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The Study of the Standard Model Electroweak Precision Physics at Future

Electron-Positron Colliders

Lisong Chen, PhD

University of Pittsburgh, 2022

Future electron-positron colliders, such as the CEPC, FCC-ee, and ILC, usher in a new

precision frontier where the electroweak (EW) sector of the Standard Model (SM) of particle

physics can be scrutinized unprecedentedly, thereby unraveling the potential new physics

beyond the Standard Model. For this purpose, one needs a deeper understanding of the SM,

which is led by calculating radiative corrections to various well-defined observables, namely

the electroweak precision observables (EWPOs) in the EW sector. However, to compare the

EWPOs predicted by the theory with what was measured in experiments, other ingredients

contributing to the relevant cross-section, such as the initial and final-state QED and QCD

radiation effects, background contributions, acceptance of the detector, also need to be

taken into account. This thesis will first report the recently accomplished three-loop EW

corrections to some important EWPOs. Secondly, a new software package GRIFFIN (Gauge-

invariant Resonance In Four-Fermion Interactions), aiming to study the gauge resonance,

such as the Z-boson resonance, up to arbitrary higher order, in a manifestly gauge-invariant

way, will be introduced.
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1.0 Introduction

1.1 the Standard Model of particle physics

The Standard Model (SM) of particle physics is a theory that describes three out of

four fundamental interactions in our universe. It can be divided into two parts: Quantum

Chromodynamics (QCD)[10, 11, 12, 13], which describes the strong interaction, and the

Glashow-Salam-Weinberg model, namely the Electroweak Standard Model (EWSM)[14, 15,

16], which unifies the weak interaction and the electromagnetic interaction. The SM theory

features a non-Abelian gauge group structure, referred to as SU(3)C×SU(2)L×U(1)Y , where

the SU(3)C corresponds to the QCD part, and the rest is the EWSM. The SU(3)C has gauge

coupling gs and eight generators called gluons as gauge bosons. It is a non-chiral interaction

such that the gluon acts on equal footing on the L and R-chiral quark. On the contrary,

the EWSM SU(2)L × U(1)Y is chiral. The SU(2)L has a gauge coupling g2 and the gauge

bosons W i, i = 1, 2, 3, which only interact with left-handed fermions. The Abelian gauge

group U(1)Y has a gauge coupling g1 and the gauge bosons B, which interacts with both

left-handed and right-handed fermions but with different hypercharge Y. Although without

introducing any extra degree of freedom, the non-Abelian EWSM do not predict the masses

of its gauge bosons per se, 1 three out four gauge bosons in EWSM are massive according

to experiments. The EWSB, namely Brout-Englert-Higgs mechanism (or shortly, Higgs

mechanism) [17, 18, 19, 20, 21], that spontaneously breaks the gauge symmetry SU(2)L ×

U(1)Y down to U(1)EM–the gauge group that describes electromagnetic interaction, was then

introduced to overcome this issue. The Higgs mechanism is implemented by employing a

fundamental complex scalar doublet with a non-vanishing vacuum expectation value (VEV)

that breaks the EW symmetry so that three gauge bosons W± , Z gain mass while the

photon remains massless. Consequently, it gives rise to the masses of fermions through the
1The chiral symmetry is spontaneously broken at low energy QCD, consequently leading to eletroweak

symmetry breaking, albeit by a much smaller amount that can’t be used to interpret the masses of weak
gauge bosons.
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Yukawa couplings that describe interactions between fermions and the fundamental scalar

field. For the lepton sector, taking neutrinos massless, the Yukawa couplings can be easily

diagonalized, whereas, in the quark sector, the diagonalization introduces the quark-mixing,

which is well-described by the Cabibbo-Kobayashi-Masakawa (CKM) matrix [22, 23].

It has been shown that the SM is a renormalizable theory [24, 25, 26, 27, 28, 29, 30, 31] and

free of gauge anomaly. Hence, it is a mathematically well-constructed quantum field theory

that allows us to test it at various experiments precisely. In this chapter, we introduce the

SM Lagrangian, and then we briefly introduce the EW precision tests conducted by collider

experiments.

1.1.1 The Standard Model Lagrangian

We begin with the classical Lagrangian of the SM, which can be divided into three

individually gauge-invariant parts;

LSM = LGauge + LS + LF , (1)

where the Lagrangian of gauge fields are

LGauge = −1

4
Gi
µνG

µνi − 1

4
W a
µνW

µνa − 1

4
BµνB

µν , (2)

where

Gµνi = ∂µG
i
ν − ∂νG

i
µ + gsf

ijkGj
µG

k
ν (3)

W µνa = ∂µW
a
ν − ∂νW

a
µ + g2ϵ

abcW b
µW

c
ν (4)

Bµν = ∂µBν − ∂νBµ, (5)

where f ijk and ϵabc are the structure constants of SU(3) and SU(2) groups, respectively.

The first term in 2 solely represents the QCD part of the SM, which could be an individual

subject to study. From now on, we set the QCD part aside for the moment and focus on the

2



EW part. The covariant derivative given by the EW gauge group is

Dµ = ∂µi− ig2I
a
WW

a
µ + ig1

YW
2
Bµ. (6)

To make sure the U(1)EM stays unbroken after EWSB, the relation between weak hyper-

charge and the third generator of SU(2)L is fixed as follows:

Q = I3W +
YW
2
, (7)

where Q is the electric charge operator, I3W = τ3
2
, and τi is the Pauli matrix.

The second part of Eq. (1) represents the so-called Higgs sector, where the complex

scalar-doublet with non-vanishing VEV is introduced. To make sure it’s electrically neutral,

its hypercharge YW is set to be 1. The complex scalar doublet looks like

Φ(x) =
1√
2

ϕ3 + iϕ4

ϕ1 + iϕ2

 ≡

ϕ+(x)

ϕ0(x)

 . (8)

The reason of writing the first component as a linear combination is because

QΦ(x) = (I3W +
YW
2

)Φ(x) =

1 0

0 0

Φ(x), (9)

indicating that ϕ+ has a charge, whereas the second component is neutral. The complex

scalar doublet interacts with gauge fields through covariant derivative (6); And the La-

grangian reads

LS = (DµΦ)
†(DµΦ)− V (Φ,Φ†) (10)

where the potential term is constructed as

V (Φ,Φ†) = −µ2Φ†Φ +
λ2

4
(Φ†Φ)2, (11)

so that the new minimum of the vacuum after EWSB is non-zero.

The parity-violating interaction between gauge fields and matter fields are constructed

3



by requiring the left-handed fermions to form into SU(2)L doublet, and the right-handed

fermions form into singlets.

LLj = ω−Lj =

 lLj

νLj

 , QL
j = ω−Qj =

uLj
dLj

 (12)

lRj = ω+lj , uRj = ω+uj , dRj = ω+dj, (13)

where ω± = 1±γ5
2

acting as projectors, and the j is the index of generations of the quark and

lepton family. We suppress the color index here since we are not interested in QCD now.

One can also easily add the SU(2) singlet right-handed neutrinos in Eq. (13). However,

given by the current experiments’ searching, it remains uncertain whether they exist. And

the SM retains consistent by discarding νRj tentatively. We can write down the last part of

the Lagrangian on the EW basis:

LF =
∑
i

(iL
L

i
/DLLi + iL

L

i
/DLLi )

+
∑
i

(il
R

i Dl
R
i + uRi /Du

R
i + id

R

i
/DdRi )

−
∑
i

(L
L

i Y
l
ijl
R
j Φ +Q

L

i Y
u
iju

R
j Φ̃ +Q

L

i Y
d
ijd

R
j Φ + h.c.), (14)

where the Gl,u,d
ij are the Yukawa coupling matrices that corresponds to the fermion masses,

Φ̃ is the charge conjugated scalar field so that

Φ̃ = iτ 2Φ∗ = (ϕ0∗(x),−ϕ−)T . (15)

4



1.1.2 Transferring the Electroweak Standard Model Lagrangian to physical ba-

sis

The Lagrangian written down in the last section is constructed by fields defined as the

eigenstates of the EW gauge interaction, i.e., the covariant derivatives are diagonal, and all

fields are not necessarily representing physical states, i.e., the eigenstates of the charge and

the mass. To make use of this Lagrangian for making theoretical predictions, we need to

recast the Lagrangian so that all degrees of freedom that shows up in the classical Lagrangian

have physical content. We start by looking at the complex scalar sector, where we first find

the new ground state of the field by taking the derivative of the potential:

∂V (Φ)

∂Φ
= 0, (16)

thereby finding the new minimum of the vacuum as

|⟨Φ⟩|2 = 2µ2

λ
=
υ2

2
̸= 0 ⇒ Φ0 =

1√
2

0

υ

 (17)

Note that only the non-zero VEV will lead to the breaking of SU(2)L × U(1)Y , otherwise

the EW gauge group will remain unbroken. Using the polar reparametrization and having

the scalar field expand around the VEV we get

Φ(x) =

 ϕ+(x)

1√
2
[υ +H(x) + iχ(x)]

 , (18)

whereH(x) is the only physical degree of freedom that represents the transverse fluctuation in

the vicinity of the ground state, while the others are would-be Goldstone bosons that feature

no physical content in gauge theory whatsoever. Hence, to get the gist of the physical content

of the Lagrangian of the EWSM, one can find a suitable gauge transformation, namely the

unitary gauge, in which all Goldstone modes are eliminated. Inserting Eq. (18) into LF
and LS while diagonalizing gauge fields and fermion fields in physical eigenstates, we would

5



obtain the masses for both gauge bosons and fermions as follows:

MH =
√
2µ , Mϕ±,χ = 0 , Mγ = 0 , (19)

MW± =
1

2
g2υ , MZ =

1

2

√
g21 + g22υ , mψ,i =

υ√
2

∑
k,m

U f,L
ik Y f

kmU
f,R
mi

†
, (20)

where all physical fields are defined as

W±
µ =

1√
2
(W 1

µ ∓W 2
µ) ,

Zµ
Aµ

 =

 cW sW

−sW cW

W 3
µ

Bµ

 , (21)

ψLi =
∑
k

U f,L
ik fLk , ψRi =

∑
k

U f,R
ik fRk , (22)

with weak mixing angles defined as follows:

cW = cos θW =
g2√
g22 + g21

. sW = sin θW, (23)

alternatively, one can also reparametrize the weak mixing angle as cW = MW

MZ
. The masses of

gauge bosons can be acquired by diagonalizing the kinetic term of LS in a straightforward

way, where one has to write W-boson fields in their charge eigenstates first. Then it is natural

combining W 3 and B together as they are both electrically neutral. By diagonalizing the

mixing of W 3 and B, one can get the physical states of neutral gauge bosons: Zµ and Aµ.

The diagonalization of fermions requires bi-unitary transformation as shown in Eq. (20).

Due to the unitarity, the bi-unitary-transform matrices in Eq. (20) drop out in neutral

currents, i.e., the interaction between fermions and neutral gauge bosons, thereby leading to

a simple flavor diagonal representation of the physical states, which is not the case for the

charged current–for the interaction between W bosons and quarks, due to the non-degenerate

quark masses measured in experiments, the quark-mixing matrix in interacting with W boson

is elucidated by CKM matrix such that

Vij = Uu,L
i,k U

d,L
kj

†
. (24)

However, in the lepton sector, since we do not include the neutrino masses, one can choose
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a suitable U ν,L to eliminate the mixing, leading to a flavor-diagonal interaction between

leptons and W bosons. Lastly, there are terms linearly depending on the Higgs field H(x).

One can group them all into a parameter t written as

Ltadpole = tH(x), t = υ(µ2 − λ2

4
υ2). (25)

Note that t vanishes at tree-level, and as we will discuss in the next chapter, choosing

the redefinition of t carefully one can safely discard most quantum effects stemming from

this term.

1.1.3 Quantizing the Lagrangian of the EWSM

Needless to say that the success of the SM is deeply rooted in its power of making pre-

dictions with high precision, which requires taking the quantum effects beyond the classical

level of the SM Lagrangian into account.

Quantizing the Eq. (1) requires the parametrization of the gauge. Although the unitary

gauge mentioned earlier is useful to identify the physical content, it becomes highly singular

in higher-order calculations. One commonly used class of gauge in quantizing the SM is

called Rξ gauge, where ξ is a real parameter that runs from 0 to ∞ to specify the gauge. In

Rξ gauge class, we can write down the gauge-fixing terms according to the Faddeev Popov

method[32] as follows:

C± = ∂µW±
µ ∓ iMWζ

′
Wϕ

± CZ = ∂µZµ −MZζ
′
Zχ, CA = ∂µAµ. (26)

LGF = − 1

2ξA
(CA)2 − 1

2ξZ
(CZ)2 − 1

ξW
C+C−. (27)

By choosing ’t Hooft gauge where ζW,Z = ξW,Z, one can eliminate the mixing between

gauge bosons and Goldstone modes up to irrelevant total derivative. In the meanwhile, the

Goldstone modes acquire masses from Eq. (27) as M2
ϕ±,χ = ξW±,ZMW±,Z.

To preserve the unitarity and compensate the unphysical effects introduced by Eq. (27),

one needs to introduce Faddeev Popov ghosts uα(x), ūα, where α = γ, Z,±, along with their
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Lagrangian

LFP = ūα
δLαGF
δθβ(x)

uβ, (28)

where the δLα
GF

δθβ(x)
is the variation with respect to infinitesimal gauge transformation. All

unphysical poles stemming from the quantization in Rξ are cancelled in the final expression

for physical on-shell amplitudes, thereby resulting in gauge invariance of physical S-matrix.

One common choice of the gauge used in higher-order calculation is ξα = 1, namely ‘t

Hooft-Feynman gauge, at which all the unphysical poles of the ghost fields, Goldstone fields,

and longditudinal components of the gauge fields coincide with the poles of the transverse

components of the gauge fields. Finally, the quantized Lagrangian of EWSM is given by

LEWSM = LEW−Gauge + LS + LF + LGF + LFP . (29)

It has been proven to be gauge-invariant under a generalized gauge transformation, as known

as Becchi-Rouet-Stora Transformation (BRST) [33], consequently leading to relations be-

tween Green’s functions of gauge bosons and Goldstone bosons, which is known as Slavnov-

Taylor identities that render the gauge invariance and renormalizability of the EWSM.

8



1.2 Precision Tests of the Standard Model

Owing to its renormalizability, the Standard Model has successfully and precisely pre-

dicted various phenomena spanning a wide range of energies in subatomic physics. However,

its congenital deficiencies, such as the lack of a mechanism for generating neutrino masses,

the absence of dark matter, and the reluctance of explaining the underlying dynamics of

the electroweak spontaneous symmetry breaking, are not to be overlooked. All the puzzles

mentioned above have been known for decades yet cannot be resolved by any experimen-

tal observations thus far, thereby anticipating that the new fundamental particles are out

of reach of the current operating experiments due to their weak couplings or heavy masses.

Not only does this anticipation require experimental machines with unprecedented precision,

but it also challenges the higher-order calculation of radiative corrections to the observables

that will be measured.

Historically, the precision tests of the SM have a long successful history dating back even

before the discovery of the W and Z bosons [34, 35, 36] by the UA1, and UA2 collaborations

[37, 38, 39, 40]. Then the Z-boson factories, LEP and SLC [41] scrutinized a set of observables

such as MZ, sin
2 θleff ,ΓZ, AFB, etc defined at the Z-pole. With the help of such precision

measurements of the EW sector, theorists at the time had successfully predicted that the

mass of the top quark should be in the range 140 GeV < mt < 190 GeV [41, 42, 43, 44]

before its discovery by the collaborations CDF[45] and D/O[46] at the Tevatron collider in

1995. Following closely, having LEP 2 run at the W+W− threshold and beyond, precision

study groups were able to put constraints on the Higgs boson mass internally via radiative

corrections [47, 48, 49, 50] , shedding light on the discovery of the Higgs boson later in 2012

[51, 52]. All the success of indirect search or constraint of new physics relied on higher-order

calculations, thus guiding us to push the precision frontier further.

1.2.1 Definitions of electroweak precision observables

To scrutinize the SM, especially the EW sector, via experimental data, we usually define

a set of electroweak precision observables (EWPOs) that can be measured with high pre-
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cision. There is no definitive way of defining EWPOs, but one can observe their heuristic

commonness in the course of study as follows:

• the EWPOs defined should be measurable by experiments and with desiring precision

guaranteed.

• the EWPOs should be theoretically well-defined with respect to gauge-invariance, Lorentz

invariance, etc.

• the EWPOs should be able to encapsulate all relevant short-distance physics while being

insensitive to or detachable from the long-distance effects such as QED and QCD effects.

• the EWPOs should capture the sensitivity to new physics beyond the SM.

• etc.

To carry out the higher-order calculation of EWPOs, one needs to choose a set of parameters

as theoretical input, which can also be determined according to the items listed above. For

detailed discussion of the input parameters one can refer to sec. 2.4 or [53]. In the following,

we list a set of EWPOs that are commonly used for checking the inner consistency of the

EW sector in the SM and testing the potential new physics beyond the SM:

1.2.1.1 W-boson mass

The W-boson mass can be determined either by direct measurements via either W+W−

pair production at lepton colliders such as LEP 2 or an s-channel W-boson (a Drell-Yan

process with charged current) at hadron colliders. It can also be indirectly determined from

muon decay. Owing to the precise measurement of the muon lifetime, we have known the

Fermi constant to an unprecedented level of precision.

Γµ =
G2
µm

5
µ

192π3
F (

m2
e

m2
µ

)(1 + ∆q) (30)

F (r) = 1− 8r + 8r3 − r4 − 12r2 log r, (31)
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D⊘ CDF1 ATLAS LHCb LEP CDF2

MW MeV 80375±23 80387±19 80370±19 80354±32 80376±33 80433.5± 9.4

Table 1: Precise determination of the W-boson mass given by several collaborations, noticing

that the W-mass given by LEP is a combined result, and the latest measurement given by

CDF has a significant discrepancy compared with others. In fact, it deviates from the SM

prediction by 7.0 sigma.

where ∆q has capture QED effects up to NNLO [54, 55, 56]. Then one can seal all less known

radiative correction stemming from the EW sector into a gauge-invariant quantity ∆r as

Gµ =
πα√

2s2WM
2
W

(1 + ∆r). (32)

Then the W-boson mass can be solved iteratively as

M2
W =M2

Z

[1
2
+

√
1

4
− απ√

2GµM2
Z

(1 + ∆r)
]

(33)

Experimentally, the W-mass has been determined from various collaborations from lepton

and hadron colliders, followed by the methods mentioned above. Here we list the most recent

measurements of MW given by [57, 58, 59, 60, 47, 61].

1.2.1.2 EWPOs at Z-pole

The process e+e− → ff̄ running near the Z-pole, i.e.
√
s ≈M2

Z is considered as one of the

most critical testbeds of the EWSM. The observables defined at the Z-pole can be measured

precisely, constraining various types of new physics thereby. They can be divided into various

sets which can be individually determined hence offering the window for consistency scrutiny:

(i) the cross section of e+e− → ff̄ at the Z-pole, σ0
f = σf (s = M2

Z); (ii) The total width of

the Z boson, extracted from the σf in the vicinity of the Z-pole dubbed as Z-lineshape ; (iii)
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The branch ratio Rf of different decay channels.

