.667

0.025 3.578e-05 3.174

0.013 3.798e-06 3.236

Results for ν = 10−5

h ∥u−uh∥L2(Ωh) Rate

0.200 1.324e+01

0.100 2.328e-01 5.830

0.050 3.282e-02 2.826

0.025 3.172e-03 3.371

0.013 2.177e-04 3.865

Results for ν = 10−1

h ∥∇(u−uh)∥L2(Ωh) Rate

0.200 1.998e-01

0.100 2.633e-02 2.924

0.050 7.150e-03 1.881

0.025 1.862e-03 1.941

0.013 4.750e-04 1.971

Results for ν = 10−5

h ∥∇(u−uh)∥L2(Ωh) Rate

0.200 1.517e+02

0.100 2.842e+00 5.738

0.050 4.134e-01 2.782

0.025 5.385e-02 2.941

0.013 8.199e-03 2.715

Table 1: L2 error and H1-type error for velocity and their respective rate of conver-

gence with ν = 10−1 and ν = 10−5 on domain (4.1.1) with exact solution (4.1.2).
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Results for ν = 10−1

h ∥p− ph∥L2(Ωh) Rate

0.200 5.115e-02

0.100 1.754e-02 1.544

0.050 4.190e-03 2.065

0.025 1.060e-03 1.983

0.013 2.672e-04 1.988

Results for ν = 10−5

h ∥p− ph∥L2(Ωh) Rate

0.200 2.887e-02

0.100 9.424e-03 1.615

0.050 2.863e-03 1.719

0.025 7.992e-04 1.841

0.013 2.103e-04 1.926

Table 2: L2 error for pressure and rate of convergence with ν = 10−1 and ν = 10−5

on domain (4.1.1) with exact solution (4.1.2).

From Table 1 and Table 2, we see that, for ν = 10−5, the velocity error is larger

than that for ν = 10−1. However, the pressure error is less than that for ν = 10−1.

This is consistent with the theoretic results from the error analysis. In both cases

when ν = 10−1 and ν = 10−5, the pressure error in L2 norm converges with order

2, which is the optimal order convergence rate. When ν = 10−1, we find that the

convergence rate for the velocity error in L2 norm is of order 3, and the velocity error

in H1-type norm is of order 2, which both are the optimal order convergence rates
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with respect to the respective space and norm; However when ν = 10−5, we find that

the convergence rate for the velocity error in L2 norm is of order 4 and the velocity

error in H1-type norm is of order 3. This behavior is consistent with the results

from Theorem 2.5.5. By Theorem 2.5.5, we have that, if the solution is smooth,

then ∥∇(u − uh)∥L2(Ωh) = O(h2 + ν−1h3). Since ν = 10−5, ν−1 is a large number.

Therefore h3 becomes the dominant term, and increases the rate of convergence of

the error estimate by 1.

We plot the errors from Table 1 and Table 2 in Figure 8 to illustrate the conver-

gence rate of the solutions in graph.
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10−210−1
10−8
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10−4

10−2

100

m=4

m=3

h

∥u− uh∥L2(Ωh)

ν = 10−1

ν = 10−5

10−210−1
10−5

10−3

10−1

101

m=3

m=2

h

∥u− uh∥H1(Ωh)

ν = 10−1

ν = 10−5

10−210−1

10−4

10−3
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10−1

m=2

h

∥p− ph∥L2(Ωh)

ν = 10−1

ν = 10−5

Figure 8: Errors for the velocity and pressure on domain (4.1.1) with varying mesh

size.

The data in Table 3 is the divergence of the velocity ∥divuh∥L2(Ωh) for the two

groups of tests with ν = 10−1 and ν = 10−5.
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ν = 10−1 ν = 10−5

h ∥divuh∥L2(Ωh) h ∥divuh∥L2(Ωh)

0.200 6.951e-12 0.200 6.881e-08

0.100 7.949e-14 0.100 4.884e-10

0.050 3.375e-13 0.050 2.551e-10

0.025 1.096e-12 0.025 3.795e-10

0.013 5.176e-12 0.013 2.286e-10

Table 3: Divergence of velocity in L2 norm on the domain (4.1.1).

For ν = 10−1, the divergence of velocity slightly increases as the mesh is refined

due to round-off error and the increase in condition number for the linear system,

but it remains close to 0; when ν = 10−5, the divergence of velocity decreases as the

mesh is refined, and it remains close to 0. This observation is consistent with the

results from Lemma 2.3.1.

