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Background: Proteins are biological macromolecules that interact with each other,

performing various functions and regulate many biological processes, making them vital to

many types of biological research. However, as many protein-protein interactions (PPIs)

remain unknown, and interacting protein pairs are rare among all protein pairs, it is impor-

tant for researchers to find ways to predict novel interactors with high precision, reducing

experimental costs by prioritizing likely interactors.

Methods: In this thesis, we evaluate thirty-six previously published methods, and assess

their suitability for predicting novel interactions. We analyze the ability of these methods to

predict PPIs of proteins not used during training. This avoids a problem we hypothesized

may exist in most methods, especially those that rely on protein sequence derived features.

Similarly, we hypothesized removing this problem could yield better, more generalizable

predictions when using annotation-based features for predicting interactions.

Results: In our analyses, we found that most sequence-based models were unable to

accurately predict interactions where the proteins were not in the training set. We obtained

better results when using features that did not rely on primary sequence information, and

showed that the models that performed well on unseen proteins were better at predicting

proteome-wide interactions.

Discussion: Our results show that models generated to maximize precision when pre-

dicting on protein pairs composed of proteins not used during training are better at making

predictions proteome-wide. These models predict more validated PPIs from other data

sources, and are less biased towards predicting hubs, than models trained in the traditional

way.
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Glossary

Protein-Protein Interaction (PPI): A direct, biophysical binding between a pair of

proteins, typically for the purpose of controlling or regulating a biological process or cellular

function.

Interactome: A network mapping of all known interactions, with proteins represented

nodes and interactions repesented as edges.

Features: Data utilized by a machine learning model to make a prediction. For this work,

features are typically created from information related to a protein or pair of proteins.

Dataset Bias: While their are various ways to bias a dataset, when referring to biases

in underlying datasets, we are referring to the fact that many datasets have proteins much

more frequently in positive instances than negative instances in both training and testing,

allowing classifiers to make predictions on individual proteins rather than protein pairs.

Illogical Features: Illogical features are features that rely on making predictions based

on the proportion of similar proteins in positive and negative training instances, exploiting

biases underlying many datasets. And important aspect of illogical features is their focus on

making predicting on individual proteins, without focusing on both proteins within the test

pair.

Experimental Bias: Bias that occurs when many more interactions, annotations, or general

information about a protein are known because it is studied more frequently than other

proteins. This commonly occurs with proteins known to be crucial to a frequently studied

disease or process.

Algorithmic Bias: Bias that occurs due to not properly holding out data related to protein

pairs in the test set.

Overfit Bias: Bias that occurs when features create predictions that overfit to an underlying

data source used for training a model, but produces a worse performance when evaluating

novel predictions on external datasets.

Sequence-Based Features: Features derived from the amino-acid sequences of proteins,

used as features for predicting PPIs in various machine learning models

xiv



Annotation-Based Features: Features that do not rely on analyzing individual protein

sequence information, commonly computed from known annotations related to proteins.

These features commonly utilize gene expression, Gene Ontology, domain, and ortholog

information.

Protein Specific Features: Features computed from individual proteins

Pairwise Features: Features computed from pairs of proteins

Feature Selection: Process of selecting the best subset of features that allow a machine

learning model to achieve a goal. For our work, our primarily goal is typically maximizing

precision at 3% recall.

Benchmark Dataset: Combination of Full and Held Out datasets, generated from Bi-

oGRID interactions and used for evaluating different PPI prediction models.

Full Data: Datasets created by sampling a random subset of all known interacting pairs as

positive data, and a random subset of all other pairs as negative data.

Held Out Data: Datasets created by excluding a subset of all proteins from training, such

that no protein that appears in the training data is used in the test dataset.

Full All: Test feature sets where the selected features are generated using Full data and all

non-held out proteins for frequency-based interaction features.

Full Train: Test feature sets where the selected features are generated using Full data and

all only interactions within the training data for frequency-based interaction features.

Held Out Data All: Test feature sets where the selected features are generated using Held

Out data and all non-held out proteins for frequency-based interaction features. Eventually

combined with Held Out Data Train, when no features were selected for Held Out datasets

that were computed differently between the All and Train sets, simply referred to as Held

Out.

Held Out Data Train: Test feature sets where the selected features are generated using

Held Out data and all only interactions within the training data for frequency-based inter-

action features. Eventually combined with Held Out Data Train, when no features were

selected for Held Out datasets that were computed differently between the All and Train

sets, simply referred to as Held Out.
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Selected Feature Sets (Selected Features): Annotation-based features selected using

greedy forward and backward searches.

Feature Subsets: Subsets of all annotation-based features that are considered when se-

lected features for our final models. Subsets include using all annotation-based features,

excluding interolog features, and excluding interolog and GO frequency features, when gen-

erating Selected Feature Sets.

Machine Learning Algorithm: A predefined set of rules for training and making pre-

dictions from data. Examples include random forest, neural network, and support vector

machine.

Machine Learning Model: A trained instance of a machine learning algorithm. These

are defined by the machine learning algorithm used, and the data they are trained on.

Model Selection: Process of choosing the best machine learning algorithm and hyperpa-

rameters to maximize a specific goal. For out work, our primarily goal is typically maximizing

precision at 3% recall.

Ortholog: A protein that is similar to the protein of interest, but exists in a different

species.

Interolog: A pair of proteins that have interacting orthologs.

Generalizable Model/Predictions: Generalizable predictions are predictions in which

novel predicted interacting pairs are commonly found as validated in additional data sources

unrelated to the data source used for training. Generalizable predictions, as well as general-

izable models to make such predictions, are ideal as they would provide immediate validation

to some novel predictions, making a strong argument that the model’s predictions are good,

and find rules and trends for protein interactions that exist in multiple data sources, a rarity

for a field where many different experiments produce few overlapping interactions.
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1.0 Introduction

Proteins are the basic building blocks of life, responsible for regulating and

controlling various biological processes and cellular functions in an organism. Proteins

interact with other proteins through physical contact, allowing protein pairs or complexes

to perform various functions. Analyzing these protein-protein interactions (PPIs) could

provide new biological insights, leading to advances in molecular and systems biology as

well as therapeutics [1]. These insights come from small scale analyses where a pair of

proteins is studied for its role in an important biological pathway or therapeutic

mechanisms, or analyzing the full protein-protein interaction network, known as an

interactome, where interventions causing global phenomena, like drug interventions or

perturbations, can be studied across all proteins [2, 3].

1.1 Protein Composition

Proteins are encoded in deoxyribonucleic acid (DNA) as a series of nucleic acids

known as nucleotides. DNA encodes all genetic information in an organism, including the

process to regulate the creation of proteins. Most proteins are composed of 20 types of

standard amino acids. A sequence of amino acids forms the basic building blocks of each

protein. Each amino acid has an amino group (NH2), a central carbon atom, and a

carboxyl group (COOH) in a linear chain. Amino acids are connected through a peptide

bond formed between the carboxyl group of the first amino acid and the amino group of

second amino acids. This process continues between adjacent amino acids forming a

peptide chain, with chains of 50 or more amino acids commonly referred to as proteins.

The size of proteins can vary greatly, with some proteins containing a single peptide chain

with as little as 50 amino acids, while others contain over 1,000 acids or multiple

structurally bonded peptide chains.
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While all amino acids have the same atomic composition used to form the

backbone of the peptide chain, each amino acid contains a different set of atoms forming

the side chain that is attached to their central carbon atom. The 20 different side chains

have different molecular compositions and sizes, providing each amino acid with a

characteristic physicochemical properties such as hydrophobicity, polarity, and charge,

subsequently giving rise to various structural and functional characteristics of each protein.

1.2 Characteristics of Proteins

The sequence of amino acids in a protein controls the high order structures of the

protein, which subsequently confers the protein’s function. Protein structures are typically

described at 4 different levels: [4]

• Primary Structure: The amino acid sequence of a protein

• Secondary Structure: Localized structure formed at different segments of the

polypeptide backbone, such as helices, sheets, and loops,

• Tertiary Structure: Full three-dimensional confirmation of a protein, with different

amino acids, as well as the atoms that make up their sidechains, mapped to relative

x,y,z coordinates.

• Quaternary Structure: Structural arrangement of multiple polypeptides in a protein.

The structure of a protein is assembled through a process known as protein

folding, wherein the polypeptide backbone folds and side chains orient to minimize the

Gibbs free energy [5]. During this process, amino acids from the primary sequence

collectively determines the most fitting way to conform into a three-dimensional shape,

although the environment the protein is in can affect or prevent folding based on heat, ph

balance, or other conditions [6]. The chemical properties of each amino acid shape the

folding process. For example, non-polar, hydrophobic amino acids dislike water, and thus

tend to come together at the center of a globular structure away from the surrounding

water within the cell [7, 8]. For most proteins, the final structure determines the protein’s
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function. Exceptions occur for disordered proteins, which do not have a native final

structure, and instead are influenced by their environment to take on different forms.

Disordered proteins can take on different functions as their structure changes during

binding [9]. Even among less disordered proteins, changes can occur during the binding

process, possibly assisting in performing process or function performed by the biophysical

interaction, or making the complex more stable when binding [10].

1.3 Protein-Protein Interactions

Proteins can bind, catalyze, transcribe, transport, and perform a variety of other

functions towards regulating, activating, and signaling, or otherwise helping with a variety

of different biological processes. These functions and processes range from regulating

enzymes for digestion, to controlling and regulating cell growth and cell death. However,

these function are not carried out by any single protein, but multiple proteins working

together in a cascading manner or as part of a molecular complex. For example, proteins

form part of ribosome complexes, which then assist in creating new proteins [11].

Polypeptides are also utilized in proteasomes, which break apart proteins that have begun

to degrade [12]. Additionally, the protein complex anaphase promoting complex or

cyclosome (APC/C) is known to be involved in many functions, including cell division and

selecting targets to be broken down by proteasomes [13].

Proteins can bind with many different cellular components, such as ligands (small

binding molecule), peptides, DNA/ribonucleic acid (RNA) strands, and other proteins [14].

Pairs of proteins cooperate through biophysical interactions which allow multiple proteins

to perform a function that may not be possible for any individual protein. Most PPIs form

through hydrogen bonds, hydrophobic forces, van der Waals forces, or ionic bonds [15].

Covalent bonds, which are the strongest type of biophysical bond between molecules, are

generally rare for PPIs, but occur in a few types of proteins [15]. While non-covalent bonds

are weak, a pair of interacting proteins can form many bonds while in close proximity,
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strengthening the overall bond between two proteins [15]. Even weak binding can be

valuable, as signaling proteins are known to require weak, transient interactions that can

form and break easily [16].

Most proteins have very few protein-protein interactions. Some proteins are hubs

which interact with many proteins under the same or different conditions. Hub proteins are

considered by some researchers to be essential, defined by being the most important to an

organism’s survival. [17–19]. Others dispute this claim, suggesting that the hubs may

merely reflect a bias created by studying certain proteins more extensively [20]. Even in

larger tests, identified hubs could be related to certain types of bias. For example, certain

proteins have been found to pass through testing phases of affinity purification due to

confounding factors related to the experiment process, rather than actual PPIs of the

protein of interest. This has led to the creation of an entire database of such common

contaminants to aid researchers in filtering out false positive data [21]. However,

systematic testing of all protein pairs in a yeast two-hybrid method performed by Luck et

al. identified about 53,000 PPIs including multiple hub proteins [22]. Additionally, analysis

of multiple of large scale protein-protein interaction detection experiments in plants has

also shown some overlap between hub proteins, and types of proteins that are hubs, further

suggesting the existence of hub in interactomes, [23].

Hubs can be categorized as either date hubs, which interact with one protein at a

given time, or party hubs which form complexes through a number of binary PPIs

occurring at the same time [24]. Additional analysis of expression data suggests that these

hubs may have different roles, with date hubs having influence widely across different

interactome functions while party hubs have a more local influence [24].

The discovery of PPIs is important, because different fields of research utilize

individual PPIs as well as the interactome towards biomedical discovery (e.g., discovery of

protein function, cell signaling, disease mechanisms, therapeutics):

Individual PPIs can provide novel ways to create targeted therapeutics to regulate

specific proteins [25, 26]. Historical studies frequently focused on inhibiting active sites in

kinases for regulating various proteins [26]. However, this limited drug targets to a small

subset of all proteins [26]. Even within this small subset, additional difficulties arose due to
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many kinases having similar structures, causing multiple proteins to be affected by the

same drug [26]. Protein-protein interactions have provided a novel, targeted, more widely

applicable mechanism to control proteins. PPIs tend to occur at structural locations that

are unique to individual proteins [25]. By creating small molecules to target these unique

structural locations, researchers can disrupt known interactions in a way that only regulates

the protein of interest and is applicable for targeting more proteins than only kinases.

Other approaches analyze the interactome for system-wide studies. For example,

the interactome assists in prioritizing genes that may be linked to genetic diseases,

providing a list of proteins that may be useful for novel drug targeting. Some algorithms,

such as Degree-Aware Disease Gene Prioritization (DADA) and Random Walk with Restart

(RWR), primarily rely on walking on across edges of the protein interactome to find genes

near those known to be involved in diseases, highlighting potential disease related genes

[27, 28]. Other algorithms utilize protein-protein interaction knowledge combined with

additional information such as phenotype data to prioritize disease causing genes [29, 30].

While locating hub proteins, finding drug targets, and performing disease gene

prioritization are important applications of the interactome, various other studies and

methods utilize PPIs such as: Utilizing PPIs to select a subset of important genes to

predict stages of glioma [31]; Analyzing a disease specific PPI network for subnetworks to

find similarity between diseases, gene enrichment within a disease, and important disease

related pathways [32]; Detecting potential kinase substrate interactions from a pair of

kinase-kinase and substrate-substrate similarity matrices designed based on the shortest

path between proteins on a weighted protein-protein interaction network [33]; Integrating

inter-species (virus-human) interaction screens with the human protein interactome to

discover functional annotations common to human proteins related to disease targets [34].
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1.4 Aims

The overall goal of my doctoral research is to develop a computational model to

discover unknown PPIs at high precision, so that they are translatable by the biological

community through benchwork experiments to advance biomedical science.

Knowledge of PPIs can accelerate the discovery of molecular mechanisms of

diseases, and are used in a variety of drug creation methods, disease gene prioritization,

and systems biology analysis as previously described. However, hundreds of thousands of

PPIs are currently unknown. Computational prediction of these unknown PPIs is desirable

if it can be achieved at a high precision such that experimental validations can be

performed on the predicted PPIs. The challenges in computational prediction of PPIs are

that interacting protein pairs are very rare among all protein pairs, there are no confirmed

non-interacting protein pairs, and information related to protein functions and used for

PPI prediction are not available for several proteins.

Many models currently are presented in literature as predicting many PPIs with

high accuracy, particularly those based on protein amino acid sequences, will perform

worse when analyzing them on datasets that prevent learning how frequently each protein

is in positive instances in the test set, by ensuring no protein in the test set is used in the

training set. Models less reliant on amino acid sequences and instead utilize information

related to a pair of proteins will be less affected by this different type of training, but will

also shown some improvements from using any potential per-protein bias.

We propose the following aims towards this dissertation:

Aim 1: Systematically Evaluate Various Published Methods for PPI Prediction.

We re-implemented and tested various PPI prediction methods from previous literature,

with a primary emphasis on methods that utilize features generated exclusively from amino

acid sequences. These models where then tested with the same datasets used in prior

works, as well as novel datasets we created using different distributions of positive data.

These novel datasets were created in two ways: where protein pairs were selected in a

traditional manner (Full); and where proteins used in training data were excluded test

datasets (Held Out). This allowed us to evaluate how well various models perform when
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they are not able to rely on the frequency of proteins interacting in the training set. We

also implemented various controls to test how well prior models performed compared to

much simpler methods. Datasets used, as well as source code to process the datasets,

generate features, and test our final models have been released online for error checking

and re-use in future research.

Aim 2: Develop Novel PPI Prediction Models. After our initial analysis of

several, primarily sequence-based, models used to predict PPIs, we focused on generating a

good model, measured by its ability to make precise predictions at 3% recall on our

benchmark datasets, using features computed from pairs of proteins (Annotation-Based

Features). These features were primarily formed from annotations assigned to different

proteins, but also include features related to gene expression correlation and the similarity

of protein sequences for the given protein pair. We computed several features previously

used in literature, and determine which feature subsets, machine learning frameworks, and

hyperparameters worked best for predicting PPIs on our benchmark datasets when holding

out entire proteins (Held Out) or using traditional methods (Full). These final models were

compared to models used in Aim 1, as well as some other feature sets loosely based on sets

of features used in additional prior works.

Aim 3: Predicting and Analyzing predicted PPIs on the Human Interactome.

Aim 3a: Using our best models from Aim 2, we performed proteome-wide

predictions, both to compare how well each model predicts known PPIs among top scoring

protein pairs at proteome scale and to select a subset of likely interacting proteins for

further analysis. We also analyzed predictions between our models to determine if any of

our methods were more prone to selecting known hub proteins, or were better at selecting

known interacting pairs in datasets not used for training. The former could subset an

underlying problem towards selecting proteins with many known PPIs, similar to the

problems from the sequence-based model analysis, while the latter could indicate a good

generalizability from the models. We found that when holding out entire proteins, the

features selected and training method implemented produced less hub predictions and
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predicted more protein pairs with known PPIs from external databases and high

throughput datasets high at high scores than using traditional methods. Finally, we

compared the feature sets used by our best models.

Aim 3b: Using our final model, we performed a brief analysis of what predicted

PPIs overlapped with known disease-related proteins.

1.5 Overview of Dissertation

Overall, the discovery of novel PPIs is important to various fields of research, with

many studies focused on the entire interactome of protein-protein interactions rather than

just individual pairs of interacting proteins. For this reason, we focused our research

primarily on the computational prediction of novel PPIs proteome wide, with a primary

focus on PPIs in humans. The rest of this document is laid out as follows:

• Chapter 2 covers experimental techniques and difficulties in finding novel interacting

proteins, requiring the usage of computational methods. Additionally, information

about currently known PPIs, databases storing currently known PPis, and the expected

size of the human interactome are located in this chapter.

• Chapter 3 describes novel protein-protein interaction prediction models and lists

various datasets that have been previously utilized to validate these models. Some of

this information will be from our published paper [35].

• Chapter 4 covers complications that arise when generating PPI datasets, and how these

problems can affect the validation of different models. We then create a novel, unbiased

database creation method and use a new dataset compare a variety of previous

prediction models using protein sequence information as their primary feature. After

determining how well these models perform on an unbiased dataset, we compare these

models to a few additional models relying on other protein features. Much of this

chapter is from our published paper [35].
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• Chapter 5 outlines the process used to generate our best models. Our process tries to

create a good model while handling 3 competing concepts, finding the best features,

finding the best machine learning framework, and creating a simple, understandable

model, all while trying to maximize precision at 3% recall. Various intermediate results

are shown from testing different machine learning frameworks and feature sets, while

small precision tradeoffs are made to produce a simple model and avoid overfitting to

the datasets used throughout the process.

• Chapter 6 analyzes our final prediction results, comparing our models to each other,

previous works, on proteome-wide data, and on proteome-wide data using other PPI

datasets. Additional analyses of the predictions, as well as an analysis of combining

predicting PPIs with known disease-gene interactomes, will also be performed.

• Chapter 7, provides our final thoughts and insights from our work, as well as future

directions we would like to explore.
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2.0 Experimental Methods for Protein-Protein Interaction Detection

Many experimental techniques exist to detect PPIs, whether by analyzing

proteins that come into close proximity, determining whether pairs of proteins connect to

trigger a signal, or analyzing pairs of bound proteins remaining from an experiment

directly. Each experimental technique has its own strengths and weaknesses, with

differences in detectable interactions, scalability, accuracy rate, and associated costs. While

no technique is 100% accurate, interactions are commonly validated through higher quality,

but costlier experiments, running multiple screens as assays to check for variability, or by

using various controls to filter out non-interacting pairs. A large number of experiments

have been performed using various methods, with a significant amount of known PPIs in

humans reported in various publications and databases.

2.1 Interactome Assembly through Experimental Methods

Interacting protein pairs can be uncovered and validated through a variety of

experimental techniques. Some techniques are created from simple changes to previously

established techniques, while others are novel techniques that modify concepts used in

other similar research areas, such as protein-DNA binding. While new experimental

methods and modifications are being published every year, this section focuses primarily on

well-established, widely used techniques as well as newer techniques that have been used to

find large amounts of interactions quickly, as these tend to provide most of the data we

utilize in our computational experiments.
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2.1.1 Protein Pull-Downs and Affinity Purification/Chromatography

Pull-down techniques detect PPIs by affixing a target protein to some substance,

referred to as a tag, which is then introduced to a solution containing potential interactors.

After some time, the solution and non-bound proteins are washed away along a surface

that attracts the utilized tags, leaving only tagged proteins and proteins that are bound to

the affixed target [36]. A final step utilizes a known technique to determine which proteins

remain as a final set of interactors [36]. One of the most popular pull-down techniques in

use today is affinity purification with mass spectrometry (AP-MS), which uses mass

spectrometry as a final step to determine interactors. Using this technique, Huttlin et al.

compiled the BioPlex network, containing tens of thousands of interactors [37]. However,

despite the popularity and simplicity of pull downs assays, they do contain some known

drawbacks. Many weakly bound transient interactors may not be detected by pull-down

techniques, as washing away non-bound proteins may break weak bonds, washing away

true interactors [16, 36, 38]. Placing tags on proteins can also interfere with a protein’s

ability to interact [36]. False positives are also abundant, as pulldown experiments occur

outside of the cell, in vitro, thus many of the detected interactions may not occur in a

natural setting due to differing amounts of each protein or proteins existing in different

cellular compartments within a cell [36]. Due to the ability of pull down assays to generate

a large number of false positives, various cleaning and controls must be utilized to filter out

proteins that do not represent true interactors [21, 36, 38].

2.1.1.1 Co-Immunoprecipitation

Co-Immunoprecipitation (Co-IP) methods detect PPIs, either directly or

indirectly through a complex containing multiple proteins, using a protein specific antibody

[39]. Co-IP is a popular, widely used process to detect PPIs through a pull-down method,

that pulls down a protein’s binding partners along with the protein of interest, using an

antibody instead of a protein tag [39, 40]. Using a protein specific antibody allows the

experiment to be performed in a more realistic, in vivo or ex vivo environment, which use

actual cellular environments or environments similar to real cellular environments, rather
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than using an in vitro approach which may obtain allow less realistic protein complexes to

form. [36, 39, 41, 42]. The proteins within the captured complexes can be determined

through western blotting, mass spectrometry, or other appropriate methods [39]. While

Co-IP is a popular method, it has some drawbacks. Co-IP can detect many types of

interactions, but choosing the correct antibody to facilitate binding between a pair of

proteins is vital [36, 43]. Additionally, the method can struggle to detect transient

interactions, which typically on bind for short time periods and may not hold together

throughout the full Co-IP experiment, although this weakness can be overcome using

chemical cross-linking.[44–46]. Co-IP experiments also pull down protein complexes,

meaning not all proteins pulled down with the bait directly interact. Finally, like most

experimental detection methods, Co-IP can detect false positives from background noise,

and thus commonly uses negative controls to ensure only high quality interactions are

discovered in each experiment [39]. Despite these limitations, Co-IP experiments are

considered a gold standard for experimentally validating PPIs [43].

2.1.1.2 Tandem Affinity Purifications Mass Spectrometry

Tandem Affinity Purification (TAP) Mass Spectrometry (TAP-MS) works

similarly to a generic pull-down, but utilizes a pair of tags in tandem, or more specifically,

a tag consisting of two fused proteins, instead of a regular tag [47]. Using multiple proteins

as a tag allows TAP experiments to use multiple washing steps, removing more false

positive, non-specific binders than a traditional single washing step. The reduced false

positives combined with its ability to use generic tags is one of the reasons TAP-MS is

becoming more commonly employed as a large-scale screen for interactions. However, TAP

does have some limitations. Despite the two-step filtering process, TAP is still subject to a

large number of false positive interactors during the final analysis by mass spectrometry

[38, 42]. Additionally, the reduction of false positives in the tandem process compared to

standard Affinity Purification Mass Spectrometry (AP-MS) experiments may not always be

helpful for detecting interactions. Since both techniques still generate many false positives,

additional validations are commonly performed to identify true interactors. When using
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statistical validations measuring the quantity of proteins pulled down on baits compared to

controls, having more data, and thus less washing steps, can be helpful for identifying true

PPIs [38].

2.1.2 Protein Microarrays

Protein microarrays detect interactions from a set of proteins bound to a solid

surface exposed to unbound, freely moving proteins [42, 47]. In theory, a microarray

containing all proteins could quickly be exposed to a large number of unbound proteins and

detect many interactions using an in vitro methodology. However, multiple drawbacks

plague the easy use of microarray technologies for PPI detection. First, as proteins in the

microarray are fixed, an ideal microarray would need to contain various conformations and

post-translationally modified versions of each of the thousands of proteins one may wish to

study [48]. The process of generating these large microarrays can be a tedious, and costly

experience [49]. Additionally, the identification of which proteins bind to the microarray

through tagging methods could potentially disrupt binding, similar to other tag-based

methods such as affinity purification [48]. Work on detecting proteins through chemical

properties in a label free method is ongoing, but problems related to sensitivity and scale

remain [50].

2.1.3 Phage Displays

Phage displays detect interacting protein pairs by injecting a protein encoding

gene into a bacteria virus known as a phage. This phage then encodes and coats its

external layer with the protein of interest [42]. These external proteins can then bind to

proteins moving freely in a solution, with true binding pairs remaining after washing

loose/low affinity binding pairs. Most commonly, E.coli generated M13 filamentous phages

are used, however various phages exist with some working better for particular types of

proteins or interactions [42, 51, 52]. Like many experimental methods, phage displays

detect interactions that maintain connectivity after washing, making it difficult to detect

weak transient interactors. Additionally, certain phage display experiments have shown
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biases towards certain conditions, such as biasing towards hydrophobic peptides when

predicting PDZ domain ligands, possibly reducing the experiments’ accuracies [52].

Additionally, phage displays have also been shown to experience high numbers of false

positives [42]. These conditions can make additional validations on interacting pairs

necessary to confirm true interactors.

2.1.4 Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) resolves interacting protein pairs by

monitoring movements and changes at the atomic level of a protein when introduced to a

potential binding protein or ligand. The target protein is labeled with a stable isotope,

which can be analyzed for changes in resonant frequent, detected as a chemical shift, when

binding occurs [53–56]. With larger proteins, this labeling can be slow and costly to

perform. NMR methods rarely generate false positives, and have been shown to be able to

detect even the weakness of interactions under the correct circumstances [54, 57].

Additionally, historical difficulties with NMR that occur when studying proteins in their

native environments, such as the study membrane proteins, have also been significantly

reduced through advances in solid state NMR (ssNMR) [58, 59]. The ability to study many

types of proteins, detect weak interactions, and examine the area where the binding

contact occurs makes NMR an ideal method for finding molecules that can inhibit

interactions for drug designs [57]. However, NMR a costly methods to run, with expensive

equipment and scans that can run for days per pair of proteins, making interactome wide

studies difficult [60, 61].

2.1.5 Proximity Dependent Identification

Proximity dependent identification occurs when a modification or tag in a protein

of interest causes a reaction with a secondary substance to alter the composition of nearby

cellular components in a way that can be later identified.
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2.1.5.1 Proximity-Dependent Biotin Identification

The Proximity-Dependent Biotin Identification (BioID) approach fuses a biotin

ligase (BirA*) to a protein of interest [46]. Once fused, other proteins that come into close

proximity with the protein of interest, and thus the biotin ligase, have biotin fused to them

through a process called biotinylation [46]. These proteins can then be identified later

through other means, such as mass spectrometry [46]. As an in vivo approach, BioID also

has the advantage of detecting interactions within a natural cellular environment [36].

However, BioID has some limitations regarding the properties needed for the target protein

to bind with BirA* and can struggle to detect interactivity with proteins in low abundance

within the given solution [46]. The process of biotinylation requires certain properties

which, while common, do not occur among all proteins, and thus cannot be used to detect

all interacting pairs. Additionally, BioID relies on a modified solution to allow the

biotinlylation process to occur, which could alter how some proteins interact [46]. Finally,

as proximity dependent identification only detects close proximity, detecting the difference

between direct interactions, indirect interactions, or proteins that were close by chance can

be difficult, which, in addition to the above limitations, leads the original authors to

suggest BioID as a first step towards prioritizing potential interactions, rather than a final

conclusion of which pairs of proteins interact [46].

2.1.5.2 Förster Resonance Energy Transfer

Förster Resonance Energy Transfer (FRET) is a process that occurs when two

molecules in close proximity transfer energy, causing a fluorescent emission [62]. The

process only occurs between certain molecules, referred to as ”fluorophores”, which can be

attached to a pair of proteins to determine if they appear in close proximity [62]. FRET

can be performed in live cells using fluorescent proteins, since these proteins can be

genetically embedded onto target proteins and sensors to monitor FRET effects can be

easily introduced [62]. Additionally, FRET activation only occurs at a distance of a few

nanometers, a distance which is ”often interpreted as a protein-protein interaction” [63].

While FRET experiments may be precise, they are not large scale, traditionally being
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limited to testing a single pair of proteins. Multiple recent approaches utilizing

non-overlapping FRET pairs or time between FRET activations have extended testing to

slightly more than a single event in a given test, but contain their own complications and

are unlikely to be extended to proteome wide testing [64]. Additionally, FRET struggles

with detecting true interactors when one protein is over-expressed and can produce

different results over multiple tests due to variations in conditions across different cells [63].

Finally, as FRET utilizes protein tagging, it’s also possible that the fluorescent proteins

used as tags may interfere with natural binding processes between proteins [36].

2.1.6 Protein-Protein Interaction Sequencing

A new approach for finding interactions, Protein-Protein Interaction Sequencing

(PROPER-seq) applies RNA sequences tags, unique to each protein, on two libraries of

proteins, one affixed to a surface as target proteins, and the other allowed to remain mobile

as prey proteins [65]. After allowing the solution to settle, chemical cross-linking in

performed to ensure the proteins remain fixed, and non-specific interactors are washed

away [65]. Pairs of RNA tags are tied together, with the resulting fused sequences read to

determine interacting pairs [65]. Given Proper-Seq’s ability to uniquely tag each protein, it

has the advantage of being able to perform a full, interactome-wide screen of PPIs in a

single experiment with a low cost to setup. However, Proper-Seq does have some

limitations. As Proper-Seq is performed outside of the cell, the technique may not catch

interactions that rely on post-translational modification and may find interactions that

don’t occur naturally due to a higher abundance of proteins existing in the solution [65].

Additionally, as all proteins (both bait and prey) are tagged, there is a risk of tags

interfering with a potential interaction [65].

2.1.7 Yeast Two-Hybrid

Yeast two-hybrid (Y2H) methods fuse protein pairs to yeast transcription factors,

such that the pair binding would lead to the activation of a downstream reporter gene

[47, 49]. Y2H methods are among the most popular, easily scalable, high throughput
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methods for detecting PPIs, and have the ability to detect most types of interactions,

including transient interactions [16, 47]. Y2H approaches cannot detect some interactions

that rely on post-translational modification or cannot occur inside of the yeast nucleus

where testing occurs [47, 49]. Additionally, Y2H methods are known to produce many false

positive results, making multiple screens or filtering necessary to find true interactors

[16, 42, 47, 49]. Still, as one of the easiest, most scaleable methods, Y2H experiments have

been widely performed, creating many large PPI datasets. A recent approach by Luck et

al. generated a set of 53,000 novel PPIs using multiple Y2H screens and assays to filter out

false interactors [22].

2.2 Size of the Human Interactome

2.2.1 Known Interactome Size

Despite many experiments performed on various proteins, the exact size of the

human interactome remain unknown. The most straight-forward way to compute the size

of the human interactome would be to catalog and count all interacting protein pairs.

Many large scale efforts, in addition to a larger number of smaller experimental methods,

have produced a large amount of interactions validated by at least one experimental

method. For example, the Human Reference Interactome (HuRI) identified 53,000

interactions through multiple Y2H assays and screens, Proper-Seq was used to identify

210,000 interactions in a recent study, and the BioPlex 3.0 interactome contains 118,000

interactions found using affinity purification [22, 65, 66]. Alternatively, databases which

tend to focus on lower throughput, or multi-validated interactions, such as The Biological

General Repository for Interaction Datasets (BioGRID), list 125,000 unique protein

encoding gene pairs with interactions between at least one pair of their proteins [67].

However, as no experimental method is perfect, it is hard to know exactly how

many of these interactions may be false positives, and how many novel interactions remain

unknown. One common way to validate interactions is to reproduce them across multiple
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experiments, a task which has proven difficult. Lund-Johansen et. al. found a previous

affinity purification study listing over 45,000 interactions had only 3,000 interactions

overlapping with BioGRID, while Johnson et. al. relied largely on showing interactions

from Proper-Seq overlapped with a computational study after only a few thousand of their

210,000 interactions overlapped with other previous experimental techniques [65, 68].

2.2.2 Estimated Interactome Size

While we cannot easily piece together a full interactome from studies with low

numbers of overlapping pairs and varying amounts of uncertainty, many authors estimate

of the size of the human interactome based on these prior experiments. In one approach,

authors used multiple PPI datasets as part of a statistical procedure to estimate the size of

the human interactome at 650,000 [69]. This estimated size was exceeded by a more recent

estimate from Luck et al., who suggested that the existence of a large number of transient

interactions, which are harder to detect, will likely push the size of the interactome closer

to 1.5-3 million interacting pairs. Both estimates far exceed an earlier estimate of 150,000

to 370,000 by Hart, Ramani, and Marcotte, as well as a separate study by Venkatesan et

al. estimating only 130,000 pairs [70, 71]. Overall, given the large number of interactions

being detected by high throughput experiments, the lower amount confirmed by more

traditionally precise experiments such as CO-IP, and the larger number of expected

interactions overall, there is a large area of unknown interactions and unvalidated

predictions in PPI research. It’s this area that computational prediction of PPIs is most

useful, carving out small sets of likely interacting pairs to prioritize which proteins are

most likely to interact, which can then be tested in future experiments.
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2.3 Human Interactome Databases

Computational PPI prediction requires the collection of some experimentally

confirmed PPIs for training. The results of many smaller studies are written directly in

published papers, while larger result sets, such as those generated by Y2H and TAP-MS

methods, are commonly found in published works’ supplementary materials [22, 72–74].

Combinations of these results are also cataloged by a variety of databases containing

experimentally confirmed as well as biologically predicted interactions.

Resources cataloging interactions from various studies include:

• Biological General Repository for Interaction Datasets (BioGRID) [67] - Monthly

updated collection of high-quality protein and genetic interactions from literature,

containing over 1.7 million interactions on a variety of species.

• IntAct molecular interaction database (IntAct) [75] - Over 600,000 molecular

interactions, including PPIs within and between various species, updated multiple

times per year.

• Database of Interacting Proteins (DIP) [76] – High quality interactions for a handful of

species; updates infrequently.

• Human Protein Reference Database (HPRD) [77] – Collection of over 41,000 human

PPIs, last updated in 2010.

• Protein Data Bank (PDB) [78] – Database of over 180,000 entries, each containing the

three dimensional structure of proteins, protein pairs, or other biological complexes,

with over 10,000 new entries being added per year.

• Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [79] – Database

containing over 52 million high confidence, and 3 billion low confidence interactions

across a variety of species. These interactions are gathered from experiments, similarity

analyses, and literature mining, and includes interactions from DIP, BioGRID, HPRD,

IntAct, The Molecular INTeraction Database (MINT), and PDB.
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• Human Integrated Protein-Protein Interaction rEference (HIPPIE) [80] - Collection of

human interactions pulled from IntAct, BioGRID, HPRD, DIP, The Biomolecular

Interaction Network Database (BIND), The Munich Information Center for Protein

Sequences (MIPS); updated annually.

Older databases that no longer update frequently include MIPS, BIND, and MINT, which

all have typically been cataloged by newer databases [81–83]. Additionally, the Negatome

database contains 30,000 protein pairs that are not expected to interact, based on

literature and structural analyses [84].
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3.0 Computational Methods for Protein-Protein Interaction Prediction

While many experiments have been performed to find novel PPIs, only a fraction

of those expected to exist are currently known. Given the cost of performing various

experiments and rarity of proteins interacting among all possible pairs, computational

methods are a popular way to suggest likely interacting pairs, filtering down the number of

possible pairs to a few likely interacting pairs that can be validated cost effectively. In this

chapter, we primarily focus on data and features used by previous PPI prediction methods,

namely dataset generation, amino acid sequence-based features, and annotation-based

features, along with a brief overview of docking algorithms used for structural PPI

prediction.

3.1 PPI Datasets

TO predict likely interacting pairs, researchers first need to compile datasets of

positive and negative instances used for training and testing various models. Most

previously used datasets used public databases or previous experiments to obtain a set of

known interacting pairs, which are then matched with an equal number of randomly, or

semi-randomly, selected pairs utilized as negative examples. A list of datasets from

previous works are shown in Table 3.1. This numbers in this table are filtered down to

proteins that we can actively download sequence information for, and requires proteins

utilized to have amino acid sequences of length 31 or greater. As many previous works rely

on protein sequence information, datasets are commonly created to ensure multiple

proteins do not have similar sequences, filtering out proteins with greater than 40% or 25%

similarity before creating dataset instances.

Additionally, in several datasets, negative pairs were sampled only from proteins

not known to exist in the same subcellular locations [85–88]. This strategy can minimize

the chance of a false negative when doing random selection, as proteins that do not exist in
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the same area cannot logically interaction with each other. However, Ben-Hur and Noble

stated that negative examples would be more biased with subcellular location filtering, and

suggested sampling uniformly at random for negative examples to make create datasets

[89]. Additionally, filtering protein pairs before randomly sampling for negatives can create

artifacts not found in sets of known interacting proteins. For example, when filtering by

subcellular location, proteins that have multiple or no known subcellular localizations are

commonly removed from consideration when creating negative data, while these proteins

are still used in positive datasets. This creates a scenario where certain proteins may only

appear in the positive instances within a dataset, which could explain why datasets using

this strategy [85–88] commonly have many fewer unique proteins in their negative instances

compared to their positive instances, as shown in Table 3.1.

3.2 Sequence-Based Methods: Features

This section details a variety methods used to compute features from sequences in

prior works. Examples and equations are provided for each sequence-based feature

generation method, along with a final table of which features are used by which model.

3.2.1 Amino Acid Count Features

Features in this section are primarily based on counting the occurrences of

different amino acids, or combinations of amino acids.

Amino Acid Composition (AAC) counts the number of each type of amino

acids in a sequence, divided by the total number of amino acids, as shown in Equation 1.

Using the 20 standard amino acids as x creates 20 features per protein sequence.

