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Abstract—This work-in-progress paper proposes a design
methodology that addresses the complexity and heterogeneity
of cyber-physical systems (CPS) while simultaneously proving
resilient control logic and security properties. The design method-
ology involves a formal methods-based approach by translating
the complex control logic and security properties of a water
flow CPS into timed automata. Timed automata are a formal
model that describes system behaviors and properties using
mathematics-based logic languages with precision. Due to the
semantics that are used in developing the formal models, verifi-
cation techniques, such as theorem proving and model checking,
are used to mathematically prove the specifications and security
properties of the CPS. This work-in-progress paper aims to
highlight the need for formalizing plant models by creating a
timed automata of the physical portions of the water flow CPS.
Extending the time automata with control logic, network security,
and privacy control processes is investigated. The final model will
be formally verified to prove the design specifications of the water
flow CPS to ensure efficacy and security.

Index Terms—cyber-physical systems, formal methods, safety-
critical systems

I. INTRODUCTION

Recent technological advancements are providing a catalyst
for the Fourth Industrial Revolution, Industry 4.0, by inte-
grating the internet of things (IoT), artificial intelligence, and
smart automation to physical systems. This next evolution is
engineered from the integration of computational embedded
systems and physical components defining them as a cyber-
physical system (CPS) [1]. Examples of CPSs include today’s
automobiles, medical devices, power generation and distribu-
tion systems, building control systems, and robots. Many CPSs
operate in safety-critical or mission-critical settings, and there-
fore, it is important to gain assurance CPSs operate correctly
and are protected against the unauthorised exploitation of its
system from cyber attacks.

However, designing CPSs with high levels of assurance
for proper operation and cybersecurity properties is difficult.
This is due to their use in complex environments — like
smart power grids, fly-by-wire aircraft, and modern vehicles
— and the need for intelligent decision-making — like in
manufacturing processes to ensure zero downtime or au-
tonomous vehicles. The complex environments includes com-
peting control logic and connected networks, which increases
the attack surface causing CPS to become more vulnerable to

cyber attacks. These vulnerabilities can allow an adversary to
cause disruptions with catastrophic consequences, especially
when those CPS are used in safety-critical or mission-critical
settings. The severity of these attacks are evident in the recent
Colonial Pipeline, where operation of one of the nation’s
largest carriers of gasoline and jet fuel was forced to shutdown
[2]. Additionally, these vulnerabilities were highlighted when
the joint Cybersecurity Advisory (CSA) warned of persistent
threat actors (APT) developed custom-made tools to gain
full system access to CPS devices used in industrial control
environments [3]. There is a critical need to verify safety-
critical control properties while simultaneously securing vul-
nerabilities that may lead to cyber attacks. This would prevent
adversaries from disrupting normal operations that negatively
impacting the CPS environment and maintain the efficacy of
safety-critical operations.

The main challenge when designing CPSs is how to verify
safety-critical control properties that are resilient while simul-
taneously securing vulnerabilities that could lead to cyber-
attacks. One method for doing this is to take a formal method-
based approach to establish mathematically provable system
properties. The formal method-based approach translates sys-
tem properties to a mathematical formal model using sets
and sequences that can then be used to verify and analyze
system processes. The formal model is precise, unambiguous,
analyzable, and can be processed by computer programs to
prove properties of the model. When the formal model is
verified, then it follows that the system properties guarantee
proper operation with high levels of security and interoper-
ability. As such, the mathematically proven formal models
instill confidence that the overall system will not violate the
properties and future versions of the system will retain the
properties.

II. CYBER-PHYSICAL SYSTEMS

A cyber-physical system (CPS) is a system that integrates
computational processes with physical components using sen-
sors and network technologies. The intersection of the physical
part (mechanical, chemical, electrical, biological) with com-
puter hardware and software, advanced actuators, and smart
technologies allow the physical part to perceive its changes
and respond to them. In this sense, the CPS contains embedded



computers that enable users to monitor and control the physical
processes through feedback mechanisms or automated control
over network applications.