4.1.2 Flower-shaped domain

In this numerical experiment, we perform a series of tests of the finite element

method (2.3.1). The domain for these tests is a flower-shaped domain given via a

level set function [36]:

Ω = {(x, y) ∈ R2 : ϕ(x, y) < 0}, (4.1.3)

where

ϕ(x, y) =
√

(x− 0.5)2 + (y − 0.5)2 −
√
0.1− 1

12
sin(6 tan−1(

y − 0.5

x− 0.5
)).
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We use the Scott-Vogelius pair P2 − Pdisc
1 on Clough-Toucher splits for the finite

element spaces.

We set the background polygon to be the unit square S = (0, 1)2, and the back-

ground mesh Sh to be a sequence of type I triangulations of S, i.e., a mesh obtained by

drawing diagonals of a cartesian mesh. Then we perform the barycenter refinement

to obtain Sct
h .

We obtain the extension direction d by solving an auxiliary 2 × 2 nonlinear

system at each quadrature point of each boundary edge of Tct
h . In particular, for

each quadrature point (x, y) ∈ ∂Ωh, we find (x∗, y∗) ∈ ∂Ω such that

ϕ(x∗, y∗) = 0, (∇ϕ(x∗, y∗))⊥ · ((x, y)− (x∗, y∗)) = 0,

and set d = ((x, y) − (x∗, y∗))/|(x, y) − (x∗, y∗)| and δ(x, y) = |(x, y) − (x∗, y∗)|.

The first equation ensures that (x∗, y∗) is on the boundary ∂Ω, whereas the second

equation states that d is parallel to the outward unit normal of ∂Ω at (x∗, y∗).

For the Nitsche penalty parameter in ah(·, ·), we set the value η = 40 throughout

the experiment.

The experiment consists of two groups of tests, where the difference of the two

groups of tests is the viscosity parameter ν in the bilinear form ah(·, ·). In the first

group, we set ν = 10−1; in the second group, we set ν = 10−5. For each group, we

perform the tests 5 times on a sequence of meshes with the mesh parameter h being

0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

u =

 2(x2 − x+ 0.25 + y2 − y)(2y − 1)

−2(x2 − x+ 0.25 + y2 − y)(2x− 1)

 , p = 10(x2 − y2)2. (4.1.4)
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Correspondingly, we have the right-hand function

f =

ν(16− 32y) + 40x(x2 − y2)

ν(32x− 16)− 40y(x2 − y2)

 .

We state the L2 error results for the velocity ∥u−uh∥L2(Ωh), the L
2 error results

for the pressure ∥p−ph∥L2(Ωh), and the H1-type error results for the velocity ∥∇(u−

uh)∥L2(Ωh) and their respective rate of convergence in Table 4 and Table 5.

Results for ν = 10−1

h ∥u−uh∥L2(Ωh) Rate

0.200 2.045e-02

0.100 3.467e-03 2.561

0.050 2.074e-05 4.183

0.025 2.673e-06 3.239

0.013 4.215e-07 2.636

Results for ν = 10−5

h ∥u−uh∥L2(Ωh) Rate

0.200 8.312e+00

0.100 2.335e-01 5.154

0.050 2.954e-03 3.571

0.025 3.086e-04 3.571

0.013 2.078e-05 3.849

Results for ν = 10−1

h ∥∇(u−uh)∥L2(Ωh) Rate

0.200 4.814e-01

0.100 8.760e-02 2.458

0.050 2.019e-03 3.081

0.025 5.512e-04 2.052

0.013 1.393e-04 1.963

Results for ν = 10−5

h ∥∇(u−uh)∥L2(Ωh) Rate

0.200 1.404e+02

0.100 6.294e+00 4.479

0.050 1.163e-01 3.261

0.025 1.174e-02 3.625

0.013 1.047e-03 3.449

Table 4: L2 error and H1-type error for velocity and their respective rate of conver-

gence with ν = 10−1 and ν = 10−5 on domain (4.1.3) with exact solution (4.1.4).
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Results for ν = 10−1

h ∥p− ph∥L2(Ωh) Rate

0.200 2.113e+00

0.100 1.648e-01 3.681

0.050 1.155e-03 4.053

0.025 2.902e-04 2.184

0.013 7.341e-05 1.961

Results for ν = 10−5

h ∥p− ph∥L2(Ωh) Rate

0.200 4.411e-02

0.100 6.201e-03 2.830

0.050 7.179e-04 1.762

0.025 2.189e-04 1.878

0.013 5.592e-05 1.947

Table 5: L2 error for pressure and rate of convergence with ν = 10−1 and ν = 10−5

on domain (4.1.3) with exact solution (4.1.4).