AACx =
len(Seq)∑

n=0


1

len(seq) Seqn == x

0 Seqn 6= x

(1)
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Table 3.1: Datasets reported in prior publications

Dataset

Creator
Species

Dataset

Curator

Positive

Pairs

Random

Pairs

Proteins

in

Positive

Instances

Proteins

in

Random

Instances

Du [88] Yeast a Du [88] 17,257 48,594 4,382 2,521

Guo [85] Yeast b Chen [90] 5,594 5,594 2,217 2,421

Guo [85] Yeast c Tian [91] 5,594 5,594 2,521 1,194

Guo [86] Multi Chen [90] 32,959 32,959 11,527 1,399

Jia [92] Yeast d ,e Jia [92] 17,339 33,056 4,436 3,260

Li [93] Human f ,g Li [93] 4,096 4,096 2,805 1,865

Liu [94] Fruit Fly Liu [94] 4,156 4,241 2,463 4,080

Martin [95] H.Pylori Jia [96] 1,420 1,458 1,313 727

Martin [95] Human Pan [87] 937 938 828 740

Pan [87] Human Pan [87] 33,617 36,480 9,473 2,184

Pan [87] Human Pan [87] 3,899 4,262 2,520 661

Richoux [97] Human h Richoux [97] 39,672 64,388 6,676 15,869

aOnly a random sample of the full list of random pairs are used to create a dataset of 50% positive data
bDifferent datasets based on Guo’s yeast data were found in literature. Unless specified otherwise, we use

Tian’s dataset by default.
cDifferent datasets based on Guo’s yeast data were found in literature. Unless specified otherwise, we use

Tian’s dataset by default.
dThe original dataset contained inter-species pairs. Pairs with non-yeast proteins were removed.
eJia’s yeast data is used in two different ways, split into a training/cross validation set of 50% positive

data (Jia Yeast Cross) and a held-out test set of 30% positive data (Jia Yeast Held), or for full cross validation
(Jia Yeast Cross Full).

f Data are provided in individual train and test sets, rather than used for cross validation. Test sets have
fewer pairs than train sets.

gData from Alzheimer’s disease network.
hData are provided in individual train and test sets, rather than used for cross validation. Test sets have

fewer pairs than train sets.
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N-Gram Model (NGram) feature computation utilizes a similar formula to

AAC, computing the frequencies of different amino acids occurring in an amino acid

sequence. However, instead of limiting the computations to individual amino acids,

N-Gram models compute the frequency of combinations of variable length fragments of

amino acids occurring in a sequence, usually retaining overlapping subsequences. For

example, this formula produces 400 features per protein sequence when using the standard

20 amino acids and a window size of N=2.

Signature (Sign) is a counting formula similar to N-Gram, usually with a

window size of N=3, but focuses primarily on the center amino acid, with the order of the

other acids being unimportant. Thus, amino acid combinations such as MCT and TGM

would both count as the same combination. With a length of 3 amino acids, signature

counts occurrences of 4200 unique trimer combinations within an amino acid sequence [95].

The Conjoint Triad Method (CT) groups amino acids by dipole and side

chain volumes into 7 distinct groups, replacing the 20 standard amino acids with only 7

unique values, and computes an N-Gram count of window size N=3. This computes 343

(73) occurrence counts per protein sequence. The final counts are normalized by

subtracting the minimum value and dividing by the maximum value, as shown in

Equations 2-3 using each of the 343 unique occurrence counts as x and z [87].

Countx =
len(Seq)−2∑

n=0


1 (group(Seqn), group(Seqn+1), group(Seqn+2))

0 otherwise
(2)

CTx = Countx − ∀zmin(Countz)
∀zmax(Countz) (3)

Weighted Skip-Sequential Conjoint Triad (WSCT) computes the regular

CT calculation on sets of 3 consecutive amino acids, while also computing skip-sequential

variations based on taking sets of 4 consecutive amino acids, and removing one of the

middle amino acids [98]. Using the values for 3 consecutive amino acids, the 1st, 2nd, and

4th consecutive amino acid, and the 1st, 3rd, and 4th consecutive amino acids throughout

each protein’s amino acid sequence, three variations of the CT method are computed, with
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a final weighted average of the methods generating a final set of 343 features. Computing

the count for each of the 343 grouped amino acid combinations of length 3 (x), averaging

them together into a final value using a weight (w), and normalizing using the maximum

and minimum value across all 343 grouped amino acid combinations of length 3 (z), is

shown in Equations 4-8.

Org Countx =
len(Seq)−2∑

n=0


1 (group(Seqn), group(Seqn+1), group(Seqn+2))

0 otherwise
(4)

Skip 1 Countx =
len(Seq)−2∑

n=0


1 (group(Seqn), group(Seqn+2), group(Seqn+3))

0 otherwise
(5)

Skip 2 Countx =
len(Seq)−2∑

n=0


1 (group(Seqn), group(Seqn+1), group(Seqn+3))

0 otherwise
(6)

All Countx = Org Count + w × (Skip 1 Count) + w × (Skip 2 Count) (7)

WSCTx = All Countx − ∀zmin(All Countz)
∀zmax(All Countz) (8)

Multivariate Mutual Information (MMI) computes the frequency at which

N-grams of amino acids occur relative to the probability of their occurrence by chance [99].

As a first step, the MMI technique groups amino acids using the 7 groups utilized

previously by the CT method. After this, counts of the occurrences of N-grams, of window

size N=1 (7 unique), window size N=2 (28 unique), and window size N=3 (84 unique) are

calculated. A grouping of 211 and 121 are counted the same by the MMI formula, as it

does not consider different orderings as unique groupings. Using these occurrence counts,

calculations are perform to compute the mutual information for each of the 119 unique
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groups, using Equations 9-12 [99]. Equation 9 performs occurrence counts for each N-gram

sequence, up to length 3, for a given N-gram (m), while Equations 10-12 compute the MMI

frequences for a given set of groups in an N-gram up to length 3 (a, ab, or abc).

Freqm = 1
len(Seq) + 1 +

len(Seq)−len(m)+1∑
n=0


1

(len(Seq)+1) group(Seq)n...(n+len(m)−1) == m

0 otherwise
(9)

Ia = Freqa (10)

Iab = Freqab × ln( Freqab

Freqa × Freqb

) (11)

Iabc = Iab + Freqac

Freqc

× ln(Freqac

Freqc

)− Freqabc

Freqbc

× ln(Freqabc

Freqbc

) (12)

Composition, Transition, Distribution (CTD) features are a concatenation

of three different calculations [100]. First, all amino acids are grouped, most commonly

using the 7 groups from the CT method, and encoded based on their group number. Once

encoded using N groups, the following three computations are performed:

• Composition: Composition is equivalent to AAC, using N groups instead of all 20

amino acids to produces N features per amino acid sequence

• Transition: Transition uses a similar formula to N-Gram with a length of 2. However,

this method only counts consecutive amino acids that are not in the same group, and

counts groups symmetrically, such as an amino acid pair belonging to groups (1,2) or

groups (2,1) are counted the same. Produces N2−N
2 features per amino acid sequence.

• Distribution: Distribution records the distances along the amino acid sequence at which

certain thresholds occur. For each group, the index of the amino acid representing the

25th, 50th, and 75th percentile of the group’s representation in the amino acid sequence,

along with the first and last occurrence of the group, are recorded. These values are

converted to percentages by dividing by the length of the amino acid sequence, creating

a final set of N × 5 features.
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Thus, CTD creates N×6+(N2−N)
2 features, given N groups. With 7 being the most common

number of groups used, this formula commonly produces 63 features.

3.2.2 Descriptor Features

Descriptor Features break amino acid sequences into fragments, calculating

features from each individual fragment. Most commonly, the features computed per

fragment are amino acid count features, such as CTD.

Local Descriptor (LD) encoding breaks a protein’s amino acid sequence into 4

equal length disjoint parts. From these parts, 9 segments are formed from all possible sets

of consecutive fragments that do not contain the whole sequence. Thus, 4 segments (s1, s2,

s3, s4) are each 1
4

th the length of the protein, 3 segments (s12, s23, s34) are 1
2

th the length

of the protein, and 2 segments (s123, s234) are 3
4

th the length of the protein. A final

segment containing the middle 75% of amino acids in the protein sequence comprises the

10th and final subsequence. For all 10 subsequences, CTD using CT groups is computed,

creating 63× 10 = 630 features [101].

Multi-scale Local Descriptor (MLD) Encoding works similarly to LD

encoding. Each protein’s sequence is split into N parts, and all consecutive regions of the N

parts are used as segments for the encoding. This method allows for a flexible N, and

setting N=4 would yield the first 9 segments of the LD method, excluding only the final

segment composed of the middle 75%. Like the LD encoding method, all segments are used

to compute CTD using CT groups, yielding ( (N2+N)
2 − 1)× 63 features [102].

Multi-scale Continuous and Discontinuous Local Descriptor (MCD)

Encoding is almost the same as MLD encoding, with the lone exception being that it does

not remove discontinuous sets of fragments. Thus, all combinations of groups, except using

the entire sequence or none of the sequence, are used. If splitting into 4 parts, segments

using fragment combinations such as (s14, s134) would be valid, despite having gaps.

Finally, all segments are used to compute CTD using CT groups, yielding (2N–2)× 63

features [103].
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Encoding Based on Grouped Weight (EGBW) encodes a sequence with

binary values in three different ways before splitting the encoded sequence into N

overlapping subsequences and computing the percentage of the sequence that is not

encoded as zero [104]. To create the binary encoding, the 20 amino acids are first clustered

into 4 groups based on hydrophobicity and charge (g1=(GAVLIMPFW), g2=(QNSTYC),

g3=(DE), g4=(HKR)). From these 4 groups, 3 unique splits are created, where in each

split the 4 groups are splits into 2 pairs of groups. Each group pair is assigned a 0 or 1 for

binary encoding. For example, pair (g1,g2) may be set to 1, while pair (g3,g4) would be set

to 0 on the first encoded copy of the amino acid sequence. Once encoded, each of the three

encoded sequences is split into N overlapping subsequence, where each subsequence starts

at index 0 and ends at equally spaced indices spanning the entire sequence’s length.

Computing the percentage of each subsequence on each of the 3 encodings that is non-zero

created N × 3 features.

Similar to EGBW, Binary-Transition Feature (BTF) encodes an amino acid

sequence in binary values and splits the sequence into subsets [105]. However, the authors

used a unique set of 10 groupings, and also computed information on the frequency of

transitions between 0-1 and 1-0 encodings within an encoded binary sequence. Computing

the sum of both transitions along with the number of 1s and 0s using G groups and L

subsequences creates G× L× 3 features. In the original paper, G=10 and L =5 were used

to compute 150 features per amino acid sequence [105].

3.2.3 Physicochemical Based Features

Physicochemical based features perform calculations on amino acid properties,

such hydrophobicity and side-chain mass, to compute numeric values for entire amino acid

sequences. Traditionally, these computations follow a simple set of steps. First, a group of

amino acid properties is selected, and these properties are normalized such that each has a

mean of 0, and a standard deviation of 1. Secondly, the amino acid sequence is encoded

with these normalized physicochemical values. Thirdly, optionally, the encoded sequence is

normalized by subtracting its mean. Finally, for all values lag=1 to a maximum lag
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hyperparameter, referred to as max lag, each pair of amino acids along the sequence that

are lag distance apart have their properties combined into a single value. The average of

these values for each lag and each physicochemical property are used as features to

represent the protein. The initial equations required by various physicochemical

feature-based implementations are listed in Equations 13-17. Equations 13-14 normalize

the property for each of the 20 standard amino acids (aa), Equation 15 replaces each amino

acid (x) within a protein sequence with the value of a given property for the amino acid,

Equation 16 normalize the encoded sequence for all amino acids (x, z) within the sequence,

and Equation 18 computes a single value sometime used for further normalization from an

encoded sequence.

Mean Normalized Property (MNP )aa = Propertyaa−
∑
∀z Properyz

# amino acids
(13)

Normalized Property (NP )aa = MNPaa√∑
∀z

MNP 2
z

# amino acids

(14)

Encoded Sequence (ES) = NPx ∀x ∈ Seq (15)

Normalized Encoded Sequence (NES)x = ESx −
∑
∀z

ESz

len(ES) (16)

Average Squared NES (AvgSqNES) =
∑
∀z

NES2
z

len(NES) (17)

Autocovariance (AC) computes the average of the product of lag distance

encoded amino acids using a normalized encoded sequence, computing

# of properties×max lag features (Equation 18) [85].

ACproperty,lag =
len(Seq)−lag∑

x=0

NESx ×NESx+lag

(len(Seq)− lag) (18)

29



Normalized Moreau-Broto Autocorrelation (NMBA) computes the

average of products of lag distance amino acids using an unnormalized encoded sequence,

computing # of properties×max lag features (Equation 19) [106, 107].

NMBAproperty,lag =
len(Seq)−lag∑

x=0

ESx × ESx+lag

(len(Seq)− lag) (19)

Moran Autocorrelation (Moran) calculates the average of products of lag

distance amino acids using normalized sequences divided by the average of the squared

normalized sequence, computing # of properties×max lag features, as shown in Equation

20.

Moranproperty,lag =
len(Seq)−lag∑

x=0

NESx ×NESx+lag

(len(Seq)− lag)× (AvgSqNES) (20)

Geary Autocorrelation (Geary) calculates half of the average of the squared

difference between lag distance amino acids using unnormalized sequences, divided by the

average of the squared normalized sequence, computing # of properties×max lag

features, as show in Equation 21 [106, 107].

Gearyproperty,lag =
len(Seq)−lag∑

x=0

(ESx − ESx+lag)2

2× (len(Seq)− lag)× (AvgSqNES) (21)

Average Squared (AvgSq) computes the average of the squared difference

between lag distance amino acids using unnormalized sequences, computing

# of properties×max lag features (Equation 22).

AvgSqproperty,lag =
len(Seq)−lag∑

x=0

(ESx − ESx+lag)2

(len(Seq)− lag) (22)

Discrete Wavelet Transform Physicochemical (DWTP) replaces all values

within each protein’s amino acid sequence with physicochemical properties (Encoded

Sequence), which are then run through discrete wavelet transforms (wavelet type = db1,

levels = 4 by default). For each physicochemical property, the min, max, average, and

standard deviation are calculated from the values returned by DWT, computing

4×# of property features per protein [92].
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The physicochemical property response matrix calculates an NxN matrix for a

given length N protein sequence and physicochemical property. Each value (i,j) in the NxN

matrix represents the sum of the physicochemical values for the ith and jth amino acid in

the protein sequence [108].

3.2.4 Pairwise Physicochemical Based Features

Pairwise physicochemical based features use formulas similar to regular

physicochemical based features, but rely on pairwise matrices of physicochemical values

rather than individual values per amino acid. For example, whereas some physicochemical

property are computed for each amino acid (such as polarity), others are computed as

pairwise substitution matrices (such as Grantham’s chemical distance matrix and mutation

matrices like Point Accepted Mutation (PAM)120) [109]. These matrices allows a given

pair of amino acids to generate a unique value without any computational work (such as

multiplying or subtracting).

Dth Rank Sequence Order Coupling Number (SqOr) The Dth Rank

Sequence Order Coupling Number calculates the sum squared values of pairwise

physicochemical properties (Equation 23), computing # of properties×max lag features

(by default 2 properties, max lag=30) [107]. We note that using a summation can create

different magnitudes of values depending on the construction of the underlying

physicochemical matrix, and recommend normalizing the matrix or using an average when

using this feature.

SqOrproperty,lag =
len(Seq)−lag∑

x=0
Norm Prop(Seqx, Seqx+lag)2 (23)

3.2.5 Concatenation of Amino Acid Count and Physicochemical Features

Features in this concatenation category typically use two or more of the

previously mentioned calculations, a physicochemical feature and an amino acid count

feature, which are then combined and normalized into a single feature set.
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Pseudo Amino Acid Count (PSAAC) computes and concatenates the results

of both AAC and AvSq formulas [110]. Physicochemical property values are first computed

using the average squared formula, and, if multiple properties are used, the returned

vectors are averaged, as shown in Equation 24, before concatenating. Values computed

from physicochemical properties are multiplied by a weight, usually 0.1, and the final

concatenated feature vector is normalized, as shown in Equations 25. This creates a final

feature vector containing 20 + max lag features. By default, 3 physicochemical properties

are used (hydrophobicity, hydrophilicity, and side-chain mass) [110].

Avg AvgSqx =
# of properties∑

x=0

AvgSqx

# of properties
(24)

‘

PSAAC = concat(AAC, weight× Avg AvgSq)∑z=20+max lag
z=0 concat(AAC, weight× Avg AvgSq)

(25)

Amphiphilic Pseudo Amino Acid Count (APSAAC) uses the same final

formula as PSAAC but does not average together values over different properties [111].

Thus, for K properties, 20 + k ×max lag features are generated. The full formula is shown

in Equation 26. Amino acid count is normalized prior to concatenating with the

k ×max lag values generated by the physicochemical properties. By default, 2 properties

are used, with a user-defined weight of 0.5 [88, 111].

APSAAC = concat(AAC, weight× Avg AvgSq1...k)∑z=20+max lag
z=0 concat(AAC, weight× Avg AvgSq1...k)

(26)

Quasi-Sequence Order (Quasi) feature computation follows a similar format

to both PSAAC and APSAAC. However, Quasi-Sequence Order uses the Sequence Order

(SqOr) calculation based on a matrix of physicochemical properties rather than the Average

Squared (AvSq) formula used on individual amino acids physicochemical values [107, 112].

This formula, shown in Equation 27, has only been defined for using a single property, with

a different set of computations done for different properties. Thus, 20 + maxlag features are

computed for each property. By default, max lag is set to 30, and a weight of 0.1 is used.
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Quasiproperty,lag = concat(AAC, weight× SqOrproperty,lag)∑z=20+max lag
z=0 concat(AAC, weight× SqOrproperty,z)

(27)

BLOcks SUbstitution Matrix (BLOSUM) Features utilize the BLOSUM62

matrix, which is based on the substitution rates of amino acids among conserved protein

sequences with less than 62% identity.

BLOSUM Encoding Matrix (BloMat) converts all amino acids using values

given by the BLOSUM62 matrix, converting each amino acid into 20 values, and the full

protein sequence into an N x 20 matrix of values.

DCT BLOSUM (DCTBlo) computes a discrete cosine transform after creating

a BloMat, keeping the most important values. By default, the 400 most important values

are kept, creating a 400 feature vector [113].

Squared Dif BLOSUM (SqDifBlo) using a BLOSUM Encoding matrix,

Huang et al. normalized each row (20 values per protein) by subtracting the mean and

dividing by the standard deviation, before computing the squared difference between rows

over different values of lag for each residue as shown in Equations 28-29. Formula related

to normalizing and calculating the squared difference between values can be found in the

physicochemical property section. The SqDifBlo formula is computed per amino acid (aa)

and uses a range of lag values from 0 to max lag, generating 20× (maxlag + 1) features.

When lag = 0, the raw values are averaged instead of computing a difference [114].

NB = Normalized Sequence Encoded Blosum62 Matrix (28)

SqDBloaa,lag =


∑len(seq)

k=0 NBk,aa

len(Seq) lag = 0∑len(seq)−lag

k=0 (NBk,aa−NBk+lag,aa)2

len(Seq)−lag
lag > 0

(29)

Physicochemical BLOSUM (PhyBlo) Features generated by this

methodology multiply physicochemical property values by a BloMat, using a dot product

between each row in the BLOSUM matrix in the 20 values for a physicochemical property,

to compute an encoded physicochemical vector based on evolutionary data, as shown in
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Equation 30. This creates a numerical encoded sequence (NES), which can then be

optionally mean normalized and run with any previously mentioned physicochemical

formula, such as autocorrelation (AC(PhyBlo)). AvgSq(PhyBlo), which computes the

average product of the normalized physicochemical BLOSUM numerically encoded

sequence, is used by Li et al. [115].

PhyBlo NES = ∀row ∈ BlosumMatrix
20∑

i=0
rowi × propi (30)

3.2.6 Position-Specific Scoring Matrices (PSSM) Features

PSSM features use evolutionary calculations on amino acids across various species

and proteins. For each protein, PSSMs are computed using the Position Specific Iteration

Basic Local Alignment Search Tool (PSI-BLAST) algorithm [116]. PSSM-based features

for PPI prediction commonly use all proteins in UniProt’s SwissProt database as the query

set, 3 iteration rounds, and a significance value of 0.001 [117–119]. For proteins where no

matches are found using PSI-Blast and SwissProt, a BloMat matrix can be substituted.

PSSM features simply use raw Position-Specific Scoring Matrices as a feature

matrix, as computed from PSI-BLAST.

PSSM Amino Acid Count (PSSMAAC) computes the average of each amino

acid’s weight from a PSSM, as shown in Equation 31 [120].

PSSM AAC(a) =
∑i=len(Seq)

i=0 PSSM(i, a)
len(Seq) (31)

The PSSM Dipeptide Composition (DPC)/Bi-Gram method is computed

by multiplying, for all adjacent pairs of amino acids, the PSSM values for each pair of

amino acids. These values are then averaged, computing 400 features, one for each pair of

standard amino acids. The formula is shown in Equation 32 [98, 120].

PSSM DPC(a,b) =
∑i=len(Seq)−1

i=0 PSSM(i, a)× PSSM(i + 1, b)
len(Seq)− 1 (32)
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PSSM N-length Comp (PSSM-N) is similar PSSM DPC, but replaces

multiplying 2 adjacent amino acids with N adjacent amino acids. Similar to using

N-Grams, this formula computes the frequency of conserved k-mers of length N in PSSMs,

creating 20N features [117].

PSSM Discrete Cosine Transform (PSSMDCT) features are computed by

running a multidimensional discrete cosine transform on each protein’s PSSM (default

hyperparameters dctType=2, dctNormType=ortho). By default, the top 400 values are

kept as features.

3.2.7 Other Features

Features in this section represent simple features that can be computed strictly

using an amino acid sequence that do not fit into any other category.

Chaos Game Representation features, as defined by Jia et al., are computed

by first transforming the amino acid sequence into nucleotides using a pre-set table,

mapping each amino acid to a single triplet of nucleotides [96]. From there, each nucleotide

(ACGT) is assigned the value of a different corner of a unit length box ((1,1), (1,0), (0,0),

(0,1)), and a plot is made on a 2D-grid space representing the protein sequence. Starting

from the center (0.5,0.5), the nucleotide sequence is iterated in order, with new points

being generated on the plot halfway between the previously plotted position and the new

nucleotide’s corner location. Ideally, this will generate a pattern representing the structure

of the protein sequence. The 2D-grid is finally broken into smaller boxes, with the number

of points per box being recorded as features.

One-hot / Numeric Encoding replaces each amino acid within an amino acid

sequence with a unique number, such as the numbers 1-20 for the 20 different standard

amino acids. One-hot encoding similarly encodes a sequence, but using a unique binary

vector for each of the 20 standard amino acids, containing a single 1 and 19 zeros. Different

researchers use different alphabets for encoding, with some including less than 20 unique
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letters, such as grouping down to the seven groups used by the conjoint triad technique,

including non-standard amino acids, such as o and b, to create more than 20 amino acids,

or creating a final category for all other amino acid values.

Skip-Gram models create feature vectors per word using a neural network.

Given a word for training, and a set of neighboring words to predict, the skip-gram model

attempts to output the most likely words neighboring a given word [121]. As the number of

possible words may be large, training is commonly done using negative sampling, where

only a random subset of all possible words are used as negatives for each piece of training

data. To create skip-gram representations for amino acid sequences, each amino acid is

treated as a single word, and a neighboring window of amino acids are treated as targets,

to train the network. Finally, the embeddings for the encoding layer of the network are

used to create a numeric vector per amino acid, which can be used to encode an amino acid

sequence as a numeric matrix.

3.3 Sequence-Based Methods: Models

In Table 3.2 we list a variety of models from previous literature and information

related to their features, machine learning model, and feature processing methods. We use

abbreviations for different machine learning algorithms, including support vector machines

(SVM), k-local hyperplanes neighbors (HKNN), k-nearest neighbors (KNN), random forest

(RF), rotation forest (RotF), ensemble extreme learning machine (EELM), weighted sparse

representation classifier (WSRC), discriminative vector machine (DVM), neural network

(NN), autoencoder neural network (Auto), light gradient boosting machines (LGBM) and

Deep Forests (DF). Feature selection algorithms include principal component analysis

(PCA), Latent Dirichlet allocation (LDA), maximum relevance-minimum redundancy

(mRMR), MapReduce, 2-D short-term Fourier Transform (STFT), and 2D wavelet

denoising (2D wavelet).
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Table 3.2: List of Published Sequence-Based Predictors and Features

First Author Year Ref
ML

Algorithm

Feature

Preprocessing
Features

Martin 2005 [95] SVM Signature

Nanni 2006 [122] HKNN NGram

Shen 2007 [123] SVM CT

Guo 2008 [85] SVM AC

Liu 2009 [94] KNN mRMR PSAAC

Pan 2010 [87]
RF / SVM

/ RotF
LDA / None CT / AC / PSAAC

Zhou 2011 [124] SVM LD

Zhao 2012 [107] SVM
NMBA, Moran, Geary,

SqOr, Quasi, PSAAC

You 2013 [125] EELM PCA Moran, AC, LD, CT

You 2014 [126] SVM MapReduce Moran

Jia 2015 [92]
7 RFs,

voting
DWTP

Hamp 2015 [117] SVM PSSM-N

Huang 2015 [113] WSRC DCTBlo

Wong 2015 [108] RotF STFT PPRM

You 2015 [102] RF MLD

Ding 2016 [99] RF NMBA, AAC, MMI

Huang 2016 [105] WSRC BTF

Huang 2016 [114] WSRC SqDifBlo

Li 2016 [115] DVM AvgSq(Blo)

Du 2017 [88] NN
NGram, CTD, SqOr,

Quasi, APSAAC

Sun 2017 [127] Auto, NN CT / AC
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Table 3.2 (continued)

Wang 2017 [128] RotF PSSMDCT

Goktepe 2018 [98] SVM PCA
PSAAC, WSCT,

PSSMDPC

Gonzalez-

Lopez
2018 [129] NN Numeric Encoding

Hashemifar 2018 [118] NN PSSM

Li 2018 [130] NN Numeric Encoding

Chen 2019 [131] LGBM Elastic Net
NMBA, Moran, Geary,

PSAAC, LD, CT

Chen 2019 [90] NN Skip Gram, One-Hot

Jia 2019 [96] RF Chaos, AAC

Richoux 2019 [97] NN One-Hot

Tian 2019 [91] SVM 2D wavelet EGBW, AC, PSAAC

Yao 2019 [132] NN Skip Gram

Zhang 2019 [133]
Ensemble

28 NNs
AC, LD, MCD

Li 2020 [93]
Ensemble

81 NNs
AC, PSAAC, CT, LD

Yu 2020 [120] DF Elastic Net

NMBA, Moran, Geary,

MMI, CTD, PSsAAC,

PSSMAAC, PSSMDPC

Czibula 2021 [134] Auto AC, CT
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3.4 Annotation-Based Methods: Features

In contrast to the formula and methods presented above, many models focus on

annotated or measured data related to proteins for generating features to predict PPIs.

Features covered in this section use data such as Gene Ontology (GO) annotations, domain

annotations, and gene expression data.

3.4.1 Common Computations in Annotation-Based Features

When computing annotation-based features, many calculations are reused to

aggregate or compute a final feature from a set of annotations or measurements. This

subsection defines many of these common computations, for easy reference when discussing

these annotations later.

3.4.1.1 Aggregation Types

Various approaches rely on predicting interactions from annotations assigned to

each protein. As many annotations may link to a single protein, a common approach is to

combine a grid of M by N values, representing scores from every annotations from protein

A (size M) to every annotation in protein B (size N), down to a single value using one of

the equations listed in Equations 33-38. While most of these aggregation methods work for

any grid of numbers, product aggregation only works with matrices of values between zero

and one.

Sum =
M∑

m=1

N∑
n=1

V al(m, n) (33)

Average =
∑M

m=1
∑N

n=1 V al(m, n)
M ×N

(34)

Max = maxm∈(1...m),n∈(1...n)V al(m, n) (35)
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Product = 1−
m,n∏

m=1,n=1
1− V al(m, n) (36)

Best Matching Average (BMA) =
M∑

m=1

maxn∈(1...N)V al(m,n)

2×M
+

N∑
n=1

maxm∈(1..m)V al(m,n)

2×N
(37)

Max of Row or Column Average (RCMax) = max


∑M

m=1
maxn∈(1...N)V al(m,n)

M∑N
n=1

maxm∈(1..m)V al(m,n)
N

(38)

3.4.1.2 Frequency Based Features

Features in this category are created from the frequency of annotations occur in

known interactions. Given a biological concept (such as GO or domains), and a list of

known interactions, annotation pairs are scored based on the percentage of protein pairs in

the interacting list containing each annotation, and each annotation pair. The formula in

Equation 39 computes the number of times each annotation pair, (a,b), appears in a

protein pair known to interact divided by the total number of protein pairs the term pair

appears in. We excluded self-interactions in the formation of this formula, as we exclude

those when predicting interacting pairs. Additionally, some previous authors compute the

log frequency instead of just using the frequency, as shown in Equation 40.

Freqa,b =

∑
p1 with a

∑
p2 with b


1 (p1, p2) ∈ interactionLst

0 otherwise

∑
p1 with a

∑
p2 with b


1 p1 6= p1

0 otherwise

(39)

Log Freqa,b = log2(Freqa,b) (40)
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Finally, rather than depending on data from all protein pairs, some authors rely

on the hypergeometric distribution using exclusively pairs from training data, which can

compute a p-value for the frequency of pairwise data among interacting, or non-interacting,

pairs. The hypergeometric function is shown in Equation 41.

HypergeometricSampled =

(
T otalOccurrences

SampledOccurrences

)(
T otal−T otalOccurrences

Sampled−SampledOccurrences

)
(

T otal
T otalOccurrences

) (41)

3.4.1.3 Intersection Based Features

Intersection based features compute the similarity of a pair of protein pairs based

on overlapping annotations, thresholds, or other criteria. When computing features related

to intersection overlap, one of Equations 42-45, given data for proteins p1, p2, are

commonly used.

Intersectionp1,p2 = (a ∈ p1) ∩ (b ∈ p2) (42)

Unionp1,p2 = (a ∈ p1)
⋃

(b ∈ p2) (43)

Intersection Over Unionp1,p2(IOU) = Intersection(p1, p2)
Union(p1, p2) (44)

Intersection Over Minimump1,p2(IOM) = Intersection(p1, p2)
min(∑a∈ p1 1,

∑
b∈ p2 1) (45)

3.4.2 Gene Ontology Features

Gene Ontology features are those using Gene Ontology annotations to compute

PPI predictions features, commonly through the usage of semantic similarity, the overlap of

common GO terms, the frequency of GO annotations occurring in other proteins or known

PPIs, or binary or numeric vectors representing the GO terms for each protein.
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3.4.2.1 Gene Ontology Semantic Similarity Features

GO semantic similarity features compute the similarity of gene ontology terms

annotated to a pair of proteins. Most semantic similarity formulas utlize information

content (IC) of the most informative common ancestor (MICA). IC is computed based on

the rarity of any protein being annotated with a given GO term or any of its descendants.

For each pair of terms, the MICA is computed as the term with the largest information

content that is also an ancestor between both terms.

A list of common computations used by semantic similarity are given in

Equations 46-50, given GO terms a and b. Semantic similarity is computed for each

ontology (molecular function, biological process, cellular component) individually, for each

pair of annotations between two proteins, and aggregated using one of the previously

mentioned aggregation methods (Equations 33-38), computing 3 final feature values per

protein pair. An example of Resnik Semantic Similarity is shown in Figure 3.1. Please note

that Product aggregation may be invalid for some semantic similarity measurements, such

as Resnik, since the values produced by this formulas do not fall between 0 and 1, as is

required for product aggregation. Many authors, however, utilize a normalized Resnik

approach, which moves the values of Resnik into a 0-1 range by dividing by the largest

information content value in the ontology, which would allow product aggregation to work.

ancestors anno (annos) = list of all GO terms that are ancestors of anno, inclusive

(46)

Information Content (IC)term = −log(

∑
p∈ proteins

∑
t∈ anno(p)


1 term ∈ annos(t)

0 otherwise∑
p∈ proteins

∑
a∈ anno(p)1

)

(47)

MICAa,b = t such that ICt = Maxt∈ancestor(a)
⋂

ancestor(b)(ICt) (48)
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Figure 3.1: Gene Ontology Calculations. A. Example Gene Ontology hierarchy for a

single ontology, with Terms 5 and 10, and Term 4 and 7 highlighted as belonging to different

proteins. B. Resnik semantic similarity approach. Each annotation is assigned a score equal

to the negative log of the frequency it is assigned to any protein. Each score in the table

represents the scores assigned to the given MICA, with a final best match average score per

row and column calculated.
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Descendant IC (DescIC)a = maxt∈descendants(a)(ICt)− ICa (49)

MICDa,b = t such that ICtmaxt∈descendants(a)
⋂

descendants(b)(ICt) (50)

Dista,b = minimum edge distance between terms a and b (51)

Resnik Semantic Similarity computes similarity based on the IC value of the

MICA term Equation 52 [135]. Additionally, can be converted to a normalized form to

scale attributes between 0 and 1.

Resnika,b = IC(MICA)a,b (52)

Normalized Resnik = Resnika,b

max∀aIC(a) (53)

Lin Semantic Similarity computes similarity based on the IC values of the

MICA term and the given terms a and b 54 [136].

Lina,b = 2×Resnika,b

IC(a) + IC(b) (54)

Jiang and Conrath (Jiang) Similarity computes similarity using a distance

formula based on the IC values of the MICA and terms a and b 55 [137, 138].

Jianga,b = 1
1 + IC(a) + IC(b)− 2×Resnika,b

(55)

Schlicker’s Relevance (Schlicker) Similarity computes similarity based on

Lin’s semantic similarity combined with a probability based on the IC value of the MICA

term 56 [139].

Schlickera,b = Lina,b × (1− e(−Resnika,b)) (56)
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Hybrid Relative Specificity (Wu) Similarity computes similarity based on a

combination of information content and edge distance values using the given terms and

their MICA and MICD terms 57 [140].

Wua,b = 1
1 + Dista,(MICAa,b) + Distb,(MICAa,b)

× Resnika,b

Resnikab
+ DescICa+DescICb

2
(57)

Descendant Semantic Similarities were created by Zhang et al., which modify

each of the previous 5 semantic similarities using common descendants instead of common

ancestors, as shown in Equations 58-62 [137]. For our calculations, we use a value of 0

when no common descendant is found.

Resnik Desca,b =



0 No Common Descendants

IC(a) + IC(b)− IC(MICDa,b) IC(a) + IC(b) >= IC(MICDa,b)

1
IC(MICDa,b) Otherwise

(58)

Lin Desca,b = 2×Resnik Desca,b

IC(a) + IC(b) (59)

Jiang Desca,b = 1
1 + IC(a) + IC(b)− 2×Resnik Desca,b

(60)

Schlicker Desca,b = Lin Desca,b × (1− e−Resnik Desca,b) (61)

Wu Desca,b = 1
1 + Dista,(MICDa,b)

× Resnik Desca,b

Resnik Desca,b + Dista,root+Distb,root

2

(62)

Sim GIC utilizes a computation between protein pairs’ annotations’ information

content that does not utilize traditional semantic similarity measurements [141, 142]. This

process computes the sum of all information content values for each annotation belonging
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to both proteins, divided by the sum of information content used by either protein, as

shown in Equations 63.

Sim GICp1, p2 =
∑

t∈GO Anno(p1)∩GO Anno(p2) IC(t)∑
t∈GO Anno(p1)

⋃
GO Anno(p2) IC(t) (63)

Topological Clustering Semantic Similarity (TCSS) reduces all GO terms

into smaller, pocketed clusters rather than analyzing similarities using the full GO ontology

[143]. Normalized Resnik is used as the primary formula, but the normalization factor

when both GO annotations under consideration are within the same cluster is the

maximum IC value within the cluster rather than the entire ontology. The clusters are

created based on cutting the ontology at a certain IC value, which is determined by finding

the best IC cut to maximize ROC on a given test set.

3.4.2.2 Gene Ontology Vector-Based Approaches

Other GO-based approaches utilize per protein or per protein pair vectors based

the presence or absence of a given Gene Ontology annotations rather than information

content. These vectors can be combined either through a machine learning model, such as

an SVM, random forest, or neural network, or by using cosine similarity, as shown in

Equation 64, given 2 binary annotation vectors (BL1, BL2) representing annotations from

two proteins. We note that their are many different weighting schemes for information

content and edges that can be utilized to compute gene ontology vectors, and thus we

limited the following section to a few popular features.

Cosine SimBL1,BL2 = BL1 ×BL2

||BL1|| × ||BL2||
(64)

Up to the Lowest Common Ancestor ULCA creates a binary vector for GO

annotations that are descendants of the maximum MICA (known as the Lowest Common

Ancestor (LCA)) between the two annotation sets, and ancestors of each proteins

annotations, inclusively [144]. In the same work, the authors defined a variety of ways to
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generate binary vectors from GO annotations, known as inducers, including using all

ancestors, using only the most informative ancestors, using shortest paths, and other

possible inducers, with ULCA scoring the best.

Weighted Up to the Lowest Common Ancestor WULCA expands on

ULCA by using local weights for each GO term, computed by multiplying coefficient values

based on different ancestral relationships in the ontology (such as is a and part of) [145].

These weights replace the binary ULCA vector with a numerical weighted vector. In the

original work, multipliers for each relationship types are chosen to be between 0 and 1, thus

terms lower on the ontology will have lower weights than their parents. WULCA’s

outperformed ULCA by a few percentage points on a variety of datasets.

Onto2Vec Onto2Vec computes vectors for each protein and each GO term based

on each protein’s GO annotations, and those annotations relationships through the GO

network [146]. Relationships are added to the defined set of relationships in Gene Ontology

through automated reasoning, creating relations that link together distantly related terms.

Additionally, proteins were added to this expanded ontology, creating a network of

protein-annotation and annotation-annotation based relationships. Using this network,

features per annotation and protein were computed using Word2Vec. The final per protein

vectors were scored using either a machine learning technique, with neural networks

performing the best, or a formula like cosine similarity. In the original paper, Onto2Vec’s

cosine similarity outperformed a several variations, but could not outperform Resnik

semantic similarity without utilizing a machine learning model taking each protein’s vector

as features.

GOA2Vec GOA2Vec computes vectors for each protein and each GO term using

the Node2Vec method on a combined GO term to GO term and GO annotation to protein

network [147]. Final predictions of PPIs were made using cosine similarity between protein
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vectors, cosine similarity combined with a variation of best matching average, known as the

modified Hausdorff distance (shown in Equation 65), between GO vectors, and an SVM on

protein vectors. All three methods slightly outperformed Resnik similarity.

MDF = min(
M∑

m=1

maxn∈(1...N)cosine sim(m,n)

M
,

N∑
n=1

maxm∈(1..m)cosine sim(m,n)

N
) (65)

Hierarchical Vector Space Model (HVSM) starts with binary vectors for

gene annotations belonging to a pair of proteins and subsequently increments all ancestors

and descendants by fixed amounts depending on their distances from the proteins’s

annotated terms [148]. This approach formed per protein vectors, with potential PPI

scores generated based on cosine similarity. In the original paper, results shown small

improvements over using Resnik similarity.