There are several key characteristics that define CPS sys-
tems [4]. The first distinctive characteristic is embedded and
mobile sensing. This includes sensors and data exchange flows
between embedded systems, which ultimately enables the
interaction of cyber- and physical components. Another key
characteristic is the ability for the CPS to train and adapt
to its environment under its predetermined specifications. If
performed correctly, then automatic control can ensure reliable
and proper operation. Moreover, the CPS ensures system
robustness through intelligent automated control. Finally, the
CPS also contains a common cyberspace to exchange infor-
mation between other systems and its environment, typically
this interoperability is performed through the Internet. The
cyberspace includes information security such as firewalls,
anti-virus, or cryptosystems.

A. Cyber-Physical System Architecture

As mentioned previously, CPS are the intersection of the
physical and the cyber/computations. The CPS architecture
depicting this intersection can be divided into several fun-
damental layers but for the purpose of this research, the
architecture is simplified to three layers: (1) physical layer,
(2) network layer, and (3) application layer [5].

The physical layer includes the main physical infrastructure
with its associated sensors and actuators. In this layer, the
sensors and actuators are connected via wireless sensor or
wired networks where network layer protocols are used for
communication between the physical and network layer. The
devices on this layer have little memory or processing power.

At the network layer, communication networks and proto-
cols are used to deliver and receive data from the physical
layer. The network and protocols depend on the CPS design,
which usually requires a heterogeneity of networks. For ex-
ample, the CPS design may include wireless sensor networks
(WSN), internet protocol suites (TCP/IP), or Modbus protocols
for transmitting information between the physical layer and the
network layer. The heterogeneous networks are interconnected
through gateways. Here, the packets of data are coordinated
through dispatchers or relayed through routers.

The application layer aggregates the CPS environment with
their functionalities and applications. It has the ability to store
information in databases, monitor and make control decisions
that can be visualized through human machine interfaces
(HMI), all through multi-agent systems.

B. Current Vulnerabilities and Attacks on Cyber-Physical Sys-
tems

As a whole, the integration of different devices, networks,
data, protocols in a heterogeneous CPS environment increases
the vulnerabilities due to the increase attack space. The grow-
ing demand for connecting CPS in a complex environment
has led to the use of open standards and network protocols.
Since isolation is not an option for protection and CPS will

have external communication, the use of standard protocols
in design can be exploited by malicious attackers that can
compromise CPS. Fig. 1 shows a diagram of threats and
attacks that can lead a CPS to fail depending on where in
the CPS architecture an attack was successful. For example,
a trojan or virus leading to a software malfunction in the
application layer that using computing tools can ultimately
lead to a compromised CPS since the communication to the
physical layer is no longer available. This was the case when
a successful attack on the application layer of the Colonial
Pipeline occurred, leading to the shutdown of the physical
components.

Fig. 1. A tree diagram for showing how a cyber-physical system failure can
occur due to a successful software malfunction attack in the communication
environment [6].

C. Current Limitations in Modeling and Design Practices

As CPS environments become more complex, so do the
requirements and specifications that are used to interpret
the desired control behavior and security properties. These
requirements and specifications may be expressed in high-level
languages, distributed across multiple artifacts, which limits
the modeling and design process. One of the limits of using
high-level languages for modeling and design practices is that
they cannot be used for mathematical analysis and verification.
This is due to a lack of an authoritative source of truth for
the requirements and specifications, which would enable true
design specifications with requirements that can be readily
analyzed.

Additionally, the requirements and specifications that are
finalized are typically implemented with a human-in-the-loop
effort. This effort is performed in a discretized fashion where



the widely accepted V-model approach is used [7]. The V-
shape process splits the modeling and design into segmented
human-in-the-loop phases. Since these phases for design were
developed in isolation, they have to be integrated to test
functionality and behavior, which further propagates errors
and time spent debugging unverified algorithms, source code,
and models. Employing this method when designing safety-
critical CPS can lead to fatal design flaws as was the case when
Uber’s autonomous vehicle application killed a pedestrian due
to sensor anomalies [8].