From Table 4 and Table 5, we see that, for ν = 10−5, the velocity error is larger

than that for ν = 10−1. However, the pressure error is less than that for ν = 10−1.

This is consistent with the theoretic results from the error analysis.. In both cases

when ν = 10−1 and ν = 10−5, the pressure error in L2 norm converges with order

2, which is the optimal order convergence rate. When ν = 10−1, we find that the

convergence rate for the velocity error in L2 norm is of order 3, and the velocity error

in H1-type norm is of order 2, which both are the optimal order convergence rates

85



with respect to the respective space and norm; However when ν = 10−5, we find that

the convergence rate for the velocity error in L2 norm is of order 4 and the velocity

error in H1-type norm is of order 3. This behavior is consistent with the results

from Theorem 2.5.5. By Theorem 2.5.5, we have that, if the solution is smooth,

then ∥∇(u − uh)∥L2(Ωh) = O(h2 + ν−1h3). Since ν = 10−5, ν−1 is a large number.

Therefore h3 becomes the dominant term, and increases the rate of convergence of

the error estimate by 1.

We plot the errors from Table 4 and Table 5 in Figure 9 to illustrate the conver-

gence rate of the solutions in graph.
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Figure 9: Errors for the velocity and pressure on domain (4.1.3) with varying mesh

size.

The data in Table 6 is the divergence of the velocity ∥divuh∥L2(Ωh) for the two

groups of tests with ν = 10−1 and ν = 10−5.
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ν = 10−1 ν = 10−5

h ∥divuh∥L2(Ωh) h ∥divuh∥L2(Ωh)

0.200 1.112e-12 0.200 1.11013e-08

0.100 5.049e-13 0.100 5.17554e-09

0.050 3.384e-13 0.050 4.26814e-10

0.025 1.776e-13 0.025 4.83809e-11

0.013 4.032e-12 0.013 1.09424e-12

Table 6: Divergence of velocity in L2 norm on the domain (4.1.3)

For ν = 10−1, the divergence of velocity slightly increases as the mesh is refined

due to round-off error and the increase in condition number for the linear system,

but it remains close to 0; when ν = 10−5, the divergence of velocity decreases as the

mesh is refined, and it remains close to 0. This observation is consistent with the

results from Lemma 2.3.1.

4.2 CutFEM

In this section, we use Netgen/NGSolve [48] with the ngsxfem extension [37] for

the CutFEM numerical experiments. Throughout this section, we use the finite ele-

ment methods (3.2.1) introduced in the third chapter for our numerical experiments,

with one slight modification for the ghost penalty terms stated in [44] as we now

explain.

For any F ∈ Fct,Γ, we define ωF := K1 ∪K2, where F ⊂ ∂K1 ∩ ∂K2. Then, for
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a polynomial v that is defined on ωF , we denote vi to be v restricted to Ki, where

i = 1, 2. Then we canonically extend both v1 and v2 to K2 and K1, respectively.

Finally, we define [v]ωF
(x) = v1(x) − v2(x) for x ∈ ωF . Then we define the two

modified stabilization term:

jh,m(u,v) =
1

h2

∑
F∈Fct,Γ

∫
ωF

[u]ωF
[v]ωF

, (4.2.1)

Jh,m(p, q) =
∑

F∈Fct,Γ

∫
ωF

[p]ωF
[q]ωF

. (4.2.2)

From [44, Lemma 3.1] and [44, Remark 6] we see that both jh,m(·, ·) and Jh,m(·, ·)

have ghost penalty mechanisms, and are bounded above by jh(·, ·) from the bilinear

form ah(·, ·) in (3.2.1) and Jh(·, ·) from the second equation of (3.2.1).

For the convenience of implementation, we use jh,m(·, ·) and Jh,m(·, ·) to replace

jh(·, ·) and Jh(·, ·) in (3.2.1) during the following numerical experiments.

We conduct total of two numerical experiments. For each experiment, we perform

a series of tests of the finite element method (3.2.1). The domain for these tests is a

6-petal flower-shaped domain given via a level set function [36]:

Ω = {(x, y) ∈ R2 : ϕ(x, y) < 0}, (4.2.3)

where

ϕ(x, y) =
√

(x− 0.5)2 + (y − 0.5)2 −
√
0.1− 1

12
sin(6 tan−1(

y − 0.5

x− 0.5
)).