GO Binary, arguably the easiest way to represent GO annotations, simply relies

on using a raw binary vector for each protein with ones representing the protein contains

the annotation or any of its descendants [149].

3.4.2.3 Gene Ontology Frequency-Based Features

GO Frequency, as computed by Thahir et al., calculates the frequency of GO

annotations appearing in PPIs, divided by the total number of unique protein pairs

containing both annotations (one annotation per protein), as shown in Equation 39 [150].

Protein-Protein Interaction Association Score (IAS) computes the

frequency of Gene Ontology terms existing in known interacting pairs, but excludes the

influence of the selected two proteins on the pair’s score by removing their known PPIs,

annotations, and the proteins themselves from all computations during scoring [151]. The

full formula is shown in Equation 66, for two proteins and two GO annotations, with

PPIs(x,y) representing the number of PPIs involving both x and y.

IAS V alp1,p2,goA,goB
=

P P Is(goA,goB)−P P Is(goA,goB ,(p1 or p2))
#P P Is−P P Is(p1 or p2)

P P Is(goA)−P P Is(goA,p1 or p2)
#P roteins−2

P P Is(goB)−P P Is(goB ,p1 or p2)
#P roteins−2

(66)
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Co-occurrence Association Score (CAS) computes the frequency of GO

annotations appearing in a single protein, as defined in Equations 67-70 [151].

Ca = Number Proteins where a is annotated (67)

All Cxx =
∑
∀i,j

Ci,j (68)

All Cx =
∑
∀i

Ci (69)

CASi,j =
Ci,j

All Cxx

Ci

All Cx

Cj

All Cx

(70)

3.4.2.4 Gene Ontology Intersection Features

Gene Ontology Intersection features rely on finding the same annotations

belonging to a pair of proteins.

GO Intersection counts the number of common annotations between two

proteins, typically from a reduced GO vocabulary, using Equation 42 [152].

SimUI computes intersection over union of GO annotations and the annotations’

ancestors between a pair of proteins, using Equation 44 [141].

The Frequency of Intersecting GO Terms, as computed by Zhang et al. and

Jensen et al. counts the number of proteins containing all GO terms that belong to both

proteins in a given pair [153, 154].

3.4.3 Domain and Family Features

Protein domains are identifiable, highly conserved, structures within proteins that

occur in multiple proteins and may suggest the proteins share common functional roles

related to the common structure. For example, certain types of domains are known to bind

together, likely implying that proteins with similar domains bind together in similar ways,

and leading to creating of domain-domain interaction databases [155, 156]. Similarly,
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protein families group together proteins that were likely to have an evolutionary link,

which considerably overlaps with domains due to their high conservation. Features related

to protein domains and protein families rely on annotations of domains, families, motifs

(short, common amino acid sequences), or other common signatures to predict potential

PPIs, usually based on patterns observed in protein pairs already known to interact.

3.4.3.1 Domain Frequency-Based Features

Domain frequency-based features are calculated as the frequency of domain

annotation pairs appearing in known PPIs relative to the frequency of the given domains

appearing in a pair of proteins by chance. Features are typically computed using a

frequency computation equation (Equations 39, 40, 41), or through a database of

pre-computed scores, which more than likely utilizes a frequency computation equation.

Domain PPI Frequency utilize Equation 39 to compute the frequency in which

a pair of domains appears in known PPIs. While not commonly used in papers, this

method underlies many domain-domain interaction datasets.

Domain PPI Log Frequency Like domain PPI frequency, this feature

quantifies the frequency of a pair of domains existing in known PPIs, but using a log-based

formula from Equation 40 [157]. This formula was also used on domains and loops by

Planas-Iglesias et al. [158].

Domain HyperGeometric P-Value uses the hypergeometric formula on the

domain annotations from positive and random training pairs, using Equation 41 [152, 158].

Pre-Computed Domain Scores score each pair of domains using a pre-define

domain interaction database [150, 159]. Many of these databases, such as InterDom, rely

on the frequency of domain pairs occurring in known PPIs [156].

Domain Cohesion Frequency scores the frequency of 2 or more domains

existing in individual proteins or known PPIs, before using product aggregation (Equation

36 to calculate an interaction score on sets of domains rather than individual domains [160].
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3.4.3.2 Domain Vector Based Features

In addition to using domain frequency, vector-based approaches, can be used for

domain-based feature computation.

Binary Domain Vectors consist of binary vectors containing ones for the

existence of a domain, motif, or family, per protein, which can be combined with machine

learning algorithms to predict PPIs [149, 161].

3.4.3.3 Domain Sequence PPI Prediction

Alternatively, some researchers analyze domain amino acid sequences to predict

interacting domain pairs, similar to the way various researchers utilize protein amino acid

sequences to predict PPIs. The belief is that once interacting domains are known, proteins

with those domains are likely to interact.

Domain Physicochemical Properties, as used by Li et al., include a

combination of features calculated per protein domain, such as the number of positively

and negatively charged residues, number of atoms, extinction coefficients, estimated

half-life, instability index, aliphatic index, and grand average of hydropathicity [162].

Domain Sequence Features rely on physicochemical and amino acid count

features used in PPI prediction sequence-based methods [163, 164].

3.4.4 Co-evolutionary Features

Co-evolutionary features predict PPIs by finding pairs of proteins that evolve

similarly, which could imply co-dependence between the proteins. The co-evolution of

proteins typically revolves around the identification of orthologs, which represent similar

proteins across different species. Pairs of co-evolving proteins can be found through

searching for correlated changes in amino acid sequence of orthologs across multiple

species, finding proteins that appear in a correlated manner across a diverse set of species,

or finding pairs of proteins similar to proteins known to interact in other species.
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3.4.4.1 Amino Acid Sequence Analysis Methods

Many researchers look for correlated changes in pairs of domain or protein amino

acid sequences to find potentially interacting pairs. At the smallest scale, a single pair of

domains or families that encapsulate several proteins will be compared and each pair of

residues can be monitored for coevolution [165, 166]. Similarly, a large number of minor

variations to a pair of proteins can be used to monitor what changes may prevent or allow

the pair to interact [167]. Overall, while these approaches can find coevolving residues and

modifications that allow or block PPIs, the calculations used by these works would be

computationally infeasible for usage on all pairs of proteins.

Alternatively, many computational methods rely on finding correlated changing

protein sequences, using the Blast Local Alignment Search Tool (BLAST) to quantify

change, or the presence or absence of proteins over many species to determine the

likelihood of a protein pair interacting [116]. These approaches tend to scale better to

larger studies, as they do not require residue level resolution.

Tree-Based Continuous Markov Models compared correlations between

proteins appearing or disappearing over an evolutionary tree from several species of data

[168]. In this approach Continuous Markov Models were utilized to determine if the gain or

loss of proteins across species occurred more frequently than expected by chance. However,

this approach did require the computational of an evolutionary tree of life, as well as

statistical modeling across that tree per pair of proteins.

Methods that do not rely on a pre-computed evolutionary tree of life, such as

MirrorTree, compute correlations across multiple aligned sequences containing orthologs

from various species. Once the alignment is computed, pairwise distances can be calculated

between different speices which can be correlated against changes in other proteins, as

shown in Equations 71-72 [169]. The primary drawback of this technique is the requirement

of a 1 to 1 mapping of orthologous species between proteins, requiring only using species

where both proteins have orthologs, and requiring researchers to select a final ortholog

when multiple exist for a given species. Alternative approaches for handling problems
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created by species with different numbers of orthologs per species, such as attempting to

maximize the final correlation by swapping combinations orthologs in and out of the

distance matrix, have been proposed, but can have large time requirements [170].

MSAprot = Mutiple Sequence Alginment Similarity V alues From Orthologs (71)

MirrorTreeV alp1,p2 = Pearson Correlation(MSAp1 , MSAp2) (72)

Other non-tree-based approaches include Co-Evolutionary Divergence

(CED), which uses multiple sequence alignment, but analyzes the substitution rates from

the alignments rather than using evolutionary distances. Substitution rates between

orthologs of a pair of proteins are compared to substitution rates from pairs of proteins in

the positive and negative train sets to predict which pairs of proteins are interacting [171].

3.4.4.2 Evolutionary Annotation Methods

Simpler computations based on protein co-evolution include computing the

similarity of binary vectors containing the existance of orthologs per species, finding if a

pair of proteins orthologs interact in other species (known as an Interolog), finding if both

proteins share common orthologs, and determining if genes exist in close proximity across

species, as possible machine learning features [172–175] .

Phylogenetic Profiles compute the intersection, or the intersection over union,

or correlation of binary vectors representing the represent or absence of orthologs across

multiple species, computed with Equation 42, Equation 44, or using Pearson correlation.

Rosetta Stone The Rosetta Stone method find common orthologs belonging to a

pair of proteins [174]. The assumption is that if both proteins are similar to a single

protein, thus both counting it as an ortholog, the proteins may both descend from the

same protein, implying they have an evolutionary relationship.
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Interologs are found by locating orthologs for a pair of proteins that are known

to interact[173]. The interaction of orthologous proteins strongly suggests that the protein

pair in question may interact, due to each proteins similarity with its orthologs. Many

authors have utilized interologs directly to compute predicted PPI networks while filtering

with data on domains and subcellular locations [176, 177]. While interologs have shown to

be a strong indicator of PPIs, a study of Y2H methods for yeast and roundworm (using a

BLAST e-value of 10−10 to detect orthologs) found only 16% of interologs to be interacting.

An overview of orthologs, the Rosetta Stone method, and Interologs can be found

in Figure 3.2.

Gene Neighborhood Count approaches compute the proximity of

genes/proteins to one another. Dandekar et al. utilized the proximity of genes across

multiple species to find potentially interacting pairs based on conserved gene and

transcription order [175]. Overbeek et al. offered a more concise definition when

highlighting protein pairs with likely functional coupling, requiring the gene pair to be the

most similar orthologs within a given species, for the genes to exist within the same strand

and in a set of genes with a gap of no more than 300 base pairs between adjacent genes, to

be considered as conserved pairs [178]. Counting the number of species where genes

existing in close proximity, preferably within the same operon, can yield a predictive

feature for PPIs.

Gene Neighborhood Distance use the distance between genes on the same

chromosome as a possible prediction feature [150]. While the original paper is not clear on

exactly how distance is measured, the number of genes between a pair of proteins, or the

distance in base pairs from the start of each gene, can be used features.

3.4.5 Gene Expression Features

Gene Expression data is commonly used, along with other features, to predict

PPIs, to filter out proteins that are unlikely to interact, or to validate a set of predicted

interactions [117, 150, 152, 176].
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Figure 3.2: Evolutionary Feature Annotations. Black nodes on the left and right rep-

resent proteins in species A and B, with solid black lines representing known PPIs. Similar

genes between species, orthologs, are represented by red dotted lines. Blue dashed lines rep-

resent potential interologs, learned from PPIs between similar proteins in the other species.

The green dashed/dotted line represents a pair of genes that could be fused in the other

species, representing a predicted PPI by the Rosetta method.
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Gene Expression Correlation predicts PPIs under the assumption that

interacting proteins work together on relation functions in the same physical locations,

linking together their expression profiles in a correlated manner. Pearson correlation of gene

expression data has been used as a predictive feature by in multiple prior works [150, 152].

While Pearson correlation coefficient is a commonly used measurement of gene expression,

other correlation metrics such as Spearman correlation coefficient can be computed.

Gene Expression Intersection, IOU, and IOM are measures that can be

calculated based on how frequently a pair of proteins are highly expressed in the same

tissue or sample of expression data, using a given threshold for determining high expression

levels along with Equations 42-45 [117]. Alternatively, high expression can be determined

by databases that list which proteins are highly expressed in which tissues [150].

3.4.6 Network Features and Methods

Network methods exploit topological properties of known PPIs to predict novel

interaction protein pairs.

PPI Adjacency Matrices contain the entire protein interactome in a binary

format, which can be used as a feature for further PPI discovery, Xiao and Deng created a

High-Order GCN variational auto-encoder (HO-VGAE) to predict novel interactions from

a PPI adjacency matrix, comparing it to several other graph-based autoencoders such as

LINE [179]. These methods trained on an adjacency matrix with several edges removed,

and measured how well they can predict these removed edges versus random protein pairs.

Matrix Factorization / Matrix Completion methods utilize known PPIs

adjacency matrices and attempt to fill in missing values to complete the matrix. Wange et

al. predicted novel interactions using matrix factorization, with the option to combine

additional feature matrices with the PPI adjacency matrix. They ultimately used protein

sequence similarity (based on a mismatch kernel) combined with the PPI network [180].

Pei et al. predicted PPIs using an adjacency matrix with a symmetric logistic matrix

factorization approach, creating a latent vector and bias for each protein [181].
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L3 predicts likely interacting proteins as protein pairs with a shortest path

distance of 3 between them on the PPI network [182].

PPI Adjacency Matrix Stats are simple features that can be computed from

protein-protein interaction networks, such as the intersection over union of common

neighbors between a pair of protein, or the degree of each protein in the network, as

features for predicting interactions [183].

3.4.7 Pairwise Sequence Features

Pairwise sequence features predict interacting proteins on the basis of having

similar subsequences to proteins which are known to interact.

PIPE computes subsequence similarity between proteins using a slide window

with a default length of 20 [184]. The Point Accepted Mutation (PAM)120 matrix, which

contains values on the relative chance of any amino acid mutating into a different amino

acid, is used to determine the similarity at each residue between a protein with known

interactions and each protein in a given pair [109]. The sum of values from the PAM120

matrix must exceed a certain threshold to determine that a pair of subsequences is similar.

Given a novel protein pair, both sequences are iterated over in quadratic time, creating a

two-dimensional grid with the number of subsequences from known PPIs that match with

the subsequences of each protein. The maximum value on the grid represents how likely

the two pairs are to interact.

SPRINT works similarly to PIPE, finding subsequences between pairs of

proteins that match subsequences within known interactions [185]. SPRINT, however,

utilizes a smaller subsequence length and a gapped matching strategy, finding exact

matches at certain positions prior to extending to a full similarity check. This reduces the

running time from potentially taking years to being done within hours. Additionally,

SPRINT uses BLOSUM matrices instead of PAM.
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3.4.8 Other Features

Finally, there exists a small subset of features based on other protein properties

that are used for predicting PPIs.

Sequence Similarity predicts PPIs as proteins with similar amino acid

sequences [152].

Subcellular Localization, which represent the location within a cell where the

protein has been found, can be used as a binary feature to describe whether or not a

protein pair is likely to interact [85, 177].

PubMed Abstract Count (PAS) uses abstracts from the medical search

engine PubMed, as a data source. PAS counts the number of times a pair of proteins in

mentioned in the same PubMed abstract versus the number of times each are mentioned

individually, as defined in Equations 73-76 [151].

Px = Number Abstracts where x is mentioned (73)

All Pxx =
∑
∀i,j

Pi,j (74)

All Px =
∑
∀i

Pi (75)

PASi,j =
Pi,j

All Pxx

Pi

All Px

Pj

All Px

(76)

3.5 Annotation-Based Methods: Models

In Table 3.3, we present a brief list of methods used to predict protein-protein

interactions utilizing annotation data. Entries for machine learning algorithms are blank for

several methods, as many authors are interested in novel features for predicting PPIs rather
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Table 3.3: List of Published Annotation-Based Algorithms and Features

First

Author
Year Ref

ML

Algorithm
Features

Dandekar 1998 [175] Gene Neighborhood Count

Marcotte 1999 [174] Rosetta Stone

Matthews 2001 [173] Interologs

Pazos 2001 [169] MirrorTree

Sprinizak 2001 [157] Domain PPI Log Frequency

Barker 2005 [168] Tree-Based Continous Markov Models

Ben-Hur 2005 [149] SVM
Domain Binary, GO Binary, NGram

(Sequence)

Chen 2005 [161] RF Binary Domain Vector

Guo 2006 [186] None / LR GO Resnik

Pitre 2006 [184] PIPE

Sun 2007 [187] Phylogentic Profiles

Izarzugaza 2008 [170] MirrorTree

Qi 2009 [152] RF

GO Intersection, Gene Expression

Correlation, Gene Expression

Intersection, Sequence Similarity,

Interologs, Domain Hypergeometric

Jain 2010 [143]
TCSS / Resnik / Lin / Jiang / Schlicker

/ SimGIC

Jang 2012 [160] Domain Cohension Frequency

Maetschke 2012 [144] RF GO ULCA

Thahir 2012 [150] RF

GO Frequency, Gene Expression

Correlation, Pre-Computed Domain,

Gene Neighborhood, Gene Expression

IOM
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Table 3.3 (continued)

Hsin 2013 [171] Co-Evolutionary Divergence / MirrorTree

Planas-

Iglesias
2013 [158]

Domain PPI Log Frequency, Domain

Hypergeometric

Wang 2013 [180]
Matrix

Factorization

PPI Adjacency Matrix, Sequence

Mismatch Data

Hamp 2015 [117] SVM
PSSM-N (Sequence), Gene Expression

Intersection

Yerneni 2015 [151] IAS, CAS, PAS

Bhardwaj 2016 [176]

Interologs, Pre-Computed Domain

(validated using Gene Expression

Correlation, GO, and PPI Adjacency

Matrix stats)

Huang 2016 [183]
Linear

Programming

PPI Adjacency Matrix, PPI Adjacency

Matrix Stats, Gene Expression (Other),

Sequence Similarity, Domain Binary,

Resnik

Zhang 2016 [159]
Expectation

Maximization
Pre-Computed Domain

Zhang 2016 [137] SVM
GO (regular and Desc) Resnik, Lin,

Jiang, Schlicker, and Wu

Li 2017 [185] SPRINT

Smalli 2018 [146]
LR / SVM /

NN / None

Onto2Vec / Resnik / Lin / Jiang /

SimGIC / Binary Go

Zhang 2018 [148]
HSVM / TCSS / Resnik / Lin / Jiang /

Schlicker / SimGIC

Chen 2019 [188]
Stacked

Ensemble

Resnik Network, GO Partitioned Vector,

Autocovariance

Kovacs 2019 [182] L3

Li 2019 [162] Domain Physicochemical
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Table 3.3 (continued)

Gupta 2020 [177]

Interologs, Pre-Computed Domain,

Subcellular Localization (validations

used GO, PPI Adjacency Matrix stats)

Zhong 2020 [147] SVM/None
GOA2Vec / Resnik / Lin / Jiang /

SimGIC / Onto2Vec

Pei 2021 [181]
Matrix

Factorization
PPI Adjacency Matrix

than using a collection of features, and methods using only a single feature can be ranked

without the usage of a machine learning model. /’s represent where authors used multiple

machine learning algorithms or different sets of features to create different models.

3.6 Docking Algorithms

Protein docking algorithms predict interactions at the atomic level based on

tertiary structure. Predicted interactions using docking rely on minimizing the

thermodynamics force that controls interactions, Gibbs Free Energy. Gibbs Free Energy

controls both protein folding and various types of protein binding, such as protein-ligand

interactions, and PPIs [5]. Docking approaches minimize the estimated amount of free

energy in a system calculated by various mathematical models, attempting to predict the

exact configuration of multi-protein structures. Most docking algorithms fall into one of

two categories: template-based approaches which find similar complexes with known

bindings as a starting point for docking predictions, and free binding approaches, which

compute bindings without any information beyond two tertiary structures.
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3.6.1 Template Approaches

Template-based approaches rely on matching proteins, or pairs of proteins, to

structures with known binding surfaces, making minor variations to account for differences

between the templates and provided structures. PRISM finds interfaces between

structurally resolved complexes that are similar to given protein pairs, and minimize

binding free energy by making minor, local adjustments to atom positions [189, 190]. Using

this approach for interaction prediction, PRISM found 30 high confidence and 52 medium

confidence interactions (27% and 13% precision) in a set of 328 known P53 related

interactions. Other template-based approaches have predicted interfaces between proteins

and peptides, structurally aligned templates by TM-Score for interaction prediction, and

created novel structures from amino acid sequences, which were then used in free binding

algorithms [191–193]. However, as shown by Sinha et. al., getting good results is typically

limited to datasets with good template matches, not novel structures, limiting

template-based algorithms applicability [192].

3.6.2 Free Binding Approaches

Free binding approaches take only tertiary structures as input, processing them

through shape complementary fit scoring and energy force simulations before clustering

and ranking for predictions. Shape complementary fit algorithms search a large number of

rotations and translations to determine the best non-overlapping fit between exposed atoms

from the different structures, while energy force simulations estimate the Gibbs Free Energy

at each possible fit. Scores from all possible alignments are then clustered and ranked to

remove outliers and low scoring pairs, creating a final set of predicted interactions.

Example algorithms, such as MEGADOCK, ZDOCK, and ClustPro (using PIPER), check

thousands of possible orientations per pair, and utilize free energy formulas such as Atomic

Contact Energy (ACE), Atomic Contact Potential (ACP), Decoys as the Reference State

(DARS), and Chemistry at Harvard Macromolecular Mechanics (CHARMM) [194–196].
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While multiple algorithms exist for predicting interactions based on protein

structure, many difficulties exist when attempting to scale them to proteome-wide

predictions. First, the structure of many proteins remain unknown, with an estimate of

only 18% of residues in human proteins belonging to known structures [197]. Recent

attempts at predicting protein structure from sequence, such as AlphaFold2, have made

significant strides in predicting protein structures [198]. However, the computational

complexity of estimating the structure for a single protein can span from minutes to hours

depending on the length of the protein’s amino acid sequence [198]. Even with

experimentally determined structures, testing the different conformations of each pair of

proteins, while also estimating changes that may occur in protein structure during the

binding process, is computationally expensive. For example, a recently publication on

MEGADOCK suggested the algorithm is capable of slightly over 200 interaction

predictions per hour. However, in our interactome-wide analysis, we are interested in

almost 200,000,000 potential protein pairs. Additionally, our 200,000,000 is computed at

the gene level, while structural docking would need to take into account each individual

isoform to predict interacting pairs, making the process even more expensive.

Template based structuring, or more precisely, proteins matched via sequence

similarity to experimentally determined PDB complexes, was used as a feature in a large

scale PPI prediction experiment by Zhang et al. [153]. The feature was used in a Bayesian

prediction method, combined with co-expression data, a phylogenetic profile score using

Pearson correlation, and the frequency of overlapping biological process gene ontology

terms occurring among any pair of proteins. When using the attributes individually, the

AUROC of the structure based data tested worse than several of the other features.

However, when combining all the feature together with and without structural data, a

slight improvement in terms of ROC was shown.
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4.0 Systematic Evaluation of PPI Prediction Methods

In Chapter 3, we discussed various features and models previously used for the

prediction of novel PPIs. However, most prior works focus on small datasets from a variety

of species that are hard to compare directly. Additionally, many of these experiments focus

on datasets with 50% positive data, which represents a much higher percentage of positive

data than expected in real-world data. Finally, we were also concerned that many prior

works, particularly those relying on sequence-based features, rely on predicting hub

proteins from their underlying datasets. This could perform well on simple datasets with

certain proteins much more frequency in either positive or negative instances, such as the

datasets presented in Section 3.1, but would not be a valid way to predict true interactors

proteome-wide. To analyze prior works and establish a baseline for the performance of

previously produced models, we re-implemented various prior models and features, focusing

primarily on sequence-based models, compare the results of our re-implementations to

those found in prior work on the same datasets, test how well predictions could be made on

these previously used datasets using simple, illogical controls, and finally test prior works

on our novel datasets, determining how well they perform on datasets with underlying

problems removed and realistic amounts of positive data used.

4.1 Challenges in Evaluation

Although it is estimated that there exist about 500,000 to 3 million PPIs out of a

total of 200 million protein pairs in humans (0.325–1.5%), most models are trained and

tested on datasets containing 50% positive label data. This simple approach for assessing

an individual model’s real-world application is questionable. Additionally, the protein

interactome is believed to be a small-world network [199]. Such networks have hubs, i.e.,

nodes that connect directly to many other nodes, or in this case, proteins with a large

number of PPIs. For example, The Biological General Repository for Interaction Datasets
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(BioGRID) contains 125,000 unique, non-self-interactions among 14,500 proteins

(represented by their gene names/symbols and not distinguishing isoforms; this aspect that

proteins are referred to by their genes is applicable throughout this paper except where

explicitly mentioned otherwise) [67]. This averages to around 17 interactions per protein;

however, currently 360 proteins have more than a 100 PPIs each, with one protein,

Amyloid Beta Precursor Protein (APP), involved in over 2,000 PPIs. Meanwhile, over

9,000 proteins have 10 or fewer PPIs each. While positive class PPI data are from a

small-world network distribution, with hubs being involved in an overwhelming proportion

of PPIs, and thus occur more frequently in positive instances, randomly paired data (used

for the negative class) are sampled uniformly, and thus have a significantly different

distribution of proteins in their instances. This can lead to biasing problems in machine

learning, where a single protein appears far more times in the positive dataset, allowing

machine learning models to simply predict pairs containing such proteins to be of positive

labels, generating a high accuracy on the test datasets from corresponding distributions.

Past experiments in this field have suggested similar findings, with works by Yu as well as

Park and Marcotte suggesting that many prediction models primarily predict bias in

underlying datasets [200, 201].

In addition to dataset creation, evaluation metrics also play a role in correctly

assessing whether a model can make good predictions on real data. In evaluating

classification models for rare category data, accuracy and area under the curve (AUC) are

not suitable methods, and precision-recall (P-R) curves are recommended [202]. In

biological and clinical domains, where the natural distribution of class labels may be highly

imbalanced, a P-R curve provides more reliable information and distinguishes models that

are practical for real world applications, whereas AUC may misleadingly convey more

impressive accuracy than are realistically achievable on the rare category that is of interest

(e.g., an interacting protein pair or the presence of a disease) [203]. However, most

published works have used AUC/accuracy metrics.

In this chapter, we evaluate different PPI prediction models to determine how

well they perform on realistically proportioned datasets. We first implement various

models, using similar feature sets and classification models to those described in the
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original publications. Where possible, we downloaded the datasets used by these models to

test whether our implementations produce similar results. Next, we created six new

evaluation datasets containing three proportions of positive label instances (50%, 10% and

0.3%) and two sampling methods (sampled randomly from the full list of proteins as is

commonly done in literature, henceforth known as Full), and using a held out set of

proteins for evaluation (referred to as Held Out, known as C3 data in Park and Marcotte’s

prior work [200]). These newly created datasets were designed with up to 100,000 training

pair, and up to 200,000 testing pairs each to ensure maximum coverage of the human

interactome. Finally, we also created control models to compare these predictors against,

by using illogical features (e.g., frequency of the proteins in the dataset or random vectors

to represent the proteins) using simple, naive classifiers. These types of predictions do not

consider the pairwise compatibility of two proteins, and simply predict PPIs based on the

distinct distributions of proteins in positive and negative classes in the datasets. This

allows us to determine how well the models perform relative to these illogical features.

Finally, we ensure reproducibility of our work, and the ability to recreate similar models or

run additional tests in the future, by creating an open-source repository to allow for future

investigation by ourselves and other researchers.

4.2 Evaluation Metrics

For our evaluations, test sets with 50% positive data are compared on accuracy

(Acc) and area under the receiver operating curve (AUC) measurements. These metrics

allow us to compare our results with previous literature, which most commonly utilize

accuracy to measure their model’s predictive capabilities.

When our data is imbalanced, as is common in the biological domain, typically

having many more negatively labeled instances than positively labeled instances, precision

recall curves (P-R) are recommended, as simple accuracy and AUC calculations may be

heavily influenced by predicting the negatively labelled, non-rare class frequently

[203, 204]. Therefore, test sets with 10% or 0.3% positive data are compared on the

66



precision at 3% recall (Prec) and average precision (Avg P), which is a version of area

under the precision recall curve (AUPRC), rather than relying on accuracy-based

measures. 3% recall was chosen to determine whether the models are capable of making

good predictions on their top scoring pairs, a necessity to provide laboratories with good

sets of protein pairs to test using experimental methods.

Accuracy values are taken at the threshold on the ROC curve which maximizes

the accuracy, per test. AUC is computed used SciKit-Learn’s built in AUC function [205].

Average precision is computed as the average of the precision values at each unique recall

value (x-axis) multiplied by the distance in recall (x-axis) since the previous value.

In this chapter, calculations done in tables are averaged across all datasets

utilized for a given test. For example, Precision at 3% recall values are based on the

average across all datasets at 3% recall for the given model and set of test datasets. Plots

are based on a concatenation of all data, which may generate slightly different results, but

should be representative of the averages taken.

4.3 Reproduction of Previous Models

We implemented a variety of sequence-based models from previous literature to

create a baseline of the best performances obtained from sequence-based predictors. Due to

the large amount of previously published literature, and the time it would take to

implement and run such a large number of models, we focused primarily on models that

could be recreated in Python (v3.8) and allowed us to run training and testing across

multiple small and large datasets while producing results in a reasonable time frame.

Several factors went into our selection analysis for which models to implement. First, we

primarily focused on models using some the most commonly utilized machine learning

frameworks in the field of computational PPI prediction, namely neural networks (NNs),

support vector machines (SVMs), and random forests (RFs), as well as two lesser known,

but still well established frameworks, light gradient boosting machines (LGBMs) and

rotation forests (RotFs). These frameworks have well-known implementations available in a
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variety of programming language, including our chosen language, Python, which allowed us

to quickly reproduce the previous works. Additionally, these models were capable of being

used on large sets of training data, with up to 100,000 training examples, without

overwhelming our computational resources in contrast to other frameworks, such as weight

sparse representation classifiers (WSRCs), which requires a quadratic amount of memory

space relative to the size of the training data. Similarly, SVM methods relying on custom

kernels were also not used due to the large memory requirements. For each model, we

created our implementations based on previously published literature, and tested each

model against previously used datasets to ensure our reproductions are accurate reflections

of these previous works, before testing on our newly produced datasets. This also created a

final requirement in the types of sequence-based models we selected, only models whose

datasets were published were considered for reproduction. These datasets, listed in Table

3.1, have been utilized by one or more prior work and remain available to download and

reuse. A full list of chosen models can be found in Table 4.1.

4.3.1 Feature Scaling and Hyperparameter Changes

While we did our best to recreate different models based on previous publications,

some alterations were made to ensure uniformity among features and that the models could

scale to run on the datasets we produced. For sequence-based features utilized by these

models, we ensured most features computed came out to a reasonably scaled set of values,

such as in a range of 0 to 1 or -1 to 1, usually by normalizing the data after computations

were performed. Secondly, when necessary to produce similar results to previously

published literature, we implemented feature scaling, using either a standardized scaler or a

min max scaler, that scaled all data based on statistics computed from the training data.

While these scalers were not explicitly mentioned in previous publications, scaling data

prior to using a machine learning algorithm is a common approach in many published

works. Additionally, some algorithms, notably SVMs, can be run to produce either a

binary classification, or a probability, depending on the hyperparameters set. In our work,

all algorithms were set to produce probabilities, to ensure we could create measurements
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Table 4.1: Description of Implemented 36 Sequence-Based Predictors

First

Author
Year Ref Description

Guo 2008 [85] SVM on AC features

Pan 2010 [87]

9 Models, using either an RF, SVM, or RotF on features

created from CT (with LDA feature selection), AC, or

PSAAC

Zhou 2011 [124] SVM with LD features

Zhao 2012 [107]
SVM with NMBA, Moran, Geary, SqOr, Quasi, and

PSAAC features

Jia 2015 [92]
Ensemble of 7 Random Forests, using a voting scheme,

with DWTP features

You 2015 [102] RF with MLD Features

Ding 2016 [99] RF with NMBA, AAC, and MMI features

Du 2017 [88]
2 seperate NN models with NGram, CTD, SqOr, Quasi,

and APSAAC features

Sun 2017 [127]
2 models using a Stacked Autoencoder with a regular NN,

with either CT or AC features

Wang 2017 [128] RotF using PSSMDCT features

Goktepe 2018 [98]
SVM with PCA feature selection using PSAAC, WSCT

and, PSSMDPC features

Gonzalez-

Lopez
2018 [129] NN with Numeric Encoding features

Hashemifar 2018 [118] NN with PSSM features

Li 2018 [130] NN with Numeric Encoding features

Chen 2019 [131]
LGBM with Elastic Net feature section and NMBA,

Moran, Geary, PSAAC, LD, and CT features

Chen 2019 [90] NN with Skip Gram and One Hot features
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Table 4.1 (continued)

Jia 2019 [96] RF with Chaos and AAC features

Richoux 2019 [97] 2 models, both using an NN with One-Hot features

Tian 2019 [91]
SVM with 2D wavelet feature selection and EGBW, AC

and PSAAC features

Yao 2019 [132] NN using Skip Gram features

Zhang 2019 [133] An Ensemble of 28 NNs, with AC, LD, and MCD features

Li 2020 [93]
An Ensemble 81 NNs, with AC, PSAAC, CT, and LD

features

Czibula 2021 [134] 3 different Autoencoders, all using AC and CT features

such as AUC and average precision. Finally, for some algorithms, such as neural networks,

we changed the runtime from using a fixed number of iterations to using a decaying

learning rate, which naturally stops running when the algorithm converges. The tactic of

using a fixed number of iterations in prior literature was tuned to the dataset used, and

was largely based on the size of the dataset examined. By using a decaying learning rate,

training naturally stops when learning converges, allowing neural network algorithms to be

run using the same hyperparameters with different dataset sizes. A brief list of changes

made to feature computations (beyond simple normalization) and feature scalers added to

different models can be found in Tables 4.2 and 4.3. Changes to hyperparameters for

neural networks models are discussed in Section 4.3.2.

On a final note, we briefly mention that we made significant changes to one

model, published by Tian et. al. [91]. In their work, they relied on a denoising wavelet,

which essentially modifies a feature matrix to make adjacent rows more similar. They

applied this to their feature matrix before splitting data into train and test splits, and

before shuffling the data, such that the feature matrix was sorted by class. Combining all

three of these concepts makes solving any machine learning problem trivial, as all positive

data and all negative data would be made more similar by applying the denoising, with the
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accuracy improving as the denoising threshold is increased. In our work, we shuffle and

split the training and testing data prior to denoising, and run the denoising on batches of

test data, which produces a valid, but significantly worse, performance.
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Table 4.2: List of Feature Implementation Changes

Features Notes of Possible Changes in Our Implementations

WSCT Original Publication did not specify weight value w, we used 0.5.

LD Our implementation had a small bug in the location of the 10th

subsequence, possibly slightly altering results on [124], [133], [93]

Physicochemical We removed non-standard amino acids prior to computing, and

corrected a mistyped value from Guo et al.’s original table [85].

Physicochemical When not specified, we utilize the 7 physicochemical properties

suggested in Guo’s original work for these features.

SqOr When using Grantham’s matrix, we normalized each row between

0 and 1 prior to computing.

SqOr We used an average instead of a sum to keep values near 0-1.

ASPAAC We set the weight value of w, to 0.05 instead of 0.5, to better

balance the computation.

Table 4.3: List of Models with Feature Scaling

Author Year Ref Algorithm Protein Scaling Pair Scaling

Guo 2008 [85] SVM Standard Scaler

Pan 2010 [87] SVM a Min Max Scaler

Zhao 2012 [107] SVM Standard Scaler

Du 2017 [88] Neural Network Standard Scaler

Göktepe 2018 [98] SVM Min Max Scaler

Tian 2019 [91] SVM Standard Scaler

aScalers were only used on the SVM models from Pan’s work.
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4.3.2 Learning Rate and Similar Neural Network Hyperparameters

We primarily relied on six training hyperparameters to ensure the networks ran

efficiently and converged to good results on different datasets:

• Learning Rate (LR): The rate at which the neural networks weights are updated

initially, when training starts.

• Minimum Learning Rate (Min LR): Minimum learning rate the model is trained at.

When the learning rate drops below this value, the model stops training, even if it has

not reached its maximum number of iterations.

• Schedule Threshold (Thr): The minimum amount of improvement to the loss value

necessary to avoid decreasing the learning rate.

• Schedule Threshold Model (Mode): Whether the schedule threshold is a percentage the

best loss must decrease, or a raw value that the loss needs to improve by.

• Schedule Patience (Pat): The number of epochs to wait before reducing the learning

rate if the training process has not improved more than the schedule threshold.

• Schedule Factor (Fac): The amount to multiply the learning rate by when the loss does

not improve beyond the schedule threshold, for patience epochs.

The exact hyperparameters varied based on the network architecture, features used, and

the optimizer used by the original implementation for each model. The hyperparameters

used for each neural network model are shown in Table 4.4.
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Table 4.4: Hyperparameters Used for Training Neural Network Models

Author and Desc Year Ref
Loss

Type

Opt

Type
LR

Min

LR
Thr Pat Fac Mode

Du (Sep) 2017 [88] Train SGD 0.01 1e-2 0.01 2 0.4 %

Du (Comb) 2017 [88] Train SGD 0.01 1e-2 0.01 2 0.4 %

Sun (CT) 2017 [127] Train SGD 1 1e-2 0.03 2 0.5 %

Sun (AC) 2017 [127] Train SGD 1 1e-2 0.03 2 0.5 %

Gonzalez-Lopezb 2018 [129] Train RMS 0.01 2e-3 0.01 2 0.5 abs

Hashemifar 2018 [118] Train SGD 0.01 2e-4 0.01 3 0.4 %

Li 2018 [130] Train Adam 1e-3 2e-4 0.02 1 0.5 abs

Chen 2019 [90] Train Adam 5e-4 1e-4 0.01 1c 0.5 abs

Richoux (LSTM) 2019 [97] Valid Adam 1e-3 8e-4 0.01 3 0.9 %

Richoux (Full) 2019 [97] Valid Adam 1e-3 8e-4 0.01 3 0.9 %

Yao 2019 [132] Train SGD 0.01 2e-4 0.01 3 0.4 %

Zhang 2019 [133] Train Adam d 0.01 2 0.5 %

Li 2020 [93] Train SGD e 1e-4 0.05 2 0.1 %

Czibula (SS) 2021 [134] Valid Adam 0.01 1e-5 0.01 2 0.5 %

Czibula (SJ) 2021 [134] Valid Adam 0.01 1e-5 0.01 2 0.5 %

Czibula (JJ) 2021 [134] Valid Adam 0.01 1e-5 0.01 2 0.5 %

Random (NN) Train Adam 5e-4 1e-4
1.5e-

3
3 0.5 abs

bGonzalez-Lopez’s model was trained without using validation data (instead of how it was done in liter-
ature), which affected the final parameters used.

cChen’s implementation does not lower learning rates until 250,000 training pairs are used, to provide
time to train multiple LSTM layers. A patience of 3 was used on the original, smaller data, with a patience
of 1 used on our larger data, to speed up training.

dZhang’s ensemble used different learning rates on different networks: AC lr = 7e-4, LD lr = 1e-3, MCD
lr = 3e-4, Ensemble lr = 1e-3. All min LRs were 1/32nd of the starting LRs.

eLi’s model used different learning rates for its first layer (0.2) and final layer (0.1).
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4.3.3 Comparison of Implemented Models to Results in Prior Publications

We re-implemented several sequence-based models to be analyzed further on novel

datasets. In this section, we provide previously published results of different models on

different datasets, and, when re-implemented, the increase or decrease in accuracy and

AUC against what is reported in literature. The full results are shown in Table 4.5. With

exception to Jia’s yeast dataset, which is run in unequal train/test splits in previous works,

all models were evaluation using cross validation on the given datasets.