σ0
had = σ[e+e− → hadrons]s=M2

Z
; (34)

ΓZ =
∑
f

Γ[Z → ff̄ ], (35)

Rl = Γ[Z → hadrons]/Γ[Z → l+l−], (l = e , µ , τ); (36)

Rq = Γ[Z → qq̄]/Γ[Z → hadrons], (q = b , c , s , d , u ); (37)

It can be seen that by assuming the cross section for each fermion final state features the

same uncertainties given by the detector’s acceptance and the integrated luminosity, it is

thus better to use the ratios of σf/σ′
f to reduce the error.

To retrieve the EWPOs from the experiment, one also needs to extract the theoretical

contributions given by QCD and QED, which are actually numerically important (due to

the large logarithm stemming from soft/collinear photons) while physically less interesting.

Radiator functions can sketch the contribution given by the QED as

σfull
f =

∫ 1−4m2
f/s

0

dxH(x)σdeconv
f (s′), (38)

where s′ = s(1−x) and H(x) contains both resummed soft photon and fixed order QED con-

tributions, apart from the real corrections, the s-channel photon exchange, γZ interference,

and box diagrams also need to be extract so that the

σf (s
′) = σdeconv

f (s′)− σγf (s
′)− σγZf (s′)− σbox

f (s′) (39)

corresponds to the observables defined in Eq. (37). Theoretically, these observables are con-

structed by the effective vector and axial-vector form factors that encapsulate the radiative

corrections of the SM and physics beyond the SM.

ΓZ ∼
∑
f

(|υf |2 + |af |2) (40)

σf ∼ (|υe|2 + |ae|2)(|υf |2 + |af |2). (41)
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1.2.1.3 Asymmetries and effective weak-mixing angle

It would be nice to define an observable that depends on the ratio between the effective

vector and axial-vector form factors, υf (s) and af (s) near the resonance of the Z-peak, besides

the quadratic dependence given by the cross section and decay widths. For this purpose, one

can define objects so-called asymmetries, at which the systematical uncertainties are also

minimized by the ratio between cross sections. With polarized incoming electron (positron)

beams, one can measure the left-right asymmetry

ALR =
σL − σR
σL + σR

=
2Re υe/ae
1 + |υe/ae|2

≡ Ae (42)

The differential σf given by unpolarized beams is sketched as

dσf
d cos θ

∼ (|υe|2 + |ae|2)(|υf |2 + |af |2)(1 + cos2 θ) + 2υeaeυfaf cos θ (43)

By defining forward and backward scattering as follows:

σF =

∫ 1

0

dσ

d cos θ
d cos θ, σB =

∫ 0

−1

dσ

d cos θ
d cos θ, (44)

we can then write down the forward-backward asymmetry as

AFB ≡ σF − σB
σF + σB

=
3Re υe/ae

1 + (υe/ae)2
Re υf/af

1 + (υf/af )2
(45)

=
3(1− 4|Qe| sin2 θeeff)

1 + (1− 4|Qe| sin2 θeeff)
2

(1− 4|Qf | sin2 θfeff)

1 + (1− 4|Qf | sin2 θfeff)
2
, (46)

where the sin2 θfeff is defined as

sin2 θfeff =
1

4|Qf |

(
1− Re

υf
af

)
. (47)

The measurement of AFB can thus be used to determine the value of sin2 θfeff . It has been

measured at both lepton colliders, such as the LEP and SLD, and hadron colliders, including

the TeVatron and the LHC, yielding corresponding sin2 θleff with relative precisions below

0.1% and 0.2%, respectively. One can refer to Table 3.8 in Ref. [62] for more thorough

details.
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1.2.2 Precision tests in the future e+e− colliders

From a theoretical point of view, the SM higher-order corrections to the effective vector

and axial-vector form factors, along with the ∆r defined in muon decay, is essential when

comparing with the measurements provided by experiments. Over a span of several decades,

the complete one-loop[63, 64], complete two-loop EW [65, 66, 67, 68, 69, 70, 71, 72, 73,

74, 75], mixed EW-QCD two-loop[76, 77, 78, 79, 80, 81, 82, 83, 84, 85] corrections to the

sin2 θfeff and Γ[Z → ff̄ ], along with partial numerically significant contributions given at

higher-loop orders, such as the top-Yukawa enhanced contributions at three and four-loop

level [86, 87, 88, 89, 90, 91, 92] have been carried out, altogether yielding the theoretical

uncertainties due to missing higher orders shown as in the Tab. 2.

Exp Current theo. error CEPC FCC-ee ILC/GigaZ

MW[MeV] 12 4(α3, α2αs) 1 0.5 ∼ 1 2.5

ΓZ [MeV] 2.3 0.4(α3, α2αs, αα
2
s ) 0.5 0.1 1.0

sin2 θfeff [10−5] 16 4.5(α3, α2αs) < 1 0.6 1

Table 2: This table demonstrates the current experimental uncertainties given by the global

fits of measurements taken from the LEP, SLD, and LHC vs. future experimental accuracies

projected for CEPC, FCC-ee, and ILC for three EWPOs [2, 3, 4, 5, 6]. For ILC, the GigaZ

option is considered, which is a Z-pole run with 100 fb−1.

One can easily see that the current theoretical uncertainties are well-below the uncer-

tainties given by experiments. However, several future e+e− colliders, such as FCC-ee [93],

CEPC [2], ILC [94, 95], and CLIC [96, 97] have laid out a new precision frontier, that one

can test the EW sector to an unprecedented level. The experimental uncertainties given by

these colliders are listed in the Tab. 2. One can see that they can improve the precision by
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at least one order of magnitude. Hence should one of these colliders be built, the three-loop

and leading-four loop EW and mix EW-QCD corrections are required for testing the SM.
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2.0 Radiative Corrections in Electroweak theory

2.1 Renormalization

2.1.1 Renormalization in perturbative QFT

The Lagrangian of the SM contains several free parameters. Defining these parameters
and relating them to physical observables are the essence of the renormalization procedure. A
peculiar feature given by higher-order perturbation of QFT is that the loop integrals that ac-
count for quantum effects diverge, which impedes the renormalization procedure from being
straightforward, both physically and mathematically. There are two classes of divergences:
integrating over the loop momentum k of a massless propagator when |k| tends to 0 or having
one massless propagator in the loop become collinear with one neighbor external light-like
momentum in the neighbor, which give rise to the so-called soft divergence and collinear
divergence, respectively. Usually, they are also commonly referred to as infrared (IR) singu-
larities. When integrating over k as |k| → ∞, another type of divergence may occur, which
is so-called ultra-violet (UV) divergence. From a math point of view, it is crucial to regu-
larize these divergences before commenting on the physics of their corresponding quantum
effects. There are many systematic ways of regularizing the divergences arising from loops.
All regularization schemes inevitably introduce an extra degree of freedom, which character-
izes the energy or distance scales. Here we set the dimensional regularization scheme (DR)
as default. Although being subject to technical difficulties in practice, the IR divergences
have long been conceptually well-understood and can be safely removed by combining vir-
tual loop corrections and real emissions. However, the UV divergences articulate that all
observables defined locally in relativistic QFT only approximately represent the underlying
physics. Accordingly, in EFT language, the UV divergences are seen as the measure of sensi-
tivity to the underlying new physics at a shorter distance and higher energy scale. Hence one
can remove those UV divergences systematically from higher-order calculations where the
scale of the physical process described by a theory is insensitive to the underlying physics.
The removal of UV divergences can henceforth be embedded in redefining the Lagrangian
parameters. Different ways of relating redefined Lagrangian parameters to observables cor-
respond to various renormalization schemes. Should observables be physically well-defined,
they are independent of the choice of regularization schemes, i.e., they all should be cut-off
independent.

Care must be taken when re-defining the parameters in Lagrangian so that all symmetries
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shall remain unspoiled. Hence, one should first choose an independent set of parameters
from tree-level Lagrangian (namely "bare" Lagrangian) that respects all symmetries, then
introduce a multiplicative renormalization constant to each independent parameter and each
bare field. In the spirit of perturbation theory, one can thus perform series expansion solely
on renormalization constants. By imposing a set of renormalization conditions, one fixes the
renormalization constants and defines the relation between renormalized parameters and
physical observables unequivocally. The bare Lagrangian can split into renormalized and
counterterm Lagrangian as follows

g0 = Zgg = g(g,m, µ) + δ(1)Zg(g,m, µ) + . . .

m2
0 = Zmm

2 = m2(g,m, µ) + δ(1)m2(g,m, µ) + . . .

ϕ0 = Z
1/2
ϕ ϕ = 1 +

1

2
δ(1)Zϕϕ+ . . .

L(ϕ0, g0,m0) = L(ϕ, g,m, µ) + δL(ϕ, g,m, δZϕ, δg, δm2, µ) ,

(48)

where µ is the renormalization scale introduced by DR. The UV divergences stemming from
the bare Lagrangian will then cancel against those in the counterterm Lagrangian, rendering
the renormalized Lagrangian finite.

2.1.2 Renormalization in the SM

2.1.2.1 Reparametrization of the bare Lagrangian

Upon the spirit introduced above, we reparameterize the bare Lagrangian of the SM (in
physical basis) as in the Table. 3 below. By choosing the t’ Hooft gauges(ξb = ζb, b = W,Z),
one can see that the poles given by the unphysical degree of freedom coincide with the poles
of the transverse component of physical degree of freedom. Several caveats should be stressed
hereï¼ that we have set the CKM matrix to be unitary matrix and ignored the neutrino and
light quark (except the top) masses due to their irrelevant impact on the EW physics, we
have also set the counterterm of the vacuum expectation value υ as a non-free parameter
such that all tadpole contributions of 1-point Higgs vertex function are absorbed into the
counterterm δt. For more thorough discussion please see Ref. [98] and references therein.
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Figure 1: Γ̂HR = ΓH + δt = 0

2.1.2.2 Renormalization condition

As mentioned above, all renormalization constants can be fixed by imposing renormaliza-
tion conditions. One of the most common sets of renormalization conditions is the so-called
on-shell scheme, in which all renormalized masses of massive particles are defined as the
physical masses , i.e. the real part of the pole of corresponding propagators. For couplings,
they are usually defined at a three-point function under a certain limit. Therefore, masses
and couplings can be determined from radiative corrections within one-particle irreducible
(1-PI) two-point functions and three-point functions, respectively. Firstly, let us define the
Green’s function of gauge bosons with self-energy Σ as

Ĝµν(k
2) = iDµν(k

2) + iDµρ(k
2)Σ̂ρσ(k2)Dσν(k

2) + . . .

= iDµρD
−1ρσDσν + iDµρΣ̂

ρσDσν + . . .

= iDµρ(−iD̃−1
ρσ

− iΣ̂ρσ)Dσν + . . .

≡ iDµρΓ̂
ρσDσν + . . . , (49)

where Dµν(k
2) is the gauge-boson propagator in momentum space, and Γ̂ρσ is named as two-

point function. In Feynman -’t Hooft gauge, the electroweak gauge bosons’ 1-PI two-point
functions can be written as the follow
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Couplings e0 = (1 + δZe)e, gs,0 = (1 + δgs)gs

Ga
0 =

√
1 + δZGG

a [a = 1, ...8]

Gauge Bosons W±
0 =

√
1 + δZW W± M2

0,W =M2
W + δM2

WZ0

A0

 =


√
1 + δZZZ

1
2
δZZA

1
2
δZAZ

√
1 + δZAA


Z
A

 M2
0,Z =M2

Z + δM2
Z

Higgs Boson H0 =
√
1 + δZH H M2

0,H =M2
H + δM2

H

Fermions
ψLf,0 =

√
1 + δZL

f ψ
L
f

ψRf,0 =
√

1 + δZR
f ψ

R
f

M2
0,f =M2

f + δM2
f

χ0 = (1 + 1
2
δZχ)χ, ϕ±

0 = (1 + 1
2
δZϕ)ϕ

±

Unphysical Sector u±0 = (1 + δZ̃±)u
±uZ0

uA0

 =

1 + δZ̃ZZ δZ̃ZA

δZ̃AZ 1 + δZ̃AA


Z
A


ζ0,b = Zζbζb ξ0,A = ZξAξA, b = W,Z

Table 3: Reparametrization of the SM Lagrangian in physical basis.

Γ̂Wµν(k
2) = −igµν(k2 −M2

W )− i(gµν −
kµkν
k2

)Σ̂W
T (k2)− i

kµkν
k2

Σ̂W
L (k2) (50)

Γ̂Zµν(k
2) = −igµν(k2 −M2

Z)− i(gµν −
kµkν
k2

)Σ̂Z
T (k

2)− i
kµkν
k2

Σ̂Z
L(k

2) (51)

Γ̂γµν(k
2) = −igµνk2 − i(gµν −

kµkν
k2

)Σ̂γ
T (k

2)− i
kµkν
k2

Σ̂γ
L(k

2), (52)

Γ̂H(k2) = i(k2 −M2
H) + iΣ̂H(k2) (53)
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where

Σ̂W
T (k2) = ΣW

T (k2) + (k2 −M2
W )δZW − δM2

W (54)

Σ̂Z
T (k

2) = Σ̂ZZ
T (k2)− [Σ̂γZ

T (k2)]2

k2 + Σ̂γγ
T (k2)

(55)

Σ̂ZZ
T (k2) = ΣZ

T (k
2) + (k2 −M2

Z)δZZ − δM2
Z (56)

Σ̂γZ
T (k2) = ΣγZ

T (k2) + 1
2
δZZγ(k2 −M2

Z − δM2
Z) +

1
2
δZγZk2, (57)

Σ̂γγ
T (k2) = Σγγ

T (k2) + 1
4
(δZZγ)2(k2 −M2

Z − δM2
Z) + δZγγk2. (58)

Σ̂H(k2) = (k2 −M2
H)δZH + ΣH(k2)− δM2

H (59)

Similarly for the fermion:

Γ̂f (/k) = i(/k −mf ) + i[ /kω−Σ̂
L
f (k

2) + /kω+Σ̂
R
f (k

2) +mf Σ̂
S
f (k

2) ] (60)

where

Σ̂L
f (k

2) = ΣL
f (k

2) + δZL
f (61)

Σ̂R
f (k

2) = ΣR
f (k

2) + δZR
f (62)

Σ̂S
f (k

2) = ΣS
f (k

2)− 1

2
(δZL

f + δZR
f )−

δmf

mf

, (63)

2and ω± = 1±γ5 . One can get the corresponding propagator of each renormalized 1-PI two-
point vector-boson function by taking an inverse. That is to say, locating propagators at
poles is equivalent to setting renormalized 1-PI two-point functions to zero while projecting
to physical states (such as εµ(k), u(k), and u(k)). By normalizing the residue of the renor-
malized propagator to be 1 in the on-shell limit, one determines the renormalization constant
of the field. For γ − Z mixing, we determine the off-diagonal field strength counterterms
by requiring matrices of renormalized 1-PI two-point functions are diagonal at photon-pole
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Figure 2: Feynman diagrams for 1-PI renormalized two and three-point functions.

k2 = 0 and Z-pole k2 =M2
Z. All conditions can be expressed as

Re Γ̂Wµν(k
2)εν(k)

∣∣∣
k2=M2

W

= 0 Re Γ̂AZµν (k
2)εν(k)

∣∣∣
k2=M2

Z

= 0 (64)

Re Γ̂AZµν (k
2)εν(k)

∣∣∣
k2=0

= 0 Re Γ̂ZZµν (k
2)εν(k)

∣∣∣
k2=M2

Z

= 0 (65)

lim
k2→M2

W

1

k2 −M2
W

Re Γ̂Wµν(k
2)εν(k) = −iεµ(k) lim

k2→0

1

k2
Re Γ̂AAµν (k

2)εν(k) = −iεµ(k) (66)

lim
k2→M2

Z

1

k2 −M2
Z

Re Γ̂Zµν(k
2)εν(k) = −iεµ(k) lim

k2→M2
H

1

k2 −M2
H

Re Γ̂H(k2) = i (67)

lim
/k=mf

Re Γ̂f (k)u(k) = 0 lim
k=mf

Re Γ̂f (k)
/k −mf

u(k) = iu(k) (68)

While solving for counterterms order-by-order in gauge boson sector from Eq. (64)- (68),
one sees that only the transverse components of renormalized 1-PI two-point vector-boson
functions in Eqs. (54)- (59) contribute. At the same time, the longitudinal part of the 1-PI
self-energy function cancels the self-energy given by physical-unphysical field mixing if one
chooses gauge-fixing counterterms appropriately. Since the renormalization of all unphysical
parameters is irrelevant to the S-matrix, we can choose a convenient way of renormalizing
the whole unphysical sector while having the Slavnov-Taylor identity manifested at the same
time.(see Ref. [99] for more detail.) Restricting our discussion at one-loop level, we can thus

21



write down the one-loop EW renormalization counterterms based on Eq. (68)

δ(1)M2
W = ReΣW

T
(1)(M2

W) δ(1)M2
Z = ReΣZZ(1)

T (M2
Z) (69)

δ(1)ZW = −Re
∂ΣW

T (k2)

∂k2

∣∣∣
k2=M2

W

δ(1)ZZZ = −Re
∂Σ

(1)
T

ZZ(k2)

∂k2

∣∣∣
k2=M2

Z

(70)

δ(1)ZγZ = −2Re
ΣγZ
T

(1)(M2
Z)

M2
Z

δ(1)ZZγ = 2Re
ΣZγ
T

(1)(0)

M2
Z

(71)

δ(1)Zγγ = −Re
∂ΣγZ

T
(1)(k2)

∂k2

∣∣∣
k2=0

, (72)

δ(1)M2
H = ReΣH

T
(1)(M2

H) δ(1)ZH = −Re
∂Σ

(1)H
T (k2)

∂k2

∣∣∣
k2=M2

H

(73)

Similarly for fermions:

δ(1)mf =
1

2
mf [ReΣL

f (m
2
f ) + ReΣR

f (m
2
f ) + 2ReΣS

f (m
2
f )] , (74)

δ(1)ZL
f = −ReΣL

f (m
2
f )−m2

f

∂2

∂p2
Re [ΣL

f (m
2
f ) + ΣR

f (m
2
f ) + 2ΣS

f (m
2
f )]
∣∣∣
p2=m2

f

, (75)

δ(1)ZR
f = −ReΣR

f (m
2
f )−m2

f

∂2

∂p2
Re [ΣL

f (m
2
f ) + ΣR

f (m
2
f ) + 2ΣS

f (m
2
f )]
∣∣∣
p2=m2

f

. (76)

To determine the renormalization constant for the charge, we inspect the renormalized three-
point function (at one-loop level)

Γ̂γffµ (p′, p) = ieQfγµ + ieQfΛ
γff
µ (p′, p)−Qfγµ(δZe +

1

2
δZγγ + δZf

Lω− + δZf
Rω+) (77)

+ γµ(vf − afγ5)
1

2
δZZγ , (78)

in which the physical charge e is defined through Thompson scattering so that

u(p)Γ̂γffµ (p, p)u(p) ≡ u(p)γµu(p). (79)

By imposing Ward identity and some other useful relations

u(p)Λγffµ (p, p)u(p) = −eQfu(p)
[ ∂

∂pµ
Σf̄f(1)(p)

]
u(p)− afu(p)γµ(1− γ5)u(p)Σ

γZ(1)
T (0)/M2

Z ,

(80)

u(p)[
∂

∂pµ
Σf̄f(1)(p)]u(p) = −u(p)γµ(δZf

Lω− + δZf
Rω+)u(p) , (81)

Σ
γZ(1)
T (0) =

M2
Z

2
δ(1)ZZγ , (82)

vf − af = −Qf
sW
cW

. (83)

22



We can eventually obtain

δ(1)Ze = −1

2
δ(1)Zγγ −

1

2

sW
cW

δ(1)ZZγ =
1

2

∂Σ
γγ(1)
T (k2)

∂k2

∣∣∣
k2=0

− sW
cW

Σ
γZ(1)
T (0) (84)

As a consequence, the renormalization of the charge coupling is fermion-flavor independent
after all. The reparametrization of weak-mixing angle from bare Lagrangian reads

s20,W = 1− c20,W = 1−
M2

0,W

M2
0,Z

. (85)

In the OS scheme, it is derived from requiring such a relation hold at arbitrary higher
order[100]. So that at one-loop level, one can write

δ(1)s2W
s2W

=
c2W
s2W

(δ(1)M2
Z

M2
Z

− δ(1)M2
W

M2
W

)
, (86)

where the renormalization constant of weak-mixing angle is determined by gauge-boson
masses’ counterterms. Therefore, the weak-mixing angle in the OS scheme is a process-
independent quantity. There are many other schemes for imposing renormalization condi-
tions. For instance, in MS scheme, all counterterms only absorb the UV divergences, i.e., no
finite constants in counterterms whatsoever. The parameters renormalized under MS scheme
are not physical, and depend on a temporarily introduced renormalization scale µ. It is thus
formally easy but physically not so straightforward comparing to the OS scheme. We will
revisit this scheme in chapter 4 where we use MS prescription for the top-quark mass in
mixed EW-QCD corrections.
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2.2 Techniques of calculating loop integrals

We have studied the way of determining renormalization constants by imposing a set of
renormalization condition. Yet the radiative corrections captured in the self-energy function
ΣT (k

2) and vertex function Λµ(p
′, p) remain to be computed1. A Feynman loop integral

corresponds to a Feynman diagram that contains one or multiple closed loops. Given by
the nature of quantum field theory, the momentum flowing inside of each loop must be
integrated over, which potentially gives rise to the UV and IR divergences that are ought to
be regularized in prior to the renormalization procedure. The evaluation of the Feynman loop
integral forms a vast topic per se. One can find thorough reviews on analytical approaches
in [101] and numerical approaches in [102]. In this section, we will be focusing on methods
adopted in our research. And they can be split into two steps: (i) the algebraic reduction,
(ii) the evaluation of loop integrals.

