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Canonical decompositions of hyperbolic 3-orbifolds

Mark Fincher, PhD

University of Pittsburgh, 2022

This thesis describes the theory behind Sym, software created by the author for com-

putations with finite-volume cusped hyperbolic 3-orbifolds. The main purpose of Sym, in

its current form, is to compute canonical (Epstein-Penner) decompositions of these orb-

ifolds. This was originally motivated by a joint project between the author, his advisor, and

his advisor’s other graduate students to create a census of orbifolds commensurable to the

figure-eight knot complement.

Underlying Sym is a non-standard notion of an orbifold triangulation, in which tetrahe-

dra may be labeled with groups of symmetries acting on them. This allows us to consider

fully ideal hyperbolic triangulations of orbifolds, which we attempt to treat in the same

way that SnapPy treats ideal triangulations of manifolds. SnapPy is powerful existing soft-

ware for hyperbolic 3-manifolds and some orbifolds, originally developed by Weeks and now

maintained by Culler, Dunfield, and Goerner.

The way SnapPy finds canonical decompositions of hyperbolic manifolds is complicated

both theoretically and computationally, and relies on influential work by Epstein, Penner,

Weeks, and others. The main goal of this thesis is to extend that work to orbifolds. A key

idea we develop is an orbifold version of Pachner moves, which are moves which change an

orbifold triangulation locally.
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1.0 Introduction

The canonical decomposition of a finite-volume cusped hyperbolic 3-manifold M is a

decomposition of M into hyperbolic ideal polyhedra which is uniquely determined by the

hyperbolic metric. By the Mostow-Prasad rigidity theorem, this decomposition in fact only

depends on the topology ofM. The canonical decomposition was defined (in greater general-

ity) by Epstein and Penner in the 1980s [15]. It carries deep information about the manifold.

In particular, the self-isometry group can be read off from it, and two finite-volume cusped

hyperbolic 3-manifolds are isometric if and only if they have identical canonical decomposi-

tions.

A theme in the intersection of hyperbolic geometry and 3-manifold topology is that

many powerful ideas are also computationally tractable. Canonical decompositions give a

nice example of this. Weeks described how to compute them in the early 1990s in [43], and

implemented his algorithm in his computer program SnapPea, now maintained as SnapPy

with extended functionality [13]. For an application of this, as well as other breakthroughs

in low-dimensional topology, consider the following paragraph, which would have astounded

any mathematician if they were to read it 60 years ago.

Suppose we have two knots K and K ′ in S3, and we would like to know if they are

actually the same. In other words, can we move around K within S3, without breaking it or

passing any part of it through itself, to turn it into K ′? By [21], the knots are the same if and

only if their knot complements S3 −K and S3 −K ′ are homeomorphic. Thurston showed

most knot complements admit finite-volume cusped hyperbolic metrics [41, Corollay 2.5].

We can draw K and K ′ in a computer, load them to SnapPy, and if they have hyperbolic

structures then SnapPy should be able to find them. Assuming that is the case, it can then

compute the canonical decompositions, compare them with each other, and confidently tell

us whether S3 − K and S3 − K ′ are homeomorphic or not, and hence whether or not the

knots are the same.

An orbifold is a topological space locally modelled on quotients of Euclidean space by

finite groups of diffeomorphisms, so it is a generalization of a manifold. For hyperbolic
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orbifolds, we can state this generalization in a more straightforward way. A hyperbolic 3-

manifold is the quotient of H3 by the action of a discrete, torsion-free group of isometries of

H3. A hyperbolic 3-orbifold is the same thing, except the group is allowed to have torsion.

We would like to know if the story of canonical decompositions for hyperbolic manifolds

extends to hyperbolic orbifolds, in particular we would like to answer the following.

1. Does the definition of “canonical decomposition” extend from finite-volume cusped hy-

perbolic 3-manifolds to finite-volume cusped hyperbolic 3-orbifolds, along with its useful

properties?

2. If so, can we generalize SnapPy’s algorithm for finding canonical decompositions of man-

ifolds to orbifolds?

The approach we take to answering the first question is to modify what we mean by

“polyhedral decomposition” to be suitable for orbifolds. Loosely speaking, we define a hy-

perbolic orbifold polyhedral decomposition to be a collection of hyperbolic ideal polyhedra

with face gluing data (where a face can be glued to itself), edges labelled by integers rep-

resenting rotation groups, and with polyhedra labelled with symmetry groups. Often all

polyhedra are tetrahedra, in which case we are really working with a kind of non-standard

triangulation.

Theorem 7. Let Q be a finite-volume cusped hyperbolic 3-orbifold. The Epstein-Penner

construction still applies to Q, and the canonical decomposition it provides is a hyperbolic

orbifold polyhedral decomposition. The self-isometry group of Q is equal to the group of

combinatorial symmetries of this decomposition. Two orbifolds are isometric if and only if

they have combinatorially isomorphic canonical decompositions.

The fact that the Epstein-Penner construction makes sense for orbifolds will not be a

surprise to anyone familiar with it. The question then is, what exactly is the object which

the construction gives? This is why we introduce orbifold polyhedral decompositions. There

has been at least one other interpretation of what a canonical decomposition of an orbifold

should be defined to be, by Damian Heard in his computer program Orb. We briefly describe

Heard’s interpretation, to the best of our knowledge, at the end of Section 1.1.
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SnapPy’s algorithm for finding the canonical decomposition of a manifold is called can-

onize. As an answer to the second question, we have:

Theorem 12. There is a “canonize” algorithm for orbifolds, which generalizes SnapPy’s

corresponding algorithm for manifolds. Implemented in Sym, it has successfully computed

the certified canonical decompositions of all 336 orbifolds which cover H3/PGL(2, O3) up to

covering degree 48.

Unfortunately, SnapPy’s canonize is not guaranteed to successfully find the canonical

decomposition, but in practice it always does. Sym is also not guaranteed to succeed, but it

also has succeeded for all examples it has been tried on.

The goal of this thesis is to explain Theorems 7 and 12. In Section 1.1, we give an

outline of our “canonize for orbifolds” algorithm, written for experts familiar with manifold

canonical decompositions. In Chapter 2, we record some of the relevant background material

about orbifolds, manifolds, and hyperbolic geometry. In Chapter 3, we give our definition of

an orbifold triangulation, in which some of the tetrahedra may be labelled with symmetries,

which is the basic data structure Sym uses to represent orbifolds. In Chapter 4, we define

the canonical decomposition of an orbifold, proving Theorem 7. Our canonize algorithm is

split into two parts, which we describe in detail in Chapters 5 and 6. Finally, in Chapter 7

we describe the role of Sym in helping to create a census of orbifolds commensurable to the

figure-eight knot complement, which is a joint project with the author’s PhD advisor and

this advisor’s other students. In particular, we discuss the 336 orbifolds on which we have

tested our canonize algorithm.

1.1 Canonize: a brief outline

The canonical decomposition of a finite-volume cusped hyperbolic 3-manifold H3/Γ is

defined using a convex hull construction in Minkowski space. Really, the construction asso-

ciates to Γ a unique Γ-invariant tiling of H3 by ideal hyperbolic polyhedra, and because Γ

has no torsion, this tiling projects to a decomposition of H3/Γ. If Γ does have torsion, so
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H3/Γ is an orbifold, then the construction still gives a unique Γ-invariant ideal tiling. But

it will not project to a decomposition of H3/Γ if any of the polyhedra are fixed by torsion

elements of Γ. Essentially our approach is to accept that and just work in the universal cover

instead.

From that perspective, we assume we have some Γ-invariant tiling by ideal hyperbolic

tetrahedra which is perhaps not the canonical tiling, and our goal is to change it into the

canonical tiling by some finite sequence of moves. We require that the result of each move

is still a Γ-invariant tiling by ideal hyperbolic tetrahedra. The standard way of changing

a simplicial complex, without changing the underlying topological space, is with Pachner

moves, first defined in [33]. For our purposes we create new kinds of Pachner moves which

are sensitive to the orbifold structure, allowing us to modify the tiling in a Γ-invariant way.

The choice of where to apply these moves is guided by tilt computations, as described by

Weeks [43].

We hope that after a sequence of orbifold Pachner moves we arrive at the canonical tiling.

However, because of their computational convenience we are only using tilings by tetrahedra,

but the canonical tiling could have polyhedra which are not tetrahedra. In that case, we

attempt to find the canonical re-triangulation of the canonical decomposition. This is what

SnapPy does for manifolds, but extending the algorithm to our orbifold setting takes work.

While we can always imagine we are in the universal cover, in practice we work with

objects which we call orbifold triangulations or, more generally, orbifold polyhedral decom-

positions. Our definition of an orbifold triangulation is not standard, because it is not a

triangulation of the underlying space. With this new definition of an orbifold triangulation,

we are able to triangulate orbifolds by tetrahedra which are fully ideal, which is often not

possible with a standard triangulation.

Apart from its application here to hyperbolic geometry, we feel that our definition of an

orbifold triangulation more harmoniously blends the combinatorics of tetrahedra with the

local group structures of an orbifold. It seems to the author that this is useful in order to

have a theory of Pachner moves for orbifolds.

Damian Heard took a different approach to orbifold canonical decompositions in his the-

sis [23], which he implemented in his computer program Orb (which appears to no longer
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be maintained). To a given orientable finite-volume cusped hyperbolic 3-orbifold Q there

is an associated pared hyperbolic manifold, an infinite-volume hyperbolic manifold obtained

from Q by making the orders of its isotropy groups go to infinity. In [24], Kojima general-

ized the Epstein-Penner construction to work for a broader class of hyperbolic 3-manifolds,

including these pared manifolds, and in [17] Frigerio-Petronio gave an algorithm to compute

this Kojima decomposition. To Orb, the canonical decomposition of Q is this, the Kojima

decomposition of the pared manifold associated to Q.
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2.0 Background

2.1 Orbifold definition

Orbifolds were first defined by Satake in [38],[39]. He called them V−manifolds. It was

Thurston (with input from his students) who later chose the name “orbifold”. An orbifold is

one natural generalization of a manifold and, like manifolds, they appear in many different

areas of math. See the introduction of [4] for a broad perspective on orbifolds and their

importance in topology, algebraic geometry, and physics. For low-dimensional topologists,

standard references for the definitions below are [7], [12], and Chapter 13 of Thurston’s

original notes [40].

Definition 1. An n-dimensional orbifold Q is a pair (XQ,U), where XQ is a paracompact,

Hausdorff, topological space, called the underlying space of Q, and U is an orbifold atlas.

An orbifold atlas is a collection of charts {(Ui, Ũi, ϕi,Γi)}, where each Ui is an open subset

of XQ, Ũi is an open subset of Rn, ϕi is a continuous map from Ũi to Ui, and Γi is a finite

group of diffeomorphisms of Ũi, and these all satisfy:

1. The Ui’s cover XQ.

2. If Ui ∩ Uj is non-empty, then it is part of a chart.

3. Each ϕi factors through a homeomorphism from Ũi/Γi to Ui.

4. If Ui ⊂ Uj then there is a smooth embedding ψ : Ũi → Ũj such that ϕj ◦ ψ = ϕi.

We assume all group actions are effective, meaning the only group element acting as the

identity map is the identity element. Additionally, it is convenient (for instance, for defining

covering maps) to assume that all orbifold atlases are maximal, so we assume that too.

The definition says that each Ui is identified with a local model Ũi/Γi and condition 4

ensures these identifications do not conflict with each other, although it takes some work to

see how it accomplishes this. Namely, by the following remark, proven in the appendix of

[31], condition 4 implies that if Ui ⊂ Uj then we can just assume the local models satisfy

Ũi ⊂ Ũj and Γi ⊂ Γj.
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Remark 1. In the situation of condition 4, ψ gives rise to an injective homomorphism λ :

Γi → Γj such that ψ is equivariant with respect to λ. Further, if γ ∈ Γj is such that

γ(ψ(Ũi)) ∩ ψ(Ũi) ̸= ∅ then γ ∈ λ(Γi).

For x ∈ XQ contained in a chart Ui, with x̃ ∈ Ũi such that ϕi(x̃) = x, define the local

group of x to be the stabilizer of x̃ in Ũi with respect to the action of Γi. Using Remark 1,

it can be seen that the local group is well-defined up to isomorphism. Say that x is singular

if its local group is non-trivial and regular if its local group is trivial. The singular locus of

Q is the set of all singular points.

An orbifold is locally orientable if it has an atlas for which each Γi is a group of orientation

preserving diffeomorphisms. It is orientable if, in addition, all inclusion maps Ui ⊂ Uj induce

orientation preserving maps Ũi → Ũj. As with manifolds, an orientable orbifold can be given

an orientation. In this work, all orbifolds are assumed to be orientable and oriented.

A standard kind of orbifold is a global quotient space M/Γ, where M is a differentiable

manifold and Γ is a group of diffeomorphisms ofM acting properly discontinuously. Γ acting

properly discontinuously means that any points x, y ∈ M have neighborhoods Ux, Uy such

that

{γ ∈ Γ : γ(Ux) ∩ Uy ̸= ∅}

is finite. This property implies that each point x ∈ M has a neighborhood Ux which is

preserved by the stabilizer of x in Γ and disjoint from its other translates under Γ. The

restriction of the quotient map p : M → M/Γ to Ux is then used as a chart map for an

orbifold atlas on M/Γ.

We would now like to define a map of orbifolds. For motivation, suppose M,M ′ are

manifolds and Γ,Γ′ are groups of diffeomorphisms acting properly discontinuously on M

and M ′ respectively. If there is a homomorphism λ : Γ → Γ′ and a λ−equivariant smooth

map g : M → M ′, then g induces a continuous map M/Γ → M ′/Γ′. We would like this

induced map to be an example of an orbifold map. So, for orbifolds Q,Q′ we define an

orbifold map from Q → Q′ to be a continuous map f : XQ → XQ′ such that for every

x ∈ XQ, there is a chart Ui containing x, another chart U
′
j containing f(Ui), and a smooth

map f̃ : Ũi → Ũ ′
j which is equivariant with respect to some homomorphism Γi → Γ′

j and

descends to f
∣∣
Ui
. We say that f is an orbifold isomorphism if each f̃ : Ũi → Ũ ′

j and Γi → Γ′
j

7



is a diffeomorphism and group isomorphism respectively. An orbifold automorphism is an

orbifold isomorphism from an orbifold to itself.

For the most part, in this work we are interested in three-dimensional orientable orbifolds.

We conclude this section with a simple characterization of them, which is more down-to-earth

than Definition 1.

Theorem 1 (Thm 2.5, [12]). Let Q be an orientable 3-orbifold. Then the underlying space

XQ is an orientable manifold and the singular locus consists of edges of order k ≥ 2 and

vertices where 3 edges meet. An edge labelled k corresponds to a rotation group of order k.

At a vertex, the three edges have orders (2, 2, k) where k ≥ 2, (2, 3, 3), (2, 3, 4), or (2, 3, 5).

Conversely, every such labelled graph in an orientable 3-manifold describes an orientable

3-orbifold.