In most cases, our re-implementations obtained a result within 5% of the

originally reported accuracy, with 30 out of 65 of the tests performed outscoring the

accuracies produced from original works. With exception to our re-implementation of

Tian’s work, which has differences from the original work as noted in Section 4.3.1, only a

single test performed more than 6% worse than the originally reported accuracy. The

average accuracy of our re-implementations was <1% different on average, with a

correlation of 0.89. Overall, we obtained comparable results without extensive tuning or

performing other significant hyperparameter optimization, giving us the confidence that

our implementations provide a good representation of previously produced works, and can

be used to evaluate those previous works on novel datasets.

4.3.4 Reproduction of Predictors Using Annotation-Based Features

In addition to the provided sequence-based feature methods, we implemented six

annotation-based predictors using domain and gene ontology-based (GO) features. Four of

these six predictors are based on previous publications [137, 144, 161, 186]. The additional

two models are loosely based on previous works. The first utilizes a logistic regression

classifier on domains using maximum aggregation, loosely cased on Zhang et al.’s work

which integrated multiple domain databases using expectation maximization [159]. The

second is a random forest classifier, loosely based on previous works from Qi et al. and

Thahir et al. which utilized a variety of different features to predict PPIs using a random

forest [150, 152]. While those works utilized a variety of features, we limited our forest to

using features based on GO Resnik sematic similarity, GO frequency, and domain
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Table 4.5: Sequence-Based Predictor Results (Original vs Implementation)

First Author and

Desc
Year Ref Datasets

Org.

Acc

Acc

+/-

Org.

AUC

AUC

+/-

Guo 2008 [85] Guo Yeast (Tian) 87 -2

Pan (CT RotF) 2010 [87] Pan Large 97 +1 99 +0

Pan (CT RF) 2010 [87] Pan Large 98 +0 99 +0

Pan (CT SVM) 2010 [87] Pan Large 95 +2 98 +1

Pan (PSAAC SVM) 2010 [87] Pan Small 91 -18 95 -17

Pan (PSAAC RotF) 2010 [87] Pan Small 95 +3 97 +2

Pan (PSAAC RF) 2010 [87] Pan Small 96 +2 97 +2

Pan (CT RotF) 2010 [87] Pan Small 96 +2 98 +1

Pan (CT RF) 2010 [87] Pan Small 96 +2 98 +1

Pan (CT SVM) 2010 [87] Pan Small 91 +4 95 +3

Pan (AC SVM) 2010 [87] Pan Small 89 +7 94 +4

Pan (AC RotF) 2010 [87] Pan Small 95 +2 96 +3

Pan (AC RF) 2010 [87] Pan Small 96 +2 97 +2

Pan (PSAAC SVM) 2010 [87] Martin Human 68 -12

Pan (CT SVM) 2010 [87] Martin Human 69 -6

Pan (AC SVM) 2010 [87] Martin Human 51 +15

Zhou 2011 [124] Guo Yeast (Tian) 89 +2 95 +1

Zhao 2012 [107] Martin H.Pylori 89 -3

Zhao 2012 [107] Liu Fruit Fly 81 -4

Jia 2015 [92] Martin H.Pylori 91 -3

Jia 2015 [92] Jia Yeast (Cross) 84 -6

Jia 2015 [92] Jia Yeast (Held) 87 -5

You 2015 [102] Guo Yeast (Tian) 95 -1

You 2015 [102] Martin H.Pylori 88 -2

Ding 2016 [99] Guo Yeast (Tian) 95 -1
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Table 4.5 (continued)

Ding 2016 [99] Pan Small 98 +0

Ding 2016 [99] Martin H.Pylori 88 +2

Du (Sep) 2017 [88] Guo Yeast (Tian) 93 +0

Du (Comb) 2017 [88] Guo Yeast (Tian) 90 +1

Du (Sep) 2017 [88] Pan Small 98 +1

Du (Sep) 2017 [88] Martin H.Pylori 86 +2

Du (Sep) 2017 [88] Du Yeast 93 +0 97 -0

Du (Comb) 2017 [88] Du Yeast 90 +1 96 +0

Sun (CT) 2017 [127] Pan Large 95 -1

Sun (AC) 2017 [127] Pan Large 97 -0

Wang 2017 [128] Martin H.Pylori 88 -12

Göktepe 2018 [98] Pan Small 94 +4 93 +6

Göktepe 2018 [98] Martin Human 74 -6 83 -11

Göktepe 2018 [98] Martin H.Pylori 89 -5 94 -3

Gonzalez-Lopez 2018 [129] Guo Yeast (Tian) 95 -1 98 -0

Gonzalez-Lopez 2018 [129] Pan Small 98 +1 100 -0

Gonzalez-Lopez 2018 [129] Martin H.Pylori 85 +1 92 -0

Gonzalez-Lopez 2018 [129] Du Yeast 93 -1 97 -0

Hashemifar 2018 [118] Guo Yeast (Tian) 95 +0

Li 2018 [127] Pan Large 99 -0

Chen 2019 [131] Guo Yeast (Tian) 95 -0

Chen 2019 [90] Guo Yeast (Chen) 97 -1

Chen 2019 [131] Martin H.Pylori 89 -1

Chen 2019 [90] Guo Multi 98 -0

Jia 2019 [96] Martin H.Pylori 93 -4

Jia 2019 [96] Jia Yeast (Full) 88 -4

Richoux (LSTM) 2019 [97] Richoux Human 78 -1

Richoux (Full) 2019 [97] Richoux Human 76 -1

Tian 2019 [91] Guo Yeast (Tian) 96 -12
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Table 4.5 (continued)

Tian 2019 [91] Martin H.Pylori 96 -17

Yao 2019 [132] Guo Yeast (Tian) 95 +1

Yao 2019 [132] Pan Small 99 +0

Zhang 2019 [133] Du Yeast 95 -4 97 -2

Li 2020 [93] Li Alzheimer 95 +3 95 +5

Czibula (SS) 2021 [134] Pan Large 98 -1 98 +1

Czibula (SJ) 2021 [134] Pan Large 98 -1 98 +1

Czibula (JJ) 2021 [134] Pan Large 98 -1 96 +3

Czaibula (SS) 2021 [134] Guo Multi 97 +0 97 +2

Czaibula (SJ) 2021 [134] Guo Multi 97 -0 97 +2

Czaibula (JJ) 2021 [134] Guo Multi 98 -1 96 +3

frequency measure using best matching average aggregation, created a simpler variant of

those models for comparison. For each of these models, our implementations relied on an

up to date set of annotations which likely did not match the data available when the prior

models were created. Due to this, we did not perform comparisons with previous results for

annotation-based methods.

4.4 Consideration of Sources of Bias

When analyzing PPIs, consideration needs to be taken that some proteins are

more frequently studied than other, with less frequently studied proteins have less, or no

annotations for some features, and that some proteins have more known interactions than

others. While these two concepts may be related, we can treat them as separate potential

biasing sources for the purpose of our analysis. In the following sections, we establish some
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illogical features to use as controls, while also analyzing the effect of less studied proteins

having more missing data, to ensure that we account for basic dataset and experimental

biases that could influence our final predictions.

4.4.1 Creation of Illogical Features

To determine how well previous datasets work for testing predictors, and to

compare previous methods against simple controls, we derived a set of four simplistic

predictors that rely on underlying biases in datasets that cannot likely be used in

real-world applications. Features, such as sequence similarity and counting proteins in

training data were used to create illogical features based on underlying biases in standard

PPI datasets for simple predictions.

• Protein Counts in Interacting vs Non-Interacting (Protein Int Count): For

each protein in the training set, this feature computes the difference between the

number of times each protein appears in the positive and negative training instances.

For a given protein pair, the final score is the sum of each protein’s values.

• Sequence Similarity Weighted Count (Seq Sim Count): Sequence similarity

weighted count calculates the similarity of all sequences in the protein set and maps

each protein in the test dataset to its five nearest neighbors in the training set. Only

proteins that appear at least once in the training set are considered as possible nearest

neighbors. Similarity is computed using e-values reproduced by BLAST [116]. If less

than five proteins meet the minimum similarity threshold (e-value = 10), then only the

neighbors that meet the criteria are used. E-values are converted into similarity score

values using Equation 77, which maps all e-values into a 0-1 range. Given the similarity

values of the up to five nearest neighbors, the values are normalized to sum to 1, and

the final score for each protein is the weighted sum of these normalized values

multiplied by the five nearest neighbors Prot Int Count as shown in Equation 78.

SimScoreE−V alue = min(abs(log10(E − V alue)), 200)/200 (77)
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SeqSimCountneighbors,weights =
∑

n,w ∈(neighbors,weights)
w ∗ Protein Int Countn (78)

• Sequence Similarity + Protein Weighted Count (Seq Sim + Prot Count):

The sequence similarity + protein weighted count is calculated the same as the

sequence similarity weighted count, with the an addition to the SimScore whenever two

genes share the same protein. This illogical control is used exclusively when

annotation-based features are used, to ensure that when we compute annotations from

proteins at the gene level, our models do not obtain any advantage from proteins that

map to multiple genes providing the same annotations, and thus same features, for

multiple gene identifiers. The Protein Count is computed as the number of proteins

shared between both genes, divided by the total number of proteins between the two

genes, with an added weight factor, as defined in Equation 79. This count is then added

to the SimScore as shown in Equation 80. The final normalization and computation is

done in the same manner the sequence similarity weighted count is computed (final

computation shown in Equation 78). For our calculations, the value w was set as 1.

ProtSima,b = proteins ∈ A ∩ proteins ∈ B

proteins ∈ A
⋃

proteins ∈ B
(79)

SimScorea,b = SimScoreE−valuea,b
+ (ProSima,b) +


w ProtSima,b > 0

0 otherwise

(80)

• Random Numbers: Random numbers were generated by the PyTorch library. For

our computations, we drew 500 random numbers per protein ranging between 0 and 1.

These number are used as part of two illogical feature models, by training and

predicting using either a random forest (Random RF), or using a neural network

(Random NN).
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4.4.2 Potential Biases in Annotation-Based Features

Computations based on gene annotation features (non-sequence-based) can induce

biases when dealing with missing data. If the missing data is much more prominent in

positive or negative data instances (which it can be for PPI prediction datasets [206]),

models can learn to make predictions based on the amount of missing data as a spurious

feature.

Additionally, many of the published models based on protein domains, and to a

lesser extent on GO annotations, utilized information related to interactions either directly

by computing the probability that a pair of annotations belongs to known interactions, or

indirectly by utilizing a domain database that bases its scores on the probability of a pair

of domains belonging to protein-protein interactions. When utilizing this data without

filtering out information related to interacting pairs in the test data, an algorithmic bias

could result from rare pairs of domains or GO annotations that occur in an interaction in

the test dataset being scored highly because of that interaction’s usage when computing

features. Allowing information about interactions in the test dataset to influence train

features can boost performance when evaluating the model, but would not necessarily lead

to the creation of a better model.

When using annotation-based features, we perform evaluations on our benchmark

datasets to determine how significant of an influence either of these potential biasing issues.

4.5 Unsuitability of Previous Evaluations

Many datasets in literature used uniform random sampling when choosing

negative data without taking into account any of the previously mentioned underlying

factors. We tested each of the previous datasets to determine if previous evaluations truly

showed the ability of models to predict interactions for biological reasons, or merely reflect

the ability of machine learning find different distributions between the positive and

negative sampling for certain proteins.
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Using three illogical control features based on amino acid sequence information,

we computed four bias-checking models. The first two models, protein Int Count and Seq

Sim Count count the involvement of each protein in the test data, or proteins similar to

those in the test data, in positive and negative instances in the training set. The other two

models use random numbers generated per protein as features, using a random forest

(Rand RF), or simple neural network (Rand NN) for PPI prediction.

For each dataset used in previous literature, we compared the accuracies and

AUCs of sequence-based predictors with each of these illogical/random feature control

models. These comparisons are shown in Table 4.6, which shows the performance of the

four illogical feature models, and the performance from original works and our

re-implementations. When a dataset has been used in multiple previous works or multiple

recreations, a range of accuracy values is shown instead of a single accuracy value. Only

the best result per dataset is used for comparison with the illogical feature models. The

results show that illogical feature models perform about as well as most previous

implementations on previously used datasets. In fact, the best result of each control model

exceeds or falls within 4% accuracy of sequence-based predictors on all but two datasets, as

shown in the last table column.

This result is likely due to sequence-based predictors capturing information that

some proteins are overrepresented in PPIs compared to random pairs (which is not an

aspect that can be exploited in real-world interactome prediction). Thus, datasets with

many fewer proteins used in randomly generated negative instances than positive instances,

such as Guo Multi Chen and both Pan Human datasets, are the easiest to obtain high

accuracy on, as having several proteins exist in positive pairs without existing in negative

pairs creates an easily exploitable dataset bias to make predictions on. These results

strongly suggest that sequence-based prediction models inherently predict on individual

proteins rather than protein pairs, or at least have been primarily evaluated on datasets

where protein count biases are easy to exploit, rather than make predictions on protein

pairs for biologically valid reasons.
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Table 4.6: Comparison of Sequence-Based Predictors Versus Illogical Controls

Dataset

Pro-

tein

Count

Seq

Sim

Count

Ran-

dom

Net

Ran-

dom

RF

Results

Prior

Works

Results

Recre-

ations

Prior

vs Il-

logical

Du Yeast 87.7 87.5 92.5 88.5 90-95.3 90.5-92.6 +2.8

Guo Yeast (Chen) 81.5 81.4 84.0 74.4 97.1 96.3 +13.1

Guo Yeast (Tien) 87.0 85.9 94.3 94.0 87.3-95.1 84.5-95.5 +1.2

Guo Mult 93.5 93.1 98.7 96.4 96.9-98.2 96.6-97.3 -0.5

Jia Yeast (Cross) 78.7 78.4 75.2 76.5 84.4 77.9 +5.7

Jia Yeast (Held) 82.9 82.5 81.3 80.7 86.5 82.0 +3.6

Jia Yeast (Full) 83.8 83.1 85.4 81.1 88.0 84.3 +2.6

Li AD 96.7 79.1 76.2 97.3 94.7 97.7 +0.4

Liu Fruit Fly 84.1 95.7 96.6 84.2 80.9 76.8 -15.7

Martin Human 61.2 83.1 81.1 62.2 51.0-73.8 55.7-67.8 -9.3

Martin H.Pylori 83.6 61.0 59.2 89.6 85.2-93.0 75.9-89.9 +3.4

Pan Human Large 96.3 83.1 82.2 97.8 94.5-99.0 94.3-98.9 +1.2

Pan Human Small 94.5 93.1 98.8 98.6 89.3-98.7 72.5-99.4 +0.6

Richoux Strict 79.6 94.4 96.9 79.5 76.3-78.3 74.7-76.8 -18.6
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4.6 Creation of Benchmark Datasets for Human Interactome Prediction

As seen in our tests using illogical features, the way proteins are balanced in most

datasets allow for naive classifiers to gain high accuracy by biasing their predictions

towards overly represented proteins in the positive sets. Additionally, most datasets are

only tested on 50% positive data which is much higher than the ratio of positive data

expected in real world applications. For these reasons, we created our own datasets and

performed new tests to determine how well each model can predict interactions.

Known PPI data was downloaded from the BioGRID (v4.4.198, compiled Day 25

May 2021). Only direct biophysical protein-protein interactions, encoded by Proteomics

Standards Initiative—Molecular Interaction (PSI-MI) ontology identifier MI:0407 and its

descendants, were included. After filtering out pairs containing non-human proteins,

self-interactions, and protein-RNA bindings, the Entrez Gene IDs provided by BioGRID

were then mapped to UniProt IDs [119, 207]. To account for Entrez Gene IDs mapping to

multiple UniProt identifiers, the longest amino acid sequence was assigned to the gene. To

ensure compliance with various sequence-based models, protein sequences less than or

equal to 30 amino acids were removed. A total of 123,626 unique interactions among

14,678 proteins remained as positively labeled protein pairs (i.e., PPIs). A total of 19,112

proteins with UniProt ID to Entrez Gene ID mapping that met the minimum sequence

length were used to represent the full set of human proteins, with random pairs drawn from

this dataset to use as negative labeled protein pairs (i.e., non-interacting protein pairs) (see

Supplementary File Appendix A for details).

Training and testing datasets were created using two methodologies: In the first,

a random set of non-overlapping interacting pairs and non-interacting pairs were sampled

for training and testing from the full set of all possible proteins (Full). This method is

widely used in the literature. We do not take any other precautions when randomly

sampling non-interacting pairs, such as selecting proteins in different subcellular locations,

as this could induce a bias towards the type of protein pairs chosen and creates a separate

bias by limiting the number of proteins available to use in the non-interacting dataset. The

second methodology is based on the work of Park and Marcotte, where some proteins are
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held out and used exclusively in the test dataset (Held Out) [200]. For this dataset creation

method, we separated the proteins into 6 equal sized bins and hold out all proteins in

either 1 or 2 bins to create the test data. Test sets created from holding out a single bin

are half the size of holding out 2 bins, to take into account that half as many unique

protein pairs and interactions exist when holding out a single bin. No pair using a protein

from these bins is used in training data. Training data is created from proteins in the bins

excluding those held-out to create test data. A flowchart of the dataset creation process is

shown in Figure 4.1

Multiple datasets were created for testing with different percentage compositions

of positively labeled protein pairs (known interactions). Specifically, training sets were

created with 50% and 20% positive data, while test sets were created with 50%, 10%, and

0.3% positive data. Models generated to test both the 10% and 0.3% positive test datasets

used the 20% positive data for training, while 50% positive test datasets utilized 50%

positive train datasets for training. For data based on random pairs, the five 50% positive

train and test sets were created using stratified cross validation on a single set of 125,000

protein pairs. Data for the 20% training set, and 10% and 0.3% positive test sets, were

chosen randomly from all pairs while ensuring that no test data overlapped with the

training data. For the second method, namely by holding out proteins used in test data,

training and test sets of the same ratios as mentioned earlier were created for each of the

21 combinations of holding out one or two of the six bins. Again, the 10% positive and

0.3% positive test sets shared the same 20% positive training datasets.

We created benchmark training and test datasets at various proportions of

positive class instances (1:1, 1:4, 1:9, and 1:332). In creating them, we employed two

different approaches: selecting pairwise instances while ensuring that the pairs used in

training and testing did not overlap (referred henceforth as Full data); the second approach

was to hold out proteins to be used exclusively in test data (referred henceforth as Held

Out data). Table 4.7 shows a listing of all benchmark datasets and the maximum number

of unique proteins used within similarly created datasets. With exception to some Held
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Out datasets that held out only a single group, created a half-sized test set, the number of

unique proteins per dataset was highly similar across all datasets created in the same

manner.
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Table 4.7: Sizes of Benchmark Datasets

Pos

Ratio
Usage

Data

Type

Num

Datasets

Max

Positive

Pairs

Max

Random

Pairs

Max

Proteins

in

Positive

Instances

Max

Proteins

in

Random

Instances

1:1 Both Full 1f 62,500 62,500 12,895 19,082

1:4 Train Full 5 20,000 80,000 9,345 19,110

1:9 Test Full 5 10,000 90,000 6,987 19,111

1:332 Test Full 5 1,500 498,500 2,170 19,112

1:1 Train Held Out 21 50,000 50,000 10,762 15,899

1:1 Test Held Out 21 7,129 7,129 3,233 5,707

1:4 Train Held Out 21 20,000 80,000 8,297 15,927

1:9 Test Held Out 21 7,129 64,161 3,233 6,372

1:332 Test Held Out 21 600 199,400 846 6,372

f 5-fold Cross Validation
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Figure 4.1: Flowchart of the Benchmark Dataset Creation Process. A (top)

Standard creation process for the Full dataset. For each of the five Full Benchmark Datasets

per positive data ratio, a subset of positive and random (use as negative) instances are

sampled as training instances, leaving a slightly smaller set of remaining pairs to be sampled

as test instances. B (bottom) Dataset creation process for one of the 21 Held Out datasets

per positive data ratio. Proteins are split into six groups, with one or two of those groups

representing the Held Out proteins for a each dataset. All pairs are filtered on whether they

contain two non-Held Out proteins (also known as C1 data), which are sampled from for

training instances or one protein from each Held Out group (also known as C3 data), which

are sampled for test instances. All other pairs (one Held Out/Non-Held Out protein, C2, or

two proteins from the same Held Out bin, C3) are discarded.
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4.7 Evaluation of Sequence-Based Methods

Our re-implementations of each sequence-based predictor and four illogical control

models, consisting of protein counts, sequence similarity protein counts, and random forests

or neural networks trained on random number vectors per protein, were used to analyze

previous datasets were trained on each of our 52 benchmark training datasets (26 based on

50% positive data, 26 using 20% positive training, with 10 Full and 42 Held Out datasets)

and evaluated on the corresponding testing datasets (see Table 1). The results of these

experiments are shown in Tables 4.8-4.10 and Figure 4.2. Values computed in Tables are

based on averaging precision and accuracy scores from each test set, while figures are

created from combining the predictions together before computing precision recall curves.

Overall, most models seem to be matched or outperformed by one or more of the

control methods. Specifically, when scoring on datasets generated from the Full set of

protein pairs with 1:1 positive class labels, using random numbers as features with a neural

network tied for 3rd in accuracy, and scored 5th in AUC in comparison to the dozens of

sequence-based methods. In datasets where class distribution is skewed at 1:9, or more

realistically at 1:332, this model placed 6th and 13th in average precision, outperforming

over half of the sequence-based methods. Even when measuring precision at 3% recall on

the skewed class data, it outperforms half of the sequence-based predictors.

When testing on protein pairs containing Held Out proteins for test data, the

accuracies and precisions of all published models are much lower, with the best prediction

accuracy on 1:1 data falling below 70%, and the precision at 3% recall and average

precision on the 1:332 data falling below 10% for all models. Illogical feature models that

exploit the number of positive and negative instances in the training data that each protein

from the test dataset appear in, such as simple counts and random numbers, are eliminated

when using our Held-Out protein data generation method, as shown by the accuracy and

precision of those methods dropping down to the prevalence of positive data per dataset.

However, predicting on individual proteins based on sequence similarity still places in the

top half of all comparisons, and in the top 10 in accuracy and AUC on 50% positive test

data. This strongly implies that most prior work in predicting PPIs from sequence-based
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Table 4.8: Evaluation of Sequence-Based Models on 50% Positive Benchmark

Dataset

50% Pos Full 50% Pos Held Out

Model Year Ref Acc AUC Acc AUC

Control Methods

Protein Count 84.2 91.5 50.0 50.0

Seq Sim Count 82.3 90.0 65.6 70.7

Random NNet 84.7 92.0 51.0 50.2

Random RF 78.1 85.9 50.9 50.5

Sequence-Based Predictors

Guo 2008 [85] 74.1 81.5 61.4 65.4

Pan (PSAAC SVM) 2010 [87] 64.2 68.4 63.2 67.1

Pan (PSAAC RotF) 2010 [87] 82.9 90.6 64.4 70.2

Pan (PSAAC RF) 2010 [87] 83.7 91.4 66.4 72.5

Pan (CT RotF) 2010 [87] 82.7 90.4 59.7 63.9

Pan (CT Rand) 2010 [87] 83.5 91.1 61.3 65.9

Pan (CT SVM) 2010 [87] 77.8 85.3 58.8 61.9

Pan (AC SVM) 2010 [87] 80.2 87.2 59.9 64.5

Pan (AC RotF) 2010 [87] 83.2 91.0 57.8 61.3

Pan (AC RF) 2010 [87] 83.9 91.7 59.8 64.3

Zhou 2011 [124] 80.4 88.2 60.6 64.5

Zhao 2012 [107] 77.9 83.5 64.4 68.5

Jia 2015 [92] 84.6 92.2 65.1 70.4

You 2015 [102] 83.1 90.8 61.2 65.9

Ding 2016 [99] 84.7 92.3 64.1 70.0

Du (Sep) 2017 [88] 85.5 92.8 67.0 73.3

Du (Comb) 2017 [88] 83.2 90.6 65.1 70.7

Sun (CT) 2017 [127] 74.4 82.0 58.8 62.2
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Table 4.8 (continued)

Sun (AC) 2017 [127] 77.3 84.4 58.1 60.5

Wang 2017 [208] 70.2 73.5 56.2 57.1

Göktepe 2018 [98] 82.5 90.2 65.6 71.2

Gonzalez-Lopez 2018 [129] 83.0 90.5 54.1 55.4

Hashemifar 2018 [118] 82.2 89.3 61.4 65.5

Li 2018 [130] 84.3 91.8 56.0 58.5

Chen 2019 [131] 81.9 89.7 62.7 67.7

Chen 2019 [90] 83.9 90.4 59.8 63.2

Jia 2019 [96] 83.2 91.0 66.0 72.0

Richoux (LSTM) 2019 [97] 80.0 87.0 54.3 55.5

Richoux (Full) 2019 [97] 82.8 90.4 55.2 56.8

Tian 2019 [91] 76.0 83.6 65.3 70.8

Yao 2019 [132] 83.5 90.7 57.7 60.7

Zhang 2019 [133] 81.4 88.1 59.5 61.7

Li 2020 [93] 86.4 93.4 67.3 73.8

Czibula (SS) 2021 [134] 76.5 84.7 53.1 54.0

Czibula (SJ) 2021 [134] 66.6 74.8 53.0 54.4

Czibula (JJ) 2021 [134] 74.7 82.6 55.7 57.2
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Table 4.9: Evaluation of Sequence-Based Models on 10% Positive Benchmark

Dataset

10% Pos Full 10% Pos Held Out

Model Year Ref Prec Avg P. Prec Avg. P

Control Methods

Protein Count 91.9 56.4 10.0 10.0

Seq Sim Count 84.5 53.0 41.8 21.6

Random NNet 92.5 60.4 11.1 10.0

Random RF 87.3 45.9 10.5 10.1

Sequence-Based Predictors

Guo 2008 [85] 83.3 40.4 44.2 17.3

Pan (PSAAC SVM) 2010 [87] 46.7 21.3 43.5 19.2

Pan (PSAAC RotF) 2010 [87] 96.1 57.5 62.1 20.8

Pan (PSAAC RF) 2010 [87] 96.8 59.9 65.7 22.6

Pan (CT RotF) 2010 [87] 93.7 54.7 38.0 16.6

Pan (CT Rand) 2010 [87] 94.2 57.0 44.6 17.9

Pan (CT SVM) 2010 [87] 88.4 45.9 27.4 14.9

Pan (AC SVM) 2010 [87] 85.5 47.9 41.8 18.2

Pan (AC RotF) 2010 [87] 94.3 55.2 30.7 14.5

Pan (AC RF) 2010 [87] 94.1 57.0 37.0 15.4

Zhou 2011 [124] 89.0 51.7 33.6 17.1

Zhao 2012 [107] 86.6 39.6 35.0 19.1

Jia 2015 [92] 95.9 60.7 51.1 19.5

You 2015 [102] 95.8 56.5 42.9 17.4

Ding 2016 [99] 96.9 61.1 58.3 18.3

Du (Sep) 2017 [88] 94.9 64.5 56.3 24.9

Du (Comb) 2017 [88] 94.7 59.0 58.5 23.5

Sun (CT) 2017 [127] 61.7 37.8 26.9 14.4
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Table 4.9 (continued)

Sun (AC) 2017 [127] 74.1 42.5 22.4 14.5

Wang 2017 [208] 33.0 21.8 16.1 11.8

Göktepe 2018 [98] 93.6 57.0 59.4 24.0

Gonzalez-Lopez 2018 [129] 89.9 55.6 17.8 11.9

Hashemifar 2018 [118] 84.8 48.9 30.8 16.8

Li 2018 [130] 93.6 60.9 24.7 13.6

Chen 2019 [131] 96.0 57.6 43.6 19.8

Chen 2019 [90] 75.4 54.7 27.1 15.7

Jia 2019 [96] 97.1 59.5 68.2 23.2

Richoux (LSTM) 2019 [97] 91.6 52.8 15.6 11.9

Richoux (Full) 2019 [97] 91.7 57.9 15.1 12.2

Tian 2019 [91] 86.4 44.3 57.7 22.0

Yao 2019 [132] 89.3 55.9 27.1 14.7

Zhang 2019 [133] 74.8 51.0 38.2 17.1

Li 2020 [93] 96.6 67.7 65.9 26.8

Czibula (SS) 2021 [134] 66.8 36.5 11.3 11.3

Czibula (SJ) 2021 [134] 66.6 33.3 18.2 11.6

Czibula (JJ) 2021 [134] 67.9 35.8 40.0 12.9
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Table 4.10: Evaluation of Sequence-Based Models on 0.3% Positive Benchmark

Dataset

0.3% Pos Full 0.3% Pos Held Out

Model Year Ref Prec Avg P. Prec Avg. P

Control Methods

Protein Count 28.0 6.5 0.3 0.3

Seq Sim Count 14.8 5.2 2.1 0.9

Random NNet 29.1 7.4 0.4 0.3

Random RF 17.9 3.8 0.3 0.3

Sequence-Based Predictors

Guo 2008 [85] 16.1 3.4 2.4 0.7

Pan (PSAAC SVM) 2010 [87] 2.7 1.4 2.2 1.1

Pan (PSAAC RotF) 2010 [87] 44.5 8.5 4.9 1.4

Pan (PSAAC RF) 2010 [87] 46.9 9.3 5.4 1.5

Pan (CT RotF) 2010 [87] 33.7 6.8 2.3 0.9

Pan (CT Rand) 2010 [87] 35.9 7.4 3.1 1.0

Pan (CT SVM) 2010 [87] 19.2 4.2 1.3 0.5

Pan (AC SVM) 2010 [87] 13.6 3.8 2.0 0.7

Pan (AC RotF) 2010 [87] 37.7 6.8 1.3 0.7

Pan (AC RF) 2010 [87] 39.0 7.4 2.1 0.8

Zhou 2011 [124] 23.6 5.4 1.5 0.6

Zhao 2012 [107] 14.9 2.9 1.7 0.7

Jia 2015 [92] 41.8 8.7 3.3 1.2

You 2015 [102] 43.9 7.7 2.5 1.0

Ding 2016 [99] 49.8 10.0 4.6 1.2

Du (Sep) 2017 [88] 39.5 9.8 3.9 1.2

Du (Comb) 2017 [88] 33.8 7.9 4.1 1.1

Sun (CT) 2017 [127] 4.3 2.0 1.0 0.5
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Table 4.10 (continued)

Sun (AC) 2017 [127] 8.8 2.9 0.8 0.5

Wang 2017 [208] 1.3 0.8 0.5 0.4

Göktepe 2018 [98] 29.2 7.1 4.6 1.2

Gonzalez-Lopez 2018 [129] 23.9 5.9 0.7 0.4

Hashemifar 2018 [118] 15.0 3.9 1.4 0.6

Li 2018 [130] 28.3 7.3 1.1 0.5

Chen 2019 [131] 45.2 8.4 2.4 1.0

Chen 2019 [90] 7.7 4.0 1.2 0.5

Jia 2019 [96] 52.7 10.0 5.6 1.6

Richoux (LSTM) 2019 [97] 25.2 5.8 0.6 0.4

Richoux (Full) 2019 [97] 25.7 6.5 0.6 0.4

Tian 2019 [91] 18.8 4.1 4.3 1.0

Yao 2019 [132] 20.1 5.6 1.2 0.5

Zhang 2019 [133] 8.0 3.7 1.9 0.6

Li 2020 [93] 50.7 12.4 6.1 1.7

Czibula (SS) 2021 [134] 5.7 2.1 0.7 0.4

Czibula (SJ) 2021 [134] 5.9 1.8 0.8 0.4

Czibula (JJ) 2021 [134] 5.8 2.1 1.7 0.5
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Figure 4.2: Results of Sequence-Based Models on Benchmark Data. A–C (left)

show results when selecting from the full set of protein pairs for training and testing for a

handful of the best models (dotted lines) and the 4 illogical feature-based models (solid lines).

Figure A shows the ROC curve with 50% positive data, while Figures B-C show Precision-

Recall curves using 10% and 0.3% positive data in the test set. Figure D-F (right) show

the same computations when performed on held out proteins instead of selecting from the full

set of pairs. When holding out protein pairs, the models exhibit a significant performance

drop. Additionally, the models and bias measurements score similarly across all 6 tests.
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features relies heavily on predicting proteins that are hubs in the training data, and

proteins that have similar sequences to hubs in the training data, rather than learning

information related to what makes a pair of proteins interact.

4.8 Evaluation of Potential Annotation Biases in the Benchmark Dataset

As mentioned in Section 4.4.2, annotation-based features can exploit additional

experimental biases, related to some proteins being less-studied, leading to less known

interactions and more missing annotation data, potentially creating a confounding factor,

and algorithm biases, related to not properly holding out test data. We examine these

biases in Table 4.11, which analyzes how much more frequently missing data appears in

negative training and test instances than positive instances, and Table 4.12, which

compares the results of using all interaction data to compute annotation-based frequencies

rather than holding out test data or entire proteins on two of our annotation-based feature

models.

In Table 4.11, we show the amount of missing data for each class in each dataset.

Overall, 1%-15% more negative data is missing from most datasets in each category. While

negative pairs have more missing data, most pairs contain at least one of the three GO

features, and some Pfam and InterPro features. Given that more than half of the negative

data contains information from all 3 GO ontologies, more than 40% contain domain data

from Prosite, the feature that is most often missing, and that much more negative data

exists in our test sets than positive data, the small increase in missing data in negative

instances should not allow predictors to easily identify known PPIs by simply filtering out

pairs with missing data.

The performance of two models using features that rely on interactions is shown

in Table 4.12, which compares the results of frequency-based features predicting PPIs using

all interactions, non-testing interactions, and non-held out proteins exclusively. The first

model, Domain Variant, relies on the maximum annotation values from three sources of

protein domains used for frequency of annotation in PPIs computations. The second,
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Table 4.11: Percentage of Benchmark Data Missing GO and Domain Features

Dataset Pos%
Data

Type
Class

GO

CC

GO

BP

GO

MF

GO

Any
Pfam Prosite

Inter-

Pro

Full 50 Train Pos 7.3 13.3 2.9 0.7 8.2 47.8 1.2

Full 50 Train Neg 13.6 22.2 17.9 5.9 11.9 57.7 2.3

Full 50 Test Pos 7.3 13.3 2.9 0.7 8.2 47.8 1.2

Full 50 Test Neg 13.6 22.2 17.9 5.9 11.9 57.7 2.3

Full 20 Train Pos 7.2 13.2 2.8 0.7 8.2 47.6 1.2

Full 20 Train Neg 13.8 22.2 17.9 6.0 12.0 57.8 2.4

Full 10 Test Pos 7.2 13.2 2.9 0.7 8.2 48.0 1.2

Full 10 Test Neg 13.7 22.0 17.9 6.0 12.1 57.8 2.4

Full 0.3 Test Pos 7.3 13.3 2.7 0.7 7.9 48.6 1.1

Full 0.3 Test Neg 13.7 22.1 17.9 6.0 12.0 57.8 2.4

Held Out 50 Train Pos 7.2 13.3 2.8 0.7 8.2 47.9 1.2

Held Out 50 Train Neg 13.7 22.0 17.8 6.0 12.0 57.8 2.4

Held Out 50 Test Pos 7.2 13.2 2.8 0.7 8.1 47.9 1.2

Held Out 50 Test Neg 13.9 22.1 17.9 6.1 12.0 57.6 2.3

Held Out 20 Train Pos 7.2 13.3 2.8 0.7 8.1 48.0 1.2

Held Out 20 Train Neg 13.7 22.0 17.9 6.0 12.0 57.8 2.4

Held Out 10 Test Pos 7.2 13.2 2.8 0.7 8.1 47.9 1.2

Held Out 10 Test Neg 13.6 22.0 17.9 5.9 12.0 57.8 2.4

Held Out 0.3 Test Pos 6.5 12.9 2.9 0.7 7.7 47.3 1.2

Held Out 0.3 Test Neg 13.7 22.0 17.9 6.0 12.0 57.7 2.4
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Table 4.12: Analysis of Holding Out Data when Using Interaction Frequency

Features

50% Pos Full 50% Pos Held Out

Model Acc AUC Acc AUC

Domain Variant All 92.0 97.3 92.1 97.3

Domain Variant NonTest 74.2 77.4 73.8 76.9

Domain Variant Held Out 63.3 64.2

Simple Ensemble All 94.3 98.3 93.8 98.0

Simple Ensemble NonTest 76.4 82.2 76.0 81.4

Simple Ensemble Held Out 64.7 67.2

50% Pos Full 50% Pos Held Out

Model Prec AvgP Prec AvgP

Domain Variant All 99.0 88.4 99.1 88.3

Domain Variant NonTest 96.7 51.5 96.4 49.9

Domain Variant Held Out 91.8 28.7

Simple Ensemble All 97.5 90.9 97.5 90.1

Simple Ensemble NonTest 92.2 54.1 92.1 51.9

Simple Ensemble Held Out 88.4 27.9

50% Pos Full 50% Pos Held Out

Model Prec AvgP Prec AvgP

Domain Variant All 72.9 42.4 76.2 43.7

Domain Variant NonTest 41.3 9.0 46.4 9.6

Domain Variant Held Out 25.6 2.8

Simple Ensemble All 51.3 38.3 52.2 38.0

Simple Ensemble NonTest 25.4 8.8 23.9 8.0

Simple Ensemble Held Out 16.4 2.3
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Simple Ensemble, relies on the Best Matching Average (BMA) from frequency-based

features computed from the frequency of GO and protein domain annotations in known

PPIs. We note that testing the effect of using held out proteins cannot be performed on

the Full datasets, therefore those cells are blank in our table.

Overall, there is a significant drop in accuracy when removing test pairs from the

feature creation process, with a more moderate drop when holding out entire proteins

instead of just the pairs in the test dataset. As test data should not influence feature

creation and training, the drop found when using all interactions vs holding out at least test

interactions shows a significant bias which must be accounted for when calculating features.

However, compared with sequence-based predictors, the drop found when changing from

holding out test interactions to holding out entire proteins is much more moderate,

suggesting less of a biasing issue when not holding out entire proteins. While the difference

is smaller, for the purpose of fair comparisons, we utilized features calculated with proteins

being held-out when comparing to sequence-based methods on the Held Out datasets.

4.9 Evaluation of Annotation-Based Methods

We tested our implementations of annotation-based methods on the benchmark

datasets, in addition to our fifth illogical feature model, Seq Sim Bias + Protein Bias,

which scores overlapping proteins between genes in addition to sequence similarity. The

results of our annotation-based models, our illogical feature models, and the some of the

best sequence-based predictors, are shown in Tables 4.13-4.15 and Figure 4.3.

