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Whole transcriptome profiling of prospective
endomyocardial biopsies reveals prognostic and
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BACKGROUND: Heart transplantation provides a significant improvement in survival and quality of life

for patients with end-stage heart disease, however many recipients experience different levels of graft

rejection that can be associated with significant morbidities and mortality. Current clinical standard-of-

care for the evaluation of heart transplant acute rejection (AR) consists of routine endomyocardial

biopsy (EMB) followed by visual assessment by histopathology for immune infiltration and cardio-

myocyte damage. We assessed whether the sensitivity and/or specificity of this process could be

improved upon by adding RNA sequencing (RNA-seq) of EMBs coupled with histopathological

interpretation.

METHODS: Up to 6 standard-of-care, or for-cause EMBs, were collected from 26 heart transplant recipi-

ents from the prospective observational Clinical Trials of Transplantation (CTOT)-03 study, during the

first 12-months post-transplant and subjected to RNA-seq (n = 125 EMBs total). Differential expression

and random-forest-based machine learning were applied to develop signatures for classification and

prognostication.

RESULTS: Leveraging the unique longitudinal nature of this study, we show that transcriptional

hallmarks for significant rejection events occur months before the actual event and are not vis-

ible using traditional histopathology. Using this information, we identified a prognostic signa-

ture for 0R/1R biopsies that with 90% accuracy can predict whether the next biopsy will be

2R/3R.
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CONCLUSIONS: RNA-seq-based molecular characterization of EMBs shows significant promise for the

early detection of cardiac allograft rejection.
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Over the last 3 decades advances in immunosuppression

therapies and patient management have yielded substantial

gains in survival rates for heart transplant recipients,

however, 5-year survival rates remain at only »74%.1-3

One of the major obstacles to extending short- and

long-term allograft survival is a lack of robust minimally-

invasive biomarkers to diagnose and prognosticate acute

rejection (AR) early enough to prevent irreversible damage

to the allograft.1,4

While there have been significant advances in noninva-

sive cell-free nucleic acid-based diagnostics including sev-

eral large-scale evaluations by the CARGO and GRAfT

teams,5-10the current diagnostic standard for AR following

cardiac transplantation still entails histopathological evalu-

ation of the allograft by endomyocardial biopsy (EMB)

using international standards such as The International

Society for Heart & Lung Transplantation (ISHLT) 2013

grading system.11,12 While these highly invasive procedures

have become safer and more standardized in the last few

decades,13 procedural risks still remain, and interobserver

variability in EMB readings greatly impact interpretation.14

Furthermore, as an individual’s immune response is

dynamic over time, successive biopsies are needed to cap-

ture anti-allograft immunity. A fundamental limitation of

for-cause biopsies, which is a biopsy performed when a

patient clinically manifests symptoms of rejection, is that

allograft injury and irreversible damage may already have

occurred, and patients who develop acute rejection (AR)

are at higher risk of developing chronic allograft vasculop-

athy (CAV) which can progress to a number of comorbid-

ities including allograft loss.3

Increasingly, large-scale molecular profiling by sequenc-

ing or other methods has become an integral molecular

diagnostic tool used to address clinical problems in other

specialties including oncology and infectious disease.15,16

In the transplant setting, these techniques also show signifi-

cant promise. A previous messenger RNA (mRNA) array-

based expression study characterizing antibody-mediated

rejection (AbMR) vs non-AbMR heart transplant recipient

EMBs demonstrated AbMR molecular pathways character-

ized by endothelial activation with microcirculatory inflam-

mation from monocytes−macrophages and NK cells.17

Additional recent work by Xiu et al. utilized prior expres-

sion array datasets to identify signatures associated with t-

cell mediated and antibody-mediated rejection.18 While

these prior studies have advanced our knowledge of rejec-

tion-associated transcriptional regulation, array-based

expression platforms have a large of number of limitations

vs RNA-seq including smaller dynamic range and inability

to detect novel transcripts and splicing isoforms.19,20 In this

current study, we performed the first RNA-sequencing

(RNA-seq) study on 125 longitudinal EMB samples
prospectively collected as part of the Clinical Trials of

Transplantation (CTOT)-03 study with the aim of assessing

the sensitivity and specificity of acute rejection diagnoses.