In the first experiment, we use the Scott-Vogelius pair P2 − Pdisc
1 on Clough-

Toucher splits for the finite element spaces; in the second experiment, we use the

Scott-Vogelius pair P3−Pdisc
2 on Clough-Toucher splits for the finite element spaces.
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We set the background polygon to be the unit square S = (0, 1)2, and the back-

ground mesh Sh to be a sequence of Delaunay triangulations. Then we perform the

barycenter refinement to obtain Sct
h .

Each experiment consists of three groups of tests, where the difference of the

three groups of tests is the Nitsche penalty parameter η and the grad-div parameter

γ in the bilinear form ah(·, ·). In the first group, we set η = 100 and γ = 0; in the

second group, we set η = 100 and γ = 10h−1; in the third group, we set η = 10h−1

and γ = 10h−1. For each group, we perform the tests 5 times on a sequence of meshes

with the mesh parameter h being 0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

u =

 (x2 + y2 − 1)(8x2y + x2 + 5y2 − 1)

−4x(x2 + y2 − 1)(3x2 + y2 + y − 1)

 , p = 10((x2 − y2)2 − 1

6
). (4.2.4)

Correspondingly, we have the right-hand function

f =

(−144x2y − 16y3 − 24x2 − 72y2 + 16y + 16) + 40x(x2 − y2)

16x(17x2 + 9y2 + 3y − 7)− 40y(x2 − y2)

 .

4.2.1 Scott-Vogelius pair when k = 2

In Table 7 and Table 8, we have the results for L2 error of velocity ∥u−uh∥L2(Ω),

the H1-type error of velocity ∥∇(u−uh)∥L2(Ω) and L
2 error of pressure ∥p−ph∥L2(Ω)

and their respective rates of convergence for each of the three groups. In each of the

three groups, we find that the convergence rate for the velocity error in L2 norm is

of order 3, and the velocity error in H1-type norm is of order 2, and the pressure

error in L2 norm is of order 2, which are all the optimal order convergence rates with

respect to the respective space and norm.
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We plot the error results from Table 7 and Table 8 in Figure 10 to illustrate the

convergence rates.

We present divergence of the velocity for the three groups of tests in Table 9. We

notice that the divergence of velocity solution on the domain decreases drastically in

the cases where γ = 10h−1 from that in the case where γ = 0. This behavior aligns

with the theoretic results that the violation of the divergence-free constraint in a

boundary strip can be partially mitigated by taking grad-div parameter γ = O(h−1).

Finally, we have the plot of both velocity solution and pressure solution in L2-

norm, where the Nitsche parameter is set to be η = 10h−1 and the grad-div parameter

is set to be γ = 10h−1, on the mesh with mesh parameter h = 0.025 in Figure 11.
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η = 100, γ = 0

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate

0.200 2.372e-03 1.180e-01

0.100 4.533e-04 2.388 3.882e-02 1.604

0.050 5.657e-05 3.002 1.097e-02 1.823

0.025 7.627e-06 2.891 3.045e-03 1.849

0.013 1.018e-06 2.905 8.100e-04 1.910

η = 100, γ = 10h−1

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate

0.200 4.507e-03 1.689e-01

0.100 5.926e-04 2.927 4.662e-02 1.857

0.050 7.036e-05 3.074 1.270e-02 1.876

0.025 8.710e-06 3.014 3.257e-03 1.963

0.013 1.076e-06 3.017 8.392e-04 1.956

η = 10h−1, γ = 10h−1

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate

0.200 4.027e-03 1.575e-01

0.100 5.926e-04 2.765 4.662e-02 1.756

0.050 7.511e-05 2.980 1.308e-02 1.834

0.025 9.998e-06 2.909 3.347e-03 1.966

0.013 1.161e-06 3.106 8.572e-04 1.965

Table 7: L2 and H1-type error for velocity and respective convergence rates with

different Nitsche penalty parameters η and grad-div parameters γ on domain (4.2.3)

with exact solution (4.2.4).
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η = 100, γ = 0

h ∥p− ph∥L2(Ω) Rate

0.200 1.132e-01

0.100 2.343e-02 2.272

0.050 7.250e-03 1.692

0.025 2.208e-03 1.715

0.013 6.176e-04 1.838

η = 100, γ = 10h−1

h ∥p− ph∥L2(Ω) Rate

0.200 2.780e-01

0.100 4.152e-02 2.743

0.050 1.185e-02 1.809

0.025 2.678e-03 2.146

0.013 6.947e-04 1.947

η = 10h−1, γ = 10h−1

h ∥p− ph∥L2(Ω) Rate

0.200 2.129e-01

0.100 4.152e-02 2.358

0.050 1.404e-02 1.564

0.025 3.561e-03 1.979

0.013 1.089e-03 1.709

Table 8: L2 error for pressure and convergence rate with different Nitsche penalty pa-

