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Enhancing the Value Chain:

Three Essays Investigating Financial and Customer Flows

Jing Luo, PhD

University of Pittsburgh, 2022

This dissertation investigates special mechanisms for enhancing the value chain from

both the supplier and customer perspectives. The first essay studies a new technology

implementation to improve supply chain finance and hence reduce product costs. The second

essay examines the costs associated with customers completing a queue before receiving goods

and services. The third essay considers consumers’ utilities in a queuing service system that

they must travel to.

In the first essay of this thesis, we focus on the procurement, operations and receivables

stages of the supply chain, and investigate how Blockchain Technology and deep-tier supply

chain finance can enhance the supply chain value. Specifically, we explore three questions: (1)

How can Blockchain Technology for Supply Chain Finance (BT-SCF) address the deep-tier

suppliers’ financial predicament and reduce their financial costs? (2) Should a brand retailer

(the focal company) and its supply chain implement BT-SCF? If so, what is the impact of

the BT-SCF implementation on the financial performance of each supply chain member? (3)

What are the critical factors that determine the success of the BT-SCF implementation in

a supply chain? Our results show that with a proper discount rate setting for each supply

chain member, BT-SCF implementation is able to improve the profitability of all supply

chain stakeholders and create higher value for consumers.

In the second essay of this thesis, we focus on the customer of the supply chain to study

the impact of the experienced wait and prospective wait in queuing systems on consumers’

utilities. We design an incentivized online experiment to study two research questions: how

do (i) the experience of wait and (ii) the characteristics of the prospective wait influence

people’s completion costs in observable queues? We find that the wait experience induces

subjects with negative affective attitudes towards waiting to exhibit greater completion costs

for the remaining wait, while it increases commitment among subjects with positive attitudes.
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Results also show that, in contrast to the prediction of rational models, the anticipated

queue length and service time of the residual queue affect individuals’ costs additively, not

multiplicatively.

In the final essay of this thesis, we extend the value chain to customers who must travel

to join the queue for services or products. Human-subject experiments are conducted to

study the questions: (1) How do a customer’s utilities before and after the travel differ from

each other? (2) If there exists a difference in utilities before and after the travel, what is the

mechanism that drives the result? (3) Whether the information-sharing levels of a queue

impact an individual’ utility? We find that subjects have a higher valuation of a queuing

service system before than after traveling when queues are fast and long, while in slow and

short queues, there is partial support that people value it more after than before traveling.

Overall, this thesis mainly contributes to the literature at the interface of supply chain

finance, new disruptive technologies (i.e., Blockchain Technology and IoT) in operations

management, behavioral operations, and queuing systems.
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1.0 Introduction

I have always been passionate about real-world business problems, applications, and

challenges. Under the scope of the value chain, my thesis lies in two fields: supply chain

management & finance and behavioral operations management. I focus on providing practi-

cal insights into operations management using analytic modeling, experiments, and empirical

methods. The explosion of new technologies and globalization has led to new ways to create

worth in the value chain (Normann and Ramirez 1993). In this thesis, we focus on the pro-

duction and service stages, where new disruptive technologies are making a dramatic change.

The goal of this thesis is to enhance the value chain for all stakeholders.

Since the financial crisis in 2008, companies have been paying much attention to supply

chain finance to reduce their financial pressure and supply chain risk. However, people

suggest that the real risk originates from deep-tier suppliers, primarily small and medium

enterprises (SMEs), in a supply chain, due to their lower credit rating. Motivated by a

practical problem, my first essay, “Deep-Tier Supply Chain Finance through Blockchain: A

Small and Medium-Sized Enterprises Perspective,” studies how to reduce SMEs’ financial

costs by taking advantage of the focal company’s preferred credit rating. We propose a new

deep-tier supply chain finance framework capitalizing the Blockchain and IoT technologies to

allow the deep-tier SMEs to get an endorsement from the focal company for lower discount

rates. A game-theoretic method is used to model the difference between traditional supply

chain finance (T-SCF) and Blockchain Technology based deep-tier Supply Chain Finance

(BT-SCF). Results show that the new system does not always benefit all members in the

supply chain, particularly the intermediate supplier, who is between the deep-tier supplier

and the focal company. When implementing BT-SCF, the intermediate supplier is not

always able to delay its payment to a deep-tier supplier and thus loses the opportunity to

benefit from the extra cash on hand. We also investigate all supply chain members’ profit

changes between the two systems and propose an appropriate way to make BT-SCF benefit

the entire supply chain. Namely, this research enables the focal company to determine

whether to implement BT-SCF in a supply chain and how this new model could improve
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the value chain to benefit all members involved. This paper contributes to the theory of the

interaction between supply chain finance and new disruptive technologies. In addition, it

provides insights into Blockchain implementation for companies.

The following two essays investigate the value chain stage between a service provider

and its customers. At this stage, when customers receive a service or product from the

provider, we conduct human-subject experiments to understand consumer behavior and

provide managerial implications for business. My second essay, titled “Experienced and

Prospective Wait in Queues: A Behavioral Investigation”, focuses on customers’ completion

costs when they are waiting in a queue. In this paper, we study how a perfectly informed

customer in deterministic, visible queues forms her completion cost from (i) her position

in line, (ii) the number of people that have been served since she joined the line, and (iii)

the service speed. We also investigate how affective attitudes (emotional responses) towards

waiting influence the cost. We conduct an online experiment in Prolific to address our

research questions. In addition, we employ the Becker-DeGroot-Marshak (BDM) mechanism

to elicit individuals’ actual valuations at various positions in a queue. The experiment

shows that the participants’ wait experience has no impact at an aggregate level. However,

at an individual level, we find that participants with a positive attitude toward waiting

are more committed to wait in line after having waited for some time. In contrast, those

with a negative attitude intend more to abandon the queue after waiting. In addition,

our results show that participants focus on queue length and service time to evaluate the

prospective wait. It explains why individuals’ utility does not strictly follow total waiting

time. Our study contributes to: (1) the theory about the impact of wait experience in the

line, considering heterogeneity in attitude towards waiting; and (2) the practical insights on

managing customer satisfaction in a queuing system.

In my last essay, we extend our analysis to a waiting dilemma. Contrary to past queuing

literature, we consider a queue that customers must travel to. In this service system, we study

the impact of travel on individuals’ valuation of a queuing system. Research on this type

of system is rare, but it is critical since service providers are sending more than ever online

queuing information to provide better service to customers. To create value at this stage, we

must not ignore how an individual’s utility is related to the travel. We conduct a pilot study

2



and observe interesting differences in utilities of individuals based on the characteristics of

the queue. With identical waiting time, our study shows that individuals’ utilities of the

queuing system are higher before than after they have traveled in fast and long queues.

Conversely, we find partial support for individuals’ utilities being higher after rather than

before traveling when queues are slow and short. We thus design a new study to investigate

the fundamental mechanism and theory that drives an individual’s change in utility. This

research sheds light on both the theory and the practice for understanding how travel to a

queue affects the value for the customers in the value chain.

Market competition is more fierce than it has ever been. This thesis focuses on the

production and service stages to enhance value to the ecosystem. On the production side,

there always exists risk in new technology implementation. As one of the most popular

and disruptive technologies (Babich and Hilary 2019), Blockchain Technology, has received

plenty of attention. However, companies should carefully examine this technology before

implementation in a supply chain finance setting and use it with the proper discount rate

setting policy for the supply chain members. On the consumer side, we understand how

customers react to experienced wait, prospective wait, and travel to a queue. These findings

help provide better service in queuing service systems, and benefit both consumers and busi-

nesses. Taken together, this thesis offers new ways to create value from both the production

and service stages of a value chain.

3



2.0 Deep-Tier Supply Chain Finance through Blockchain: A Small and

Medium-Sized Enterprises Perspective

Supply chain finance (SCF) is receiving increasingly greater managerial attention as

businesses focus more on working capital management and strive to streamline their cash

flow processes and reduce supply chain risk. However, the more severe financial risk to the

supply chain (SC) often lies at deep-tier suppliers. Traditional supply chain finance cannot

meaningfully help the deep-tier small and medium enterprises (SMEs), which often have

difficulty receiving timely payments due to unfavorable terms stipulated by larger, more

powerful downstream firms. SMEs need immediate and sufficient liquidity to run smoothly.

The quicker the funds can be made available to the deep-tier SC members, the healthier

and more financially viable the SC would be. However, current financial ledgers and ERP

systems do not allow financial institutions, e.g., banks, to see information, inventory, and

money flows. Without access to the relevant information, financial providers cannot link the

transactions between the focal company and deep-tier suppliers. Fortunately, Blockchain

Technology (BT) can help eliminate such blind spots to connect the entire SC by providing

SC visibility and transparency, which are critical to building a trustworthy deep-tier SCF

system. Motivated by the decisions facing a sporting goods retailer, we propose a Blockchain

Technology based deep-tier SCF (BT-SCF) platform and develop analytic models to better

serve the 1st tier and the deep-tier SMEs’ needs. Through examining the impact of BT-

SCF on each SC member’s performance, we find that BT-SCF is not always beneficial to

SC members and pinpoint when BT-SCF could benefit them and maximize the SC poten-

tial. Our findings indicate that companies should carefully consider invoice payment terms,

early payment discount rates, deep-tier suppliers’ previous financial cost rates, and the price

elasticity of demand when contemplating BT-SCF implementation.
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2.1 Introduction

Since the 2008 financial crisis, supply chain finance (SCF) has attracted much attention

and is touted as a better way to finance a supply chain (SC). Conventionally, SCF focuses on

the transactions between a focal company and its immediate suppliers (1st tier) to alleviate

financial pressure and risk. However, Krishnan (2016) indicates that the real risk to the SC

may not lie at the 1st tier supplier but rather at the 2nd or deeper-tier suppliers. Deep-tier

SCF leverages business relations to unlock access to cheaper finance for all SC members, not

just 1st tier suppliers. Namely, it affords the 2nd, 3rd, 4th, and even further upstream SC

members, which are often small to mid-size enterprises (SMEs), the opportunity to secure

funds expeditiously as is currently only available to 1st tier suppliers. Deep-tier finance

enabled by Blockchain Technology has great potential to reduce the risk under disruptions

in the SC (Wollenhaupt 2021). DBS bank Ltd in Singapore can price its financial product

at lower risk and thus make it more affordable to SMEs. In general, deep-tier SCF allows

the upstream SMEs to have more short-term cash on hand to meet their financial obliga-

tions, lower interest costs, and quicker payments, enhancing the SC’s financial health and

operational efficiency. In this research, we propose a Blockchain Technology based deep-tier

SCF (BT-SCF) model, which enables SMEs to leverage the SC leader’s strength. We then

use the traditional SCF model as a benchmark to identify the benefit of the BT-SCF and

offer strategies and managerial insights for improving multi-tier SCs.

This research is motivated by the situations encountered by a sport goods retailer. The

retailer, which we name DSA for the sake of confidentiality, has more than 1600 stores in

57 nations. With 87,000 employees from 80 countries, DSA focuses on designing, procuring,

distributing, and retailing sports goods and accessories. It offers more than 20 brands and

private labels for more than 70 sports and registers 40 plus patents annually. Cognizant of

the market and product price elasticity, DSA has been working closely with its suppliers

and striving for “Everyday Low Price” to attract more customers. DSA dispatches its

production managers to suppliers for quality assurance and process improvement to lower

costs and boost sales. It aims to limit the markup rate at 5% and 15% in the production

and retailing stages, respectively. Equipped with a global procurement team and substantial
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negotiation clout over suppliers, DSA judiciously controls its payment terms (e.g., invoice

due date). Specifically, to improve liquidity and financial performance, DSA often sets its

payment terms longer than its days in inventory (i.e., the time needed to turn inventory

into sales). When facing a powerful retailer (e.g., DSA) and intense competition, many

suppliers are compelled to accept the cost and payment terms dictated by the retailer. The

manufacturers who supply DSA often turn to SCF to secure early payments from financial

institutions at a discounted rate to meet their cash flow needs. Due to profit and liquidity

concerns, these manufacturers predictably pass such costs to deeper-tier suppliers (often

SMEs) by demanding harsher payment terms, which trigger additional financial pressure for

the deep-tier suppliers. For example, HYQ, a DSA manufacturer that produces team-sports

balls (e.g., soccer balls, basketball balls), would request early payment from the bank through

SCF with DSA. Note that early payment is the cash that the bank pays the requester (e.g.,

HYQ). This amount paid before the payment due date is lower than the invoice amount

due to the early payment discount (a.k.a. cash discount or prompt payment discount). To

improve its cash flow position, HYQ would also lengthen payment terms with its vendors and

suppliers. Thus, to improve its cash flow, HYQ would negotiate a much longer payment term

with (say, its yarn supplier) FSM. However, with such longer payment terms, FSM would

suffer from cash shortages. FSM must resort to a high-interest loan from an outside lender

to support its operations, as its business volume and credit rating are low, and banks usually

would not grant support. To build a more robust supply chain, DSA deemed it necessary to

integrate the deep-tier suppliers (e.g., FSM) into its SCF system, leading to the reduction

of financial costs and retail prices because the financial cost of suppliers is reflected in their

product price eventually (Amberg et al. 2020). DSA seeks to treat the SC members’ financial

processes at the holistic level and aims to break down the silo mentality that only focuses

on its own process. Namely, DSA wants to examine the supply chain’s procure-to-pay cycle,

working capital, and order-to-cash cycle processes. However, DSA does not have a direct

partnership with the deep-tier suppliers; most importantly, like other financial ledgers and

enterprise ERP systems (Gaur and Gaiha 2020), it lacks SC visibility and cannot see all the

relevant information (e.g., inventory and financial flows) in the SC.

Current ERP systems cannot help DSA and other similar companies with their need
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for a new system to collaborate with the deep-tier suppliers. Fortunately, the emerging

Blockchain Technology could potentially solve this problem by building a transaction sharing

and inventory tracking platform to connect the blind parties (Gaur and Gaiha 2020) and

provide visibility in the SC. Blockchain Technology is known for its applications in digital

currencies and offers potential for crowdfunding, information tracking, and online games

(Nakamoto 2008). It delivers a decentralized, transparent, and tamper-resistant system due

to its immutable and translucent features. All these features, especially its traceability,

are essential for SC efficiency and credibility (Hastig and Sodhi 2020) and can facilitate

interaction among SC members. To complement the storage and sharing of transaction

information using Blockchain Technology, we employ Internet of Things (IoT) devices for

automatic information collection since SMEs in developing markets lack reliable methods to

record the logistic and inventory flows. By employing IoT, manual mistakes can be avoided,

and the transactions can be recorded on the Blockchain system in real-time. Financial

institutions can thus access pertinent information of the SMEs with more confidence and

trust. Subsequently, SMEs can take advantage of the focal company’s financial strength and

credit rating to increase the bank’s willingness to finance their accounts receivable at a lower

interest rate. Note that focal firms like DSA usually have a higher credit rating since they

have sufficient financial transactions, better repayment history, a lower potential of default

on the debt obligations, and a higher likelihood of making payments on time. Many financial

institutions (e.g., Previs and Hitachi Capital) have started implementing deep-tier SCF due

to the increasing need for deeper-tier SMEs. Yahsi (2017) found that besides banks (e.g.,

Deutsche Bank, C2FO, Orbian, CRXmarkets, Taulia, Ebury, Basware), FinTech firms such

as Skuchain, Gatechain, and Hijro have also joined the competition and spread the capital

benefit from the focal company (e.g., DSA) to deep-tier SC members through Blockchain

Technology.

DSA and many similar firms are eager to understand the new system, especially in a

SCF application. In this research, we focus on the financial issues most relevant to deep-

tier suppliers, as they encounter the most difficulties in the SC. We develop two models:

Traditional Supply Chain Finance (T-SCF) and Blockchain Technology for Supply Chain

Finance (BT-SCF). The main questions addressed in this research are:
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1. How would BT-SCF address the deep-tier suppliers’ (e.g., FSM) financial predicament

and reduce their financial costs?

2. Should brand retailers (e.g., DSA) and their supply chains implement BT-SCF? If so,

what is the impact of the BT-SCF implementation on the financial performance of each

SC member?

3. What are the critical factors that determine the success of the BT-SCF implementation

in a SC?

We propose an analytic model to predict each SC member’s performance if BT-SCF is

implemented. Firms like DSA often encounter difficulties in understanding whether their

supply chain needs Blockchain Technology. Is it a must or a maybe to have BT-SCF? We

find that BT-SCF does not always benefit SC members, and they can experience increased

profit or loss under certain conditions. We pinpoint when and how BT-SCF could benefit all

SC members, as well as increase their profits relative to the T-SCF case. Finally, we discuss

the impact of expanding the BT-SCF to many deeper-tier SC members on SC performance.

The remainder of the paper is organized as follows. In Section 2.2, we review the related

literature and position our research. Section 3 outlines the logic flow of BT-SCF and contrasts

it with the timeline of T-SCF activities. In Section 4, we discuss the model setup and

assumptions. Sections 5 and 6 examine the performance of SC members in T-SCF and in

BT-SCF, respectively. In Section 7, we compare the profit differences between T-SCF and

BT-SCF and discuss extensions to deeper tier suppliers. Section 8 presents the results of

a numerical study and develops further insights. Finally, conclusions and future research

directions are given in Section 9. All proofs are given in the Appendix.

2.2 Literature Review

Our research is related to three streams of literature: Blockchain Technology, smart

contract, and supply chain finance. We contribute to the literature by proposing a Blockchain

Technology based deep-tier supply chain finance model using a smart contract design.
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2.2.1 Blockchain Technology

Blockchain Technology is a promising recent innovation (Babich and Hilary 2019). Any

member on the platform can submit a transaction to the system and then broadcast it to

the entire network such that all members see the transaction. Blockchain Technology allows

all the untrusted members to reach a consensus under the same platform without any inter-

mediary (Swan 2015, Morabito 2017). Various industries, especially financial institutions,

have explored Blockchain Technology to build decentralized data storage systems (Kelly

and Williams 2016). There are two types of Blockchain: permissioned and permissionless

(Yaga et al. 2018). In permissionless Blockchain (a.k.a public Blockchain), all transactions

are transparent, which may not be acceptable in all situations, as firms want to guard the

confidentiality of their data and are unwilling to share private business information (Ma

et al. 2019, Krishnan 2016). Due to privacy concerns, we propose using a permissioned

Blockchain, which controls access and limits certain activities to specific members. More-

over, before joining a permissioned Blockchain platform, applicants need the approval of all

platform members, including the external financiers (i.e., banks).

Financial institutions offering SCF services often employ the Know Your Customer

(KYC) protocol, a set of standards in the financial industry, to verify customers and as-

sess their risks (Jayachandran 2017). Weinberg (2019) pointed out that KYC is costly and

time-consuming in the financing process. With the permissioned Blockchain platform, KYC

approvals of SC members can be done more efficiently. In addition, Blockchain Technol-

ogy can also increase information quality, lower transaction costs, and build a decentralized,

tamper-proof, and efficient platform. Hackius and Petersen (2017) highlight that Blockchain-

driven SCs can reduce paperwork, detect counterfeits, facilitate tracking and reduce fraud,

advance safety and trust with the IoT devices. Tian (2016) confirms the value of transparency

and traceability by showing an agri-food SC with Blockchain and RFID technologies. Chen

et al. (2020) depict a Blockchain-driven financing system for auto retail business and show

its promise in providing financing options for cash-strapped deep-tier suppliers.

Chod (2016) discusses the value of Blockchain transparency by comparing inventory sig-

nals with cash signals in a loan request. Dong et al. (2021) study how Blockchain Technology
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adoption impacts an agent’s operational and financial decisions in a manufacturer-centric

SCF facing two-tier suppliers with bankruptcy risk. In contrast to their study, we focus on

the holistic view of a leading retailer and investigate how addressing the deep-tier supplier’s

financing concerns can save costs and improve SC competitiveness (i.e., lower retail price,

higher sales volume, and profit) by taking advantage of the visibility and transparency pro-

vided by Blockchain Technology. Although few studies have shed light on Blockchain-based

SCF, we believe tapping Blockchain Technology’s potential can accurately and instantly

validate transactions to help deep-tier suppliers boost credibility and lower financing costs.