The prospective nature of the CTOT-03 study design also

allowed us to assess the ability of RNA-seq to prognosticate

AR events.
Materials and methods

Clinical Trial of Transplantation

(CTOT-03) Study: The CTOT-03 study is described in detail

elsewhere (NCT:00531921) but in brief it is a prospective

observational cohort study designed to test associations of

proinflammatory pathways of allo-immune response and injury

in thoracic (heart and lung) and abdominal (kidney and liver)

allografts. The study aims include testing associations between

mRNA expression and subsequent incidence of acute rejection

and expression of genes involved in cell mediated immunity

in recipients of kidney, liver, lung, and heart transplants. For

the purposes of this study, RNA-seq data were generated from

125 EMBs from 26 CTOT-03 patients recruited from the Uni-

versity of Pennsylvania and the University of Wisconsin, to

assess effects of heart allograft gene expression and the rela-

tionship with acute rejection.

A dedicated research EMB was collected, at the same time, for

up to 6 standard-of-care and/or for-cause timepoints in the first

12-months post-transplant, and these fresh-frozen EMBs were pre-

served immediately in RNAlater storage buffer (Thermo Fisher) at

�80˚C. A representative hematoxylin-eosin (H&E)- stained slide

for each clinical biopsy was centralized in each of the 2 CTOT-03

sites and graded using International Society of Heart and Lung

Transplantation consensus definitions. A dedicated Fresh-frozen

research EMBs was collected from the donor allograft at the day

of transplant (Day 0) and at 1 week, 2 weeks, 1 month, 3 months,

6 months and 1 year post-transplant. For-cause research fresh-fro-

zen EMB timepoints were also collected. A dedicated Fresh-fro-

zen research EMBs was collected from the donor allograft at the

day of transplant (Day 0) and at 1 week, 2 weeks, 1 month, 3

months, 6 months, and 1 year post-transplant. For-cause research

fresh-frozen EMB timepoints were also collected. The EMBs

were further independently assessed by 2 blinded pathologists to

arrive at a consensus rejection status grade with adjudication

where required. The distribution of grades across the sample

cohort is shown in Table 1.
Tissue extraction

Flash-frozen EMB tissues in RNAlater buffer were homogenized

by rotor-stator homogenizer (TissueRuptor, Qiagen), and RNA

was purified from the homogenized lysate using RNeasy Blood

and Tissue kits (Qiagen). RNA quantity and quality were assessed

on a BioAnalyzer workstation (Agilent) and by Qubit fluorometer

(Thermo Fisher). Whole transcriptome libraries were prepared

using TruSeq Stranded Total RNA Gold library preparation kits



Table 1 Demographics and Clinical Features of CTOT03 Heart
Transplant Participants

Patients
without ACR

Recipients with
2R EMBs

Number of patients 19 7
Donors
Age (Median[IQR]) 37 (21-52) 21 (16-32)
Gender (Male n, %) 16 (84%) 6 (85%)

Race
African American
(n, %)

2 (11%) 0 (0%)

White (n, %) 16(84%) 5 (71%)
Unknown (n, %) 1 (5%) 2 (29%)

Recipients
Age (Median[IQR]) 60 (53-61) 56 (46-58)
Gender (Male n, %) 16 (84%) 5 (71%)

Indications for Heart
Transplant
Idiopathic 2 (11%) 3 (43%)
Ischemic 13 (68%) 2 (29%)
Other 4 (21%) 2 (29%)

Ancestry
African American
(n, %)

2 (11%) 1 (14%)

White (n, %) 16(84%) 5(71%)
Unknown (n, %) 1 (5%) 1 (14%)
Study site (HUP, n, %) 12 (63%) 3 (43%)
Time to 1st ACR (≥2R)
(Median[IQR])

NA 58 [9-165]
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(Illumina) and were multiplexed for RNA sequencing on a HiSeq