2.2 Fundamental groups and covering theory

A covering Q̃ of Q is a continuous map p : XQ̃ → XQ, called a covering map, satisfying

that every x ∈ XQ is contained in a chart U such that each component Vi of p
−1(U) is a

chart of Q̃, the local model of U is Ũ/Γ, that of Vi is Ũ/Γi where Γi ⊂ Γ, and the following

diagram commutes.

Ũ/Γi Vi

Ũ/Γ U

∼

p

∼

The map Ũ/Γi → Ũ/Γ is the natural quotient map. Recall that we assume all orbifold

atlases are maximal, which is why it makes sense that some local chart for Vi might have

such a particular form. Note that a covering map is an example of an orbifold map.

The deck transformation group of a covering p : Q̃ → Q is the group of all orbifold

automorphisms f : Q̃→ Q̃ such that p = p ◦ f. A universal cover of Q is a cover p : Q̃→ Q

such that for any other cover q : Q̃′ → Q, there is a cover r : Q̃ → Q̃′ such that p = q ◦ r.

Two covers p : Q̃ → Q and q : Q̃′ → Q are equivalent if there is an orbifold isomorphism

f : Q̃→ Q̃′ such that p = q ◦ f.
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Theorem 2 (Thurston). Every connected orbifold Q has a unique, up to equivalence, uni-

versal cover, which we denote Q̃.

We define the fundamental group of Q, denoted π1(Q), as the deck transformation group

of the universal cover of Q.

The deck transformation group of a cover p : Q′ → Q acts properly discontinuously on

Q′, so the quotient of Q′ under the action of the deck group has a natural orbifold structure.

We say that p : Q′ → Q is regular if that quotient is isomorphic to Q. Continuing the analogy

with covering space theory for manifolds, we have the following theorem.

Theorem 3 ([7]). Let Q be an orbifold. There is a one-to-one correspondence between

conjugacy classes of subgroups of π1(Q) and equivalence classes of (connected) covers of Q.

A cover corresponds to a normal subgroup if and only if it is regular.

2.3 Geometric structures

Let X be a real analytic manifold and G a group of real analytic diffeomorphisms of X.

Q is a (G,X)-orbifold if it is locally modelled on quotients of open subsets of X by finite

subgroups of G. In other words, for each chart (Ui, Ũi, ϕi,Γi) in the orbifold atlas, we should

have Ũi ⊂ X and Γi a finite subgroup of G preserving Ũi. We also require that each ϕ from

condition 4 of the definition of an orbifold atlas be the restriction of a function in G.

If Q is a (G,X)-orbifold, we say it has a “geometric structure”. Namely, a (G,X)

structure. Often, X is Rn,Hn, or Sn, and G is the group of Euclidean, hyperbolic, or

spherical isometries, respectively. The reason we care about Q having a (G,X) structure is

that it potentially allows us to view Q as the quotient of X by some discrete subgroup of G.

For more details on the following theorem, see Theorem 2.26 from [12].

Theorem 4. If Q is a (G,X)-orbifold where (G,X) is Euclidean, spherical, or hyperbolic

geometry, and if the induced metric on Q is complete, then Q is isomorphic to X/Γ for some

discrete group of isometries Γ ⊂ G.

The story of geometric structures on compact 2-orbifolds is particularly clear. A teardrop
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is a 2-orbifold whose underlying space is S2 and whose singular locus is a single point, with

local group an order n rotation where n > 1. A spindle is a 2-orbifold whose underlying

space is S2 and whose singular locus consists of two points, with local groups the rotations

of orders n and m where n ̸= m,n,m > 1.

Theorem 5 (Theorem 2.22, [12]). Let Q be a compact 2-orbifold which is not a teardrop

nor a spindle, nor the quotient of these by an involution. Then exactly one of the following

is true.

1. Q admits a Euclidean structure.

2. Q admits a hyperbolic structure.

3. Q admits a spherical structure.

Since Q is closed in the theorem, the induced metric must be complete. So the theorem

implies that every closed 2-orbifold, with the exception of the orbifolds listed, can be obtained

by quotienting R2,H2, or S2 by some discrete group of isometries.

2.4 Hyperbolic geometry

Three dimensional hyperbolic space is defined to be the unique 3-dimensional Riemma-

nian manifold which is complete, simply-connected, and with constant sectional curvature

−1. It is denoted H3. There are several models of H3 which are common to use. In this

section, we will work in the upper half space model. In Chapter 4, we will work in the

hyperboloid model. There are many references for a detailed introduction to hyperbolic ge-

ometry, for instance Thurston’s book [42], Benedetti and Petronio’s book [6], or Martelli’s

book [28].

2.4.1 Upper half space

The upper half space model of H3 is the manifold

{(x, y, t) ∈ R3 : t > 0},
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equipped with the Riemannian metric

⟨v, w⟩(x,y,t) =
v1w1 + v2w2 + v3w3

t2

This is a conformal model of H3,meaning hyperbolic angles are the same as Euclidean angles.

We can regard the xy-plane, {(x, y, 0) : x, y ∈ R}, as C. Then the boundary ∂H3 of

H3 in the upper half space model is ∂H3 = C ∪ {∞} = S2. Recall that the conformal

automorphisms of S2 are the Mobius transformations. These are maps of the form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ C and ad − bc = 1. It turns out that they extend to isometries of the

upper half space model and that every orientation-preserving isometry of the upper half

space model comes in this way. Hence the group of orientation-preserving isometries of H3,

Isom+(H3), is identified with PSL(2,C). Viewed as the group of Mobius transformations, it

is easy to see that Isom+(H3) acts properly and transitively on the set of distinct triples of

points of ∂H3.

There are three kinds of orientation-preserving isometries: elliptic, loxodromic, and

parabolic.

An elliptic isometry fixes a geodesic point-wise and rotates the rest of hyperbolic space

around it. It is conjugate to a Mobius transformation of the form z 7→ eiθz for θ ∈ [0, 2π),

which extends to upper half space as (z, t) 7→ (eiθz, t).

A loxodromic isometry translates along a unique geodesic axis and acts on the rest of

H3 with a combination of twisting and translating, like a corkscrew. Such an isometry is

conjugate to a Mobius transformation of the form z 7→ λeiθz where λ > 0 and θ ∈ [0, 2π),

which extends to upper half space as (z, t) 7→ (λeiθz, λt).

Parabolic isometries are characterized by the fact that they fix a unique point of ∂H3.

They are conjugate to a Mobius transformation fixing ∞ of the form z 7→ z + a for a ∈ C,

which extends to upper half space as (z, t) 7→ (z + a, t).

The geodesics in the upper half space model are vertical Euclidean lines and Euclidean

half circles with center in the plane t = 0. Geodesic planes are vertical Euclidean planes and

Euclidean half-spheres with center in the plane t = 0. A third kind of object is a horosphere.
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In this model, a horosphere centered at z ∈ C is a Euclidean sphere tangent to z. A horosphere

centered at ∞ is a horizontal plane. Horospheres can be defined intrinsically in terms of the

hyperbolic metric, so they are preserved by isometries. Each horosphere divides H3 into two

regions. The region which has one point at infinity is called a horoball.

2.4.2 Hyperbolic structures on orbifolds

In Section 2.3, we defined geometric structures on orbifolds. We now specify to hyperbolic

structures.

Every complete hyperbolic 3-orbifold is of the form H3/Γ for some discrete group Γ ⊂

Isom(H3). An isometry H3/Γ → H3/Γ′ is a map which lifts to an isometry H3 → H3,

conjugating Γ to Γ′. The self-isometry group of H3/Γ is isomorphic to N(Γ)/Γ, where N(Γ)

is the normalizer in Isom(H3) of Γ.

We only consider orientable orbifolds, so we assume Γ ⊂ Isom+(H3). Such an orbifold is

a manifold if and only if Γ acts freely on H3, meaning no point of H3 is fixed by any element

of Γ, which is equivalent to Γ not containing any elliptics. If Γ does contain elliptics, then

discreteness implies they must have finite order, i.e. be torsion elements.

All 3-orbifolds in this work are orientable, finite-volume, non-compact, complete hyper-

bolic 3-orbifolds, which for convenience we just call “finite-volume cusped” or “cusped”. The

word cusped refers to the thin parts of such an orbifold. Every hyperbolic orbifold has a

thick-thin decomposition which divides the orbifold into those points with injectivity radius

less than a fixed constant, called the Margulis constant, and those with larger injectivity

radius [14]. The points with smaller injectivity radius make up the thin part of the orbifold,

which is a disjoint union of cusps, i.e. orbifolds of the form Q2 × [0,∞), where Q2 is a

closed Euclidean 2-orbifold. An orbifold which is finite-volume but non-compact must have

a positive, finite number of cusps.

The following hugely important theorem implies that if a 3-orbifold has a finite-volume

complete hyperbolic structure, then that structure is unique.

Theorem 6 (Mostow-Prasad rigidity [32] [34]). Suppose n > 2. Let Γ and Γ′ be discrete

finite co-volume subgroups of Isom(Hn) and ϕ : Γ → Γ′ an abstract group isomorphism.
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Then ϕ must be conjugation, i.e. there must be some g ∈ Isom(Hn) such that ϕ(γ) = gγg−1

for all γ ∈ Γ.

2.4.3 Polyhedra, tetrahedra, and tilings

A hyperbolic polyhedron is the intersection of finitely many closed half-spaces in H3. We

only work with finite-volume polyhedra. It is a special feature of hyperbolic geometry that

there exist finite-volume non-compact hyperbolic polyhedra.

The simplest of these is the hyperbolic ideal tetrahedron, which is the hyperbolic convex

hull of any four distinct points in ∂H3. We say that its vertices are ideal. Any polyhedron

whose vertices lie in ∂H3 we also call ideal.

Any face of a hyperbolic ideal tetrahedron can be mapped to the ideal triangle which

is the hyperbolic convex hull of 0, 1,∞. The fourth ideal vertex of the tetrahedron we can

assume maps to some z ∈ C with non-negative imaginary part. The edge parameter of the

edge from 0 to ∞ is z. The edge parameter of any edge is defined in this way, by mapping it

to the geodesic from 0 to ∞, and the other points to 1 and some w ∈ C with non-negative

imaginary part. Any one of the edge parameters uniquely determines the tetrahedron up

to orientation-preserving isometry. An ideal tetrahedron is flat, i.e. contained in a plane, if

and only if all of its edge parameters are real. The relationships between edge parameters is

given in figure 1.

The group of symmetries of any ideal tetrahedron has a subgroup isomorphic to Z/2Z×

Z/2Z. For a non-flat tetrahedron, this subgroup’s non-trivial elements can be seen as follows.

For any pair of opposite edges of a non-flat ideal tetrahedron, there must be a unique geodesic

of minimal length connecting them, which must intersect both edges at right angles. Hence

π rotation around this geodesic is a symmetry of the tetrahedron. This implies that opposite

edges must have equal dihedral angles (this could already be deduced from figure 1). The

corresponding symmetries of any flat ideal tetrahedron can be seen in a similar way.

A symmetry which an ideal tetrahedron might or might not have is the order 3 rotation

fixing a vertex. If it does have this symmetry, then in fact it must be a regular ideal

tetrahedron, meaning all edges have equal dihedral angles. This is because the order 3
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Figure 1: The edge parameters.

rotations combined with the order 2 rotations described in the previous paragraph generate

the full group of orientation preserving symmetries of a tetrahedron, which acts transitively

on edges. Up to isometry there is only one regular ideal tetrahedron, which we can take to

be the convex hull of 0, 1,∞, and 1
2
+

√
3i
2
.

Definition 2. A tiling of H3 is a decomposition of H3 into a locally finite set of hyperbolic

polyhedra which intersect only in common faces. If all polyhedra are ideal, then we say the

tiling is ideal.

Definition 3. A tiling-group pair (T ,Γ) consists of a tiling of H3, T , and a discrete group,

Γ < Isom+(H3), preserving T .

A geometric ideal triangulation of a finite-volume cusped hyperbolic 3-manifold M =

H3/Γ is a triangulation of M by non-flat hyperbolic ideal tetrahedra. Because ideal tetra-

hedra are missing their vertices, this is not a standard kind of triangulation as seen in other

areas of topology. The vertices could be added back in to get a non-manifold compactification

ofM.We can lift the triangulation to H3 to get an ideal tiling-group pair consisting of tetra-

hedra. It is typical to switch back and forth between the two perspectives—triangulation of
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the quotient manifold and Γ-invariant triangulation of H3.

Thurston came up with a method for finding complete hyperbolic structures on cer-

tain non-compact topological 3-manifolds by finding geometric ideal triangulations of them.

First, try to get a triangulation of the manifold by topological ideal tetrahedra. If successful,

then assign a complex variable to each tetrahedron, representing a possible edge parameter.

If we choose the edge parameters in such a way that the total dihedral angle around each

quotient edge is 2π, then these hyperbolic ideal tetrahedra induce a geometric structure

on the manifold. Finding these edge parameters ends up amounting to solving a system

of complex-variable algebraic equations, called the consistency equations. For the structure

to be complete, it turns out the edge parameters just need to satisfy another set of equa-

tions, called the completeness equations. SnapPy implements this method for hyperbolic link

complements.

2.5 Pachner moves

Pachner moves are used to locally change a triangulation of a manifold, without changing

the manifold itself. In this section we describe a few of them.

There are two natural triangulations of a triangular bipyramid. See figure 2. One

triangulation has 2 tetrahedra and the other has 3. The 2 → 3 Pachner move changes from

the triangulation with 2 tetrahedra to the one with 3, while the 3 → 2 move does the reverse.

The triangulation of the boundary of the bipyramid is not changed.

Of course, there are usually many such triangulated bipyramids within a triangulation.

In particular, anywhere we have two distinct tetrahedra glued together along a common face,

we can do a 2 → 3 move. Conversely, anywhere three distinct tetrahedra are glued in a cycle

around a common edge, we can do a 3 → 2 move. There is a slight annoyance when working

with a geometric triangulation. In the geometric setting, we can talk about the bipyramid

being convex or not. If it is not convex, then a 2 → 3 move does not make geometric

sense; the newly introduced edge connecting opposite vertices is not contained within the

bipyramid. For this reason, we check for convexity before doing a geometric 2 → 3 move.
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Figure 2: Two triangulations of a triangular bipyramid.

Two other Pachner moves are the 2 → 0 move and its inverse, the 0 → 2 move. The 2 → 0

move takes two tetrahedra which are glued together around a valence 2 edge, and collapses

them onto each other. See figure 3. The union of the two tetrahedra is a “pillow”. In this

picture, the valence 2 edge is the vertical edge. Faces A and B belong to one tetrahedron,

while A′ and B′ belong to the other. A is collapsed onto A′, B onto B′. The 2 → 0 move is

also called a cancellation move.

To do the 0 → 2 move, find a a pair of faces in the triangulation which have a common

edge and insert a pillow there.

Note that in a geometric triangulation, the two tetrahedra of a pillow are necessarily flat.

Often flat tetrahedra are undesirable, which makes the 2 → 0 move useful since it gets rid

of them.