Such savings can then pass on to manufacturers and retailers and subsequently enhance the

financial efficiency of the entire SC.

2.2.2 Smart Contracts

Smart contracts refers to a digitalized mechanism that triggers execution automatically

when predetermined conditions are met. The concept of a smart contract was first intro-

duced by Szabo (1997). However, smart contracts are not widely accepted due to a lack

of trustworthy technology to execute the contract reliably and confidentially, and control

physical assets to enforce agreements. Blockchain Technology enables smart contracts as

computer-coded algorithms that run transactions automatically when the requisite condi-

tions are met in different designed scenarios. Blockchain Technology provides a distributed

trustworthy cloud data storage system, while smart contracts offer a distributed trustworthy

judgment. For example, to build a decentralized market, OpenBazaar deploys its peer-to-

peer application and executes business trade under an automatic and digitalized contract

without intermediaries, which means no admission fees for the seller and buyer, and thus

reduces the general cost. Smart contracting is more accurate, faster, trustful, and cost-

saving when compared with traditional contracting (Naughter 2017). Rosic (2016) indicated

that smart contract platforms (e.g., Ethereum) could apply to any services and make SCs

transparent and act faster. Thus, the BT-SCF model proposed in this research assumes

that Blockchain Technology will exploit smart contract capabilities to speed up transactions

among SC members and execute through easy coding.
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2.2.3 Deep-tier Supply Chain Finance

Deep-tier SCF is an extension of conventional SCF and requires closer collaboration

among SC members. Although it can tap SC members’ relationships to benefit more part-

ners, it is not widely accepted, as the technology and mechanism involved are not well un-

derstood and designed. Like SCF, deep-tier SCF engages in short-term financing of working

capital to lower costs and improve efficiency for upstream SC members.

Current research on SCF provides valuable insights for deep-tier SCF. Traditional SCF

focuses on integrating financial flow in a two-echelon SC and maximizing profits by im-

proving financial support, credit rating, discount rate. Although SCF has been accepted

and implemented for years, Strom (2015), Prosser (2019) and Futures (2019) find that SCF

mainly benefits large firms and makes operating SME businesses even harder. Moreover,

Miller and Wongsaroj (2017) caution that an original equipment manufacturer as the focal

company should not just dwell on its own profit, as its SME suppliers will eventually pass

the negative impact of financial pressure, like a domino effect, to the entire SC. Dada and Hu

(2008) proposed a non-linear schedule to maximize profit by deciding on a high loan rate. To

minimize long-term costs, Vliet et al. (2015) optimize the financing rate and payment term

for reverse factoring by combining the inventory level and financial constraints. Kouvelis and

Zhao (2017) investigate the impact of various credit ratings of retailers and suppliers and the

conditions when the internal or external financier should be chosen to finance the SC. Yang

and Birge (2018) study the risk-sharing of trade credit by integrating operations decisions

and financial constraints with multiple financing channels. Tong et al. (2019) discuss the

importance of payment timing in multi-echelon SC and compared their findings between

centralized and decentralized SCs. Overall, deep-tier SCF is an under-studied field desiring

more attention.

2.2.4 The Uniqueness of Our Research

Our research makes use of the unique features of Blockchain Technology and smart

contracts to offer a platform that integrates inventory, information, and financial information

for SC members in need of financial backing. To enhance SC competitiveness, we investigate
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Table 2.1: The Literature vs. Our Work

deep-tier financing to alleviate funding pressure at tier-1 and tier-2 suppliers (e.g., HYQ and

FSM); determine the optimal order quantity for the retailer (e.g., DSA, the focal company

in our study); and identify the conditions under which each SC member will benefit from a

BT-SCF implementation.

By exploiting the focal company’s high credit rating, current SCF literature examines

the financial flow within SC and offers strategies for SC members and financiers. Research

on Blockchain-based SCF is still in the early stages and mainly centers on conceptual design

and software implementation. There is a dearth of studies on deep-tier SCF, particularly on

the effect of cash-strapped deep-tier SMEs on SC competitiveness. Our research integrates

Blockchain Technology, smart contract, and supply chain finance concepts with the aim of

maximizing the potential of deep-tier SCF by offering the best operating settings.

Table 2.1 contrasts our research with the extant studies and shows the contribution of

our work to the literature. We consider a three-echelon supply chain (a dominant retailer,

1st tier, and 2nd tier suppliers) and propose a BT-SCF platform within the smart contract

framework to incorporate an outside financier (e.g., bank). The analytical model helps

quantify how BT-SCF benefits SC members and improves SC competitiveness.
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2.3 Financial Flow of the Blockchain-Based Supply Chain Finance

The reasons why SMEs have limited access to external finance relative to larger busi-

nesses are twofold (Lynn 2020). First, SMEs often lack accurate and complete records, e.g.,

business volume, credit information, and operating history. The second reason is that the

time to receive the loan approval is too long to help the SMEs meaningfully. Fortunately,

BT-SCF can resolve these problems, as under which deep-tier suppliers’ business transac-

tion information would be transparent and the approval procedure can be executed instantly.

Thus, the reasons that SMEs have limited access to capital are primarily due to the unavail-

ability and unreliability of the information, less owing to the production or operations issues.

SC members having better information about the deep-tier SMEs’ operations should vouch

for their authenticity and endorse them for early bank payment to reduce SMEs’ financial

burdens.

Blockchain Technology affords deep-tier SCF with visibility and transparency between

the focal company and the deep-tier suppliers. Combining information-, material- and

financial- flow allows BT-SCF to exploit the SC leader’s high credit rating to secure low-cost

capital to benefit all SC members. Namely, BT-SCF helps the financier to extend SCF to

deep-tier suppliers by taking advantage of the focal company’s high credit rating instead. A

more dependable (trustable) system enhances confidence and motivates cooperation, subse-

quently improves SC efficiency and competitive edges.

Figure 2.1 presents a BT-SCF framework for a 3-echelon SC using our motivating exam-

ple, DSA, as a backdrop. In this framework, all information exchange is through the BT-SCF

platform, and the transaction information of production, materials, and financial flows are

visible to all SC members and the financier. IoT collects real-time information on inventory

quality and compliance, which is recorded automatically on the Blockchain platform to en-

able fast process execution using smart contracts, prevent data tampering and avoid human

errors (Chen et al. 2020). Thus, by integrating Blockchain Technology with the information

recorded by IoT and following the rules stipulated beforehand to trigger actions, a fast and

accurate new platform can be implemented to help financiers provide support for deep-tier

suppliers.
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Before the retailer places the order, the financier (e.g., bank) and the SC members

need to agree on the terms (e.g., payment terms, early payment discount rate, lead time)

to implement a smart contract in BT-SCF. There are six main activities involved in the

BT-SCF system (see Figure 2.1). They are detailed below:

I The retailer (e.g., DSA) first places the purchase order on the BT-SCF platform (step 1a),

which then automatically passes the order information to the tier-1 supplier (henceforth,

manufacturer), like HYQ (step 1b) and the tier-2 supplier (henceforth, supplier), like

FSM (step 1c).

II The supplier starts the production and then ships the output to the manufacturer (2a)

and concurrently sends the invoice and early payment request to the platform (2b). At

the same time, IoT devices track the delivery and share all the shipping information over

the platform (the dashed line above 2a).

III When the supplier’s output arrives at the manufacturer’s warehouse, the platform re-

ceives the IoT signal, acknowledging the acceptance/rejection of the inventory (3a). If

the delivery is accepted and invoice approved by the manufacturer, the platform sends

the bank an early payment request to pay the supplier (3b). The bank evaluates the

early payment request and informs the platform (3c). Subsequently, the bank sends the

payment to the supplier (3d), with an early payment rate calculated automatically under

the smart contract terms.

IV Likewise, the manufacturer follows the same procedure as the supplier by shipping the

final product to the retailer (4a) and sending the invoice and payment request to the

platform (4b).

V When the order is accepted and invoice approved by the retailer, the platform is informed

(5a). The platform requests the bank to make the early payment (5b). The bank informs

the platform (5c) and pays the manufacturer if the request is approved (5d).

VI Finally, after the product sales are completed (or on the pre-specified due date), the

retailer informs the platform (6a) and repays the bank through the platform for the

amount of early payment the bank has made to the supplier and the manufacturer earlier
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Figure 2.1: BT-SCF Framework

(6b). Note that all transactions are carried out instantly as the smart contract enables

fast execution whenever the pre-specified conditions are met.

We now compare the financial flows for BT-SCF and T-SCF. In our case, DSA is the

retailer and the focal company with a high credit score; other SC members (i.e., HYQ and

FSM) are not qualified for bank financing. In T-SCF, the manufacturer receives early pay-

ment under SCF with the retailer and the bank. However, the supplier cannot receive an

early payment because the bank does not have visibility on the truthfulness of the information

between the supplier and the retailer, and the manufacturer’s credit rating is low. However,

in the BT-SCF platform, all the transactions are visible and transparent. Blockchain Tech-

nology makes the information flow more reliable, traceable, immutable, and accessible to

financial institutions.
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2.4 Model Setup

To help the deep-tier SMEs in the SC, we study a 3-echelon SC as described in the DSA

motivated case. We focus on SME suppliers as they make up the greater part of businesses

globally and are critical players to job growth and economic development in most countries

(Luo and Shang 2013). Currently, access to finance is a significant obstacle to SMEs’ growth,

especially in developing and emerging markets (Wang 2016). Blockchain Technology afford

SMEs (the deep-tier suppliers) an opportunity to access a financier and unlock low-cost

capitals to build a more sustainable and competitive SC. In this closely collaborative BT-

SCF platform, the financier may be external (e.g., banks) or internal (e.g., other suppliers

or retailers). In this research, we focus on an external financier and examine how SMEs

could benefit from deep-tier supply chain finance. Banks often finance firms with high credit

ratings at a low interest rate while funding low-credit firms at very high interest rates or

giving no access to funds. Besides understanding the BT-SCF implementation issues, we

also identify the success factors and how they influence members’ profits. In the following,

we discuss the sequence of SC events and the assumptions.

2.4.1 The Sequence of Events

Figures 2.2 and 2.3 show the timeline in chronological order of the events in the 3-echelon

SC, including the lead time and payment term. The two timelines for T-SCF and BT-SCF

respectively are similar, except for the differences discussed below.

1) At t0, the process starts with the purchase order placed by the retailer (e.g., DSA). Upon

receiving the order, the manufacturer (e.g., HYQ) submits the request to the supplier

(e.g., FSM), who immediately starts production.

2) At t1, the supplier completes and delivers her output to the manufacturer. The manufac-

turer’s lead time is LM = (t1 − t0). Under BT-SCF, the supplier receives early payment

from the bank at t1 (see Figures 2.3). But under T-SCF, the supplier must wait until t4

to receive the payment from the manufacturer (see Figures 2.2).
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3) At t2, the manufacturer completes and delivers his output to the retailer. The retailer’s

lead time is LR = (t2 − t0). At this time, the retailer can start selling the products,

and the manufacturer is able to receive the early payment from the bank. The early

payment amount for the manufacturer from T-SCF is often higher than from BT-SCF

(to be explained in §6.2).

4) i Under T-SCF, at t3 the retailer completes the sales and pays the bank for the early

payment amount requested by the manufacturer. The retailer also pays the manu-

facturer the amount not paid early by the bank.

ii Under BT-SCF, at t3 the retailer completes the sales and pays the bank the full

amount, which equals the total amount owed to the supplier and the manufacturer.

5) Under T-SCF, at t4 the manufacturer pays the supplier.

Note that the payment term TM(= t3− t2) represents the waiting time between when the

manufacturer’s delivery gets accepted and when he receives the payment from the retailer

(e.g., HYQ’s payment term is 72 days after DSA accepts the delivery). The supplier’s

payment term is TS(= t4 − t1) in T-SCF (e.g., FSM’s TS is 120 days which is the time

between delivery to HYQ and receiving payment).

BT-SCF allows the supplier’s working capital to be unlocked much earlier at t1 instead

of t4 in T-SCF. However, this change incurs some loss to the manufacturer since his cash on

hand under BT-SCF may be smaller. Relative to T-SCF, the manufacturer in BT-SCF is

deprived of the chance to hold the cash (i.e., the amount to pay the supplier) from time t2

to t4. This brings out the question: how will the BT-SCF protect or enhance the profit of

each SC member, especially the mid-tier SC member (e.g., manufacturer)?

2.4.2 Assumptions and Notations

In this research, the retailer (it), DSA, is the one with a high credit rating, while the

manufacturer (he), HYQ, and the supplier (she), FSM, are financially strapped. The retailer

needs to decide on the order quantities to maximize its profit. The manufacturer must choose

an early payment amount to maximize his profit in T-SCF. However, in BT-SCF, he can only

receive his own portion from the bank (i.e., the sales made to the retailer minus the amount
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Figure 2.2: Chronological Sequence of Events for T-SCF

Figure 2.3: Chronological Sequence of Events for BT-SCF
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he owes the supplier), as the supplier would deal with the bank directly. Namely, in T-SCF,

the supplier has to wait for the manufacturer to pay her after he receives payment from the

retailer. As she has no credit and no access to the bank, she would have to make a high-

interest loan from other sources to maintain cash flow in her business. To avoid the trivial

cases and focus on the advantage of Blockchain transparency and visibility, we assume that

all SC members are risk-neutral, the order can be fulfilled as scheduled, and all SC members

must and will resolve any production and quality issues. For ease of illustration, we assume

there is no salvage value for the unsold final products.

Table 2.2 summarizes our notation. Assume customer demand D follows a stochastic

distribution and is price sensitive. Given price p, the demand follows a probability density

function (PDF), fp(·); and cumulative density function (CDF), Fp(·), with a complementary

CDF, F̄p(·) = 1 − Fp(·). Like the literature, we assume the demand has an increasing

generalized failure rate (IGFR) (Banciu and Mirchandani 2013). Thus, the corresponding

demand is F̄p(·). Similarly, for the price pB in BT-SCF, the demand distribution, DB, can

be denoted as F̄pB(·). We assume the product has an increasing price elasticity (Chen et al.

2009), η, i.e., the % change in demand quantity is higher than the % decrease in price, and

the retailer has a good knowledge of the product price elasticity.

2.5 Traditional Supply Chain Finance (T-SCF)

We model T-SCF in this section to serve as the benchmark for our research. In T-SCF,

the supplier is unable to obtain SCF and must borrow from an alternate, more expensive

source, while the manufacturer can receive early payment from the bank. The SC members’

activities in T-SCF are modeled as follows.

2.5.1 Supplier in T-SCF

Without access to the bank’s capital, the supplier in T-SCF has to finance her production

and operations at a high-interest loan rate before receiving the payment from the manufac-
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Table 2.2: Notation Summary

Parameters

D Stochastic demand in T-SCF

DB Stochastic demand in BT-SCF

Li Lead time of stage i. The time needed for stage i, i = M,R

(where denotes the manufacturer and R denotes the retailer) to

receive an order after it is placed

Ti Payment terms for stage i, i = S,M (where S denotes the supplier

and M denotes the manufacturer). This is the time needed for

stage i to receive the payment after stage i delivers the order

ci Variable cost per unit (including production, inventory,

delivery, etc.) of stage i, i = S,M

βi Stage i′s pre-specified markup rate, i = S,M,R

αM Manufacturer’s ROI (return on investment) per unit time

rS Loan rate per unit time for the supplier in T-SCF

η Price elasticity of demand for the final product

Intermediate Variables

wi Wholesale price of stage i in T-SCF, i = S, M

wB
i Wholesale price of stage i in BT-SCF, i = S, M

p Retail price to final customers in T-SCF

pB Retail price to final customers in BT-SCF

BB
i Early payment amount requested by stage i from the bank ,

in BT-SCF i = S, M

θM Minimum sales quantity necessary for the retailer to fully

repay the bank for the manufacturer’s early payment in T-SCF

θBM Minimum sales quantity necessary for the retailer to fully

repay the bank for the manufacturer’s early payment in BT-SCF

θB Minimum sales quantity necessary for the retailer to fully

repay the bank for all early payment in BT-SCF
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Table 2.2: Notation Summary (continued)

Intermediate Variables

qB
i

Minimum order quantity that ensures stage i has the same profit

in BT-SCF as in T-SCF, i = S,M,R

Decision Variables

BM Early payment amount requested by the manufacturer in T-SCF

rM Manufacturer’s early payment discount rate per unit time

charged by the bank in T-SCF

q Retailer’s order quantity determined by the retailer in T-SCF

rBi Stage i′s early payment discount rate per unit time charged by

the bank in BT-SCF, i = S, M

qB Retailer order quantity determined by the retailer in BT-SCF

turer. Eq. 2.1 below shows the supplier’s profit function, where cS represents supplier’s

variable cost, while rS denotes the supplier’s loan rate per unit of time from an external

source. Her profit and wholesale price, ws, values are

πS = −cSq + (1− rSTS)wSq (2.1)

wS = cS
(1 + βS)

(1− rSTS)
(2.2)

The wholesale price comprises the product costs (e.g., fixed cost, variable cost, and

markup for profit). Amberg et al. (2020) empirically show that a firm’s financial conditions

(e.g., higher SC finance cost) significantly impact its product price. We, therefore, assume

that the financial cost impacts the supplier’s product price and integrates her loan cost into

the wholesale price. The supplier’s effective loan rate is rSTS. From Eq. 2.2, we can see that

rSTS positively correlates to the supplier’s wholesale price (wS). The higher the rSTS, the

higher the supplier’s wholesale price (wS). As βS > 0 and rSTS < 1, πS and ws in Eqs. 2.1
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and 2.2 are nonnegative.

2.5.2 Manufacturer in T-SCF

With the retailer’s approval, the manufacturer can take advantage of the focal company’s

(retailer’s) high credit rating to leverage with the bank. Given that the payment terms TM

and TS are exogenously determined, Eq. 2.3 denotes the manufacturer’s profit in T-SCF.

Since he can delay the payment to the supplier until t4 but must pay his operating expenses

at t2, the manufacturer can decide on the amount, BM , to be paid early by the bank; this

amount must be at least (wM−wS)q, and cannot exceed the invoice amount, wMq. As shown

in Figure 2a, the manufacturer gets the payment from the retailer at t3 and pays the supplier

at t4. Like DSA’s supply chain, the manufacturer (HYQ) receives retailer’s payments, and

the deep-tier supplier (FSM) typically lacks the negotiation power and has to accept the

manufacturer’s terms.

The manufacturer’s profit function is given in Eq. 2.3. The first term is the early payment

amount made by the bank, with the early payment discount rate per unit time rM . The

second term is the remaining payment received from the retailer. The following two terms

represent the cost of production (cMq) and payment to the supplier (wSq). Finally, based on

the manufacturer’s ROI per unit time (αM), the next term indicates the earning from the

early payment amount beyond his share (i.e., belonging to the supplier) and adjusted for

the early payment discount rate during TM . The last term shows the earning of the delayed

payment to the supplier. Eq. 2.4 shows the manufacturer’s wholesale price to the retailer.

πM = (1− rMTM)BM + (wMq −BM)− cMq − wSq+

αMTM(1− rMTM)(BM − (wM − wS)q) + αM(TS − TM − LR + LM)wSq,

where BM ∈ [(wM − wS)q, wMq] (2.3)

wM = (cM + wS)(1 + βM) (2.4)
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In T-SCF, the manufacturer gets early paid by the bank in SCF, while the supplier does

not. The bank sets the early payment discount rate per unit time on the manufacturer’s

receivables at rM based on the expected payoff, which is based on the uncertainty of the

sale from the retailer. Eq. 2.5 shows the rules that the bank employs to decide the early

payment discount rate in T-SCF.

(1− rMTM)BM = p

∫ θM

0

xdFp(x) + pθM F̄p(θM) (2.5)

In the above equation, θM = BM

p
, θM ≥ 0, is the sales quantity threshold.

Lemma 1: The manufacturer’s early payment discount rate (rMTM) depends on the de-

mand distribution and is positively related to the sales quantity threshold (θM). Let r̄MTM be

the early payment rate to the manufacturer when BM = wMq. Then, it would be profitable

to push the supplier to join BT-SCF if rSTS > r̄MTM . Otherwise, the supplier will have

a higher financing cost in BT-SCF than in T-SCF and decline to join the BT-SCF. Thus,

the retailer cannot help the supplier take advantage of its high credit rating and receive early

payment from the bank.