2.2.1 Loop integral reduction

For a given process laid out as Feynman amplitudes containing one or multi-loop integrals
at given order, one can break it further down to a linear combination of scalar integral family
known as "master integrals" (MIs). There are many methods tackling this issue. We discuss
two methods in the following.

2.2.1.1 Tensor reduction and Passarino-Veltman approach

For one-loop and partially two-loop cases, one uses the so-called Passarino-Veltmann
method. To illustrate this method, we firstly write down a generic one-loop N-point integral
in d-dimension as

TNµ1...µM (p1, ..., pN−1,m0, ...,mN−1) =
(2πµ)4−D

iπ2

∫
dDq

× qµ1 · · · qµM
(q2 −m2

0 + iϵ)([(q + p1)2 −m2
1 + iϵ] · · · [(q + pN−1)2 −m2

N−1 + iϵ]
, (87)

where the convention T 1 ≡ A, T 2 ≡ B, T 3 ≡ C, etc is used. When M = 0, we obtain
the scalar integral family A0, B0, C0, etc, which is also recognized as the master integral
basis of all one-loop integrals. It so turns out that these Lorentz covariant tensor-integrals
can be decomposed into tensors constructed from external momenta and metric tensor with

1out of the scope of the renormalization of the SM, there are also other possible multi-point functions
that need to be computed, such as box diagrams, etc.
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symmetric coefficients. This can be explicitly shown as the follow:

Bµ = pµ1B1 ,

Bµν = gµνB00 + p1µp2νB11 ,

Cµ = p1µC1 + p2µC2 ,

Cµν = gµνC00 +
2∑

i,j=1

piµpjνCij ,

Cµνρ =
2∑
i=1

(gµνpiρ + gνρpiµ + gµρpiν)C00i +
2∑

i,j,k=1

piµpjνpkρCijk ,

Dµ =
3∑
i=1

piµDi ,

. . . . (88)

All these tensor coefficients can be solved as linear combinations of one-loop MIsA0, B0, C0, D0, etc

by applying the following contractions

• contracting Eq. (88) with external momenta piµ

pµ1i qµ1 =
1

2
[(q + pi)

2 −m2
i ]−

1

2
(q2 −m2

0)−
1

2
(p2i −m2

i +m2
0)

• contracting with metric tensor gµν

gµνqµqν = (q2 −m2
0) +m2

0

recursively and simultaneously solve the set of linear equations of tensor coefficients. Since
each time of applying one of those contractions will bring the tensor integral one rank
down and/or one propagator less. In circumstances where such a linear equation system is
singular, the Passarino-Veltman approach breaks down and one has to find alternative way
to circumvent it. However, sometimes it is better dealing just with scalar quantities at the
beginning rather than going through this recurisve algorithm. Hence one can in principle
construct relevant projection operators to decompose the tensor structure of two, three,
and four-point functions. Such a method is extremely helpful for dealing with polarized
amplitudes beyond tree-level. See appendix 6.1.

2.2.1.2 Integration-by-parts (IBP) approach[1]

When moving from one-loop to two-loop and cases beyond, the number of loop integrals
at a given order of the correction becomes enormous. Therefore, it is important to reduce
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thousands of loop integrals to a small set of MIs. Given that the surface integral vanishes in
DR, one can apply the following identity to an L-loop integral∫ L∏

i=1

ddki
iπd/2

∂

∂ki

( {kj, pj}
Dα1

1 . . . DαN
N

)
= 0 , (89)

with

Da = (ki + pi)
2 −m2

a + iϵ (90)

recursively until it finally reaches a minimal linear combination of MIs. It has been shown
that such finite MI basis always exists[103]. The essential idea of IBP approach is that
instead of evaluating hundreds or thousands of integrals, one can just carry out a smaller
set of MIs by recursively using Eq.(89) along with some other Lorentz identities[104] and
symmetries. Several cutting-edge public codes such as AIR, FIRE, Reduze, LiteRed,
MINCER[105, 106, 107, 108, 109], have been developed to tackle the IBP reduction of
general multi-loop integrals. Besides, there are many other mordern techniques developed
recently, one can refer to [98] for a thorough discussion.

2.2.2 The calculation of master integrals

Multifarious techniques of calculating MIs have been developed. Analytically, evaluating
MIs is essentially writing MIs in terms of a set of well-defined functions of invariants of exter-
nal momenta, propagator masses. However, the variation of masses and external momenta
give rise to the difficulties of solving MIs by elementary functions, which motivates people
to search for numerical methods. Here, we give introductions to two methods employed in
this thesis.

2.2.2.1 Feynman parameters approach

A scalar L-loop integral in d-dimension with N propagators to the power νj

I =

∫ L∏
i=1

ddki
iπd/2

N∏
j=1

1

D
νj
j

(91)

can be parametrized as

I = Γ(Nν)

∫ N∏
j=1

dxjx
νj−1
j δ(1−

N∑
i=1

xi)

∫ L∏
i=1

ddki
iπd/2

1[
x1D1 + . . .+ xjDj

]Nν
, (92)
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where the denominator can be re-parametrized as

x1D1 + . . .+ xjDj =
L∑

j,l=1

kj · klMjl − 2
L∑
j=1

kj ·Qj + J , (93)

where the L×L matrix Mjl, the L-column vector Qj, and the scalar function J are functions
of Feynman parameters xj. By shifting the momenta to eliminate the linearly k-dependent
terms in the square bracket, the integral becomes

I = (−1)Nν
Γ(Nν − Ld/2)∏N

j=1 Γ(νj)

∫ ∞

0

N∏
j=1

dxjx
νj−1
j δ(1−

N∑
i=1

xi)
UNν−(L+1)d/2

FNν−Ld/2
(94)

where

U = det(M) , Nν =
N∑
j=1

νj , (95)

F = det(M)
[ L∑
i,j=1

QiMijQj − J − iδ
]
. (96)

This is in fact the most straightforward way of evaluating simple MIs, such as one-loop
integral family, A0, B0, C0, D0etc [110]. More complicated multi-loop MIs requires additional
techniques or some totally different approaches. Feynman parametrization has not only
been used analytically in Ref. [111, 112, 113, 114, 115, 116], but also to carry out two-
loop radiative corrections numerically [117, 118, 119, 120, 121]. However, the numerical
Feynman parametrization technique cannot handle IR singularities straightforwardly, which
makes it less applicable in higher-loop QCD calculations. Besides, the determination of the
integration contour depends on the topology of the Feymann diagrams, hence whittling down
the extendibility of such technique.

2.2.2.2 Dispersion relation

Let us consider a complex-valued function, F (s), where s can be in general complex, with
the following features: (i) a branch-cut on real axis as s > M2, (ii) is analytical everywhere
but along the branch-cut, (iii) real as real s < M2. If the discontinuity is defined as

F (s± iϵ) = ReF (s)± iImF (s), (97)
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by Schwartz’ reflection principle and Cauchy’s theorem we derive2

F (q2) =
1

π

∫ ∞

M2

ds
ImF (s)

s− q2 − iϵ
. (98)

Eq. (98) shows that if a loop integral shares the same features as F (s), then it can be recon-
structed from its discontinuity, which is determined from the Cutkosky rules. It especially
reveals its power for sub-loop diagrams where one can use dispersion relation to write a multi-
loop integral as a series of one-loop integral multiply by the right hand side of Eq. (98).For
non-trivial topologies, one can combine dispersion relation with Feynman parametrization,
converting complicated sub-loop structure into self-energy sub-loop, and use the discontinu-
ity of B0 function. Many EW and mixed EW-QCD two-loop corrections have been carried
out by using dispersion relation[66, 122, 123, 124, 125, 126, 127, 67, 128, 129, 130, 131, 132].
A public package TVID has been developed for three-loop planar self-energy with arbitrary
masses [133, 9]. The dispersion relation provides excellent numerical stability and conver-
gence but the removal of UV and IR divergences needs to be studied case-by-case, which
makes it difficult for automation.

2.3 Theoretical profiling of the unstable particle

Most particles in the SM are unstable. They don’t exist long enough in the lab frame to
be captured by tracks in detectors, but rather appear as resonance in the decay products.
The lifetime of each unstable particle is the inverse of the width of corresponding resonance.
From a theoretical point of view, the in and out-states of S-matrix must be asymptotic,
hence all unstable particles can only appear as intermediate states in the S-matrix, making
an amplitude features a pole as A ∼ 1

p2−M2 , where M2 is the square of the physical mass.
This leads to a singularity if p2 ∼ M2. This issue is alleviated by having both the real and
imaginary part of the 1-PI self-energy properly resummed. It can be shown diagramatically
as Fig. 3. The inverse of the renormalized dressed propagator GR, can be written as

GR(p) =
1

Z
G(p) , G−1

R (p) = Z((p2 −M2) + Σ(p2)), M2 =M2
p + δM2 (99)

where Mp is the renormalized mass. Now, defining the pole of this propagator as s0, we get

Z(s0 −M2) + Σ(s0) = 0. (100)

2it has assumed that limΛ2→∞
∮
|s|=Λ2 ds

F (s)
s−q2 = 0, otherwise, further subtraction will be needed.
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Figure 3: Dyson-resummation of 1-PI of a scalar propagator, where Σ(p2) is a complex self-

energy function at certain order.

Combining Eq. (99) (100) to eliminate the bare mass M , we acquire the renormalized
Green’s function that looks like

GR(p) =
iZ−1

p2 − s0 + Σ(p2)− Σ(s0)
=

iZ−1

p2 − s0

(
1− Σ(p2)− Σ(s0)

p2 − s0
+ . . .

)
≡ i

p2 − s0
(101)

as p2 → s0, featuring a pole exactly at p2 = s0 and a residue i, leading to the field strength
renormalization constant Z−1 = limp2→s0 1−

Σ(p2)−Σ(s0)
p2−s0 + . . .. Eq.(101) has been rigorously

shown that the pole of the resummed propagator is gauge-invariant[134]. One can also argue
that since the position of the pole can be determined from cross section using dispersion
relation and analytical continuation, it has to be also gauge-invariant[135]. The part faco-
torized out in the parenthesis is equivalent to the renormalization constant Z of the field.
If it is a stable particle, then Σ(s0) is real and s0 locates on the real axis. If the particle is
unstable, then Σ(s0) is a complex value, and we can derive the imaginary part of the pole
s0 as

Im s0 = −ImΣ(s0), (102)

where ImΣ(s0) > 0 due to optical theorem. Hence the imaginary part of the pole should be
negative. The forward time evolution of the propagator is obtained by the inverse Fourier
transform in frequency:

G̃(t) =

∫
dp0
2π

e−ip0tG(p0) , t > 0 (103)
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Using the residue theorem and squaring the G̃(t), we get

|G̃(t)|2 ∼ e2Im
√
s0t, (104)

which corresponds to the exponential decay ∼ e−Γt. It has been argued[136, 137] that only
having the pole of unstable particle defined at

√
s0 =Mp −

i

2
Γ , (105)

do we obtain the quantum mechanical definition of the mass and width of the unstable
particle. In the limit where Γ ≪Mp we can write

s0 = (Mp −
i

2
Γ)2 ≈M2

p − iMpΓ, (106)

which is widely used for the massive gauge bosons in the SM.

2.3.1 Gauge-invariance issue

As we have mentioned, the complex pole of the propagator, both the real part and the
imaginary part of which has physical meaning, has been rigorously proved to be gauge-
invariant. This gives rise to a several gauge-dependence concerns. The first one is about the
renormalization prescription. Historically, people used

m2 −M2 + ReΣT (m
2) ≡ 0 (107)

instead of Eq. (100) for the W and Z-boson mass prescription, where m is the real physical
mass, the M is the bare mass, and the ΣT is the transverse component of the self-energy. 3

Such discrepancy on defining pole location results in the difference of renormalized mass at
two-loop order shown as[126]

m−Mp =
1

2
ΓImΣ′(M2

p ) +O(α3) (108)

One can then argue that since Mp,Γ are gauge-invariant, and the bosonic part of ImΣ′(M2
p )

contains gauge-parameter-dependent Heaviside functions due to the gauge-dependent mass
of relevant unphysical Goldstone fields, the m must be gauge-dependent. This leads to the
conclusion that the renormalization counterterm given by Eq. (107) is gauge-dependent, and
such gauge-dependency enters at two-loop level. Hence for the renormalization of unstable
particle, we define the location of the pole followed by Eq. (100), thereby obtaining the

3This also originated the running width scheme used in Eq. (112), see [136]
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gauge-independent counterterms as follows:

δM2 =
1

Z
ReΣ(s0) , Z =

(
1 + ReΣ′(s0)

)−1

(109)

Consequently, one can also obtain the width:

Γ =
ImΣ(s0)

ZMp

. (110)

The renormalization counterterms defined above can be found compatible with Sec. (2.1.2.2)
at one-loop if one expands the terms depending on s0 in Γ/M ∼ α. It has been explicitly
shown that Eq. (100) lead to gauge-independent mass and field counterterms at two-loop
level in the SM [138, 139, 140].

Another concern of gauge invariance, stemming from the study of unstable particles,
especially the Z-pole at the LEP, is the gauge dependence of the scattering amplitude in
the vicinity of resonance. It has been argued that the use of Dyson-resummed propagator
performed in Fig. 3 in the Z-resonant amplitude spoils the delicate gauge cancellation among
different Feynman diagrams which are separately gauge-dependent [141, 142, 143]. And we
will explore the details of the resolutions in the following subsections. We will be focusing on
the Pole scheme in the upcoming subsection 2.3.2 since it relates to the work of this thesis,
and we give some brief introduction to other schemes in Sec. 2.3.3.

2.3.2 Pole scheme

Guided by the construction principle of the S-matrix, the amplitude derived from a
massive gauge theory, containing one unstable particle can be written as a Laurent series as
follows:

A =
R

s− s0
+B(s), (111)

where B(s) is the non-resonant background, R is the resonant residue, and the s0 is the
pole. We have argued that the s0 is defined to be gauge-invariant in the last section, and
the residue R and the background B(s) feature different pole structure, thereby having no
gauge cancellation between R and B(s). Hence R and B(s) are separately gauge-invariant
as well.[141, 142, 143, 144]. Several subtleties worth a mention here:

• Practically, the Laurent series needs the power counting O(Γ/M) ≪ 1 to avoid the
complex kinematical arguments in matrix elements and to incoporate with the OS renor-
malization scheme.

• For a non-factorizable higher-order loop diagram, especially when dealing with a charged
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resonating propagator, the separation between resonant part and non-resonant part, and
the corresponding Dyson-resummation of the resonant part are highly non-trivial[145,
146]. This can be seem later in Chapter 4.

Due to the well-defined separation between resonance and background in the pole scheme, it
provides a well-suited framework for resonant processes in which signals dominate over the
background. This scheme is widely used in the 4-fermion process with a gauge resonance
such as the W and Z-boson [146, 147, 148]. In this thesis, we follow the same practice in
computing the NNLO Z-resnoance in e+e− colliders in Chapter 4.

2.3.3 Other schemes

2.3.3.1 Complex-mass scheme (CMS)

Another way to circumvent the singularity issue in the resonant amplitude is to have the
masses of propagating particles complex at the beginning. Such a scheme is the so-called
Complex Mass Scheme, where all internal unstable particles are identified with complex
value as in Eq. (106). Thus the perturbation series of bare parameters in the Lagrangian
need a rearrangement such that not only are renormalization constants becoming complex,
both couplings and weak-mixing angle are also complex. We stress several aspects of the
CMS in the follow (for a detailed review, one can refer to [98]):

• Since all gauge-boson masses are replaced by complex values via analytical continua-
tion, the relevant Ward or Slavnov-Taylor identities are retained exactly. However, the
complex weak-mixing angle and the coupling do introduce spurious terms that spoil the
Cutkosky cutting rules, thereby violating the unitarity. However, all these spurious terms
stemming from the imaginary part of the weak-mixing angle and the coupling are at least
an order higher than the wanted order of calculations.

• The complex counterterm lead to further complications on evaluating loop integrals with
complex kinematical variables. Although it is feasible in one-loop cases through analyt-
ical continuations[149], it is challenging dealing with complex kinematics in calculations
beyond one loop. A simplified version of the complex renormalization, where one will
have to expand around the real part of the complex mass as Γ ≪ M in the SM, is thus
developed to circumvent such challenge. However, such expansion fails at the charged
unstable particles’ self-energy contributions given by logarithmic branch points that lin-
early vanish at the mass shell4 as shown in Fig. 4. Therefore, one needs to determine

4It also has been shown that this infrared behavior might alter the decay law algebraically in real time
(non-asymptotically), thereby leading to an alternative production mechanism, of which the efficiency of
populating ultralight particles in the long-time limit could be as much as exponential decay in the early
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Figure 4: the emission and re-absorption of the massless gauge quanta, featuring a branch

point that linearly vanished near the pole as Σ(p2) ∼ α(p2 − s0) log(p
2 − s0)

the add-back value that amounts to the failure of the expansion in such renormalization
procedure.