Pachner moves, also called bistellar flips, were introduced by Pachner in [33] to show

that any two triangulations of a closed piece-wise linear manifold are related by some finite

sequence of them. See [25] for another account of that work, or Matveev’s book [29, Theorem

1.2.5]. It is difficult to obtain good bounds for the number of Pachner moves needed to get
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Figure 3: The two-to-zero move.

from one triangulation of a manifold to another. For instance, Mijatovic showed the number

of Pachner moves needed to change a triangulation of S3 with n tetrahedra into a standard

triangulation is bounded above by 6 · 106n225·10
4n2

[30]. Yet, experimentally it seems much

fewer moves can be used [10].
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3.0 Orbifold triangulations

A triangulation of an orientable 3-orbifold is usually defined to be a decomposition of

the underlying space into tetrahedra such that the singular locus lies in the 1-skeleton. See

[12], for instance. We introduce a more broad definition of an orbifold triangulation, which

we formally define in this chapter. The idea is to allow the singular locus into the rest of the

triangulation, by labelling each tetrahedron with some symmetry group and allowing faces

to be glued to themselves. The underlying space of the orbifold is the quotient of the union

of the tetrahedra under the equivalence relation generated by the symmetries and the face

gluing maps. The local group structure is determined by the symmetries of the tetrahedra,

any faces which are glued to themselves, and positive integer labels on the edges of the

tetrahedra which represent orders of rotation groups.

This definition is combinatorial. We will build on it by considering an additional hy-

perbolic structure on the triangulation. This will just mean viewing the tetrahedra as ideal

hyperbolic tetrahedra in such a way that the induced hyperbolic structure on the orbifold is

complete. With this approach we can have fully ideal hyperbolic triangulations of orbifolds,

i.e. triangulations by hyperbolic tetrahedra, all of whose vertices are ideal. With the more

traditional definition of an orbifold triangulation, this is not always possible.

3.1 Combinatorial definitions

We work in dimension 3 and with orientable orbifolds in mind, although the definitions

can be made in greater generality. In what follows, any map from one k-simplex to another

(possibly the same) k-simplex is implicitly a simplicial isomorphism, i.e. really just a bijection

from the set of vertices of the first simplex to the set of vertices of the second.

Definition 4. An orientable 3-orbifold triangulation K, which we will simply call an orbifold

triangulation, is a tuple K = (T ,G,S, E), where:
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1. T is a set of finitely many oriented tetrahedra.

2. (Gluing maps) G is a function which assigns to each face f of each T ∈ T some G(f, T ),

which is either an orientation-reversing map from f to some other (possibly the same)

face of a tetrahedron in T , or 0 if f is not attached to anything.

3. (Symmetries) S is a function which assigns to each T ∈ T a group of orientation pre-

serving symmetries S(T ) of T. Note that this is a subgroup of the group of all even

permutations of a set with 4 elements.

4. (Edge labels) E is a function which assigns to each edge e of each T ∈ T a positive

integer E(e, T ), which we think of as the order of a finite rotation group with axis e.

This data is required to satisfy the conditions:

(a) If G(f, T ) maps f to a face f ′ of a tetrahedron T ′, then G(f ′, T ′) maps f ′ to f and

G(f ′, T ′) = G(f, T )−1.

(b) If an edge e of a tetrahedron T is mapped to e′ of T ′ by a symmetry or face gluing map,

then E(e, T ) = E(e′, T ′).

(c) For any particular face f of a tetrahedron T , the orbit of f under S(T ) either has exactly

one face f ′ such that G(f ′, T ) ̸= 0, or no such face.

(d) Suppose that for a tetrahedron T , S(T ) contains the order 3 group of rotations fixing a

face f. Suppose further that f is glued to a face f ′ of a tetrahedron T ′. Then S(T ′) must

contain the order 3 group of rotations fixing f ′.

Define X̂(K) to be the topological space which is the quotient of the disjoint union of the

tetrahedra under the equivalence relation generated by the gluing maps and symmetries.

We will sometimes describe an orbifold triangulation in terms of a numbering, i.e an

assignment to each tetrahedron a unique number from 0 to n − 1 (assuming there are n

tetrahedra) and an assignment to each vertex of each tetrahedron a unique number from 0

to 3. Tetrahedron i we will denote as Ti, vertex i as vi, the edge connecting vi and vj as ei,j,

and the face opposite vi as fi.

An example of an orbifold triangulation is in figure 4. It has a single tetrahedron. The

tetrahedron is labelled with the full group of symmetries, f2 is glued to itself by rotation

around the blue axis while all other faces are glued to nothing, and all edge labels are 6. On
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Figure 4: An example of an orbifold triangulation.

the other side of f2 we visualize a copy of this tetrahedron, obtained by rotating the original

by π around the blue axis. Although the other faces are technically not glued to anything,

we think of them as being glued to other copies of the tetrahedron, obtained by applying

symmetries to the tetrahedron which correspondingly move the copy attached to f2. As in

this figure, we often use the convention that a red line represents a rotation axis, either for

a face gluing map or a symmetry.

Let us expand somewhat on this example. We care about the equivalence relation gen-

erated by the face gluing maps and the symmetries. It might be possible to change the

face gluing data while still generating the same equivalence relation. We could make many

changes to the face gluing data in figure 4 without affecting the equivalence relation. For in-

stance, we could change how f2 is glued to itself, say by rotation around the axis connecting

v0 to e1,3. Or we could glue f2 to f1 in any orientation reversing way. Or we could glue all

faces to themselves in any orientation reversing ways. Taken together with the symmetries,

all these choices generate the same equivalence relation. However, in our definition of an

orbifold triangulation, the latter two choices are disallowed by condition (c). This shows the

point of that condition; we record as little face gluing data as possible, as long as it still gives
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the correct equivalence relation. This especially makes sense when working with computers.

However, it is helpful sometimes to have the opposite perspective, which is to imagine all

possible face gluings implied by the symmetries. In the case of figure 4, that literally is all

possible face gluings.

We sayK is without boundary if for any face f of any tetrahedron T there exists γ ∈ S(T )

such that G(γ(f), T ) ̸= 0. Otherwise, it is with boundary. Unless stated otherwise, we assume

all of our orbifold triangulations are without boundary.

Definition 5. A combinatorial map (or just “map”) of orbifold triangulations, F : K =

(T ,G,S, E) → K ′ = (T ′,G ′,S ′, E ′), is a map from the disjoint union of the tetrahedra in T

to the disjoint union of the tetrahedra in T ′ satisfying:

1. Suppose e is an edge of T ∈ T and F (e) = e′, an edge in F (T ) = T ′. Then E(e, T ) divides

E(e′, T ′).

2. Suppose F (T ) = T ′ ∈ T ′. Then F
∣∣
T
◦ S(T ) ◦ F

∣∣−1

T
< S(T ′).

3. Suppose f1 is a face of T1 ∈ T and G(f1, T ) maps f1 to f2 in T2. Suppose further that

F (T1) = T ′
1 ∈ T ′ and F (T2) = T ′

2 ∈ T ′. There must exist γ′1 ∈ S(T ′
1) and γ′2 ∈ S(T ′

2)

such that for f ′
1 = γ′1(F (f1)), we have

G(f ′
1, T

′
1) ◦ γ′1 ◦ F

∣∣
f1

= γ′2 ◦ F
∣∣
f2
◦ G(f1, T ).

Two combinatorial maps F1, F2 : K → K ′ are equivalent if for each T ∈ T , F1(T ) = F2(T )

and there exists γ ∈ S(F1(T )) such that F2

∣∣
T
= γ ◦ F1

∣∣
T
.

Remark 2. With the notion of equivalence given above, the set of combinatorial maps from

an orbifold triangulation to itself, i.e. the orbifold triangulation’s “combinatorial automor-

phisms”, forms a group.

G, S, and E suggest a natural way of trying to put an orbifold structure on X̂(K). We

might actually have to remove some vertices from X̂(K) to get an orbifold. To explain this,

we now define the “link” of a vertex of an orbifold triangulation.

Let v be a quotient vertex of X̂(K). Represent the set of vertices of K mapping to

v under the quotient map as {(vi, Tj)}, where the pair (vi, Tj) corresponds to vertex vi of

tetrahedron Tj. Each (vi, Tj) has a corresponding triangular cross section ti,j, and the set of
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all triangular cross sections is naturally decorated with combinatorial data coming from Q.

In particular, each vertex of ti,j is labelled with the corresponding edge label of Tj, if S(Tj)

has the order 3 symmetry fixing vi then ti,j is labelled with the order 3 symmetry group,

and the face gluings of the tetrahedra induce edge gluings of the triangles. The quotient of

{ti,j} under all symmetries and edge gluings admits a natural orbifold structure. We call

this orbifold the link of v.

Let X(K) = X̂(K)− V, where V is the set of quotient vertices of X̂(K) whose links do

not admit spherical geometric structures.

Proposition 1. For K an orbifold triangulation without boundary, X(K) admits a natural

orientable orbifold structure inherited from K. A combinatorial map f : K → K ′ induces

an orbifold covering map X(F ) : X(K) → X(K ′).

Proof. Let x be a point in a tetrahedron T of K. We can define a chart around the image

of x in X(K), depending on whether x lies in the interior of T, the interior of a face, the

interior of an edge, or is a vertex with a spherical link. In all cases, the local group actions

are orthogonal.

If x is in the interior of T , we may choose a small open neighborhood U ⊂ T of x such

that for all γ ∈ S(T ), if γ(x) = x then γ(U) = U, and otherwise γ(U)∩U = ∅. The projection

of this U to X(K) gives an orbifold chart, whose local group is the stabilizer of x in S(T ).

Now suppose x lies in the interior of a face f of T. Because K is without boundary, f

must either be glued to itself or some other face, perhaps after applying a symmetry of T.

The kind of chart we take for x depends on whether f is glued to itself or not, and where x

is located in f. For example, the case of largest local group is when f is glued to itself, S(T )

has the order 3 symmetries rotating f, and x is the fixed point of these rotations. Then a

chart corresponding to x is an open ball with the order 6 dihedral group acting on it, with

fixed point x. The other cases are examined similarly.

If x is in the interior of an edge e of T, there are again several possibilities for a chart.

Of course if the edge label E(e, T ) = k > 1, then the local group of x should at least contain

order k rotations. It could also be the case that a face of T is glued to itself by a face gluing

map which restricts to an involution of e, having a unique fixed point p, or S(T ) could have
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the order two symmetry which preserves e, restricting to e as that same involution. Or it

could be that some other tetrahedron which has an edge glued to e has such a face gluing

map or symmmetry. In this case, if x is p we can make a chart corresponding to x whose

local group is a dihedral group of order 2k. If x is not p, its local group will just be the order

k rotations, regardless of these involutions.

Suppose x is a vertex of T with a spherical link. Then, as is standard, we can choose a

chart for x whose local group is the fundamental group of the link. In particular, by Theorem

4, the link is the quotient of S2 by a finite group of isometries, which naturally extend over

the unit ball to give a local model.

It is immediate from the definition that a combinatorial map f : K → K ′ induces a

continuous map X(f) : X(K) → X(K ′). By the construction given above of the natural

orbifold structures for X(K) and X(K ′), X(f) must be a covering map.

From now on, we view X(K) as an orbifold, rather than just a topological space.

3.2 Polyhedral decompositions and philosophy of local modifications

We can naturally extend the definition of an orbifold triangulation to an orbifold polyhe-

dral decomposition, as a set of polyhedra with face gluing data, symmetries, and edge labels.

Just as with triangulations, there is a notion of a combinatorial map and a quotient orbifold.

As the definition of an orbifold polyhedral decomposition is similar to the definition of an

orbifold triangulation, given in in the previous section, we will not write it down in more

detail.

We might try to turn a polyhedral decomposition into a triangulation by subdividing

each polyhedron into tetrahedra. For example, in figure 5 we have a triangular bipyramid

labelled with the order 3 symmetry group fixing the opposite vertices, and we show two

natural subdivisions. Recall from Section 2.5 that they correspond to the 2 → 3 and 3 → 2

Pachner moves. For the decomposition into two tetrahedra, we must give each of the two

new tetrahedra the corresponding order 3 symmetry group. For the decomposition into three

tetrahedra, all three of them belong to the same orbit under the action of the symmetry
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3

Figure 5: Triangulating a polyhedron which has symmetries.

group. Hence, we should just take one of these tetrahedra, label the edge in the interior of

the bipyramid with the edge label 3, and glue the two faces adjacent to that edge as indicated

in the figure.

In order for this to make sense, it is important that the subdivision be invariant with

respect to the symmetries of the polyhedron. In figure 6, if the square base has no symmetries

(or even an order 2 symmetry), then the indicated subdivision is possible. But if it is labelled

with the order 4 symmetry, then no triangulation of it is invariant, if the triangulation is

required to have the same vertex set. If we are okay with introducing new vertices, then the

barycentric sub-division of a polyhedron is always invariant with respect to any symmetries.

The newly introduced vertices are finite, not ideal, which might not be desirable.

In both examples, the result is a different representation of the same orbifold. We will

often locally modify an orbifold triangulation in this way:

1. Recognize some part of the triangulation as an invariant triangulation of a polyhedron
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Figure 6: It may not be possible to invariantly triangulate a polyhedron.

with symmetries.

2. Triangulate that polyhedron in a different way. We may or may not choose to change

the vertex set.

3. The result is a new orbifold triangulation of the same orbifold.

This is a general description of an orbifold Pachner move, which we will discuss in more

detail in Chapters 5 and 6.

3.3 Hyperbolic orbifold triangulations

We can view an orbifold triangulation K as “geometric” if we assign to each tetrahedron

the structure of some hyperbolic ideal tetrahedron. However, we are not guaranteed that the

hyperbolic tetrahedra consistently glue up to induce a well-defined and complete hyperbolic

structure on X(K). We could try to define some kind of consistency and completeness
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equations in analogy with the manifold case, which would hopefully guarantee a complete

hyperbolic structure on X(K). However, for us it is more convenient and on theme to work

with “geometric” orbifold triangulations arising from ideal tiling-group pairs (defined in

Section 2.4.3).

Let (T ,Γ) be an ideal tiling-group pair with Γ finite co-volume and orientation-preserving.

Lemma 1. The action of Γ on the set of polyhedra of T has finitely many orbits.

Proof. Let Q = H3/Γ, let p : H3 → Q be the universal covering map, and let Q≥ϵ be

the ϵ-thick part of Q, where ϵ is any positive number smaller than the Margulis constant.

Because Q≥ϵ is compact, there is a compact ball B ⊂ H3 such that Q≥ϵ ⊂ p(B). For every

polyhedron P of T , we must have that p(P ) ∩Q≥ϵ ̸= ∅. This means there must exist γ ∈ Γ

such that γ(P ) ∩ B ̸= ∅. Because T is locally finite, the set of all polyhedra intersecting B

is finite, so we conclude that the action of Γ on T must have finitely many orbits.