III. FORMAL METHODS AND MODELS

Traditional design processes in complex CPS environments
can lead to implementations that fail to satisfy the required
system properties yielding inefficient design cycles, cost over-
runs, and delays [9]. Additionally, the complexity of CPS leads
to an increase in malicious attacks since the attack space
and vulnerabilities grow with heterogeneous environments.
To overcome these limitations, system design properties and
security protocols are translated to languages that are suitable
for formal mathematical analysis and verification through
formal methods-based approaches.

Formal methods-based approaches offer a family of models
and languages to provide a concise way of describing a sys-
tem’s behavior and desired properties as mathematical entities.
The formalized properties are verified by either model check-
ing or theorem proving techniques. Both model checking and
theorem proving require mathematical entities that are formal
definitions of rigorously defined syntax and semantics that can
ultimately reduce ambiguity and imprecise descriptions about
the modelled system. Model checking uses the state-space
dynamics of the system and formally verifies the specifications
that are specified in the formal language of temporal logic.
Theorem proving involves developing a mathematical model
of a given system and using computer-based methods to
formally prove or mathematically reason that the properties
of interest are complete and accurate. Ultimately, by proving
the mathematically rigorous model through model checking
or theorem proving, it is possible to verify the system’s
properties and desired behavior in a more thorough fashion
than empirical testing.

Formal methods-based approaches are typically achieved
following a three step process:

1) Formal Specification: Rigorous definitions of the system
under investigation is undertaken using a formal model-
ing language. The language contains fixed grammars that
represent the complex structures of the model, which
helps define the overall problem, goal, and solution.
The resulting model from the formal specification step
is the desired system expressed in formal mathematical
logic. Examples of mathematical models include finite-
state machines, transition systems, and contract-based
systems.

2) Verification: In this step, a formal proof on the formal
specified model is performed. The formal proof either
proves or disproves the system’s intended behavior,

which is typically achieved through software tools. An
example of verification of a finite-state model is the
method of model checking. In this method, an exhaustive
exploration of the model is performed by checking all
states and transitions given the formal specification. If
the exploration of the model finds that the system does
not satisfy a desired property, then a counter-example is
provided.

3) Implementation: Once the model has been specified and
verified, the formal model and its specifications are
converted into code. The resulting code, as formally
proved, contains the same behavior as the specification
thus completing the implementation step.

Using the approach outlined above, the safety-critical func-
tions and security protocols of CPS environments can be for-
mally modeled. This includes the functional assessment from
abstract models in each layer of the CPS architecture. Each
layer, along with their control logic and security protocols,
can adopt the methodology to be translated into a formal
model. With the formal model, the desired interactions and
behaviors of the CPS are mathematically verified to ensure
proper functionality and security through model checking and
theorem proving.

A. Applications of Formal Methods and Models

Formal methods and models are used in a variety of different
fields and applications including security protocols, hardware
and software development, financial computing, and industrial
processes [10].

Possibly the most successful application of formal methods-
based approaches is the development of the seL4 microkernel;
it is open to the public for use on GitHub [11]. The seL4 mi-
crokernel is an open source, high-assurance, high-performance
operating system microkernel that contains the world’s most
comprehensive proofs of correctness and security. This was
achieved by formal, machine-checked verification, providing
mathematical proof that the kernel implementation is consis-
tent with its specification and free from programmer-induced
implementation defects.

Those who engineered the seL4 microkernel set out to
provide a verified operating system that would be useful in
real world applications. In order to meet their goals, the main
challenge was to integrate the skill sets of operating system
knowledge with the rigorous techniques that are used in formal
verification. The seL4 design was constructed in a manner to
minimize the proof complexity without compromising perfor-
mance. An iterative design approach was used by the engineers
to develop the kernel where a prototype was coded in Haskell
and the formal design was formulated from the mathematical
orientation of the Haskell prototype. Simulations were made
from the formal design and if the kernel was not functioning
properly, then the Haskell prototype was adjusted. Once the
design was complete, the Haskell prototype was translated
into C code, which is the typical implementation method
for operating systems. From the final formal design, proof



methods can be applied to produce the formal specifications
[12].