2500 instrument (Illumina).
Data analysis

For RNA-seq libraries, raw data were demultiplexed and con-

verted to FASTQ using bcl2fastq2 (Illumina). Reads were mapped

and quantified to the Ensembl hg38 human reference genome

build using the Salmon.21 Salmon quants were read into R and

rolled up to gene level using the tximport package. Initial quality

control checks determined 9 samples failed sequencing due to low

read counts and were removed from downstream analyses. Quality

metrics for all samples are detailed in Table S1. The raw feature

counts for the remaining 116 samples were normalized using the

edgeR package in R and differentially expressed genes were calcu-

lated using the exact test function in edgeR with false-discovery

rate correction (q < 0.01). Pathway analysis was performed using

DAVID pathway analysis tools,22,23 utilizing biological pathways

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

and Gene Ontology (GO) Immune cell deconvolution was con-

ducted on the contrasts of interest via xCell.24 Predictor models

for classification of rejection and preceding rejection contrasts

were constructed using the randomForest package in R. We uti-

lized random forest, a machine learning approach for classification

of covariates or biomarkers that optimizes across a large number

of decision trees, and is particularly useful for classification across

high-dimensional datasets such as RNA-seq. The random forest

models were subjected to 10-fold cross validation in which each

respective model was trained on 55% of the samples and tested for
classification of rejection grade or preceding-rejection on the

remaining 45% of samples which were sampled without replace-

ment. Due to vastly more nonrejection samples in the cohort, for

the random forest training and test sets the nonrejection samples

were down-sampled without replacement to twice the number of

rejection samples. Similarly, for the preceding-rejection classifier

the preceding-non-rejection samples were down-sampled to twice

the number of preceding-rejection samples. The random forest

classifier models were evaluated after extracting the true positive,

true negative, false positive, and false negative values for each

round of cross validation. The models were assessed using metrics

of accuracy, sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), F1 score, false positive

rate (FPR), false negative rate (FNR), false discovery rate (FDR),

and Matthews correlation coefficient (MCC). MCC is a metric

ranging from �1 to 1 to evaluate the quality of classification with

1 representing a perfect classification with agreement of actual

and predicted values in all 4 categories of the confusion matrix

and �1 representing a very poor classification with a high rate of

disagreement between actual and predicted values that could be

generated by random. Accuracy of classification was calculated

on the test set by obtaining the fraction for the number of correct

predictions out of the total number of samples in the test set. Accu-

racy of the rejection grade and preceding rejection signatures

respectively were assessed through 10 rounds of cross-validation

with resampling of the training and testing sets each round. An

average for each metric was calculated from the 10 rounds of cross

validation for each respective random forest model. Area under

the curve (AUC) metrics and receiver-operating characteristic

(ROC) curve plots were generated using the ROCR package in R.
IRB approval

Institutional review board (IRB) approval and informed written

consent from both recipients and organ donor proxies were

obtained prior to the recruitment of subjects under the CTOT-03

study (NCT:00531921).
Results

A gene expression signature is associated with AR
in EMBs

Longitudinal fresh-frozen EMBs were available from 50

heart transplant recipients who were enrolled in the CTOT-

03 study (see Methods). From this cohort, we selected a

subset of 26 patients that had dense sampling of EMBs over

the study period for allograft profiling by RNA-seq. In total

125 tissue samples were profiled by RNA-seq. We first

assessed expression differences between histopathological-

determined rejection (Grade 2R or 3R) and nonrejection

states (Grade 0R or 1R) as defined by ISHLT grading.

Across the 26 CTOT-03 heart transplant recipients, there

were 59 EMBs graded as 0R, 59 graded as 1R and 7 EMBs

were graded as 2R rejection episodes. We performed a tran-

scriptome-wide Fisher’s exact test and pathway analyses to

assess differences between 0R/1R and 2R samples. From

these data, we observed 1079 genes significantly different

between 0R/1R and 2R (FDR q < 0.01, Benjamini-Hoch-

berg correction) (Figure 1A and B and Table S2). Of note, a

number of these differentially expressed genes have



Figure 1 Gene expression differences between rejection and nonrejection specimens. (A) Heatmap of differentially-expressed genes

between AR and nonrejection tissues. (B) Volcano plot for the AR and NR comparison. (C) Violin plots for selected differentially expressed

genes between AR and NR.
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previously been linked to transplant-associated phenotypes,