Overall, the results from these methods are worse than control models in several

categories when not holding out any data. However, unlike control and sequence-based

methods, the four methods that use small feature vectors not relying heavily on individual

protein data (i.e., excluding Chen 2005 and Maetschke 2012) drop much less when running

on held out data, with some even improving their precision at 3% recall. Unlike the

sequence-based methods, these 4 methods manage to obtain over 85% precision at 3%

recall on 1:9 positive data, and 15%–25% precision on 1:332 data. The latter result
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Table 4.13: Evaluation of Annotation-Based Models on 50% Positive Benchmark

Datasets

50% Pos Full 50% Pos Held Out

Model Year Ref Prec Avg P. Prec Avg. P

Annotation-Based Methods

Chen 2005 [161] 75.9 82.7 65.1 69.6

Gou 2006 [186] 66.3 72.1 66.3 72.2

Maetschke 2012 [144] 71.0 77.4 69.5 75.2

Dom Variant 74.2 77.4 63.3 64.2

Zhang 2016 [137] 73.5 80.4 73.0 79.5

Simple Ensemble 76.4 82.2 64.7 67.2

Control Methods

Count Bias 84.2 91.5 50.0 50.0

Seq Sim Bias 82.3 90.0 65.6 70.7

Seq Sim Bias + Protein Bias 82.3 89.9 65.6 70.8

Rand Net 84.7 92.0 51.0 50.2

Rand RF 78.1 85.9 50.9 50.5

Selected Best-Performing Sequence-Based Methods

Pan 2010 [87] 83.7 91.4 66.4 72.5

Jia 2015 [92] 84.6 92.2 65.1 70.4

Ding 2016 [99] 84.7 92.3 64.1 70.0

Du (Sep) 2017 [88] 85.5 92.8 67.0 73.3

Göktepe 2018 [98] 82.5 90.2 65.6 71.2

Li 2018 [130] 84.3 91.8 56.0 58.5

Jia 2019 [96] 83.2 91.0 66.0 72.0

Li 2020 [93] 86.4 93.4 67.3 73.8
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Table 4.14: Evaluation of Annotation-Based Models on 10% Positive Benchmark

Datasets

10% Pos Full 10% Pos Held Out

Model Year Ref Prec Avg P. Prec Avg. P

Annotation-Based Methods

Chen 2005 [161] 77.1 41.8 58.8 23.1

Gou 2006 [186] 90.1 33.7 89.5 33.1

Maetschke 2012 [144] 46.2 28.6 42.0 25.5

Dom Variant 96.7 51.5 91.8 28.7

Zhang 2016 [137] 86.0 35.7 85.4 33.4

Simple Ensemble 92.2 54.1 88.4 27.9

Control Methods

Count Bias 91.9 56.4 10.0 10.0

Seq Sim Bias 84.5 53.0 41.8 21.6

Seq Sim Bias + Protein Bias 84.5 52.9 41.6 21.6

Rand Net 92.5 60.4 11.1 10.0

Rand RF 87.3 45.9 10.5 10.1

Selected Best-Performing Sequence-Based Methods

Pan 2010 [87] 96.8 59.9 65.7 22.6

Jia 2015 [92] 95.9 60.7 51.1 19.5

Ding 2016 [99] 96.9 61.1 58.3 18.3

Du (Sep) 2017 [88] 94.9 64.5 56.3 24.9

Göktepe 2018 [98] 93.6 57.0 59.4 24.0

Li 2018 [130] 93.6 60.9 24.7 13.6

Jia 2019 [96] 97.1 59.5 68.2 23.2

Li 2020 [93] 96.6 67.7 65.9 26.8
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Table 4.15: Evaluation of Annotation-Based Models on 0.3% Positive Benchmark

Datasets

0.3% Pos Full 0.3% Pos Held Out

Model Year Ref Prec Avg P. Prec Avg. P

Annotation-Based Methods

Chen 2005 [161] 8.8 2.8 4.3 1.0

Gou 2006 [186] 15.7 2.9 22.1 3.3

Maetschke 2012 [144] 2.3 1.2 2.0 1.0

Dom Variant 41.3 9.0 25.6 2.8

Zhang 2016 [137] 13.5 2.7 19.7 2.9

Simple Ensemble 25.4 8.8 16.4 2.3

Control Methods

Count Bias 28.0 6.5 0.3 0.3

Seq Sim Bias 14.8 5.2 2.1 0.9

Seq Sim Bias + Protein Bias 14.8 5.2 2.1 0.9

Rand Net 29.1 7.4 0.4 0.3

Rand RF 17.9 3.8 0.3 0.3

Selected Best-Performing Sequence-Based Methods

Pan 2010 [87] 46.9 9.3 5.4 1.5

Jia 2015 [92] 41.8 8.7 3.3 1.2

Ding 2016 [99] 49.8 10.0 4.6 1.2

Du (Sep) 2017 [88] 39.5 9.8 3.9 1.2

Göktepe 2018 [98] 29.2 7.1 4.6 1.2

Li 2018 [130] 28.3 7.3 1.1 0.5

Jia 2019 [96] 52.7 10.0 5.6 1.6

Li 2020 [93] 50.7 12.4 6.1 1.7

103



Figure 4.3: Results of Annotation-Based Models on Benchmark Data. (A) ROC

curve for results on held out proteins on 50% positive data, comparing sequence (dotted

lines) and non-sequence-based methods (solid lines). (B–C) Precision Recall Curves for

held out proteins on 10% and 0.3% positive data, comparing sequence and non-sequence-

based methods. Non-sequence-based methods (solid lines) perform better at lower recall

levels when positive data is more rare than random pairs.
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represents a 50x–80x performance improvement over random data, over a 7x improvement

over predicting based on similar sequences, and a 2x–4x improvement over the best

sequence-based methods at low recall levels. While methods using aggregations showed the

ability to make good predictions at low recall levels, Chen et al.’s method using the sum of

binary data per protein and Maetschke’s method using a union of GO annotations between

two proteins up to and including their lowest common ancestor both struggled like

sequence-based methods. This may be a reflection of the large number of features used by

these models, as well as how the feature vectors utilized mostly reflect each individual

protein’s features or a simple calculation between individual protein’s features. A plot of

the best annotation-based predictors versus the best sequence-based predictors can be

found in Figure 4.3. In both precision recall curves, there is a clear gap in precision

between the 4 best annotation-based predictors and sequence-based predictors at low recall

levels. It is also important to note that these annotation-based methods are simple variants

using only a few features, implying that methods using larger, more complex annotations

may be able to further improve over sequence-based methods.

4.10 Brief Analysis of D-Script Predictor

While our sequence-based analysis covered many protein-protein interactions

prediction models, some known methods were excluded from our analysis due to large

computational time or memory requirements. For example, models that rely on custom

SVM kernels utilize quadratic memory space related to the size of the training data, which

is prohibitive for performing experiments in moderate memory space (32gb) on datasets of

100,000 training pairs. While many of these experiments use similar features and methods

to those we have re-implemented, in this section we will briefly look into one newer model,

D-Script, created by Sledzieski et al. in 2021 [209].

While D-Script wasn’t officially published until we were in the process of finalizing

our results, we did have access to D-Script’s source code from a preprint released earlier in

2021. Using source code provided by the authors, we built D-Script into our library, and
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attempted to run it on our benchmark data, but found the length of the training time too

long for all of our datasets, and were unable to use all possible protein pairs from our

training data due to memory limitations on long proteins using D-Script. While we cannot

perform the full test on D-Script that we have used on other models, in this section, we

analyze the data used by D-Script in relation to the biasing methods we have previously

suggested, and compare the results to those published in the original paper.

The authors of D-Script are primarily interested in predicting interactions across

all species rather than relying on creating different models for each species. In their paper,

they compared the results of D-Script to results on PIPR, by Chen et al. [90], a model we

have tested in our analysis. Overall, PIPR performed at its best in cross validation on

human data, significantly outperforming D-Script, likely due it heavily overfitting on the

number of positive examples per protein in the training data, allowing it to perform well

when validated on proteins that overlap with proteins in training instances. When testing

on non-human species with a model trained on human data consisting of 1 known

interaction for every 10 random pairs, D-Script outperformed PIPR. We compared the

results of these two models to our sequence similarity count check, which is based on taking

a weighted average of the positive and negative counts of similar-sequence proteins in the

training data, as well as a second comparison, which takes the maximum positive value

from our sequence similarity metric instead of using a weighted average. The AUPRC of all

4 methods are shown in Table 4.16

Unsurprisingly, our sequence similarity counts outperform PIPR in 4 out of 5

tests. Meanwhile, D-Script outperforms our sequence similarity counts by 15%-25%

AUPRC on each test. A similar comparison of AUCs between the sequence similarity

counts and D-Script show D-Script tends to outperform our sequence similarity counts by

around 5% average precision. Thus, D-Script does show the ability to outperform our

sequence-based counts that generally performed similarly to all previous sequence-based

predictors analyzed. As we were unable to fully analyze D-Script relative to our own

datasets, and the paper does not provide information on precision at low recall or on
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Table 4.16: Comparison of D-Script and PIPR to Controls

Dataset D-Script PIPR
SeqSim

Weighted

SeqSim

Max

M. musculus 58.0 52.6 36.6 32.3

D. melanogaster 55.2 27.8 39.2 37.8

C. elegans 54.8 34.6 28.8 38.4

S. cerevisiae 40.5 23.0 23.1 25.2

E. coli 57.1 30.8 32.6 31.4

datasets that are not balanced at 1 known interacting pair per 11 total pairs, we leave

analyzing its ability to produce high precision results, and comparing its predictions to

other methods on datasets with 3% of pairs being known interactions to future work.

It is also important to note that while D-Script does take only sequence data for

training, the data is uses isn’t solely sequence data. The first layer of the D-Script module

embeds amino acids using a pre-trained neural network produced by Bepler and Berger to

predict structural information from sequences [210]. As this network was trained to predict

annotated protein structures, some amount of annotated structural knowledge is

influencing the final results for D-Script, which could be the reason D-Script outperforms

our checks and previous methods. We leave looking more into understanding the

underlying reasons D-Script works for future work.

Finally, we will also note that problems we have seen on some datasets, where a

small subset of all proteins used make up a majority of interactions, also exist in the

D-Script data. This type of skewed distribution is what allows many prior sequence-based

methods to perform well, as individual proteins, which can be identified by their unique

sequences, can be classified as interacting or not interacting rather than protein pairs.

Splitting the 5,000 interactions into 10,000 proteins (2,000 and 4,000 for E.coli) and

splitting the proteins into two groups, with one containing proteins with equal or more
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positive samples than negative samples, we notice that over 70% of the interacting proteins

in four out of five species come from the less than 6% of the overall proteins. A model that

could predict all pairs involving two of these proteins would obtain over 97% precision at

over 60% recall on the provided datasets. The one dataset that is less extreme, yeast, has

only 20% of its interacting data in the 2% of proteins with more positive and negative

samples, which can be used to make predictions above 97% precision up to only 20% recall.

This dataset is also the one that yields the worst performance on both models and sequence

similarity counts. If a model were able to determine these subsets of proteins as interacting

independent of other proteins in each pair, and make predictions based on these individual,

highly positive proteins, it could yield over 0.7 AUPRC on four out of five datasets.

4.11 Conclusions From Sequence-Based Method Experiments

In prior publications, most sequence-based predictors were evaluated on datasets

with 50% positively labeled instances, with randomly selected protein pairs serving as

negative class data. In those datasets, PPIs (i.e., the positive class data) are drawn from a

small-world network where some nodes are hubs, and therefore appear in many protein

pairs, whereas randomly paired negative class data are drawn from nearly complete graph

data. Thus, the usage rates of different proteins, particularly hub proteins, in the positively

and negatively labeled instances are dramatically different, creating an easily exploitable

bias.

Some of this can be inferred from Table 3, which shows far more unique proteins

in positive class data than in negative class data in many datasets (If say 100 pairs are

drawn from scale-free distribution and there is one hub with 25 PPIs, it contains 26 unique

proteins; whereas, if that hub did not exist and it was drawn from a complete graph, the

number of unique proteins from those 25 PPIs would be between 26 and 50.) When

evaluating these datasets, models may assign class labels based on protein frequency rather
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than true characteristics of an interacting protein pair, and falsely shows higher

performance in evaluations; the class label is assigned independently of the second protein

in the pair but learns a likely invalid premise for real world interactome prediction.

Our experiments showed that both on datasets from original publications and on

our newly created Full datasets, control models with illogical features that simply capture

protein membership can perform on par with most of the models from the literature.

When analyzing the results of test datasets with proteins not utilized in the training set

(Held Out), we find that most models’ accuracies drop significantly. Accuracies on our 1:1

test data dropped from their original results of 75%–85% accuracy down to 55%–67%

accuracy. On more relevant metrics, namely precision at 3% recall on 1:332 positive class

data and holding out test proteins gave a mere 6.1% for the best sequence-based model.

Thus, when both the data ratio and evaluation metric are suitably chosen, the true ability

is revealed to be impractically low.

Some of the previous methods filtered out protein sequences that have a high

sequence similarity, which we have not implemented; however, we have mapped our data to

gene-level information, such that multiple isoforms are not included in our test data,

minimizing the number of proteins with similar sequences in our benchmark data. It is

likely that if we removed proteins with similar sequences from our datasets, the results

when predicting on held out proteins would be lower, as exploiting sequence similarity

provides similar results to sequence-based methods. This may be analyzed in future work.

When training the methods from literature that were originally designed for 50% positive

training and test datasets, we did not make adjustments to the designs or implementations

to adjust for the different ratios of data. Some methods, such as class weighting, are

commonly recommended when training models on imbalanced data. However, to keep the

models as similar to those found in previous literature as possible, we decided not to

implement adjustments per positive data ratio. We note that we did test all models on

50% positive test data and found the results to be similar to what could be obtained by

prioritizing proteins by their number of known interactions. Therefore, it is unlikely that

using concepts such as class-weighting would drastically increase the precision of these

methods.
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When using annotation features, we found that feature representation has a

significant impact on the results of the model. Most methods we tested were unable to

outperform control models made from illogical features when generating data from all pairs

of proteins. However, using Held Out protein data showed moderate precision at 3% recall

even on heavily imbalanced class data, showing their predictive capabilities do not depend

on exploitable, individual protein-based biases in the underlying data.

Models that use features computed from pairs of protein domains and GO

annotations that appear in other interactions performed well at predicting interactions;

these are well recognized to be meaningful features in predicting interactions (e.g., that two

protein domains that are known to interact are highly likely to conserve that

interaction/function when those protein domains appear in other proteins). Thus, using

the knowledge of interacting protein domains or compatible GO annotations (specific

ligand and receptor annotation in the two proteins), and along with other protein features

to learn an effective classification machine learning model which helps short list protein

pairs for experimental validation. We also note that the two methods using only three

features, i.e., Domain Variant and Guo 2006, performed as well or better than other

non-sequence methods based on 10–20 features. Surprisingly, our ensemble method, which

contained Resnik semantic similarity, GO annotation frequency, and all three domain

features performed worse than the methods using only three domain or Resnik semantic

similarity features. This was most likely due to the different aggregation methods, with

Domain Variant and Guo 2006 using product and max aggregations respectively, while our

ensemble used best matching average aggregation. This could imply that using max or

product aggregation is better for predicting PPIs, or this could suggest a bias where PPIs

are primarily known for genes with a high number of annotations. If the latter is true,

product, sum, and maximum aggregations could exploit this bias, as all three functions

monotonically increase as more data are provided. We leave analyzing this to future work.

As for methods where the features used by the models were highly similar to

features produced for each individual protein, such as Chen 2005 and Maetschke 2012, we

found that their performance mirrored the performances of sequence-based methods. This

implies that using sequences alone is not the problematic part for sequence-based methods,
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but rather, any methodology that relies on producing unique feature sets per protein and

using simple combinations of these features to create data for machine learning methods

seem to mostly make predictions based on underlying biases in generated PPI datasets.

Only when creating a small number of more complex features using pairs of proteins,

instead of individual proteins, do models see a significant improvement beyond bias when

positive interaction data are used as the rare class.

Finally, we will briefly note that newer models, such as D-Script, may be able to

outperform the simple illogical controls, such as sequence similarity weighted count,

suggested in this paper. While it is good that newer works are able to outperform these

controls, it must be noted that these controls are not guarantees to map all possible biases

that could occur in predicting PPIs. Given a novel method, various new confounding

factors could be added depending on the way features are initially generated and how the

datasets used for validation are created. However, it is also possible that methods like

D-Script are capturing useful information in novel ways that could be used to further the

ability to predict novel PPIs. We leave a more in depth analysis of D-Script to future work.

4.12 Release of Open Source Resources

In this project, we implemented various models from literature with a goal of

reusability and transparency in mind. Many previously published papers do not contain

any reference to their source code, contain links to websites that are no longer functional,

do not provide code in a ready to use manner, or do not license their code, restricting it

from being reused. For all code in this project, we have implemented each method in

python code, published to the open source platform GitHub, using MIT licensing, which

allows free usage of all code for both open source and commercial licensing. All code was

either written based on the papers published by the authors, or, where applicable, using

and recoding available methods using open source code with permissive licensing. Our goal

is to include minimal code that requires compiling or external downloading to ensure that

our library remain lightweight and easy to run.
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All code used to make the machine learning models, datasets, and features

utilized in this study were added to an open source GitHub repository in December of

2021. We ensured that the code we provided would download any data and build any

models necessary to re-perform our experiments, and provided a single file that, if ran,

would reproduce the entirety of this work. More importantly, we split our files into

different directories for reusability. Currently, four main folders exist in our repository,

methods, preprocess, pairwisePreprocess, and PPI Datasets. Overall, we have designed 3 of

these 4 folders with a goal of high reusability.

4.12.1 Benchmark Evaluation Datasets

In our public repository, we provide the list of protein pairs used in our benchmark

evaluations. Additionally, we provide sequences for each protein in the dataset, as well as

sequence and protein pair information for various datasets used in previous works.

4.12.2 Source Code

Source code for reproducing all work in our Benchmark evaluations is located at

https://github.com/bmd2007/benchmark_eval. The following sections explain the main

folders the code is stored in.

4.12.2.1 Source Code for Collecting and Preprocessing Data

The PPI Datasets folder contains all datasets and scripts related to downloading

and processing protein pairs, sequences, and annotations into standardized formats to be

used by other parts of our library. This includes our benchmark evaluation dataset,

processing files for PPI datasets from previous work, and files to created new PPI datasets

using our held out protein method. Of the four main folders, this is the only one that

contains code that is not designed to be reusable, as most of the processing code for PPI

data needs to be customized to handle different formats from various data sources
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4.12.2.2 Source Code for Computing Sequence-Based Features

The preprocess folder contains all sequence-based preprocessing models, each of

which take a list of protein sequences as a primary argument, and either return a list of

features per protein, or save data in a file format ready to be loaded by one or more of the

modules provided in the Methods folder.

4.12.2.3 Source Code for Computing Annotation-Based Features

The pairwisePreprocess folder contains pairwise feature creation code related to

several domain and gene ontology features. Code in this folder is designed to be robust

enough to handle different protein labeling systems, such as Entrez genes vs protein names,

different sets of proteins, or even data from different species.

4.12.2.4 Source Code for Reproducing Prior Methods

The methods folder contains all models and machine learning related code, for

parsing attribute data and recreating models using forest, neural network, or support

vector machine based models. The machine learning models and methods utilized are all

built on top of python frameworks, primarily using PyTorch and SciKit-Learn, two popular

libraries commonly used by researchers and easily available in most locations. Each model

is encapsulated by a module, which loads feature data, creates the machine learning model,

and runs training and testing given a list of protein pairs to train or test with. The different

modules in this folder take a dictionary of hyperparameters as an argument, which users

can use to set various hyperparameters and the names of the files containing features, with

many of the models being built to be robust enough to handle a variety different features.
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5.0 Creating Protein-Protein Interaction Prediction Models

In Chapter 4, we showed that the results of sequence-based predictors are driven

primarily by confounding factors within the underlying protein distributions in train and

test data, and that, by removing those dataset biases by holding out entire proteins from

the training data, the sequence-based model accuracies dropped significantly. Similarly, we

showed that predictions based on annotations, such as gene ontology and domains, were

not as affected by holding out entire proteins, and that even simple approach using small

numbers of features can outperform algorithms based on predicting from protein amino

acid sequences at low recall on realistically balanced datasets.

To further our goal of predicting PPIs at high precision, we now focus exclusively

on annotation-based features.

5.1 Open Questions for Building Our Best Prediction Model

While we would like to create the best PPI prediction model possible, we need to

first define how a best model would be measured. To do so, we must address the following

questions:

1. Should we hold out entire proteins or hold out protein pairs for testing?: In

our prior work, we showed that using sequence-based predictors made predictions

closely aligned with the number of known interactions for each individual protein,

rather than relying on information formed by the pair of proteins. Annotation-based

approaches did not show an large performance decrease holding out entire proteins, in

contrast to sequence-based models whose precision’s values fell by 90%.

To further study the effects of holding out entire proteins, we propose creating

machine learning models under both approaches, and comparing their predictive

capabilities. Given that holding out entire proteins creates a harder problem, it is likely

that holding out only pairs of proteins will perform better within a given dataset.
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Holding out only pairs has the advantage of being trained on a random subset of all

known interactions within a given dataset, allowing it to learn from examples involving

both proteins under consideration. However, it also comes with a risk of overfitting to

certain proteins, similar to the way sequence-based algorithms performed, learning

annotation patterns unique to a protein that may not perform as well when predicting

on large amount of data, or when analyzing its novel predictions against data from

other sources, such as high-throughput data. To fully test both training methods, we

will use two different evaluation methods in addition to our standard testing procedure

of testing on held out pairs or proteins within the same dataset.

In our first additional evaluation method, we will determine how well each

training method predicts interactions across different proteins, determining if either

interaction model relies simply on ranking known hub proteins higher. This evaluation

will analyze how well predictions are made across all proteins, both hub and non-hub,

and whether or not predictions made within hub proteins are precise.

In our second additional evaluation method, we will analyze how well the

predictions from both processes perform on external datasets, such as annotated

protein-protein interactions from HPRD, protein pairs with experimental interaction

evidence listed by String, and high throughput interactions derived from BioPlex.

2. Should we compute interaction frequency features using only training data,

or all data?: Some annotation-based features, notably the frequency of domain pairs

in known interacting proteins, and the frequency of GO annotation pairs in known

interacting proteins, can be computed using only data in the training set, all protein

pairs not used in the test set, or holding out interactions belonging to held out proteins.

Using more data to compute each feature (all interactions not in the test set instead of

only training interactions) may allow a model to make more precise predictions, but

could possibly overfit to the underlying data source. To test this, we create two types

of models, one type limited using interactions from the training dataset, and the other

using all non-test interactions to compute frequency-based features. The second test

cannot be evaluated on proteome-wide predictions in the traditional manner (as all
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interaction data is used when computing the frequency features), but can still be

compared to other models based on the number of its novel predictions that overlap

with other PPI data sources.

3. Which features are the best for predicting protein-protein interactions?: In

Chapter 3, we listed a variety of annotation-based features that can be used for the

prediction of PPIs. However, many of these features are similar, and several features

can be modified in various ways, such as using different aggregation methods. While we

will compute many of these features, not all of them are likely necessary, meaning not

all features will yield improvements to our predictive models, and will reduce the

number of features utilized to a smaller set. Reducing the feature set will increase the

interpretability of our models, both by ensuring a large number of unnecessary features

do not make the model confusing, and by removing similar features that may cause

overfitting or not be reasonable to use from a biological research perspective.

Additionally, some feature may be excluded from our final computations due to being

incompatible with our definition of the prediction problem, namely requiring that we

can hold out entire proteins, with no knowledge of their interactions, during the

training phase.

4. Which algorithms are the best for predicting protein-protein interactions?:

While random forests have commonly been used in literature for predicting PPIs from

annotations, we will test a variety of other algorithms, from classic algorithms like

neural network and logistic regression to more modern approaches such as gradient

boosted forests. Additionally, ensembles containing multiple algorithms and models,

and layered models using the outputs of previous models in addition to our input

features, will be explored.

5. How do we handle missing data?: There are many different ways to handle missing

data in literature, ranging from assigning missing values to zero or the average of

non-missing values for a feature, to model specific solutions such as treating missing

values as a single, non-numeric value when making splits on a forest. Alternatively,

various imputation methods try to average the values for features from other similar

data samples, such as averaging data from proteins with similar characteristics,
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averaging results from all splits on a forest when a missing feature is used for a split,

using similar proteins or data samples to impute data through matrix factorization, or

training a machine learning model with missing data, and averaging values that are

predicted similarly by the model [211–214]. However, some of these methods require a

large computation time or are specific to using a certain machine learning algorithm.

For our imputation approaches, we will focus on four methods that can be used in the

preprocessing phase and can quickly impute test data as needed, filling missing values

with zeros, with feature averages, with class weighted feature averages, or using an

autoencoder to replace missing values.

5.2 Computation of Initial Features

After reviewing a variety of prior works in Chapter 3, we selected a subset of all

features that are usable when holding out proteins as our set of features to compute. The

requirement of being usable when holding out entire proteins restricted us from using a

variety of features and computation algorithms, such as PPI network topology-based

features like shortest path distance, and algorithms relying on PPI network diffusion. We

also elected to not use information from pre-computed domain databases, or literature

mining, as both features could contain information about the PPIs we are attempting to

predict. Most features related to protein sequences, or vectors based on gene ontology

annotations per protein were also excluded based on the large number of features and low

precision they produced in our previous experiments in Chapter 4. Finally, we also

excluded some computations related to Gene Ontology, such as Topological Clustering

Semantic Similarity and cosine similarity between gene ontology annotation vectors, as

these features showed little to no improvement in literature over other methods such as

Resnik semantic similarity, except when run as per protein features through a machine

learning algorithm, a methodology we have already shown as problematic in Chapter 4.

We can broadly group the features we utilize in our final model into four different

areas:
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• Gene Expression Features: To compute gene expression features, we downloaded

datasets from 4 different data sources:

– GTEx: From the GTEx Consortium, we downloaded expression data from samples

for each of 54 different tissue types, as well as a single dataset containing the

median of the expression data for each tissue type, for each protein (GTEx dataset

RNASeQCv1.1.9) [215].

– GEO (GSE158055): From NCBI’s GEO database, we downloaded single cell data

from an experiment on COVID-19 patients, (GSE158055, published Feb. 4, 2021)

[207, 216]. We then extracted the control (healthy) samples, computing features on

each of the 32 extracted control samples, and created an additional dataset using

the median of expression data per protein within each control.

– COXPRESDB: Two datasets were downloaded from COXPRESDB,

m.v18-10.G20283-S128455 containing microarray data, and r.v18-12.G22897-S22897

containing RNA-seq data [217]. These datasets contain 128,455 and 27,655 samples

respectively, collected from various data sources, and were normalized using various

methods such as ComBat and principal component analysis (PCA).

– The Human Protein Atlas: A single RNA-Transcript file containing gene

expression information across 124 tissues was downloaded from The Human

Protein Atlas on December 20, 2021 [218].

Using these sources, we downloaded and computed 7 distinct expression datasets. 2 of

these sets, GTEx data on different samples per tissue, and single cell data containing

multiple samples per patient, were used to form large sets of per tissue, or per patient,

data. For each tissue or patient data, computations such as correlation and intersection

were calculated, with additional features computed as averages and standard deviations

across these calculations.

Two types of correlation values, Pearson and Spearman, were calculated per

protein pair. Additionally, intersection, union, intersection over union (IOU), and

intersection over minimum (IOM) computations were done per dataset, with thresholds

used at the 90th, 80th, 20th, and 10th percentiles per sample/tissue. Overall, we

computed 172 per tissue/sample correlation values, 4 aggregated correlation values, and
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10 correlation values on full datasets. Similarly, we computed 1376 per tissue/sample

IOU related values, 32 aggregated intersection related values, and 80 full dataset

intersection related values.

• Annotation Frequency-Based Features Annotation Frequency-Based features

primarily compute the frequency in which pairs of annotations belong to pairs of

interacting proteins, using Frequency, Hypergeometric, or Interaction Association Score

(IAS) computations. Alternatively, Co-Annotation Score (CAS) computes the

frequency of a pair of annotations existing in the same protein, independent of

information related to interactions.

We computed these features on two different types of data, domain

annotations and GO annotations. Domain annotation data was collected from Pfam

(Pfam-A-regions, Sept. 17, 2021), InterPro (protein2ipr, March 27, 2021), and Prosite

(prosite alignments, Sept. 17, 2021) [219–221]. GO annotations were collection from

the GO Consortium (goa human2021 Feb. 16, 2021) [222, 223]. For GO annotations,

which list only the most distinct annotations per protein, we utilized the Gene

Ontology hierarchical layout (go-basic March 28, 2021) to collection different

annotation sets, such as all annotations at the second level of the ontology (L2), or all

annotations up to the ontological root (ALL), to compute frequency-based features

[224, 225]. For Gene Ontology, computations can also be done for each of the three

ontologies individually, or all three ontologies as a single set.

Each of the four previously listed ways to compute frequency, given two

proteins with M and N annotations respectively, create a grid containing MxN values.

To reduce theses into a single value for features, once of six aggregation methods, max,

average, summation, product, best matching average (BMA), max of row maximum

and column maximum (RCMax), are used. With exception to product aggregation,

which requires all values to be between zero and one, and is thus incompatible with

IAS, each of these aggregation types can be used with any of the previously listed

formulas and datasets.
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In addition to selecting an annotation set, formula, and aggregation type, a

final decision in computing frequency features that utilize interaction data occurs when

determining what interactions are utilized during the feature creation process. While

the IAS formula natively removes all interaction and related data to each protein from

the protein pair being scored, hypergeometric and frequency formulas require ensuring

that no test data is used when computing interactions frequency features. Not doing so

would create a significant algorithmic bias. This leads to two possibilities for

computing formulas. First, only the test data can be excluded, while all other

interaction data is used. This works well for maximizing the amount of data used for a

single test, but would not be easily usable for proteome wide predictions. Alternatively,

frequency-based features could be computed using only interactions from the training

data, which would allow for proteome wide computations later. Finally, computations

could be done using the held out protein method, using all interactions involving

non-held out proteins, which would also allow for unbiased genome-wide computations

when testing on pairs containing only held out proteins. We elected to try each

method, using all non-test (or non-held out protein data) for each formula, and only

train data for each formula, with a third run for IAS using all data. For using only

training data, our hypergeometric formula computes two values, one for positive and

one for negative enrichment, while all other formulas compute a single value.

Across 3 domain and 8 Gene Ontology spits (two levels of data, with either

three individual ontologies or all data at once), we computed 51 combinations of

formulas, interaction data, and aggregation methods, as listed above, creating 153

domain and 408 Gene Ontology features based on interaction and co-association

frequency.

• Gene Ontology Similarity-Based Features Gene Ontology (GO) similarity-based

features are based on the similarity of a pair of proteins’ Gene Ontology annotations.

We computed two types of similarity computations, computations related to the

intersection of common annotations to both proteins, and semantic similarity

computations.
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For intersection related features, such as intersection, union, IOM, and IOU,

computations between protein pairs need to take into account the ancestors of both

proteins annotations. Previous works have done this in a variety of ways, such as using

all annotations up to the ontological root when computing intersections, or using a

smaller group of annotations near the root such as GO-Slim [141, 152]. For our

computations, we use either all annotations (ALL), or annotations at the second level

of the Gene Ontology hierarchy (L2).

Computations are done per ontology, creating 3 different potential feature

values for each gene ontology level we utilize, which, when combined with our 4

intersection-based formulas, and 2 ontology levels (L2 or ALL), creates a total of 24

different potential features.

Semantic similarity computations rely on the most informative ancestor

common to a pair of annotations, with the most information ancestor computed

primarily through maximum information content or distance from the GO hierarchial

root. Using maximum information content of all ancestors per pair of terms, also

known as Resnik semantic similarity, is among the most common methods for GO

semantic similarity. Other, related methods include Lin similarity, Schlicker relevance

similarity, Jiang (Corath) similarity, and Wu similarity. Additionally, we computed a

sixth similarity, which we have previously used on internal projects, converts Resnik

similarity into a binary value, with scores above the 90(th) percentile of all Resnik

scores being scored as ones. In addition to these six semantic similarity formulas,

previous work by Zhang et al. [137] provides a way to compute semantic similarity on

descendants of annotations instead of ancestors, yielding twelve possible semantic

similarity formulas. As semantic similarity naturally takes into account the GO

hierarchy, additional calculation of ancestors as done for intersection-related

computations is not required. We performed each computation per ontology, computing

a feature value for each of the 3 ontologies, 12 formulas, and 6 aggregations, totaling

216 final feature values.
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Finally, closely related to semantic similarity and intersection formulas,

Sim GIC computes the intersection and union of all GO annotations between two

proteins, computing a final score as the sum of information content from each term in

the intersection terms divided by the sum of the information content values from each

term in the union of the terms [141]. While the original paper utilized all proteins up to

the ontological root, we performed this using either All or L2 annotations, to match the

way we have done other intersection-related Gene ontology features. This resulted in a

final set of 6 features.

• Evolutionary-Based Features Evolutionary-based features include the similarity

between proteins in different organisms, protein similarity within an organism,

locations of protein’s genes within an organism, and other similar features.

Evolutionary features relying on similar proteins across different species,

known as orthologs, include phylogenetic profiles, which computes a binary vectors

based on the existence of a protein across multiple species, MirrorTree, which correlates

changes in a pair of protein’s sequences across multiple species, conserved gene order,

which counts pairs of proteins that occur in close proximity across multiple species,

Rosetta, which counts the occurrences of a pair of proteins mapping to the same

ortholog, and interologs, which find pairs of orthologous proteins that interact.

To calculate these features, we computed orthologs using BLAST and

PSI-BLAST on all proteins in UniProt’s Swiss-Prot database (minimum e-value of 0.01,

5 iterations used for Psiblast), while also downloading pre-computed orthologs from

Panther [116, 119, 226]. This results in three lists of ortholog mapping similar proteins

in various species to our list of human proteins. Panther also provides a annotation

type referred to as least divergent ortholog (LDO). This represents which protein pairs

were likely orthologs prior to gene duplication events. Similarly, for Blast and Psiblast,

we computed a labeling for the most similar orthologs based on the lowest e-value per

species for each protein (which we label as LDO data for simplicity). This provides two

different categories of data for evolutionary-based features, either using all orthologs or

only LDOs. Additionally, for some features, we computed a total number of instances,

or the total number of unique species, when computing a given feature.
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Overall, we computed 12 features each for Rosetta and conserved gene pairs,

based on using each of the 3 different data sources, using either LDO or all orthologs,

and using either the total number of pairs or unique species (which we note will be the

same for the LDOs we calculated for Blast and Psiblast, due to us keeping only the

most similar sequence per protein per species). For phylogenetic profiles, which rely

only on the number of common species both proteins have orthologs in, we computed

12 features, using the intersection, union, IOU, and IOM formulas across all 3 data

sources.

We computed interologs using interactions from other species in BioGRID

combined with ortholog data from each of our 3 data sources as additional evolutionary

features, creating 12 features across data sources, data type (all or LDO), and

aggregation type ( total pairs or unique species). Additionally, as some previous works

have used interologs from a single species, we computed interolog features for each of

the 7 individual species with the most interactions recorded in BioGRID, yielding 84

additional features.

To compute MirrorTree, we first computed phylogenetic trees using

ClustalW2, which were then used to compute correlations between the pairwise

distances produced by these trees for each species [227]. As the algorithm requires only

a single ortholog per species, only the most similar proteins from Blast and Psiblast

were used, as well as a single LDO ortholog per protein/species pair from Panther

(selected semi-randomly when multiple LDOs existed). For the purpose of time, we

reduced the total number of species for phylogenetic trees down to the 200 species with

the most orthologs for human proteins per dataset, which included all species used by

Panther (which has less than 200 total species) and a large number of the orthologs

found from UniProt data using BLAST and PSI-BLAST. A final step of the MirrorTree

algorithm also requires all proteins to have an orthologous protein in all species used.

To account for this, we performed 2 different calculations. The first calculation used a

smaller number of species, usually between 15 and 20, and only calculated this feature

for all protein pairs where both proteins contained orthologs in all selected species.

About half of all proteins had orthologs in all species kept, meaning only 25% of
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protein pairs will have values for this feature, while the other 75% of protein pairs will

record this feature as missing. To reduce the amount of missing data, our second

calculation computed the correlation for each protein pair among only species they had

common orthologs in. We required a minimum of five common species to not count this

feature as missing for a pair of proteins. By scoring 2 different versions of MirrorTree

across 3 datasets, we created 6 MirrorTree features.

Additionally, we computed a single feature as number of genes between a

given pair of genes, and 2 binary features related to whether the starting position of

two genes are within 10,000, or 100,000 base pairs. Each of these features are listed as

extremely high values when the proteins are from different chromosomes.

A final feature was computed as the e-value of the sequence similarity between

a pair of proteins. Combining this feature, the 3 gene position features, and all other

evolutionary-based features produced a final set of 142 features related to evolutionary

data.

5.3 Selection of Initial Models and Imputation Methods

When choosing the best model for predicting PPIs, many annotation-based

algorithms utilize random forests, which work well with large amount of features, features

with varying importance, and features with significantly different numerical scales.

Previous efforts on predicting yeast interactions and predicting human interactions among

hub receptors showed good performance when using a random forest, while random forest

performed slightly worse than other methods on a large set of human interactions

[152, 228]. Given the usage of random forests in prior works, we utilized a random forest as

our default model, but also compared it other machine learning models, such as neural

networks and logistic regression, as well as more recent forest-based models, including

extremely randomized trees (Extra Trees), XGBoost, Light Gradient Boosting (LGBM),

and CatBoost, when performing our tests [229–232].
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Random forests and Extra Trees are both ensemble algorithms that create a large

set of independent weak learners, utilizing decision trees with only a random subset of

features analyzed at each split. The primary difference between the algorithms is that

Extra Trees only checks a subset of possible thresholds within the subset of features chosen

at each split, while the random forest algorithm finds the best threshold within a subset of

features at each split. Additionally, random forests use bootstrapping by default, but

bootstrapping can be used or ignored by either algorithms. Comparing the two algorithms,

Extra Trees was found to slightly reduce variance, but sometimes increase bias, relative to

a random forest [229].

XGBoost, LGBM, and CatBoost are all ensemble algorithms that rely on the

concept of boosting, which emphasizes samples predicted incorrectly on previous created

weak-learners on all subsequent learners. Unlike the training process for Random Forests

and Extra Trees, boosted models tend to use small trees to avoid overfitting, and do not

typically analyze only random subsets of attributes or random splits. However, many

boosted algorithm do rely on, or have the option to, reduce the amount of feature or

thresholds to check, such as grouping similar feature values together to reduce the number

of thresholds to check per feature, or removing some data with low gradient values, as done

by LGBM, to reduce the amount of data to be analyzes on the remaining trees. Generally,

CatBoost is designed to handle categorical data easier, and utilizes symmetric trees, where

all splits for a tree at a given level use the same attribute and threshold; LGBM attempts

to minimize the number of splits needed per tree, growing only the most informative split

from a leaf rather than adding an entire layer to a tree; and XGBoost uses trees that would

be most similar to regular decision trees during its boosting process.