Choose one polyhedron from each of these finitely many orbits, P1, . . . , Pn. The group

Γ gives instructions to define an orbifold polyhedral decomposition K such that X(K) is

H3/Γ. Each face of each Pi is adjacent to some polyhedron which is mapped to a Pj by an

element of Γ, which gives the face gluing data. The stabilizer in Γ of each Pi is a finite group

which becomes the symmetry group of Pi. The orders of the stabilizers in Γ of each edge of

each Pi become the edge labels. K is uniquely determined by (T ,Γ) up to combinatorial

isomorphism. Any orbifold polyhedral decomposition K which arises from an ideal tiling-

group pair in this way we call a hyperbolic orbifold polyhedral decomposition. If the ideal

tiling is actually a triangulation, hence K is an orbifold trangulation, then we call K a

hyperbolic orbifold triangulation.

Note that if all edges are labeled 1, all symmetry groups are trivial, and no face is

glued to itself, then a hyperbolic orbifold triangulation is a geometric ideal triangulation

of a manifold. For that reason, any geometric ideal triangulation of a finite-volume cusped

hyperbolic 3-manifold is an example of a hyperbolic orbifold triangulation. For another

example, take the tetrahedron in figure 4 to be regular. This turns out to be the orbifold

H3/PGL2(O3), which we will have more to say about in Chapter 7.
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We should emphasize that, in a hyperbolic orbifold triangulation, the symmetries a

tetrahedron is labelled with will necessarily be isometries. So, for example, a tetrahedron

which is not regular cannot be labelled with all possible combinatorial symmetries. On the

other hand, the symmetry group attached to the tetrahedron need not be the full group of

isometries of the tetrahedron, e.g. a regular tetrahedron might only be labelled with the

trivial group.

There is a correspondence between isometries preserving tiling-group pairs and combi-

natorial maps.

Proposition 2. Let (T ,Γ) and (T ′,Γ′) be finite co-volume orientable ideal tiling-group pairs

with corresponding hyperbolic orbifold polyhedral decompositions K and K ′. Let g ∈ Isom(H3)

be an isometry which maps T to T ′ and conjugates Γ to a subgroup of Γ′. Then g induces a

combinatorial map f : K → K ′ such that g is a lift of X(f). Conversely, every combinatorial

map f : K → K ′ is induced by such an isometry g. In the specific case that T = T ′ and

Γ = Γ′, the group of combinatorial automorphisms of K is isomorphic to G/Γ, where G is

defined by

G = {g ∈ Isom(H3) : g preserves T and normalizes Γ}.

Proof. Let (T ,Γ), (T ′,Γ′), K,K ′ and g be as in the statement of the proposition. Because

g maps T to T ′ and conjugates Γ to Γ′, each Γ-orbit of T maps to a Γ′-orbit of T ′. Hence

g induces a map from the tetrahedra of K to the tetrahedra of K ′. Again using that g

conjugates Γ to Γ′, we easily see that this satisfies the criteria for being a combinatorial

map, which we call f. By construction, g is a lift of X(f).

Now suppose f : K → K ′ is a combinatorial map. Then X(f) : X(K) → X(K ′)

is a covering map. So we can pull back the hyperbolic structure on X(K ′) = H3/Γ′ to a

hyperbolic structure on X(K) = H3/Γ. By Mostow-Prasad rigidity, this hyperbolic structure

must be isometric to the original hyperbolic structure on H3/Γ, so there must be an isometry

g ∈ Isom(H3) such that g conjugates Γ to a subgroup of Γ′ and g is a lift of X(f). This

implies that g maps T to T ′.

To prove the last part of the proposition, let A be the group of combinatorial automor-

phisms of K. By the first part of this proof there is a surjective map G → A. Clearly this
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map is a group homomorphism and its kernel is Γ, so we are done.
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4.0 Defining the canonical decomposition

Let M be a finite-volume cusped hyperbolic 3-manifold with p cusps. Let C1, . . . , Cp

be a choice of cusp neighborhoods for those cusps. In [15], Epstein and Penner gave a con-

struction which associates to C1, . . . Cp a particular decomposition ofM into hyperbolic ideal

polyhedra, which we call the Epstein-Penner decomposition corresponding to C1, . . . , Cp. Dif-

ferent choices of cusp neighborhoods can in general give different decompositions, although

we make the following remarks.

1. Uniformly shrinking or expanding the cusp neighborhoods gives the same decomposition.

For that reason, we think of there being a (p − 1)-parameter, rather than p-parameter,

family of Epstein-Penner decompositions of M . In particular, if M has one cusp then it

has exactly one Epstein-Penner decomposition.

2. For p > 1, there are infinitely many choices of the p − 1 parameters. However, they

do not correspond to all different decompositions. There are only finitely many possible

Epstein-Penner decompositions which can arise, see [5].

The Epstein-Penner decomposition resulting from choosing all cusp neighborhoods to

have the same volume is called the canonical decomposition. It is uniquely determined by

the hyperbolic metric, since any dependence on cusp neighborhoods has been thrown out.

The self-isometry group of a finite-volume cusped hyperbolic 3-manifold can be read off

Figure 7: Cusp neighborhoods of cusped hyperbolic manifolds.

29



from its canonical decomposition, as it is just the decomposition’s group of combinatorial

automorphisms. Furthermore, two such manifolds are isometric if and only if they have the

same canonical decomposition.

The goal of Section 4.1 is to describe Epstein-Penner’s construction, and in the process to

show that the construction still makes sense for orbifolds by proving the following theorem.

Theorem 7. Let Q be a finite-volume cusped hyperbolic 3-orbifold. The Epstein-Penner

construction still applies to Q, and the canonical decomposition it provides is a hyperbolic

orbifold polyhedral decomposition. The self-isometry group of Q is equal to the group of

combinatorial automorphisms of this decomposition. Two orbifolds are isometric if and only

if they have combinatorially isomorphic canonical decompositions.

In Section 4.2, we define the tilt of a face of a tetrahedron, following Weeks. We can use

tilts to determine if a given hyperbolic orbifold triangulation is the canonical decomposition

or not. To account for the fact that the canonical decomposition might not be a triangulation,

we define proto-canonical triangulations in Section 4.3. In that case, we would like to work

with a naturally defined sub-triangulation of the canonical decomposition, which we define

in Section 4.4.

4.1 The convex hull construction

The construction is valid in any dimension, but our outline will be for dimension 3. We

work in the hyperboloid model of Minkowski space. A good introduction to this model is

in Ratcliffe’s book [35]. Four-dimensional Minkowski space, M4, is R4 equipped with the

bilinear form

⟨x, y⟩ = x0y0 + x1y1 + x2y2 − x3y3.

The hyperboloid

{x ∈M4 : ⟨x, x⟩ = −1}

has two sheets, one for x3 ≥ 1, and the other for x3 ≤ −1. Denote the upper sheet as H3. It

is a model for 3-dimensional hyperbolic space if we give it the Riemannian metric induced
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by ⟨·, ·⟩ (the bilinear form induces a positive definite inner product on each tangent space of

the upper sheet).

The light cone L is defined to be

L = {x ∈M4 : ⟨x, x⟩ = 0.}

The positive light cone L+ is the set of points of L with x3 > 0. To every point v ∈ L+ there

corresponds a horoball {x ∈ H3 : 0 > ⟨x, v⟩ ≥ −1}, and this correspondence is a bijection.

The Lie group of linear isomorphisms of M4 preserving ⟨·, ·⟩ is called O(3, 1). Of course

every such map either takes H3 to itself or swaps it with the lower sheet. Let O+(3, 1) be

the subgroup which preserves H3. Then O+(3, 1) is actually equal to the isometry group of

H3. Let SO+(3, 1) < O+(3, 1) be the subgroup which preserves the orientation of M4. Then

it will also preserve the orientation of H3 and so is equal to Isom+(H3).

Let Γ < O+(3, 1) be discrete such that H3/Γ has finite volume. Then Γ acts in a nice,

discrete, i.e. properly discontinuous, way on H3, but acts ergodically on ∂H3, which can be

thought of in this model as the projectivization of L+. In general, Γ also acts in a non-discrete,

“heavily mixing” way on L+, however we do have the following surprising fact.

Theorem 8 ([15], Thm 2.4). Suppose v ∈ L+ has non-trivial stabilizer in Γ. Then the orbit

of v under Γ is discrete in M4 and does not accumulate at 0.

Such a v must be fixed by some parabolic isometry in Γ. So in that case H3/Γ has at

least one cusp, and in fact the horoball {x ∈ H3 : 0 > ⟨x, v⟩ ≥ −1} projects to a cusp

neighborhood of that cusp (perhaps not embedded). For any t > 0, tv will also be fixed by

that parabolic isometry, and its horoball will project to another neighborhood of that cusp,

different from the one for v if t ̸= 1. In particular, the area of the boundary of the cusp

neighborhood is scaled by 1/t2. In summary, a cusp neighborhood in H3/Γ corresponds to

the orbit under Γ of some v ∈ L+, and that orbit is as described by Theorem 8.

Assume from now on that H3/Γ has finite volume and at least one cusp. Label the cusps

C1, . . . , Cp. Each Ci corresponds to a Γ-orbit in the light cone, Γ.vi. By Theorem 8, the set

V defined by V = ∪i(Γ.vi) is discrete and does not accumulate at 0. Let C be the closed

convex hull of V.
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Theorem 9 (Proposition 3.5, [15]). The boundary of C in M4 is the union of {tv : v ∈

V, t ≥ 1} and a countable set of 3-dimensional faces F1, F2, . . . . Each Fi is the convex hull

of a finite number of points in V. The set of faces {Fi} is locally finite in the interior of

the light cone. The affine hull Ai of Fi is Euclidean, and the intersection of Ai with L
+ is

spherical with respect to the Euclidean structure on Ai.

Now the idea is to “project” ∂C to H3, mapping each Fi to an ideal polyhedron and

resulting in a Γ-invariant tiling of H3, i.e. an ideal tiling-group pair. We record this more

precisely as follows.

Fact 1. For a fixed i, let v0, v1, . . . , vn ⊂ V be the points whose convex hull is Fi. The set

Fi − V projects injectively along rays through the origin to a convex ideal polyhedron Pi in

H3 whose ideal vertices are the projective classes of the vj. It follows from the fact that the

affine hull Ai of Fi is Euclidean that Pi cannot be flat. The projection of each Fi − V for all

i results in a Γ-invariant ideal tiling of H3 by non-flat ideal polyhedra.

We call this the canonical Γ-invariant tiling with respect to C1, . . . , Cp. Since shrinking

or expanding all these neighborhoods by the same amount corresponds to multiplying every

element of V by the same scalar, which does not change the tiling, we can assume that one

cusp neighborhood is fixed. Thus, if H3/Γ has p cusps, then there is a p−1 parameter family

of Γ-invariant tilings. The tiling resulting from choosing all cusp neighborhoods to have the

same volume we simply call the canonical Γ-invariant tiling.

If Γ acts freely on H3, i.e. H3/Γ is a manifold, then the universal covering map H3 →

H3/Γ restricts to an embedding on the interior of each polyhedron of a canonical tiling.

Hence the tiling descends to a decomposition of the manifold. This is the Epstein-Penner

decomposition of H3/Γ corresponding to C1, . . . , Cp..

If Γ does not act freely, then H3/Γ is not a manifold, but an orbifold with non-trivial

singular locus, and the canonical tiling does not necessarily map down to a decomposition

of the underlying space of H3/Γ. For instance, Γ could contain an isometry which maps one

of the polyhedra in the tiling to itself non-trivially, hence the restriction of the universal

covering map to that polyhedron is not an embedding. In the case that Γ does not act freely,

we still have the p − 1 parameter family of Γ-invariant canonical tilings, but in what sense
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do they give decompositions of the quotient orbifold?

As discussed in Section 3.3, an ideal tiling-group pair corresponds to a unique orbifold

polyhedral decomposition. So, let us call the orbifold polyhedral decomposition correspond-

ing to the canonical Γ-invariant tiling the canonical decomposition of H3/Γ. This proves the

first part of Theorem 7. To prove the rest, we use the following lemma.

Lemma 2. Let Q = H3/Γ, Q′ = H3/Γ′ be finite-volume cusped hyperbolic 3-orbifolds. Let

T and T ′ be the canonical invariant tilings of Γ and Γ′ respectively. For any isometry

g ∈ Isom(H3) lifting an isometry Q→ Q′, g must map T to T ′.

Proof. Fix cusp neighborhoods of Q and Q′ all of the same volume. Lift the cusp neighbor-

hoods of Q to a horoball packing H of H3, and lift the cusp neighborhoods of Q′ to a horoball

packing H ′ of H3. Because g is a lift of an isometry Q → Q′, and because the original cusp

neighborhoods all had the same volume, g must map H to H ′. Hence it maps the points on

the light cone corresponding to H to the points on the light cone corresponding to H ′, so it

preserves their convex hulls and therefore maps T to T ′.

Let K and K ′ be the canonical decompositions of finite-volume cusped hyperbolic 3-

orbifolds Q and Q′ respectively. Suppose there is a combinatorial isomorphism from K to

K ′. By Proposition 2, this must be an isometry. Conversely, suppose Q is isometric to Q′.

The isometry must lift to H3, and by the previous lemma, it must preserve the canonical

tilings. Hence, by Proposition 2, the original isometry of orbifolds must have actually been

a combinatorial map from K to K ′, hence K and K ′ are combinatorially isomorphic.

Now we want to show the self-isometry group of Q = H3/Γ is equal to the group of

combinatorial automorphisms of K. By Proposition 2 again, the group of combinatorial au-

tomorphisms of K is isomorphic to G/Γ, where G ⊂ Isom(H3) is the group of isometries

which normalize Γ and preserve the tiling corresponding to K. As K is the canonical de-

composition, by the lemma every isometry of H3 lifting a self-isometry of Q must preserve

the tiling corresponding to K. Hence G is the full normalizer of Γ. Therefore the group of

combinatorial automorphisms of K is isomorphic to the normalizer of Γ mod Γ, but that is

exactly the self-isometry group of Q.
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4.2 Tilt

For motivation for the following definitions, see Section 3 of the paper by Weeks [43].

Let v0, v1, v2, v3 be points on L
+ which are linearly independent (equivalently, we suppose

the ideal tetrahedron in H3 whose vertices v0, v1, v2, v3 correspond to is not flat). Denote

their convex hull conv{v0, v1, v2, v3} as T. Let A be the affine hull of T, i.e. A = v0+span{v1−

v0, v2 − v0, v3 − v0}. Define pT ∈ M4 to be the unique vector satisfying ⟨pT , v⟩ = −1 for all

v ∈ A. For each i, let fi be the face opposite vi. Define nT,fi ∈ M4 to be the unit vector

orthogonal to span({v0, v1, v2, v3} \ {vi}). and satisfying ⟨nT,fi , vi⟩ < 0.

Definition 6. The tilt of T relative to fi is ⟨pT , nT,fi⟩.

Suppose Γ < Isom+(H3) is discrete and finite co-volume, C1, . . . , Cp are fixed cusp neigh-

borhoods of H3/Γ, and T is a Γ-invariant tiling of H3 by hyperbolic ideal tetrahedra. Let

V ⊂ L+ be the points on the light cone corresponding to C1, . . . , Cp, as defined in the pre-

vious section. There is a bijection between the ideal vertices of T in ∂H3 and the set V. For

each tetrahedron T of T , define the V -lift of T to be conv{v0, v1, v2, v3}, where v0, v1, v2, v3
are the elements of V corresponding to the vertices of T . Define the tilt of a tetrahedron T

of T relative to one of its faces f to be the tilt of the V -lift of T relative to the V -lift of f.