including elevated PCSK9 association with immunosup-

pressive therapy25 and HLA-DRA associations in peripheral

blood with AR26 (Figure 1C). Genes downregulated in the

AR setting included NOMO1, which is involved in inhibit-

ing cardiomyocyte differentiation,27 FOSB which is a

known respond molecule to cardiac injury,28 and EDNRB, a

gene which is associated with cardiac stress tolerance.29-31

To further elucidate functional pathways associated with

AR, we performed pathway analyses using the DAVID

tool, which assesses whether a differentially expressed gene

list is statistically enriched for predefined sets of genes

based on biological function or other properties22,23,32

(Figure 2A and B). The majority of significant pathways

between 0R/1R and 2R/3R biopsies were associated with

immune responses including KEGG cytokine-cytokine

receptor interaction (q < 1.54 x 10�15) and a number of

pathways significantly associated with transplant rejection

including the KEGG Graft-Versus-Host Disease pathway

(q < 6.37 x 10�21) and KEGG Allograft Rejection (q <
1.31 x 10�19). For the latter pathway, significant genes

comprised most facets of AR including donor and recipient

antigen presentation, T helper cell mediated immune activa-

tion and both cytotoxic CD8⁺ T cells (CTL) and macro-

phage derived donor tissue destruction. As the majority of

significant differences between healthy and AR EMBs were

associated with immune-related pathways, we next assessed

which classes of immune cells were activated in AR tissues.

We performed immune cell deconvolution of the RNA-seq

dataset using the xCell algorithm, which estimates the

abundance of specific immune cell subtypes in a sample

based on the RNA expression levels of cell-specific
markers.24 Consistent with pathway analysis, AR EMBs

were enriched for CD8+ naive T-cells (q < 0.05).

We assessed overlap of the AR signature with other pre-

viously identified signatures. This includes the antibody

mediated rejection (AbMR) signature previously identified

in Loupy et al.17 as well as t-cell mediated rejection

(TCMR) and AbMR signatures curated from large datasets

by Xiu et al.18 For the former, we observed that »30% of

genes in the Loupy et al. signature, as well as »20% of the

genes in the TCMR signature, are present in our AR signa-

ture (Figure S1A). Furthermore, »36% of the genes in the

AbMR signature from Xiu et al. (Figure S1B) are present in

our AR signature, indicating that while a subset of the char-

acterized genes are novel, there is concordance with prior

studies in this area.
A gene expression classifier for 0R/1R vs 2R acute
rejection

As gene expression profiling revealed robust differences

between AR and nonrejection EMBs, we next asked whether

the differential gene expression signature could be used to

classify samples as molecular AR or nonrejection. To do

this, we constructed a predictor model using the Random

Forest method to classify AR grade from the differentially

expressed genes between 0R/1R and 2R/3R samples. The

AR predictor model was trained on 55% of the samples,

sampled with replacement and tested for classification of

rejection grade on the remaining 45% of samples. Overall

performance assessed using the area under the curve (AUC)

of 0.971 and was plotted using a receiver-operating



Figure 2 Pathway assessment of AR vs NR genes. (A) KEGG pathway enrichment for AR versus NR genes. (B) Gene Ontology enrich-

ment for AR vs NR differentially expressed genes.
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characteristic (ROC) curve (Figure 3A and B), which illus-

trates the AR signature’s robust performance as a classifier.

Classification accuracy averages 92.2%, with a positive pre-

dictive value (PPV) of 96.7%., a negative predictive value of

91.2% and a sensitivity, and specificity of 80%, and 98.33%,

respectively. While it will be important to evaluate this clas-

sifier across additional independent datasets, these results

suggest that RNA-seq is a highly accurate methodology for

classifying rejection and non-rejection specimens.
Figure 3 Clinical utility of acute rejection genes. (A). ROC curve for

biopsies with calculated AUC. (B) Performance statistics for Random Fo

respond to the following: positive predictive value (PPV), negative pre

(FNR), false discovery rate (FDR), and Matthews correlation coefficient
A prognostic signature for acute rejection

A subset of rejection-associated gene expression exhibited

relatively stable high expression in patients that would later

experience a rejection event, especially in nonrejection

timepoints that immediately preceded a 2R rejection event

(Figure 1A). As such we hypothesized that biopsies adjudi-

cated as nonrejection by traditional histopathological grad-

ing exhibit molecular features of early acute rejection as
the AR signature as a classifier between rejection and nonrejection

rest classification using the AR signature. Abbreviated metrics cor-

dictive value (NPV), false positive rate (FPR), false negative rate

(MCC).