rameters η and grad-div parameters γ on domain (4.2.3) with exact solution (4.2.4).
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Figure 10: Errors for the velocity and pressure on domain(4.2.3) with varying mesh

sizes.
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∥divuh∥L2(Ω)

h η = 100, γ = 0 η = 100, γ = 10h−1 η = 10h−1, γ = 10h−1

0.200 4.505e-02 5.959e-03 4.346e-03

0.100 9.165e-03 7.992e-04 7.992e-04

0.050 2.502e-03 8.346e-05 1.190e-04

0.025 3.984e-04 8.650e-06 2.124e-05

0.013 6.464e-05 1.088e-06 3.710e-06

Table 9: Divergence of velocity in L2 norm on the domain (4.2.3).

Figure 11: Aboslute values of velocity (left) and pressure (right) solutions on a flower-

shaped domain, when h = 0.025 and η = γ = 10h−1.
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4.2.2 Scott-Vogelius pair when k = 3

In Table 10 and Table 11, we have the results for L2 error of velocity ∥u−uh∥L2(Ω),

the H1-type error of velocity ∥∇(u−uh)∥L2(Ω) and L
2 error of pressure ∥p−ph∥L2(Ω)

and their respective rates of convergence for each of the three groups. In each of the

three groups, we find that the convergence rate for the velocity error in L2 norm is

of order 4, and the velocity error in H1-type norm is of order 3, and the pressure

error in L2 norm is of order 3, which are all the optimal order convergence rates with

respect to the respective space and norm.

We plot the error results from Table 10 and Table 11 in Figure 12 to illustrate

the convergence rates.

We present divergence of the velocity for the three groups of tests in Table 12. We

notice that the divergence of velocity solution on the domain decreases drastically in

the cases where γ = 10h−1 from that in the case where γ = 0. This behavior aligns

with the theoretic results that the violation of the divergence-free constraint in a

boundary strip can be partially mitigated by taking grad-div parameter γ = O(h−1).

Finally, we have the plot of both velocity solution and pressure solution in L2-

norm, where the Nitsche parameter is set to be η = 10h−1 and the grad-div parameter

is set to be γ = 10h−1, on the mesh with mesh parameter h = 0.025 in Figure 13.
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η = 100, γ = 0

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate

0.200 7.504e-03 2.864e-01

0.100 1.081e-05 9.439 5.775e-04 8.954

0.050 5.527e-07 4.290 6.179e-05 3.224

0.025 3.385e-08 4.029 7.093e-06 3.123

0.013 2.181e-09 3.956 9.030e-07 2.974

η = 100, γ = 10h−1

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate

0.200 1.209e-02 3.747e-01

0.100 1.138e-05 10.05 6.151e-04 9.251

0.050 5.763e-07 4.304 6.530e-05 3.236

0.025 3.435e-08 4.068 7.285e-06 3.164

0.013 2.207e-09 3.960 9.155e-07 2.992

η = 10h−1, γ = 10h−1

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate

0.200 1.182e-02 3.306e-01

0.100 1.138e-05 10.02 6.151e-04 9.070

0.050 5.801e-07 4.294 6.650e-05 3.209

0.025 3.474e-08 4.062 7.423e-06 3.163

0.013 2.224e-09 3.965 9.304e-07 2.996

Table 10: L2 and H1-type error for velocity and respective convergence rates with

different Nitsche penalty parameters η and grad-div parameters γ on domain (4.2.3)

with exact solution (4.2.4).
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η = 100, γ = 0

h ∥p− ph∥L2(Ω) Rate

0.200 2.614e-01

0.100 1.013e-03 8.011

0.050 1.313e-04 2.948

0.025 1.719e-05 2.933

0.013 2.336e-06 2.879

η = 100, γ = 10h−1

h ∥p− ph∥L2(Ω) Rate

0.200 6.384e-01

0.100 1.157e-03 9.108

0.050 1.441e-04 3.005

0.025 1.786e-05 3.012

0.013 2.399e-06 2.896

η = 10h−1, γ = 10h−1

h ∥p− ph∥L2(Ω) Rate

0.200 5.873e-01

0.100 1.157e-03 8.988

0.050 1.464e-04 2.982

0.025 1.814e-05 3.013

0.013 2.423e-06 2.904

Table 11: L2 error for pressure and convergence rate with different Nitsche penalty