For non-forest-based machine learning methods, we used logistic regression and a

simple feed-forward neural network containing 5 layers with a decreasing number of nodes

per layer. Logistic regression worked well at predicting human interactions in a previous

work by Q. et al. [228]. Meanwhile, neural network can be thought as similar to, although

more complex than, traditional logistic regression, and are theoretically able to capture

more complex patterns.
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In addition to using the individual algorithms, we also tested ensemble methods

involving a single or multiple layers of trained models. The 3 ensemble methodologies we

tested are:

• Regular Ensemble – Five versions of a single algorithm are trained on k-fold subsets

of the data, with the final prediction computed as the average of all five models

predictions.

• Sensor Learning Model – The predictions for each tree from a trained forest are

combined with the original feature set to train a final neural network layer [233].

• Multi-layer Model – Multi-layer models consist of multiple units, generated using

groups of the same machine learning algorithm trained on k-fold splits of the data. The

predictions of these models are averaged together, and this average value is passed onto

the next layer of models as a new feature. Each layer of a multi-layer model can

contain multiple units, each using its own ensemble based on a single machine learning

algorithm. The final layer is a single model, which outputs a final prediction from all

original features, and generated features from previous layers. This concept is roughly

based on the Deep Forest, but is also similar to other algorithms used in literature,

such as the attention-based deep learning ensemble by Li et al. [93, 234].

Finally, as previously mentioned, we handle missing data using 4 different types of

imputation. Missing data with either replaced with a zero, replaced with the average value

for a given feature, replaced with a class-weighted average value for a given feature

(averages per class are compute from the training set, while a weighted average based on

the expected class distribution is used when imputing test data), or filled in using an

autoencoder neural network, containing 9 symmetric layers (including input and output

layers).
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5.4 Feature and Model Selection Setup

Using our initial feature set, machine learning methods, and imputation types, we

wanted to find the best sets of features and hyperparameters to make predictions across

multiple feature sets (such as using only training data for frequency-based method or using

all-non test data). We also wanted to try to emphasize interpretability, by minimizing

features to a set that could be understood reasonably well by a researcher and using

simpler models when possible.

In addition to these tasks, we also selected features and train models that did not

contain some of the most dominant features. This served three purposes: Firstly, this

ensured that, during our feature selection method, we do not select only the best few

features while ignoring other helpful features that may be overshadowed during initial

testing. Secondly, certain features may perform too strongly, reducing the interactions

prediction from being proteome-wide down to a small subset of features. Finally, based on

previous experiments, interologs are likely to be a dominant feature, and some researchers

assume interologs represent PPIs even if they have not been validated in humans. As we

will be training models without the best features, it is likely that some models we train will

not use interologs, which allows us to analyze interologs as a group of potentially positive

interactors rather than a feature for those models.

Given the goals we have for selecting our features and producing multiple models,

the complicated question arises of how to go about reducing the entire search space of

features, methods, and imputers, down to a smaller set of features with a final set of

models and hyperparameters while making sure the features are understandable.

Unfortunately, these goals mostly tend to be exclusive, with each goal not necessarily

aligning with the other (see Figure 5.1). Rather than attempt to solve all three problems at

once, we derived a methodology which uses multiple steps; each step dedicated primarily to

solving one of our three non-overlapping goals. We will note this methodology was

exploratory, as each step in our process was somewhat informed by the results of our prior

steps, and thus is not easily reusable for new feature sets.
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At each step in our feature and model selection, we attempted to solve one of

these 3 competing problems:

• Feature Selection Step – Feature selection steps focus primary on selecting the best

features to maximize precision at 3% recall. Many traditional feature selection methods

rely on feature importance from a trained model, however, as our focus is on high

precision predictions on unbalanced datasets, we elected to not utilize this type of

importance when selecting features, as it could overlook highly important, but rare,

features within our feature set, as shown in Equation 81.

Gini(x, y) = 1− (Pos%)2 − (Neg%)2

Given training data 80% Negative and 20% Positive

Assume split ratios of (0.6%, 0%), (19.4%, 80%)

Gini(x) = (1− (0.006
0.006)2) ∗ 0.006 + (1− (0.194

0.994)2 − ( 0.8
0.994)2 ∗ 0.994) = 0.312274

Assume split ratios of (10%, 25%), (10%, 55%)

Gini(x) = (1− ( 0.1
0.35)2 − (0.25

0.35)2) ∗ 0.35 + (1− ( 0.1
0.65)2 − (0.55

0.65)2) ∗ 0.65 = 0.312088

(81)

In the equation, two potential splits are shown, the first splitting a subset of

0.6% of the data that is 100% positive, representing 3% recall, from the rest of the

data, while the other split separates a larger subset, representing 35% of the data, that

is only 28.6% positive. While the first split would be perfect for our goal of high

precision at 3% recall, it generates a higher score, and thus worse split, than the second

split which generates a suboptimal split for our goal.

Since we desire to emphasize precision, and the ratios of our training data do

not match or test sets, we decided against using gini or other standard feature

importance formulas to determine our best features. Similarly, we elected to not use

statistical feature elimination, as something such as high correlation between features

does not necessarily mean they correlate well on the small percentage of data instances
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Figure 5.1: Understandability/Precision Tradeoff. To maximize precision when pre-

dicting interactions, we want to select the best model, best features, and, ideally, a small

set of features that are understandable. As general feature selection methods such as Gini

emphasize accuracy and wide usage over precision, we elected to use wrapper methods for

feature selection. This creates a situation where we need a method to select features, a set

of features to choose a method, and want to minimize the number of features remaining

to ensure understandability, creating exclusive demands, only one of which can be easily

emphasized at a time.

129



our algorithms may rank highly. For these reasons, we relied on wrapper methods,

which train and test models on different subsets of features, with the best feature set

outperforming other feature sets on predicting test data. Common approaches to

feature selection using a wrapper method include the forward and backward selection

algorithms, which try all individual features before selecting the single feature that

maximizes test performance to add or remove. Given the large number of features we

our comparing, we made a couple modifications both to ensure our feature selection

method was fast and somewhat explainable.

First, for adding or removing features at each step, we instead created groups

of features, combining features that would be more understandable when used together

rather than individually, which were then added and removed during feature selection.

For example, features related to the individual ontologies from Gene Ontology were

typically grouped together, creating groups of three features instead of allowing each

ontology’s score to be added and removed independently. Similarly, gene expression

data related to specific tissues or patients was typically combined into a set of features,

as it would be more reasonable to either use or not use data across all tissues/patients

than try to determine some tissue and patients are better at prediction PPIs than

others. A table containing the number of features, and number of groups, per feature

type is shown in Table 5.1

Secondly, to reduce the amount of passes through all features, we used a

simplified selection algorithm that first trains models using each individual feature

group for ranking purposes, then makes two passes trying to add these features, and a

single third pass trying to remove them, in their ranked order. When performing this

algorithm, we keep (or remove) any feature that improves precision at 3% recall during

the pass, rather than testing every feature and selecting only one per pass, reducing the

amount of training and testing performed. We set a minimum of three feature groups

kept by our algorithm, and thus add the highest ranking features after the first pass if

less than three were selected, and stop our backward pass if only three feature groups

remain.
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Table 5.1: Number of Features and Feature Groups per Feature Type

Feature Type Numerical Features Feature Groups

Expression Intersection-Related Features 32 1,488

Expression Correlation Features 16 186

Gene Ontology Frequency Features 192 408

Domain Frequency Features 153 153

Gene Ontology Intersection Features 8 24

Gene Ontology Semantic Similarity Features 74 222

Evolutionary Non-Interolog Features 46 46

Evolutionary Interolog Features 24 96

• Understandability Step – The overall goal of the understandability step is to

minimize the number of different formulas and aggregations used in creating our final

feature set, as, in many cases, the difference in precision between using minor variations

in feature computation is insignificant, and choosing different variants of the same

general formula is more likely to result in overfitting than better predictions. Reduction

of these variations could come within a single feature set, such as reducing multiple

gene ontology frequency features down to using a single feature if precision is not

significantly impacted, or across multiple feature set generations, such as using the

same feature in sets generated using Held Out and Full data, if using the same feature

does not significantly reduce precision. The overall goal for understandability steps is

to minimize the number of similar formulas and aggregation methods used while

maintaining a similar precision to the feature set chosen by the feature selection step.

An example of an understandability step is shown in Figure 5.2.

• Model Selection Step – Model Selection steps uses a grid search to find the best

model, hyperparameters, and imputation types using feature sets created from the

other two steps.
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Figure 5.2: Understandability Step. A. When using Gene Ontology or Domain annota-

tions, there are a variety of ways to generate annotations, apply a formula to the annotations,

and apply an aggregation method to the values output by the formula. B. The results of

a hypothetical feature selection strategy on 2 tests. Both tests select multiple, similar fea-

tures using GO and Domain data. C. The results of a hypothetical understandability step,

reducing formula and aggregation method. Using only IAS and maximum aggregation was

found to perform almost as well as the greedily selected features, performing slightly worse

on Test 1 and slightly better on Test 2. The other options were either removed (gray) or

replaced (bold) in the selected feature sets, and will be removed from the set of all features

before the next feature selection pass.
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5.5 Feature and Model Selection

Using the setup described in Section 5.4, we iteratively reduced our search space

over a series of small PPI prediction experiments. All datasets used were taken from our 26

benchmark datasets 5 Full and 21 Held Out, containing 0.3% of test as known PPIs.

A High Level description of our entire feature selection process is listed below,

with the remaining sections of this chapter providing a more detailed analysis of each step.

At each step, we focus on optimizing hyperparameters, features, or understandability, while

changing random seed or slightly altering hyperparameters between each step to avoid

being stuck in a local maxima.

1. Bias Check

Test: Determine if certain features should be excluded due to formula/annotations

creating confounding factors. Result: No features were removed.

2. Initial Feature Selection

Test: Determine best features for twelve different test sets using two forward and one

backward pass. Result: Twelve individual feature sets were selected.

3. 1st and 2nd Feature Reduction Passes

Test: Determine if certain similar features can be removed without significantly

reducing precision at 3% recall. Result: Several Frequency formulas were removed,

and frequency and semantic similarity based calculations were reduced to using only

maximum aggregation. No features were selected for Held Out data that are computed

differently between using only training and all data, and thus the number of tests being

performed was reduced from twelve to nine.

4. 2nd Feature Selection Pass

Test: Determine best features for nine remaining test sets from reduced features using

two forward and one backward pass. Result: Nine individual feature sets were

selected, with slightly higher precision than feature sets from the original pass on Full

datasets and slightly lower on Held Out datasets.
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5. Initial Model Selection

Test: Find the best algorithms and hyperparameters to use with the nine selected

feature sets from previous pass using a grid search. Result: LGBM models performed

best on Held Out datasets, while Extremely Randomized Trees performed best on Full

datasets.

6. 3rd Feature Selection Pass

Test: Find the best features for the nine test sets using the reduced feature set using

the LGBM and Extra Trees algorithms. Result: Nine new feature sets were selected,

with significantly better precision than previous passes.

7. 3rd, 4th, and 5th Feature Reduction Passes

Test: Determine if certain similar features can be removed without significantly

reducing precision. Result: Total number of remaining features was reduced to a total

of 65, with minimal precision decreases.

8. Final Feature and Model Hyperparameter Selection

Test: Compare using subsets of features and all remaining features for each test set

over a grid search of algorithms and hyperparameters that performed well in previous

passes. Result: The best hyperparameters were found for a variety of machine

learning algorithms per dataset, and using all 65 remaining features outperformed using

the subsets selected during the 3rd feature selection pass.

9. Final Model, Ensemble, Imputation Selection Pass 1 and 2

Test: Using the best hyperparameters and all remaining features, test different

machine learning models against ensemble models while using different imputation

methods. The best performing models from the first pass were tested on larger datasets

in the second pass. Result: Ensembles containing LGBM, Random Forests, and Extra

Trees with Autoencoder imputation work best on Held Out datasets, but only slightly

outperformed simpler methods using zero-imputation with LGBMs, which was chosen

as the final algorithm. Extra Trees models and imputing data with zeroes chosen as the

final algorithm for Full data, which performed only slightly worse than using ensembles

of Extra Trees models.
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5.5.1 Evaluation of Potential Confounding Factors in Select Features

In our first step, we determined whether or not certain aggregations or feature

calculations related primarily to Gene Ontology Interaction Frequency may include

confounding factors that affect predictions significantly. Specifically, we wondered whether

certain proteins had more annotations due to being more well-studied, and by contrast less

studied proteins having more missing annotations, and whether these well-studied proteins

would be more often predicted by certain aggregation methods (such as max aggregation).

Finally, if highly annotated proteins using certain aggregation methods are more frequently

predicted as likely to interact, we tested whether or not this potential experimental bias

could improve the model’s precision at low recall levels. We also tested domain interaction

frequencies for the same experimental biasing, but were less concerned as most proteins

have few domains, and, gene ontology annotations are more likely to be missing/unknown

as they require understanding a protein’s function rather than just its structure.

Additionally, we tested Interaction Association Score (IAS) frequency to ensure

that no leakage between the test and train data occurs when using all interaction data,

which could create an algorithmic bias. We checked this by testing whether computing IAS

with all interactions outperformed holding out test interactions on the Full benchmark

datasets, or entire proteins on the Held Out datasets, as a significant increase could imply

information leaking from the test data into the feature creation process.

For our experimental bias check, we compared the results of three computations.

First, we determined whether ranking protein pairs by the number of Gene Ontology

annotations they possess increases precision at 3% recall significantly beyond what would

be found by random chance. An additional test was performed using each of the three

domain annotation sets. Secondly, using the results from our first tests, we compared the

results of aggregation methods such as summation, maximum, and average, to determine if

any aggregation method ranks a larger number of highly annotated protein pairs than

expected by chance. Finally, we tested if the best performing aggregation method’s top

predictions are highly correlated with predictions based on ranking protein pairs by the
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number of annotations they contain. For all tests using multiple features (such as data

from all three Gene Ontologies) to generate rankings, a single random forest from SciKit

learn with default hyperparameters was used.

The results of our first test showed that GO annotations could obtain between 5%

and 14% precision at 3% recall simply by ranking protein pairs by the number of

annotations, well above the 0.3% precision when ranking randomly (domain annotations

yielded only between 0.5% and 3% precision at 3% recall). For the second test, we

computed which pairs in our test data were highly annotated, defined as the top 0.1% of all

pairs when ranked by the product of the annotation counts. When analyzing the

predictions from each aggregation method, we found that non-decreasing aggregations,

such as sum, product, and maximum, contained 65 to 101 highly annotated pairs ranked in

their top 0.25% of their predictions, 5-10 times more than other annotations and twice as

many expected by random chance. However, in our final test, we found no advantage to

using sum, max, or product aggregation in terms of precision at 3% recall relative to other

methods. Thus, while having more GO annotations does increase the probability of

proteins having more known interactions, no aggregation method necessarily maintained an

advantage over any other using this information, and thus no frequency computations were

removed from our final feature set based on this analysis.

For out second check, comparing IAS using all data to IAS with known

interactions from the test data excluded produced similar results. Overall, IAS using all

data tested slightly better than holding out test interactions and using only training data

for computations on Full datasets, and slightly worse than using only training data or

holding out proteins on our Held Out datasets. As the changes were minimal (less than a

few percentage points) and not consistently better when using IAS with all data, we did

not exclude any IAS features from our final feature set.

Given that neither test found obvious signs of confounding factors, no features

were excluded from further testing.
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5.5.2 Initial Analysis

For our initial machine learning algorithm to use for feature selection, we used a

random forest, due to its popularity in previous literature related to PPI prediction from

annotation-based features as well as its ability to quickly train and test data with a variety

of different features [150, 152, 228, 235]. Specifically, we used SciKit Learn’s random forest

implementation for initial testing and feature selection methods. All missing data was

imputed using zeros. A brief set of tests also showed that using a class-weighted random

forest produced slightly better results when testing our greedy feature selection method,

producing a few percentage points better precision at 3% recall than using a non-class

weighted random forest. Other hyperparameters were left as their default values. Two

datasets, containing 500,000 test pairs each, were used for feature selection on Full

datasets, and four datasets, containing a total of 600,000 test pairs, were used when

selecting features for on Held Out datasets. The average of the precision at 3% recall

across all datasets for each test was the primary metric used for determining if adding a

feature group increased or decreased the overall precision of the model, with groups added

and removed as described in Section 5.4 Item . We also tested whether using our forward

selection algorithm on eight sets of similar feature groups (listed in Table 5.1) individually,

with the best features from each group combined into a final pass, could do as well as using

all features at once. The individual group method would run faster and could give insight

into the most important features using different data types. However, our forward selection

algorithm performed better when selecting from all features at once rather than selecting

from the best features per group, and was thus used throughout our feature selection

passes. The results from selecting features from individual groups versus using all features

at once is shown in Table 5.2.

Table 5.2 shows that using all data at once slightly outperforms running a final

feature selection pass on the best features from subsets based on feature types.

Additionally, analyzing the precision at 3% recall produced by our greedy feature selection
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Table 5.2: Precision at 3% Recall using Selected Features and All Features

Precision Precision Groups

Selected Features All Features Selected

Feature Category
Held

Out
Full

Held

Out
Full

Held

Out
Full

Exp. Int. Features 2.58 14.30 2.36 7.24 6 7

Exp. Corr. Features 1.89 2.64 1.39 2.26 5 9

GO Freq. Features 30.71 48.64 16.43 24.25 11 9

Dom. Freq. Features 29.31 20.58 16.73 19.43 15 3

GO Int. Features 7.57 9.41 7.25 9.30 7 6

GO SS Features 24.43 18.94 15.83 12.33 9 6

Evo Non-Interolog 5.66 4.85 6.80 8.72 5 5

Evo Interolog 27.07 37.97 3.98 5.28 3 3

Best Features from

Each Category
62.27 60.47 34.40 51.13 9 12

All Features

Simultaneously
66.13 65.63 26.05 38.85 11 16
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strategy versus using all features shows an increase in precision when using all features at

once and on seven out of eight subset tests, strongly implying a small number of features

can perform as well, or outperform, using all features in our feature set.

Analyzing the differences in results between using the Full and Held Out datasets,

the results show some features perform better when using the Full datasets. This outcome

is somewhat expected on frequency-based features, as the Full datasets allow for more

interactions to be used during feature computation (for this test, all interactions not in the

test set were used). However, the large difference in performance for expression interaction

related features could be a results of learning individual proteins from their expression

patterns, similar to how sequence-based algorithms learned individual proteins, due to the

large number of features generated and that the intersection features are largely a simple

combination of individual protein feature vectors.

Finally, we note that the most importance features come from Gene Ontology,

domain, and interolog related features. Based on the high performance of Gene Ontology

Frequency and Interolog features, our previously mentioned desire to use our selection

algorithm on feature sets with some of the strongest performing features held out to find

potentially weaker trends, and our prior concerns about some researchers considering

interologs as true positives, as well as concerns about research bias in assigning gene

ontology annotations to proteins, we elected to select Gene Ontology Frequency and

Interologs as the two feature categories we will hold out during some feature selection runs.

Thus, when performing future feature selection runs, we ran tests on all attributes, all

attributes except interologs, and all attributes except interologs and gene ontology

frequency features, to try to find important features for predicting PPIs that may be

overshadowed by stronger trends.

Henceforth, we use two datasets based on different sampling strategies and either

all available data or only train pairs for interaction frequency feature creation, to create

four test sets (Held Out All, Held Out Train, Full All, Full Train). Additionally, we use

three feature subsets during out feature selection process, all features, all non-interolog (No

Int) features, or all non-interolog and non-GO-frequency features (No Int or GO Freq),

generating a final set of twelve different tests for feature and machine learning algorithm
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selection. Overall, our goal is to find a set, or sets, of features and models that perform

well on each of these twelve tests, which should provide a good set of features, and a good

algorithm, for predicting PPIs.

5.5.3 Initial Feature Selection

Using our feature selection method and a class-weighted random forest, we

selected an initial set of features for each of the twelve different tests. For each test, we

performed three feature selection experiments, using different random seeds to provide

variance. Each random seed was used to generate a feature set, which was then evaluated

across all three random seed, with the best precision at 3% recall across the seeds

determining the best feature set for each of the twelve tests. The precision at 3% recall of

our best feature sets on each of the twelve tests is shown in Table 5.3. The table shows the

results using the random seed that selected the features, the average result across all three

seeds, and the precision of using the features on the opposite dataset (Held Out features’

precision on Full data, and Full features’ precision on Held Out data).

In our initial pass, the results from using less features sometimes outperformed

sets which had access to more features. For example, not using interologs or GO frequency

features outperformed feature selection sets that had access to GO frequency features. This

shows a flaw in greedy feature selection algorithms were results can get stuck in local

maxima, and represents an additional reason to utilize slightly different subsets of features

when selecting our final feature sets.

More interestingly, features selected using Full data perform significantly worse

predicting Held Out protein data, commonly dropping 30%-40% precision, whereas the

precision only drops 10%-15% when using Held Out features on Full data. This likely

implies that features selected using the Full dataset may fit strongly to the underlying hubs

and trends within the benchmark data, but will likely perform more weakly when

predicting novel interactions or data from a different data source. This is in contrast to

features selected using held out proteins which perform more evenly across both

benchmark dataset sampling methods.
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Table 5.3: Precision at 3% Recall on the Initial Feature Selection Pass

Feature Subset
Precision on

Fit Data

Precision

Using All 3

Seeds

Precision On

Opposite

Dataset

Held Out All

All Features 66.13 56.06 47.43

No Int 43.99 43.49 49.46

No Int or GO Freq 36.94 35.84 42.30

Held Out Train

All Features 65.36 58.36 53.33

No Int 47.33 44.21 47.93

No Int or GO Freq 61.49 56.09 39.51

Full All

All Features 61.56 60.94 17.48

No Int 55.08 57.54 21.10

No Int or GO Freq 53.08 49.03 26.92

Full Train

All Features 57.04 55.59 23.61

No Int 55.61 52.66 14.29

No Int or GO Freq 41.42 40.58 24.78
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5.5.4 Frequency Feature Reduction

After running our first feature selection pass, an analysis of the feature sets

chosen by each of the twelve tests showed that a variety of formulas and aggregations for

different frequency computations were used. For example, when using the feature subset

with all possible features on the Held Out All test set, GO frequency interaction features

using train and all data, using regular frequency and IAS, and using average, max, and

summation aggregations, where chosen across the across selected feature sets. Similarly,

when using the feature subset without interologs on the Held Out All test set, eight

different feature groups using GO frequency interaction related data, with different splits of

data, formulas, or aggregation types were chosen. Similar results were found in the

selection of domain interaction related formulas and co-annotation related formulas. We

attempted to reduce this variety to decrease the number of features and make the final

feature set more understandable and easier to interpret.

Using the selected feature sets from initial feature selection pass, with three new

random seeds, we tested replacing all GO frequency interaction related features with a

single formula, data split, and aggregation type. Overall, we determined that using the IAS

formula, on all data, with maximum aggregation, as a replacement for all GO and Domain

interaction related formulas, along with using only maximum aggregation on CAS related

features, improved the results on five out of size selected feature sets created using the Held

Out data (by 1%-3% each), with only a small drop on the sixth set (of about 3%).

Subsequently, we replaced all GO and Domain interaction frequency features with

computing IAS using all data, and CAS related features using maximum aggregation, on

our feature sets created using Held Out data. As the IAS formula using all data naturally

filters out information related to proteins during the feature creation process, it does not

vary between using train interactions or all non-held out PPIs. Thus, condensing

interaction frequency features down to using only IAS using all data allowed us to

discontinue creating different feature sets for our Held Out data using only train data or all

non-Held Out protein data for interaction frequency features, eliminating three of our

original twelve test conditions.
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Performing the same analysis on our Full datasets proved to be slightly more

difficult. Overall, using maximum aggregation for CAS, and using our regular frequency

formulas with max aggregation for interaction frequency features, proved to perform

similarly to using a variety of different features, but only improved precision at 3% recall

on two of our six feature sets. This decrease was most prominent on feature sets using Full

Train, which were reduced by 3%-4% precision on average. Using knowledge from our

findings on Held Out selected features, we tried using both the frequency max feature that

worked well on Full data and the IAS all max feature that performed best when using Held

Out data. This combination of features slightly increased the average of precision at 3%

recall across the three Full Train tests, and was subsequently used to replace all interaction

related frequency features when analyzing Full data. CAS features were replaced with

using CAS with maximum aggregation.

Overall, the two analysis above eliminated 319 to 333 feature groups and 517 to

539 features from consideration in future feature selection steps, a reduction of over half of

all feature groups initially created. This also reduced frequency-based features for GO and

domain data down to less than 50 features and less than 30 feature groups, creating a

much more understandable set of remaining features by removing several similar features

with slightly different formulas and aggregations from consideration. We also eliminated

three test conditions, combining Held Out All and Held Out Full into a single Held Out

test set, as features selected using Held Out data only use our IAS all feature for

interaction frequency.

5.5.5 Semantic Similarity Feature Reduction

After analyzing frequency-based features, we next attempted to normalize

features related to semantic similarity using the newly filtered selected feature sets and a

new set of random seeds. Our first analysis attempted to reduce the 12 different formulas

and 6 different aggregation methods for semantic similarity down to a single feature group,

however no single feature group was capable of replacing all selected semantic similarity

features during testing without significantly reducing precision at 3% recall. A second test,
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focusing on reducing the number of aggregation methods found replacing different

aggregation methods with maximum aggregation produced slightly better precision at 3%

recall across the nine remaining feature sets. This allowed us to eliminate 60 semantic

similarity feature groups, and 180 semantic similarity features, from future consideration.

5.5.6 2nd Feature Selection Pass

After removing the 379 to 393 feature groups and 697 to 719 features excluded by

our understandability passes, our feature selection algorithm was used to generate new

selected feature sets from the remaining features under consideration for each of our nine

remaining tests. Each test was performed three times, using different random seeds, with

the best feature sets selected using precision at 3% recall across all three seeds. The results

are shown in Table 5.4 for the original seed used to generate features, averaged across all

three seeds, and using the opposite dataset (features selected using Held Out on Full data,

and features selected using Full data on Held Out data).

Compared to our original results in Table 5.3, these new results do show a

reduction of about 5% precision at 3% recall in two of our Held Out dataset tests, but

score similar or better on most other tests, while selecting from several hundred fewer

features. Some of the drops in those two tests drop could be due to our feature selection

process getting more easily stuck in local maxima when less similar features are present, as

some important features may have been skipped during the greedy selection process.

However, as we obtain multiple selected feature sets through using three feature subsets, as

long as one selected feature set contains each of the strongest features, we can correct this

in future iterations by combining all features from our selected sets together. Some of the

drop in precision could also be due to overfitting when using several similar features, a

theory that is supported by an increase in precision when using features chosen based on

one dataset (either Full or Held Out) predicting on the other dataset.
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Table 5.4: Precision at 3% Recall on the Second Feature Selection Pass

Feature Subset
Precision on

Fit Data

Precision

Using All 3

Seeds

Precision On

Opposite

Dataset

Held Out

All Features 60.57 50.17 58.74

No Int 58.88 51.93 47.81

No Int or GO Freq 52.63 47.08 39.79

Full All

All Features 60.42 60.93 32.72

No Int 64.78 65.48 29.15

No Int or GO Freq 54.10 59.22 33.77

Full Train

All Features 57.97 55.57 25.76

No Int 50.65 51.87 24.50

No Int or GO Freq 56.83 54.04 29.69
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5.5.7 Initial Model and Hyperparameter Selection

Using the selected feature sets from the second feature selection pass, we tested

different machine learning algorithms, including random forests, extremely randomized

trees, XGBoost, LGBM, CatBoost, logistic regression, and neural networks over a variety

of hyperparameters to find the best prediction methods for each feature set. The

hyperparameters analyzed for each algorithm are listed in Table 5.5, with more parameters

being tested on faster computational models.

The best results for each feature subset were averaged together in an effort to find

the best models and hyperparameters for each of our three test sets, Held Out, Full All, or

Full Train data.

Additionally, we tested using the exact selected feature sets chosen in our second

feature selection pass as well as using selected feature sets combined together. For example,

features selected when all features were used were combined with features selected from the

two more smaller feature subsets, if precision was improved through this combining. This

feature set combining process allows features with weaker trends, or important features

missed during certain greedy selection steps, to still be used.

Using individual selected feature sets and combinations of selected feature sets, we

tested six total sets for each of the three test sets (Held Out, Full All, Full Train). The best

results for each model type, scored by precision at 3% recall, are shown in Table 5.6

The results show that neural networks and logistic regression perform poorly on

Held Out and Full Train data, CatBoost had moderately low performance across all three

test sets, and XGBoost performed poorly across all three test sets.

The best performing models were LGBMs, extra trees, and random Forests. Of

these three algorithms, LGBMs performed slightly better on Held Out data, while extra

trees models performed best on both Full All and Full Train test sets. The best results

from random forests performed almost as well as extra trees on some datasets, but did so

using different hyperparameters, and performed less consistently overall, leading to our

selection of the extra trees models for future runs on Full All and Full Train datasets.
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Table 5.5: Hyperparameters Used for Initial Machine Learning Algorithm Grid

Search

Algorithm Hyperparameters Tested

Random Forest
Trees=50,100,200, Depth=10,None, Boostrap=True,False,

ClassWeight=None,Balanced, MaxFeatures=sqrt,log2, Samples=0.75

Extra Trees
Trees=50,100,200, Depth=10,None, Boostrap=True,False,

ClassWeight=None,Balanced, MaxFeatures=sqrt,log2, Samples=0.75

XGBoost
Trees=50,100,200, Depth=5,None,10, lr=0.1,None,

ClassWeight=None,Balanced, Tree=’Hist’

LGBM
Trees=50,100,200, Leaves=11,31,50, lr=0.05,0.1,0.2,

ClassWeight=None,Balanced

CatBoost Trees=100,250,None, ClassWeight=None,Balanced

Neural Network Optimizer=SGD,Adam, ClassWeight=None,Balanced, lr=0.1

Logistic Regression
C=10,1,0.1, Penalty=L2,None, ClassWeight=None,Balanced,

Iterations=1000
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Table 5.6: Best Precision at 3% Recall from Grid Searches Per Algorithm and

Test

ML Algorithm Held Out Full All Full Train

All Features

Random Forest 64.33 71.43 68.65

Extra Trees 64.06 87.72 65.28

XGBoost 53.40 56.07 43.66

LGBM 71.57 78.64 53.34

CatBoost 62.26 63.87 60.22

Neural Network 55.13 80.28 47.45

Logistic Regression 48.45 85.09 52.04

No Interologs

Random Forest 61.19 68.90 62.33

Extra Trees 57.66 85.21 65.27

XGBoost 45.88 55.28 46.69

LGBM 62.56 75.60 53.74

CatBoost 55.80 65.19 60.05

Neural Network 46.01 78.90 47.56

Logistic Regression 38.74 82.40 49.01

No Interologs or GO Frequency

Random Forest 54.65 63.55 60.73

Extra Trees 53.75 80.37 58.80

XGBoost 45.71 47.94 48.67

LGBM 58.29 74.17 48.44

CatBoost 52.20 63.98 59.01

Neural Network 37.28 47.35 44.21

Logistic Regression 37.93 77.48 49.02
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For Held Out data, Light Gradient Boosting with 200 trees, 31 leaves, a learning

rate of 0.05, and class balancing performed the best overall when averaging across all 3

tests. For Full All tests, non-class weighted extra trees with 100 non-bootstrapped trees

and a depth limit of 10 performed the best. While using 200 bootstrapped trees with

unlimited depth performed slightly better for models trained using Full data Train, we

found using the hyperparameters selected by Full Data All, performed better and trained

faster in future feature selection passes, and subsequently used the hyperparameters

selected by the Full All tests for the Full Train tests in future features selection passes.

5.5.8 3rd Feature Selection Pass

Using the best machine learning algorithms and hyperparameters from the initial

model selection pass, we performed a third feature selection pass, using three random seeds

when using the extra trees algorithm, and slightly adjusting the number of leaves when

using the LGBM algorithm, to create three selected feature sets for each of our nine tests.

Additionally, we applied a small regularization weight to the final results, penalizing using

a large number of features for minimal gain. The best results obtained from the feature

selection process are shown in Table 5.7. The table shows the precision at 3% recall for

each test when using the random seed or model hyperparameters used to generate the

features, averaged across all three seeds or hyperparameters, and when used to predict on

the opposite dataset (features selected using Held Out on Full data, and features selected

using Full data on Held Out data).

In our third feature selection pass, using the newly selected machine learning

algorithms and hyperparameters, produced better results than previous feature selection

runs. Additionally, our regularization penalty a few rarely selected eliminated large feature

groups containing expression-related information per-tissue or per-patient, removing 12

feature groups containing 1,548 features, reducing our set of remaining features by more

than half.
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Table 5.7: Precision at 3% Recall on the Third Feature Selection Pass

Feature Subset
Precision on

Fit Data

Precision

Using All 3

Seeds

Precision On

Opposite

Dataset

Held Out

All Features 78.20 75.11 63.40

No Int 66.08 61.22 57.40

No Int or GO Freq 66.70 60.69 51.87

Full All

All Features 90.33 87.27 45.36

No Int 89.55 85.53 48.53

No Int or GO Freq 88.55 83.94 48.05

Full Train

All Features 77.12 71.90 53.14

No Int 73.32 73.22 51.45

No Int or GO Freq 70.22 65.11 51.25
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5.5.9 Final Feature Reduction Passes

In our final feature reduction passes, we focused on reducing and removing

redundant features as much as possible while trying to maintain precision at 3% recall. We

performed three different passes, each attempting to remove or reduce various similar

features or formulas, keeping all changes that resulted in minimal or no drop in precision

across the nine tests in each pass. Each pass was performed using a different set of random

seeds for extra trees models, or different number of leaves for LGBM models. Additionally,

after reducing the number of features remaining in the first two passes, we also compared

using a feature set based on all 65 remaining features against using selected feature sets

from our third feature selection pass.

The tests applied per pass, as well as information regarding which tests were kept

(Accept) or discarded (Reject) are listed below. The precision at 3% recall for different test

sets on seeds (or number of leaves) not used during the feature selection or reduction

passes is shown in Table 5.8

In the results in Table 5.8, precision slightly dropped on some tests, up to 5%

when using feature subsets with all available features, while increasing by 4% or less on

four of nine tests despite removing a large number of features. The primary drop in

precision for feature sets containing interologs occurred in the second pass when replacing

species-specific attributes with more general attributes that calculate the total number of

potential interologs across species. While this did reduce precision by a few percentage

points, we considered it as an acceptable trade to reduce the number of interolog related

features from dozens down to four.

Using the 65 features based on all remaining features from selected feature sets

performed worse than using the selected feature sets from the third feature selection pass.

However, as the features selection passes may have overfit to the underlying data, we

elected to test using all and selected features on different datasets as part of our next pass.
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Pass 1:

• Reduce Intersection Expression data from using thresholds at 10, 20, 80, and 90

percentiles (Accept, use only 80 and 90 thresholds)

• Reduce Aggregation Expression values from using Mean, Sum, and Standard Deviation

(Reject)

• Reduce Expression values down to using only Intersection, Union, IOU, or IOM

variables (Accept, use only IOM)

• Replace aggregations based on GTEx Tissue data with GTEx median data (Reject)

• Reduce Correlation Data with a single dataset (COXPRESSDB, GTEx, Human

Protein Atlas) and single type (Pearson or Spearman) (Reject)

• Reduce GO Intersection data to using a single dataset (All or Level 2 annotations) and

single Intersection type (Intersection, Union, IOU, or IOM) (Accept, use only GO

Intersection data with All Annotations and IOM formula)

• Reduce GO Intersection data to using only a single Intersection type (Intersection,

Union, IOU, or IOM) (ignore due to previous)

• Reduce GO Intersection data to using only a single dataset (All or Level 2 annotations)

(ignore due to previous)

• Reduce GO Interaction Frequency to using only a single dataset (All or Level 2

annotations) (Reject)

• Reduce Domain Data to using only a single Domain dataset (Prosite, InterPro, or

Pfam) (Reject)

• Reduce GO SS data to using only a single feature (One of the 12 SS computations or a

GIC computation) (Reject)

• Reduce Evolutionary (non-Interolog) data to using a single dataset (Blast, Psiblast,

Panther) and typing (All orthologs or LDOs) (Accept, use Psiblast)

• Reduce Evolutionary Interolog data to using a single dataset (Blast, Psiblast, Panther)

and typing (All orthologs or LDOs) (Reject)

• Reduce Interolog features to using either aggregated data or per-species data. (Reject)

• Reduce Interolog datasets to use either All annotations or LDOs. (Reject)

• Replace Prosite data with PFam or InterPro data. (Reject)
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Pass 2:

• Reduce Expression IOU features by removing some aggregations and select a single

dataset (GTEx, Single Cell, or Human Protein Atlas) (Accept, Use only Human

Protein Atlas IOM at 80 and 90 thresholds)

• Reduce GO Frequency data to using individual ontology features (MF, BP, CC) or a

single feature for all ontologies (All) (Accept, use features from each ontology,

rather than a single feature for all data)

• Reduce Semantic Similarity features down to using a subset of the 6 primary formula

types (ignoring descending or regular similarity) (Accept, Use only Resnik and

Schlickner Similarity)

• Replace all Interolog data with a combination of total counts from 3 different datasets

(Psiblast, Blast, Panther) and two data types (All and LDO) Accept, replace

interolog data with All and LDO interologs from Psiblast and Panther)

Pass 3:

• Remove Descendent Semantic Similarity (reject)

• Reduce Sim GIC computations to using only All or L2 annotations, or remove the

feature completely Accept, Remove GIC formula with L2 Annotations)

• Remove IOM Expression Data, Correlation Expression Data, or both (Reject, tried

removing both expression sets when using interologs, but did not keep this result)
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Table 5.8: Precision at 3% Recall Across Final Feature Reduction Passes

Start Org Pass1 Pass2
Pass2

All Atts
Pass 3

Pass 3

All Atts

Held Out

All 71.18 71.18 67.99 62.45 68.94 61.93

No Interolog 56.77 57.98 58.71 56.56 60.16 54.31

No Int or Go Freq 57.95 53.89 59.95 57.74 59.95 57.14

Full All

All 85.66 85.66 80.76 86.31 80.76 82.86

No Interolog 82.77 83.78 82.80 84.17 82.80 86.62

No Int or Go Freq 79.59 80.55 80.27 79.80 78.17 80.32

Full Train

All 68.66 69.44 66.08 71.03 66.08 69.20

No Interolog 68.60 70.97 69.82 66.67 69.82 69.28

No Int or Go Freq 64.61 64.80 62.69 64.18 62.69 62.19
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5.5.10 Final Feature Selection and Model Hyperparameter Selection

We selected two Held Out benchmark datasets not used in previous passes, and a

single Full benchmark dataset not used in previous passes, to perform our final feature and

model hyperparameter selection pass. The hyperparameters tested for each algorithm,

shown in Table 5.9, are largely the same as those used in our previous model selection pass,

with some of the weaker performing hyperparameters removed. We tested the selected

feature sets from the third feature selection pass, and a set of 65 features generated from

all selected feature sets, on a grid search to find the best algorithm, hyperparameters, and

final features for each of our nine tests. The best results per test using 65 features and

selected feature sets are shown in Table 5.10. Table 5.11 shows the result of using the best

hyperparameters per individual test versus the results when using a single set of

hyperparameters for each of our three feature subsets.