Figure 4 Characterization of nonrejection biopsies: preceding rejection vs preceding nonrejection. (A) Volcano plot of gene expression

differences for PR vs PNR biopsies. (B) Volcano plots of top differentially expressed genes between PR and PNR.
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determined by RNA-seq and thus could be prognostic for

later acute rejection. In order to test this hypothesis, we

divided the set of 0R/1R EMBs into 2 groups: those imme-

diately preceding a 2R/3R rejection EMB (labeled

“preceding-rejection,” PR) and those 0R/1R EMBs not pre-

ceding a 2R/3R EMB (labeled “preceding-non-rejection,”

PNR). We also expanded the analysis to include the entire

transcriptome to avoid excluding any genes that may be

specifically associated with the PR group. From this, we

observed 528 transcripts that were significantly differen-

tially expressed between the PR and the PNR samples (q <
0.01) (Figure 4 and Table S3). Intriguingly, top genes upre-

gulated preceding rejection included the double homeobox

transactivator DUX4 as well as 2 similar pseudogenes

DUX4L19 and DUX4L26 (Figure 4B). Pathways associated

with PR included immune/inflammatory pathways such as

cytokine receptor interactions (KEGG q < 0.01) as well as

genes involved in the inflammatory response (GO, q <
0.0022; Figure 5A and B). Of note, these signals were

detected across a variety of time intervals between PR and

2R biopsies, with an average time of 88 days, a minimum

of 9 days and a maximum of 168 days (Table S4).

We also examined whether these signals persisted after

treatment. Nonrejection biopsies immediately following a

treated 2R rejection event were distinctly different from

other nonrejection biopsies, and by differential gene and

pathway expression exhibited higher expression for many

of the same genes and pathways associated with Grade 2R

events (Figure S2). Specifically, pathways associated with

antigen presentation and processing as well as graft vs host

disease remained the top overexpressed pathways in these

nonrejection biopsies. Thus, while histopathological
grading does not indicate AR in these biopsies, gene expres-

sion profiles indicate residual AR after treatment.

To evaluate whether gene expression profiling of PR

samples could act as an early prognostic marker of acute

rejection, we generated a classification model of PR vs

nonrejection biopsies using a Random Forest approach.

Briefly, the set of 0R/1R PR and PNR biopsies were

randomly sampled without replacement into 55% train-

ing and 45% test sets. A predictor model was built using

the 528 differentially expressed genes between the PR

and PNR EMB samples. The model was validated

through 10 rounds of cross validation with resampling

of the training and test sets each round, and classifica-

tion accuracy is shown via ROC plot in Figure 5C with

an AUC of 0.947. Overall statistics show an average

classification accuracy of 90% with 90.8% precision

(Figure 5D). The NPV was 91.7%, sensitivity was 80%

and specificity was 95%. In conclusion, the classifier

exhibits strong performance in assessing whether the

biopsy is preceding a rejection or nonrejection time-

point, a capability that may be of significant utility in a

clinical setting.

Discussion

One and 5-year survival rates for heart transplant recipients

have remained static over the last decade in part due to

acute allograft rejection. Although there are differences in

reporting accuracies acute rejection is thought to occurs in

approximately 30% of heart allograft recipients in the first

year post-transplant alone.33-35 A key focus in improving

mortality rates is more rapid and accurate AR diagnosis and



Figure 5 Functional characterization of biopsies preceding rejection. (A) KEGG pathway enrichment for PR vs PNR gene expression.