parameters η and grad-div parameters γ on domain (4.2.3) with exact solution

(4.2.4).
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Figure 12: Errors for the velocity and pressure on domain(4.2.3) with varying mesh

sizes.
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∥divuh∥L2(Ω)

h η = 100, γ = 0 η = 100, γ = 10h−1 η = 10h−1, γ = 10h−1

0.200 2.092e-01 2.021e-02 1.487e-02

0.100 1.966e-04 1.002e-05 1.002e-05

0.050 1.832e-05 5.644e-07 6.999e-07

0.025 1.583e-06 3.494e-08 5.567e-08

0.013 1.372e-07 1.984e-09 4.556e-09

Table 12: Divergence of velocity in L2 norm on the domain (4.2.3).

Figure 13: Aboslute values of velocity (left) and pressure (right) solutions on a flower-

shaped domain, when h = 0.025 and η = γ = 10h−1.
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4.3 CutFEM for the stationary Navier-Stokes Problem

In this section, we use Netgen/NGSolve [48] with ngsxfem add-on [37] to conduct

two numerical tests for the stationary Navier-Stokes equations:

−ν∆u+ (u · ∇)u+∇p = f in Ω, (4.3.1a)

divu = 0 in Ω (4.3.1b)

u = 0 on ∂Ω (4.3.1c)

4.3.1 CutFEM for the stationary Navier-Stokes Problem on a flower-

shaped domain

For this test, the domain is a 6-petal flower-shaped domain given via a level set

function [36]:

Ω = {(x, y) ∈ R2 : ϕ(x, y) < 0}, (4.3.2)

where

ϕ(x, y) =
√

(x− 0.5)2 + (y − 0.5)2 −
√
0.1− 1

12
sin(6 tan−1(

y − 0.5

x− 0.5
)).

We use the finite element methods (3.2.1) introduced in chapter 3 for our numer-

ical experiments with two modifications.

1. For the convenience in implementing this method, we use jh,m(·, ·) and Jh,m(·, ·)

in (4.2.1) and (4.2.2) to replace jh(·, ·) and Jh(·, ·) in (3.2.1).

2. We add the non-linear term (u·∇u,v) and a skew-symmetrize term (1
2
(divu)u,v)

to the bilinear form ah(·, ·) in (3.2.1).
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We set the background polygon to be the unit square S = (0, 1)2, and the back-

ground mesh Sh to be a sequence of Delaunay triangulations of S. Then we perform

the barycenter refinement to obtain Sct
h .

We set the Nitsche parameter η = 10h−1.

The experiment consists of three groups of tests, where the difference of the three

groups of tests is the grad-div parameter γ in the bilinear form ah(·, ·). In the first

group, we set γ = 0; in the second group, we set γ = 100; in the third group, we set

γ = 10h−1.

For each group, we perform the tests 5 times on a sequence of meshes with the

mesh parameter h being 0.200, 0.100, 0.050, 0.025 and 0.013.

The exact velocity solution and exact pressure solution are set to be

u =

 2(x2 − x+ 0.25 + y2 − y)(2y − 1)

−2(x2 − x+ 0.25 + y2 − y)(2x− 1)

 , p = 10(x2 − y2)2. (4.3.3)

Correspondingly, we have the right-hand function

f =

(16− 32y) + 40x(x2 − y2)− 8(−1 + 2x)(1
4
− x+ x2 − y + y2)2

(32x− 16)− 40y(x2 − y2)− 8(−1 + 2y)(1
4
− x+ x2 − y + y2)2

 .

We use the lowest order Scott-Vogelius pair P2 − Pdisc
1 .

In Table 13 and Table 14, we state the results for the L2 error of velocity ∥u −

uh∥L2(Ω), the H
1-type error of velocity ∥∇(u − uh)∥L2(Ω), the L

2 error of pressure

∥p − ph∥L2(Ω), and ∥divuh∥L2(Ω) and their respective rates of convergence. When

γ = 0, we find that the convergence rate for the velocity error in L2 norm is of order

3, and the velocity error in H1-type norm is of order 2, the pressure error in L2 norm

is of order 2, which are are of optimal order with respect to the space and norm. In

the cases γ = 100 and γ = 10h−1, the velocity error in L2 norm and the velocity

102



error in H1-type norm exhibit optimal order convergence rate. However, the rate of

convergence of pressure error ∥p− ph∥L2(Ω) drops to 1.674 when γ = 100; the rate of

convergence of pressure error ∥p− ph∥L2(Ω) drops to 0.411 when γ = 10h−1. On the

other hand, we observe the size of the divergence of velocity decreases significantly

as the grad-div parameter γ increases.