Denote this number as tilt(T, f).

Theorem 10 (Weeks). T is the canonical Γ-invariant tiling with respect to C1, . . . , Cp if for

any tetrahedra T, T ′ of T having a shared face, f, we have

tilt(T, f) + tilt(T ′, f) < 0.

If all tilt sums are non-positive and at least one is 0, then the canonical tiling has some

polyhedra which are not tetrahedra. The canonical tiling is obtained from T by removing all

faces with tilt sum equal to 0.

Each cusp neighborhood Ci of H3/Γ lifts to horoballs in H3. The boundary of such a

horoball, a horosphere, intersects each tetrahedron of T in a vertex cross section. This is

just a triangle, and the metric induced on it by the hyperbolic metric is Euclidean. Weeks
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Figure 8: The horosphere intersects the ideal tetrahedron in a vertex cross section.

showed that we can compute the tilts of a tetrahedron in terms of its geometry and the

geometry of its vertex cross sections.

Theorem 11 ([43], Thm 5.1). Let T be a tetrahedron of T . The tilt of T relative to each of

its faces may be computed as
t0

t1

t2

t3

 =


1 − cos θ01 − cos θ02 − cos θ02

− cos θ10 1 − cos θ12 − cos θ13

− cos θ20 − cos θ21 1 − cos θ23

− cos θ30 − cos θ31 − cos θ32 1




R0

R1

R2

R3


where ti is the tilt relative to the face opposite vertex i, Ri is the circumradius of vertex cross

section i, and θij is the dihedral angle of the edge from vertex i to vertex j.

Warning: recall from the beginning of this section that tilt is not defined for flat tetra-

hedra. Hence, we cannot compute the tilts of flat tetrahedra. This is even reflected in the

formula above, as a flat tetrahedron has flat triangles as vertex cross sections, which have

“infinite circumradius”. However, that is okay, because a canonical tiling cannot have flat

tetrahedra, as we noted after Theorem 9. This means that if we want to check if a tiling-group

pair is canonical, and it has some flat tetrahedra, then checking tilts is not necessary—we

already know it is not canonical. Nevertheless, flat tetrahedra do play an important role

when hunting for canonical decompositions, which we will see very soon.
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4.3 Proto-canonical triangulations

In this section, we fix an ideal tiling-group pair (T ,Γ) with T a triangulation, Γ orientation-

preserving and finite co-volume, and K the associated hyperbolic orbifold triangulation. Up

to now, we have thought of tilt as a quantity associated to a face of a tetrahedron of T . We

can also work in K. We would like to know, just from looking at K, if T is the canonical

Γ-invariant tiling. First, construct equal-area cusp cross-sections for K.

1. Pick an arbitrary vertex v of an arbitrary tetrahedron T of K. Place a cross section at

that vertex, i.e. choose any triangle from the Euclidean triangle similarity class of vertex

cross sections at v. This triangle will determine the other cusp cross sections for this

cusp, as follows.

2. Any vertex of T which is mapped to v by a symmetry of T is assigned its cusp cross

section, by pulling back the cross section of v using the symmetry. Suppose a face f of

T, containing v, is glued to a face f ′ of a tetrahedron T ′. This determines a vertex cross

section for the vertex v′ of T ′ which is mapped to v by this face gluing.

3. Determine the other vertex cross sections for this cusp in a similar way, using symmetries

and face gluing maps. After building all cross sections for this cusp, do the same for all

other cusps. The result is a choice of cusp neighborhoods, in terms of the data of its

boundary as a collection of Euclidean triangles for each vertex of K.

4. Because of our arbitrary choice of an initial cross section for each cusp, the cusp neigh-

borhoods created do not necessarily have the same volume. Equivalently, the areas of

the boundaries of the cusps are not necessarily the same. Compute the areas of each

cusp boundary and scale so that all cusp boundaries have area 1 (or some other number,

if convenient). For a manifold, the area of the cusp boundary is just the sum of the areas

of all the vertex cross sections. For an orbifold, we have to be mindful of the symmetries.

If a vertex lies in a tetrahedron having the order 3 symmetry fixing that vertex, we must

divide the area of its vertex cross section by 3. Similarly, only one vertex from each orbit

of symmetries contributes area to the cusp boundary.

Once we have computed vertex cross sections bounding equal-volume cusp neighborhoods
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with the method just described, we can compute tilts using Theorem 11. Let f be a quotient

face of K. Let fi be a face of a tetrahedron Tj such that fi maps to f in the quotient

map. Glued to fi is some face fi′ of a tetrahedron Tj′ . Define the tilt sum of f to be

tilt(Tj, fi) + tilt(Tj′ , fi′).

Definition 7. Let f be a quotient face of K. Say that f is concave/convex/transparent if

its tilt sum is positive/negative/zero. Let e be a quotient edge of K. Say that e is con-

cave/convex/transparent if every face containing e is concave/convex/transparent.

By Section 4.2, we have:

Remark 3. If every quotient face of K is convex, then K lifts to the canonical Γ-invariant

tiling, so K is the canonical decomposition of H3/Γ.

If the canonical decomposition is not a triangulation, then of course any given hyperbolic

orbifold triangulation could not be the canonical decomposition. However, it could be a

sub-division of the canonical decomposition. In the manifold case, the authors of [16] call

such a triangulation a geometric proto-canonical triangulation. Before we can define “proto-

canonical” for orbifolds, we need to highlight the kind of flat tetrahedra which we allow to

appear.

Definition 8. Let T0 be a flat tetrahedron in the hyperbolic orbifold triangulation K. We

say T0 is admissible if either of the following two conditions are satisfied.

1. T0 has an order 2 symmetry group and tilt(T1, f)+ tilt(T2, f
′) < 0, where T1, T2, f, f

′ are

described as follows. Up to re-numbering the vertices of T0 and adjusting its face gluing

data using the symmetry, T0 is glued to the non-flat tetrahedron T1 along vertices v0, v2,

and v3, and T0 is glued to the non-flat tetrahedron T2 along vertices v0, v1, v2, as in figure

9. Let f be the face of T1 glued to f1 of T0 and f ′ the face of T2 glued to f0 of T0.

2. T0 has an order 4 symmetry group and tilt(T1, f) < 0, where T1 and f are defined as in

the previous condition.

We must accept the possibility that, for a given canonical Γ-invariant tiling, any other

Γ-invariant tiling by ideal tetrahedra which is a subdivision of the canonical tiling has flat

tetrahedra. For example, suppose a polyhedron in the canonical tiling is an ideal cube, and

Γ contains an order 2 rotation γ which maps a face of the cube to itself by rotation around
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Figure 9: The setup for an admissible flat tetrahedron.

an axis connecting a pair of opposite edges of the face. An ideal triangulation of the cube

gives a triangulation of the face, with the same four vertices, and this triangulation cannot

possibly be invariant with respect to γ. However, we could insert a flat tetrahedron for the

face of the cube, with an order 2 symmetry corresponding to γ, similar to figure 9. This is

an admissible flat tetrahedron, and it fixes the problem of being invariant with respect to γ.

Definition 9. We say a hyperbolic orbifold triangulation K is proto-canonical if:

1. Every quotient face of X(K) which does not belong to a flat tetrahedron is convex or

transparent, and

2. Every flat tetrahedron is admissible.

We now make a remark about how this definition connects to the definition of proto-

canonical in [16]. By our definition, if X(K) is a manifold, then K cannot have any flat

tetrahedra at all if it is proto-canonical. By contrast, the authors of [16] allow proto-canonical

triangulations to have some flat tetrahedra. Hence our definition of “proto-canonical” is

actually a generalization of their definition of “geometric proto-canonical”.
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4.4 The canonical re-triangulation

Suppose the canonical decomposition is not a triangulation. We would still like to view

it as a triangulation in some way, because this is more convenient when it comes to program-

ming. For that reason, we define the canonical re-triangulation of the canonical decomposi-

tion. This is the generalization to orbifolds of the definition for manifolds given in [16]. The

point is that a proto-canonical triangulation is some arbitrary sub-division of this canonical

decomposition, and we would like to have a canonical sub-divison instead.

Let P be a convex hyperbolic ideal polyhedron with an assigned finite group of orientation

preserving isometries Γ of it. We define a barycenter of P to be any point in the interior

of P which is fixed by every element of Γ. Such a point must exist, see Part 2, Chapter 2,

Proposition 2.7 of [9]. If Γ is trivial, then we allow the barycenter to be any point in the

interior of P.

Definition 10. Denote the polyhedra of the canonical decomposition as P1, . . . , Pn. For each

Pi, introduce a finite vertex at a barycenter, then cone the boundary of Pi to this vertex.

We now have a sub-division of Pi which is invariant with respect to the symmetries of Pi.

Some of the cells of this sub-division may be mapped to each other by symmetries. Take

one cell from each orbit, call these choices Ci,1, . . . , and note that each Ci,j has exactly

one face which is an external face of Pi. This external face may be glued to itself, or to

another face of Pi, or to a face of some other cell. So there is some Ck,ℓ such that it and

Ci,j are glued to each other at this external face (possible after applying a symmetry of Pk).

Remove this external face to get a cell which is just the union of Ck,ℓ and Ci,j, which we

call a diamond. See figure 10. The diamond inherits symmetries from Ck,ℓ and Ci,j, and

if k = i and ℓ = j then it inherits the symmetry corresponding to the face gluing map.

Over all such pairs of Ck,ℓ and Ci,j, create all diamonds. We call the result the diamond

sub-division of the canonical decomposition. Triangulate each diamond in the natural way,

by connecting the finite vertices with an edge, and having one tetrahedron for each edge

which belonged to the external face. Then, as usual, if the diamond has symmetries, take

just one tetrahedron from each orbit. The resulting orbifold triangulation is defined to be

the canonical re-triangulation.
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Ci,j

Ck,ℓ

Figure 10: A diamond.

We now give an example. Consider the triangulated orbifold of figure 11. The tetrahedron

on the left has all symmetries, and the one on the right has just the symmetries which

preserve their shared face. The face of the tetrahedron on the right is glued to itself by

rotation around the red axis. If we make both tetrahedra regular, then this is a hyperbolic

orbifold triangulation (it is O5 in the census of chapter 7). It is proto-canonical, but not

canonical, because the quotient face shared by the two tetrahedra is transparent and the

one other quotient face is convex. If we add a copy of the right tetrahedron to each other

face of the left tetrahedron, we get a triangulated cube. See figure 12. Since the inner

faces are transparent, the canonical decomposition must be the cube, equipped with all the

symmetries which preserve the inner tetrahedron, with each face glued to itself by π rotation

around a diagonal, and with edge labels corresponding to the labels of the tetrahedra.

We now compute the canonical re-triangulation of this canonical decomposition. There

is a single cell, the cube P. When we introduce a finite vertex and cone to it, we get six new

cells, one for each face of P . They all belong to the same orbit, so we just take one of them,

call it C. Its data is described in figure 13.

The external face is glued to itself. To make the diamond, we glue a copy of C to itself

along that face and make sure to add the symmetry corresponding to the face gluing map.

After triangulating the diamond, all four tetrahedra belong to the same orbit, so we just

take one of them. Its data is in figure 14. This is the canonical re-triangulation.
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Figure 11: The proto-canonical triangulation of O5.

Figure 12: A triangulation of a cube is determined by the choice of inner tetrahedron.
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Figure 13: The orbifold polyhedral decomposition which results from coning the cube’s

boundary.
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Figure 14: The canonical re-triangulation.
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5.0 Canonize part one: finding a proto-canonical triangulation

Now that we have defined the canonical decomposition of an orbifold, we turn to the

task of computing it. Our goal is to generalize SnapPy’s algorithm for computing canonical

decompositions of manifolds, which is called canonize. Over the course of this chapter and

the next, we describe how we have done this, justifying the following theorem.

Theorem 12. There is a “canonize” algorithm for orbifolds, which generalizes SnapPy’s

corresponding algorithm for manifolds. Implemented in Sym, it has successfully computed

the certified canonical decompositions of all 336 orbifolds which cover H3/PGL(2, O3) up to

covering degree 48.

For an explanation of what we mean by certified, see the end of the next section.

Our “canonize” follows very closely the structure of SnapPy’s “canonize”. The input of

the algorithm is a hyperbolic orbifold triangulation of some finite-volume cusped hyperbolic

3-orbifold Q. If the canonical decomposition of Q is a triangulation, then the output of the

algorithm should be that triangulation. Otherwise, the output should be the canonical re-

triangulation of the canonical decomposition, as defined in Section 4.4. Like SnapPy, our

algorithm is not guaranteed to work, although it has for every example we have tried.

For the most part, it really is a generalization. If we plug in a hyperbolic orbifold

triangulation which happens to be a triangulation of a manifold, then it should try to compute

the canonical decomposition in the same way as SnapPy. The only difference is that SnapPy

will try to randomly change the triangulation if it gets stuck, whereas ours will halt and

raise an error.

Just like SnapPy’s canonize, we split our canonize algorithm into two parts. In canonize

part one, we attempt to turn a given hyperbolic orbifold triangulation into a proto-canonical

triangulation using a set of orbifold Pachner moves. If this proto-canonical triagulation is not

the canonical decomposition, i.e. the canonical decomposition is not a triangulation, then

we attempt to turn this proto-canonical triangulation into the canonical re-triangulation in

canonize part two. We explain canonize part one in this chapter, and canonize part two in
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the next.

5.1 The algorithm

Let K be a hyperbolic orbifold triangulation. First, we set equal-volume cusp neighbor-

hoods, then we compute tilts as described in Section 4.3. From the tilts, we know if K is

proto-canonical or not. If it is proto-canonical, then we are done with canonize part one.

Otherwise, there is either a quotient face which is concave or a flat tetrahedron which is

not admissible. In either case, our plan is to make some modification to K, turning it into a

new triangulation K ′ of the same orbifold which we hope is closer to being proto-canonical.

The tools we have to make these moves are orbifold Pachner moves, described in the next

sections.

The structure of the canonize part one algorithm is then very simple. Search for anywhere

in K = K0 where some orbifold Pachner move would give us progress, meaning doing the

move would remove a concave face/edge, or would remove a non-admissible flat tetrahedron.

If there is such a move, do it, re-compute tilts for this new triangulation K1, and again try to

do any move which would make progress. Continue in this way, possibly creating many new

triangulations K1, K2, . . . . If at some point we cannot make progress, hopefully it is because

our current triangulation Kn is already proto-canonical. Check this, and if so then we are

done. If not, and there are no moves we can do to make progress, then we give up and raise

an error.

As is often the case in computational mathematics, we need to worry about rounding

errors. Edge parameters are complex numbers, and if we naively represent them as pairs

of rounded floating point numbers, then there could be errors when we compute tilts. This

is already an issue which SnapPy has to deal with for manifolds, and there are no new

complications coming from working with orbifolds. For SnapPy’s approach to dealing with

this problem, we refer the reader to its documentation [13]. In this work, we are most in-

terested in finding canonical decompositions of orbifolds commensurable to the figure-eight

knot complement, as described in Chapter 7. For such orbifolds, it turns out that the edge
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parameters of the tetrahedra of any hyperbolic orbifold triangulation must lie in the finite

field extension Q(
√
−3). It is easy to represent the elements of this field in an exact form.