2.3.3.2 Fermion-loop scheme

Stemming from the fact that closed fermion loops always provide a subset of gauge-
invariant radiative corrections, one can thus Dyson-resum the close fermion loops solely
while maintaining the delicate gauge-dependence cancellation among other contributions.
However, as an approximate approach that cannot deliver arbitrary accuracy, the legitiamcy
of the customized Dyson-resummation needs to be checked process-by-process. And it breaks
down if the bosonic contribution dominates to the width in a certain BSM model. Hence it
is less likely to be a general method. One can refer to [153, 154, 155] for more details.

2.3.3.3 Effective Field Theories

An EFT of the SM based on the power counting O(Γ/M) ≪ 1 can be used to describe
the resonance of the unstable particle[156, 157, 158]. It is theoretically well set-up and can
be systematically extended to off-resonance region, such as pair production, by imposing
further expansion such as s−4M2

V

4M2
V

∼ υ2 ≪ 1 [159, 160] . However, the natural deficiency
of using EFT is that it requires more complications on linking EFT degree of freedom to
experiments when differential properties of observables are needed.

universe. See [150, 151, 152] for more discussion.

33



2.4 Input parameters of the Electroweak Standard Model

Albeit all couplings and masses can be traced back to the original set of couplings from
SUW(2) × UY(1) as {g1, g2, λ, µ, Y f

ij}, we replace them by masses and charges that have
direct physical meaning and can be determined through measurements. To make a sensible
precision test of the SM, one has to choose an appropriate set of input parameters, which
depends not only on specific processes but also the renormalization scheme. Here we address
some aspects regarding to input parameters under OS scheme:

• Light fermion masses: the masses of fundamental particles are defined as the real
part of the pole in each corresponding propagator rendered as a resonance peak phe-
nomenologically. However, in low-energy QCD, light quarks are not propagating degree
of freedom, making the pole mass definition of quarks problematic. One way to circum-
vent this is to use alternative prescription of quark masses, such as the running mass at
appropriate scale. Nevertheless, the properly defined EWPOs should be insensitive to
the light-fermion masses effect suppressed by m2

f/ΛEW , where ΛEW is around masses of
EW gauge bosons.

• the CKM matrix: parametrizing renormalization constants for the CKM matrix at
higher order in perturbation theory is difficult as it is subject to gauge-dependent issue
[161]. But for most high-energy scattering processes, the CKM matrix can be safely
approximated as a unitary matrix due to its negligble effect.

• Gauge-boson masses: the boson masses MW,Z,H are defined as the real part of the pole
according to OS scheme, in which the widths in propagators are constants. However,
for historical reason, one alternative resonance formula, rather than the original Breit-
Wigner approximation, was used for experimental fitting. For instance, the resonant
part of the cross section for e+e→ff̄ uses the form

σres = σ0
sΓ2

Z

(s−M2
Z)

2 +
s2Γ2

Z

M2
Z

, σ =
12π

M2
Z

· ΓeΓf
ΓZ

(112)

Hence the actual pole masses and widths are different from the measured values by

MZ =MZ(1 + γ2)−1/2, ΓZ = ΓZ(1 + γ2)−1/2 , γ = ΓZ/MZ. (113)

where the MZ and ΓZ are defined as pole-mass quantities. It has been found that such
discrepancy results in numerical impact as

MZ ≈MZ − 34 MeV, ΓZ ≈ ΓZ − 0.9 MeV (114)

Since MZ ,ΓZ,MW,ΓW can both be used as input parameters due to their precise mea-
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surement. One has to take care of such translation while computing higher order correc-
tions.

• Running of the couplings: the renormalization of the electromagnetic charge e is
defined through Eq. (84) that it receives corrections from vacuum polarization. For light
quarks u, d, s, c, b running in the loop, it results in spoiler of perturbation calculation
since the QCD at the light-quark mass scale is inherently non-perturbative.

∂Σ
γγ(1)
T (k2)

∂k2

∣∣∣
k2=0

≡ Π(0) = Πlep(0) + Πhad(0) + Πtop(0) (115)

Writing

Π(0)− ReΠ(M2
Z) = Πlep(0)− ReΠlep(M

2
Z) + Πhad(0)− ReΠhad(M

2
Z) + Πtop(0)− ReΠtop(M

2
Z),

(116)

and Π(0) can be recast into

Π(0) = ∆α +Πtop(0) + ReΠlf(M
2
Z) , (117)

hence the charge renormalization one-loop counterterm can be written as

δ(1)Ze =
1

2
(∆α +Πtop(0) + ReΠlf(M

2
Z)) (118)

where the last two terms can be evaluated perturbatively while the first term ∆α features
contributions from two parts, one comes from the leptonic part, another one comes from
the hadronic part. The leptonic part is purely QED, where perturbation theory still
holds accountable and has been carried out up to four-loop [162, 163], whereas the
Re Π̂had(s) can be determined from experimental data by using dispersion relation and
optical theorem.

Re Π̂had(s) =
α

3π
sRe

∫ ∞

4m2
π

ds′
Rγγ(s′)

s′(s′ − s− iϵ)
, (119)

where

Rγγ(s′) =
σ(e+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
. (120)

For more details and recent updates on ∆α
(5)
had from Rγγ measurement, one can refer to

[164, 165, 166]. It is worth mentioning that there are many other ways of determining
∆α

(5)
had, such as using lattice QCD [167, 168, 169], and from measurements of Bhabha

scattering[170, 171, 172]. Nevertheless, it is inevitable introducing ∆α as an extra input
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for α coupling in EW radiative correction and it amounts to the running of α from q2 = 0

to q2 =M2
Z. According to the renormalization group equation

µ
dα

dµ
= − β0

2π
α2 , β0 =

−4

3

∑
f ̸=t

Q2
f , (121)

we can turn the coupling α(0) into α(M
2

Z) as resumming the leading large logarithm
from light fermion loops.

α(M
2

Z) =
α(0)

1−∆α(M
2

Z)
(122)

Alternatively, one can also use the four-Fermi coupling constant Gµ instead of QED
coupling α, with the translation

Gµ√
2
=

πα

2s2Wc
2
WM

2

Z

(1 + ∆r), (123)

where ∆r is the gauge-invariant QED-excluded radiative correction to muon-decay. For
strong coupling αs, due to the asymptotic freedom, one can simply employ running
αs(M

2

Z) for the EW relevant processes in high-energy colliders.

Redundancy among α,Gµ,MZ,MW leads to various choices for the input. According to the
discussion above, we can propose a several input schemes for computing the EW radiative
corrections:

• α(0),MW,MZ : This is the most “natural" scheme based on OS renormalization scheme
in which the QED coupling is defined at Thompson limit. This sets the α coupling
on an equal footing everywhere including real photon radiation. However, it brings
light-fermion masses as intrinsic input from universal large logarithms while quantifying
the running from α(0) to α(M2

Z). Fortunately, owing to the gauge invariance of the
fermionic contribtuion, such large logarithms can be resummed while leaving the bosonic
contribution intact. With precise measurement of the W-boson mass determined at the
LEP-II and the LHC, this input scheme becomes more reliable.

• α(M
2

Z),MZ,MW : Using Eq. (122), we define a new α which resums the leading loga-
rithmic corrections. Therefore, the light-fermion masses can be neglected. However, this
α(M

2

Z) scheme cannot be solely used when external photons existing in the process. Due
to the exact cancellation of light-fermion-mass logarithms between δZγγ and δZe, the ex-
ternal photons couple to final states with α(0) effectively. Therefore, extra complications
stem from using α(M2

Z) in general cases.
• Gµ,MW,MZ : This is considered to be a good scheme for charged-current interac-
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tion at high energy scale while it raises real photon couplings from α(0) ∼ 1/137 to
αGµ = Gµ

√
2M

2

W(1 −M
2

W/M
2

Z)/π ∼ 1/132 at tree-level, which is considered as a large
parametric shift that requires higher-order correction to be taken into account. It is thus
also a bad scheme for neutral current interaction where photon couplings play significant
roles in off-resonance regions.

• α(0), Gµ,MZ : The is the scheme used for LEP physics, whereMW needs to be derived. It
has the minimal parametric uncertainty in predictions and these three input parameters
are precisely measured.

It is worth mentioning that eventually, all input-parameter schemes shall agree on the same
physics. It is the arrangement of perturbation series and the limited knowledge of our input
parameters leading to one scheme being preferable to another in a specific process. Also, we
have only focused on the EW input schemes in the OS renormalization scheme, whereas for
MS renormalization scheme, one can refer to [98] for more discussion and reference therein.
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3.0 Leading Fermionic Three-Loop corrections to EWPOs

3.1 Introduction

As aforementioned in Sec. 1.2.2, all the EWPOs predicted in the SM yield corresponding
theoretical uncertainties being safely below the experimental precision. Yet the expected
precision projected by future e+e− colliders will improve the measurement accuracy by one
order of magnitude at most. Hence to test the SM and probe the possible new physics beyond
at the future e+e− colliders, we have to carry out the three-loop EW, mixed EW-QCD, and
the leading four-loop corrections of the EWPOs. In this chapter, we discuss the recently
accomplished computations of leading fermionic three-loop corrections to a set of EWPOs
at EW O(α3) and mixed EW-QCD O(α2αs), where “leading fermionic” means the maximal
number of closed fermion loops at given orders. This subset of radiative corrections is
considered to be gauge-independent and parametrically important. In sec. 3.2, we introduce
the renormalization procedures for cases with and without QCD contributions. Sec. 3.4
highlights the technical aspects including the derivative and evaluation of the MIs and the
computer algebra tools we used. One can find numerical results and shed light on future
projections thereby in sec. 3.5. and we gave a discussion at the end in sec. 3.6.

3.2 Renormalization at three-loop level

We adopted the OS renormalization scheme for all electroweak radiative corrections.
However, in the case of leading fermionic three-loop at O(α2αs), where the top-quark mass
receives radiative corrections from gluon exchange, we use OS scheme and modified minimal
subtraction scheme (MS) alternately to describe the renormalized top-quark mass. The
reason for using both schemes is the following: the OS top mass definition is subject to
the renormalon ambiguity from which the MS top-quark mass prescription is exempt. The
MS top-quark mass prescription is thus preferable in practical calculations, yet an extra
step is required to relate the MS value to an observable. These two schemes are related
by a finite function, which has been carried out up to four-loop level[173, 174, 116, 175].
The results carried out in both schemes after summing up all orders in perturbation theory
should converge up to non-perturbative effects, and our numerical comparison between two
schemes will reveal an inkling of it (see 3.5), which can also be used for interpolating the
theory error due to missing higher orders.
Followed by Eq. (113), we define the pole of particles with a non-negligible decay width,
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such as the W and Z bosons, to be complex:

s0 =M
2 − iMΓ. (124)

Then one can obtain the counterterms and widths by expanding Eq. (109) (110) systemat-
ically around the real part of the pole, i.e., taking O(Γ/M) ∼ O(α) as an assumption. We
exclude the field or wavefunction renormalization for the gauge boson and the top quark
since all of them only appears as intermediate particles in physical processes. As a matter
of fact, we have checked the cancellation among field renormalization constants explicitly in
our calculation.

3.2.1 Renormalization in pure EW case

By expanding Eq. (109) (110) simultaneously, and inserting the later into the former one
recursively, we get the W-mass counterterms at each order as follows:

δM
2

W(1) = ReΣW(1)(M
2

W) , (125)

δM
2

W(2) = ReΣW(2)(M
2

W) +
[
ImΣW(1)(M

2

W)
][

ImΣ′
W(1)(M

2

W)
]
, (126)

δM
2

W(3) = ReΣW(3)(M
2

W) +
[
ImΣW(2)(M

2

W)
][

ImΣ′
W(1)(M

2

W)
]

+
[
ImΣW(1)(M

2

W)
]{

ImΣ′
W(2)(M

2

W)−
[
ImΣ′

W(1)(M
2

W)
][

ReΣ′
W(1)(M

2

W)
]

− 1
2

[
ImΣW(1)(M

2

W)
][

ReΣ′′
W(1)(M

2

W)
]}
.

(127)

The numbers in lower parenthesis denote the EW loop order. For the Z-mass counterterm,
we have to take the γ − Z mixing effect into account. Hence we get modified equations of
counterterms and widths as

δM
2

Z = ReΣZ

(
M

2

Z − iMZΓZ

)
+ 1

4
M

2

Z(δZ
γZ)2, (128)

ΓZ =
1

MZ[1 +
1
4
(δZγZ)2]

ImΣZ

(
M

2

Z − iMZΓZ

)
, (129)

where the self-energy is defined in Eq. (59). According to the OS scheme, the γ − Z mixing
should vanish when s = 0 ,M

2

Z, thereby leading to

Σ̂γZ(0) = 0, Re Σ̂γZ

(
M

2

Z − iMZΓZ

)
= 0. (130)

Combining Eq. (128)–Eq.(130), the relevant self-energies defined in Eq.(59), and expanding
in orders of α yields

δM
2

Z(1) = ReΣZZ(1)(M
2

Z) (131)
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Figure 5: Diagrams with leading fermion loops of 1-PI self energies at each order. The a and

b indicate possible gauge bosons. The one-loop order counterterm is denoted as “×”, while

the two-loop one’s is “⊗”.

δM
2

Z(2) = ReΣZZ(2)(M
2

Z) +
[
ImΣZZ(1)(M

2

Z)
][

ImΣ′
ZZ(1)(M

2

Z)
]

+

[
ImΣγZ(1)(M

2

Z)
]2

M2
Z

+ 1
4
M

2

Z (δZ
γZ
(1))

2 (132)

δM
2

Z(3) = ReΣZZ(3)(M
2

Z) +
[
ImΣZZ(2)(M

2

Z)
][

ImΣ′
ZZ(1)(M

2

Z)
]

+
[
ImΣZZ(1)(M

2

Z)
]{

ImΣ′
ZZ(2)(M

2

Z)−
[
ImΣ′

ZZ(1)(M
2

Z)
][

ReΣ′
ZZ(1)(M

2

Z)
]

− 1
2

[
ImΣZZ(1)(M

2

Z)
][

ReΣ′′
ZZ(1)(M

2

Z)
]

−
ImΣγZ(1)(M

2

Z)

M
2

Z

[
2ReΣ′

γZ(1)(M
2

Z) + δZγZ
(1) + δZZγ

(1)

]}
+

ImΣγZ(1)(M
2

Z)

M
2

Z

{
2 ImΣγZ(2)(M

2

Z)−
ImΣγZ(1)(M

2

Z)

M
2

Z

[
ImΣγγ(1)(M

2

Z)
]}

+ 1
2
M

2

Z δZ
γZ
(1) δZ

γZ
(2) . (133)

All self-energies here are considered as 1-PI contributions from one-loop diagrams with 
counterterms insertions at vertices, see Fig. 5, with relevant counterterm Feynman rules 
shown in Fig. 6. We can safely drop all field renormalization constants from Feynman rules
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Figure 6: All-order Feynman rules of gauge-boson-fermion-fermion vertex with counterterms,

where ω± = 1
2
(1± γ5)

as aforementioned. And we define some parameters as follows:

sW = sRW + δsW , cW =
√

1− (sRW + δsW) (134)

gA =
eZeI

f
3

2sWcW
, gV =

eZe[I
f
3 − 2Qf (sW)

2]

2sWcW
, (135)

where sRW is the renormalized weak-mxing angle.Besides the W and Z-mass counterterms,
other relevant counterterms specified for the leading fermionic EW corrections are listed as
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follows:

δZZγ
(n) = 0, (136)

δZe(1) =
α

9π

[
12

ϵ
+

50

3
− 2L(m2

t )− 10L(M2
Z)

]
+

∆α

2
, (137)

δZe(2) =
3

2
(δZe(1))

2, (138)

δZe(3) =
5

2
(δZe(1))

3, (139)

sW + δsW =

√√√√1− M
2

W + δM
2

W

M
2

Z + δM
2

Z

(140)

and L(m2) ≡ log( m
2

4πµ
) + γE. ∆α is the value mentioned in sec. 2.4. The simple results

of charge renormalization counterterms are the consequences of considering leading fermion
loops only. One needs to pay attention the L(M2

Z) in Eq. (146) where the running-width-
scheme mass is adopted instead of pole-scheme mass M2

Z. This is due to the ∆αhad measured
from experiments uses M2

Z, thereby leading us using M2
Z accordingly. The counterterm of

weak-mixing angle beyond one-loop order can be obtained by carefully expanding Eq. (140)
and inserting results from Eq. (133) (127).

3.2.2 Renormalization in mixed EW-QCD at O(αsα
2) case

While computing radiative corrections in QCD, the MSis more commonly used. In
leading fermion three-loop contributions of order O(α2αs), only the top-quark mass needs
to be renormalized. Hence we give two alternative prescriptions for the top-quark mass, OS,
and MS. The OS top-quark mass, as we have discussed, has direct physical interpretation,
and it can be determined via template fit approach[176]. The OS prescription suffers from
the renormalon ambiguity and other non-perturbative QCD effects while the MSprescription
retains intact from long-distance phenomena and thus preferrable from the theory aspect.
Again, expanding Eq. (109) (110) for both W and Z bosons systematically in orders α , αs,
we get

δM
2

W(αsα) = ReΣW(αsα)(M
2

W),

δM
2

W(αsα2) = ReΣW(αsα2)(M
2

W)

+ [ImΣW(αsα)(M
2

W)] [ImΣ′
W(α)(M

2

W)] + [ImΣ′
W(αsα)(M

2

W)] [ImΣW(α)(M
2

W)].

(141)
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δM
2

Z(αsα) = ReΣZZ(αsα)(M
2

Z) ,

δM
2

Z(αsα2) = ReΣZZ(αsα2)(M
2

Z) + [ImΣZZ(αsα)(M
2

Z)] [ImΣ′
ZZ(α)(M

2

Z)]

+ [ImΣZZ(α)(M
2

Z)] [ImΣ′
ZZ(αsα)(M

2

Z)]

+
2

M
2

Z

[ImΣγZ(αsα)(M
2

Z)] [ImΣγZ(α)(M
2

Z)] +
1

2
M

2

Z δZ
γZ
(α) δZ

γZ
(αsα)

.

(142)

The 1-PI self-energies receives one and two-loop contributions including counterterms inser-
tion at both fermion lines and vertices. However, only the top quark is considered massive
hence only the top-mass receives radiative corrections. See Fig. 7 for diagrammatic illustra-
tion.

ΣV1V2(αsα) =

ΣV1V2(αsα2) =

Figure 7: Diagrams with closed fermion loops contributing to self-energies at different orders.

V1 and V2 denote the possible different in- and outgoing gauge bosons. Vertices "⊕" and

"×" indicate the counterterms at the loop order O(αsα) and O(α) or O(αs), respectively.

Note that there are no actual three-loop diagrams with two explicit closed fermion loops at

the order O(αsα
2), but instead, all contributions stem from sub-loop counterterm insertions.

One can obtain the on-shell top-mass counterterm by following Eq. (74). Alternatively,
in the MS scheme the counterterm only contains the divergent piece along with the universal
log 4π and Euler number γE. At one-loop order it reads

δmt(αs) = −3CFg
2
s

16π2

(1
ϵ
+ log 4π − γE

)
mt(µ). (144)

Here the lower case m is used to denote MS quantities, and µ is the renormalization scale.
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Σt(αs) =

Figure 8: The gluon self-energy correction to the top quark.