We plot the error results from Table 13 and Table 14 in Figure 14 to illustrate

the convergence rates.

Finally, in Figure 15, we plot the absolute values of velocity solution and pressure

solution, where the Nitsche parameter is set to be η = 10h−1 and the grad-div

parameter is set to be γ = 10h−1, on the mesh with mesh parameter h = 0.05 in

Figure 15.
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γ = 0

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate ∥div (uh)∥L2(Ω) Rate

0.200 6.812e-04 2.460e-02 1.060e-02

0.100 9.643e-05 2.821 6.671e-03 1.883 2.866e-03 1.887

0.050 8.172e-06 3.561 1.491e-03 2.162 4.978e-04 2.525

0.025 8.664e-07 3.238 3.780e-04 1.980 1.072e-04 2.215

0.013 1.089e-07 2.992 9.714e-05 1.960 3.120e-05 1.781

γ = 100

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate ∥div (uh)∥L2(Ω) Rate

0.200 5.733e-04 2.348e-02 6.522e-04

0.100 8.049e-05 2.832 6.351e-03 1.886 1.835e-04 1.830

0.050 7.531e-06 3.418 1.454e-03 2.127 6.483e-05 1.501

0.025 9.106e-07 3.048 3.695e-04 1.976 2.183e-05 1.570

0.013 1.041e-07 3.129 9.352e-05 1.982 7.504e-06 1.541

γ = 10h−1

h ∥u− uh∥L2(Ω) Rate ∥∇(u− uh)∥L2(Ω) Rate ∥div (uh)∥L2(Ω) Rate

0.200 5.720e-04 2.330e-02 9.033e-04

0.100 8.049e-05 2.328 6.351e-03 1.875 1.835e-04 2.299

0.050 8.071e-06 3.318 1.467e-03 2.114 5.950e-05 1.625

0.025 1.061e-06 2.927 3.747e-04 1.969 2.074e-05 1.520

0.013 1.388e-07 2.934 9.659e-05 1.956 7.182e-06 1.530

Table 13: L2 and H1-type error for velocity and divergence of velocity in L2-norm

and respective convergence rates with different grad-div parameters γ = 0, γ = 100,

γ = 10h−1 on domain (4.3.2) with exact solution (4.3.3).
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∥p− ph∥L2(Ω)

h γ = 0 Rate γ = 100 Rate γ = 10h−1 Rate

0.200 5.053e-02 7.720e-02 7.504e-02

0.100 6.889e-03 2.875 6.882e-03 3.488 6.882e-03 3.447

0.050 1.297e-03 2.409 1.904e-03 1.854 2.835e-03 1.279

0.025 2.942e-04 2.140 4.444e-04 2.099 1.124e-03 1.335

0.013 7.527e-05 1.967 1.393e-04 1.674 8.451e-04 0.411

Table 14: L2 error for pressure and convergence rate with different grad-div param-

eters γ = 0, γ = 100, γ = 10h−1 on domain (4.3.2) with exact solution (4.3.3).

105



10−210−1

10−7

10−6

10−5

10−4

10−3

m=3

h

∥u− uh∥L2(Ω)

γ = 0
γ = 100

γ = 10h−1

10−210−1

10−4

10−3

10−2

m=2

h

∥∇(u− uh)∥L2(Ω)

γ = 0
γ = 100

γ = 10h−1

10−210−1

10−5

10−4

10−3

10−2

10−1

m=2

h

∥p− ph∥L2(Ω)

γ = 0
γ = 100

γ = 10h−1

10−210−1

10−5

10−4

10−3

10−2

m=2

h

∥divuh∥L2(Ω)

γ = 0
γ = 100

γ = 10h−1

Figure 14: Errors for the velocity and pressure and the divergence of velocity in

L2-norm on domain(4.3.2) with varying mesh sizes.
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Figure 15: Aboslute values of velocity (left) and pressure (right) solutions on a flower-

shaped domain, when h = 0.05 and η = γ = 10h−1.