Lemma 2: In T-SCF, the manufacturer can maximize his profit by optimizing the early

payment amount, BM . Given rM in Eq. 2.5, a unique optimal value of θ∗M , can be determined

by Eq. 2.3.

1) If θ∗M ≤ (wM−wS)q
p

, the manufacturer’s requested early payment amount does not include

his payment to the supplier, and BM = (wM − wS)q.

2) If (wM−wS)q
p

< θ∗M < wM q
p

, the manufacturer’s requested early payment amount includes

part of his payment to the supplier, and BM = pθ∗M .

3) If (wM q)
p

≤ θ∗M , the manufacturer requests full early payment amount from the bank which

contains the amount he will pay the supplier later; and BM = wMq.
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2.5.3 Retailer in T-SCF

The retailer (e.g., DSA) can maximize its profit by identifying the optimal order quantity,

given the retail price p, which is a markup over the unit wholesale cost (see Eq. 2.6). In

T-SCF, the retailer’s price is

p = (1 + βR)wM (2.6)

max
q

πR = p

∫ q

0

F̄p(x)dx− wMq (2.7)

After the sales, the retailer will pay the bank first and keep the rest as profit. With the

IGFR demand function, Fp(·), we can find a unique order quantity, q∗, to maximize retailer’s

profit from Eq. 2.7, with q∗ = F−1
p ( βR

1+βR
) (Proposition 1 provides more details).

2.6 Blockchain-Technology based Supply Chain Finance (BT-SCF)

In T-SCF, the supplier cannot benefit from the retailer’s high credit standing. But

in BT-SCF, the deep-tier SCF’s transactions are transparent and visible to the bank in

the platform. Thus, the supplier can request and receive early payment at t1, when the

manufacturer accepts her delivery.

2.6.1 Supplier in BT-SCF

In BT-SCF, the supplier can benefit from unlocking working capital with a new rate by

taking advantage of the retailer’s credit. Eq. 2.8 shows the supplier’s profit with deep-tier

finance, where the second term denotes the early payment amount received from the bank

with an early payment discount rate of rBS (TM +LR−LM). Note that in T-SCF, the supplier

is paid at t4 and needs to find an external loan by herself for the period TS, from t1 to t4.

But in BT-SCF, the supplier can instantly receive early payment from the bank when her
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shipment is accepted under smart contract design. The bank finances the supplier during

(TM + LR − LM), i.e., from t1 to t3. We thus have:

πB
S = −cSq

B + (1− rBS (TM + LR − LM))wB
S q

B (2.8)

wB
S =

cS(1 + βS)

1− rBS (TM + LR − LM)
(2.9)

The supplier’s wholesale price to the manufacturer is defined in Eq. 2.9 given the new

early payment discount rate per unit time rBS from the bank in BT-SCF. Eqs. 2.2 and 2.9

together indicate that if rBS (TM + LR − LM) < rSTS, the wholesale price will be lower in

BT-SCF. If not, the supplier will have a higher financing cost and have no incentive to join

BT-SCF.

2.6.2 Manufacturer in BT-SCF

The manufacturer is the key member of the BT-SCF because he is directly connected

with the supplier and the retailer, linking the SC. For example, DSA needs to get support

from HYQ to include FSM in the new platform for a stable and integrated SC relationship.

Unlocking the supplier’s working capital earlier reduces the supplier’s financing cost, which

can pass on to lower the manufacturer’s wholesale cost and final product’s cost. Eventually,

a lower price can increase sales quantity and improve SC competitiveness.

However, in T-SCF, a critical but often overlooked issue is the manufacturer’s profit.

The focal companies usually pay little attention to the manufacturer’s profitability, and the

traditional SCF often makes SMEs worse off (Strom 2015, Futures 2019, Prosser 2019). This

negative impact could also occur in BT-SCF and hinder its implementation if the SMEs are

not taken seriously. The manufacturer’s potential profit loss stems from the bank’s direct

payment to the supplier when switching from T-SCF to BT-SCF. This problem cannot be

ignored and needs to be addressed in the smart contract design, as BT-SCF implementation

needs the approval of all SC members. To motivate SC members to collaborate and join BT-

25



SCF, we need to address the problem regarding SC members’ profit changes when employing

BT-SCF.

In BT-SCF, the manufacturer seeks his share of the early payment amount, (wB
M−wB

S )q
B.

Eqs. 2.10 and 2.11 show the manufacturer’s profit and wholesale price to the retailer. The

manufacturer’s wholesale price will be lower if the supplier joins BT-SCF and takes advantage

of the retailer’s high credit rating to lower its wB
S . We have

πB
M = −cMqB + (1− rBMTM)(wB

M − wB
S )q

B (2.10)

wB
M = (wB

S + cM)(1 + βM) (2.11)

The manufacturer’s profit consists of the order production cost and the discounted early

payment from the bank. His profit functions in Eq. 2.3 and Eq. 2.10 differ in that the

wB
S q

B portion goes to the supplier directly from the bank, and the manufacturer cannot

request more than his share, (wM−wS)q
p

< θ∗ < (wM q)
p

(see Lemma 2). Thus, he cannot

gain from keeping the extra potion of the early payment request like that in T-SCF. Also,

the manufacturer loses the opportunity to profit from the delayed payment to the supplier.

Namely, in T-SCF, he can hold the payment, wB
S q

B, until t4. Thus, the manufacturer’s profit

may become lower in BT-SCF. However, with the decreasing of supplier’s financial cost, a

lower wholesale price will lead to a lower final sales price and a higher sales quantity. The

manufacturer, as an intermediary, is a key actor to implement BT-SCF. The more important

the mid-tier member (e.g., manufacturer) is, the more effort is necessary to convince him to

join the BT-SCF platform by ensuring that the manufacturer’s profit increases in BT-SCF.

Lemma 3: The manufacturer will join BT-SCF when πB
M ≥ πM . From Eqs. 2.3 and 2.10,

we find that there is a lower bound of order quantity, qB
M
. Namely, if the new order quantity

is lower than qB
M
, he will not be incentivized to join BT-SCF.
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2.6.3 Rate Setting for BT-SCF

Under BT-SCF, the bank approves the early payments and expects a return at a rate of

rBS (TM + LR − LM) from the supplier and return at a rate of rBMTM from the manufacturer.

These two rates are functions of the demand uncertainty associated with the retailer, who

has a high credit rating and can obtain low-cost financing from the bank. After sales, the

retailer’s repayment to the bank at t3 includes the early payments to the supplier at t1 and

to the manufacturer at t2. Since the repayment to the bank will only be made by the retailer

at t3 (neither by the manufacturer nor by the supplier), we assume the discount rate per

unit time rBM and rBS to be equal, which is fair in DSA’s case as all SC members get the same

financial support.

In BT-SCF, BB
M is the early payment amount to the manufacturer, and BB

S is the amount

to the supplier, where BB
M = (wB

M−wB
S )q

B and BB
S = wB

S q
B. Let θBM and θBS be the respective

sales quantity thresholds for the manufacturer’s and supplier’s early payment amount in BT-

SCF, where θBM = (BB
M)/pB and θBS = (BB

S )/p
B , and θB is the sales quantity threshold for

total early payments, with θB = θBM + θBS .

Then, the early payment discount rates per unit time for the manufacturer and the

supplier can be derived from Eq. 2.12 with rBM = rBS . Eq. 2.12 shows the bank’s decision

rule to determine the early payment discount rates per unit time for the manufacturer and

the supplier, that the left-hand side represents the early payments paid and right-hand side

denote the expected payoff.

BB
M(1− rBMTM) +BB

S (1− rBS (TM + LR − LM)) = pB(

∫ θB

0

xdFpB(x) + θBF̄pB(θ
B)) (2.12)

Lemma 4: The supplier will join BT-SCF when wB
S ≤ wS. In other words, her early

payment rate is lower than the loan rate. From Eqs. 2.2 and 2.11, we find that there is a

lower bound of ordering quantity, qB
S
, with early payment rate derived from Eq. 2.12. That

is, when qBis lower than qB
S
, the supplier will not have a low early payment rate to benefit

from and thus will not join BT-SCF.

27



2.6.4 Retailer in BT-SCF

In BT-SCF, the retailer will maximize its profit, Eq. 2.14, subject to order quantity.

pB = (1 + βR)w
B
M (2.13)

max
qB

πB
R = pB

∫ qB

0

F̄pB(x)dx− wB
MqB (2.14)

Eqs. 2.6 and 2.13 show that the retailer has different final sales prices since the wholesale

prices of the manufacturer, wB
M , and the supplier, wB

S , in BT-SCF will be lower than those in

T-SCF. Thus, we have p > pB and the lower sales price will lead to a higher sales quantity.

Similarly, the retailer maximizes the profit by finding the best order quantity, given the

early payment discount rates per unit time rBS and rBM from Eq. 2.12. In Eq. 2.14, we find

that the optimal order quantity is qB∗ = F−1
pB

( βR

1+βR
). As in Proposition 1, the retailer, e.g.,

DSA, is eager to lower its final prices to boost sales since its sales quantity is drive by the

price-sensitive demand distribution.

Lemma 5: In BT-SCF, the retailer joins BT-SCF when πB
R ≥ πR. According to Eqs.2.7

and 2.14, there exists a lower bound of the order quantity, qB
R
, which can be determined by

solving: pB
∫ qB

R
0 F̄pB(x)dx − wB

MqB
R
= p

∫ q

0
F̄p(x)dx − wMq. When the new order quantity is

lower than qB
R
, it will not benefit from BT-SCF.

Proposition 1: For a given price, there exists a corresponding optimal order quantity for

the retailer (risk-neutral) to maximize its profit. Under both T-SCF and BT-SCF, the optimal

order quantity q∗ equals F−1
p ( βR

(1+βR
), indicating that q∗ depends on the retailer’s markup rate

and the price-induced demand distribution.
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2.7 SC Profit and BT-SCF Extension

As the retail price is lower in BT-SCF, the SC members’ profits will differ from those in

T-SCF. Below we will investigate the profit change of each SC member and decipher when

and how BT-SCF benefits them.

For the supplier, when BT-SCF allows a lower financial rate, rBS (TM + LR − LM), she

has a lower wholesale price, wB
S . Relative to T-SCF, the manufacturer has a potential loss

in profit. He can no longer request more early payment than his own share and lose the

opportunity to hold his payment to the supplier for longer. As the key player in BT-SCF

implementation, he needs qB ≥ qB
M
.

The retailer will have a more competitive (lower-priced) product in the market in BT-

SCF. We use the point elasticity method to calculate the price elasticity of the demand,

η, in the market (Allen and Lerner 1934). We have η = p(E(DB)−E(D)
(p−pB)E(D)

with E(·) being the

expected demand. The retailer will need to determine how BT-SCF will benefit itself and

the entire SC. The retailer’s benefit comes from higher sales quantity due to cost reduction

stemming from the deep-tier supplier’s lower early payment discount rate in BT-SCF than

her loan rate in T-SCF. The improvement of the retailer’s profit from T-SCF to BT-SCF is

defined as ∆πR. Similarly, we let the profit change for the manufacturer as ∆πM and the

supplier as ∆πS.

Proposition 2: From Lemmas 3-5, we find there exists a lower bound of the order quantity

qB, which ensures none of the SC members will be worse off after the BT-SCF implemen-

tation, where qB = max{qB
R
, qB

M
, qB

S
}. Let η be the lower bound of price elasticity, which

corresponds to the expected demand E(DB) = (1 + p−pB

p
η)E(D), given price pB. From

Proposition 1, we see the order quantity only depends on the demand distribution since the

markup rate βR is a constant by assumption, which implies that

(1) When η ≥ η, all SC members in BT-SCF under the new price, pB, will generate no less

profit than in T-SCF.

(2) When η < η, we cannot guarantee that all SC members will generate higher profit by

joining BT-SCF.
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Note that the profits between T-SCF and BT-SCF for each SC member are calculated simul-

taneously. We thus sum them up to show the SC profit change.

Proposition 3: The supplier’s loan rate in T-SCF (rS), payment term (TS), and price

elasticity (η) are positively correlated with the SC profit change from T-SCF to BT-SCF.

This implies that BT-SCF has sufficient room to reduce the supplier’s financial cost (rS

and TS) and price cut has a significant effect on demand. However, the manufacturer’s

ROI (αM) has a negative impact on the manufacturer since it induces more sacrifice for the

manufacturer to implement BT-SCF.

In addition, we examine the above 3-echelon model extension to deeper tiers with the

approvals of the existing SC members in BT-SCF (e.g., DSA’s SC has six tiers). When the

new tier i member joins, the impact on the system performance is twofold: the financing

rates of tier i and tier i− 1 change, and all downstream members’ wholesale prices change.

Under our proposed rate setting in section 2.6.3, the new tier i member entering BT-SCF

allows tier i and tier (i− 1) members to have new and lower early payment discount rates,

rBi (TM +LR −LM) < riTi, like in Lemma 4. The corresponding new rates per unit time are

r(i − 1)B and rBi . For simplicity, we assume that there is only one supplier in one tier and

supplier i chooses to request invoice amount of loan (in T-SCF), or early payment from the

bank (in BT-SCF).

Subsequently, we can see the final price change following a new tier i member joining

BT-SCF. Let wi be the wholesale price of tier i member in the supply chain, where i ∈

[1, 2, 3, ..., n] and wi =
wi+1(1+βi)

1−riTi
in T-SCF. Each SC member has a variable cost ci, markup

rate βi, payment term, Ti, and L0 denotes the retailer’s lead time.

Proposition 4: When rBi (T1 + L0 − L(i − 1)) < riTi, the deeper tier, i, the BT-SCF can

accommodate, the lower the new retail price will be. Namely, the retailer will have a lower

price and become more competitive in the market to get a higher sales quantity when BT-SCF

implementation is extended to deeper tiers.
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Table 2.3: Parameters for Numerical Analysis

2.8 Numerical Analysis

To validate our model and understand the performance of each SC member, we reference

the DSA data to set the parameter values and assume the demand is uniformly distributed

for our numerical study. Similar to Chen et al. (2009), we assume customer demand D is

additive and price-dependent, with D = d(p)+X, where X is the demand uncertainty. The

price determines the scale of the demand distribution, d(p), which is strictly decreasing, non-

negative, twice differentiable on a closed interval, and has an increasing price elasticity. We

set d(p) = 1
p−0.4

and X, the random price-independent component, is uniformly distributed

with X ∈ [L,U ](L < 0, U > 0), L = −d(p) and E(X) = 0. The numerical results are

discussed below.

2.8.1 The Performance of T-SCF

Lemma 4 suggests that for BT-SCF to outperform T-SCF, the early payment discount

per unit time rate (rM) for the manufacturer’s full early payment amount (BM = wMq)

should be lower than the supplier’s external loan per unit time rate (rS) in T-SCF. Figure

2.4 shows that in T-SCF, regardless of θM (i.e., sales quantity threshold), the early payment

discount rate per unit time (rM) is always lower than the supplier’s loan rate per unit time

(rS) in T-SCF.

Figure 2.4 shows how the manufacturer’s profit changes with supplier’s loan rate per

unit time (rS), and the threshold of sales quantity (θM), given manufacturer’s early payment

amount (BM = θMp). For a given rS, there exists a specific θM that maximizes the manu-

facturer’s profit. For example, when rS is high (e.g., 0.002), the manufacturer would choose

31



Figure 2.4: Early Payment Discount Rate in T-SCF

a low θM (of 1.44) to achieve the maximum profit (of 0.42). In addition, the manufacturer’s

optimal profit is negatively correlated with rS, which indicates that lowering the supplier’s

financing rate per unit time would improve his profit, which can be achieved by implementing

BT-SCF.

Figure 2.6 shows the retailer’s profit functions under T-SCF and BT-SCF, respectively.

For a given product price (p), the retailer would choose the best order quantity (q) to

maximize its profit. From the figure, we can see that the profit of the BT-SCF is higher

than that of the T-SCF at the optimal order quantity.

Figure 2.5: Manufacturer’s Profit

32



Figure 2.6: The Retailer’s Profit Under T-SCF and BT-SCF

2.8.2 The Impact of Parameters on the Performance of BT-SCF

We first explore how TS (payment terms for suppliers in days) impacts the profit change

from T-SCF to BT-SCF. Figure 2.7 verifies Proposition 3 and shows that when TS changes

from 30 to 120, the BT-SCF profits increase. BT-SCF benefits the supplier the most, followed

by the manufacturer and then the retailer. As the manufacturer’s profit can still improve

even though he lost the opportunity to hold the supplier’s cash (from accounts receivable),

the manufacturer is thus incentivized to implement BT-SCF.

Figure 2.8 examines the relationship between the supplier’s early payment discount per

unit time rate (rS) and the SC members’ profit changes from T-SCF. We find the profit gaps

among the members of the BT-SCF increase with rS. A higher rS would create more room

for BT-SCF profit improvement, with the supplier receiving the most benefit. We also find

(not shown here) that increasing αM (manufacturer’s ROI) will increase the manufacturer’s

profit gap between the T-SCF and BT-SCF, making BT-SCF more attractive when the

profits of every member can be guaranteed.

In Proposition 2, we find there exists a threshold of price elasticity, η = p(E(DB)−E(D))
(p−pB)

E(D).

A higher means that when the product price drops, customers are strongly incentivized to

make a purchase, leading to higher demand. Figure 2.9 shows that the retailer would be

worse off in BT-SCF if η < 5. Namely, when customers are insensitive to price cuts (lower

η), a lower price may not sufficiently increase demand, leading to a reduction in the retailer’s

33



Figure 2.7: Profit Change from T-SCF to BT-SCF given TS

Figure 2.8: Profit Change from T-SCF to BT-SCF given rS
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Figure 2.9: Profit Change from T-SCF to BT-SCF with Price Elasticity

profit. Similarly, the manufacturer will also lose profit in BT-SCF when η < 1.

2.8.3 Managerial Insights

The numeric study in this section has verified our propositions. It helps managers to

understand the conditions under which BT-SCF will benefit the SC and which SC members

would benefit or be worse off. An effective collaboration scheme can be developed from such

findings to benefit all SC members.

Implications for Suppliers

Suppliers should know that they can reduce financing costs and derive higher profit with

deep-tier SCF, and explore the opportunity to join the BT-SCF platform. However, such

benefits can only be realized when the early payment discount rate with BT-SCF is lower

than her external loan rate in T-SCF, and the final product demand has an increasing price

elasticity.

Implications for Manufacturers

The manufacturer should evaluate T-SCF and BT-SCF carefully, as the manufacturer

may not benefit from joining BT-SCF due to the reduction of his cash on hand. Their loss

may be exacerbated when the manufacturer has a very high ROI.

The manufacturer can improve his profit in BT-SCF if the product’s price elasticity is
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sufficiently high. Also, the higher the supplier’s loan rate per unit time (rS) and payment

terms (TS) in T-SCF, the more it will improve the manufacturer’s profit from T-SCF to BT-

SCF. Under such conditions, the manufacturer should aggressively advocate for BT-SCF

implementation.

Implications for Retailer

The retailer in our study is the SC leader and needs to evaluate the potential benefit of

BT-SCF to reduce the SC’s financing cost. In evaluating BT-SCF, the retailer should attend

to the supplier that has the potential to lower financial cost and the manufacturer to ensure

that he is not worse off.

In addition, the retailer needs to have good knowledge about the price elasticity of the

demand in the market since the profitability of the BT-SCF is highly dependent on the price

elasticity. Only when the price elasticity is higher than a threshold (e.g., η = 5 in Figure

2.9) will all SC members benefit from the BT-SCF implementation.