At one-loop level, the relation between the OS and MS mass can be easily derived from
these formulae, with the result

Mt

mt

= 1 +
αsCF
4π

(
3 log

M2
t

µ2
− 4
)
+O(α2

s ). (145)

For other relevant counterterms, besides δZZγ(n)
which are zeros, the weak-mixing angle

counterterms can be carried out in the same manner as aforementioned. Finally, the charge
counterterms are given by

δZe(α) =
1

2

[
∆α + Σtop ′

γγ(α)(0) + Πlf
γγ(α)(M

2
Z)
]
, (146)

δZe(αsα) =
1

2

[
Σtop ′
γγ(αsα)

(0) + Πlf
γγ(αsα)(M

2
Z)
]
, (147)

δZe(αsα2) = 3 δZe(α)δZe(αsα), (148)

where

Πγγ(q
2) =

Σγγ(q
2)

q2
. (149)

3.3 Defining Observables

3.3.1 Fermi constant Gµ

EXperimentally, the Fermi constant is determined via muon decay [177] with high pre-
cision. In the SM, it’s predicted through radiative corrections of the muon decay as

Gµ =
πα

√
2s2WM

2

W

(1 + ∆r), (150)
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where ∆r quantifies all the closed fermionic radiative corrections and can be parametrized
as

1 + ∆r =

(
1 + δZe
sW + δsW

)2
M

2

W(1−M
2

W/M
2

Z)

M
2

W + δMW − ΣW (0)
. (151)

Because mµ ≪ MW, it is permissible setting the momentum transfer in the W propagator
to zero. Eq. (151) can be used to systematically compute the higher order corrections to
Fermi constant.

3.3.2 W-boson mass

Using Eq. (150), we can compute MW by

M
2

W =
M

2

Z

2

(
1 +

√
1− 4πα

Gµ

√
2M

2

Z

(1 + ∆r)
)
. (152)

As what we have discussed in sec. 2.4, ∆r can be carried out by different set of input
parameters, we should nevertheless point out that even with MW being as one of the inputs,
Eq. (152) can be still used iteratively to determine the radiative corrections received by the
W-boson mass.

3.3.3 Effective weak-mixing angle sin2 θf
eff

The effective weak-mixing angle is determined by the ratio between the effective vector
and axial-vector couplings to the Z-boson to a fermion pair final state as

sin2 θfeff =
1

4|Qf |

(
1− Re

υf (s)

af (s)

)
s=M

2
Z

, (153)

where

af (s) = gA (154)

υf (s) = gV + eZeQf

ΣγZ(s)− 1
2
δZγZΣγγ(s)

s+ Σγγ(s)
. (155)

One should be aware of that Eq. (154),(155) only capture closed-fermion loop corrections.
The effective Zff̄ vertex can be depicted as Fig. 9.
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Figure 9: Decomposition of the 1-PI effective Zff̄ vertex into self-energies building blocks
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3.3.4 Partial width Γ[Z → ff̄ ]

The Z width can be obtained order-by-order by expanding Eq. (129). At three-loop
order, it reads

ΓZ =
1

MZ

{
ImΣZ(1) + ImΣZ(2) − (ImΣZ(1))(ReΣ′

Z(1))

+ ImΣZ(3) − (ImΣZ(2))(ReΣ′
Z(1))

+ (ImΣZ(1))
[
(ReΣ′

Z(1))
2 − ReΣ′

Z(2) − 1
4
(δZγZ

(1))
2 − 1

2
(ImΣZ(1))(ImΣ′′

Z(1))
]

+ ImΣZ(4) − (ImΣZ(3))(ReΣ′
Z(1))

+ (ImΣZ(2))
[
(ReΣ′

Z(1))
2 − ReΣ′

Z(2) − 1
4
(δZγZ

(1))
2 − (ImΣZ(1))(ImΣ′′

Z(1))
]

+ (ImΣZ(1))
[
−(ReΣ′

Z(1))
3 + 2(ReΣ′

Z(2))(ReΣ′
Z(1))− ReΣ′

Z(3)

− 1
2
δZγZ

(1) δZ
γZ
(2) +

1
2
(ReΣ′

Z(1))(δZ
γZ
(1))

2 − 1
2
(ImΣZ(1))(ImΣ′′

Z(2))

+ 3
2
(ImΣZ(1))(ReΣ′

Z(1))(ImΣ′′
Z(1)) +

1
6
(ImΣZ(1))

2(ReΣ′′′
Z(1))

]}
s=M

2
Z

. (156)

Note that ΣZ features γ − Z mixing effects. Then through optical theorem, one can express
the imaginary part of ΣZ as the decay rate for Z → ff̄ :

ImΣZ =
1

3MZ

∑
f

∑
spins

∫
dΦ(|υf |2 + |af |2), (157)

where υf and af are defined in Eq. (155) and Eq. (154), respectively. Noticing that

ΓZ =
∑
f

Γf , (158)

hence by plugging Eq. (158) and Eq. (157) on both side of Eq. (156), and taking the factor-
izable QCD and QED final-state corrections into account, we get

ΓZ =
∑
f

Γf , Γf =
N f
cMZ

12π

[
Rf

VF
f
V +Rf

AF
f
A

]
s=M

2
Z

, (159)

F f
V = v2f(0) + 2Re (vf(0)vf(1))− v2f(0) ReΣ′

Z(1)

+ 2Re (vf(0)vf(2)) + |vf(1)|2 − 2Re (vf(0)vf(1))ReΣ′
Z(1)

+ v2f(0)
[
(ReΣ′

Z(1))
2 − ReΣ′

Z(2) − 1
4
(δZγZ

(1))
2 − 1

2
(ImΣZ(1))(ImΣ′′

Z(1))
]
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+ 2Re (vf(0)vf(3) + v∗f(1)vf(2))−
[
2Re (vf(0)vf(2)) + |vf(1)|2

]
ReΣ′

Z(1)

+ 2Re (vf(0)vf(1))
[
(ReΣ′

Z(1))
2 − ReΣ′

Z(2) − 1
4
(δZγZ

(1))
2 − (ImΣZ(1))(ImΣ′′

Z(1))
]

+ v2f(0)
[
−(ReΣ′

Z(1))
3 + 2(ReΣ′

Z(2))(ReΣ′
Z(1))− ReΣ′

Z(3)

− 1
2
δZγZ

(1) δZ
γZ
(2) +

1
2
(ReΣ′

Z(1))(δZ
γZ
(1))

2 − 1
2
(ImΣZ(1))(ImΣ′′

Z(2))

+ 3
2
(ImΣZ(1))(ReΣ′

Z(1))(ImΣ′′
Z(1)) +

1
6
(ImΣZ(1))

2(ReΣ′′′
Z(1))

]
, (160)

and FA can be obtained analogously by replacing υf with af . Similarly one can obtain the
corrections from O(ααs ) as

∆Γf,(α2αs) =
N f
cMZ

12π

[
∆F f

V,(α2αs)
+∆F f

A,(α2αs)

]
s=M

2
Z

, (161)

δF f
V(α2αs)

= v2f(0)
[
2(ReΣ′

Z(α))(ReΣ′
Z(αsα))− ReΣ′

Z(αsα2)

− 1
2
(ImΣZ(α))(ImΣ′′

Z(αsα))−
1
2
δZ

(α)
γZ δZ

(αsα)
γZ

]
+ 2Re (vf(0)vf(α))(−ReΣ′

Z(αsα)) + 2Re (vf(0)vf(αsα))(−ReΣ′
Z(α))

+ 2Re (v∗f(α)vf(αsα)) + 2Re (vf(0)vf(αsα2)), (162)

and the radiator functions RV,A are included in general but could be set to zero as we
considering closed fermion loops only in this study.

3.4 Technicalities of Computing EWPOs at leading fermionic three-
loop level

In this calculations we treat the CKM matrix as an unitary matrix and we set all fermion
masses to zero, except the top quark. FEYNARTS 3.3[178] and FEYNCALC 9.2.0[179]
are employed for amplitudes generation and algebraic reduction. The loop-integral evaluation
is carried out by using TVID 2.0 [9]. When comparing with previous results with two
fermionic loops in Refs. [123, 126, 127, 72, 73], we have found exact algebraic agreement
except one term which stems from the derivative of ReΣ′

Z(s) (see, for example, the thrid
line of Eq. (160)):

ReΣ′
ZZ(s)−

d

ds

([ImΣγZ(1)(s)
]2

s

)
, (163)

where the second term, which stems from γ − Z mixing at two-loop level (see Eq. (55)) in
partial Z width was missing in the previous literature [72, 73]. This error has been corrected
and its numerical impact was evaluated.

For genuine two-loop amplitudes, the MIs reductions are done in two independent ways:
integration-by-part (IBP) identities as implemented in FIRE6[180], and the integral reduc-
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Figure 10: The MI topologies used for genuine two-loop self-energy contributions, with

notation taken from [9].

tion techniques of Ref. [181]. We should mention that, unlike one-loop cases, the choice of
a MI basis at the two-loop level is not unique and may also not be minimal. This leads
two aspects considered in practice: First, it is thus difficult comparing results carried out
by two individuals symbolically; Secondly, due to the arbitrariness in the choice of the MI
basis, some O(D−4) coefficients of scalar one-loop integrals would be necessary in our case.
One can carry them out by following Eq. 4.1 in Ref.[182]. One of the MI bases used in this
calculation is shown in Fig 10. However, despite the different choices of the MI basis, the
two independent calculations by the authors agree numerically. Furthermore, one must also
compute the derivatives of one and two-loop self-energy functions to carry out the necessary
renormalization counterterms. Care must be taken when deriving the derivative of the one
and two-loop self-energy master integral with zero external momentum.
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3.5 Numerical Results

3.5.1 Numerical results in the OS scheme

Given the benchmark inputs in Tab. 10, the numerical results for the leading fermionic

MZ = 91.1876 GeV

}
⇒ MZ = 91.1535 GeV

ΓZ = 2.4952 GeV

MW = 80.358 GeV

}
⇒ MW = 80.331 GeV

ΓW = 2.089 GeV

Mt = 173.0 GeV

Mf ̸=t = 0

αs = 0.1179

α = 1/137.035999084

∆α = 0.05900

Gµ = 1.1663787× 10−5 GeV−2

Table 4: Benchmark input parameters used in the numerical analysis, based on Ref. [7].

Input values for both top-quark mass prescriptions are listed.

contributions to all above-mentioned EWPOs at both O(α3) and mixed EW-QCD O(α2αs)

in the OS prescription are shown in Tab. 5. ∆′ denotes the parametric shift from ∆MW(3),
of the predicted value of the W -boson mass in the SM, using eq. (152). Given that ∆r(3), it
is sufficient to expand eq. (152) up to linear order in ∆r(3) and ∆MW(3), leading to

∆MW(3) ≈
παM

2

Z

2
√
2GµMW(M

2

Z − 2M
2

W)
∆r(3) = −0.389 MeV. (164)

Accordingly, if we assume the W-boson mass is induced from Gµ, we can then predict the
parametric shift of effective weak mixing angle and partial widths due to this input scheme
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translation:

∆′ sin2 θfeff,(3) = ∆sin2 θfeff,(3) −
∆M

2

W(3)

M
2

Z

(165)

∆′Γf,(3) = ∆Γf,(3) −
∆M

2

W(3)

MZ

× αN f
c

6s4Wc
4
W

[
(2s2W − 1)(If3 )

2 + 2s4WQf (Qf − If3 )
]

.

(166)

It is evident that all the corrections computed at leading fermionic three-loop level are
negligible for the precision tests conducted at the LEP and LHC, see Tab. 2. However, one
can also see that the experimental uncertainties laid out by future e+e− colliders, such as
the FCC-ee, CEPC,and ILC/GigaZ, are comparable to the three-loop corrections(see Tab. 2
and references therein). Hence these corrections cannot be ignored. Combining the O(α3)

and O(α2αs) corrections, we see ∆MW and ∆′Γ having a sizable corrections while others are
subject to accidental cancellations. Such accidental cancellations can also been observed in
the corrections of partial widths in Tab. 6, where the total number given by O(α3)+O(α2αs)

of ∆Γ
f

Z becomes smaller, thereby leading to the necessity of carrying out the rest part of the
three-loop contributions.

∆r ∆MW (MeV) ∆sin2 θeff ∆′ sin2 θeff ∆Γtot [MeV] ∆′Γtot [MeV]

O(α3) 2.5× 10−5 −0.389 1.34× 10−5 2.09× 10−5 0.331 0.255

O(α2αs) -0.000109 1.703 1.31× 10−5 −1.98× 10−5 −0.103 0.229

Sum -0.000084 1.314 2.65× 10−5 0.11× 10−5 0.228 0.484

Table 5: This table shows the numerical results of the leading fermionic three-loop corrections

to EWPOs at O(α3) and at O(α2αs) from Ref. [8]. The EWPOs denoted with a prime use

MW predicted from the Fermi constant Gµ rather than the value in Tab. 10. One can see that

the two contributions have comparable size, except for ∆MW , where the mixed EW–QCD

three-loop correction is about four times larger in magnitude than the pure EW three-loop.
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O(α3) O(α2αs)

∆Γ
f

Z( MeV) ∆′Γ
f

Z( MeV) ∆Γ
f

Z( MeV) ∆′Γ
f

Z( MeV)

ll̄ 0.019 0.017 −0.0157 −0.0049

νν̄ 0.026 0.022 −2.0× 10−4 0.0166

uū 0.035 0.024 −0.0203 0.0260

dd̄ 0.041 0.029 −0.0049 0.0475

Table 6: This table demonstrates the numerical size of leading fermion three-loop corrections

of partial width Γ
f

Z at each channel, in OS renormalization scheme.

3.5.2 Numerical results in terms of the MS top mass

When switching the top-quark mass from OS to MS prescription, using the benchmark
value given in Tab. 10, except the top mass, which gets replaced by

mt(µ = mt) = 163.229 GeV. (167)

the overall magnitude of leading fermionic O(α2αs) corrections become noticeably smaller.
This is normally expected as MS prescription converges faster than OS for QCD corrections.
This matches the pattern in previous calculations of O(ααns ), where a better convergence
behavior was observed for the MS top mass [88, 89, 90, 91, 92]. We perform the similar
numerical evaluations summarized in Tab. 7. When using MS prescription for the top-quark
mass at O(α2αs), one must also use the MS top-quark mass, Eq. (167), as input at the lower
order O(α2), for the sake of consistency. The leading fermionic O(α2) contributions have
previously been computed in Refs. [123, 126, 127, 122, 66, 68, 72, 73] and re-evaluated in
Ref. [8]. The corresponding numbers of both perturbative orders are listed in Table 8. One
can see that the numerical changes at O(α2) and O(α2αs) partially compensate each other
when going from the OS to the MS scheme. This is expected since the all-order results
should be identical in both schemes (up to non-perturbative effects). The difference of the
sum O(α2) +O(α2αs) between the two schemes could be used as an estimate of the size of
the unknown higher-order corrections at O(α2α2

s ). A more detailed analysis of theoretical
uncertainties from missing higher-order contributions will be left for future work.

Finally, we also wish to study in the impact of the error that was found in the previous
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calculation of the fermionic two-loop contribution to the partial decay widths, ∆Γf,(2), as
discussed in section 3.4. Using the inputs from Tab. 10, the difference amounts to

∆Γf,(2)

∣∣∣
this work

−∆Γf,(2)

∣∣∣
Ref. [?, ?]

= −N f
c (v

2
f(0) + a2f(0))MZ

25α2(3− 8s2W)
2

3888πs2Wc
2
W

(168)

=



−0.0028 MeV for f = ℓ,

−0.0056 MeV for f = ν,

−0.0126 MeV for f = d,

−0.0098 MeV for f = u,

−0.0830 MeV for f = tot.

(169)

It turns out that the numerical impact is very small, but for the sake of consistency it is
important to identify and correct this error.

∆r(α2αs) [10−4] ∆MW(α2αs) [MeV]

−0.50 0.78

X ∆X(α2αs) ∆′X(α2αs)

sin2 θeff [10−5] 0.75 −0.76

Γℓ [MeV] −0.0003 0.0047

Γν [MeV] 0.0009 0.0086

Γd [MeV] −0.0018 0.0223

Γu [MeV] −0.0029 0.0183

Γtot [MeV] −0.0093 0.143

Table 7: Leading fermionic three-loop corrections to EWPOs at O(α2αs) with MS prescrip-

tion for the top mass.
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on-shell Mt MS mt

O(α2) O(α2αs) O(α2) O(α2αs)

∆r [10−4] 7.85 −1.09 7.56 −0.50

∆ sin2 θfeff [10−5] 30.98 1.31 31.18 0.75

∆Γℓ [MeV] 0.2412 −0.0157 0.2284 −0.0003

∆Γν [MeV] 0.4145 −0.0002 0.4152 0.0009

∆Γd [MeV] 0.6666 −0.0049 0.6780 −0.0018

∆Γu [MeV] 0.4964 −0.0203 0.4911 −0.0029

∆Γtot [MeV] 4.951 −0.103 4.947 −0.0093

Table 8: Numerical comparison of leading fermionic O(α2) and O(α2αs) results between the

on-shell and MS top-quark mass prescriptions. See text for more details.

3.6 Discussion

In this chapter we summarize the calculation of leading fermionic three-loop corrections
at both O(α3) and O(α2αs) to several important EWPOs including the W-boson mass
induced from Fermi constant Gµ, the effective weak mixing angle, and the partial and total
decay widths of the Z boson. In terms of technicalities, this calculation requires solving
one- and two-loop self-energy integrals and their derivative. To ensure the gauge invariance,
we set the pole of massive gauge bosons as complex, and use the OS scheme. However,
when considering O(α2αs), from which the top-quark mass receives QCD corrections, we use
both the OS and MS prescription for the top-quark mass. Numerical results are presented
separately. In the course of the calculation, an error was found in the previous literature,
which has been corrected in this calculation and we also analyze the numerical impact given
by this error.

It turns out that the numerical size of the corrections was small compared to the experi-
mental precision for direct measurements of these observables today. However, the precision
test laid out by the study of future e+e− colliders counts on these corrections due to the
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targeting precision of those future colliders. The order of magnitude of the corrections in
the OS scheme matches the theory error estimation given by [183, 184]. When switching
the top-quark mass from the OS to the MS prescription, we observe a sizable numerical
reduction. We believe that there exists an accidental cancellation among the O(α2αs). For
instance, we observe that most EWPOs will increase by roughly a factor of 5 by setting ∆α

to zero. This means there are some substantial delicate cancellations happening between
terms involving ∆α and other contributions. On the other hand, experience from pure
EW two-loop calculations have shown that the leading fermionic contributions and that of
next-to-leading fermionic can be of comparable size. Consequently, the remainly corrections
in both O(α3) and O(α2αs) might be just as important. These contributions needs to be
carried out for performing precision test at future colliders. However, they meets require-
ments of solving genuine three-loop integrals with various scales, thereby being left as future
projection.
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4.0 GRIFFIN: A program for higher order gauge invariant
description of the Z-pole resonance at future electron-positron colliders

4.1 Introduction

Study of four-fermion scattering ff̄ → f ′f̄ ′ of which center-of-mass energies are in the
vicinity of the intermediate resonance,

√
s ∼ MX , wher X can be either the W or Z boson,

have long been considered as a standard candle in elucidating the structure of the SM and
constraining the BSM physics. As aforementioned in sec. 1.2.2, the precision frontier laid
out by future e+e− colliders, together with the HL-LHC demands further study of the four-
fermion scattering ff̄ → f ′f̄ ′. For e+e− → ff̄ running near the Z-boson resonance at
future colliders, to simplify the analysis, a set of so-called electroweak pseduo-observables
(EWPOs) are defined that encapsulates the dominant radiative corrections in the SM and
renders prominent sensitivity to potential BSM physics. One can refer to sec. 1.2.1 and
reference therein for more details about the EWPOs. However, as the name suggests, the
EWPOs cannot be directly determined through measurements. One needs to extract them
from the relevant background and acceptance corrections, such as initial-state and final-
state QED and QCD radiative effects, and so on. It is thus crucial having a consistent
and model-independent theoretical description of the scattering process. Historically, for
the study of Z-boson resonance at the LEP and SLC, numerous computer packages were
developed, providing complete NLO and partially NNLO corrections[185, 186, 187, 188, 189,
190, 147, 191, 192, 193, 194, 195, 196, 197, 198]. The packages ZFITTER[187, 188] and
TOPAZ0 [186] also implemented the real photon radiation and certain selection cut amid
all the achievements, thereby being widely used in experimental studies. Alternatively, the
implementation of QED radiation can also be simulated with Monte-Carlo (MC) methods.
For example, one can link an EW radiative corrections library, such as DIZET [185] to
several MC programs such as KoralZ[199] and KKMC [200].