(B) GO pathway enrichment for PR vs PNR biopsies. (C) ROC curve for the PR classifier. (D) Performance statistics for the PR classifier.
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intervention, however this can be challenging given the

invasive nature of EMB as well as the sensitivity and speci-

ficity of histopathological evaluation. Other studies have

characterized array-based gene expression changes, in a

cross-sectional manner, during acute allograft rejection. In

this study we have performed the first large-scale longitudi-

nal characterization which shows that a subset of these tran-

scriptional differences are stable and precede the actual

histopathological rejection event in some cases several

months before the acute rejection EMB. As such these rep-

resent novel putative biomarkers for AR, with higher sensi-

tivity than conventional histopathology. The current gold-

standard histological assessment of H&E stains of EMBs is

imperfect due to various factors including intra- and inter-

pathologist variability in histological classification, or

where histological rejection is evident in one EMB for a

given recipient but not evident in additional independent

EMB from the same timepoint. These limitations impact

the sensitivity and specificity and thus the PPV and NPVs

of minimally invasive assays such as donor-derived, cell-

free (dd-cf)-DNA profiling. Rigorous agnostic assessment

and validation of molecular rejection signatures through

RNA profiling will thus create a better histological gold

standard upon which dd-cf-DNA profiling can be compared

against. In a clinical setting, such approaches may ulti-

mately allow for early detection of AR in heart transplant

recipients prior to diagnosis by conventional EMB histopa-

thology, thus allowing for more rapid intervention, limiting

irreversible graft injury and improving overall outcomes.

While evaluation across larger patient cohorts is needed,

we hypothesize that integrating gene expression analysis as

a standard step in the histopathological evaluation of EMBs

will ultimately reduce the number of biopsies needed (i.e.,

if the prognostic signature is negative, the care team may

be able to delay a subsequent biopsy).
The strong concordance observed between histopatho-

logical rejection grade and gene expression profiles may

have significant clinical implications as a method for

molecular characterization of EMBs to improve the diag-

nosis of acute rejection. While the current study repre-

sents the largest collection of EMB RNA-seq profiles

ever assembled, the study is still limited by modest sam-

ple size. Additionally, while the EMBs were adjudicated

by a centralized pathology protocol, differences in stan-

dard of care patient treatment protocols and patient char-

acteristics between the CTOT-03 study sites may

introduce subtle biases. We are currently expanding the

size and diversity of our cohort by including additional

EMB patient datasets across multiple heart transplant

study sites within the International Genetics & Transla-

tional Research in Transplantation Network.36 The larger

cohort size will increase the number of clinically signifi-

cant samples available to generate larger training and

testing datasets. Additionally, while our approach has

shown utility on frozen EMBs, most diagnostic pathology

is currently practiced on formalin-fixed paraffin-embed-

ded (FFPE) specimens. As such ongoing work is focused

on translating these results to FFPE. Along with clinical

translation, a key focus will be on mechanistic study of

genes and molecular pathways identified here in order to

gain a deeper understanding of the biological underpin-

nings of AR, including the coordinated timing of early

and late rejection targets. Follow-up studies planned by

our teams include utilizing a combination of multiomic,

single cell and spatial methods to identify specific cell-

types, cell-cell interactions and pathway regulation that

comprise AR.1,37 Advances in machine learning (ML) of

TCMR grading of EMBs has also advanced rapidly,38

and such agnostic approaches can also be combined with

molecular and conventional histology to improve
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accuracy. The next iterations of these ML algorithms

include AbMR assessment. As these studies have yet to

be attempted at a large-scale in the heart transplant set-

ting, we expect that this will provide a wealth of data

that may inform the development of novel diagnostics

and/or treatments for improving post-transplant survival

rates.

In conclusion, we show that RNA-seq reveals a wealth

of information regarding the molecular effects of AR in

EMBs, most specifically the activation of a multifaceted

immune response involving a wide variety of immune path-

ways. These signals can be used to accurately classify rejec-

tion and nonrejection EMBs and may ultimately be utilized

to inform AR diagnosis. Of note, lower levels of these sig-

nals already exist in nonrejection biopsies that precede AR

diagnosis and can be developed into a highly accurate prog-

nostic classifier that could improve early detection of AR.

While this work represents comprehensive transcriptome

profiling of 125 prospectively collected biopsies from lon-

gitudinal time courses, we expect these efforts will require

additional validation and refinement to facilitate clinical

deployment. As already evident in oncology and other clini-

cal settings, we expect that next-generation sequencing will

soon become an integral tool in transplant biology diagnos-

tic workflows.
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