4.3.2 Schäfer-Turek benchmark

In this subsection, we conduct the Schäfer-Turek benchmark test [47] for the

stationary Navier–Stokes problem (4.3.1) using the CutFEM scheme (3.2.1) with the

same modification as the previous test:

1. For the convenience in implementing this method, we use jh,m(·, ·) and Jh,m(·, ·)

in (4.2.1) and (4.2.2) to replace jh(·, ·) and Jh(·, ·) in (3.2.1).

2. We add the non-linear term (u·∇u,v) and a skew-symmetrize term (1
2
(divu)u,v)

to the bilinear form ah(·, ·) in (3.2.1).
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Figure 16: Domain of the Schäfer-Turek benchmark test.

The domain of the test Ω is the interior of a rectangle with length 2 and width

0.41 with a circle removed as shown in Figure16. The circle is given by the following

level set: √
(x− 0.2)2 + (y − 0.2)2 − 0.0025 = 0. (4.3.4)

The geometry of the domain represents a 2D channel with a circular obstacle

which is positioned slightly off the center of the channel. The flow comes in from the

left side of the channel and goes out from the right side of the channel. We set the

viscosity of the flow ν = 0.001.

We name parts of the boundary of Ω as follows:

1. Γinlet is the left side of the rectangle;

2. Γwall is the top and bottom sides of the rectangle;

3. Γoutlet is the right side of the rectangle;

4. Γcyl is the circle given by (4.3.4).

We set the background polygon to be the 2×0.41 rectangle S, and the background

mesh Sh to be the Delaunay triangulations of S with h = 0.05. In this test, the cut

elements are the elements that are cut by the circle (4.3.4). The test problem has
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the following Dirichlet conditions:

u =

6y(0.41−y)
0.412

0

 on Γinlet, (4.3.5a)

u = 0 on Γcyl, (4.3.5b)

u = 0 on Γwall. (4.3.5c)

We enforce the boundary conditions (4.3.5a) and (4.3.5c) strongly by including those

conditions into the finite element space, while we enforce the boundary condition

(4.3.5b) weakly though the CutFEM scheme (3.2.1). We set the Nitsche parameter

η = 10h−1 and the grad-div parameter γ = 10h−1. We use the Scott-Vogelius pair

P3−Pdisc
2 . We plot the norm of the velocity approximation of this test in Figure 17.
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Figure 17: Absolute value of velocity solution of Schäfer-Turek benchmark test, with

h = 0.05 and ν = 0.001.
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5.0 Conclusions

In this thesis, we constructed two unfitted finite element methods for the Stokes

problem based on the Scott-Vogelius pair on Clough-Tocher splits and provided nu-

merical experiments using these two schemes.

In Chapter 2, we constructed a uniformly stable and divergence-free method on

an unfitted domain for Stokes problem on 2D domains. Although the method is

not pressure robust, by using a Lagrange multiplier to enforce normal boundary

condition, we reduced the influence of pressure on the velocity error. The theoretical

analysis showed that the method converges with optimal order.

In Chapter 3, we constructed a uniformly stable CutFEM on an unfitted domain

for Stokes problem on both 2D and 3D domains. Although this scheme does not

produce an exact divergence–free velocity approximation, the discrete velocity is

divergence–free outside an O(h) neighborhood of the boundary. We used local grad-

div stablization to mitigate the error caused by the violation of the divergence-free

condition around the boundary. We showed the scheme converges with optimal order

even with a rather heavy penalty for the violation of mass conservation.

In chapter 4, we conducted numerical experiments for both the boundary cor-

rection method proposed in chapter 2 and the CutFEM proposed in chapter 3. The

numerical results were consistent with the theoretical analysis for both methods pro-

vided in the respective chapters. In addition, we extended the CutFEM numerical

experiments to a stationary Navier-Stokes problem on a simply connected domain

and a non-simply connected domain.

Although the discussion in chapter 2 does not go beyond the scope of the 2D

setting, some of the results can be easily extended to 3D. For example, the discrete
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inf-sup condition (LBB) in Lemma 2.4.6 can be extend seamlessly into 3D. However,

the extension of some other results may not be as obvious. For instance, the proof of

the inf-sup condition for the velocity-Lagrange multiplier pair relies heavily on the

geometry of the computational domain, and its extension to the 3D setting requires

a more careful study in the future.

It is also worth mentioning that although for the proposed method in Chapter

3, the finite element space is the Scott-Vogelius pair on Clough-Tocher splits, the

results can be extended to the Scott-Vogelius pair on Powell-Sabin splits in a 2D

setting.
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