2.9 Conclusion

Blockchain Technology, together with IoT and smart contracts, provides a new oppor-

tunity for deep-tier finance to support often financially strapped SMEs and increase the

competitiveness of the entire SC. Through the proposed BT-SCF model, we identify its dif-

ferences with T-SCF and caution that companies need to carefully design and evaluate the

BT-SCF platform before employing it (referring to DSA’s problem). Appropriate mechanism

design among business alliances is needed to motivate SC members, especially the mid-tier

members, to commit to a BT-SCF implementation. By identifying the agreeable early pay-

ment rates, we find deep-tier financing can benefit the SC with lower financing costs and

competitive retail prices. Finally, we discuss the impact of BT-SCF if it is implemented in

deeper-tier (four or more levels) SCs.

We identify the issues that hinder BT-SCF implementation and find that privacy and SC

members’ profit shift are the main concerns. To address these concerns, we show the value

of Blockchain visibility and transparency in SCF and its ability to help deep-tier SMEs. The
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current literature lacks the mechanism necessary to carry out deep-tier SCF. The limited

studies focus on the conceptual model of implementing SCF using Blockchain Technology.

They did not discuss how to incorporate deep-tier SC members into the SCF framework

using new technologies like Blockchain and IoT to increase SC competitiveness. The new

Blockchain platform requires the approval of all SC members. The literature has thus far

not discussed the necessary mechanism to quantify and share the benefit of the new platform

with all SC members. Most importantly, the issue of intermediary (mid-tier) SC members

is not defined and taken into account before implementation.

We contribute to the literature by studying the potential of deep-tier SCF and pinpoint

the important roles the mid-tier members play in a stable and sustainable SC. From the

insights derived in this study, firms can better understand the SC members’ profit changes,

especially in the mid-tier SMEs, after switching from T-SCF to BT-SCF. Our results provide

helpful guidance for BT-SCF implementation and improving long-term relationships among

SC members, such that a win-win situation is attainable in a competitive market.

We have discussed whether SCF should extend to deep-tier SC or not and how BT-SCF

with appropriate rate-setting impacts SC profitability. There are limitations to our study

within the scope of our theoretic model. For example, in practice, there may be multiple

suppliers in each tier, and trade credit is often used in SCF besides invoice financing. Also,

a deeper-tier member may be the one with the highest credit rating rather than the retailer.

Our models are motivated by the DSA case, whose manufacturers and suppliers are SMEs

in developing countries (e.g., HYQ, FSM) and often ignore the time value of money in the

contract. In the future, when applicable, it will be essential to include the present value in

the analysis.
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3.0 Experienced and Prospective Wait in Queues: A Behavioral Investigation

Problem definition: The cost of completing a line—a continuous variable—is typically

studied indirectly through customers’ decisions to balk or renege from a queue—binary

variables. However, these decisions only tell us whether a customer’s completion cost is above

some (unknown) personal threshold; we do not have a good understanding of individuals’

precise completion costs, V . In this paper, we study how a perfectly informed customer in

deterministic, visible queues forms her completion cost from (i) her position in line, (ii) the

number of people that have been served since she joined the line, and (iii) the service speed.

We also investigate how affective attitudes (emotional responses) towards waiting influence

V .

Methodology/results: Using a controlled experiment, we introduce the use of the Becker-

DeGroot-Marschak (BDM) method (Becker et al. 1964) to directly measure V . We find two

important deviations from rational predictions. First, completion costs are not independent

from subjects’ experienced wait (i.e., the wait they had to endure to get to their current

position)—but the direction of this effect depends on subjects’ affective attitudes. Second,

regarding the prospective queue, we find that length and service speed influence V additively,

not multiplicatively. That is, subjects use heuristics; the completion cost is not directly

proportional to the prospective waiting time.

Managerial implications: Companies and organizations regularly offer customers paid

options to shorten their waiting time, present them with alternatives to waiting in line, or use

incentives to manage queuing congestion. Our results can help them by providing a granular

metric of completion costs—measured in monetary terms—and by shedding light on how

these costs are affected by the experienced wait (and hence the timing of the offer or incentive)

and the characteristics of the prospective queue. Our clean experimental framework can also

be easily extended to a wide array of queuing settings.
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3.1 Introduction

Consider the following situation: a customer is standing in a queue of length l that moves

at a speed of s seconds per customer. To get to this point, the customer has already waited

for w persons to be served. How does she feel about the experienced and prospective wait?

Specifically, how do they impact the cost that the customer assigns to staying in line and

completing the queue? Interestingly, the answer to this question remains unclear. Most

studies analyze customers’ decisions whether to quit waiting (e.g., Janakiraman et al. 2011,

Batt and Terwiesch 2015, Akşin et al. 2020), but few have elicited customers’ moment-to-

moment expected cost for completing the queue, V . The two are not the same: the decision

to leave only shows that V has risen above a certain threshold, at which point it is too late

for the service-provider to intervene. Furthermore, subjects that had a negative experienced

wait but still complete the queue can harm a business if they share their negative wait

experience publicly (such as on Yelp). Similarly, several studies investigate whether people

will join or balk from a queue (e.g., Pazgal and Radas 2008, Hannigan and Flicker 2020),

but this only tells us whether V is above a customer’s threshold for the cost of joining and

completing the queue. Moreover, whether and how the characteristics of the prospective

wait—in particular, l, s, and their interaction, waiting time—may change the value of V is

not well understood.

Our study is also motivated by the fact that, as part of their congestion management

strategies, several organizations present individuals with alternatives to joining a (or staying

in) line. For example, Disneyland recently launched Genie+, a paid option to access some

of their parks’ attractions using faster lanes (Pallotta 2021). Similarly, call centers regularly

offer customers the option to receive a call-back at a later time, or to submit requests online.

These options may sometimes be less preferable than immediately speaking with an agent,

but they offer the benefit to the customer of not having to wait on the phone (Elliott 2019).

In such situations, understanding the actual cost that people assign to completing a queue

is a necessary first step to assess how likely individuals are to choose between the regular

queue and the alternative. To illustrate, consider a group of customers waiting for a table at

a restaurant. To manage the queue, the restaurant manager offers the group the alternative
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to instead sit at the bar—without needing to wait for a table, but with less comfortable

chairs, less privacy, etc. In this scenario, the manager would benefit from knowing the cost

the group attributes to waiting in line, which in turn affects how likely they are to prefer

the bar option. Similarly, the manager would benefit from knowing how this cost depends

on whether the group has been waiting for some time, on the number of customers ahead,

etc.

In this paper, we introduce the use of the Becker-DeGroot-Marschak (BDM) method

(Becker et al. 1964) to directly measure individuals’ completion costs, V , in queuing experi-

ments. We define completion cost as the difference between the reward that can be obtained

from completing the queue, and the utility that a person assigns to staying in line (i.e., after

accounting for both the reward and the cost or disutility of the associated wait). Unlike

survey questions (such as ratings about wait satisfaction),1 the BDM provides an incentive-

compatible method to translate what was an individual’s subjective expectation of the cost

of waiting into monetary units. This paper aims to provide a first, simple framework to use

the BDM to study V , stripping away some of the complexity found in previous studies (e.g.,

uncertainty, dynamic changes in queues). We focus on how a perfectly informed customer

in a deterministic, visible queue forms her completion cost from the customer’s position in

line (l), the number of people that have been served since she joined the line (w, including

the case w = 0), and the service speed (s). We also investigate how the customer’s affective

attitudes (i.e., emotional responses) towards waiting, which we measure with questions from

the widely validated Framingham Type-A scale (Haynes et al. 1978), influence V .

Our results show evidence of sunk cost fallacy with regards to experienced wait. The

BDM reveals that the experienced time (i.e., the product of places moved, w, and service

time, s) has a significant effect on completion costs. The direction of this effect, however,

depends on participants’ affective types. Controlling for the characteristics of the prospective

wait, customers that self-identify as having negative affective attitudes towards wait (i.e.,

who get upset when having to wait) exhibit a higher cost of completing the queue, V , after

a long experienced time. Conversely, those not reporting negative affective attitudes report

1For example, participants in Buell (2021) are asked to complete the statement “Please rate your overall
satisfaction with the length of your wait”—or “It was worth my time to wait in the line I just experienced”—
with one of seven possible answers ranging from extremely unpleasant to extremely pleasant.
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a lower cost V—i.e., become more committed—after experiencing a long wait. Our results

also show that subjects evaluate prospective wait—the remaining queue ahead of them—

using heuristics, rather than the rational computation of waiting time. While both l and s

impact the values elicited for V , they do so additively, not multiplicatively as the rational

theory would predict. In other words, an increase in l (s) is accompanied by an increase in

V that is independent of the value of s (l). After accounting for the main effects of l and

s, their interaction—waiting time—does not significantly affect the completion cost. This is

surprising, as in our study subjects are fully informed about the queue characteristics.

These findings have implications for both theory and practice. From a theoretical stand-

point, a rational queuing model (e.g., Naor 1969, Hassin and Haviv 1995, Cui et al. 2018)

would suggest that individuals compute their opportunity costs of time and compare it

against the value that can be derived from completing a queue. Thus, all that should matter

is the time that it takes to complete the wait: the value of V should be independent of w,

and should be negatively correlated only with the prospective waiting time—the product

of l and s. Our results challenge both of these assumptions. From a practical perspective,

our findings suggest that, when offering alternatives to customers who are waiting in line,

organizations need to take into account the timing of the offer; but the response to timing

is heterogeneous and depends on customers’ attitudes towards waiting. In addition, we ob-

serve that for long and/or slow queues (short and/or fast queues), an increase in length or

service time impacts a person’s completion cost less (more) than anticipated by the rational

model. This result has implications for the design and management of queuing systems. For

example, while pooling queues can reduce overall waiting time, it could backfire due to our

observed response to queue length. A similar observation is made by Lu et al. (2013) in a

setting with uncertainty in waiting time; however, we find that this may be the case even

when subjects are perfectly informed about the length, speed, and waiting time of the queue.

3.1.1 Related Literature and Contributions

This paper draws from and contributes to two streams of work within the behavioral

queuing literature (for an excellent review, see Allon and Kremer 2018). First, regarding
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the experienced wait in queues, several studies analyze how reneging (i.e., abandonment)

decisions are influenced by characteristics of the elapsed wait (e.g. Batt and Terwiesch 2015,

Webb et al. 2017, Akşin et al. 2020). Close to our work, Janakiraman et al. (2011) suggest

that people experience two opposing forces while waiting: an increasing disutility for the

remaining wait and an increasing commitment to complete the queue successfully due to the

time already spent waiting, resulting in an inverse U-shaped curve in reneging probability.

In an unobservable-queue setting, the authors find experimental support for this conjecture.

This result is linked to the effect of sunk time costs (Soman 2001), which have also been found

to influence the amount that people spend after waiting in line (Ülkü et al. 2020). Relatedly,

the affect-based literature hypothesizes that as the time spent waiting increases, a customer

experiences increasing negative emotions from waiting: e.g., due to boredom, anxiety, and

annoyance (e.g., Maister 1984, Larson 1987). For example, Carmon and Kahneman (1995)

find evidence in a laboratory experiment that participants’ affective states worsen during

periods of idle wait, and improve when they make progress in line.

We contribute to this first stream of work by studying the effect of experienced wait

in an observable queue, where the length and service time of the remaining wait are per-

fectly known. In unobservable queues, the experienced wait can be used by individuals to

update their beliefs about the remaining wait—which constitutes reasonable, rational behav-

ior. Conversely, our setup allows us to (i) isolate the effect of experienced wait on completion

costs by controlling for the (known) remaining wait and (ii) thanks to this approach, rule out

that such an effect could be fully explained by rationality. In addition, our results highlight

heterogeneity in affective attitudes as a key mechanism that helps to explain when and how

the sunk cost fallacy may change individuals’ responses in a queuing environment. While

Janakiraman et al. (2011) hypothesize that two opposing forces occur within-person, our

experiment suggests that the net effect may depend on a customer’s affective type. This

result relates to the observation that there is considerable heterogeneity in the degree to

which people are susceptible to decision biases in queues (Conte et al. 2016).

A second stream of literature in behavioral queuing studies how the characteristics of

the prospective wait influence people’s joining decisions and utility. In particular, authors

have found that, in addition to the waiting time, the length (e.g., Lu et al. 2013, Conte et al.
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2016) or speed (e.g., Batt and Terwiesch 2015, Bolandifar et al. 2019) of a queue may also

and separately impact people’s joining decisions. In a related experiment, Hannigan and

Flicker (2020) use conjoint analysis to measure participants’ utility based on their stated

preferences over a series of virtual queues. They find that, in addition to the total expected

waiting time of a queue, participants’ utility is also impacted by the variance of the service

time, as well as by the length of an observable queue.

Our contributions to this second stream of work are twofold. First, to the best of our

knowledge we are the first to simultaneously study the effects of length, service time, and

waiting time on completion costs. By omitting one (or more) of these queue characteris-

tics, the extant literature provides an incomplete understanding of their effects on people’s

decisions. For instance, a study indicating that waiting time and length influence subjects’

completion costs leaves unanswered whether either of the two effects could be attributed

instead to subjects’ reactions to the omitted variable—in this example, service time. Un-

derstanding the three factors’ relative contributions to completion costs is important as this

may impact, e.g., how people decide whether to join a queue, or how much they would

be willing to pay to avoid a queue, and therefore have implications for the management of

queuing systems. Second, by considering a setting where length and speed are known and

deterministic, we study participants’ responses when our three factors of interest are either

known or easy to evaluate, and hence comparable. Thus, in our setting, the effect of queue

length cannot be attributed to subjects (rationally) using it as a proxy for waiting time, as

has been suggested in the literature (e.g., Lu et al. 2013). Even in this simple determin-

istic queue, with perfectly informed subjects, we find that people use heuristics instead of

behaving according to the rational-model prediction.

Finally, we contribute to the behavioral queuing literature by proposing a novel method-

ological approach to measure the utility that individuals assign to queues. Thanks to the

BDMmechanism, our experimental framework provides a measure that is more granular than

what can be observed from balking or reneging decisions, as we observe an exact value of

utility (and therefore V ) for each individual. In addition, our utility measure is expressed in

monetary terms, which can be useful for decision-makers as they offer alternatives to manage

congestion. Lastly, we find that the dollar estimates that we derive from subjects through
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the BDM mechanism are consistent with subjects’ opportunity costs of time—measured both

through an additional control task and the online platform’s (Prolific’s) suggested payment

to participants. This provides further support for both the internal and external validity of

our metric.

The rest of the paper is organized as follows. In Section 3.2, we introduce our exper-

imental design and procedures. In Section 3.3, we discuss the hypotheses development.

Section 3.4 presents our main experimental results and findings. Finally, conclusions and

implications are discussed in Section 3.5.

3.2 Experimental Design

Our experiment consists of three parts: the queuing task (hereafter referred to as QT),

which is the main part of our study; two control tasks to measure subjects’ risk preferences

and value of time; and an exit survey. In what follows, we discuss our experimental design

and procedure in detail.

3.2.1 The Queuing Task

The QT consists of a single-player queuing game, where each participant interacts with

a computer-simulated queuing environment. Before joining the queue, participants see the

following information: (i) the number of (virtual) customers waiting in line (l); (ii) the time

that it takes to serve each customer (s); and (iii) the reward, in experimental tokens, that

they can receive from the virtual store upon completing the line—which we keep constant

and equal to 100 tokens. Thus, our setting captures an observable queue, where participants

have complete information about the queuing system states. After learning about the queue,

participants must join it and start to wait in line, moving forward each time a virtual client

is served.

Sometime after joining the queue and before completing it, each participant (she) is asked

to state the minimum number of experimental tokens, M , such that she would rather receive
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a payment ofM tokens than continue to wait in line for the store’s reward. We hereafter refer

to this step as the elicitation question. After a participant states the value of M , Nature

randomly selects a value X from a uniform distribution between 1 and 100 tokens. If X

is greater than the participant’s stated value of M , then she immediately leaves the queue

and receives X tokens without any additional wait. Otherwise, if X is less than or equal

to M , then she continues to wait in line for the store’s reward. Participants also learn that

stating M equal to 0 (100) ensures that they leave (stay) in line for certain. The approach

of comparing a participant’s stated value against a randomly selected value to determine

the participant’s payoff is the Becker-DeGroot-Marschak (BDM) mechanism (Becker et al.

1964). This mechanism is commonly used in experimental economics to elicit individuals’

truthful valuations of a product or service (Klos et al. 2005, Plott and Zeiler 2005, Halevy

2007). The value of M corresponds to the utility that an individual assigns to staying in

line and earning the store’s reward. Thus, based on the value of this reward (constant and

equal to 100 tokens) and M , we define an individual’s completion cost as V := 100−M .

In addition, we measure participants’ heterogeneity in affective attitudes towards waiting

(i.e., feelings and emotions that they experience when confronted with a waiting situation)

with two questions from the Framingham Type-A scale (Haynes et al. 1978): (1)“In com-

parison to others, are you a person who is generally willing to give up something today in

order to benefit from that in the future or are you not willing to do so?” (5-point Likert

scale with 1 = strongly willing and 5 = strongly unwilling); and (2)“Do you get upset when

you have to wait for anything?” (binary options Yes/No). This scale has been widely used

and validated in the behavioral sciences’ literature to measure people’s sense of time urgency

and self-control (e.g. Gambetti and Giusberti 2012, Falk et al. 2016, Neff 2017, Loewenthal

and Lewis 2018). In our study, these questions allow us to investigate whether and how

individuals’ affective attitudes towards waiting moderate their responses to the experienced

wait and the characteristics of the prospective queue. Furthermore, there is empirical evi-

dence that suggests these attitudinal questions may play a role in our context. For example,

Hernandez-Maskivker and Ryan (2016) find that in theme parks, customers with negative

attitudes towards waiting are more likely to pay for a “fast pass” to avoid long lines.

Before continuing, we note three key aspects of our experimental design. First, we
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make joining the queue mandatory and do not allow participants to freely renege (except

when they receive the elicitation question). In practice, decision-makers would only be able

to observe, and potentially take actions to mitigate, the completion costs of people who

voluntarily join and choose to stay in line. However, one of our main goals is to compare

individuals’ completion costs in the presence versus absence of experienced wait. To achieve

this, we must be able to compare the cost of a participant who just joined a queue (i.e.,

w = 0), with that of another participant who is confronted with the same prospective queue

at the time of the elicitation question, but who has already been waiting (and moved) in

line (i.e., w > 0). Allowing participants to decide whether to join, or to freely renege

from, the queue would introduce self-selection biases that would make these two situations

not directly comparable. To illustrate, consider i and j to be two indices, both of which

represent the entire population. In this case, we can calculate the effect of having waited

for K customers, when the queue has a current length l and service time s through the

difference E[Vi(l, s, w = K) ] − E[Vj(l, s, w = 0) ]—which is the approach we follow in this

paper. However, this would no longer be true if i represented instead the population that

chose to join a line of length l +K (and subsequently decided to stay in line after waiting

for K customers to be served), and j represented the population that chose to join a line of

length l. To reduce the effect of any potential difference between our experimental approach

and practice, we calibrate our queuing parameters so that most people would choose to join

and voluntarily stay in our virtual queues (i.e., they state a utility M > 0, or equivalently,

a completion cost V < 100; see §3.4).

Second, all customers that a participant sees waiting in line are virtual clients, as opposed

to other (human) participants. This allows us to analyze our participants’ responses to queue

characteristics and the experienced wait while controlling for any interpersonal or strategic

considerations, which are outside the scope of this study. Finally, after participants join the

queue, no virtual client joins behind them. This design choice allows us to avoid introducing

differences in customers’ completion costs that could be due to, e.g., last place aversion (Buell

2021); or to the fact that, as the number of people behind increases, consumers have been

found to be more committed to staying in line (Zhou and Soman 2003). Thus, excluding

new client arrivals allows us to study the effect of experiencing wait while controlling for
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such confounding factors.

3.2.2 Manipulations

We manipulate the QT along three dimensions: prospective length (l), service time (s),

and experienced length (w). First, the prospective length corresponds to the total number

of clients that a participant needs to wait for before receiving the store’s reward, which

includes the virtual clients ahead plus the participant herself. We consider three levels of

prospective length: 7, 10, and 13 clients. Second, the service time is defined as the number

of seconds that it takes to serve each customer, and it therefore determines the speed of the

queue: a higher (lower) service time corresponds to a slower (faster) queue. We consider

three levels of service time: 5, 10, and 20 seconds/customer. Finally, we vary the experienced

length, which we define as the number of places that a participant has moved in line before

receiving the elicitation question; i.e., before they state the value, M , that they attribute to

staying in line. We account for three experienced lengths: 0, 3, and 6 places. In the case

of an experienced length of 0 places, participants are presented with the elicitation question

immediately upon joining the queue.