Comparing the results of using all 65 features versus the selected features sets in

Table 5.10, the results indicate similar performance, with using all features outperforming

selected features slightly more than half of the time. We elected to use all 65 remaining

features, rather than continue with different selected feature sets per test set moving

forward for simplicity. The 65 features, listed in Table 5.12, are not all used in every test.

For example, tests that do not used interolog features would still filter out all four interolog

features, tests that rely on using train or non-test interaction frequency still use only their

respective frequency features. Additionally, Held Out tests still only use IAS All frequency

features rather than regular interaction frequency computations. The number 65 represents

the total number of unique features used across all tests, while the number ranges in the

features per test column highlight that some features may not be used for all tests, with as

few as 34 features, and a maximum of 56 features used for a given test.

For algorithm hyperparameter selection, we utilized a single set of

hyperparameters per test set (Held Out, Full All, and Full Train), rather than use a

different set of hyperparameters for each of our nine tests, as the average precision only
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Table 5.9: Hyperparameters Used for Final Machine Learning Algorithm Grid

Search

Algorithm Hyperparameters Tested

Random Forest

Trees=100,200, Depth=10,None, Boostrap=True,False,

ClassWeight=None,Balanced, MaxFeatures=sqrt,log2,

Samples=0.75, 1.0

Extra Trees

Trees=100,200, Depth=10,None, Boostrap=True,False,

ClassWeight=None,Balanced, MaxFeatures=sqrt,log2,

Samples=0.75, 1.0

XGBoost
Trees=50,100, Depth=5,None, lr=0.1,None,

ClassWeight=None,Balanced, Tree=’Hist’

LGBM
Trees=50,100,200, Leaves=11,31,50, lr=0.05,0.1,0.2,

ClassWeight=None,Balanced

CatBoost Trees=100,250,None, ClassWeight=None,Balanced

Neural Network Optimizer=SGD,Adam, ClassWeight=None,Balanced, lr=0.01

Logistic Regression C=1,0.1, Penalty=L2, ClassWeight=None, Iterations=1000
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Table 5.10: Best Results Per Algorithm on the Final Feature Set

Held Out Full All Full Train Held Out Full All Full Train

ML Method Full Set of Features Greedy Selected Features

All Features

Random Forest 73.05 81.36 71.88 53.86 77.05 75.71

Extra Trees 68.26 78.33 78.33 60.07 79.66 74.65

XGBoost 60.29 52.72 52.22 52.50 54.84 39.34

LGBM 77.65 82.14 52.87 82.76 77.97 71.43

CatBoost 69.72 72.60 56.86 72.50 73.24 63.64

Neural Network 62.14 68.00 41.09 61.43 52.94 35.34

Logistic Regression 49.55 72.58 44.44 47.50 65.75 51.14

No Interologs

Random Forest 70.71 79.31 75.81 57.35 83.64 76.27

Extra Trees 69.32 80.70 83.33 66.11 78.95 81.36

XGBoost 50.98 55.24 48.98 50.74 57.58 37.98

LGBM 75.00 81.97 50.43 75.00 78.95 67.65

CatBoost 60.50 76.67 56.04 61.67 69.01 58.44

Neural Network 55.89 67.07 37.20 40.77 75.38 47.92

Logistic Regression 52.09 72.58 44.83 51.27 68.18 51.14

No Interologs or GO Frequency

Random Forest 66.53 72.31 74.19 55.88 67.03 76.67

Extra Trees 65.93 79.66 83.33 54.41 75.00 77.05

XGBoost 50.19 55.81 36.43 52.69 53.33 35.54

LGBM 69.29 69.23 43.52 72.27 71.64 44.55

CatBoost 60.53 76.19 51.72 54.65 73.68 54.22

Neural Network 52.27 67.16 32.88 52.94 58.88 31.41

Logistic Regression 45.71 63.64 42.45 41.32 62.11 42.55
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Table 5.11: Precision at 3% Recall Per Algorithm

Precision at 3% Recall Final Hyperparameters

Held

Out
Full All

Full

Train

Held

Out
Full All

Full

Train

ML Method Best Avg Parameters Best Individual Parameters

Random Forest 64.59 75.86 70.33 70.10 77.66 73.96

Extra Trees 64.85 78.20 77.39 67.83 79.57 81.67

XGBoost 51.18 52.94 45.27 53.82 54.59 45.88

LGBM 70.18 74.49 45.69 73.98 77.78 48.94

CatBoost 63.42 73.69 53.61 63.58 75.15 54.88

Neural Network 49.01 69.37 43.91 56.77 67.41 37.05

Logistic Regression 56.77 64.43 35.91 49.12 69.60 43.91
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Table 5.12: Final Selected Pairwise Features

Final List of Features

Feature Group Feature Details

Features

Per Test /

Total

Interologs Panther LDO/All Interologs 0-2

Interologs Psiblast LDO/All Interologs 0-2

GO Interaction Frequency ALL or L2 GO Terms, Freq. (max) 0-6 / 12

GO Interaction Frequency ALL or L2 GO Terms, IAS (max) 0-6

GO CAS Frequency L2 GO Terms (max) 0-3

Domain Interaction Frequency InterPro/Pfam/Prosite, Freq. (max) 0-3 / 6

Domain Interaction Frequency InterPro/Pfam/Prosite, IAS (max) 3

Domain CAS Frequency L2 GO Terms (max) 3

GO Semantic Similarity Resnik/Schlickner (max) 6

GO Semantic Similarity Desc. Resnik/Schlickner (max) 6

GO Intersection All GO Terms (IOM) 3

GO Sim GIC Similarity All GO Terms 3

Psiblast Evolutionary Data Rosetta Total and Unique Species 2

Psiblast Evolutionary Data Conserved Gene Pairs (LDO) 1

Psiblast Evolutionary Data MirrorTree 1

Psiblast Evolutionary Data Phylogenetic Profile (IOU) 1

Gene Expression Correlation COExpressDB RNASeq (Spearman) 1

Gene Expression Correlation Microarray (Spearman) 1

Gene Expression Correlation GTEx Median (Spearman) 1

Gene Expression Intersection Human Protein Atlas (80,90),(IOM) 2
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decrease a few percentage points. Using a single set of hyperparameters for each of the

three test sets, rather than each of the nine tests, will likely produce more stable results

than selecting the best hyperparameters for a single test.

5.5.11 Model, Ensemble, and Imputation Selection Initial Pass

Using the best hyperparameters per machine learning algorithm from the final

model hyperparameter selection pass, we performed an additional model selection pass,

this time including ensembles and different imputation strategies.

We tested four different imputation types:

• Zero Imputation: All missing values are replaced with zeroes, the default strategy

that has been used for feature selection until this pass.

• Average Imputation: All missing values for a given feature are replaced with

averages for the given feature from non-missing values in the training set.

• Class-Weighted Average Imputation: Missing values in the training data are

replaced by the average for each instance’s class, either positive or negative. Missing

values in the test data are replaced by a weighted average of the class averages from the

training data, with the weighting based on the expected class ratio in the test data.

• Autoencoder Imputation: An autoencoder neural network is used to fill in missing

data. All data used by autoencoders is scaled into a 0-1 range, with missing values set

as -2. Missing data is randomly added during the training process to force the model to

learn how to fill in missing values. The unscaled output for all initially missing features

is used to replace missing data.

Additionally, we tested three different types of ensemble methods:

• Sensor Learning Ensemble: Output data from the leaves of a forest is combined

with the initial feature data into a final feature set, which is then used on a final neural

network layer [233]. The same data is used for training the initial forest and final

network layer. We made threes sensor learning ensembles, using LGBM, Random

Forest, or Extra Trees as the initial forest, as each of these did well on previous tests.
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• Regular Ensemble: The regular ensemble method trains 5 different versions of the

same machine learning model, each on 80% of the original training data, averaging

together the final outputs during the test pass for predictions. We made three regular

ensembles, utilizing LGBM, Random Forests, and Extra Trees.

• Multi-Layered Ensemble: Multi-layered ensembles use sets of three models of the

same type, with each model trained on two-thirds and tested on one-third of the

training data. The results of the tested data are used to create novel features, which

are combined with the initial features for training the next layer. During testing, the

average of all three models per set generates the features to add to the initial feature

set. This process is based on the Deep Forest model as well as other multi-layered

models, such as the attention neural network used by Li et al. for PPI prediction from

sequence-based features [93, 234].

We built six multi-layered ensemble models, three containing two layers, and

three containing three layers. All but the last layer of each model contains nine forests,

with a set of three Random Forests, a set of three Extra Trees, and a set of three

LGBMs per layer. The final layer of each ensemble was a single Random Forest, Extra

Trees, or LGBM model.

Using the hyperparameters per algorithm from the previous pass, we trained a

model using each machine learning algorithm with its best hyperparameters, as well as

twelve ensembles using the best hyperparameters for each machine learning algorithm. We

combined each of these models with each of the four different types of imputation methods.

The best results per test are shown in Table 5.13, and the best results averaged across all

feature subsets are shown in Table 5.14

Our results from these experiments suggest that Class-Weighted imputation,

models using logistic regression, XGBoost, and neural networks, and with exception to a

couple of high scoring LGBM sensor learning methods, ensemble sensor learning algorithms

do not perform as well as most other algorithms. The best models mostly use Random

Forests, Extra Trees, or LGBM algorithms either individually or as part of a regular or

multi-layered ensemble. Additionally, three imputation methods, zero, average, and

autoencoder, all performed well.
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Table 5.13: Best Precision for Different Algorithms and Imputations at 3% Recall

Test
Top

Imputation
Top Method

Top Precision

at 3% Recall

Held Out All Zero 2-Layer-LGBM 78.81

Held Out No Int Zero LGBM-Sensor 78.21

Held Out No Int or Go Freq Zero 3-Layer-Extra 73.81

Full All Zero LGBM 82.14

Full No Int Average 2-Layer-Extra 81.81

Full No Int or Go Freq Zero Extra Trees 78.95

Full Train All Average Extra Trees 78.95

Full Train No Int Zero Random Forest 75.81

Full Train No Int or Go Freq Zero Extra Trees 83.33
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Table 5.14: Best Precision at 3% Recall Averaged Across Feature Subsets

Top 5 Methods Averaged Per Dataset

Imputation Method Precision

Held Out

Zero 3-Layer-Extra 70.30

Zero 2-Layer-LGBM 70.26

Zero LGBM 70.18

Zero 3-Layer-LGBM 70.11

Autoencoder LGBM-Ensemble 69.61

Full All

Zero Extra Trees 78.20

Autoencoder 2-Layer-Extra 77.07

Autoencoder Extra Trees 76.92

Autoencoder Extra-Ensemble 76.54

Average Extra-Ensemble 76.14

Full Train

Zero Extra Trees 77.39

Zero Extra-Ensemble 73.26

Autoencoder RF-Ensemble 73.15

Autoencoder Extra-Ensemble 73.02

Average Random Forest 72.63
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We were somewhat surprised that using an autoencoder yield similar results to

zero and average imputation, as autoencoders yield a variety of different values for missing

data. When evaluating the autoencoders by inserting missing data randomly, we found

they obtained moderate correlation (0.1-0.4 on many features) with real data, but mostly

predicted values near the train set average for each feature. While the positive correlation

is good, we note that the tests we performed were a bit simpler than data with real missing

features, as it is more likely for entire feature groups, such as all gene ontology data, to be

missing, rather than a randomly selected subset. Additionally, our autoencoders output

most values near the average for each feature, which explains why they performed similarly

to using average value imputation. Average value and zero imputation were likely similar

as finding known PPIs, which are rare, is more of an outlier prediction, likely requiring

high or unique values, especially to be predicted in the top 3% recall.

Based on the results from our ensemble and imputation tests, we selected three

imputation methods combined with ten machine learning algorithms, including three

simple machine learning algorithms, four multi-layer ensembles, and three regular

ensembles, to use on our final model selection pass.

5.5.12 Final Model Selection

Using the best models and imputations from our previous model selection pass,

we performed a final model selection test over a much larger set of data, consisting of eight

Held Out datasets, and three Full datasets, from our benchmark data. These larger sets

contained over 1,000,000 test pairs to use per test, which should reduce variations when

performing our final test. The final best results per individual dataset, and averaged

together across feature subsets, are shown in Tables 5.15 and 5.16.

From our results, we can determine that all datasets score highest with ensembles,

but only by very small margins. Extra Trees Ensembles scored well on Full All Tests, but

do not significantly outscore using a single extra trees model. Similarly, on Full Train tests,

ensembling only performs slightly over 1% better than using a single extra trees model

when averaging across all feature subsets. Differences in average precision are also found to
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Table 5.15: Best Precision for Final Models 3% Recall

Test
Top

Imputation
Top Method

Top Precision

at 3% Recall

Held Out All Autoencoder LGBM 74.15

Held Out No Int Autoencoder 2-Layer-Extra 64.14

Held Out No Int or Go Freq Zero 3-Layer-Extra 65.82

Full All Autoencoder Extra-Ensemble 85.20

Full No Int Zero Extra Trees 85.59

Full No Int or Go Freq Average Extra-Ensemble 84.78

Full Train All Average Extra-Ensemble 71.04

Full Train No Int Zero Extra-Ensemble 69.66

Full Train No Int or Go Freq Autoencoder Extra-Ensemble 71.56
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Table 5.16: Best Precision on Final Models Averaged Across Feature Subsets

Top 5 Methods Averaged Per Dataset

Imputation Method Precision

Held Out Proteins

Average 3-Layer-Extra 64.65

Zero 3-Layer-Extra 64.08

Autoencoder 2-Layer-Extra 63.92

Zero LGBM 63.44

Autoencoder LGBM 63.11

Held Out Pairs

Autoencoder Extra-Ensemble 84.04

Average Extra-Ensemble 83.62

Zero Extra-Ensemble 83.31

Zero Extra Trees 83.12

Average Extra Trees 80.79

Held Out Pairs (Train)

Average Extra-Ensemble 69.18

Zero Extra-Ensemble 69.16

Autoencoder Extra-Ensemble 68.58

Zero Extra Trees 67.89

Average Extra Trees 67.09
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be negligible when comparing ensembles to single models. Given the small gap between

using ensembles and single models, and the simplicity using a single model provides over an

ensemble, we elected to use a single extra trees model as the final model for all tests using

Full data, with missing values replaced with zeroes.

Analyzing the results on Held Out tests presents a similar pattern, with more

complicated multi-layer models performing only slightly more than 1% better than using

LGBM models with missing values replaced with zeroes. While a single LGBM model with

an autoencoder is preferred by the feature subset using all features including interologs (4%

and 7% better than the second and third best results), both other feature subsets prefer

zero imputation over using an autoencoder for imputation. Using a deep, 3-layer extra

model when holding out interologs and GO frequency performs about 4% better than all

other attempts, and 6% better than using LGBM, implying that deeper models may be

better at extracting weaker trends from our data. However, as both other feature subsets

do as well with LGBMs as any other model type and the overall gap between using a

complicated, 3-layer model with 19 forests and a single LGBM is only 1% precision at 3%

recall, we opt for using a single LGBM model for our proteome-wide experiments using

Held Out data.

The final hyperparameters for our LGBM models have no class weighting, 100

trees, 11 leaves per tree, and a learning rate of 0.1. The extra trees models for Full All tests

use 200 trees and square root max features, while the extra trees used by Full All tests

contain 100 trees with log2 max features. Both extra trees hyperparameter sets use a max

depth of 10, class weighting, and no bootstrapping.

Based on the results from our hyperparameter selection pass, all 3

hyperparameters selected for our LGBM models are important, as changing any

significantly impacted the results. However only max depth of 10 was significant on extra

trees models, with all hyperparameters tested using a max depth of 10 performing similarly

on precision at 3% recall..
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5.6 Conclusions

We reduced our feature set from hundreds of features down to 65 maintaining a

similar or better precision at 3% recall than using more features. These features were used

in multiple models designed to maximize precision on Full and Held Out datasets, with no

individual model using more than 56 of the total features. In designing these models, we

found that forest-based algorithms outperformed neural networks and logistic regression,

with light gradient boosting and extremely randomized trees performing the best for Held

Out and Full datasets respectively.

Additionally, in our initial analyses, we selected Interolog and GO Annotation

Frequency-based features as features that are likely most predictive. However, selected

feature sets generated when using Full data do not decrease significantly when remove

either feature, while selected feature sets generated using Held Out data do not decrease

significantly when removing the GO frequency features. This most likely is due to the

models relying on Domain-Frequency features and Gene Ontology Semantic similarity

features more than initially expected, with either feature possibly being more important

than GO frequency features, which made little impact on precision at 3% recall in our final

tests.

While we are satisfied with the final 65 selected features and their performance

relative to the best precisions we obtained over different steps, we do note that many of the

decisions we made, such as removing certain features during understandability steps, or

averaging precisions across different tests rather than selecting the best model per test,

could have prevented our final models from maximizing precision at low recalls. However,

it is important to note that precision at 3% recall is a measurement of predicting 90 known

PPIs when 1,000,000 test instances with 0.3% positive test data. As many of our passes

used around one million test pairs, with some using as few as 400,000 or 600,000,

fluctuations are expected across different tests. The selection of features, algorithms, and

hyperparameters that were successful on multiple tests should reduce the possibility of
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model performance decreasing on larger datasets, such as proteome-wide data, compared to

using features and hyperparameters that only obtained a strong performance on a single

test.

As part of our process, such as which features to group together and the initial

hyperparameters to use for feature selection searches, were based on intuition and prior

knowledge, it can be argued that some amount of observation bias influenced the final

model, possibly preventing us from discovering the best possible model. However, the large

number of features, imputation methods, and machine learning algorithms create a

problem that is too large to test every possible combination of variables, and will always

require some estimation.

Similarly, our decision to remove some features and select simpler final models,

even at the cost of a few percentages of precision at 3% recall, may be criticized for not

maximizing precision on our evaluation sets. However, during most of our process,

precision at 3% recall increased or remained the same across most steps. Additionally, as

our goal is to predict novel interactions unknown by our current training and benchmark

datasets, and machine learning models rarely perform as well on new datasets as the do on

the datasets they were trained on, a few percentage points during evaluation is likely

insignificant. This is especially true when compared to the benefits of using simpler, more

understandable models, which can be more easily analyzed and have rules extracted, are

easier to explain to researchers who want to know what a model is doing to generate

predictions, and are more easily reproduced by future researchers.

Overall, our model selection, feature selection, and understandability processes

performed well at decreasing the feature space while maximizing the best obtainable

precision at 3% recall, and that the final models produced are a good approximation of the

best possible models obtainable for our nine tests.
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6.0 Evaluation and Analysis of PPI Prediction Models

In Chapter 5, we selected the best performing features, machine learning

algorithms, and hyperparameters to predict protein-protein interactions using our Held

Out data, as well as using all interactions or only training interactions on our Full data

(Full All and Full Train). Using these models, in this chapter we analyze the results of

both types of predictors on our entire Benchmark Dataset and proteome-wide across our

previous defined feature subsets.

6.1 Advantages of Using Full or Held Out Datasets

In our previous chapters, we have detailed how holding out entire proteins

eliminates the ability of most sequence-based methods to make accurate predictions. We

also showed this was largely due to sequence-based predictors learning to identify hub

proteins, rather than learning anything related to interactions.

Unlike features generated from amino acid sequences, most annotation-based

features involve using a pair of proteins to generate a value, such as gene expression

correlation. As the value generated will be different for each pair of proteins, the

probability of machine learning models learning which individual proteins are hubs is much

lower. However there exists a possibility of capturing protein relevant information in

certain features, e.g., the number of domain interactions between two proteins, existence of

proteins in tissues within gene expression data, or gene ontology annotations. This may

allow a machine learning model to learn patterns related to certain hub proteins. Held Out

data may mitigate bias during training, creating a better assessment of the model’s true

capabilities. In this chapter, we evaluate models trained on Held Out and Full data to

determine if using models trained on Held Out data truly make better, less biased

predictions proteome-wide.
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An example of each dataset sampling strategy (Full and Held Out), is shown in

Figure 6.1. In the figure, training data generated using the Full method contains data for

most proteins, providing a large amount of information during training. Additionally, the

model trained using the Full method can perform near proteome-wide testing with a single

model, while excluding only pairs used when training, as shown by the large number of

pairs available to use during testing. The Full sampling method also allows for easy usage

of traditional techniques, such as cross-validation, for evaluating models.

Alternatively, training data generated using the Held Out method only utilizes a

subset of all proteins, four out of six possible groups in the example, with test pairs coming

exclusively from instances containing pairs of proteins from the two out of six protein

groups in the Held Out subset. To perform proteome-wide predictions, many smaller

models must be trained (21 in the example), each focusing on testing a subset of the full

proteome. Additionally, as two sixths of all proteins belong to the held out protein group

in our example, only 44% of all protein pairs are available to use for training. Thus, the

Held Out method requires more known interactions than the Full method, as there must be

enough positive instances in 44% of all pairs to train a model. While generating more small

models requires more work, more positive data instances, and is harder to analyze and

explain than a single model, it does provide a way to natively test all protein pairs, as each

test instance corresponds to exactly one model. Additionally, the primary benefit of the

Held Out methodology is that it prevents potential algorithmic hub biases, as no test

proteins are used during training.

Using the Held Out method also provides a potential advantage when generating

interaction frequency features, as a large number of interactions are excluded from testing

by each model, and thus could be used when generating features. However, our feature

selection process in Chapter 5 found such features to not be prioritized when selecting the

best features using Held Out data, likely due to the IAS formula’s ability to natively use a

large amount percentage of the interaction data in a similar manner.

It must be noted, however, that the Held Out data is based on splitting data into

groups by proteins and does not have a simply defined solution for which small model

should be used for a pair of proteins outside of the original protein dataset. A possible
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Figure 6.1: Data Selection of Different Training Methods. An example training and

testing data selection is shown for the Full method in Figures A and B, and shown for the

Held Out method in Figures C and D. Each grid consists of all proteins listed along the X

and Y axes, with duplicate pairs, or pairs containing a single distinct proteins that are not

eligible for selection colored in black, while pairs selected for usage are colored in blue. Thus,

the set of pairs a given protein is eligible to be selected with is represented by a horizontal

and vertical section extending from each protein’s position on the X and Y axis.
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solution would be to map said proteins to their most sequence similar proteins from the

original dataset, and test on the appropriate model for those proteins. However, as our

primary goal is to predict human protein-protein interactions, and the human proteome is

well mapped, few new protein encoding genes are expected to be discovered or have been

left out of our experiment.

6.2 Review of Hypothesis and Goals

We hypothesize that holding out entire proteins during the training process will

lessen the algorithmic bias that tends to prioritize predicting hubs from the training data,

creating a model that predicts as well as, if not better than, models trained using more

traditional methods. While it is possible the model will perform slightly worse on the

BioGRID data used for sampling our initial training and testing data, the difference is

likely to be minimal, and of the highly scored test instances not known to interact in

BioGRID, the Held Out method will likely produce more predictions validated on by

external datasets such as BioPlex or the String database.

In Chapter 5, we generated three models. An LGBM model using Held Out data

and two extra trees models trained using Full data with differing amounts of interactions

used to generate frequency features. Taking these selected feature sets, algorithms, and

hyperparameters as the best performing parameters for different tests, we created four

models to evaluate our hypothesis:

• LGBM Held Out: Model generated using the same selected features and

hyperparameters as the final Held Out model from the model creation process in

Chapter 5. We hypothesize this model will perform the best

• LGBM Full: Model generated using the same selected features and hyperparameters

as the final Held Out model from the model creation process, but trained and tested

using the Full method.

173



• Extra Trees Train: Model generated using the selected features and hyperparameters

as the final Full Train model from the model creation process. In additional to using a

different machine learning algorithm than the LGBM models, this model uses the

Frequency formula for interaction frequency features in addition to the IAS formula.

• Extra Trees All: Model generated using the selected features and hyperparameters as

the final Full All model from model selection. When analyzing results on the

Benchmark Datasets, the features are generated in the same manner as in Chapter 5.

However, unlike rather than using interaction frequency-based features using all

non-test data, when performing proteome-wide predictions, this model uses all

interactions to generate interaction frequency features. Due to this, we do not use the

model when evaluating BioGRID predictions proteome-wide, but will use it to compare

its novel predictions (highly scored instances that do not interact in BioGRID) with the

other methods to determine if generating a model using all known interaction data can

predict more pairs validated in other PPI datasets. Like Extra Trees Train, this model

also uses two different interaction frequency formulas.

Additionally, we perform evaluations using three feature subsets (using all feature,

excluding interologs, or excluding interologs and GO frequency features), as described in

Chapter 5.

The basis of our hypothesis revolves around the concept that certain machine

learning methods and feature may overfit to certain frequently used proteins, but be less

generalizable during proteome-wide predictions. This reasoning is based on a few key

points in our prior research. First, this effect strongly occurred when analyzing

sequence-based predictors, where models were unable to make good predictions on held out

proteins and relied simply on predicting pairs involving hubs from the training dataset

(Chapter 4). Secondly, based on prior work we have performed, and work in literature,

some of the best prediction models rely on interaction frequency features, such as the

frequency of a pair domains existing in a novel protein pair that are known to interact in

other protein pairs. With certain proteins interacting more frequently, this type of feature
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could allow a model to make predictions due to the annotations of a hub protein frequently

interacting with various other annotations, creating a potential algorithmic bias, if not

adequately tuned to predict on unseen proteins via the Held Out method.

Its also important to note that different PPI datasets have large numbers of

different interactions, and different hubs. Thus, predicting a large number of proteins due

to it being a hub in a single dataset could be over emphasizing a data artifact created by

an experimental bias from researchers testing a single protein more frequently, an

interaction database collecting interactions from certain data sources, which contain

experimental biases, more frequently. Even biological artifacts in a high throughput

experiment, such as phage displays biasing towards certain hydrophobic peptides, could

cause a single protein to more frequently be detected as interacting even if it does not have

more true interactions than many other proteins.

Different interaction experiments are known to find few overlapping PPIs [65, 68].

Thus, creating a model that is able to make novel predictions with more overlap between a

variety of PPI datasets could be an important step to predicting a large number of novel

PPIs as well as provide better knowledge of what types of trends are being found in PPIs

across multiple experiments.

To evaluate our hypothesis, we first perform testing on our Benchmark Dataset,

to evaluate our new models against some of the best methods from Chapter 4, as well as

some additional models based on previous literature. Secondly, we perform genome-wide

predictions, and determine how many novel predictions among the highest scoring

instances not labeled as interacting in BioGRID are known interactions in other data

sources. While this method is not perfect, as many PPIs have not been found, and thus not

listed in any data sources, the number of novel predictions validated by another methods

should provide a good measurement of the quality of the proteome-wide novel predictions

generated by each model. Finally, we analyze different aspects of each models, such as how

many of the interactions and novel predictions they make involve known hub proteins, to

determine how well the models do at making predictions that are truly proteome-wide, and

not heavily biases towards hubs from the source dataset.
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6.3 Benchmark Evaluation of the New PPI Prediction Models

In our first comparison, we tested our LGBM, Extra Trees All, and Extra Trees

Train models on our Benchmark Dataset previously generated in Chapter 4. The train and

test sets with 0.3% of all test data as known PPIs were used. Using each of the three tests,

all three feature subsets, and our Held Out and Full datasets, a total of 18 tests were

performed. As we tested each model on the Held Out and Full datasets, there is no

difference between using LGBM Held Out and LGBM All, thus a single LGBM model is

used. Additionally, unlike during proteome-wide predictions, the Extra Trees all model

excludes test interactions on the Full test, and held out proteins on the Held Out test,

when generating interaction frequency features. The precision at 3% recall, and average

precision, for each test are shown in Table 6.1, and precision recall curves for each test are

shown in Figure 6.2. Precision and recall values in this chapter are computed by combining

and sorting predictions generated from each individual benchmark dataset, unlike the

computations done in Chapter 4 which averaged together the precision at 3% recall on each

individual test.
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Figure 6.2: Comparison of Different Methods on Benchmark Datasets. Precision

Recall Curves for evaluating benchmark datasets using our 3 model types, and 3 feature

subsets. Overall, while Interologs and GO frequency were originally selected as two of them

most important features in the initial phase of analysis, removing them had very little impact

on the results. The Extra Trees model types performed much better when analyzing the Full

dataset they were originally tuned for than the Held Out dataset, while the Extra Trees

Train and LGBM models performed similarly on both types of benchmark data.
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Table 6.1: Comparison of New Models on Benchmark Datasets

Results on Held Out Datasets

All Features No Interolog No Int./GO Freq.

Model Prec @ 3 Avg. P Prec @ 3 Avg. P Prec @ 3 Avg. P

LGBM 63.04 11.68 55.50 10.49 53.62 8.27

Extra Trees All 54.50 8.08 54.53 7.89 53.64 7.33

Extra Trees Train 54.27 7.34 53.97 7.27 50.15 6.86

Results on Full Datasets

All Features No Interolog No Int./GO Freq.

Model Prec @ 3 Avg. P Prec @ 3 Avg. P Prec @ 3 Avg. P

LGBM 68.56 12.13 61.81 11.01 56.53 8.42

Extra Trees All 81.00 14.10 82.80 14.39 78.23 13.64

Extra Trees Train 66.86 8.84 69.00 8.87 65.27 8.62

Unsurprisingly, the model and hyperparameters selected by tuning to Held Out

data (LGBM) outperformed other models on the Held Out dataset. However, all 3 model

types obtained higher precision when testing on the Full datasets.

6.4 Comparing to Previous Literature on Benchmark Datasets

To determine how well our new models perform compared to previous works, we

recreated close approximations of three previous works from literate, using similar features

from our full feature set in place of certain features used in previous works that we did not

compute [150, 152, 235]. We also compared our models to the results they would obtain if
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using a random forest machine learning algorithm, which are popular for predicting PPIs in

literature, as well as four of the best sequence-based and four of the best annotation-based

models from Chapter 4.

We note that, even when the formulas used to compute annotation features are

the same in our work and previous works, the features and models we create for this test

will not be exact replicas of those used in previous literature for multiple reasons:

1. Annotations change over time, meaning some proteins may have more or less

annotations than they previously did.

2. Many previous annotation predictors utilized the Human Protein Reference Database

(HPRD), or a subset of HPRD data, during their evaluations whereas we have

currently focused on evaluating datasets based on BioGRID data [67, 77].

3. Some annotation datasets we use are not exact matches for previous literature. For

example, prior works and our current features were computed using different gene

expression datasets.

4. We replaced features we didn’t compute from previous works with similar, but not

exactly matching, features we computed. For example, some prior works utilized the

GO Slim ontology to reduce the number of GO annotations, whereas in our work, we

utilized terms on the second level of the Gene Ontology (L2).

The results of these 17 models test on the Full and Held Out are shown in Table

6.2 and Figure 6.3.
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Figure 6.3: Comparison of Current and Published Methods on Benchmark

Datasets. Precision Recall Curves for evaluating benchmark datasets using our 3 train-

ing methods (blue, -) versus using our training features with basic random forests (green,

..), using sequence-based (orange, -.) and simple annotation-based (purple, –) methods from

our prior work, and using feature sets derived based on prior literature (red, -).
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Analyzing each of the 5 major grouped sets of models from Figure 6.3:

• The four best sequence-based predictors, plotted as dash-dotted orange lines, perform

decently on the Full datasets, but easily place last on Held Out data. This is due to

sequence-based predictors primarily predicting hub proteins rather than pairs of

proteins that interact, as shown in Chapter 4.

• The four best simple Annotation-Based predictors from Chapter 4, plotted as purple

dashed lines, are created typically using only a few annotations per protein pair, such

as only Semantic Similarity or only Domain interaction Frequency. While the methods

based on interaction frequency perform well at higher recall levels on Full data, they

lack the high precision at 3% recall that our obtained by our newer models.

• Our three reproductions of prior works, plotted as solid red lines, using several

annotation-based features outperform sequence-based predictors on held out data, but

surprisingly perform below most other methods and below what was originally reported

in literature. For example, Qi et al. reported 25%-35% precision with a random forest

at 3% recall, compared to the 8% our reproduction obtained [152]. As we have not

downloaded the original datasets and features used by these methods, we cannot ensure

these re-implementations are as good as the originally published methods, thus their

lower performance could be due to implementation problems. However, it is also

possible that our Benchmark Data from BioGRID is more difficult to predict than the

original datasets used by these papers, which relied heavily on data from HPRD.

• Using a random forest instead the selected machine learning algorithms and

hyperparameters, plotted as dotted green lines, performed moderately well, but worse

than using the selected algorithms and hyperparameters from Chapter 5. Like the

simple annotation-based models, the random forests perform well at higher recall levels

on Full data, but perform worse on Held Out datasets and do not maintain high

precision at low recall levels as well as our final models.

• The three final models using all features and hyperparameters tuned from subsets of

the benchmark data, obtain higher precisions at low recall levels, than all other models

attempted. The exact models chosen for this comparison use the all features subset,

which obtains slightly better performance than excluding interologs or GO Frequency
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Table 6.2: Comparison of New and Previous Models on Benchmark Datasets.

Held Out Dataset Full Dataset

Model Cite Prec @ 3 Avg. P Prec @ 3 Avg. P

Li 2020 Deep Ensemble [93] 4.69 1.48 46.49 12.02

Jia 2019 RF [96] 4.94 1.48 50.75 9.86

Du 2017 Sep [88] 2.88 0.95 37.89 9.68

Ding 2016 RF [99] 3.86 1.11 48.45 9.87

Zhang 2016 Domain Var Full [159] 21.50 2.57 41.80 9.00

Zhang 2016 Sem SVM [137] 15.49 2.91 14.15 2.67

Simple Ensemble Full BMA [35] 14.92 2.32 24.38 8.68

Guo 2007 Sem Logistic [186] 19.76 3.06 14.76 2.86

Thahir 2012 [150] 14.31 2.39 28.43 6.77

Ganapathiraju 2016 [235] 19.45 3.24 17.48 3.12

Qi 2009 [152] 8.36 1.71 13.58 3.17

RF (LGBM) 45.24 8.77 51.70 10.27

RF (Extra Trees) 45.64 6.15 52.31 14.05

RF (Extra Trees Train) 36.42 4.64 38.12 8.35

LGBM 63.04 11.68 68.56 12.13

Extra Trees 54.50 8.08 81.00 14.10

Extra Trees Train 54.27 7.34 66.86 8.84
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features. As these models were fitted to a subset of the overall Benchmark Dataset

during the feature selection process, we also analyzed the different in performance

between the subsets used and unused during feature and model selection. The average

differences in precision at 3% recall were negligible between the sets used and not used

during the selection process, with LGBM models on Held Out data and both Extra

Trees models on Full data performing between 1.7% worse and 3% better on subsets

used in Chapter 5..

Overall, we found that our new models perform as well, if not better than most

previous models, including sequence-based algorithms, simple annotation-based algorithms,

our re-implementations of other PPI prediction algorithms, and models using random

forests instead of our selected algorithms and hyperparameters.

6.5 Proteome-Wide Prediction Comparison Using BioGRID Dataset

Using our four methods, LGBM Held Out, LGBM Full, Extra Trees All, and

Extra Trees train, we performed proteome-wide predictions using models trained with data

from our Benchmark Dataset. The LGBM Held Out model uses Held Out data when

training and testing, while the other three models use Full datasets. Additionally, for

proteome-wide testing, Extra Trees All uses interaction frequency features calculated from

all BioGRID interactions, and thus is not compared to the other three models in for

predictions on BioGRID data. Only a single forest is trained for models using Full data,

while models based on Held Out data require 21 trained forests, one per data split, with

each protein pair tested on only the single forest from which the protein pair was Held Out.

While Held Out models can generate full proteome-wide predictions, as its training and

test data do not overlap, we excluded predictions on the 100,000 pairs used to train the full

models to ensure the Held Out method did not obtain any advantage when comparing

results.
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6.5.1 Comparison of the Number of High Scoring Instances Per Model

Using score thresholds computed on the Benchmark Dataset at 80% and 60%

precision at 3% recall for each model, we computed how many BioGRID interactions and

novel protein pairs were predicted by each model proteome-wide. Additionally, we counted

how many known PPIs predicted are part of the HuRI subset of BioGRID, which is a

collection of high throughput yeast two-hybrid detected interactions that make up almost

half of all BioGRID interactions [22]. The number of predictions per model is shown in

Table 6.3.

Comparing the number of BioGRID interactions predicted at high precision

versus the number of those predictions that overlap with the HuRI subset in Table 6.3, we

found that fewer HuRI interactions were predicted than expected by random chance

(between 25% and 33%). This implies that either high throughput validated interactions

are harder to predict, or our models are overfitting to the non-HuRI interactions.

Based on the results from the tests on Benchmark Data, our models obtain

around 60% precision at 3% recall when analyzing 333 random instances per positive

instance. Extending that proteome-wide, assuming that each model’s 60% precision

threshold is between 2.5% and 3.25% precision on the Benchmark Data tests, the expected

number of novel predictions proteome-wide per model should fall between 10,200 and

13,300, which is close to the number of novel predictions generated by models using all

features, but slightly above the amount predicted by most models from feature subsets

excluding interologs or GO Frequency. The LGBM Held Out model, which obtained only

54% precision when not using interologs or GO frequency features almost predicted the

least pairs at the 60% precision threshold.

Our models trained using Held Out datasets did not have the most novel

predictions at 60% on any of the three feature subsets, and had the most on only one of

three feature subsets at 80% precision. This could imply the Held Out models do not

perform as well as models trained using the Full data. However, at the 60% precision

threshold, 24% to 25% of the LGBM Held Out model’s predictions are positive on all three

feature subsets, 1%-4% higher than the other tested models. Given the large number of
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Table 6.3: Counts of High Precision Predictions.

80% Precision Predictions 60% Precision Predictions

Model BioGRID
BioGRID

(HuRI)
Novel BioGRID

BioGRID

(HuRI)
Novel

All Features

LGBM Held Out 1,257 349 2,124 4,017 1,085 12,709

LGBM Full 590 169 705 5,129 1,453 18,566

Extra Trees Train 363 84 430 4,325 1,172 14,784

No Interologs

LGBM Held Out 193 76 288 2,387 697 7,499

LGBM Full 95 34 112 3,259 1,037 10,909

Extra Trees Train 1,447 580 2,885 4,375 1,183 15,885

No Interologs or Go Frequency

LGBM Held Out 513 122 561 1,515 483 4,579

LGBM Full 152 50 240 2,165 752 7,235

Extra Trees Train 898 254 1,516 2,900 825 8,512
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unknown interactions, it is difficult to compare how well each model is making good novel

predictions versus simply making more novel predictions. For a better comparison, we

determine how many novel predictions made by each model are validated by addition data

sources in the next section.