Because of the simplicity of the tilt formula Theorem 11, we can then represent the tilts of

such tetrahedra in an exact form as well. The result is that, in this commensurability class,

we can be sure if we have a proto-canonical triangulation or not. These methods are de-

scribed in Fominykh-Garoufalidis-Goerner-Tarkaev-Vesnin [16], where they certify canonical

decompositions of tetrahedral manifolds. Sym uses Goerner’s implementation of this exact

arithmetic. As a result, when Sym finds a proto-canonical triangulation of an orbifold in

this commensurability class, it is certified, meaning we know with certainty that it is proto-

canonical, and there were no rounding errors. For orbifolds not in this commensurabilty

class, other methods should be used, and will be incorporated into Sym in the near future.

We now describe the orbifold Pachner moves used by canonize part one. We note that in

order to try to remove non-admissible flat tetrahedra we use either a cancellation move or a

special 4 → 4 move. All other moves in this chapter are used to remove a concave face/edge

which does not belong to a flat tetrahedron.

5.2 The two-to-three and three-to-two moves

The 2 → 3 and 3 → 2 moves re-triangulate a triangular bipyramid. We already showed

the two possible triangulations in Section 2.5. In the orbifold setting, the bipyramid might

have some symmetries. We will describe the cases of the 2 → 3 move, where each case

corresponds to a group of symmetries of the bipyramid. The 3 → 2 move reverses the 2 → 3

move, so there is a self-explanatory 3 → 2 move for each case of the 2 → 3 move.

1. Case 0. In this case, the bipyramid has no non-trivial symmetries. Two distinct tetrahe-

dra are glued along a pair of faces, and we re-triangulate as in figure 15.

2. Case 1. Two distinct tetrahedra are glued along a pair of faces, each tetrahedron has

the order 3 symmetry group fixing the vertex opposite the face they share. Hence their

union is a triangular bipyramid with an order 3 symmetry group. The three tetrahedra

resulting from the re-triangulation are all in the same orbit of that symmetry group, so
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Figure 15: The two-to-three move without symmetries.

we take only one of them. See figure 16. Note that the edge which is internal to the

bipyramid gets labelled 3.

3. Case 2. Suppose a face of a tetrahedron is glued to itself. Attach another copy of the

tetrahedron to this face, giving a bipyramid with an order 2 symmetry group coming

from the face gluing map. Of the three tetrahedra created after re-triangulation, two of

them are mapped to to each other by this symmetry. So we only take one of those two.

See figure 17. The bottom tetrahedron has an order two symmetry. This rotation axis

extends through the face of the other tetrahedron, meaning that face is glued to itself by

rotation around that axis.

4. Case 3. This is when both of the two previous cases occur. We have a triangular bipyramid

with its full symmetry group. The 2 → 3 move results in a single tetrahedron as in figure

18. It has an order 2 symmetry group, an edge labelled 3, and a face which is glued to

3

Figure 16: Case one of the orbifold two-to-three move.
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Figure 17: Case two of the orbifold two-to-three move.

itself.

We will now discuss the geometry of the 2 → 3 move. We do not consider a 2 → 3 move

if either of the tetrahedra are flat. We can arrange them in the upper half space model as

(x1, x2, x3, y1) and (x1, x2, x3, y2) as in figure 19. We assume that x1 is at 0 ∈ C, x2 is at

1 ∈ C, x3 is at ∞, y1 is at w1 ∈ C where w1 is the edge parameter of (x1, x3) in (x1, x2, x3, y1),

and y2 is at 1 − w2, where w2 is the edge parameter of (x2, x3) in (x1, x2, x3, y2). If we are

in cases 2 or 3, in which the face is glued to itself, we assume (x1, x2, x3, y1) is the original

tetrahedron and its face (x1, x2, x3) is glued to itself by the Mobius transformation z 7→ 1−z.

In that case, w1 = w2.

As briefly mentioned in Section 2.5, the 2 → 3 move is not possible if the union of

the two tetrahedra is not convex. Convexity is equivalent to the sums of the two dihedral

3

Figure 18: Case three of the orbifold two-to-three move.
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x1 = 0

x2 = 1

y1 = w1

y2 = 1− w2

x3 = ∞

Figure 19: The two-to-three setup in upper half space.

angles contributing to each of (x1, x2), (x2, x3), (x1, x3) being less than or equal to π. This

is easy to check with edge parameters. For example, if a is the edge parameter of (x1, x2)

in (x1, x2, x3, y1) and b is the edge parameter of (x1, x2) in (x1, x2, x3, y2), then the angle at

(x1, x2) is less than or equal to π if and only if the imaginary part of ab is non-negative.

We want to determine the geometries of the tetrahedra T1, T2, T3, where

T1 = (x2, x3, y1, y2)

T2 = (x1, x3, y1, y2)

T3 = (x1, x2, y1, y2)

To do this, we will find the edge parameters of (y1, y2) in each of T1, T2, T3. Call these edge

parameters z1, z2, z3 respectively.

To get z1, let f be the Mobius transformation satisfying 1 − w2 7→ 0,∞ 7→ 1, w1 7→ ∞.

Then f(z) = z−1+w2

z−w1
, so z1 = f(1) = w2/(1− w1).

For z2, let f map 1 − w2 7→ 0, 0 7→ 1, w1 7→ ∞. Then f(z) = z−1+w2

z−w1

−w1

−1+w2
, and so

z2 = f(∞) = −w1/(−1 + w2).
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Figure 20: The four-to-four move with no symmetries.

For z3, let f map 1− w2 7→ 0, 1 7→ 1, w1 7→ ∞. Then f(z) = z−1+w2

z−w1

1−w1

w2
, so z3 = f(0) =

(1−w2)2

w1w2
.

Depending on the case of the 2 → 3 move, we might not create all of T1, T2, T3, so we

might not need all three of z1, z2, z3. It should now be clear how to determine the geometry

of the 3 → 2 move, which we do not show here.

5.3 The four-to-four move

The 4 → 4 move re-triangulates an octahedron, usually as in figure 20. Each triangulation

in the figure consists of four tetrahedra arranged in a cycle around an inner edge, and the

re-triangulation just changes the inner edge.

We can imagine an orbifold version of the 4 → 4 move for every group of symmetries

of an octahedron. We will focus on one particular case in this section, which is pictured

in figure 21. The symmetry group has a single non-trivial element, the order two rotation

around the red axis.

We assume we start with the triangulation of the octahedron on the left of figure 21, so
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x1
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Figure 21: The four-to-four move with an order two symmetry.

we have tetrahedra

(y1, y2, x2, x3), (y1, y2, x3, x4), and (y1, y2, x1, x4).

Note that (y1, y2, x1, x2) is identified with (y1, y2, x3, x4) by the symmetry, which is why we

can assume it is not there. The usual 4 → 4 move, as in figure 20, results in a triangulation

of the octahedron which is not invariant with respect to this symmetry. What we should

instead do is take just two of the four new tetrahedra, say (y1, x1, x2, x4) and (y1, x2, x3, x4),

and introduce a new tetrahedron, (x1, x2, x3, x4), having the symmetry which swaps x1 with

x4 and x2 with x3. It could be that (x1, x2, x3, x4) is flat, as suggested by the picture, but

this does not have to be the case.

We should actually be somewhat careful about the picture of the setup. In figure 21 we

assume that, from the perspective of y1, (x2, x4) is “in front of” (x1, x3). This might not be

geometrically true. If not, then we can rotate the picture 90 degrees and re-label to match

the previous picture, i.e. so that x1 is in the bottom left, x2 bottom right, etc. Then (x2, x4)

is in front of (x1, x3) again, but now the rotation axis is vertical, and swaps x1 with x2 and
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x3 with x4. In summary, there are two cases: when the symmetry axis is horizontal, and

when it is vertical. If (x1, x2, x3, x4) is flat, we can choose either one.

In the remainder of this section, we determine the geometries of the tetrahedra created

by this 4 → 4 move, where the octahedron has the order 2 symmetry just described. Their

geometries will be the same regardless of whether we are in the “horizontal” or “vertical” case,

with the only difference between the two cases being what symmetry group (x1, x2, x3, x4)

gets labelled with.

Let

z0 = parameter of (y1, x4) in (y1, y2, x1, x4)

z1 = parameter of (y1, y2) in (y1, y2, x2, x3)

z2 = parameter of (y1, x4) in (y1, y2, x3, x4)

z3 = parameter of (y1, y2) in (y1, y2, x1, x2).

Place the octahedron in the upper half space model as in figure 22. We put y1 at 0, x3 at

1, x4 at ∞, x1 at w0, x2 at w1, and y2 at w2. Note that, in this figure, only the edges of the

octahedron are shown—no internal edges of a triangulation of the octahedron are shown. We

want to determine the values of w0, w1, and w2 in terms of z0, z1, and z2. We do not actually

need z3, because it is determined by the other edge parameters because of the symmetry.

But we will consider it in the next section, when we reverse this move. By definition of z2,

we have w2 = z2. To get w0 and w1 we must use isometries.

Let f be the Mobius transformation satisfying 0 7→ 0, z2 7→ 1,∞ 7→ ∞. Then f(z) = z/z2.

By definition of z0, we have z0 = f(w0). This implies w0 = z0z2.

Now let f satisfy 0 7→ 0, 1 7→ 1, z2 7→ ∞. Then f(z) = (1 − z2)z/(z − z2). And we have

f(w1) = z1 =⇒ w1 = z1z2/(z1 + z2 − 1).

Now we can use w0, w1, and w2 to get the shapes of the tetrahedra in the new triangulation

of the octahedron. As explained before, in this case the 4 → 4 move results in the tetrahedra

(y1, x1, x2, x4), (y1, x2, x3, x4), (x1, x2, x3, x4).
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y1 = 0

x2 = w1
x1 = w0

x4 = ∞

x3 = 1

y2 = w2

Figure 22: The coordinates of a hyperbolic ideal octahedron.
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Let

u0 = shape of (y1, x4) in (y1, x1, x2, x4)

u1 = shape of (y1, x4) in (y1, x2, x3, x4)

u2 = shape of (x2, x4) in (x1, x2, x3, x4)

Let f satisfy 0 7→ 0, w1 7→ 1, and ∞ 7→ ∞. Then f(z) = z/w1, and u0 = f(w0) =⇒ u0 =

z0(z1 + z2 − 1)/z1.

By definition, u1 = w1 = z1z2/(z1 + z2 − 1).

Now let f satisfy w1 7→ 0, 1 7→ 1,∞ 7→ ∞. Then f(z) = (z−w1)/(1−w1), and u2 = f(w0),

so

u2 =
(z1 + z2 − 1)z0z2 − z1z2
z1 + z2 − 1− z1z2

.

5.4 The special four-to-four move

We may need to do the reverse of the order two symmetry 4 → 4 move described in the

previous section. We call this the special 4 → 4 move. We assume we have three tetrahedra

as in the right of figure 21, and we want to change it to the triangulation on the left. Similar

to the discussion of the previous section, there are really two cases of the special 4 → 4

move: when the symmetry axis is horizontal or when it is vertical. See figure 23.

Our goal in this section is to explain the geometry of this move. In other words, to

explain how we determine z0, z1, z2, z3 in terms of u0, u1, u2, u3, where we use the labelling

of edge parameters introduced in the previous section. As before, we first get w0, w1, w2,

defined as in figure 22.

From the previous section, we have

w1 = u1, w0 = u0w1 = u0u1.

We determine w2 using the symmetry. If the axis is horizontal, then by checking that it

swaps the correct ideal vertices, we see that it is the Mobius transformation

z 7→ w0z − w0 + w1 − w0w1

z − w0

.
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Figure 23: Horizontal or vertical axis.

Plugging in z = 0 gives w2, so w2 = 1−w1/w0 +w1. Therefore w2 = 1− 1/u0 + u1. We then

get

z0 = u0u1/(1− 1/u0 + u1)

z1 = u1(1/u0 − u1)/(1/u0 − 1)

z2 = 1− 1/u0 + u1.

If the symmetry axis is instead vertical, then it is represented by the Mobius transfor-

mation

z 7→ −z + (1− w1)(w0 − 1) + 1

−z + 1
.

Plugging in 0, we get w2 = (1− w1)(w0 − 1) + 1. And

z0 = w0/w2

z1 = (1− w2)w1/(w1 − w2)

z2 = w2

z3 = w0(w1 − w2)/(w1(w0 − w2)).
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Figure 24: A two-to-three move is impossible because of the symmetry, which is order two

rotation around the red axis.

5.5 The three-to-six move

Suppose that two distinct tetrahedra share a face, one of the tetrahedra has exactly one

non-trivial symmetry, the other has only the trivial symmetry. View them as in figure 24.

Then a 2 → 3 move through the shared face is impossible, because it is not invariant with

respect to the symmetry.

Because of the symmetry, a copy of the tetrahedron on the right is also glued to the

left face of the tetrahedron with the symmetry, as in figure 25. We view this union as a

polyhedron with an order two symmetry.

If we want to modify the triangulation here, we should re-triangulate the union of these

three tetrahedra in a way which is invariant with respect to the symmetry. Since we cannot

do a 2 → 3 move, this is the next best thing. We can do this re-triangulation in two ways.

Option 1: the new tetrahedra are

(u0, u1, v0, w0), (u0, u1, v1, w1), (u0, u1, w0, w1),

(u0, v1, w0, w1), (u1, v0, w0, w1), (v0, v1, w0, w1).
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w1

v1

v0
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Figure 25: The union of the three tetrahedra is a polyhedron with an order two symmetry.

Option 2: the new tetrahedra are

(u0, u1, v0, w1), (u0, u1, v1, w0), (u0, u1, w0, w1),

(u1, v1, w0, w1), (u0, v0, w0, w1), (v0, v1, w0, w1).

These two re-triangulations are not really different combinatorially. The important dif-

ference arises when we consider the hyperbolic geometry of the tetrahedra. If, from the

perspective of the figure, the geodesic (u0, w1) lies beneath the geodesic (u1, w0), then we

should choose option 1. If (u0, w1) lies above (u1, w0) then we should choose option 2. If nei-

ther is true, in which case they intersect, then we can choose either option 1 or 2, although

we accept that (u0, u1, w0, w1) will be flat.

Since the move turns three tetrahedra into six, we call it the 3 → 6 move. Because of

the symmetry, we do not take all six tetrahedra, but instead four of them. For instance,

in option 1, (u0, u1, v0, w0) is mapped to (u0, u1, v1, w1), and (u0, v1, w0, w1) is mapped to

(u1, v0, w0, w1), so we only need to take one from each of those pairs. We also note that

(u0, u1, w0, w1) and (v0, v1, w0, w1) each inherit the symmetry.
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As with the 2 → 3 move, there are some geometric conditions which must be satisfied in

order to be able to do the 3 → 6 move. Namely, we want the union of the three tetrahedra

to be a convex polyhedron. This will be satisfied if and only if the dihedral angles at the

edges (u1, v), (u1, v1), and (v0, v1) sum to less than or equal to π. Note that (v0, v1) has three

tetrahedra contributing angle to it, while (u1, v0) and (u1, v1) just have two.