Based on these dimensions, we consider a set of key combinations to obtain a total of 15

experimental conditions, shown in Table 3.1. This design allows us to investigate the impact

of (i) the experienced wait and (ii) the characteristics of the prospective wait on subjects’

completion cost. Figure 3.1 helps to illustrate this using the conditions with service time

equal to 5 secs./client. In each condition, the dashed circle denotes a participant’s position

in line when they receive the elicitation question. For example, comparing participants’

responses between conditions 2, 4, and 5 helps us to address whether experienced length

influences completion cost. On the other hand, comparing participants’ responses between

conditions 1, 3, and 5 helps us to study the effect of prospective length, absent any expe-

rienced wait. Similarly, repeating these analyses across our three service times allows us to

not only study the effect of service time on completion cost, but also to investigate whether a

significant interaction exists between prospective length and speed (i.e., prospective waiting

time), or between experienced length and speed (i.e., experienced time).
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Table 3.1: Summary of Experimental Conditions

Condition Prospective Length (l) Service Time (s) Experienced Length (w)

(clients) (secs./client) (places)

1 13 5 0

2 7 5 6

3 10 5 0

4 7 5 3

5 7 5 0

6 13 10 0

7 7 10 6

8 10 10 0

9 7 10 3

10 7 10 0

11 13 20 0

12 7 20 6

13 10 20 0

14 7 20 3

15 7 20 0

Figure 3.1: Experimental Conditions (ServT ime = 5 secs./client)

Note. The dashed circles denote a participant’s position when they receive the elicitation question
(represented by the question mark). Each black dot represents a virtual client ahead, and the gray dots are
the places that the participant has moved in line.
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Note that in our study we do not introduce any uncertainty in service time. We make this

design choice for two reasons. First, uncertainty in waiting time would introduce a confound

to experienced wait: participants who received the elicitation question after moving a (non-

zero) number of places would not only experience wait, but also observe—and hence learn

from—realizations of the (random) service time. Conversely, these realizations would not be

observed by participants who receive the elicitation question immediately after joining the

queue. Thus, in the presence of uncertainty, we would not be able to know the extent to

which differences between the two situations (e.g., conditions 2 and 5 in Figure 3.1) could

be attributed to experienced wait, versus differences in learning. Second, regarding the

prospective queue, one of our main goals is to disentangle the impacts of speed, length, and

waiting time on subjects’ completion cost. Uncertainty in service time would also introduce

uncertainty in waiting time, while the queue’s length would be known with certainty. Thus,

our three main factors of interest would not be directly comparable by participants; and

disentangling the impacts of average of, versus uncertainty in, service time (waiting time)

would require us to consider several levels of uncertainty, considerably increasing our number

of experimental conditions.

3.2.3 Control tasks and Exit Survey

We include two control tasks where we study participants’ value of time and risk prefer-

ences. The value-of-time task allows us to measure the value that participants attribute to a

two-minute wait (which is similar to the average waiting time of the QT). The risk-preference

task is included as people’s attitudes towards risk may have an impact on participants’ de-

cisions in the QT, since the randomly-generated values from the BDM mechanism help to

determine whether someone stays or leaves a queue. Thus, we include these tasks to control

for heterogeneity in the outside value of time (i.e., opportunity cost in a non-queue-related

setting) and risk preferences of our participants.

In the value-of-time task, we employ the BDM mechanism to elicit participants’ cost of

opportunity for a two-minute wait (for a similar approach, see Eckel and Grossman 2002).

Specifically, each participant is first required to state the minimum number of tokens, Z,
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that they are willing to accept as payment for a two-minute wait. Then, Nature randomly

selects a number, Y , from a uniform distribution between 1 and 150 tokens. If Y is larger

than Z, then the participant receives a payment of Y tokens after waiting for two minutes.

Otherwise, if Y < Z, then the participant skips the two-minute wait and does not receive

any tokens from the task. Participants also learn that stating Z equal 0 (150) ensures that

they wait (do not wait) for two minutes for certain. Note that, by designing the value-of-time

task with a similar waiting time but a larger range of possible random payments than in the

QT, we can have a more general understanding of people’s value of time. This is particularly

the case given that, in the QT, there is no reason for a participant to require a payment of

more than 100 tokens to leave the queue, since the store’s reward is equal to 100 tokens.

However, such a natural upper limit does not exist in the case of the control task.

To measure participants’ risk preferences, we follow a similar approach to Gneezy and

Potters (1997) and design an investment game in which each participant receives an endow-

ment of 15 tokens and must decide how many tokens to put into a risky investment. Then,

Nature randomly determines whether the participant wins or loses the game, with equal

chances. If the participant wins, then they get a return of 2.5 times the investment, plus the

rest of the initial endowment (i.e., the amount out of the 15 tokens that were not invested).

Otherwise, the participant loses the investment and receives only the non-invested portion

of the initial endowment. Therefore, a participant’s investment captures a measure of risk

tolerance: less (more) risk-averse participants are expected to invest more (fewer) tokens in

the game.

After participants finish the QT and control tasks, they proceed to the exit survey.

The survey consists of three sections: (1) questions about their decisions in the QT; (2)

a demographic questionnaire; and (3) the questions from the Framingham Type-A scale

described in §3.2.1.

3.2.4 Experimental Procedures

Our experiment was conducted in Prolific, an online laboratory platform (Palan and

Schitter 2018). Compared with other online subject pools (e.g., Amazon Mechanical Turk),
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Prolific has been found to provide a higher quality of data collected (Peer et al. 2021, Gupta

et al. 2021). An online platform provides a good environment to evaluate people’s valuations

of waiting experiences, as subjects are free to leave the platform as soon as the study is

completed. Thus, a shorter (longer) wait in the experiment directly and precisely translates

into shorter (longer) time spent in the study, which is more difficult to implement in an

in-person laboratory setting. All sessions followed the same procedure for all subjects: (1)

four rounds (i.e., queues) of the QT, (2) the risk reference and value of time tasks, and (3)

the exit survey.

The experiment began with a series of instruction screens to inform participants about

the QT, in general, and the BDM mechanism, in particular (the instructions are available

in the Online Appendix). Participants also saw two examples of the BDM mechanism, one

where the realization of randomness was such that a participant would leave the queue, and

another one where they would stay in line. Then, participants were given three attempts to

pass a comprehension quiz to ensure that they understood the BDMmechanism. Participants

who passed the quiz proceeded to a practice session, where they became familiar with the

procedures to move forward in line, and learned firsthand what waiting in line felt like in

the experiment. The practice session was followed by four rounds of the QT. In each round,

participants encountered a queue and elicitation question with different characteristics; i.e.,

one of the experimental conditions presented in Table 3.1. To reduce the potential impact of

order effects, we prespecified a set of random sequences of conditions that ensured diversity

in service time, length ahead, and experienced length, as well as similarity in the total time

that it took a participant to complete the four queues.

To help participants better understand the BDM mechanism, we asked them to select

the minimum value (in tokens) that an “alternative product” should be worth so that they

would prefer receiving this product over waiting in line for the store’s product. In both

cases, we chose to refer to “products” (compared to, e.g., the more abstract concept of

reward) so that participants could easily relate to them. Similarly, we used the notion of an

alternative product to (i) make the two payment sources (i.e., from completing the line or

being paid to leave) more easily and directly comparable, and (ii) better approximate one of

the motivations for our study, namely, that companies may present people with alternatives
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to waiting in line.

In order to introduce wait in our online study, and to prevent the performance of other

activities while in line, participants had to click a button on the screen to move forward

whenever a virtual client was served. Participants were given 10 seconds to click this button,

and failure to do so resulted in exiting the QT and not receiving any payment for any of

the queues in the QT (for a similar implementation of queues in an online environment, see,

e.g., Hannigan and Flicker 2020, Buell 2021, Rodriguez et al. 2021). A similar strategy was

employed in the value-of-time control task, where participants had to click on a button that

showed up on their screens every 10 seconds.

We implemented our experiment with oTree, an experimental software (Chen et al. 2016).

Participants were not allowed to go back to the previous page to change their decisions or take

the experiment more than once. A total of 299 participants started our experiment and 259

of them passed the comprehension quiz. We removed from our analyses the observations from

15 participants who failed to click to move forward on time in the QT (and therefore did not

complete this task); and from 2 participants who stated a valuation of M = 0 for all queues.

We followed these steps to reduce the chance that our results may be due to participants

who did not pay attention to the QT (and/or were not waiting for the virtual customers to

be served); or to participants who would not voluntarily join or stay in any of our virtual

lines (and whose evolution of completion cost we would thus not observe in practice, see the

discussion in §3.2.1).2 Thus, our analyses are based on a total of 242 participants and 968

observations. Of these participants, 50% identified as female and the average age was 29.3

years old, with a standard deviation of 8.06 years. Participants’ earnings depended on all

rounds of the QT and the two control tasks. Every 150 tokens were worth one U.S. dollar.

Total earnings averaged $6.65 per participant, with a minimum of $3.83 and a maximum of

$7.65. It took participants 35 minutes on average to complete the study.

2We confirm that our main results remain unchanged if we consider all observations. See Table 3.4.
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3.3 Hypotheses

In this section, we discuss our study’s hypotheses. For ease of exposition and in light

of our main research questions, we separately formulate hypotheses for how an individual’s

completion cost is influenced by (i) experienced wait and (ii) characteristics of the prospective

queue (i.e., l, s, and l × s). In addition, given the relative lack of studies regarding how

experienced wait may impact completion costs, we restrict ourselves to the comparison of

having (w > 0) versus not having experienced wait (w = 0), rather than the characteristics

of such wait; i.e., we do not formulate specific hypotheses for the (more detailed) effects of

experienced length, experienced time, etc.

3.3.1 Experienced Wait

In the canonical queuing theory (e.g., Naor 1969), an individual’s completion cost is

commonly modeled as depending only on residual wait (the queue that is still ahead), instead

of elapsed wait (the queue that has been completed). Indeed, Akşin et al. (2013), Afeche and

Sarhangian (2015), Batt and Terwiesch (2015) provide some evidence that an individual’s

utility and abandonment behavior may not be related to her elapsed time in line. Pazgal

and Radas (2008) study the effect of notifying subjects of elapsed time through a clock and

find that it does not influence their queue abandonment. Akşin et al. (2020) conduct lab

experiments to study individuals’ balking and reneging behaviors while controlling for total

waiting time. They indicate that in most scenarios (except for queues with a fast start),

there is no evidence of sunk cost bias: an individual’s reneging decision is not impacted by

her experienced wait. These studies show that individuals’ queuing behavior often follows

the rational assumption that their abandonment decision is based on the remaining wait

instead of their elapsed wait. Thus, we make the following hypothesis.

Hypothesis 1a (H1a): Controlling for the characteristics of the prospective queue, the

experienced wait has no impact on subjects’ completion cost.

However, other behavioral research suggests that more may be going on; in particular,

that waiting results in two opposing forces within an individual. The first strand of studies
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indicates that experiencing queuing wait increases people’s completion costs. Psychology

and marketing scholars find that an idle-wait experience leads to an increase in anxiety,

unpleasantness, and stress, which could thus raise their completion costs (Maister 1984,

Osuna 1985, Carmon and Kahneman 1995). On the other hand, the literature also suggests

that over time, a second competing force—completion commitment—pushes subjects to

continue to stay in line, i.e., decreasing their disutility over time. For example, Webb et al.

(2017) find that, the longer customers spend waiting in unobservable queues, the less likely

they are to renege. Janakiraman et al. (2011) propose a model that combines both forces

within an individual, and experimentally show how such a model can help explain reneging

decisions in unobservable queues. Based on this evidence, we make the following competing

hypothesis.

Hypothesis 1b (H1b): Controlling for the characteristics of the prospective queue, the

experienced wait has a significant impact on subjects’ completion cost.

3.3.2 Prospective Queue

Next, we address the potential impact that the characteristics of the prospective queue

may have on subjects’ completion cost. In particular, we explore the roles of waiting time

(l× s), queue length (l), and service time (s). To the best of our knowledge, we are the first

to concurrently study all three factors, and thus to disentangle whether and to what extent

subjects’ completion cost may be separately impacted by each of them. Most experimental

studies include only the effect of waiting time, or measure the additional effect of queue

length or service time—but not both. Nevertheless, we next build on the existing literature

to formulate hypotheses regarding the potential effect of each of these factors on completion

costs.

We first focus on prospective waiting time (l×s). People treat time as a valuable resource

and are averse to time losses (Leclerc et al. 1995). Thus, it is widely accepted that, all else

equal, people prefer a shorter waiting time (Naor 1969, Mandelbaum and Shimkin 2000,

Shimkin and Mandelbaum 2004, Cui et al. 2018). In experimental and empirical studies, total

waiting time is also found to significantly impact people’s decisions. For example, Hannigan
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and Flicker (2020) conduct a conjoint-analysis study where subjects are systematically asked

to choose among pairs of queues with different characteristics, and find that subjects prefer

queues with shorter average waiting time. Similarly, studies show that people are more likely

to join lines with smaller waiting times in observable queues (Pazgal and Radas 2008). We

thus formulate the following hypothesis.

Hypothesis 2a (H2a): Controlling for the effects of experienced wait, prospective queue

length, and service time, completion cost is increasing in the waiting time of the prospective

queue.

Traditionally, under perfect rationality assumptions, individuals’ cost of waiting is ex-

pected to depend only on prospective waiting time, regardless of whether such time is due

to, e.g., a long and fast queue or a short and slow queue (Hassin and Haviv 1995, Afeche and

Sarhangian 2015). However, a number of studies show that individuals’ behaviors deviate

from this assumption. For example, Conte et al. (2016) note that participants tend to focus

more on queue length than other characteristics when making joining decisions with time

limitation. Lu et al. (2013) suggests that this may be due to the fact that queue length

is a visual cue, easier to perceive than, e.g., service time. Similarly, even after controlling

for waiting time, Akşin et al. (2020) suggest that a shorter length leads to less reneging.

Based on this evidence, we hypothesize that a greater queue length (l) increases subjects’

completion cost.

Hypothesis 2b (H2b): Controlling for the effects of experienced wait, prospective waiting

time, and service time, completion cost is increasing in the length of the prospective queue.

The last queue characteristic that we study is service time (s). Compared to waiting time

and queue length, the effect of service time on completion cost remains understudied, and its

effect is hence less clear. Some studies find no significant impact of speed on people’s queuing

decisions. For example, Conte et al. (2016) indicate that some people do not incorporate

server speed when making joining decisions. Similarly, Lu et al. (2013) study purchase

incidence and find that customers do not react enough to the speed in line. However, other

studies find a significant effect of service time. Batt and Terwiesch (2015) and Bolandifar

et al. (2019), for example, find that emergency-room patients choose a queue with faster
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speed, as it influences their perception of waiting time. Thus, in our setting, service time

may also play a role in influencing people’s completion cost. This is particularly the case

given that we consider a setting where, contrary to Lu et al. (2013) and Conte et al. (2016),

the service time is known with certainty.

Hypothesis 2c (H2c): Controlling for the effects of experienced wait, prospective waiting

time, and queue length, completion cost is increasing in the service time of the prospective

queue.

Finally, we also investigate whether and how individuals’ affective attitudes towards wait-

ing moderate their responses to experienced wait and/or the characteristics of the prospective

queue. Several studies assume that impatience—and in particular, heterogeneous levels of

it—drive individuals’ reneging behavior in queues (e.g., Mandelbaum and Shimkin 2000,

Akşin et al. 2013, Su 2007). Similarly, Durrande-Moreau and Usunier (1999) show that im-

patience has a negative impact on individuals’ satisfaction with a waiting experience. Thus,

it is reasonable to expect that subjects with negative affective attitudes towards waiting may

exhibit a greater level of completion cost. However, it is not clear whether such a difference

may manifest itself as an overall higher level of cost; whether it may arise only after the expe-

rienced wait; or whether it may change how individuals respond, for example, to only one or

some of the factors of a prospective queue. To the best of our knowledge, none of the existing

studies provide a direct measure of how impatience influences completion cost in a manner

that would allow us to answer these questions. Moreover, impatience is typically assumed

in the operations management literature to be equivalent—by construction—to willingness

to continue to wait in line, which is different from our measure based on psychological traits

(e.g., Webb et al. 2017, model patience as an individual’s survival time in a queuing setting).

Therefore, we do not formulate specific hypotheses for the impact of affective attitudes on

our results. Instead, we investigate this as an open question in our empirical analyses.
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3.4 Experimental Results

In this section, we discuss our experimental results. In particular, we use our experimen-

tal data to address our main research questions, namely, how do: (i) the experienced wait

and (ii) the characteristics of the prospective queue influence completion costs? In addition,

we explore whether and how the answers to these questions depend on participants’ affective

attitudes towards waiting.

Table 3.2 presents summary statistics of completion cost by experimental condition.

First, rows 1–3 present participants’ average completion cost for different values of experi-

enced length (w), given the same prospective length (l = 7 customers) and varying service

time (s). At the aggregate level, i.e., without distinguishing by affective attitudes, we do

not observe any consistent effect—positive or negative—on completion cost as experienced

length increases. A two-way ANOVA test, with interaction between service time and experi-

enced length, corroborates this observation: completion cost is only correlated with service

time (p < 0.01), but neither experienced length nor its interaction with service time are sig-

nificant (p > 0.1). Conditional on l = 7, this main effect of service time on completion cost

is also confirmed with a nonparametric test (Kruskal-Wallis test, p < 0.001). Second, rows

3–5 in Table 3.2 summarize participants’ completion cost as a function of service time and

prospective length, given experienced length w = 0 (i.e., before any wait has occurred). We

observe an overall increasing trend in average completion cost as service time or prospective

length increase. Through a two-way ANOVA test, we confirm that their main effects are

significant (p < 0.01), though surprisingly, their interaction is not (p = 0.496). We also

confirm these results with nonparametric tests: conditional on w = 0, we find significant

main effects of prospective length and service time on completion costs (Kruskal-Wallis test,

p = 0.01 and p < 0.001, respectively).

In addition, as discussed in §3.2.1, we calibrate the parameters of the virtual store and

queue so that most participants, if they were given the option, would voluntarily join and

then choose to stay in the experimental queues. Indeed, we find that the completion cost is

equal to 100 (or equivalently, the utility M is equal to 0) in only 3.20% of the observations.

In other words, in almost 97% of the cases, subjects assign a positive value to staying in line;
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Table 3.2: Summary Statistics of Participants’ Completion Cost

Prospective Length (l) Experienced Length (w) Service Time (s)

(clients) (places) (5 secs./client) (10 secs./client) (20 secs./client)

7 6
20.74 (25.61) 34.84 (29.44) 33.68 (30.94)

N=72 N=61 N=56

7 3
27.05 (29.09) 29.73 (27.10) 34.64 (31.26)

N=64 N=70 N=64

7 0
20.67 (28.31) 29.59 (28.46) 36.59 (30.93)

N=69 N=68 N=61

10 0
25.57 (30.25) 32.43 (29.76) 45.40 (33.12)

N=67 N=67 N=63

13 0
32.49 (31.83) 35.53 (31.62) 44.84 (27.36)

N=73 N=57 N=56

Note: Mean (standard deviation) of completion cost. N denotes the number of observations in each cell.

i.e., in the absence of an alternative offer, they would choose to join and/or stay in line.

To formally investigate our hypotheses, we consider the following random-effects Tobit

regression:

V ∗
ij =Intercept+ βW · ExpLengthij + βS · ServT imeij + βL · Lengthij+

βWS · ExpLengthij · ServT imeij + βLS · Lengthij · ServT imeij + βj ·Roundj + µi + ϵij

(3.1)

We use a Tobit model because the value of V is bounded between 0 and 100, with 18.08%

(3.20%) of all observations corresponding to V = 0 (V = 100). Thus, a Tobit model

is recommended (Wooldridge 2002, pp. 517–542). Similarly, we include participant-level

random effects because we have four observations for each participant, one for each round.