From a theory point of view, as what we have discussed in sec. 2.3, one needs to find a
suitable scheme to describe a resonant process so that not only does the gauge invariance is
manifested, but it can also be easily extended to higher order. For e+e− → ff̄ around Z-peak,
the pole scheme seems to be the most optimal one. However, none of the existing computer
programs dedicated on the Z-pole study were designed for targeting the fully NNLO precision
and beyond. For instance, the treatment of the γ−Z box diagrams in ZFITTER contradicts
to what one would obtain from pole scheme[122], leading to possible gauge-violating effects
at the EWPOs at NNLO. The numerical impacts of such discrepancy are indeed small
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compared with the precision given by the LEP/SLC and LHC, while nevertheless give rise to
the necessity of constructing a new framework that treat all radiative corrections consistently
and systematically with respect to the pole scheme at NNLO level and beyond. From an
experimental point of view, owing to the unprecedented precision level targeted by the future
e+e− colliders, such as the FCC-ee, the non-factorizable QED effect makes the semi-analytical
aprroaches of separating QED corrections from EW corrections less reliable than the MC
methods such as CEEX scheme[184]. Hence, to incorporate with the future projections
laid out as aforementioned, we develop a new software package GRIFFIN(Gauge-invariant
Resonance In Four-Fermion INteractions) that aims to construct a framework that resolves
all the concerns discussed earlier. It is written in C++ and defines a structure of classes that
can be extended within or beyond the SM. And the external users can link the results from
GRIFFIN to some MC or fitting programs without putting efforts on building interface.

4.2 Theoretical framework set-up

For a parity-violating ff̄ → f ′f̄ ′ process, one can decompose it onto four chiral basis, or
alternatively, vector and axial-vector basis as follows:

M =
[
MVVγ

µ ⊗ γµ −MVAγ
µ ⊗ γµγ

5 −MAVγ
µγ5 ⊗ γµ +MAAγ

µγ5 ⊗ γµγ
5
]

(170)

Accordingly, the differential cross section can be written as

dσ

d cos θ
=

Nc

32πs
|M|2 (171)

=
Ncs

32π

[
(1 + c2θ)

(
|MVV|2 + |MVA|2 + |MAV|2 + |MAA|2

)
+ 4cθ Re

{
MVVM

∗
AA +MVAM

∗
AV

}
− 2Pe(1 + c2θ)Re

{
MVVM

∗
AV +MVAM

∗
AA

}
− 4Pecθ Re

{
MVVM

∗
VA +MAVM

∗
AA

}]
,

(172)

where Pe is the degree of polarization of the incoming fermions, for instance, electrons in
e+e− colliders. For Z-boson exchange at tree-level, these four chiral matrices are

M
(0)
VV =

vZe(0)v
Z
f(0)

s− s0
, M

(0)
VA =

vZe(0)a
Z
f(0)

s− s0
, M

(0)
AV =

aZe(0)v
Z
f(0)

s− s0
, M

(0)
AA =

aZe(0)a
Z
f(0)

s− s0
, (173)

vZf(0) =
eI3f (1− 4|Qf |s2W)

2sWcW
, aZf(0) =

eI3f
2sWcW

. (174)

Followed by the pole scheme, we perform Laurent expansion near the pole for the matrix
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element beyond Born-level:

Mij =
Rij

s− s0
+ Sij + (s− s0)S

′
ij + ... (i, j = V,A). (175)

where s0 =M2
Z − iMZΓZ.

As we have argued in sec. 2.3, the s0 , Rij , Sij, and S ′
ij should be individually gauge in-

dependent at each order. Hence we can tackle each one of them separately. To minimize
the notation cluttering, we denote the mass and width of Z-boson (and W boson) used in
complex-pole scheme by MZ and ΓZ, differentiating from last chapter. And we use M exp and
Γexp to denote the mass and width in running-width scheme. Two definitions are related by

MZ =M exp
Z (1 + (Γexp

Z /M exp
Z )2)−1/2, ΓZ = Γexp

Z [1 + (Γexp
Z /M exp

Z )2]−1/2. (176)

For the square of the amplitude, one can either square Eq. (175) directly, or choose a
truncated version as follows:

|Mij|2 =
|Rij|2

|s− s0|2
+

2Re{(s− s0)
∗RijS

∗
ij}

|s− s0|2
+ |Sij|2 +

2Re{(s− s0)
∗2RijS

′∗
ij}

|s− s0|2
+O(s− s0)

(177)

=
|Rij|2 + 2MZΓZ Im{RijS

∗
ij}+ (MZΓZ)

2 [|Sij|2 − 2Re{RijS
′∗
ij}]

|s− s0|2

+ (s−M2
Z)
2Re{RijS

∗
ij}+ 4MZΓZ Im{RijS

′∗
ij}

|s− s0|2

+ (s−M2
Z)

2
2Re{RijS

′∗
ij}+ |Sij|2

|s− s0|2

+O
(
(s−M2

Z)
3
)
. (178)

The former one will bring in higher orders corrections, whereas the later get truncated at
desired order in perturbation. There is no evidence of suggesting whichever is more reliable
than the other. We give numerical values for both in our implementation and discuss the
phenomenology therein in sec. 4.4.
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4.2.1 Building blocks of the matrix elements

We break down the matrix element in terms of several building blocks that encapuslate
that radiative corrections:

ZV f (s) = vZf (s) + vγf (s)
ΣγZ(s)

s+ Σγγ(s)
, GV f (s) ≡ vγf (s) = −eQf , (179)

ZAf (s) = aZf (s) + aγf (s)
ΣγZ(s)

s+ Σγγ(s)
, GAf (s) ≡ aγf (s) = 0, (180)

ΣZ(s) = ΣZZ(s)−
[ΣγZ(s)]

2

s+ Σγγ(s)
. (181)

We should point out that this is not the unique way of grouping the radiative corrections, but
it keeps the higher order corrections from double-counting consistently. For the boxes/non-

Figure 11: Diagrammatically showing the building blocks for the amplitudes. One should

pay attention that the diagram on the left hand side does not really reflect the practical

calculation since there is no Dyson-resummation in the propagator in the pole scheme. For

the decomposition of the green blobs, one can refer to Fig. 9

.

factorizable contribution Bij, it is important separating the pole contributions from the
regular ones in a manifestly gauge-invariant way. There are two types of non-factorizable
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Figure 12: Diagrammatically showing the building blocks for the γZ box amplitudes.

radiative contributions:

Bij(s, t) : Contribution of γγ, ZZ and WW box diagrams for initial-state
vector/axial-vector current (i = V,A) and final-state vector/axial-
vector current (j = V,A);

(182)

BγZ,ij(s, t) =
BR
γZ,ij

s− s0
+BS

γZ,ij + (s− s0)B
S′

γZ,ij + ... :

Contribution of γZ box diagrams, which can also contribute to the
leading pole term Rij.

(183)

One should pay attention that in the γZ box diagrams, when naively carrying out the loop
integral, one obtains a branch point at s =M2

Z in the logarithm log(1− s/M2
Z), which might

blow up for s =M2
Z. A careful treatment suggested by Ref. [145] is that owing to the gauge

invariance of the coefficients of scalar one-loop integrals is manifested, it is thus permissible
"resumming" the propagator before carrying out the integral. We give a schematic way of
showing how one can replace logarithm log(1− s/M2

Z) by log(1− s/s0) as follows1:

BγZ ∼
∫

d4q

(2π)4
. . .

q2(/q + /p2)(/q + /k2)

Zi(s
′, si)Zf (s

′, sf )

s′ −m2
Z0 + ΣZ(s′)︸ ︷︷ ︸

W (s′,si,sf )

, (184)

1It is worth pointing out that such an issue won’t exist in the CMS scheme since all masses of unstable
particles are complex in the first place
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where

s′ = (q + p2 + p1)
2 , si = (q + p2)

2 , sf = (q + k2)
2. (185)

When the Z-propagator is nearly on-shell, q2 ∼ 0 ⇒ si,f ∼ 0. We hence write W (s′, si, sf )

under pole scheme as

W (s′, si, sf ) =
Zi(s

′, si)Zf (s
′, sf )

s′ −m2
Z + ΣZ(s′)

=
Zi(s0, 0)Zf (s0, 0) + Zi(s

′, si)Zf (s
′, sf )− Zi(s0, 0)Zf (s0, 0)

s′ − s0 + ΣZ(s′)− ΣZ(s0)

=
Zi(s0, 0)Zf (s0, 0)

(s′ − s0)(1 + Σ′
Z(s0))

+
Zi(s

′, si)Zf (s
′, sf )− Zi(s0, 0)Zf (s0, 0)

s′ − s0 + ΣZ(s′)− ΣZ(s0)
(186)

≡ P (s0)

s′ − s0
+N(s′, si, sf ) (187)

where the s0−m2
Z0+ΣZ(s0) ≡ 0 has been applied to eliminate the bare Z-boson mass in the

denominator. And it is obvious that the first term is the principle term of the pole s′ − s0,
and the rest is regular since it vanishes as s′ → s0. Hence again, by applying pole scheme
before evaluating the loop integral, we successfully separate the leading pole component from
the background part. And by replacing the original Z-boson propagator into Eq.(187), we
can restore the coincidence between the pole and the branch point as log(1 − s/s0). This
can only apply to one-loop non-factorizable diagram in the presence of a single resonance,
for cases beyond, more sophisticated techniques needs to be developed.

The coefficients of Laurent series can be then parametrized by the building blocks intro-
duced above as follows:

Rij =

[
ZifZjf ′

1 + Σ′
Z

]
s=s0

+BR
γZ,ij , (188)

Sij =

[
ZifZ

′
jf ′ + Z ′

ifZjf ′

1 + Σ′
Z

− ZifZjf ′Σ
′′
Z

2(1 + Σ′
Z)

2
+
GifGjf ′

s+ Σγγ

+Bij

]
s=s0

+BS
γZ,ij , (189)

S ′
ij =

[
ZifZ

′′
jf ′ + Z ′′

ifZjf ′ + 2ZifZ
′
jf ′

2(1 + Σ′
Z)

−
(ZifZ

′
jf ′ + Z ′

ifZjf ′)Σ
′′
Z +

1
3
ZifZjf ′Σ

′′′
Z

2(1 + Σ′
Z)

2
+
ZifZjf ′(Σ

′′
Z)

2

4(1 + Σ′
Z)

3

+
GifG

′
jf ′ +G′

ifGjf ′

s+ Σγγ

−
GifGjf ′(1 + Σ′

γγ)

(s+ Σγγ)2
+B′

ij

]
s=s0

+BS′

γZ,ij , (190)

Here X ′ denotes the derivative of X with respect to s.
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4.2.2 the Subtraction of IR divergences

The current version of GRIFFIN uses the IR subtraction scheme followed by Jadach,
Ward, et al (See Ref. [201]), but other schemes for removing the IR-divergent contributions
could be easily implemented as well.

The vertex form factors and box diagrams can have IR divergences from QED and/or
QCD corrections, which will be handled by MC phase-space/shower generators when inter-
facing with MC program. Hence to avoid double counting we subtract the IR divergent
terms from the "hard" matrix element accordingly in GRIFFIN.

For most ISR and FSR vertex corrections, they can be factorized into a radiator function,
i.e., the form factors can really be Ztot

if = Rif
QED/QCD×Zif , where Rif (i = V,A) contains the

QCD/QED corrections to the fermion pairs (see e.g. Ref. [202]). For the non-factorizable
EW/QCD effect induced from mixed QCD-EW irreducible vertex [80, 203], owing to its IR
finitness, one can still incorporate it with Zif order by order. Hence, all the form factors
shown here are IR-subtracted. For subtracting the IR divergent parts in box diagrams, it
becomes less straightforward due to its initial-final state interference nature. We restrict
ourselves to a discussion at NLO, where one encounters IR-divergent IFI terms from two
sources, the γγ boxes and the γZ boxes. Following the CEEX MC scheme of Ref. [201], they
can be removed with the following subtraction terms:

γγ box: BVV(1) = Btot
VV(1) − S

(0)
VV

α

π
QeQf fIR(mγ, t, u), (191)

γZ box: BγZ,ij(1) = Btot
γZ,ij(1) −

R
(0)
ij

s− s0

α

π
QeQf [fIR(mγ, t, u) + δG(s, t, u)], (192)

fIR(mγ, t, u) = ln
(1− cθ
1 + cθ

)[
ln

(
2m2

γ

s
√
1− c2θ

)
+

1

2

]
,

δG(s, t, u) = −2 ln
(1− cθ
1 + cθ

)
ln
(s0 − s

s0

)
. (193)

Here θ is the scattering angle, mγ is a mass regulator used for regulating the soft IR diver-
gences, and the subscripts (n) indicate the loop order. If we wish to expand up to NNLO
for the leading pole term, one would in principle also need the γZ box to two-loop order,
which is currently unknown. However, it was shown in Refs. [204, 205] that at NLO the
total contribution of IFI terms to Rij vanishes when adding up the virtual γZ boxes and
real photon radiation. In the CEEX scheme, it is practically negligible due to the narrow
width suppression O(ΓZ/MZ) ∼ α2, see Refs. [207, 208]). A similar argument should apply

2this suppression will be lifted if the experimental cut on photon energy is of order of the resonance width,
see Ref. [206].
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to the γγZ boxes at NNLO, although a more careful analysis of this issue would be desirable.
Assuming that this argument holds, one only needs to include BR

γZ(m), m = 1, ..., n − 1 for
the computation of R(n)

ij .

4.2.3 the NNLO description of the Z-boson resonance

Near the Z resonance, when aiming for a description at NnLO precision, it is typically
sufficient to compute only the leading coefficient coefficient R to n-loop order, whereas
(n− 1)-loop and (n− 2)-loop precision are adequate for S and S ′, respectively. In principle,
this power counting can be extended to more terms, beyond S ′, in the Laurent expansion..
Furthermore, the ratio ΓZ/MZ = O(α), where O(α) denotes electroweak NLO corrections,
which implies that one can perform expansions in the perturbative order, α, and ΓZ/MZ in
parallel. For example, f(s0) = f(M2

Z)−iMZΓZ f
′(M2

Z)−
M2

ZΓ
2
Z

2
f ′′(M2

Z)+... Thus, in summary,
we adopt the power counting (s − s0)/M

2
Z ∼ ΓZ/MZ ∼ α for the expansion of the matrix

element near the Z pole.

R
(0)
ij = Zif(0)Zjf ′(0), (194)

R
(1)
ij =

[
Zif(0)Zjf ′(1) + Zif(1)Zjf ′(0) − Zif(0)Zjf ′(0)Σ

′
Z(1)

]
s=M2

Z
, (195)

R
(2)
ij =

[
Zif(0)Zjf ′(2) + Zif(2)Zjf ′(0) + Zif(1)Zjf ′(1) − Zif(0)Zjf ′(0)Σ

′
Z(2) − Σ′

Z(1)R
(1)
ij

− iMZΓZ(Zif(0)Z
′
jf ′(1) + Z ′

if(1)Zjf ′(0) − Zif(0)Zjf ′(0)Σ
′′
Z(1))

]
s=M2

Z
+BR

γZ,ij(1) , (196)

S
(0)
ij =

1

M2
Z

Gif(0)Gjf ′(0), (197)

S
(1)
ij =

[
Zif(0)Z

′
jf ′(1) + Z ′

if(1)Zjf ′(0) −
1

2
Zif(0)Zjf ′(0)Σ

′′
Z(1) +

1

M2
Z

(
Gif(0)Gjf ′(1) +Gif(1)Gjf ′(0)

)
+
iMZΓZ − Σγγ(1)

M4
Z

Gif(0)Gjf ′(0) +Bij(1)

]
s=M2

Z

+BS
γZ,ij(1) , (198)

S
′(0)
ij = − 1

M4
Z

Gif(0)Gjf ′(0), (199)
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where

ZV f(1) = vZf(1) + vγf(0)
ΣγZ(1)

M2
Z

, ZAf(1) = aZf(1) + aγf(0)
ΣγZ(1)

M2
Z

, (200)

ZV f(2) = vZf(2) + vγf(1)
ΣγZ(1)

M2
Z

ZAf(2) = aZf(2) + aγf(1)
ΣγZ(1)

M2
Z

+ vγf(0)

(
ΣγZ(2)

M2
Z

−
ΣγZ(1)Σγγ(1)

M4
Z

)
, + aγf(0)

(
ΣγZ(2)

M2
Z

−
ΣγZ(1)Σγγ(1)

M4
Z

)
,

(201)

Z ′
V f(1) = vZ ′

f(1) + vγf(0)

(
Σ′
γZ(1)

M2
Z

−
ΣγZ(1)

M4
Z

)
, Z ′

Af(1) = aZ ′
f(1) + aγf(0)

(
Σ′
γZ(1)

M2
Z

−
ΣγZ(1)

M4
Z

)
,

(202)

Σ′
Z(1) = Σ′

ZZ(1), (203)

Σ′
Z(2) = Σ′

ZZ(2) −
2

M2
Z

ΣγZ(1)Σ
′
γZ(1) +

(ΣγZ(1))
2

M4
Z

, (204)

Σ′′
Z(1) = Σ′′

ZZ(1). (205)

The subscripts (n) again indicate the loop order.