The task of determining the geometries of the new tetrahedra is made much easier when

we realize that the 3 → 6 move can be accomplished by a series of “illegal” 2 → 3 moves.

Suppose we are doing option 1. Forget the symmetry of the middle tetrahedron is there, and

do a 2 → 3 move through the face (u1, v0, v1). We now have tetrahedra

(u0, u1, v0, w1), (u0, u1, v1, w1), (u0, v0, v1, w1),

as well as (u0, v0, v1, w0), which did not change. Now do a 2 → 3 move through face

(u0, v0, v1). The triangulation now consists of

(u0, u1, v0, w1), (u0, u1, v1, w1), (u0, v0, w0, w1),

(u0, v1, w0, w1), (v0, v1, w0, w1).

Since (u0, w1) lies beneath (u1, w0), we can do a 2 → 3 move through the face (u0, v0, w1).

This results in the desired re-triangulation by six tetrahedra. We just have to remove two

tetrahedra and add the symmetry to two others, as discussed above. Since the 2 → 3 move

already correctly changes the edge parameters of the tetrahedra, no other work is required.

5.6 Cancelling flat tetrahedra

When two tetrahedra are arranged around a valence 2 edge as in figure 26, we call

their union a pillow. We can collapse the two tetrahedra onto each other, which we call

a cancellation move or a 2 → 0 move. We discussed the version of this move without

symmetries in section 2.5. We have other versions for each group of combinatorial symmetries

of the pillow.
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x0

x1

x2 x3

Figure 26: A pillow with labelled vertices.

The non-trivial symmetries are:

φ1 : x0 7→ x1, x1 7→ x0, x2 7→ x2, x3 7→ x3

φ2 : x0 7→ x1, x1 7→ x0, x2 7→ x3, x3 7→ x2

φ3 : x0 7→ x0, x1 7→ x1, x2 7→ x3, x3 7→ x2.

The subgroups of the full symmetry group are H1 = trivial group, H2 = ⟨φ1⟩, H3 = ⟨φ2⟩,

H4 = ⟨φ3⟩, H5 = full group. Let the ith case be the cancellation move corresponding to the

subgroup Hi.

When we are looking for places in an orbifold triangulation to do a cancellation move,

we might not “see” a full pillow. This is the usual situation when we are working with

triangulated polyhedra with symmetries. Figures 27, 28, 29, 30 show what we will see in

each case, before we do the cancellation move.

In case 2, we have a single tetrahedron with two faces glued to themselves in the indicated

ways. We think of the two face gluing rotation axes as being a single rotation axis, and if we

rotate the tetrahedron around that axis, we get the other tetrahedron of the pillow. When we

do this cancellation move, the horizontal edge gets collapsed onto the rotation axis, making

the two faces adjacent to that edge glued to each other.
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Figure 27: Case two of the cancellation move.

In case 3, we see both tetrahedra of the pillow from the start. They have an order

two symmetry which is rotation around the red axis which extends through both of them,

intersecting the vertical edge. To do the move, we just collapse the pillow.

In case 4, we only see one tetrahedron. The two faces adjacent to the vertical edge are

glued to each other by an order two rotation around the vertical edge. When we collapse

this tetrahedron, the two faces adjacent to the horizontal edge get glued to themselves, and

the vertical edge becomes the rotation axis for these gluing maps.

In case 5, we again only see one tetrahedron. Because of its symmetry, we can actually

suppose the two back faces are glued to each other as in case 4. So this is similar to case 4,

except that, of the two faces adjacent to the horizontal edge, only one of them is glued to

some other tetrahedron. The other face is not glued to anything, because of the symmetry.

For a hyperbolic orbifold triangulation, a pillow must be flat, and any tetrahedron or

pair of tetrahedra we cancel will necessarily be flat. In the non-geometric setting, of course

we do not talk about a tetrahedron being flat. There is an important obstruction to doing a

cancellation move, specific to orbifolds. The horizontal edge(s), opposite the “inside” edge

(which is vertical), must have label 1. This is because in some of these cases we push the

horizontal edge into the singular locus. If the horizontal edge is already part of the singular

locus, i.e. its label is greater than 1, then this illegally changes the orbifold structure.
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Figure 28: Case three of the cancellation move.

Figure 29: Case four of the cancellation move.

Figure 30: Case five of the cancellation move.
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5.7 Re-triangulating a cube

Four regular tetrahedra, each glued to a fifth regular tetrahedron along each of its four

faces, union together to form a cube. The edges of the inner tetrahedron are diagonals of

the square faces of the cube. There is exactly one other triangulation of the cube, which

is obtained by choosing a different inner tetrahedron: the one whose edges are the other

diagonals of the cube’s faces.

Suppose that the inner tetrahedron is labelled with the full symmetry group or the order

4 subgroup. Only one of the four regular tetrahedra around it will explicitly “be there”,

because of these symmetries. It could be that the face shared by this tetrahedron and the

inner tetrahedron is concave. In that case, we would like to do a 2 → 3 move through this

face, but unfortunately it is not possible, because of the symmetries. Similarly, we cannot

do a 3 → 6 move. Since we know these tetrahedra correspond to a specific triangulation of

the cube, we might hope that changing to the other triangulation of the cube will fix the

concavity issue. That is exactly what this section’s orbifold Pachner move does.

As noted above, when we change the triangulation of the cube, we swap diagonals in

each face of the cube. This means we are changing the triangulation of the boundary of the

cube. This is bad, because other tetrahedra which are part of this triangulation could be

glued to the boundary of the cube with respect to its previous triangulation. To correct this,

we must introduce a flat tetrahedron. Figure 31 shows the re-triangulation. The green edge

is the “top” edge of the introduced flat tetrahedron.
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Figure 31: How to re-triangulate a cube.
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6.0 Canonize part two: finding the canonical re-triangulation

Once we have succeeded with part one, we move on to canonize part two. We check if the

proto-canonical triangulation obtained from part one is actually canonical. If so, then we

have succeeded, so we exit. If not, then our proto-canonical triangulation is a sub-division of

the canonical decomposition. We would like to turn our proto-canonical triangulation into

the canonical re-triangulation. To accomplish this, we adapt to orbifolds SnapPy’s canonical

re-triangulation routine for manifolds.

As in SnapPy, we split canonize part two into two steps.

1. Step 1. Replace the given proto-canonical triangulation with the triangulation which

has the following description. In each cell of the canonical decomposition, introduce

a finite vertex. The boundary of the cell is triangulated by the given proto-canonical

triangulation. Cone that boundary triangulation to the finite vertex. Do this for each

cell.

2. Step 2. Each tetrahedron of this triangulation has exactly one finite vertex, and the face

opposite it is a triangle in the triangulation of the face of the polyhedron induced by the

original proto-canonical triangulation. For each tetrahedron, do a 2 → 3 move through

that face. Unless it is glued to a flat tetrahedron, in which case do a special 4 → 4 move.

Then do all possible cancellation moves.

To illustrate these two steps, consider again the cube example from Section 4.4. We start

with the proto-canonical triangulation of figure 11. It is a sub-division of a cube, which gives

a triangulation of the boundary of the cube. For step 1 of canonize part two, we want to

turn our starting triangulation into the triangulation which is the boundary triangulation

coned to the barycenter. If we cone the boundary triangulation to the barycenter, we get

12 tetrahedra. They all belong to the same orbit under the action of the symmetry group,

so we only take one of them. Hence, the desired orbifold triangulation of step 1 is given in

figure 32.

We now do step 2, meaning we do a 2 → 3 move through the face opposite the finite
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Figure 32: What we get after coning the cube’s boundary triangulation.

vertex. The result is figure 33. The tetrahedron on the right can be cancelled, and the result

is the desired canonical re-triangulation as in figure 14.

To accomplish step 1 is more complicated than its short description above makes it sound.

While the desired triangulation which is the end goal of step 1 has a simple description in

terms of the canonical decomposition, it is not straightforward to find it, given only an

arbitrary proto-canonical triangulation.

To accomplish 1, we need new orbifold Pachner moves, which we describe in the next

three sections. The remaining sections describe in detail how to do steps 1 and 2.

Warning. When we do canonize part two, we mostly forget about the geometric struc-

ture of the orbifold. This is because we introduce finite vertices, and keeping track of the

geometry of hyperbolic tetrahedra which are not fully ideal is not as straightforward as with

ideal tetrahedra. SnapPy does the same thing in its version of canonize part two. We do,

however, keep track of which tetrahedra were flat in the original proto-canonical triangula-

tion.
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Figure 33: After the two-to-three move.
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Figure 34: The one-to-four move with no symmetries.

6.1 The one-to-four and four-to-one moves

The 1 → 4 move splits 1 tetrahedron into 4 by introducing a point in the interior and

coning each face to that point. In the setting of a hyperbolic orbifold triangulation, the new

vertex must be finite, which means that after the 1 → 4 move we view the triangulation as

just an orbifold triangulation, i.e. we forget about the geometric structure. The 4 → 1 move

is the reverse of the 1 → 4 move. We do not use either move in canonize part one, but we

do use the 1 → 4 move in canonize part two.

There is an orbifold version for each subgroup of symmetries of a tetrahedron. In figure

34, we see the 1 → 4 move in the case that the tetrahedron is only labelled with the trivial

symmetry group. Figure 35 shows the case when the tetrahedron is labelled with the full

symmetry group. Note that, in that case, we only take one of the resulting four tetrahedra.

6.2 Special cancellation

Let T be a tetrahedron in the orbifold triangulation with a vertex v whose opposite face

f is glued to itself. Given that setup, there are two cases in which we can do a special
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3

Figure 35: The one-to-four move with all symmetries.

cancellation move. In either case, the idea is to collapse T onto f.

Case 1. Suppose that the link of v is a sphere, the symmetry group of T is trivial, and

all faces of T which are not f are glued to tetrahedra different from T. Then the special

cancellation of T collapses T onto f, pushing v into the rotation axis of the face gluing map

of f. See figure 36. The old face f gets sub-divided by faces of the green, blue, and purple

tetrahedra. The rotation which glued f to itself now serves to glue the two faces of the green

and blue tetrahedra to each other (with the edge between them now getting labelled 2) and

to glue the face of the purple tetrahedron to itself.

Case 2. Now suppose that the link of v is the 2-orbifold whose underlying space is S2 and

whose singular locus consists of two points which are fixed points of order 3 rotations. Such

an orbifold is called an “order 3 football”. Suppose that the symmetry group of T is the

order 3 group fixing v (hence the axis of this symmetry group intersects the link of v in one

of its singular points). Finally, suppose if e is an edge of T containing v, then the edge label

of e is 1. Then, as with case 1, the special cancellation of T collapses T onto f, pushing v

into the rotation axis of the face gluing map of f. To understand this case, we may again use

figure 36. Because of the symmetry group of T, the green, blue, and purple tetrahedra are

all copies of each other. We can assume that of the three, we only have the purple one in the

triangulation. Then, as in the figure, v collapses into the rotation axis of f, and the face of
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v

Figure 36: A special cancellation.

the purple tetrahedron which moves into f gets glued to itself. The two edges of the purple

tetrahedron which contain v and are black get labelled 2 after the special cancellation.

If neither the assumptions of case 1 nor 2 are satisfied, then a special cancellation is not

possible. The assumptions are important for this move to be valid. By “valid”, we mean

that the move does not change the orbifold. For example, it would not be valid to change

the singular locus. Because v is spherical in case 1, it is not a singular point, so we can safely

push it into the singular locus in f. In case 2, v lies in the interior of an edge of the singular

locus, corresponding to the order 3 rotation of T. A vertex of this singular locus edge is at

the center of f, and the special cancellation just pulls v into that vertex. We leave it to the

reader to fill in other details about the validity of this move.

6.3 The stellar edge move

Let e be a quotient edge of the orbifold triangulation. Suppose that all the tetrahedra

containing e either have trivial symmetry group or just the order 2 group mapping e to itself.
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e

Figure 37: The stellar edge move.

Suppose further that if any face containing e is glued to itself, then its face gluing map takes

e to itself. Then the set of all tetrahedra containing e forms a triangulated bipyramid with e

running through the center. The bipyramid could have non-trivial symmetries, in which case

not all of the tetrahedra are actually “there” in the orbifold triangulation. The stellar edge

move of e puts a finite vertex in the interior of e and cones the boundary of the bipyramid to

that point. See figure 37. If any of the tetrahedra containing e have a non-trivial symmetry

preserving e, then the bipyramid has a non-trivial symmetry flipping e. All such symmetries

have a unique fixed point, which is where we put the finite vertex in this case. As usual, if

the bipyramid has symmetries then we just take one tetrahedron from each orbit.

6.4 Step 1

In general we do not know what the polyhedra of the canonical decomposition look like.

All we have is the proto-canonical triangulation, which we know is some arbitrary sub-division

of a polyhedral decomposition, whatever it is. To do step 1, we need to get a triangulation

which is defined in terms of this polyhedral decomposition, without really knowing what
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this polyhedral decomposition is. We want to come up with some sequence of triangulation

changing moves to apply to the proto-canonical triangulation which we somehow believe

must lead us to the triangulation of step 1.

The function we use to accomplish step 1 is ConePolyhedron. Every time it is called,

it tries to cone the triangulated boundary of some polyhedron to its barycenter. To keep

track of which tetrahedra are part of a polyhedron we have already coned and which are not,

we use the flags “coned” or “un-coned”. Before the first application of ConePolyhedron, we

set all flags to “un-coned”. Any new tetrahedron we create will be set to “coned”, even if

it is not part of the fully coned triangulation of a polyhedron. We apply ConePolyhedron

repeatedly until it returns False, at which point we know we have completed step 1.

The ConePolyhedron function is described in pseudo-code in Algorithm 1. We now

describe the functions which it relies on.

The first function which ConePolyhedron calls is InsertFiniteVertex. See Algorithm 2.

To start coning a polyhedron, we need to insert a finite vertex at a point which must be a

barycenter of some polyhedron. Since we do not really “see” the polyhedra, only the proto-

canonical triangulation, we need to take some care. For instance, in the O5 example whose

proto-canonical triangulation is in figure 11, the barycenter of the cube is contained in the

tetrahedron which has all symmetries, and not in the other tetrahedron. To insert a finite

vertex in the tetrahedron with all symmetries, we do a 1 → 4 move on it. In general, the

barycenter of the triangulated polyhedron could be contained in the interior of a tetrahedron,

the interior of a face, or the interior of an edge. If it is contained in the interior of a face of

a tetrahedron T, then InsertFiniteVertex inserts a finite vertex anywhere by doing a 1 → 4

move to any tetrahedron in this polyhedron. Then we collapse this vertex onto the rotation

axis later on. If the barycenter is contained in the interior of an edge, we insert a finite

vertex there with a stellar edge move.