The dependent variable V ∗
ij denotes the Tobit model’s latent variable for participant i in

round j. ExpLength, ServT imeij, and Lengthij, are the experienced length (in number of

places moved), service time (in seconds per person), and prospective length (in number of

customers) of the queue that participant i observes when receiving the elicitation question

in round j. ServT imeij and Lengthij are centered around their median values, i.e., 10
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seconds per person and 10 customers ahead, respectively.3 We control for round effects with

the dummy variables Roundj, equal to 1 in round j and 0 otherwise (with round 1 as the

baseline level). Finally, µi is the individual error term and ϵij is the independent error across

participants’ responses in the QT.

In addition to the model in Equation (3.1), we also consider variations of it where we

explore whether our results are moderated by participants’ affective attitudes towards wait-

ing. In particular, we define the dummy variable NegAffecti as equal to 1 if participant i

responded Yes to the question “Do you get upset when you have to wait for anything?”, and

equal to 0 otherwise. Participants with NegAffecti = 1 (NegAffecti = 0) are hereafter

referred to as having (not having) negative affective attitudes, and they correspond to 28.9%

(71.1%) of all observations. As discussed in §3.2, we also asked participants their agreement

with the statement “In comparison to others, are you a person who is generally willing to

give up something today in order to benefit from that in the future, or are you not willing to

do so?” However, only 9.5% of participants indicate that they are unwilling or strongly un-

willing to do so, versus 80.6% of them indicate that they are willing or strongly willing. The

skewness of these responses makes it difficult to use them for moderation purposes. Neverthe-

less, we note that participants’ level of agreement with the two affective-response questions

is highly correlated (χ2 test, p < 0.05). Thus, participants with NegAffect = 1 are also

significantly more willing to “give up something today” than those with NegAffect = 0.

In what follows, we discuss our main results separately by the effects of experienced wait

(Hypotheses 1a–1b) and prospective queue characteristics (Hypotheses 2a–2c).

3Since the interaction between ServT imeij and Lengthij is also included in Equation (3.1), centering
ensures that the main effect of service time (length) is evaluated at a meaningful level of length (service
time)—as opposed to when the non-focal variable takes the meaningless value of 0. Moreover, centering
helps to reduce the correlation between single variables and interaction terms, without influencing either
the estimate or statistical significance of the latter (Jaccard et al. 1990, Dalal and Zickar 2012, Iacobucci
et al. 2016). Indeed, we confirm that multicollinearity is not a serious concern in our analyses: the greatest
coefficient of correlation (in absolute terms) between our coefficients is less than 0.6; and the variance inflation
factor (VIF) that we obtain with an OLS-specification (where our results continue to hold) is less than 3.3
for all terms, including interactions.
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3.4.1 Results: Experienced Wait

Table 3.3 summarizes our results under different model specifications. First, Column (1)

presents the results of Equation (3.1), i.e., without considering affective attitudes or addi-

tional control variables. We find that the variable ExpLength is not statistically significant,

and neither is its interaction with service time. Thus, at the aggregate level and controlling

for the characteristics of the prospective queue, we do not find a significant effect of experi-

enced wait (either as number of places moved, ExpLength, or as experienced time in line,

ExpLength · ServT ime) on completion cost.

However, the apparent lack of effect of experienced wait at the aggregate level masks a sig-

nificant moderation effect based on participants’ affective attitudes towards waiting. Column

(2) in Table 3.3 shows the regression results when we include the interactions of ExpLength,

ServT ime, and ExpLength · ServT ime with the dummy variable NegAffect. With these

added variables, we find that ExpLength · ServT ime is significant and negative; i.e., condi-

tional on participants not having negative affective attitudes (i.e., when NegAffect = 0, the

baseline level), a long experienced time leads to a lower disutility, compared to those who

have not experienced wait. Conversely, we find that ExpLength · ServT ime ·NegAffect is

statistically significant and positive. As a result, conditional on participants having negative

affective attitudes (i.e., when NegAffect = 1), a long experienced time leads to a greater

disutility.4

The above result is driven, and hence best illustrated, by participants’ behavior in slow

queues (i.e., when ServT ime = 20 secs./client). In this service-time condition—where the

experienced times are the longest—we observe (i) clear trends for the effects of experienced

wait on participants’ completion costs, and as a result, (ii) the biggest differences between

having vs. not having experienced wait. Figure 3.2 depicts these costs, conditional on

Length = 7 and ServT ime = 20, separately by affective attitudes and experienced length.

Consistent with the regression results, we find that as experienced length increases, comple-

tion costs decrease (increase) among participants without (with) negative affective attitudes.

As a result, when NegAffect = 0, the average completion cost decreases from 37.7 tokens

4The sum of the regression coefficients for ExpLength ·ServT ime and the triple-interaction ExpLength ·
ServT ime ·NegAffect is equal to 0.215, which is significantly greater than zero (z test, p < 0.1)
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Table 3.3: Random-effects Tobit Model Results for Completion Cost

(1) (2) (3) (4)
Intercept 34.55*** 34.57*** 34.73*** 24.18**

(2.45) (2.77) (2.77) (8.00)
ExpLength 0.20 0.15 0.34 0.39

(0.45) (0.50) (0.52) (0.52)
ServTime 1.29*** 1.38*** 1.37*** 1.36***

(0.17) (0.20) (0.20) (0.20)
NegAffect 1.18 1.09 1.75

(4.47) (4.48) (4.34)
ExpLength · ServTime -0.08 -0.19* -0.21* -0.20*

(0.07) (0.08) (0.08) (0.08)
ExpLength · NegAffect 0.09 -0.71 -0.70

(0.82) (1.01) (1.00)
ServTime · NegAffect -0.27 -0.27 -0.26

(0.36) (0.36) (0.36)
ExpLength · ServTime · NegAffect 0.40** 0.50** 0.48**

(0.13) (0.16) (0.16)
Length 1.64*** 1.64*** 1.98*** 2.02***

(0.45) (0.45) (0.52) (0.52)
Length · ServTime 0.03 0.02 -0.02 -0.01

(0.07) (0.07) (0.08) (0.08)
Length · NegAffect -1.36 -1.35

(1.01) (1.01)
Length · ServTime · NegAffect 0.15 0.14

(0.15) (0.15)
Round = 2 -8.49*** -8.66*** -8.78*** -8.75***

(2.24) (2.23) (2.22) (2.23)
Round = 3 -7.51*** -7.69*** -7.76*** -7.76***

(2.24) (2.23) (2.23) (2.23)
Round = 4 -9.10*** -9.70*** -9.83*** -9.84***

(2.24) (2.23) (2.23) (2.23)
Risk 0.78

(0.49)
TimeValue 0.14***

(0.04)
Male 3.52

(3.85)
Age -0.17

(0.24)

Note. Standard errors in parentheses. + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
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Figure 3.2: Effects of Experienced Length on Completion Costs, by Affective Attitudes

towards Waiting (ServT ime = 20 secs./client)
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Note. All cases have equal prospective length at 7 clients. The error bars correspond to standard errors of
the mean.

at ExpLength = 0, to 28 tokens at ExpLength = 6 (one-tailed Wilcoxon rank-sum test,

p < 0.1). Conversely, when NegAffect = 1, the average completion cost increases from

34.6 tokens at ExpLength = 0, to 49.1 tokens at ExpLength = 6 (one-tailed Wilcoxon

rank-sum test, p < 0.1). Interestingly, as a result of these opposite effects, we observe that

the completion costs of the two affect-types are statistically similar before the experience of

wait (two-tailed Wilcoxon rank-sum test, p = 0.7), but they are significantly different from

each other after moving 6 places in line (two-tailed Wilcoxon rank-sum test, p < 0.05).5

Following the suggestion by Janakiraman et al. (2011) that two opposing forces are at play

while waiting in line, we conjecture that the net effect of experienced time on participants

without negative affective attitudes is dominated by a sense of commitment (ibid, p. 971)

to complete the line; whereas it is dominated by an increasing sense of displeasure (ibid, p.

973) among participants with negative affective attitudes. We summarize these observations

5Figure 3.5 shows the effect of experienced length on completion costs when ServT ime = 5 and when
ServT ime = 10. In the latter case, we do not observe significant differences by ExpLength. When
ServT ime = 5, we continue not to observe significant differences among participants with NegAffect = 1,
but find a small increase in completion cost among participants with NegAffect = 0 after the experience
of wait (from 20 tokens when ExpLength = 0, to 23.6 tokens when ExpLength = 6, one-tailed Wilcoxon
rank-sum test, p < 0.05). Following Janakiraman et al. (2011), we conjecture that among these participants,
the experience of wait may have a nonlinear effect, with completion costs slightly increasing following a
short wait, before decreasing for longer waits. The study of potential nonlinear effects of experienced time
on completion costs is beyond the scope of this paper.
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in the following result:

Result 1: The effect of experienced wait on completion cost depends on participants’ affec-

tive attitudes towards waiting. Controlling for the characteristics of the prospective queue,

a long experienced time is associated with an increase (decrease) in completion costs among

participants who have (do not have) negative affective attitudes. Thus, we find support for

H1b.

Before continuing, we make the following observation. Since participants’ affective atti-

tudes are self-reported and measured at the end of the study, it is possible for this attitudinal

question to be used by participants to rationalize their responses in the QT. In other words,

participants who state a high (low) completion cost may explain their choices by indicating

that they have (do not have) negative affective attitudes. However, we do not find evidence

to support this conjecture. First, we observe in Table 3.3 that the variable NegAffect is not

statistically significant, i.e., it does not have a main effect on completion costs. Similarly, we

find that the average completion cost (averaged across rounds for each participant) is not

significantly different between participants who have versus do not have negative affective

attitudes (34.26 vs. 30.91 tokens, respectively; Wilcoxon rank-sum test, p = 0.29).

3.4.2 Results: Characteristics of the Prospective Wait

Next, we study how the characteristics of the prospective queue impact participants’

completion cost. In particular, based on the model formulation in Equation (3.1), we are

interested in understanding the effects of Length, ServT ime, and their interaction, where

the latter corresponds to (prospective) waiting time. Even though the regression results

include observations from participants who have and have not experienced wait, it is worth

noting that: (i) since the variable ExpLength is also included in the regression model, the

three aforementioned coefficients are evaluated in the baseline level where ExpLength = 0;

and (ii) our results remain unchanged if we only include observations from participants who

have not experienced wait.

First, we observe in Column (1) of Table 3.3 that the main effects of service time and

length are positive and statistically significant; i.e., participants’ completion costs increase
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Figure 3.3: Effects of Prospective Length and Service Time on Completion Cost
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with them. Surprisingly, though, waiting time—captured by the coefficient estimate for

Length·ServT ime—is not statistically significant. Figure 3.3 helps to illustrate these results.

For each combination of prospective length and service time, it shows participants’ average

completion cost when ExpLength = 0. Thus, it provides a graphical representation of rows

3–5 in Table 3.2. As previously noted, a two-way ANOVA test confirms that the main effects

of length and service time are significant (p < 0.01), but their interaction is not (p = 0.496).

Controlling for prospective length, the difference in average completion cost between queues

with 20 and 5 secs./client is approximately equal to 12.32, 19.83 and 12.35 tokens when the

prospective length is equal to 7, 10, and 13 clients, respectively. Similarly, controlling for

service time, the difference in average completion cost between queues with 7 and 13 clients

in prospective length is approximately equal to 11.8, 5.9, and 8.3 tokens when the service

time is 5, 10, and 20 secs./client, respectively. Thus, we find that increasing service time

(length) has a similar effect on completion costs regardless of the prospective length (service

time).

These results are consistent with participants’ responses to the exit survey regarding how

they determined the utility M of the queue. Specifically, we ask three 5-point Likert scale

agree/disagree questions regarding how they determined this value: (i) “I estimated the total

time that it would take me to complete the line”; (ii) “I considered how long it took to serve
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each customer”; and (iii) “I considered the number of customers waiting ahead of me.” We

find that participants agree significantly more with using service time and queue length to

determine the value of M , compared to using an estimate of waiting time (one-tailed paired

Wilcoxon rank-sum tests, p < 0.01).

Next, column (3) in Table 3.3 introduces interaction terms between the dummy variable

NegAffect and all variables in Equation (3.1), i.e., with respect to both experienced and

prospective wait. Interestingly, we find that affective responses to waiting do not moderate

the effect of either service time or prospective length on participants’ completion cost. In

addition, similar to column (2), NegAffect also has no significant main effect on completion

cost. Thus, combined with Result 1, we conclude that participants’ affective attitudes have

an impact on completion cost only after participants have experienced wait. This observation

suggests that our affective measure captures how participants react to the experience of

wait, but that they do not seem to anticipate these emotional reactions when evaluating

prospective wait. Finally, Column (4) confirms that our results continue to hold when we

control for participants’ control-task responses and demographic characteristics. We find that

the variable TimeV alue, which corresponds to the minimum amount that a participant needs

to be paid to accept a two-minute wait, has a positive and significant effect on completion

cost. Across all model specifications, we also find that the dummy variables for rounds > 1

have a significant negative effect, i.e., completion cost is lower in rounds 2–4 than in round

1 (the baseline level).

To summarize, we find the following result regarding the effect of the prospective queue

characteristics on participants’ completion cost:

Result 2: Participants’ completion cost increases with both the length and service time

of the prospective queue. Surprisingly, however, the interaction between length and service

time—prospective waiting time—is not statistically significant. Thus, we find support for

Hypotheses 2b and 2c, but not for 2a. These results hold regardless of participants’ affective

responses to waiting.

Note that this result does not mean that participants do not care about how long they

have to wait in line. In our experiment, participants correctly anticipate that an increase in
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service time or queue length increases the total time that it will take for them to complete

a queue.6 However, our results demonstrate that this response is not directly proportional

to the waiting time that an extra person or an extra second-per-person adds to the wait.

This result is all the more striking when we consider that in our experiment, there is no

uncertainty in service time, which makes the computation of waiting time trivial.

3.4.3 Additional Results: Wage Rate

Finally, we discuss two additional results regarding participants’ wage rate, i.e., the

amount of money that participants earn per unit of time. This measure is widely used in

the economics literature as a measure of a subject’s opportunity cost (e.g., Soman 2001,

Okada and Hoch 2004). First, we validate that in our experiment, different sources of wage

rate yield similar results. In particular, we have three sources of information to compute

a participant’s wage rate: the QT, the value-of-time control task, and the suggested pay

rate from Prolific. In the QT, we compute a participant’s wage rate as their completion

cost divided by the time remaining to complete the queue, averaged over the four rounds

of the game. In the value-of-time task, we similarly compute a participant’s wage rate as

the minimum amount that the participant needs to be paid to accept a two-minute wait,

divided by two minutes. Finally, we consider the suggested pay rate from Prolific to be equal

to $9.60/hour, which was the minimum amount that Prolific encouraged researchers to pay

their participants when our study was conducted (ProlificTeam 2022). To compare these

measures, we transform each of them to dollars/hour. We observe that the three measures

are similar to each other, equal to $9.89/hour, $11.46, and $9.60, respectively. Furthermore,

the average wage rate from the QT is statistically comparable to that from the control task

(Wilcoxon rank-sum test, p = 0.33) and Prolific (Wilcoxon signed-rank test, p = 0.45).

In other words, participants’ opportunity costs are consistent when we compare the BDM

procedure in a queuing versus simple-wait situation, as well as between the QT and payments

6In our post-experiment survey, we ask the following 5-point agree/disagree Likert questions: “When
I estimated the total time that it would take me to complete the line, I considered how long it took to
serve each customer;” and “When I estimated the total time that it would take me to complete the line,
I considered the number of virtual customers waiting ahead of me.” We find that 87.60% (83.88%) of the
participants somewhat or strongly agree that they use service time (queue length) to estimate waiting time.
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Figure 3.4: Effects of Prospective Length and Service Time on Wage Rate
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in Prolific. This finding suggests that the BDM mechanism is a promising and appropriate

way to measure individuals’ completion costs in queuing systems.

Second, we note that Result 2 has important implications for our understanding of in-

dividuals’ wage rates. In particular, since participants’ completion costs are not directly

proportional to prospective waiting time, our results suggest that—contrary to rational-

behavior predictions—individuals do not exhibit a constant wage rate. Instead, in a queuing

setting, the monetary value that individuals assign to time depends on the characteristics

of the queue. Figure 3.4 illustrates this observation by showing how the characteristics of

the prospective wait affect participants’ average wage rates. Using a two-way ANOVA test,

we find that the wage rate is significantly impacted by length and service time (p < 0.01),

while not impacted by their interaction (p = 0.72). In particular, we observe a tendency

of the average wage rate to decrease in queue length and service time; i.e., individuals ad-

just their cost of waiting so that, for each unit of time, they demand a lower pay when the

queue is longer or slower. A similar result is observed by Leclerc et al. (1995), who find that

participants’ opportunity costs depend on the waiting situation, and the marginal value of

time is higher in a short wait than in a long wait. However, to the best of our knowledge,

we are the first to find evidence of and quantify this behavior in an incentivized, observable

queuing setting.

67



3.5 Conclusions

In this study, we conduct an incentivized human-subject experiment to investigate how

(i) the experienced wait and (ii) the characteristics of the prospective wait influence individ-

uals’ completion costs in queues. Contrary to past studies that rely solely on binary balking

or reneging decisions, we introduce the use of the BDM mechanism to directly measure par-

ticipants’ completion costs at different points in time and with varying queue characteristics.

Thanks to this approach, we not only obtain a more granular measure, but can also compare

the completion cost of participants who have versus have not experienced wait while control-

ling for the (perfectly known) prospective queue. As a result, we are the first to isolate the

impact that waiting has on individuals’ completion costs. Similarly, our methodology and

experimental design allow us to measure the effects that the length, service time, and waiting

time of a prospective queue have on individuals’ utility. To the best of our knowledge, our

study is the first to disentangle the impact of these queue characteristics.

Our results challenge two important rationality assumptions that are common in queuing

theory. First, we find that the experienced wait cannot always be ignored; i.e., completion

costs may not depend only on the prospective queue. Though a similar observation has been

made in the literature regarding within-subject differences over time (e.g., Janakiraman

et al. 2011), our results show that there are important between-subject differences as well.

Given the same wait and prospective queue, the experienced wait may change participants’

completion costs in opposite directions—and we identify affective attitudes towards waiting

as a key moderator of this effect. Second, our results also challenge the assumption that,

when it comes to the prospective queue, all that matters is the total time that it takes to

complete it. By concurrently evaluating the effects of queue length, service time, and waiting

time, we find that length and speed have additive effects; i.e., they are not proportional to

the impact that an extra person in line or an additional second/person have on waiting

time. This result echoes past findings that suggest people’s perceptions of wait are driven by

heuristics (e.g., Conte et al. 2016), such as the easily observable queue length, rather than

by a rational calculation of the total time ahead. Interestingly, however, we observe both of

these deviations from rational behavior in a context where the length and service time of the
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queue are perfectly known, and hence the waiting time can be easily estimated. Therefore, the

effect of experienced wait cannot be attributed to learning about the prospective wait; and

the additive effects of length and speed cannot be attributed to the difficulty of estimating

waiting time. In other words, we find evidence of behavioral responses to experienced wait,

length, and service time, with an experimental design that minimizes rational alternative

explanations for our observations.

From a practical standpoint, our methodology allows us to assign a monetary value

to individuals’ perceived cost of completing a queue. This can be particularly helpful to

decision-makers who are increasingly offering monetary incentives and other forms of alter-

natives to individuals to manage congestion in queues. For example, transit agencies have

offered rewards for people to change their commuting routes and/or departure times, par-

ticularly by leveraging big data from mobile phones (Greene-Roesel et al. 2018, Sun et al.

2020a). Or, in a healthcare setting, patients in Ontario who need to test for sexually trans-

mitted infections have the option to “pay to skip the line” to see a provider at public clinics,

and instead provide samples at private testing labs (MacKinnon et al. 2021). In this context,

our results suggest that subjects’ willingness to accept such incentives, or willingness to pay

for wait-reduction options, may be impacted by perceptions of queue length and service time

in a manner that is not necessarily proportional to the waiting time of the queuing situation.