4.2.4 The EWPOs defined at the Z-boson resonance

To link the theoretical prediction to experimental data, we reparametrize the EWPOs
in terms of form factors defined in Ref. [73] and in terms of the effective weak mixing angle
sin2 θfeff defined in Eq.(153). Up to NNLO, along with the power counting ΓZ/MZ ∼ α, they
read

sin2 θfeff =
1

4|Qf |

[
1− Re

ZV f
ZAf

]
s=M2

Z

, (206)

F f
A =

[
|ZAf |2

1 + ReΣ′
Z

− 1

2
MZΓZ|aZf(0)|2 ImΣ′′

Z

]
s=M2

Z

+O(α3), (207)

F f
V =

[
|ZV f |2

1 + ReΣ′
Z

− 1

2
MZΓZ|vZf(0)|2 ImΣ′′

Z

]
s=M2

Z

+O(α3) (208)

= F f
A

[
(1− 4|Qf | sin2 θfeff)

2 +
(
Im

ZV f
ZAf

)2]
(209)

For f = ν the effective weak mixing angle is ill-defined and irrelevant. Then we reparametrize
the Laurent series coefficients by using the form factors and the effective weak mixing angles
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up to NNLO order as follows:

R
(0+1+2)
ij = 4I3f I

3
f ′

√
F f
AF

f ′

A

[
Q̃f
i Q̃

f ′

j

(
1 + i rIAA − 1

2
(rIAA)

2 + 1
2
δX(2)

)
+ (Q̃f

i Ij,f ′ + Q̃f ′

j Ii,f )(i− rIAA)− Ii,fIj,f ′
]

+MZΓZ Zif(0)Z
′
jf ′(0) x

I
ij , (210)

where

Q̃f
V = 1− 4|Qf | sin2 θfeff , Q̃f

A = 1, (211)

IV,f =
1

(aZf(0))
2

[
aZf(0) ImZV f(1) − vZf(0) ImZAf(1)

]
, IA,f = 0, (212)

δX(2) = −(ImΣ′
Z(1))

2 + 2
BR
γZ,ij(1)

R
(0)
ij

, (213)

rIAA =
ImZAf(1)
aZf(0)

+
ImZAf ′(1)
aZf ′(0)

− ImΣ′
Z(1), (214)

xIij =
ImZ ′

if(1)

Zif(0)
+

ImZ ′
jf ′(1)

Zjf ′(0)
− 1

2
ImΣ′′

Z(1). (215)

Instead of expanding the matrix elements about the complex pole, as in eq. (175), and then
squaring them to obtain the differential cross-section, as in eq. (172), one can also perform
the pole expansion directly for the square matrix element. Aiming, as before, for NNLO
precision of the leading pole term, the result can be written as

Re{MijM
∗
kl} =

F f
AF

f ′

A [Q̃f
i Q̃

f ′

j Q̃
f
kQ̃

f ′

l (1 + δX(2)) + Ũijkl]

|s− s0|2
−

ΓZ

MZ
Ỹ I
ijkl −

Γ2
Z

M2
Z
Gif(0)Gjf ′(0)Gkf(0)Glf ′(0)

|s− s0|2

+
s−M2

Z

|s− s0|2
[
X̃ijkl +M−2

Z Ỹ R
ijkl

]
+

(s−M2
Z)

2

|s− s0|2
M−4

Z Ṽijkl, (216)

where

Ũijkl = Q̃f
i Q̃

f
kIj,f ′Il,f ′ + Q̃f ′

j Q̃
f ′

l Ii,fIk,f + (Q̃f
i Ik,f − Q̃f

kIi,f )(Q̃
f ′

l Ij,f ′ − Q̃f ′

j Il,f ′), (217)

X̃ijkl =
[
Zif(0)Zjf ′(0)

(
Zkf(0) ReZ ′

lf ′(1) + Zlf ′(0) ReZ ′
kf(1) − 1

2
Zkf(0)Zlf ′(0) ReΣ′′

Z(1)

)]
+
[
i↔ k, j ↔ l

]
, (218)

Ỹ R
ijkl = Re Ỹijkl, Ỹ I

ijkl = Im Ỹijkl, (219)

Ỹijkl =
[
Zif(0)Zjf ′(0)Gkf(0)Glf ′(1) + Zif(0)Zjf ′(0)Gkf(1)Glf ′(0) + Zif(0)Z

∗
jf ′(1)Gkf(0)Glf ′(0)

+ Z∗
if(1)Zjf ′(0)Gkf(0)Glf ′(0) + Zif(0)Zjf ′(0)Gkf(0)Glf ′(0)

(
1− Σ′∗

Z(1) −M−2
Z Σγγ(1)

)
+M2

Z Zif(0)Zjf ′(0) (Bkl(1) +BS
γZ,kl(1))

]
+
[
i↔ k, j ↔ l

]
, (220)
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Ṽijkl =
[
Gif(0)Gjf ′(0)(

1
2
Gkf(0)Glf ′(0) − Zkf(0)Zlf ′(0))

]
+
[
i↔ k, j ↔ l

]
. (221)

Both the matrix element coefficients (210) and (197)–(199), as well as the squared matrix
elements (216) are implemented in the GRIFFIN library.

4.3 The structure of the C++ implementation

The theory framework is implemented within a structure of classes in C++. In v1.0,
only the SM predictions for EWPOs and polarized matrix elements near the Z-peak up to
NNLO along with partial higher orders have been implemented. Yet in principle one can
use GRIFFIN to study the observables defined at a certain gauge resonance from a given
model, up to arbitrary higher orders. The library has two base classes defined in accordance
with input and output shown as in Table. 9. The two base classes are

• class inval, which contains user-provided input parameters for a given model (such as
the SM or some extension thereof);

• class psobs, which returns a numerical prediction for an observable or pseudo-observable,
for the input parameters provided by an inval object.

In its basic form, inval simply has some basic methods for setting and retrieving the
values of some input parameters. However, one can define extended classes derived from
inval to perform computations of input parameters, such as translating between masses in
the complex-pole scheme and the running-width scheme, see eq. (176), or computing the
W-boson mass from the Fermi constant [65].

The base version of GRIFFIN defines a set of input parameters for SM calculations, listed
in Tab. 9. Most of these parameters are defined within the on-shell (OS) renormalization
scheme, with the exception of light quark masses and the strong coupling, for which the MS
scheme is assumed (at the scale µ =MZ). Additional input parameters for flavor physics or
BSM scenarios can be easily added to these.

The user has the option to choose between input classes that either use {α(0),MW,MZ}
or {α(0), Gµ,MZ} as inputs to define the electroweak couplings. Here α(0) is the electro-
magnetic coupling in the Thomson limit, and Gµ is the Fermi constant of muon decay. An
additional input is the shift ∆α between the running electromagnetic couplings at the scales
q2 = 0 and q2 = M2

Z. ∆α receives contributions from leptons, which has been computed
to four-loop order [163], and from quarks or hadrons, which can be extracted from data
[165, 166, 209].

A child class decending from psobs can in principle encode predictions for any observable
or pseudo-observable within any given model. The base version of GRIFFIN includes SM
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class inval class psobs

input parameters (in the SM) output observables

Boson masses and widths
MW,Z,H

ΓW,Z

pesudo-observables

defined at Z-peak

FV,A, sin2 θfeff

ΓZ→ff̄ ,∆r

, etc

Fermion masses

mOS
e,µ,τ

mMS
d,u,s,c(MZ)

mOS
t

amplitude coefficients under

pole scheme
R , S , andS ′

Couplings

α(0)

∆α ≡ 1− α(0)/α(M2
Z)

αMS
s (M2

Z), Gµ

(polarized) matrix element

square near Z-peak
ReMijM

∗
kl

Table 9: the category of two base classes in the SM.

predictions for form factors, such as sin2 θfeff and F f
V,A, and for matrix elements for the process

ff̄ → f ′f̄ ′ near the Z resonance, using the complex pole expansion described in the previous
section. GRIFFIN version 1.0 contains the following SM corrections:

• Complete one-loop corrections for sin2 θfeff [63, 64] are implemented in the class SW_SMNLO.
On top of this, electroweak [127, 66, 67, 68, 69, 70], mixed electroweak-QCD [76, 71, 77,
78, 79] two-loop corrections, leading fermionic three-loop corrections of orders O(α3) and
O(α2αs) [8, 210], non-factorizable O(ααs) Zbb̄ vertex contributions [80, 81, 82, 83, 84, 85]
are implemented in SW_SMNNLO. In addition, partial higher-order corrections are available
in the class SW_SMNNLO. The latter include corrections in the limit of a large top Yukawa
coupling yt, where αt ≡ y2t /(4π). These include corrections to the EW ρ parameter
defined as the ratio bewteen neutral current and charged current at zero momentum
transfer [211]:

ρ =
JNC(0)

JCC(0)
. (222)
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A correction to ρ will shift sin2 θfeff and F f
A by

δ sin2 θfeff =
M2

W

M2
Z

δρ , δF f
A =

απ(1− 2c2W)

4c2Ws
4
W

δρ, (223)

In practice, the ρ parameter is useful for capturing leading corrections proportional to
some power of the top Yukawa coupling.

• Similarly, the classes FA_SMNLO and FV_SMNLO provide one-loop corrections [64] for the
form factors F f

V,A, whereas FA_SMNNLO and FV_SMNNLO contain electroweak [72, 73, 74, 75]
and mixed electroweak-QCD [76, 71, 77, 78, 79] two-loop corrections, as well as the partial
higher-order corrections and non-factorizable contributions mentioned in the previous
bullet point.

• For the process ff̄ → f ′f̄ ′ All contributions needed to compute the matrix element
coefficient R to NNLO accuracy according to (210), and the coefficients S and S ′ to NLO
and LO, respectively, see eqs. (197)–(199). These are available in the classes mat_SMNNLO.

• All contributions required to compute the squared matrix elements to NNLO accuracy
according to eq. (216) are implemented in the class msq_SMNNLO.

• When using the input parameter set {α(0), Gµ,MZ}, one needs to compute MW from
these quantities according to

Gµ =
πα√

2M2
W(1−M2

W/M
2
Z)
(1 + ∆r). (224)

Here ∆r accounts for radiative corrections. The class dr_SMNNLO contains all higher-
order corrections discussed in Ref. [65], plus the leading fermionic three-loop corrections
of orders O(α3) and O(α2αs) [8, 210]. These corrections are used in the input classes
invalGmu and SMvalGmu.
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Corrections entering through δρ:

drho2aas O(αtαs) [76, 71]

drho2a2 O(α2
t ) [212, 213, 214, 215, 216]

* drho3aas2 O(αtα
2
s ) [86, 87]

* drho3a2as O(α2
tαs) [88, 89]

* drho3a3 O(α3
t ) [88, 89]

* drho3aas3 O(αtα
3
s ) [90, 91, 92]

Full corrections to F f
A, sin2 θfeff :

* res2ff O(α2
f ) [127, 66, 73]

* res2fb O(αfαb) [127, 66, 69, 73]

* res2bb O(α2
b) [67, 68, 70, 74, 75]

* res2aas O(ααs) [77, 78, 79] (correction to internal gauge-boson self-energies)

* res2aasnf O(ααs) [80, 81, 82, 83, 84, 85] (non-factorizable final-state corrections for f = q)

* res3fff O(α3
f ) [8]

* res3ffa2as O(α2
fαs) [210]

Figure 13: All contributions implemented in classes FA_SMNNLO, FV_SMNNLO, SW_SMNNLO.

Note that the meaningful sum of all contributions are indicated by an asterik (*).
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class

inval

class invalGmu class SMval

SMvalGmu

Figure 14: The hierarchy of classes for GRIFFIN’s input. The base class inval is an

abstract class that users need to define input parameters for a certain model (such as the

SM or beyond) in its offspring. In GRIFFIN 1.0, we have only implemented the SM for

the Z resonance (and muon-decay). Hence the derived classes defines different EW input

parameter schemes.

class

psobs

class matel
class SW,

FA, etc
class matelsq class psobsfix

mat_SMNNLO,etc SW_NLO,etc

SW_NNLO,etc

SW_NNNLO,etc

matelsq_NNLO

Figure 15: The hierarchy of classes for GRIFFIN’s output. The base class psobs is an

abstract class where several virtual member functions are defined. The user can in principle

define new derived classes based off their own purpose. In GRIFFIN 1.0, three types of

derived classes, and their sub-derived classes of higher order are defined accordingly.
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4.4 Benchmark Tests and comparision

We performed a benchmark test of the EWPOs in comparison with the existing library
of EW radiative corrections – Dizet v 6.45 at NNLO.

4.4.1 the comparison of the EWPOs

In dizet, the form factor is defined as Eq. 2.4.9 and Eq.2.4.10 in Ref. [187].

ΓZ→ff̄ = Γ0cf
∣∣ρfZ∣∣(∣∣gfZ∣∣2Rf

V +Rf
A) + δααs , (225)

where we have set all lepton mass to be zero and

Γ0 =
GµM

3
Z

24
√
2π
. (226)

Whereas in GRIFFIN, we define the partial width of Z-boson as

ΓZ→ff̄ =
N f
cMZ

12π
(F f

VR
f
V + F f

ARA) . (227)

In Eq. 4.4.1, the gfZ is defined as a complex-valued variable as

gfZ =
υf
af

= 1− 4
∣∣Qf

∣∣(κfZs2w + I2f ) , (228)

where κfZ is again, defined as a complex-valued variable. If the effective weak mixing angle
sin2θfeff defined in GRIFFIN is the same as that in dizet, we would have the following
identity:

gfZ =
ZV f
ZAf

, (229)

thereby obtaining the relation between rhofZ and F f
A through the partial width:

ΓZff̄ =
N f
cMZ

12π
F f
A(
F f
V

F f
A

+ 1) =
N f
cMZ

12π
F f
A(
∣∣gfZ∣∣2 + 1) = Γ0cf

∣∣ρfZ∣∣(∣∣gfZ∣∣2 + 1), (230)

where the radiators are turned off from both side of the equation. Given that the color
number cf and N f

c are the same, It is thus easy to obtain the relation between |ρfZ | and F f
A∣∣ρfZ∣∣ = 2

√
2F f

A

GµM2
Z

(231)

One should notice that the mixed QCD-EW corrections are considered as additive part in
Z widths, whereas in GRIFFIN, they are all absorbed in form factors and their radiators
FV,A and RV,A, respectively, thus causing the numerical discrepancy while transferring the
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form factors FV,A into ρfZ . Besides, one also has to notice that Eq. 231 is the modulus of ρfZ
instead of Re ρfZ . Hence to compare this observables, we need to use both Im ρfZ and Re ρfZ
output from dizet to reconstruct |ρfZ |. Due to the limited options of EW input schemes
offered by subroutine DIZET, we have to set Gµ, MZ as input and output MW,ΓW,Z, which
will be adopted by GRIFFIN as inputs, shown as below.

GRIFFIN input parameters

Dizet input parameters Dizet output

αs(M
2
Z) = 0.118, α = 1/137.035989500

∆α = 0.0594976, MZ = 91.1876 GeV, Gµ = 1.16638× 10−5

mt = 173.0999 GeV, mH = 125.0 GeV, me,µ,τ,u,d,s,c,b = 0 GeV

ΓZ = 2.495599 GeV

MW = 80.3532 GeV

ΓW = 2.089580 GeV

Table 10: the benchmark input values for numerical comparison between Zfitter and Griffin

and different EW input schemes used in each program.

Here we compared three sets of precision observables : form factor ρfZ defined in Dizet,
sin2 θfeff , and partial Z width ΓZ.

Dizet GRIFFIN

∆r 3.665994× 10−2 3.66597× 10−2

Table 11: the benchmark values for ∆r, including complete O(α2) corrections, O(ααs) and

O(αα2
s) QCD corrections, as well as leading three-loop corrections in an expansion in m2

t of

O(α3) and O(α2αs).

In Tab. 12, we have shown the numerical comparison among several EWPOs and form
factors. For most predictions given by both programs, numbers agree with each other by
at least four decimal points. The discrepancy is mildly larger for the form factor |ρfZ | in
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|ρfZ | sin2 θfeff ΓZ→ff̄

DIZET 6.45 GRIFFIN DIZET 6.45 GRIFFIN DIZET 6.45 GRIFFIN

νν̄ 1.00800 1.00808 0.231255 NAN 0.167208 0.167189

l̄ 1.00510 1.00512 0.231637 0.231647 0.083981 0.0839657

uū 1.00579 1.00567 0.231530 0.231565 0.299868 0.299868

dd̄ 1.00676 1.00644 0.231403 0.231459 0.382814 0.382755

bb̄ 0.99692 0.99420 0.232876 0.232886 0.376785 0.377421

Table 12: The numerical comparison of the EWPOs and form factors ρ between Dizet and

GRIFFIN. General agreements are achieved up to the different definition of form factors

and the parametric shift due to different input schemes.

Z → qq̄ channel, which reflects the different parametrization of the Z-width adopted by the
two programs. In Dizet, the mixed EW-QCD correction is an outcast from form factors,
while the same contribution is encapsulated in FA,V in GRIFFIN. And indeed, one can see
the partial width ΓZ→qq̄ has better agreement after all. The flags used by Dizet v.6.45 are
listed as follows:

IHVP=5 IAMT4=8 IQCD=3 IMOMS=1 IMASS=0

ISCRE=0 IALEM=0 IMASK=0 ISCAL=0 IBARB=2

IFTJR=1 IFACR=0 IFACT=0 IHIGS=0 IAFMT=3

IEWLC=0 ICZAK=1 IHIGS=1 IALE2=3 IGFER=2

IDDZZ=1 IAMW2=1 ISFSR=1 IDMWW=0 IDSWW=0
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4.5 Discussion and outlook

In this chapter, we report a new package recently developed that provides an extendable
framework in the presence of a hierarchy of C++ classes to compute EWPOs and observables
within a given model. The prototype of this package provides the SM predictions for EWPOs
and (polarized) cross-sections in the vicinity of the Z resonance. In this package, we use
the pole scheme to lay out the framework describing the Z-boson resonance, ensuring our
amplitudes are manifestly gauge-invariant at arbitrary higher orders. We primarily choose
the CEEX scheme for the IR subtraction to incorporate with existing MC programs such
as KKMC. Although the external user can, in principle, use their favored schemes to deal
with the IR subtraction. We have implemented the radiative corrections of EWPOs and
relevant form factors, including O(α, α2, ααs, αtαs, αtα

2
s , α

2
tαs, α

3
t , αtα

3
s ). There is still a part

of work left over as implementing the leading fermionic three-loop corrections from chapter
3 into the package, which are expected to be done soon. All the implemented corrections
accumulatively can be used to construct NNLO plus partial higher orders of the cross-section
of e+e− → ff ′ near the Z-pole. For one-loop corrections, we use housemade C code to
evaluate one-loop scalar Feynman integrals. For corrections beyond the one-loop level, the
grid interpolation technique is adopted to compute the numerical results of various multi-
loop integrals. In principle, one can also link GRIFFIN to their preferred external loop
calculation packages. This package can be treated as a library of EW radiative corrections;
thereby, one can perform the precision test of a particular model by interfacing it with MC
tools such as KKMC or KORALZ. We have performed the benchmark test for the evaluation
of the EWPOs and compared it with Dizet v.6.45. Due to the different frameworks set up
in the two programs, the numerics’ agreement is not perfect but under control. The ongoing
work compares the differential cross sections among Zfitter, KKMC, which is expected
to be done soon. The future projection is fairly straightforward:

• the implementation of theory error estimation for observables and pseudo-observables;
• matrix elements for four-fermion scatterings being far-away from the Z resonance;
• the implementation of Bhabha scattering for the precision of background;
• Drell-Yan process at the (HL-)LHC with both charge and neutral resonance;
• predictions for EWPOs in BSM theories or in terms of effective theory extensions of the

SM with higher-dimensional operators ;
• . . .
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5.0 Conclusion

As stated already in 1.2, the future e+e− colliders project a substantially improved
experimental accuracy compared with that of the LEP/SLC for all eletroweak measurements.
Consequently, such tremendous precision given by any future e+e− colliders, such as the FCC-
ee, ILC/Giga-Z, CLIC, and CEPC, ursher us into the area of three-loop and leading four-loop
electroweak calculations. For the Standard Model calculations of the Z-pole observables
introduced in 1.2, the complete two-loop and partial higher-loop corrections are known.
The so-called intrinsic theoretical uncertainties due to uncontrolled higher-order terms are
estimated to be smaller than the experimental accuracy reached by the LEP, but larger than
that of the FCC-ee, CEPC, CLIC, and ILC/Giga-Z (see Table. 2), thus making a new round
of calculation indispensable. In this thesis, we highlight our recent calculations of leading
fermionic three-loop corrections to the W-boson mass and Z-pole observables at both O(α3)

and O(α2αs). They are considered as a set of sizable corrections owing to the power of
the top mass and flavor number enhancement. However, they turn out to be milder than
one would expect due to some accidental cancellations, urging the effort of calculating the
remaining three-loop contributions, which requires further developments on technical aspects
so that all the contributing Feynman integrals can be efficiently evaluated.