The next function is ExpandConedRegion. See Algorithm 3. The idea is that we have a

triangulation with one finite vertex of a polyhedron, and we want to make this triangulation

closer to the goal triangulation of step 1. We look for a tetrahedron T containing the finite

vertex v, whose face opposite v, call it f, is transparent and glued to some other un-coned

tetrahedron T ′. Then we expand the coned region by doing a 2 → 3 move through f. If T
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def ConePolyhedron(Orbifold Triangulation orb):
Result: Modify orb by coning a single polyhedron. Return True if we succeed,

False if we cannot because all polyhedra are already coned.

if InsertFiniteVertex(orb) = False then

/* All polyhedra are already coned. */

return False;

end

while ExpandConedRegion(orb) = True do

pass;

end

AttemptSpecialCancellation(orb);

while AttemptCancellation(orb) = True do

pass;

end

if VerifyConedRegion(orb) = False then

/* We tried and failed to cone a polyhedron. We are not sure if

this can happen. */

raise Exception(“Failed to cone a polyhedron”);

end

/* If we have gotten to this point, then we succeeded in coning a

polyhedron. */

return True;

Algorithm 1: This function tries to cone a polyhedron.

71



def InsertFiniteVertex(Orbifold Triangulation orb):
Result: Modify orb by inserting a finite vertex in an un-coned tetrahedron

which we know must be a barycenter of some polyhedron. If we

succeed, return True, otherwise all tetrahedra are already coned and we

return False.

Make a list of any un-coned tetrahedra with more than 2 symmetries. If there

are any, choose one of them with the most symmetries, do a 1 → 4 move on it,

mark the newly created tetrahedra as coned, then return True;

Look for a transparent edge belonging to un-coned tetrahedra which has label

> 1. If there is one, do a stellar edge move to it, mark the newly created

tetrahedra as coned, then return True;

Look for a transparent edge belonging to un-coned tetrahedra and with more

than one rotation axis intersecting it. If there is one, do a stellar edge move to

it, mark the newly created tetrahedra as coned, then return True;

Look for any tetrahedra with 2 symmetries. If there are any, pick one, do a

1 → 4 move on it, mark the newly created tetahedra as coned, then return True;

Do a 1 → 4 move to any un-coned tetrahedron, mark the newly created

tetrahedra as coned, then return True;

return False;

Algorithm 2: This function inserts a finite vertex.
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T ′

v v

3 → 2

Figure 38: When a two-to-three move is not possible, we can do a three-to-two move instead.

or T ′ has the wrong symmetries, then of course we cannot do the 2 → 3 move. For our

situation, the only bad setup of symmetries which can occur is when T has no non-trivial

symmetries and T ′ has the order 2 group of symmetries as in figure 38. Note that a face

of T is glued to itself by rotation around the red axis, and that red axis extends into T ′ as

the axis of its symmetry group. In this case, we do a 3 → 2 move “through f” instead of a

2 → 3 move.

The next function used by ConePolyhedron is AttemptSpecialCancellation. This function

looks for a transparent face opposite the finite vertex which is glued to itself, and does a

special cancellation move on it. This collapses the finite vertex onto the rotation axis inside

the face. This can only occur in the case that the barycenter is contained inside a face.

After this, we use AttemptCancellation repeatedly until all possible cancellation moves

are done. They are necessary for removing transparent edges from inside the polyhedron.

Then we check that we succeeded in coning the polyhedron with VerifyConedRegion.

6.5 Step 2

After we have applied ConePolyhedron as many times as possible, step 1 is complete

so we move on to step 2. First, we apply EliminateOpaqueFace repeatedly until it returns
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def ExpandConedRegion(Orbifold Triangulation orb):
Result: Try to modify orb by expanding the coned region. This means making

the triangulation closer to the goal triangulation of step 1. If we can

make such a modification, return True. Otherwise return False.

Look for any tetrahedron T which is coned and has a transparent face f which is

glued to some tetrahedron which is not coned.;

if there exists such a T and f then

if a 2 → 3 move through f is possible then

Do the 2 → 3 move, mark the new tetrahedra as coned, return True;

end

if a 3 → 2 move through f is possible then

Do the 3 → 2 move, mark the new tetrahedra as coned, return True;

end

end

/* If we have not yet returned, then the coned region has already

been expanded as much as possible. */

return False;

Algorithm 3: This function expands a coned region.
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False. See Algorithm 4. Then we apply AttemptCancellation repeatedly until it returns

False. Each application of EliminateOpaqueFace does a 2 → 3 or a special 4 → 4 move

through an opaque face, i.e. a face of the triangulated boundary of a polyhedron. Put

differently, a face is opaque if it is opposite the finite vertex of a coned polyhedron. The

special 4 → 4 move is needed when the polyhedron’s face is glued to itself in a special way,

which we now describe.

def EliminateOpaqueFace(Orbifold Triangulation orb):
Result: Do a 2 → 3 or a special 4 → 4 on an opaque face. Return True if we

succeed, False if not, in which case all opaque faces were already

eliminated.

Look for any tetrahedron T which is coned and not flat.

if such a T exists then

Let f be the face opposite the finite vertex of T and T ′ the tetrahedron glued

to T along f ;

/* f is opaque, meaning it belongs to the boundary of the

polyhedron */

if T ′ is not flat then

Do a 2 → 3 move through f , return True ;

end

if T is flat then

Do a special 4 → 4 move through f , return True ;

end

Mark the newly created tetrahedra as un-coned.;

/* So that we skip these tetrahedra on the next application of

EliminateOpaqueFace */

end

return False ;

Algorithm 4: This function tries to eliminate one opaque face.

If a face of a polyhedron is glued to itself, then the gluing map is π rotation around some

axis contained in the face. This axis must connect a vertex to another vertex, a vertex to
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Figure 39: The three ways a face can be glued to itself.

an edge, or an edge to another edge. See figure 39.

Each face is triangulated, and the triangular faces should be glued to each other in a way

which expresses how the polygonal face is glued to itself. However, in the third case this is

only possible if there is a flat tetrahedron. This is an admissible flat tetrahedron, which we

allow in proto-canonical triangulations. See figure 40. Therefore we do a special 4 → 4 move

there, instead of a 2 → 3 move.

Assuming that step 1 succeeded, this step 2 algorithm should not fail. The 2 → 3

and special 4 → 4 moves connect finite vertices of adjacent polyhedra of the canonical

decomposition with an edge, and the cancellation moves remove extra tetrahedra created by

these moves which are not part of the canonical re-triangulation. The result is the canonical

re-triangulation, so canonize part 2 is complete.
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Figure 40: A triangulated polygonal face glued to itself.
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7.0 A census of orbifolds commensurable to the figure eight knot complement

Two orbifolds are commensurable if they have a common finite sheeted cover. This is

related to the notion of commensurability in group theory. Recall that two subgroups H1, H2

of some group G are subgroup-commensurable if [H1 : H1∩H2] <∞ and [H2 : H1∩H2] <∞.

For finite volume hyperbolic 3-orbifolds Q1 = H3/Γ1 and Q2 = H3/Γ2, by Mostow-Prasad

rigidity Q1 is commensurable to Q2 if and only if there exists a g ∈ Isom(H3) such that

gΓ1g
−1 is subgroup-commensurable to Γ2.

We define the oriented commensurability category C3 of the figure-eight knot complement

M in the following way. Its objects are the orientation preserving isometry classes of oriented

hyperbolic orbifolds commensurable to M . Its morphisms are the orientation preserving

covering maps, defined up to pre- and/or post-composition with an isometry. In joint work,

we have completely described C≤2v0
3 , the sub-category whose objects have hyperbolic volume

at most 2v0 = vol(M), where v0 ≈ 1.01494 is the volume of a hyperbolic regular ideal

tetrahedron. This project is in collaboration with Jason DeBlois, Anuradha Ekanayake,

Tyler Gaona, Arshia Gharagozlou, and Priyadip Mondal. In this Chapter, we briefly describe

some of the motivation and methods. In particular, Sym is heavily used to compute orbifold

canonical decompositions.

7.1 Why study this commensurability class?

Understanding the commensurability class ofM is one way to better understandM itself,

which is a manifold of great importance both historically and at present. For instance:

1. Riley showed the existence of a hyperbolic structure onM at a time when few 3-manifolds

were known to be hyperbolic [37].

2. M is the orientable non-compact hyperbolic 3-manifold of least volume [11].

3. M is the only arithmetic knot complement [36].
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Figure 41: The covering lattice beneath three important manifolds.

Furthermore, this commensurability class contains the Tetrahedral manifolds, which are

those hyperbolic manifolds admitting a triangulation by all regular ideal tetrahedra. A

census of Tetrahedral manifolds was created by Fominykh, Garoufalidis, Goerner, Tarkaev,

and Vesnin in [16]. Every orientable Tetrahedral manifold has volume ≥ 2v0, so our census is

complementary to theirs, and one of our main goals was to sync up the two. As an example

application, see figure 41, which shows the entire lattice of orientable orbifolds covered by

at least one of M , S3 − 622, or the Berge manifold.

Another motivation is to gain a better understanding of the collection of all low-volume

cusped hyperbolic 3-orbifolds. It is well known that C3 contains minimal volume elements

from many classes. As mentioned above, it contains the minimal volume orientable cusped

hyperbolic 3-manifold, namely M itself. It also contains the minimal volume orientable one

and two-cusped orbifolds [2], [3]. Tyler Gaona has independently shown that the minimal

volume orbifold with one rigid and one smooth cusp also belongs to C3 (to appear in [18]).

We can also recover the non-orientable orbifolds commensurable to M up to volume v0,

which includes other minimal volume examples such as the Gieseking manifold [1].

There is a sharp contrast between the commensurability class of an arithmetic orbifold
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and that of a non-arithmetic orbifold (see Machlachlan and Reid for an introduction to

arithmetic hyperbolic 3-orbifolds [26]). The commensurator of a group Γ ⊂ PSL(2,C) is

defined to be

Comm(Γ) = {g ∈ PSL(2,C) : [Γ : gΓg−1 ∩ Γ] <∞}.

Margulis showed that Comm(Γ) is discrete if and only if Γ is not arithmetic [27] (see also

Zimmer [44]). Therefore if Γ is not arithmetic, then H3/Comm(Γ) is the unique minimal

orbifold in the commensurability class of H3/Γ, where a minimal orbifold is an orbifold which

does not cover any orbifold apart from itself. In [20], it was shown that in the non-arithmetic

case geometric methods can be used to compute the commensurator, and hence determine

if two non-arithmetic hyperbolic orbifolds are commensurable. On the other hand, there

are many minimal orbifolds in the commensurability class of an arithmetic orbifold, which

makes C3 very large and complicated.

7.2 Summary of the strategy

Our strategy is to enumerate finite covers of a particular well-known minimal orbifold in

C3, which we call O1, then to use canonical decompositions and number-theoretic methods

to determine the rest of C≤2v0
3 . As we are working with orientable orbifolds, when we say

“minimal orbifold” now, we mean an orbifold which covers no orientable orbifold but itself.

We now describe O1. Denote the ring of integers of the quadratic number field Q(
√
−3)

as O3. Then

GL(2, O3) = {
(
a b
c d

)
: a, b, c, d ∈ O3, ad− bc ∈ O∗

3},

and PGL(2, O3) is defined to be GL(2, O3)/{
(
x 0
0 x

)
: x ∈ O∗

3}. Then PGL(2, O3) is a discrete

group of orientation-preserving isometries of H3, and we let O1 be the quotient orbifold

H3/PGL(2, O3).

There is a geometric interpretation of PGL(2, O3). As is classically known, there is a tiling

T3 of the upper half space model of H3 by regular ideal tetrahedra for which the set of ideal

vertices is Q(
√
−3) ∪ {∞}. Then PGL(2, O3) is exactly the group of orientation-preserving

symmetries of this tiling (see Hatcher [22] for more details).
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The tiling T3 projects to an orbifold triangulation of O1 which we have mentioned before,

in figure 4. It is canonical. With a computer search similar to the algorithm in [16], we

construct finite covers of O1 up to degree 48 using a sub-division of this triangulation.

We then use the lifted triangulations to determine some covering maps. The category whose

objects are these triangulated covers of O1 and whose morphisms are triangulation-preserving

maps we call Cmain. We label each object of Cmain in the form On
k , which corresponds to the

kth degree n cover. The covers of a fixed degree are ordered using the lexicographic order

on destination sequences, where the destination sequence of On
k is a list of integers which

encodes its triangulation lifted from O1, similar to Burton’s destination sequences [10]. If

there is a single degree n cover then we omit a subscript and just call it On (e.g. O1 rather

than O1
1). The remaining work is to extrapolate the data of C≤2v0

3 from the data of Cmain.

The finite covers of O1 correspond to finite index subgroups of PGL(2, O3), hence T3 again

descends to orbifold triangulations of these covers. However, these orbifold triangulations

might not be canonical. Finding their canonical decompositions helps us understand C≤2v0
3

in the following ways.

1. Two covers of O1 could be isometric, but not isomorphic as objects of Cmain. This means

that to determine which orbifolds are isometric, we need to do more than just generate

triangulated covers by computer search as described above.

2. Similarly, the self-isometries of one of our covers might not preserve the lifted triangula-

tion, so we need the canonical decomposition to determine the full isometry group. It is

nice to know the full isometry group, but we also need it for more pressing reasons. It can

be seen with arithmetic methods that every orbifold commensurable to M is regularly

covered by some cover of O1. Hence to find every object of C≤2v0
3 , our strategy is to find

its regular cover as an object of Cmain and the appropriate isometries to quotient by.

The arithmetic methods used in the second part above are an application of Borel’s

classification of minimal orbifolds in arithmetic commensurability classes [8], to understand

minimal orbifolds in C≤2v0
3 . In general, there is a minimal orbifold Qπ of C3 for each prime or

product of distinct prime ideals of O3, which is indicated here by a generator π. From this

perspective it turns out there is a canonical choice of regular cover Q̃π → Qπ with Q̃π in
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Cmain. We can then use what we know about the data of the lattice of covers above Q̃π to

extrapolate the data about the lattice of covers above Qπ, completing the census.

To explore the two points listed above, Sym has a function which can compute all com-

binatorial maps from one orbifold triangulation to another. Then, to determine if two covers

of O1 are isometric, we just need to find their canonical decompositions, then use this func-

tion to see if they each have a combinatorial map to each other. In that case, they cover

each other, so must be isometric. Similarly, this function explicitly finds all orientation-

preserving self-isometries of an orbifold by finding all combinatorial maps from its canonical

decomposition to itself.

As a sanity check that Sym is working correctly when applied to this project, we note

the following.

• For any fixed prime π, covering space theory tells us that each cover of Q̃π will either

have its triangulation-preserving symmetry group of index two in the full isometry group

or will be non-triangulation preserving isometric to exactly one other cover of Q̃π. This

is exactly what Sym shows us.

• For Q√
−3 and Q2, the two smallest Qπ, we used polyhedral decompositions from the

literature to describe orbifold fundamental group presentations to feed into GAP’s [19]

LowIndexSubgroups routine, thereby independently recovering the structure of these

orbifolds’ lattices of covers. The lattice structure we generate this way matches the one

we get using Sym and covering space theory.
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