Regarding when to make such offers, we identify under which conditions decision-makers

should pay special attention to whether individuals have been waiting in line (when service

speed is slow); and that individuals’ responses to experienced wait—and thus their likelihood

to accept or reject alternative offers—is likely to depend on their affective attitudes towards

wait.

Finally, the additive nature of the effects of length and speed on people’s completion costs

have important implications for the optimal allocation of resources in a queuing system.

For example, a decision to pool multiple queues can reduce overall waiting time, but it

may backfire due to the associated increase in queue length—and to what we observe are

customers’ behavioral responses to it. Similarly, our results suggest that in very long and/or

very slow queues, an additional person or additional delay in service time may not change

customer completion costs as much as predicted by the rational model. Conversely, the
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opposite is true for very short and/or very fast queues, where participants may react to

an additional person or an increase in service time more than predicted by the rational

model—even when the increase in waiting time is small.

We believe that the framework we introduce in this study is easy to extend to analyze

people’s completion costs, and utility more broadly, in more complex queuing settings. Thus,

we identify several interesting future research directions. For example, researchers can use

the BDM mechanism to study a context featuring uncertainty. This would allow them to

analyze both the main effect of uncertainty on completion costs, as well as whether and

how it impacts the roles of experienced wait, length, and service time identified in the

present study. Similarly, this incentivized mechanism could be used to evaluate completion

costs throughout a queue to get a more detailed representation of how these costs evolve

over time. Our study could also be extended to incorporate additional factors that were

considered outside the scope of our present work, such as the the effect of having people

waiting behind the focal subject, or the value of the product or service, to name a few.

Finally, it would be interesting to investigate whether there are any significant non-linear

effects of experienced time, prospective length, or service time on completion costs. We hope

that our work will help other researchers to continue to investigate behavioral deviations from

rationality in queuing settings, and that it may help lay the groundwork for future research

on the management of queues through incentives and alternative offers.
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Table 3.4: Random-effects Tobit Model Results for Completion Cost with All

Observations

(1) (2) (3) (4)
Intercept 34.81*** 34.48*** 34.64*** 28.13***

(2.43) (2.76) (2.76) (8.08)
ExpLength 0.13 0.13 0.30 0.34

(0.44) (0.49) (0.51) (0.51)
ServTime 1.24*** 1.29*** 1.28*** 1.28***

(0.17) (0.20) (0.20) (0.20)
NegAffect 2.20 2.11 2.44

(4.46) (4.46) (4.37)
ExpLength · ServTime -0.06 -0.16* -0.19* -0.18*

(0.07) (0.08) (0.08) (0.08)
ExpLength · NegAffect -0.03 -0.80 -0.80

(0.80) (0.99) (0.99)
ServTime · NegAffect -0.16 -0.15 -0.13

(0.36) (0.36) (0.36)
ExpLength · ServTime · NegAffect 0.38** 0.47** 0.45**

(0.13) (0.16) (0.16)
Length 1.52*** 1.52*** 1.84*** 1.88***

(0.45) (0.44) (0.52) (0.52)
Length · ServTime 0.02 0.02 -0.01 -0.01

(0.07) (0.07) (0.08) (0.08)
Length · NegAffect -1.31 -1.31

(1.00) (1.00)
Length · ServTime · NegAffect 0.14 0.14

(0.15) (0.15)
Round controls YES YES YES YES
Additional controls NO NO NO YES

Standard errors in parentheses. + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
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Figure 3.5: Effects of Experienced Length on Completion Costs, by Affective Attitudes

towards Waiting (ServT ime = 5 and 10 secs./client)

Note: All cases have equal prospective length at 7 clients. The error bars correspond to standard errors of
the mean.
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4.0 On Joining Decisions When Customers Travel to a Queue: An

Experimental Study

Traditional queuing systems assume that people join a queue immediately after they

decide to join. However, in practice, it is common that people need to spend time and effort

going to a store for a service or product. In this study, we focus on a queuing system in which

customers have to travel to wait. That is, customers first need to decide whether to travel to

a store and then start to wait after arrival. We conduct an experiment to study how travel

impacts individuals’ valuations of a queuing system that they must travel to. In addition,

we investigate what mechanisms and theories drive people’s behavior. With the Becker-

DeGroot-Marshak (BDM) mechanism, our pilot experiment shows that the difference in how

people value a service system before and after traveling is based on the characteristics of the

queue. Interestingly, we observe that individuals’ utility is significantly higher before than

after traveling to the queue when queues are fast and long. However, when queues are slow

and short, we find partial support for their utilities being higher after than before traveling.

From a rational point of view, the value of queues should be the same, controlling for total

waiting time. To explain this phenomenon, we refer to the mechanism of the “cold-to-hot”

empathy gap with respect to the pain associated with waiting (Read and Loewenstein 1999).

Our next step is to use a new experimental study to investigate the difference in affective

states (momentary emotion) before and after traveling to a queue. In addition, we plan to

investigate whether the difference in individuals’ utility valuations and affective states before

and after travel relates to the information-sharing level (i.e., basic, sufficient, and complete

waiting information) of a queuing service system in which people must travel to. In other

words, we will determine whether customers’ gaps in utilities and affective states before and

after traveling are reduced when they are provided with a higher information-sharing level

about waiting time, thus impacting their queuing decisions.
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4.1 Introduction

Service providers nowadays are providing more online queuing information (e.g., wait-

ing time forecast) than ever to serve customers better and improve their wait experience.

For example, Google offers real-time “Popular Times” information, which is about service

providers’ relative busyness compared to their historical data. The trend of sharing queuing

information happens both in unobservable settings (e.g., call centers (Yu 2020)) and in ob-

servable settings (e.g., restaurants on the Yelp waitlist (Hu et al. 2021)). This information

helps people better anticipate a queuing system and decide whether to join the wait in line

remotely before traveling to a store (Hassin and Roet-Green 2020).

Though they realize the importance of travel to a queue, these studies do not focus on

the impact of the travel itself and ignore the time and effort that customers spend to travel

to the remote queuing system. That is, whether people’s joining decision to visit a store that

requires travel differs before and after traveling is unclear. It is a critical question since, in

practice, a customer checks the online queuing information to decide whether to travel and

then she determines whether to join the queue at the store. She has to make two decisions in

tandem to queue for the service output. Therefore, our study aims to investigate customers’

behavior before and after traveling to a queue.

Our research is also motivated by a practical question in Smart City. To mitigate trans-

portation congestion during rush hours, social planners often use incentives to nudge pas-

sengers’ traveling decisions to smooth the traffic (Spielman 2017, Greene-Roesel et al. 2018).

The question is thus whether to send incentives when customers are at home or when they

are at transportation stations. The program’s effectiveness depends on the difference in peo-

ple’s utility before and after the travel to a queue. Without knowing this difference, it is

impossible to know when to send incentives to customers economically and effectively.

In this chapter, we attempt to fill the gap by conducting a human-subject experiment.

In particular, we study the following questions: (1) How are customers’ utilities different

before and after traveling to a queuing system, controlling for the total waiting time? (2)

If there is a difference between before and after traveling, what mechanism drives the cus-

tomer’s behavior? (3) Does the information-sharing level of a queue before traveling impact
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a customer’s valuation? Besides the traditional literature that studies customers’ valuations

indirectly through balking, we also measure individuals’ utilities by employing the Becker-

DeGroot-Marshak (BDM) mechanism. This incentive-compatible method helps us to elicit

people’s actual evaluations truthfully and directly. By controlling the queuing characteristics

and the timing of our BDM elicitation questions, our pilot study allows us to (i) compare

participants’ utilities with the same prospective waiting time between before and after trav-

eling to a queue; and (ii) measure the effects of queue length and service time on individuals’

joining decisions and utilities.

4.2 Literature Review

In this paper, we investigate the impact of travel to a queue on people’s joining decisions

by conducting a human-subject experiment to measure people’s valuation before and after

the travel. The valuation of a queuing system is determined by individuals’ estimation of the

wait and the travel before obtaining service. We also apply behavioral theory to investigate

individuals’ psychological changes regarding travel. Thus, our research contributes to two

streams of literature on the queuing system.

4.2.1 Joining Decisions in Queues

People’s decision about whether to join or balk a queue is one of the most commonly

studied research questions in the queuing literature. Since Naor (1969)’s work, researchers

have started incorporating human decision-making into queuing systems. It is then widely

assumed in the following studies that a customer joins a queue to maximize her utility. Our

study falls into this stream of literature by extending inquiry into the impact of travel to a

queue on people’s utilities and joining decisions.

Assuming that people join a queue instantly, Naor (1969) first models a customer’s joining

strategy using a utility function with homogeneous waiting costs in queues. The customer’s

joining decision thus depends on the remaining waiting time. In an observable setting,
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it is widely assumed in theoretical modeling research that individuals incorporate service

speed for each customer and queue length before service to calculate the total remaining

waiting time for balking decisions (Wang et al. 2010, Afeche and Sarhangian 2015, Cui et al.

2018). This rational assumption is also supported by multiple empirical studies, which find

that individuals’ balking decisions are determined by total waiting time (Hui and Tse 1996,

Hannigan and Flicker 2020).

However, other empirical and experimental studies show that people do not strictly

follow rational assumptions. Instead, it is how individuals estimate total waiting time that

determines their decisions (Donohue et al. 2018). In other words, individuals’ expectation

of the total waiting time relates to the queuing characteristics (i.e., service time and queue

length). Pazgal and Radas (2008) find that participants’ balking strategies depend solely on

queue length in a postal office queuing setting. Conte et al. (2016) and Lu et al. (2013) find

that people focus more on queue length than service speed to form their estimation of total

waiting time and accordingly to make balking decisions. In addition, other studies show

that in hospital emergency departments, balking decisions of patients are impacted by both

queue length and service speed (Batt and Terwiesch 2015, Bolandifar et al. 2019). Similarly,

Chapter 3 of this dissertation finds that controlling for the length of time spent in the queue,

people’s completion cost of a queue is driven by the main effects of service time and queue

length instead of their interaction (i.e., the total waiting time).

To the best of our knowledge, only two papers investigate people’s joining decisions in

a queuing system that people must travel to. Hassin and Roet-Green (2020) is the first

paper that discusses a queuing system that considers travel. They focus on an order-onsite

model in that customers first decide whether to travel to a store with or without queuing

information and then decide whether to join the queue for the service or not. Their study

finds that to maximize system-performance evaluation, the service provider should conceal

its queue-length information at low system congestion and disclose it at high congestion.

Instead of an order-onsite model, Sun et al. (2020b) study an order-ahead model that remote

customers can order before arriving at the facility. Namely, the traveling and the waiting

happen simultaneously. Different from these two pioneering studies that theoretically model

a queuing system that requires travel, our research focuses on the behavioral impact of the
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travel to an observable queue, as well as the mechanism that drives individuals’ behavior.

That is, we investigate how individuals’ joining decisions and utilities differ at home before

travel and at the service location after travel.

4.2.2 Psychological Change in Queues

Researchers have long studied people’s psychological changes in the queuing literature.

People hate waiting, as waiting generates anxiety and stress (Osuna 1985). During waiting

in a queue, the idle wait worsens people’s affective responses (Carmon and Kahneman 1995)

and lengthens their feeling of wait (Maister 2005). Janakiraman et al. (2011) investigate

individuals’ abandonment decisions while waiting in line. The experienced long wait in line

leads to a sunk cost that increases people’s consuming amount (Ülkü et al. 2020). In addition,

Chapter 3 studies the effects of experienced and prospective wait on individuals’ utilities in

queues. Different from these studies that focus on the psychological change in queues that

customers can join instantly, this study extends to a queuing system for customers before

they travel to the queue and is the first to investigate the psychological perspective of the

travel to a queue.

From a rational point of view, people’s value of a queue is determined by the waiting time

ahead. In other words, an individual’s valuations are the same between two waits with the

identical waiting time. However, in the perspective of psychological cost, people may endure

a sunk cost after experienced wait (Soman 2001). That is, in our scenario, an individual

would have a higher utility after the travel. On the other hand, being at home and being at

the store are different for individuals due to the change in environment, which would cause

a difference in human behavior. To explain this phenomenon, we refer to the mechanism of

“cold-to-hot” empathy gaps with respect to the pain of wait (Read and Loewenstein 1999).

The theory states that people would have various affective states in different stages of a task,

which eventually impact their evaluation and decision-making. Similarly, in our scenario,

people in “cold” states (i.e., at home) would mispredict their tendency in future “hot” states

(i.e., at the store). They may regret their decision, made before travel (i.e., in “cold” states),

by overestimating their utility and valuation at the store. Namely, “cold-to-hot” empathy
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gaps would impede self-control (Loewenstein 2005) and could make an individual’s utility

higher before than after travel.

Research on people’s behavior in a queuing system that people must travel to is rare (Sun

et al. 2020b, Hassin and Roet-Green 2020). Different from their theoretical research, this

study contributes to behavioral aspects of travel in both theory and practice. As complemen-

tary to the current behavioral queuing literature, our study enlarges the queuing behavior

research by discussing the impact of travel on queuing decisions and the theory that drives

people’s behavior. In addition, it is valuable and critical for the service providers in practice.

Our study sheds light on customer queuing system management before and after store travel.

4.3 Hypotheses

This section discusses our main hypotheses in this paper. To address our main research

questions, we formulate separate hypotheses to investigate (1) the effect of travel on people’s

utilities, (2) how affective states connect to people’s utilities before and after traveling, and

(3) whether information level alters people’s affective states.

4.3.1 The Travel to a Queue

With the benefit of online queuing information, customers are able to check the prospec-

tive wait at a store before traveling. It is common in daily life for customers to travel to a

store. However, how travel impacts individuals’ joining decisions is unclear. To the best of

our knowledge, we are the first to study the impacts of travel on people’s utility related to

a queuing system. Based on the relevant literature on people’s psychological cost in time,

travel may lead to a higher utility after traveling due to the sunk cost fallacy (Soman 2001).

In other words, the effort and time spent on the travel may increase people’s intention to wait

in line for the service. Therefore, we first hypothesize that individuals’ utilities regarding a

queuing service system become higher after traveling to the queue.

Hypothesis H1a (H1a): Controlling for total waiting time, subjects’ utility is higher after
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than before traveling to a queue.

On the other hand, considering the change of location due to the travel, we refer to the

findings of Loewenstein (2005) that people’s decisions may vary, depending on self-reported

discrepancy in a “cold to hot” scenario (i.e., from home to store). At home, a customer’s

utility of the remote service system depends on her expectation and imagination of the wait,

which may change when she observes the queue. We refer to the home as the “cold” scenario

and the store as the “hot” scenario. That is, people’s utility becomes lower at the store, since

they underestimate the cost and pain of waiting (Read and Loewenstein 1999, Loewenstein

2005) when they are at home. We thus make a competing hypothesis based on this theory

that people’s utilities are higher when they are at home than when they are at the store.

Hypothesis H1b (H1b): Controlling for total waiting time, subjects’ utility is higher be-

fore than after traveling to a queue.

4.3.2 Affective States in Queues

Next, we study the affective state (i.e., momentary emotional state) before and after the

travel to a queue. Compared with an unknown wait at a store, people would be more familiar

with the home environment and are thus in a calmer emotion (i.e., a “cold” state). In other

words, individuals are in a relatively hotter state when they observe the queue at the store.

Read and Loewenstein (1999) suggest that, due to empathy gaps, people in a “cold” state

would value more the utility of a service system and underestimate their pain and the cost

of waiting that they will experience. In other words, after travel, observing the queue and

being in the actual queue would remind people of the pain of the remaining wait and change

their affective state from “cold to hot”. Thus, we hypothesize that subjects would have a

more negative affective state after than before travel.

Hypothesis H2 (H2): Controlling for total waiting time, subjects’ affective states are

more positive before than after traveling to a queue.
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4.3.3 Information-Sharing Level of Queues

In addition, to help an individual make better decisions and to reduce the potential

regrets experienced when they travel but balk at the store, we also investigate ways to reduce

the gaps in individuals’ affective states and valuation before and after travel. Considering the

gap in affective states before and after travel, we believe that a higher information-sharing

level about the store queue would help reduce people’s underestimation at home. Similar to

other behavioral queuing research, the sharing of queuing information allows individuals to

form better expectations and increase the system efficiency (Hassin and Roet-Green 2020).

That is, providing more details of queues before traveling increases transparency and could

help individuals better estimate the wait in the store, leading to a smaller difference in

affective states. Therefore, we hypothesize that a higher information-sharing level about the

queue leads to a smaller gap in affective state before and after travel.

Hypothesis H3 (H3): Controlling for total waiting time, subjects’ gap in affective states

before and after travel becomes smaller with a higher level of queuing information sharing.

4.4 Pilot Experimental Study

Our pilot experiment contains three parts: the joining task and two control tasks. The

joining task is the main focus of the study that investigates the participants’ queuing behav-

ior. We also consider two control tasks to measure individuals’ risk preferences and value of

time. In this pilot, we focus on participants’ utilities before and after traveling. The pilot

experimental design and result are discussed in the following sections.

4.4.1 The Joining Task

Our main component of the study is the joining task (JT), which is a computer-simulated

queuing game at a single-player level. That is, the participants only interact with the

experimental application. Before heading to a store, participants are initially given the

following details to consider when deciding to join: (i) the number of virtual clients waiting
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in line at the store; (ii) the distribution of the service time for each client; and (iii) the

number of experimental tokens as the reward (constant as 100 tokens) that participants get

if they complete waiting at the store.

After a participant (she) decides to leave home and travel to the store, she may be

required to state the minimum value of experimental tokens, U , such that she prefers to

receive U tokens rather than completing the line for the store’s reward. This step is referred

to as the elicitation question. We use the same Becker-DeGroot-Marschak (BDM) mechanism

(Becker et al. 1964) to elicit participants’ utilities as in Chapter 3 (see detail in section 3.2.1).

Therefore, given the store’s reward (constant at 100 tokens), we can refer to U as a subject’s

utility of the queuing service system that she must travel to.

Remark: To address our research questions, we consider two aspects of our experimental

design. First, the participants only interact with virtual clients in our study instead of any

human subjects. By doing so, we are able to remove any interpersonal and social concerns

that may change individuals’ behavior. Second, our pilot experiment provides complete

waiting information (i.e., service time, queue length and queuing interface) before traveling

to a queue. By clearly defining and comparing the scenarios (i.e., before and after traveling),

it enables us to focus on the effects of the travel.

4.4.2 Manipulation

The JT is manipulated along three dimensions: queue length, service time, and elicitation

question timing. Firstly, the queue length refers to the total number of virtual clients at

the store that participants need to wait until receiving the store’s reward. That is, the total

wait of the queuing system includes the travel to the queue, and the waiting for both the

virtual clients and the participant herself to be served at the store. In the pilot study, we

consider two levels of queue length: short and long. Secondly, we manipulate the service

time as the average time to serve each client at the facility. It is considered at two levels:

fast (10 sec./client) and slow (20 sec./client). Thirdly, we separate the conditions when the

elicitation question is presented either before or after traveling to a queue. That is, the

elicitation question occurs either when participants are about to leave home (after deciding
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Figure 4.1: Pilot Experimental Conditions

Note. The dashed circles denote a participant’s position when they receive the elicitation question
(represented by the question mark). Each black dot represents a virtual client ahead, and the light blue
area denotes that the participants are before the travel and on a different screen.

to travel to the store) or just as they arrive at the queue. We also control the total waiting

time to ensure that the condition before and the condition after travel are equivalent. In

other words, traveling from home to a store takes the same amount of time as serving a

customer at the store. For example, as shown in Figure 4.1, condition 1 and 2 allows us to

compare subjects’ utilities before and after traveling with identical total residual wait time.

That is, participants would see a queue length of 12 (6) after arriving at a store or 11 (5)

at home before leaving when they observe the elicitation question in the fast (slow) service

time condition.

As shown in Table 4.1, we consider a total of four experimental conditions in the pilot

experiment. The design of combinations mainly focus on the comparison of individuals’

utilities before and after travel with two levels of queue length and service time, respectively.

In addition, the four conditions have identical total waiting time (120 seconds), including

travel time. The design allows us to investigate the impact of travel on people’s utilities

before and after travel, controlling for the total remaining waiting time.