All aforementioned EWPOs that encapsulate the dominant radiative corrections in the
SM and that are most sensitive to BSM physics are defined at the Z resonance peak
(
√
s =MZ). Thus fully describing the Z resonance near its pole position, containing hard con-

tributions from s−channel photon exchange and box diagrams, initial- and final-state QED
and QCD radiation, and acceptance of detector become important, consequently requiring
a generic form of e+e− → Z → ff̄ that respects unitarity, analyticity, and gauge-invariance.
Such requirements can be fulfilled by the ‘pole scheme’, where the matrix element near the
Z-pole is constructed as a Laurent expansion in the complex s−plane with a single simple
pole as the resonance term and a Taylor series as background. Albeit the tremendous success
made by predecessors mentioned in section 4.1 during LEP/SLC era, due to the inextendabil-
ity or dated programming structures of those software packages, a new program framework
that is modularized/object-oriented is needed for the study of future Z-factory. In chapter 4,
we reported a developing package GRIFFIN structured in a hierarchy of classes. In this
package, we have implemented full two-loop and partial higher-loop corrections to the EW-
POs and constructed the NNLO description of cross-sections in the vicinity of the Z-pole. A
benchmark comparison of the electroweak form factors and other EWPOs between GRIF-
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FIN and Dizet v6.45 has been shown. Although quantities are defined in slightly different
ways in two programs, a general numerical agreement can be achieved with discrepancies
under controlled. They comparison among GRIFFIN, Zfitter/dizet v6.42, and KKM-
C/dizet v6.45 is a non-trivial task where a detailed understanding in all three packages is
needed. It is thus left as a part of ongoing work which remains unreported. As future pro-
jections, we expect GRIFFIN can be used in studies of any four-fermion scattering/decay
processes with arbitrary higher orders.
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6.0 Appendix

6.1 Projection operators for amplitudes

6.1.1 Projecting the transverse component of the self-energy

For the gauge-boson self energy one has

Σab
µν = (−gµν +

pµpν
p2

)Σab
T − pµpν

p2
Σab
L (p

2), (232)

where one can project out the transverse part and the longitudinal part by applying

Σab
T =

1

D − 1
(−gµν + pµpν

p2
)Σab

µν ; Σab
L = −p

µpν

p2
Σab
µν , (233)

where pµ is the external momentum, a, b can be WW , ZZ, and γZ. Especially when p2 = 0,
Σab
T = Σab

L , and

Σab
T =

−1

D
gµνΣab

µν (234)

6.1.2 Projecting the vector and axial vector form factor

For a generalized chiral coupling Gff we can write:

Γ̂µ = igγµ(GV (s)−GA(s)γ
5) (235)

One can easily project out the form factors GV,A as

GV (s) =
1

2(2−D)s
Tr
[
γµ /p1Γ̂µ(s) /p2

]
, (236)

GA(s) =
1

2(2−D)s
Tr
[
γ5γµ /p1Γ̂µ(s) /p2

]
. (237)

6.1.3 Projection operators for box amplitudes

MXY = −ie4NcQ
2
f

∫
d4k

(2π)4

(
v(p2)G

µ
i,XX/kG

ν
i,Y Y u(p1)

)(
v(q1)G

µ
f,XX( /p1 − /k + /q1)G

ν
f,Y Y u(q2)

)
k2((k + p2)2 −m2

X)(k + p2 − q2)2((k + p2 − q1 − q2)2 −m2
Y )

,

(238)

where
Gµ
j,kl = gRikγ

µγ6 + gLjlγ
µγ7
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Figure 16: The generic box diagram considered in e+e− → Z → ff ′

and
γ6,7 =

1± γ5

2
.

Using {γµ, γ5} = 0 in 4-dim, γ6γ7 = 0, (γa)2 = γa. X and Y stands for two internal gauge
bosons. We tend to work out the numerator projection in 4-dimension thoroughly so no γ5

issue will come up.
γτ (γ6 + γ7)/kγν(γ6 + γ7) = γτ/kγν(γ6 + γ7) (239)

MXY = −ie4NcQ
2
f

∫
d4k

(2π)4(
v(p2)γ

µ/kγν(gRiXg
R
iY γ

6 + gLiXg
L
iY γ

7)u(p1)
)(
v(q1)(γ

µ( /p1 − /k + /q1)γ
ν(gRfXg

R
fY γ

6 + gLiXg
L
iY γ

7)u(q2)
)

k2((k + p2)2 −m2
X)(k + p2 − q2)2((k + p2 − q1 − q2)2 −m2

Y )
.

(240)

And MXY can be decomposed into the following

MXY =
∑
a,b

Aab (241)

where {a, b} = {L,R}, {L,L}, {R,R}, {R,L}, and by defining

Γ1 ⊗ Γ2 ≡ [v(p2)Γ1u(p1)][v(q1)Γ2u(q2)], (242)
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the amplitude can be written as a product of two Dirac chain Γi as

Aab
1 = γτ/kγa ⊗ γτ /Qγνγb (243)

where Q = k+ p2− q2. And we ignore integral notation for the moment. One should always
keep in mind that to match up with our framework set-up, we need to eventually project all
amplitudes onto V −A basis, with that been said, we need to first project out the coefficients
for each L − R basis vector and then convert them to V − A basis. A generic Dirac chain
can be decomposed into

Γ = a11 + b1γ
ν + b2γ

νγ5 + a2γ
5 + c1σ

τν + c2σ
τνγ5 (244)

Here we dealing with massless fermions, hence the chirality between an initial and final
fermion would not reversed through Dirac chain transition. A simple conclusion which
can be found is that only vector and axial vector transitions will maintain the chirality of
initial and final fermions [?]. Hence we only need to project out the coefficients b1, b2. And
alternatively, these two basis can combine together to be a left-hand or right-hand basis.

Γi,fa = (ai,f1 + bi,fγ
ν + ci,fσ

τν)γa (245)

We come up with a projector looks like the following

Fab = Nab[ /p2γ
µ
/p1Γ

ia
XY ][ /q1γµ /q2Γ

fb
XY ], (246)

where F is the product of coefficients b1b2. And the N is the normalizing factor given at
each projector.

To determine the normalizing factor one should use the generic form of Dirac chains for
both initial state and final state as given in (245).

[ /p2γ
µ
/p1Γ

iR(L)
XY ][ /q1γµ /q2Γ

fR(L)
XY ] = 4bi1b

f
2u

2 (247)

[ /p2γ
µ
/p1Γ

iR(L)
XY ][ /q1γµ /q2Γ

fL(R)
XY ] = 4bi1b

f
2t

2 (248)

Hence we get

FRR(LL) =
1

4u2
[ /p2γ

µ
/p1Γ

iR(L)
γγ ][ /q1γµ /q2Γ

fR(L)
γγ ] (249)

FRL(LR) =
1

4t2
[ /p2γ

µ
/p1Γ

iR(L)
γγ ][ /q1γµ /q2Γ

fL(R)
γγ ] (250)
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For parallel box

Γ
p(c),iL
XY = gLiXg

L
iY γ

τ/kγνγ7 (251)

Γ
p(c),iR
XY = gRiXg

R
iY γ

τ/kγνγ6 (252)

Γp,fLXY = gLfXg
L
fY γ

ν(/k + /p2 − /q2)γ
τγ7 (253)

Γp,fRXY = gRfXg
R
fY γ

ν(/k + /p2 − /q2)γ
τγ6 (254)

Γc,fLXY = gLfXg
L
fY γ

τ (−/k − /p2 + /q1)γ
νγ7 (255)

Γc,fRXY = gRfXg
R
fY γ

τ (−/k − /p2 + /q1)γ
νγ6, (256)

(257)

where gL,RX,Y denotes the fermion’s Gauge coupling on L-R basis. For instance, for photon
boxes, all these gs are Qe. But for ZZ box, they become

gLZff =
I3 − s2wQf

swcw
gRZff =

−sw
cw

Qf (258)

Now we can plug (257) in to to carry out the helicity amplitude, with the help of FeynCalc.
One should keep in mind that we can carry out the Dirac trace algebra in 4 dimension with
no issues, but we nevertheless need to do loop integral reduction in D-dim fashion. When
the reduction is performed in D-dimension, there is still a left-over Levi-Civita symbol as
ϵp1p2q1q2 . Due to momentum conservation of the scattering process, we know those four
momenta that show up at the index of ϵ are related to each other hence this Levi-Civita
symbol should vanish eventually in our calculation.

Then, after we obtain the helicity amplitude. We can write the Bγγ as

Bγγ = FRRγ
µγ6 ⊗ γµγ

6 + FRLγ
µγ6 ⊗ γµγ

7 + FLRγ
µγ7 ⊗ γµγ

6 + FLLγ
µγ7 ⊗ γµγ

7 (259)

Convert (259) into V-A basis in which we parametrize Bγγ as

Bγγ = BV V,γγγ
µ ⊗ γµ +BV A,γγγ

µ ⊗ γµγ
5 +BAV,γγγ

µγ5 ⊗ γµ +BAA,γγγ
µγ5 ⊗ γµγ

5 (260)
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By inspecting the tree level relation between V-A coupling and L-R coupling, we get

BV V =
1

4
(FLL + FRR + FRL + FLR) (261)

BAA =
1

4
(FLL + FRR −FRL −FLR) (262)

BV A =
1

4
(−FRR + FLL + FRL −FLR) (263)

BAV =
1

4
(−FRR + FLL −FRL + FLR) (264)

(265)

In the end, the Bij,γγ in terms of Passarino-Veltmann master integrals are

BV V,γγ =
e4(t− u)B0

(
s,m2

γ,m
2
γ

)
16π2tu

+
e4B0(u, 0, 0)

16π2t
− e4B0(t, 0, 0)

16π2u
−
e4 (t4 − u4)C0

(
0, s, 0, 0,m2

γ,m
2
γ

)
16π2t2u2

+
e4u(t− u)C0

(
u, 0, 0, 0, 0,m2

γ

)
16π2t2

+
e4t(t− u)C0

(
t, 0, 0, 0, 0,m2

γ

)
16π2u2

+
e4 (t3 + 3tu2)D0

(
t, 0, s, 0, 0, 0, 0, 0,m2

γ,m
2
γ

)
32π2u2

−
e4 (3t2u+ u3)D0

(
u, 0, s, 0, 0, 0, 0, 0,m2

γ,m
2
γ

)
32π2t2

BAA,γγ =
e4(t+ u)B0

(
s,m2

γ,m
2
γ

)
16π2tu

− e4B0(u, 0, 0)

16π2t
− e4B0(t, 0, 0)

16π2u
−
e4 (t2 − u2)

2 C0

(
0, s, 0, 0,m2

γ,m
2
γ

)
16π2t2u2

−
e4u(t− u)C0

(
u, 0, 0, 0, 0,m2

γ

)
16π2t2

+
e4t(t− u)C0

(
t, 0, 0, 0, 0,m2

γ

)
16π2u2

+
e4 (t3 − tu2)D0

(
t, 0, s, 0, 0, 0, 0, 0,m2

γ,m
2
γ

)
32π2u2

+
e4 (u3 − t2u)D0

(
u, 0, s, 0, 0, 0, 0, 0,m2

γ,m
2
γ

)
32π2t2

BAV,γγ = BV A,γγ = 0

6.2 Feynman loop integrals

6.2.1 The derivative of one-loop integrals

B0(p
2,m2

1,m
2
2) =

(2πµ)4−D

iπ2

∫
dDq

1

(q2 −m2
1 + iϵ)((q + p1)2 −m2

2 + iϵ)
≡ I1,1 (266)

By chain rules:

∂B0

∂p2
=
∂B0

∂pµ
∂pµ

∂p2
⇒ ∂B0

∂pµ
= 2pµ

∂B0

∂p2
, (267)
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Figure 17: scalar one-loop of two-point function

and for p2 ̸= 0

∂B0

∂p2
=

1

2pµ

∂B0

∂pµ
=

1

2p2
pµ

∂

∂pµ
I1,1 =

1

2p2
(−I1,1 + (p2 −m2

1 −m2
2)I1,2 + I2,0) (268)

=
1

2p2

[
B0(0,m

2
2,m

2
2)−B0(p

2,m2
1,m

2
2) + (p2 −m2

1 −m2
2)C0(0, p

2, p2,m2
2,m

2
2,m

2
1)
]

(269)

For p2 = 0, one cannot simply apply the same chain rule as Eq. (268). Instead, we can do
as follows

∂2

∂pµ∂pµ
B0(p

2,m2
1,m

2
2)
∣∣∣
p2=0

=
∂

∂pµ

(
2pµ

∂B0(p
2,m2

1,m
2
2)

∂p2

)
p2=0

(270)

= D
∂B0(p

2,m2
1,m

2
2)

∂p2

∣∣∣
p2→0

+ 2pµ
∂

∂pµ

∂B0(p
2,m2

1,m
2
2)

∂p2

∣∣∣
p2→0

(271)

Since ∂xµ

∂xν
= δµν ⇒ ∂pµ

∂pµ
= D. And rewriting the second term in Eq. (271) by chain rules:

∂

∂pµ

∂B0

∂p2
=
∂p2

∂pµ

∂

∂p2
∂B0

∂p2
= 2pµ

∂2B0

∂(p2)2

∣∣∣
p2→0

, (272)

we eventually get

∂2

∂pµ∂pµ
B0 = 2D

∂B0

∂p2

∣∣∣
p2→0

+ 4p2
∂2B0

∂(p2)2

∣∣∣
p2→0︸ ︷︷ ︸

=0

(273)

82



Hence by reverting this equation we get

∂B0

∂p2

∣∣∣
p2→0

=
1

2D

∂2

∂p2
B0

1

2D

∂

∂pµ
∂

∂pµ
I1,1 (274)

=
1

2D

∂

∂pµ
(−2(qµ + pµ))I1,2 (275)

=
1

2D

(
− 2DI1,2 + 8I1,2 + 8m2

2I1,3

)
p2→0

(276)

Figure 18: scalar one-loop of three-point function

C0(p
2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3) =

µ4−D

iπD/2rΓ

∫
dDq

1

[q2 −m2
1][(q + p1)2 −m2

2][(q − p3)2 −m2
3]

(277)

=

∫
dDq

1

D1D2D3

≡ I1,1,1 (278)

and
rΓ =

Γ2(1− ϵ)Γ(1 + ϵ)

Γ(1− 2ϵ)
= 1 +O(ϵ) (279)

We are looking for solving the derivative of C0 with constraints as

∂

∂p21
C0(p1

2, 0, 0,m2
1,m

2
1,m

2
2) (280)

p21 = s p22 = p23 = 0 m1 = m2. (281)
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Consequently one can also find the following relations

p1 · p2 = −s
2

p1 · p3 = −s
2

(282)

We can define variable p3 as a function of two independent variables p1 and p2. Then by
applying the chain rule

p1µ
∂C0

∂p1µ
= p1µ(

∂C0

∂p21

∂p21
∂p1µ

+
∂C0

∂p23

∂p23
∂p1µ

) (283)

=
∂C0

∂p21
2s+ p1µ

∂C0

∂p23

∂(−p1 − p2)
2

∂p1µ
(284)

=
∂C0

∂p21
2s+ p1µ

∂C0

∂p23
(2pµ1 + 2pµ2) (285)

=
∂C0

∂p21
2s+ s

∂C0

∂p23
, (286)

where p1 · p2 = − s
2

is applied.
We shall see that by applying chain rule this way, we can ensure the partial derivative ∂C0

∂p21

having both p22 and p23 fixed, which is consistent with the constraints given by this problem.
Alternatively, one can write down another equation by dotting p2µ in front of ∂C0

∂p1µ
instead

of p1µ:

p2µ
∂C0

∂p1µ
= p2µ(

∂C0

∂p21

∂p21
∂p1µ

+
∂C0

∂p23

∂p23
∂p1µ

) (287)

= −∂C0

∂p21
s+ p2µ

∂C0

∂p23

∂(−p1 − p2)
2

∂p1µ
(288)

= −∂C0

∂p21
s+ p2µ

∂C0

∂p23
(2pµ1 + 2pµ2) (289)

= −∂C0

∂p21
s− s

∂C0

∂p23
. (290)

Then, combing (286),(290) together, we can perform a Guassian elimination of ∂C0

∂p1µ
:

p1µ
∂C0

∂p1µ
=
∂C0

∂p21
2s+ s

∂C0

∂p23
(291)

p2µ
∂C0

∂p1µ
= −∂C0

∂p21
s− s

∂C0

∂p23
, (292)

(293)
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and
∂C0

∂p21
=

1

s
(p1µ

∂C0

∂p1µ
+ p2µ

∂C0

∂p1µ
), (294)

where
∂C0

∂p1
= −2(pµ1 + pµ2 + qµ)I1,1,2 − 2(pµ1 + qµ)I1,2,1 (295)

Hence by plugging (295) back into(294), we get

∂C0

∂p21
=

1

s
(−(3− − 1− +m2

2 −m2
1)(I1,1,2 + I1,2,1)− sI1,2,1) (296)

=
1

s
(−I1,1,1 + I0,1,2 − (m2

2 −m2
1)(I1,1,2 + I1,2,1)− sI1,2,0 + I0,2,1) (297)

Then by further applying the IBP identities, one can reduce it down to a linear combination
of A0, B0, and C0 functions.

6.2.2 Derivative of two-loop self-energy MIs

With the help of chain rules, we obtain

∂

∂p2
I(...; p2 = 0) =

1

2d

∂2

∂pµ∂pµ
I(...; p2)

∣∣∣∣
p2=0

=
2

d

[(
1 + a2 + a5 −

d

2

)
(a22

+ + a55
+)

+m2
2a2(a2 + 1)2++ +m2

5a5(a5 + 1)5++

+ a2a5((m
2
2 −m2

3 +m2
5)2

+5+ − 2+3−5+)I

]
p2=0

,

(298)

whereas for p2 ̸= 0, one obtains

∂

∂p2
I(...; p2 ̸= 0) = − 1

2p2
pµ

∂

∂pµ
I(...; p2)

= − 1

2p2
[
(a2 + a5)− a21

−2+ − a54
−5+

+ a2(m
2
2 −m2

1 + p2)2+ + a5(m
2
5 −m2

4 + p2)5+
]
I,

(299)

where I is defined as the most generic two-loop self-energy master integral

I(a1, a2, ...,m1,m2, .., ; p
2)

≡
∫

ddq1 d
dq2

(q21 −m2
1)
a1((q1 + p)2 −m2

2)
a2((q2 − q1)2 −m2

3)
a3(q22 −m2

4)((q2 + p)2 −m2
5)
a5

(300)
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and the standard lowering/raising operators are defined as

4−5+I = I(a4 − 1, a5 + 1). (301)

Then one can apply IBP identities again to further reduce the raised/lowered MI integrals
I(...; p2) down to the chosen MI basis such as Fig. 10.
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