6.5.2 Evaluation of Top Novel Predictions on Additional Datasets

To evaluate the novel predictions made by each model, we downloaded multiple

additional PPI databases and datasets. Each additional dataset, its number of interactions,

and the number of interactions remaining after removing those that overlap with either

BioGRID interactions or the randomly sampled pairs used during training for Full data

(Random Overlap) are shown in Table 6.4. Interologs for Panther (using LDO orthologs)

and Psiblast (using UniProt data to find orthologs, keeping only one ortholog per protein

per species) were computed using interactions from other species in BioGRID

[67, 116, 119, 226, 236].

These additional datasets can be split into experimental dataset, which, like

BioGRID, only record experimentally confirmed PPIs, and non-experimental or datasets,

such as interologs or pairs of proteins that co-localized but are not confirmed to

biophysically interact, which have a higher likelihood of interacting than random protein

pairs but have not been confirmed as interacting. Splitting the different datasets into

groups, we created five subsets to analyze novel predictions on:

• Database Interactions: Databases of experimentally validated interactions cataloged

from multiple experiments in literature. This group includes BioGRID, HPRD, DIP,

String, and IntAct [67, 77, 237–239].

• High-Throughput Interactions: Sets of interactions determined experimentally

through a single large scale project. This group includes BioPlex, HuRI, and

Proper-Seq [22, 65, 66] .

186



Table 6.4: Additional PPI Dataset Sizes

Size of Different Downloaded Interaction Sets

Dataset Source Cite
Parsed

PPIs

BioGRID

Overlap

Random

Overlap

Remaining

PPIs

BioGRID [67] 123,626 123,626 0 0

BioPlex [22] 114,765 4,163 40 110,562

DIP [237] 5,426 1,778 2 3,646

HIPPIE [80] 798,792 122,290 301 676,201

HPRD [77] 36,852 18,775 6 18,071

HuRI [66] 61,896 60,771 0 1,125

IntAct [238] 11,640 4,513 1 7,126

Proper-Seq [65] 208,484 1,042 92 207,350

String [239] 23,738 2,569 8 21,161

Panther Interolog [236] 27,040 2,662 8 24,370

Psiblast Interolog 1,245,584 8,321 527 1,236,736

String Interolog [239] 5,955 250 2 5,703
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• Experimental Interactions: This group includes all experimentally detected

interactions from the Dataset Interactions and High-Throughput Interactions groups.

We consider interactions this the best group for determining the number of validated

novel predictions each model produces at high precision.

• Interologs: This group includes interologs computed using Panther and Psiblast

orthologs combined with BioGRID interactions and other species, and interologs

suggested by String [67, 116, 236, 239].

• All Data: This group consists of all Experiment Interactions, all interologs, and data

from the database HIPPIE, which includes non-biophysical interacting pairs as PPIs

due to other evidence such as co-localization [80].

The number of unique interactions per group are shown in Table 6.5.

Table 6.5: Additional PPI Dataset Group Sizes

Dataset Group PPIs
BioGRID

Overlap

Random

Sample

Overlap

Remaining

PPIs

Database 169,936 123626 16 46,294

High-Throughput 382,039 64,064 132 317,843

Experimental 480,747 123,626 144 356,977

Interolog 1,267,324 9,331 536 1,257,457

All Data 2,232,931 123,626 910 2,108,395

Given that most of our models produced under 15,000 novel predictions at 60%

precision, we analyzed the top 15,000 novel predictions produced by our LGBM Held Out,

LGBM Full, Extra Trees All, and Extra Trees Train models. The overlap of the top 15,000

novel predictions from each model with the addition PPI Groups is shown in Table 6.6.

Novel predictions from the Interologs and All Data groups are excluded when using
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Table 6.6: Validated Interactions in Top 15,000 Novel Predictions

Model Database
High-

Throughput

Experi-

mental
Interolog All Data

All Features

LGBM Held Out 2,482 1,637 3,284 X X

LGBM Full 2,559 1,713 3,415 X X

Extra Trees All 1,555 958 2,116 X X

Extra Trees Train 1,857 1,158 2,498 X X

No Interologs

LGBM Held Out 2,015 1,444 2,695 4,641 7,501

LGBM Full 2,053 1,415 2,725 4,742 7,673

Extra Trees All 1,439 923 2,011 4,526 7,102

Extra Trees Train 1,415 903 1,927 4,699 7,119

No Interologs or GO Frequency

LGBM Held Out 2,087 1,712 2,943 4,433 7,475

LGBM Full 2,010 1,547 2,745 4,684 7,513

Extra Trees All 1,545 1,038 2,148 4,598 7,113

Extra Trees Train 1,277 836 1,746 4,927 7,034
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Table 6.7: Validated Interactions in Top 15,000 Novel Predictions (No Int or GO

Freq)

Data Source
Pairs

Available

LGBM

Held Out

LGBM

Full

Extra

Trees All

Extra

Trees

Train

Experimental

BioPlex 110,562 1,553 1,395 810 685

DIP 3,646 279 262 189 140

HPRD 18,071 939 961 907 733

HuRI 1,125 2 3 7 7

IntAct 7,126 219 213 216 160

Proper-Seq 207,350 220 213 253 175

String 21,161 1,154 1,059 553 501

Interolog

Panther Interolog 24.370 522 478 441 316

Psiblast Interolog 1,236,736 4,122 4,422 4,399 4,785

String Interolog 5,703 233 192 130 74

Other

HIPPIE 676,201 4,406 4,177 3,465 2,980
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interologs as a feature. A more detailed view of models from our best feature subset not

using interologs, models not using interologs or GO frequency features, showing the overlap

of novel predicted pairs with each additional dataset, is shown in Table 6.7.

The results in Table 6.6 show that the LGBM models using features that perform

well on the Held Out Benchmark Dataset predict 25%-35% more novel protein pairs with

validations in other data sources than extra trees models tuned to the Full Benchmark

Data. This occurs despite of the fact that the Extra Trees Train model predicted several

more novel protein pairs at 60% precision than either LGBM model did in five out of six

comparisons, including predicting 85%-115% more novel protein pairs at 60% precision

than the LGBM Held Out model on feature subsets with no interologs and no interologs or

GO frequency features. This strongly implies the novel predictions from the two LGBM

models are better than the novel predictions from the extra trees models despite the lower

precision on the benchmark datasets, possibly due to the extra trees models overfitting to

the BioGRID data through certain features.

Analyzing the results from Table 6.7, the LGBM models predict more interactions

from other databases than the extra trees models on most individual experimental

datasets. A large amount of the novel pairs with validations overlap with the

high-throughput BioPlex experiment and the HPRD and String interaction databases. The

high overlap with BioPlex relative to the extra trees models shows that features and

algorithms tuned using Held Out data can make good predictions on high throughput

datasets, which are less likely to have an experimental biases in the types of proteins and

protein pairs tested. Relative to the number of available interactions, our models tend to

be better at making predictions that overlap with other databases than high-throughput

datasets. This is especially true for Proper-Seq, which overlaps much less with the novel

predictions than other models, possibly due to the experiment finding proteins that are in

close proximity, but not guaranteed to interact. It could also be due to the novelty of the

method, meaning no data exists in the training set produced by a similar method, possibly

making subsequent predictions harder.

191



While it is clear that both LGBM models outperform both Extra Trees models on

experimental data from additional datasets, comparing which LGBM model is better is

much less clear. Both models predicted more experimental interactions within their novel

prediction sets when not using Interologs and GO Frequency than when not using

Interologs. This could imply that GO Frequency is not a helpful feature for predicting

interactions, despite the 2% - 5% improvement in predicting BioGRID interactions when

using the feature. Analyzing the results of the other two feature subsets, training using the

Full methods has more novel predictions validated on experimental data when using

interologs while the Held Out method has more when not using Interologs or GO

Frequency. While we prefer predictors that do not use interologs as features, based on some

researchers using them as interactions rather than features, the results of this test are

inconclusive as to whether a Held Out model is needed for final testing, or a Full model

using features and hyperparameters tuned to Held Out data is sufficient.

Among the extra trees model, it does appear that using all interactions to

compute frequency-based features (Extra Trees All) provide an advantage when predicting

novel protein pairs validated in other datasets when not using interologs as features, but

not when using interologs as features. This could be from the Extra Trees All model using

more interactions, and thus larger frequency values with possibly more feature importance,

than the Extra Trees Train model, with the Extra Trees Train model subsequently

benefitting when a stronger feature, such as Interologs is added.

Regardless, both extra trees models perform worse than the LGBM models

despite better performance on the Benchmark Datasets when analyzing the predicted

overlap with experimental interactions from other databases. This is likely a reflection of

regular frequency-based features (non-IAS) overfitting to the underlying data. There is also

the possibly of more overfitting from the extra trees algorithm compared to the LGBM

algorithm, as the extra trees models produce full trees up to depth 10, computing up to

1,024 leaves per tree. By contrast, the LGBM algorithm produces only 11 leaves per tree,

reducing the chances of overfitting and possibly producing much more generalizable results.
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6.5.3 Effects of Different Training Data on Different Prediction Methods

While our LGBM models based on features and algorithms performing best on

Held Out data outperformed using features and models tuned to our Full Benchmark data,

we wanted to analyze whether this result was strongly influenced by the underlying

datasets used to generate training data. To do this, we created new Held Out protein

groups and training sets using HPRD and BioPlex interactions as positive instances, and

performed proteome-wide analyses using each of our twelve methods [22, 77]. The features

and hyperparameters used are the same features and hyperparameters selected in Chapter

5, selected by analyzing the Benchmark Dataset created from BioGRID data. However,

new protein groups were created for each data source, and new train sets were made to be

half the size of the Benchmark Data train sets (50,000 pairs), due to the smaller number of

known interactions in the HPRD data.

The overlap with additional data sources of the top 15,000 novel predictions when

training on either HPRD or BioPlex data are shown in Tables 6.8 and 6.9. We note that,

due to different numbers of PPIs being removed from the validation sets when using

different underlying data sources to generate training data, comparing the raw number of

experimentally validated novel predictions between the methods is not a valid comparison

(i.e. less high-throughput, but more database interactions will exist in our validation sets

when using BioPlex for training, as BioPlex interactions will be removed, and BioGRID

interactions will be used). However, other, non-experimental data sources, more specifically

interologs, are less likely to be affected by changes in the underlying data source, due to

their large quantity and that no dataset we train on uses interologs as positive instances,

and thus should be more comparable.

When performing proteome-wide predictions using HPRD data for training, in

Table 6.8, the results are highly similar to those produced by our original test, with both

LGBM models outperforming both extra trees models. Interestingly, the performance of

models using no interologs outperformed those using no interologs or GO frequency

features, implying that when training using HPRD data, GO frequency features can be

beneficial. The number of predicted interologs drops relative to predictions from the
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Table 6.8: Validated Interactions in Top 15,000 Novel Predictions using HPRD

Data

Model Database
High-

Throughput

Experi-

mental
Interolog All Data

All Features

LGBM Held Out 2,789 2,037 3,627 X X

LGBM Full 2,875 2,109 3,732 X X

Extra Trees All 2,172 1,410 2,790 X X

Extra Trees Train 2,203 1,700 2,969 X X

No Interologs

LGBM Held Out 2,161 1,758 2,940 3,487 6,702

LGBM Full 2,404 2,010 3,273 3,520 7,061

Extra Trees All 2,149 1,377 2,756 3,285 6,705

Extra Trees Train 2,124 1,656 2,902 3,323 6,870

No Interologs or GO Frequency

LGBM Held Out 2,127 1,921 2,994 3,505 6,613

LGBM Full 2,091 1,924 2,958 3,462 6,615

Extra Trees All 2,081 1,456 2,735 3,410 6,667

Extra Trees Train 1,770 1,318 2,410 3,551 6,465
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Table 6.9: Validated Interactions in Top 15,000 Novel Predictions using Bioplex

Data

Model Database
High-

Throughput

Experi-

mental
Interolog All Data

All Features

LGBM Held Out 5,321 1,113 5,713 X X

LGBM Full 4,865 758 5,254 X X

Extra Trees All 3,273 972 3,762 X X

Extra Trees Train 4,999 798 5,332 X X

No Interologs

LGBM Held Out 5,226 1,157 5,657 2,998 9,383

LGBM Full 4,593 666 4,935 2,599 8,487

Extra Trees All 3,184 972 3,679 2,811 7,365

Extra Trees Train 5,259 1,169 5,742 3,838 9,794

No Interologs or GO Frequency

LGBM Held Out 4,247 1,079 4,632 3,332 8,647

LGBM Full 3,911 973 4,284 3,298 8,341

Extra Trees All 2,844 940 3,289 2,725 6,762

Extra Trees Train 4,271 1,067 4,724 3,695 8,562
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original BioGRID data, likely due to most of our interolog data being based on BioGRID

interactions (from other species), suggesting that training on BioGRID data did tune the

model to better predict other types of interactions cataloged by BioGRID.

When training with BioPlex data, we find that the LGBM Held Out model and

Extra Trees Train model outperform the other two models. The high performance of the

Extra Trees Train model when using BioPlex data for training is particularly interesting, as

that model had performed significantly worse than the LGBM models on the first two

tests. Additionally, GO frequency features were found to be useful, and interolog

predictions dropped, similar to the results from training on HPRD data.

The better performance of the Extra Trees Train model when trained with

BioPlex data, relative to the other models, could imply that regular frequency-based

features are less prone to overfitting on data created from a high-throughput dataset.

However, much stronger performance of the LGBM Held Out model over the LGBM Full

model still imply that models can still benefit from using the Held Out method on BioPlex

data.

Overall, the LGBM Held Out model is one of the best two models, across all three

feature subsets, across three different data sources used for positive training instances. The

LGBM Full model struggles when trained on high-throughput, BioPlex data, while the

extra trees methods using traditional frequency computations tend to overfit when using a

curated database for training, such as HPRD or BioGRID. This shows that using a model

trained by holding out proteins tends to perform highly, with more stability, regardless of

the underlying dataset used for training.

6.6 Analysis of Hubs Predicted by Annotation Models

Using our models trained with BioGRID data, we analyzed whether any method

was more biased towards predicting hub proteins from the underlying dataset. Setting

thresholds of 150 known interactions as a hub for the BioGRID data produces 151 hub
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Table 6.10: Predicted Hub Pairs per Model

Top 5,000 Top 15,000 Top 30,000

Model
Known

PPIs

Novel

Pairs

Known

PPIs

Novel

Pairs

Known

PPIs

Novel

Pairs

All Features

LGBM Held Out 300 320 1,347 901 3,369 1,510

LGBM Full 291 348 1,380 919 3,297 1,493

Extra Trees All 137 1,187 1,075 3,135 3,247 5,105

Extra Trees Train 550 431 2,098 1,060 4,608 1,672

No Interologs

LGBM Held Out 361 292 1,525 818 3,661 1,406

LGBM Full 363 280 1,418 816 3,352 1,371

Extra Trees All 140 1,243 969 3,154 3,109 5,161

Extra Trees Train 523 447 2,047 1,067 4,678 1,717

No Interologs or GO Frequency

LGBM Held Out 331 230 1,242 612 2,745 1,049

LGBM Full 289 201 1,284 603 2,805 1,023

Extra Trees All 122 1,096 702 3,043 2,370 5,106

Extra Trees Train 458 449 1,758 991 4,148 1,549
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proteins. The total number of known PPIs from BioGRID and novel protein pairs

containing hub proteins from each model within the top 5,000, 15,000, and 30,000

predictions is shown in Table 6.10

Among the LGBM Held Out, LGBM Full, and Extra Trees Train models, we find

that 45%-60% of hub pairs in the top 5,000 predictions are known PPIs, improving to

60%-68% in the top 15,000 predictions and 68%-74% in the top 30,000 predictions. In most

cases, the Extra Trees Train model predicts between 40% and 60% more hub pairs than

both LGBM models, which suggests that the extra trees models fitted based on the

Benchmark Datasets Full data are more dependent on underlying hubs. Likewise, when

using all interaction data to compute frequency-based features in the Extra Trees All

model, the predictions become heavily dependent on predicting hubs, usually with less

than 50% of those predictions being known PPIs. The high number of novel predicted pairs

based on known hubs could explain why this model obtains more novel predictions

validated by other data sources than the Extra Trees train model when using database

interactions for training, as many databases may have the similar hubs due to experimental

biases, and why it performed worse when training on BioPlex data, which likely does not

contain similar hubs to those found in curated databases.

6.7 Analysis of our Final Model

For our final analyses, we analyzed our best model’s feature importance, and

overlap of the model’s novel predictions with disease interactomes. Due to our preference

to not use interologs as features, we elected to choose the best model from a feature subset

not containing interologs. Of the models trained without interologs, the LGBM Held Out

model performs the best on the Held Out Benchmark Datasets, and had the most novel

predictions overlapping with experimentally validation interactions from other data

sources. Additionally, the LGBM Held Out models were the most consistent when using
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different data sources for training, suggesting the models performs well under different

circumstances, and is less likely to be biased towards the underlying data source used for

training.

6.7.1 Analysis of Feature Importance of Our Final Model

We computed the feature importance of our LGBM Held Out model as the

average of the feature importances provided by LGBM for each of the 21 forests used

making up the model, and compared the model’s the top 10 important features to the top

10 important features from the LGBM Full and Extra Trees Train models in Table 6.11.

All three models prioritize InterPro domains for their top feature, however the

LGBM models use IAS interaction frequency for their most important feature, while the

Extra Trees Train model use the regular frequency formula. Additionally, the Extra Trees

Train models relies heavily on this single domain feature, which generates 42% of the total

feature importance for the model. Most other important features from the Extra Trees

Train model use either more domain information or semantic similarity. The heavily

reliance on domain annotation pairs within the training data could explain why the Extra

Trees Train model appears to overfit to BioGRID hubs while performing more poorly when

analyzing the overlap of novel predictions with additional experimental datasets, as the

annotation pairs found during training may cause hubs to be prioritized during predictions.

Both LGBM models are much more balanced, only giving 10% importance to IAS InterPro

domains. A variety of other prioritized features obtain over 3% precision on the LGBM

models, including expression data, the overlap of GO annotations, semantic similarity, and

SIM GIC features.

6.7.2 Disease Genome Predictions of Our Final Model

To analyze our predictions relative to known disease-gene interactomes, candidate

disease genes were downloaded for Schizophrenia (Schizo), Malignant pleural mesothelioma

(MPM), and Hypoplastic Left Heart Syndrome (HLHS) [235, 240, 241]. Thresholds based

on the score generated at 60% precision on the Held Out Benchmark Dataset by LGBM
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Table 6.11: Top 10 Features Per Model

Feature
Impor-

tance

Feature Importance on LGBM Held Out Model

InterPro Domain IAS Max 0.103

COExpressDB RNASeq Spearman 0.063

GO All Molecular Function Intersection Over Minimum 0.057

GO SS Descendant Molucular Function Schlickner Max 0.054

GO SS Cellular Component Schlickner Max 0.043

GO SS Descendant Cellular Component Resnik Max 0.040

Pfam Domain IAS Max 0.039

GO SS Molecular Function Resnik Max 0.038

GO SIM GIC All Molecular Function 0.038

GO SS Descendant Molecular Function Resnik Max 0.035

Feature Importance on LGBM Full Model

InterPro Domain IAS Max 0.091

COExpressDB RNASeq Spearman 0.066

GO SS Molecular Function Schlickner Max 0.059

GO SS Cellular Component Schlickner Max 0.057

Pfam Domain IAS Max 0.048

GO All Molecular Function Intersection Over Minimum 0.046

GO SS Descendant Cellular Component Resnik Max 0.046

GO SIM GIC All Molecular Function 0.038

GO All Cellular Component Intersection Over Minimum 0.035

Human Protein Atlas IOM at Threshold 80 0.035
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Table 6.11 (continued)

Feature Importance on Extra trees Train

InterPro Domain Train Interaction Frequency 0.42

GO SS Descendant Molecular Function Schlickner Max 0.09

Pfam Domain Train Interaction Frequency 0.08

GO SS Molecular Function Schlickner Max 0.07

GO SS Descendant Biological Process Schlickner Max 0.05

GO SS Cellular Component Schlickner Max 0.04

GO SS Descendant Cellular Component Schlickner Max 0.04

GO SS Biological Process Schlickner Max 0.03

GO SS Descendant Biological Process Resnik Max 0.03

GO SS Descendant Molecular Function Resnik Max 0.02

Held Out model was used to produce a proteome-wide set of likely interacting pairs. At

that threshold, the LGBM Held Out model predicts 6,094 pairs, containing 1,515 known

interactions from BioGRID, and 1,328 interactions validated by other experimental data

sources. Within these protein pairs, we found all novel protein pairs that interaction with

known disease candidate genes (novel interactions), and combined them with interactions

from BioGRID that involved one or more candidate gene (known interactions). The

overlap of the 4,579 predicted pairs with candidate genes from Schizophrenia, MPM, and

HLHS, are shown in Table 6.12. Figure 6.4 shows the number of interactions, known and

predicted, per candidate gene with less than 100 known interactions.
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Table 6.12: Predicted and Validated Interactions Involving Candidate Disease

Genes

Data Source Schizo MPM HLHS

Known Interactions

BioGRID 2,109 1,874 1,290

Predicted Interactions

Total Predictions 60 112 111

BioPlex 6 2 3

DIP 1 6 1

HPRD 5 12 13

Intact 0 10 0

String 3 3 2

Total Validated 11 25 18
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Figure 6.4: Interactions per Candidate Genes. The number of interactions for different

candidate genes from known interactions in BioGRID, novel predictions from LGBM Held

Out that are validated by other data sources, and novel predictions from LGBM Held Out

that are not validated by other data sources, are shown for Schizophrenia (A), Malignant

Pleural Mesothelioma (B) and Hypoplastic Left Heart Syndrome (C).
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Using our LGBM Held Out model, we found 60 to 115 potential interactions that

overlap with three different disease interactomes. These predictions should obtain over 60%

precision if validated, with 19% already having some form of experimental validation. In

total, these novel protein pairs could extend the size of these disease interactomes by up to

3% to 8%, enhancing our understanding of these diseases and providing new interaction

targets that could be used when creating novel treatment methods.

6.8 Conclusions from Annotation-Based Interaction Prediction

We hypothesized that excluding entire proteins, rather than randomly sampled

protein pairs, during the training process would reduce underlying biases that could make a

train model prioritize predicting hubs, as the model would not have information about

tested hubs during training, and thus not rank them as highly. We also hypothesized that

reducing these underlying biases would produce more generalizable models and predictions

that would better overlap with interactions from other experimental data sources, including

high-throughput experiments. These hypotheses were based on our analysis of

sequence-based predictors performing significantly worse when holding out entire proteins 4

due to heavily predicting hubs within the training data, our belief that the reasons for the

smaller drop in precision by some annotation-based methods was for a similar reason, and

our understanding that various experimental biases influences the known PPIs in different

data sources, producing different hubs. While acknowledging that reducing our model’s

underlying ability to emphasize hubs could slightly reduce precision when evaluating within

the same data source used for training, we hypothesized that more of our model’s novel

predictions would exist in other data sources as evidence of the model making better

predictions despite reductions in precision on the Benchmark Dataset.

In our experiment, we found that using features, algorithms, and hyperparameters

tuned to predicting Held Out Benchmark Data predicted at a slightly worse precision than

our models tuned to the Full Benchmark Dataset, and those tuned to the Full Benchmark

Dataset made more novel predictions at high precision based on scoring thresholds from
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testing on the Benchmark Data. However, while generating more predictions at a high

precision threshold, we found that the models tuned to Held Out data predicted more

novel interactions validated in other data sources within top predicted pairs, and generated

less predictions involving hub proteins, than models tuned to Full datasets. This lead us to

conclude that tuning and training on the Full dataset likely allows models to overfit to the

underlying data source, making a more algorithmically hub-biased, less generalizable

predictor.

The reasons for the overfit on models using the Full Data is likely due to two

primary factors. The first being that when maximizing performance of the Full Dataset,

our feature selection process selected features using the regular frequency formula as some

of its best features. However, even when only using interactions in the training data to

count the frequency of annotations interacting, it is still likely this feature scores

annotations related to hubs, which have more known interactions, higher than average,

biasing the model towards predicting hub proteins. Secondly, when tuning to the Full

Benchmark Dataset, an extra trees algorithm was chosen, which, at a depth of 10, can

produce 1,024 rules per tree. While the randomness produced by splits in the extra trees

model create a large amount of variety among features chosen at each split, it is possible

that, given the large number of rules and independence between trees, similar features, and

thus similar rules and similar protein pairs, were emphasized by each tree. This is further

suggested by InterPro Domain Frequency having 46% of the Extra Trees Train model’s

feature importance on the feature subset excluding interologs and GO frequency features.

By contrast, when tuning to the Held Out dataset, regular frequency

computations were not selected as a good feature, being fully replaced by Interaction

Association Score (IAS) features, which naturally exclude the proteins under consideration

when computing the feature, eliminating potential algorithmic hub bias. Additionally, an

LGBM algorithm was chosen when tuning to the Held Out Benchmark Dataset, containing

only 11 leaves, and thus 11 rules per tree. The rules of each tree were also influenced by

the results of each previous tree’s predictions. The smaller number of rules likely generated

a more generalizable model, while the influence of each tree on subsequent trees likely
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prevents a single type of feature from being over utilized. The result of this is more

validated novel predictions and a smaller number of predictions involving known hub

proteins.

We do note that, after selecting features and a machine learning algorithm tuned

to the Held Out Benchmark dataset, the difference in results of building multiple models

using Held Out data, versus a single model using Full data, was minimal. This likely

implies that holding out proteins allows for the elimination of various algorithmic biases,

but, after those biases are eliminated, a single final model on Full data can be used. The

difficulty is figuring out when all potential biasing factors are removed so that a model

trained on Full data can safely be used. On our primary test on BioGRID data, after

selecting features and a machine learning algorithm using Held Out data, training a single

model on Full Data using the same algorithm and features performed about as well as our

Held Out model. This could imply that the biasing problems for this test were in the

feature and model selection portion of the experiment, and using Held Out models may no

longer be needed after removing potential biasing sources. However, when training and

testing on BioPlex data, our LGBM Held Out models predicted significantly novel protein

pairs validated by other data sources than our LGBM Full models, implying that some

potential biasing factors could still exist even after feature and model selection. This

further emphasizes the importance of training, testing, and validating on models using

Held Out data.
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7.0 Conclusions and Future Work

Overall, the primary research throughout this dissertation involved examining the

machine learning models for PPI predictions, evaluating their performance on realistic data,

locating potential biasing factors and problems with those models, and analyzing what

methods can be utilized to improve PPI prediction. Our primary findings were that many

published methods, especially those using features derived from amino acid sequences, have

strong algorithmic biases toward predicting pairs that contain known hub proteins, and

that this type of bias can be minimized by developing prediction models on appropriately

designed training and test datasets. We showed these models to accurately predict PPIs

proteome-wide, through evaluation on data sources unrelated to those used for training.

7.1 Conclusions

We performed three primary experiments: (i) an analysis of the state-of-the-art of

PPI prediction, which demonstrated that most methods did not perform well-enough for

adoption to real-world application, (ii) development of a model creation process where we

determined what types of annotation-based features and which machine learning

algorithms were best for predicting PPIs, and (iii) an analysis of our best models on

proteome-wide PPI prediction. Each of these experiments had various findings related to

validating and improving PPI predictions.

7.1.1 PPI Benchmarking Conclusions

In our initial search for state-of-the-art algorithms, we analyzed various

sequence-based predictors, hypothesizing that many of these models predicted interactions

simply by selecting pairs of proteins containing proteins with many known interactions in

the training data. We showed that all sequence-based models we tested on our benchmark
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datasets, so also some simple annotation-based models, performed poorly when faced with

predicting protein pairs containing proteins that were not in the training data. This aspect

was highlighted by showing that even meaningless ’illogical’ features (e.g., random

numbers) modeled with simple classification algorithms performed as well as the

aforementioned PPI prediction methods.

In published literature, sequence-based features seemingly performed well for

three primary reasons. First, generating a large number of features for each protein

generates a unique set of values that allow each protein to be easily identified by a machine

learning model. Secondly, protein pairs were almost always provided to the machine

learning model in a way that could easily be decoded back into the original proteins, such

as by concatenating each protein pair’s features together. Thirdly, the datasets used for

testing various PPI prediction model had numerous hub proteins in the positive instances,

while several proteins were exclusively in positive or negative instances. These three factors

allowed the models to easily identify proteins that are frequently in positive or negative

instances and generate accurate results in cross-validation experiments. For these reasons,

these models based on individual proteins do not produce precise predictions

proteome-wide, where every protein is tested against all other proteins.

Overall, all of the sequence-based methods we tested (36 methods) on the

Benchmark Dataset performed poorly, which precludes their real-world application.

Additionally, we showed that models using a few annotation-based features, such

as GO semantic similarity or domain interaction frequency, performed similarly on unseen

proteins as on proteins included in the training data, suggesting that their predictions are

not exclusively based on the number of known interactions of a given protein.

7.1.2 Model Creation Conclusions

We created models using annotation-based features that maximized precision at

3% recall on our Benchmark Datasets. Particularly, given our findings during our

benchmarking experiment, we excluded sequence-based features, as well as
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annotation-based features that relied on knowing information about the number of known

PPIs of a protein, to avoid the algorithmic bias towards hubs. We evaluated a variety of

features for PPI prediction.

We found a few general rules that helped maximize precision at 3% recall for

different models:

• Adding several gene expression features based on different datasets does not improve

results over using one or two large gene expression sets to produce a handful of features.

• Using various aggregation methods for frequency-based features and semantic similarity

features is not useful, and maximum aggregation tends to work best for predicting

interactions.

• Using the IAS formula for frequency-based features, which natively excludes the

proteins being used from influencing the final feature value, performs the best on Held

Out datasets, with all other frequency-based formula not used for our best model.

When training on full data, computing the percentage of protein pairs that contain a

given annotation pair that are interacting is a preferred feature, but, in later

experiments, was shown to possibly bias models towards the hubs from the underlying

data source.

• Among features that utilize the intersection of annotations, intersection over minimum

was slightly preferred to using intersection over union or intersection for computing the

feature.

• The strongest performing features tended to be Interologs, Domain Interaction

Frequency, Semantic Similarity, Gene Expression Spearman Correlation, and GO

Interaction Frequency, although the GO Interaction Frequency was shown to sometimes

decrease generalizability in later tests.

These general rules that we formulated based on our evaluation experiments

provided the primary knowledge that allowed us to reduce a larger set of thousands of

potential features down to a final set containing 65 features.
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We tested a variety of different machine learning algorithms, and concluded that

Light Gradient Boosting Machines (LGBM) worked best for Held Out datasets,

outperforming random forest and extra trees which work better on Full datasets, possibly

due to the smaller number of rules they produce per tree, and their ability to learn smaller

trends on later trees after finding general trends on earlier trees. Multi-layered ensembles

were shown to improve performance over simples models by 1% to 2%, but were not used

in favorable of the simpler, almost equally performing LGBM and extra trees models.

Additionally, while certain hyperparameters performed better on different feature subsets,

we focused on choosing a single set of hyperparameters for each of our main tests, at a

slightly reduced precision. Removing either of these tradeoffs to maximize precision could

be tested in future works.

We found minimal differences between using autoencoders to impute missing

features versus converting all missing features to the feature average from the training data

or zero. This is likely due to our autoencoders naturally biasing towards the average value,

and could also be due to testing feature imputation methods last, after optimizing feature

selection and model hyperparameters. However, as PPIs are a rare category, it is possible

that high, outlier feature values generate high predictions, which are hard to generate from

missing values by any method.

7.1.3 Final Model Comparison

In our final experiment, we evaluated the best models, comparing methods

trained on Full data and Held Out data, and models computed using different feature

subsets. Overall, we found that methods trained using Held Out data produced more

generalizable predictions, containing more high scoring novel predictions validated by

additional data sources, in spite of averaging slightly lower precision when evaluating the

Benchmark Dataset and predicting less protein pairs at scores representing high precision

thresholds. This could imply that precision using the Full training method may

overestimate a model’s predictive capabilities, or models using the Held Out method may

underestimate the precision of a given model.
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A deeper analysis of our final models suggested that our Extra Trees Train model

likely overfit to the underlying data source due to the usage of regular frequency features,

and possibly due to using extra trees rather than an LGBM model. However, we must also

note that while the Extra Trees Train methods predicted more hubs and generated less

novel predictions validated by other datasets, it is technically impossible to guarantee that

either model is better than the other, due to the large number of unknown PPIs that may

be accurately predicted by either model. However, we lean towards trusting the model that

makes more predictions on external data sources as being better, as it is much less likely to

make good predictions on unrelated sources of PPI data through any potential algorithmic

bias.

We also note that, after generating the best features, algorithm, and

hyperparameters for predicting Held Out protein pairs, training the model with the Held

Out and Full methods produced similar results when trained using our Benchmark

Dataset. This implies that a single model trained on Full data can produce results

equivalent to a model using Held Out data, after significant potential sources of bias are

removed. However, we also note the model trained with Held Out data performed much

better on predicting protein pairs from additional data sources when the underlying source

for positive training instances was switched from BioGRID to BioPlex, implying that it

may still be advantageous to use a model trained on Held Out data.

7.2 Thesis Contributions

• The following manuscripts have been published.

1. Brandan Dunham and Madhavi K. Ganapathiraju. “Benchmark Evaluation of

Protein–Protein Interaction Prediction Algorithms.” Molecules 27.1 (2022): 41.
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2. Becker-Krail DD, Parekh PK, Ketchesin KD, Yamaguchi S, Yoshino J, Hildebrand

MA, Dunham B, Ganapathiraju MK, Logan RW, McClung CA. Circadian

Transcription Factor NPAS2 and the NAD+-Dependent Deacetylase SIRT1

Interact in the Mouse Nucleus Accumbens and Regulate Reward. The European

journal of neuroscience. 55(3) pp. 675-693, 2022

• Another manuscript is planned based on the development of our PPI prediction models

and their application to proteome-wide data.

• Benchmark datasets have been released.

• Open source software has been released for sequence-based predictors and benchmark

dataset creation.

• A new prediction model has been developed for proteome-wide prediction of PPIs.

• Additional open source software for computing annotation-based features, and

processing proteome-wide data, will be released at a future date along with its

publication.

7.3 Future Work

For future work, there are a few different topics we would like to explore. First,

we would like to perform more analyses on two newer sequence-based models, D-Script and

RAPPID [209, 242]. While neither model was tested on a realistically proportioned dataset

in their original report (10% positive instead of 0.3% positive class in evaluation data),

they showed marginally better performance than the ’illogical’ features that we described

in Chapter 4, which other sequence based methods failed to.

Next, for annotation-based methods, we would like to focus more on generalizing

PPI prediction models to produce better predictions across multiple PPI data sources.

This could involve the creation of an ensemble of models trained on different data sources,

or some other method to maximize precision across various sources of PPIs.
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Comparing two deep learning sequence-based models for protein-protein interaction

prediction. arXiv preprint arXiv:1901.06268, 2019.

224



[98] Yunus Emre Göktepe and Halife Kodaz. Prediction of protein-protein interactions

using an effective sequence based combined method. Neurocomputing, 303:68–74,

2018.

[99] Yijie Ding, Jijun Tang, and Fei Guo. Predicting protein-protein interactions via

multivariate mutual information of protein sequences. BMC bioinformatics,

17(1):398, 2016.

[100] Inna Dubchak, Ilya Muchnik, Stephen R Holbrook, and Sung-Hou Kim. Prediction

of protein folding class using global description of amino acid sequence. Proceedings

of the National Academy of Sciences, 92(19):8700–8704, 1995.

[101] Joo Chuan Tong and Martti T Tammi. Prediction of protein allergenicity using local

description of amino acid sequence. Frontiers in Bioscience, 13(16):6072–6078, 2008.

[102] Zhu-Hong You, Keith CC Chan, and Pengwei Hu. Predicting protein-protein

interactions from primary protein sequences using a novel multi-scale local feature

representation scheme and the random forest. PloS one, 10(5):e0125811, 2015.

[103] Zhu-Hong You, Lin Zhu, Chun-Hou Zheng, Hong-Jie Yu, Su-Ping Deng, and Zhen

Ji. Prediction of protein-protein interactions from amino acid sequences using a

novel multi-scale continuous and discontinuous feature set. In BMC bioinformatics,

volume 15, page S9. Springer, 2014.

[104] Zhen-Hui Zhang, Zheng-Hua Wang, and Yong-Xian Wang. A new encoding scheme

to improve the performance of protein structural class prediction. In International

Conference on Natural Computation, pages 1164–1173. Springer, 2005.

[105] Yu-An Huang, Zhu-Hong You, Xing Chen, Keith Chan, and Xin Luo.

Sequence-based prediction of protein-protein interactions using weighted sparse

representation model combined with global encoding. BMC bioinformatics,

17(1):184, 2016.

225



[106] Serene AK Ong, Hong Huang Lin, Yu Zong Chen, Ze Rong Li, and Zhiwei Cao.

Efficacy of different protein descriptors in predicting protein functional families.

Bmc Bioinformatics, 8(1):1–14, 2007.

[107] Xiao-Wei Zhao, Zhi-Qiang Ma, and Ming-Hao Yin. Predicting protein-protein

interactions by combing various sequence-derived features into the general form of

chou’s pseudo amino acid composition. Protein and peptide letters, 19(5):492–500,

2012.

[108] Leon Wong, Zhu-Hong You, Shuai Li, Yu-An Huang, and Gang Liu. Detection of

protein-protein interactions from amino acid sequences using a rotation forest model

with a novel pr-lpq descriptor. In International Conference on Intelligent

Computing, pages 713–720. Springer, 2015.

[109] M Dayhoff, R Schwartz, and B Orcutt. 22 a model of evolutionary change in

proteins. Atlas of protein sequence and structure, 5:345–352, 1978.

[110] Kuo-Chen Chou. Prediction of protein cellular attributes using pseudo-amino acid

composition. Proteins: Structure, Function, and Bioinformatics, 43(3):246–255,

2001.

[111] Kuo-Chen Chou. Using amphiphilic pseudo amino acid composition to predict

enzyme subfamily classes. Bioinformatics, 21(1):10–19, 2005.

[112] Kuo-Chen Chou. Prediction of protein subcellular locations by incorporating

quasi-sequence-order effect. Biochemical and biophysical research communications,

278(2):477–483, 2000.

[113] Yu-An Huang, Zhu-Hong You, Xin Gao, Leon Wong, and Lirong Wang. Using

weighted sparse representation model combined with discrete cosine transformation

to predict protein-protein interactions from protein sequence. BioMed research

international, 2015, 2015.

226



[114] Yu-An Huang, Zhu-Hong You, Xiao Li, Xing Chen, Pengwei Hu, Shuai Li, and Xin

Luo. Construction of reliable protein–protein interaction networks using weighted

sparse representation based classifier with pseudo substitution matrix representation

features. Neurocomputing, 218:131–138, 2016.

[115] Zheng-Wei Li, Zhu-Hong You, Xing Chen, Jie Gui, and Ru Nie. Highly accurate

prediction of protein-protein interactions via incorporating evolutionary information

and physicochemical characteristics. International journal of molecular sciences,

17(9):1396, 2016.

[116] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng
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