Our pilot study is developed in Otree, an experimental software (Chen et al. 2016), and

82



Table 4.1: Summary of Pilot Experimental Conditions

Condition Queue Length Service Time Travel Time Elicitation Question Timing Total Waiting Time
(clients) (sec./client) (sec.) (sec.)

1 11 10 10 Before 120
2 12 10 10 After 120
3 5 20 20 Before 120
4 6 20 20 After 120

is conducted in Amazon Turk, a crowdsourcing platform for online experiment (Paolacci

et al. 2010). All participants follow the same procedure: (1) four rounds of the JT, (2) a

risk preference task and a value of time task, and (3) an exit survey. Note that, within the

four rounds of the JT, we keep the second round as a reset round, in which no elicitation

question is included. This design aids in preventing the scenario when individuals join on

purpose in order to receive any amount of tokens from the elicitation question but would

actually prefer not to join. In sum, a total of 250 participants played our experiment and 217

of them voluntarily decided to travel and join the line. Of these 250 participants, 43% were

female and the average age was 38.17 years old, with a standard deviation of 11.32 years.

Participants’ final payment depended on all rounds of the JT and the two control tasks.

Every 100 tokens were worth one U.S. dollar. Total earnings averaged $4.98 per subject,

with a minimum of $1 and a maximum of $6.74. It took 23 minutes on average to complete

the entire study on Amazon Turk.

4.4.3 Pilot Study Result

In this section, we discuss our main results from the pilot study. In particular, the pilot

study allows us to address our first research question mainly about the impact of travel on

individuals’ utility valuations.

First, we model participants’ decisions to join a queuing system with a random-effects

Logit model:

Prob(Joinij = 1) =Intercept+ βT · Travelij + βS · ServT imeij + βTS · Travelij · ServT imeij

+ βj ·Roundj + µi + ϵij (4.1)
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The variable Joinij denotes participant i’s decision to join a queue or not in round j.

Travelij is a dummy variable equal to 1 if participant i receives the elicitation question after

traveling to the store in round j, and 0 otherwise. ServT imeij is a dummy variable equal

to 1 if participant i observes service time equal to 20 sec./client in round j, and equal to 0

otherwise. Roundj is a control variable for round j. Note that queue length is not included

in our model because it is perfectly correlated with ServT ime and Travel in our pilot study.

In other words, with the main effect of ServT ime and Travel, and their interaction, we

can include all four experimental conditions, as shown in Table 4.1. Lastly, µi denotes the

individual error term, and ϵij represents independent error across subjects’ responses in the

JT.

Table 4.2 shows our results of Equation 4.1. In the pilot study, there are two service

time levels. We, therefore, consider service time a discrete variable. We find that the

variable ServT ime is statistically significant. That is, compared to fast and long queues,

people prefer to join slow and short queues, controlling for the total waiting time. Our

research thus supports the findings from Conte et al. (2016) and Lu et al. (2013) that

individuals prioritize queue length above wait time when making decisions and would choose

to join a shorter queue, even if the service time is greater. Importantly, neither Travel nor

Travel · ServT ime are statistically significant. This indicates that, for a given service time,

the joining rates in our study are similar regardless of when the elicitation question is asked.

After participants decide to travel to join a queue, the elicitation question allows us to

elicit their utilities of the service system in tokens. Table 4.3 summarizes the individuals’

utilities, U , by experimental conditions. As a reminder, participants’ utility U considers

the store’s reward and the wait in the queuing system. Shown in Figure 4.2, we find that

there exists a significant difference in utilities before and after traveling when the service

time is 10 sec./client (one-tail Wilcoxon rank-sum test, p < 0.05). Conversely, when service

time is 20 sec./client, we observe that participants’ utility is directionally greater after travel

than before travel, but the difference is not statistically significant (Wilcoxon rank-sum test,

p = 0.36). That is, people value the service system more before than after traveling when

the queue at the store is fast and long. As noted earlier, when the queue is fast and long, we

do not observe any statistically significant differences in participants’ joining rates before vs.
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Table 4.2: Random-effects Logit Model Results for Joining Decision

(1)
Intercept 0.84

(1.80)
ServTime 2.19**

(0.98)
Travel 0.07

(0.54)
Travel · ServTime -1.18

(0.99)
Round -0.33

(0.21)
Risk 0.14

(0.10)
TimeValue -0.00

(0.01)
Male 0.32

(0.70)
Age 0.07

(0.04)

Standard errors in parentheses
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

after travel (85.85% vs. 85.58%, respectively; two-sample Proportion test, p = 0.96). Thus,

the difference in utility in both scenarios cannot be attributed to differences in joining rates.

Next, we use a random-effect Tobit regression to model participants’ utilities:

Uij =Intercept+ βT · Travelij + βS · ServT imeij + βTS · Travelij · ServT imeij

+ βj ·Roundj + µi + ϵij (4.2)

The variable U represents participant i’s utility of the queuing service system, given a

constant store reward at 100 tokens. Table 4.4 summarizes the Tobit model results from

Equation 4.2. We find that the dummy variable Travel is statistically significant, as well as

Table 4.3: Utility Summary in Pilot Experimental Conditions

Condition Average Utility (Standard Error)

1 71.25 (3.03)
2 65.22 (3.20)
3 67.94 (2.94)
4 72.49 (2.55)
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Figure 4.2: Effects of Travel on Uitlity
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Note: The error bars correspond to standard errors of the mean.

its interaction with ServT ime. It denotes that, with fast queues (10 sec./client), people value

the queuing system less after traveling, but they value it more after traveling when the service

time is slow. That is, conditional on slow queues (i.e., when ServT ime = 20 sec./client),

H1a is partially supported since participants’ utilities are higher after than before traveling

(the sum of the aforementioned main effect and two-way interaction terms is equal to 5.57,

t test, p = 0.047). Also, H1b is supported due to the statistical significance of the dummy

variable Travel when ServT ime = 10 sec./client. This finding is interesting, especially that

the impact of travel on people’s utilities relates to various queuing settings. In what follows,

we discuss the design of a follow-up study (Study 1) to better understand (i) how our results

may depend on the relative cost of travel (relative to the total waiting time) and (ii) the

behavioral reasons behind individuals’ valuations.

4.5 Study 1 Experimental Design

Based on the results of the pilot study, we conclude that the JT’s fundamental design

guarantees that participants join decisions are made voluntarily in accordance with the
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Table 4.4: Random-effects Tobit Model Results for Utility

(1)
Intercept 87.25***

(12.32)
ServTime -2.14

(5.04)
Travel -6.60*

(2.88)
Travel · ServTime 12.18**

(4.02)
Round -0.15

(0.89)
Risk -0.26

(0.70)
TimeValue -0.07

(0.05)
Male 0.19

(5.09)
Age -0.22

(0.21)

Standard errors in parentheses
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

queuing parameters. The BDM mechanism helps us elicit their valuation of the service

system. Therefore, we will follow the pilot study’s basic design and procedure. But a

limitation of the pilot study is that it does not allow us to answer all our research questions.

In this section, we will discuss how to adjust our design to address them.

4.5.1 Joining Task

Basically, we follow the Joining Task (JT) design used in the pilot experiment. We plan

to focus on the same three dimensions through the queuing setting, queue length, service

time, and elicitation question timing. We take additional levels of the queue characteristics

and more rounds into consideration in order to gather more data points and examine people’s

relative cost of travel. As shown in Table 4.5, each subject will play 11 rounds (one as a reset

round) in random order, controlling for the total waiting time (120 seconds). Note that we

set the travel time equal to the service time for a customer in every condition. Therefore, for

each round, a participant only needs to (1) make a joining decision, (2) answer an elicitation

question, and (3) state her affective state (see detail in next section). Unlike the pilot study,
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Table 4.5: Summary of Study 1 Experimental Conditions

Condition Queue Length Service Time Travel Time Elicitation Question Timing Total Waiting Time
(clients) (sec./client) (sec.) (sec.)

1 11 10 10 Before 120
2 12 10 10 After 120
3 7 15 15 Before 120
4 8 15 15 After 120
5 5 20 20 Before 120
6 6 20 20 After 120
7 3 30 30 Before 120
8 4 30 30 After 120
9 1 60 60 Before 120
10 2 60 60 After 120

they do not need to complete waiting at the store in all rounds. They will only be randomly

assigned one round to complete the wait for the store’s rewards. Their payment for the JT

depends on the wait completion for the assigned round.

4.5.2 Affective State Measurement

In Study 1, we plan to measure participants’ real-time affective states before and after

traveling to a queue and to investigate the relationship between affective states and indi-

viduals’ valuation. The affective response is first studied in observable queues by Carmon

and Kahneman (1995). They allow subjects to dynamically choose their real-time affect

on “Affect meter” during the entire waiting period. Unlike their study, we mainly focus

on two points in the remote queuing system, one at home and the other at the store. We

thus consider a pop-up window for participants’ affective states with the question, “Please

indicate how you are feeling right now.” (7-point Likert scale between extremely unpleasant

and extremely pleasant). This design allows us to measure individuals’ affective states at

the designated times. In addition, the questions are asked after participants’ joining deci-

sions, which enables us to focus on the cases in which participants prefer to join. Note that

a participant will be requested to report her affective state after she selects her elicitation

question. That is, she only needs to declare her affective state once for each round. The

within-subject approach enables us to understand how participants’ utilities are influenced

by their affective states before and after travel.
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Table 4.6: Queuing Information Levels of Study 1

Queuing Information Level Information Content

Basic Total Waiting Time
Sufficient Queuing Characteristics
Complete Queuing Characteristics & Interface

4.5.3 Queuing Information Level

In addition, we plan to investigate the effect of queuing information-sharing levels on

individuals’ gaps in affective state before and after traveling to a queue. To do so, we plan

to introduce another treatment for queuing information sharing for our last hypothesis. We

consider three levels of queuing information in Table 4.6. At the basic level, participants

only know the waiting time (i.e., average and distribution of the total waiting time). At the

sufficient level, they know the queuing characteristics (queue length and service time) of the

wait. At the complete level, besides the queuing characteristics, they can also observe how

the wait appears to them, i.e., the queuing interface. This design allows us to understand how

the information-sharing level impacts an individual’s affective state before and after traveling

to a queue. We can also check whether the information levels moderate individuals’ utility

changes because of the travel. Therefore, taking into account the interaction of the total of

10 conditions and three information-sharing levels, we propose to recruit 300 individuals for

Study 1, ensuring 100 observations on average for each condition.

4.6 Conclusions

In this study, we focus on the impact of the travel to a queue on an individual’s joining

behavior. Past literature typically assumes that joining a queue does not take any time.

We consider a more practical queue that customers must travel to. By controlling the total

waiting time, our pilot study finds a discrepancy in individuals’ utility valuation before and

after traveling. Compared to before traveling to a queue, participants’ utilities are lower after

traveling when queues are fast and long; but when queues are slow and short, we find partial
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support for their utilities being higher after than before traveling. The finding does not

follow the rational assumption that people’s utility depend on the total waiting time. This

is an interesting question since it is an everyday dilemma and impacts customers’ queuing

and consuming behaviors in a service system. It is also important for queuing management,

such as reducing the valuation discrepancy and increasing consumer valuation after traveling.

Our study aims to determine whether the mechanism (i.e., “cold-to-hot” empathy gap) drives

individuals’ behavior and to answer the practical question by conducting a human-subject

experiment. Finally, we believe that a higher level of queuing information sharing reduces

an individual’s gap in affective state before and after traveling and creates value for the

potential customers.
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5.0 Conclusions

This thesis investigates new ways to create value in a value chain at two stages. Par-

ticularly, I investigate how to use Blockchain Technology to build a deep-tier supply chain

finance system. Using economic models, we find that the new technology implementation

needs to be carefully evaluated, and we need to consider how it affects all the involved mem-

bers in a supply chain. Though supply chain members may have conflicting objectives, we

must find proper ways to benefit every member as a planner. The results show that when

implementing BT-SCF, the focal company should pay attention to the price elasticity of

the final product. When the elasticity is above a threshold, BT-SCF implementation can

benefit everyone. Otherwise, some members will be against implementing the new system.

The main contribution of Chapter 2 is to propose a new framework for deep-tier supply

chain finance with Blockchain Technology and provide suggestions to increase profitability

of every supply chain member. That is, we figure out how to improve the competitiveness

of the entire supply chain.

In Chapter 3, we understand how a customer’s utility is impacted by wait experienced

and prospective. Through experiments, we find that human behavior does not always follow

rational assumptions. It is related to queuing characteristics as well as individual charac-

teristics. Results show that participants with different personal traits behave in opposite

directions on the impact of experienced wait. This finding sheds light on queuing manage-

ment to satisfy customers during the wait. More attention should be given to the customers

who have a negative attitude. Moreover, a service provider is able to take advantage of this

feature and provide extra service within that customer pool. For the prospective wait, the

finding that participants focus on queue length and service time to evaluate the remaining

wait helps service providers better manage customers’ expectations by reducing queue length

or service time. Chapter 4 extends the queuing system to remote customers. Results show a

difference in individuals’ utility before and after traveling to a queue. These findings do not

follow the assumption of rationality. We are planning to figure out the behavioral theory

that drives customers’ behavior. Referring to the “cold-to-hot” empathy gap, we believe that
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the difference before and after traveling is due to self-control issues. In addition, queuing

information is thought to mitigate this gap.

This thesis contributes to the growing literature in supply chain finance & Blockchain

Technology, and behavioral queuing. We address the questions relating to new technology

implementation and customer behavior in a queuing system. Theoretical modeling helps us

to investigate the optimal strategy. Behavioral methodologies enable us to understand the

actual response of customers better. Combining these methods allows us to learn a complete

picture of the problem and provides more practical solutions. In the future, I will employ

these methods to continue my research in the operations management field, specifically

behavioral queuing and Blockchain Technology in supply chain management. In addition,

considering both perspectives of new technologies and human behavior can help design a

better system. We believe that incorporating these aspects constitutes future research with

great potential.
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Appendix A Chapter 2

A.1 Proofs

A.1.1 Proof of Lemma 1

Rearranging terms in Eq. 2.5 yields

rMTM = 1−
p
∫ θM
0

xdFp(x) + pθM F̄p(θM)

BM

(A.1)

Since Fp(·) follows IGFR and substituting BM = pθM , we get

rMTM = 1−
∫ θM
0

F̄p(x)dx)

θM
(A.2)

If rSTS ≤ r̄MTM , wS yields

ws(rSTS) =
cS(1 + βS)

1− rSTS

≤ ws(r̄MTM) =
cS(1 + βS)

(1− r̄MTM)
(A.3)

Hence, the supplier will have a lower profit with the early payment rate under the supply

chain finance endorsed by the retailer.

A.1.2 Proof of Lemma 2

Rearranging terms in Eq. 2.3, and substitute rMTM in Lemma 1,

πM = ((1 + αMTM)(1 + βR)wM − αMTM

θM
(wM − wS)q)wM

∫ θM

0

F̄p(x)dx+

(wMq − pθM)− cMq − wSq + αM(TS − TM − LR + LM)wSq (A.4)

Substituting BM = pθM ,
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d2πM

dθ2M
=

1

θ3M
(−2q(

∫ θM

0

(1− F (x))dx)TM(wM − wS)αM − θM(pθ2MF
′
(θM) + TMαM(pθ2M

F
′
(θM) + qwM(−2 + 2F (θM)− θMF

′
(θM)) + qwS(2− 2F (θM) + θMF

′
(θM)))))

(A.5)

Hence πM is quasi-concave in θM , there exists a unique optimal solution, θ∗M , to maximize

πM . Since BM ∈ [(wM − wS)q, wMq], θM ∈ [ (wM−wS)q
p

, wM q
p

].

A.1.3 Proof of Lemma 3

Since πB
M in Eq. 2.10 and πM in Eq. 2.3, πB

M ≥ πM yields

qB ≥ 1

cM − (1− rBMTM)(wB
M − wB

S )
(q(cM + wS + (LR − LM + rMT 2

M − TS)wSαM−

wM(1− αMTM + αrMT 2
M)) + pθM(rM − αM + rMαMTM)TM) (A.6)

Thus,

qB
M

=
1

cM − (1− rBMTM)(wB
M − wB

S )
(q(cM + wS + (LR − LM + rMT 2

M − TS)wSαM−

wM(1− αMTM + αrMT 2
M)) + pθM(rM − αM + rMαMTM)TM) (A.7)

A.1.4 Proof of Lemma 4

Since rBM = rBS by assumption and Eq. 2.12, rBS yields

rBS =
1 + βM

qB(TM(1 + βM)− LM + LR)
(qB − (

∫ θB

0

(1− FpB(x))dx)(1 + βR)) (A.8)

Since wS in Eq. 2.1 and wB
S in Eq. 2.8, the supplier will be beneficial to join BT-SCF when

rBS ≤ rSTS

TM+LR−LM
. Hence, qB yields
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qB ≥

(∫ θB

0

(
1− FpB (x)

)
dx

)
(TM − LM + LR) (1 + βM) (1 + βR)

TM (1 + rSTS) (1 + βM)− LM (1 + rSTS + βM) + LR (1 + rSTS + βM)
(A.9)

Thus,

qB
S
=

(∫ θB

0

(
1− FpB (x)

)
dx

)
(TM − LM + LR) (1 + βM) (1 + βR)

TM (1 + rSTS) (1 + βM)− (LM − LR) (1 + rSTS + βM)
(A.10)

A.1.5 Proof of Proposition 1

Since the demand distribution, Fp(·), is IGFR, and substitute Eq. 2.6, πR in Eq. 2.7 yields

dπR

dq
= wM (−1 + (1− Fp (q)) (1 + βR)) = 0 (A.11)

Hence, the optimal order quantity in T-SCF, q∗, yields

q∗ = F−1
p

(
βR

1 + βR

)
(A.12)

Similarly, the optimal order quantity in BT-SCF, qB∗, yields

qB∗ = F−1
pB

(
βR

1 + βR

)
. (A.13)

A.1.6 Proof of Proposition 3

Since Eqs. 2.1, 2.3, 2.7, 2.8, 2.10, 2.14, the SC profit change of the SC ∆πR +∆πM +∆πS

yields
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∆πR +∆πM +∆πS = pB
∫ qB

0

F̄pB (x) dx− p

∫ q

0

F̄p (x) dx+ qB((1− rBMTM)(wB
M − wB

S )− cM

+(1− rBS (L
R − LM + TM))wB

S − (cS + cM + wB
M))+

q (cM + cS + rSTSwS − αM (TS − TM − LR + LM)wS + αMTM (1− rMTM) (wM − wS)))

+ (rMTM − αMTM (1− rMTM)) θMp

(A.14)

A.1.7 Proof of Proposition 4

Since in T-SCF wi =
wi+1(1+βi)

1−riTi
, where i ∈ [1, 2, 3, . . . , n], the wholesale price reduction of

tier i due to lower financial cost in BT-SCF yields

∆wi = − wi+1 (1 + βi)

(1− riTi) (1− rBi (T1 + L0 − Li−1))

(
riTi − rBi (T1 + L0 − Li−1)

)
(A.15)

When rBi (T1 + L0 − Li−1) < riTi, ∆wi > 0. The wholesale price of tier i supplier is lower in

BT-SCF. Accordingly, the final sales price reduction because of the change of tier i member’s

wholesale price yields

∆p = − (1 + β1) (1 + β0)
(1 + β2)

1− rB2 (T1 + L0 − L1)
. . .

(1 + βi)

1− rBi (Ti−1 + L0 − Li−1)

wi+1

1− riTi(
riTi − rBi (T1 + L0 − Li−1)

)
(A.16)

Since 1
1−rBi (T1+L0−Li−1)

≥ 1, hence ∆p > 0.
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Appendix B Chapter 3

B.1 Experimental Protocol

B.1.1 Queuing Task: Instruction

Here we present the main instructions for the Queuing Task. Each figure below represents

a separate screen of the participants’ interface.
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B.1.2 Value of Time Task: Instruction
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Wait to Earn Experimental Tokens: Example
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B.1.3 Exit Survey
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Appendix C Chapter 4

C.1 Joining Task
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