The formally verified seL4 microkernel was supported by
the Defense Advanced Research Projects Agency (DARPA)
and used for the control of a Boeing Unmanned Little Bird
autonomous helicopter. DARPA invited a red team of hackers
to perform cyber attacks on the system. In the end, the red team
failed to successfully penetrate the system demonstrating that
the CPS (helicopter) was unhackable [13]. The application of
formal methods and models to develop an operating system
can perform its functions while having strong cybersecurity is
evidence that the formal methods approach can be adapted to
CPSs.

Applications of formal methods and models include the
design of robotics CPS. This application formally validated the
safety requirements and control functions for a robot system
using the UPPAAL tool [14]. UPPAAL is a model checking
tool that is employed to ensure consistent behavioral output of
the designed control algorithm [15]. This application sought
out to formally verify the specifications regarding the control
of a manipulator and to formally prove that the user of the
robot can take control if and only if the end-effector is adjusted
to a specified angle. Consistency of required specifications
for the robot system model was done in an iterative method
between a model level and a verification level.

At the model level, the robot system is modeled in the
UPPAAL tool using timed automata, which are finite state
machines that describe the transition between system states
in a directed graph structure. The formal structure of a timed
automata contains several components defined using set theory
that describe the states of the timed automata, the actions that
the timed automata can take along with how states transition,
and clock variables that the timed automata is constrained to.
The robot system is formalized as a network of timed automata
that describe the interactions between the components using
labeled transitions of systems S(A) = ⟨S, s0,→⟩, where S
is a set of states, s0 is the initial state, and → is the set of
relations that can be formalized into clauses for verification in
UPPAAL.

At the verification level, the timed automata resembling the
robot system model is formally verified using the UPPAAL
model checking tool. Simulation of the time automata model
occurs at this level to observe the system behavior and to
verify that the behavior is correct according to the specifica-
tions. The correctness of the time automata model is ensured
through computational tree logic (CTL), which generates a
formal structure of the system that can branch to different
states as time progresses. If a counter-example is found when
attempting to prove correctness of the specifications then the
time automata is reassessed in the model level.

Other formal methods-based approaches include designing
and developing secure cryptographic protocols [16]. This
approach highlighted the critical need for a developing a
crytographic protocol that an adversary could not exploit by
creating a language that would aid in protocol development.
The language was designed so that the developer did not

Fig. 2. A high-level diagram for the how the water flow control system will
be designed.

have to consider how an adversary may attack their protocol.
Instead, the approach sought to formally verify the language
using the Coq theorem prover [17] within a framework built
upon the Strong Preservation Theorem. The resulting frame-
work was called the Secure Protocols Implemented CorrectlY
(SPICY), which guarantees that any protocol in the SPICY
language is safe in an environment without an adversary while
also being safe in an environment with an active adversary. To
this end, the SPICY language enabled developers the ability
to create secure cryptographic protocols, guaranteeing that
reasoning about how an adversary may attack was no longer
required since the language itself was formally verified.

IV. PROPOSED METHODOLOGY AND FUTURE WORK

This work-in-progress paper proposes future work of for-
malizing the system properties for a water flow cyber-physical
system, where the properties include both functional control
logic and security protocols. The physical system is a water
container, shown in Fig. 2, with an inlet pipe at the top and
an outlet pipe at the bottom along with a water level sensor.
At the outlet pipe, there will be a valve equipped with a flow
sensor followed by pump where piping extends itself back to
the inlet valve of the container.

The control and network fabric for the water flow system
will follow the three layers of a CPS. The physical layer that
is to be controlled is the pump and valve at the outlet of
the container. At this layer, there will be a flow sensor on the
valve and a water level sensor for the container. In the network
layer, the control process will be dictated by an arduino that
communicates with the physical layer. The application layer
that communicates to the network layer will be performed
by the University of Pittsburgh’s Cyber Range [18]. The Pitt
Cyber Range is a sandbox environment with virtual machines
that will simulate the application layer where cyber-attacks
will be performed.

All control logic processes and security protocols between
layers will be formally modelled and analyzed as shown in
cyber-physical system shown in Fig. 3. The system properties
will be verified using the appropriate software that is available
for the formal methods-based approach that is chosen. There-
after, the formal model will be translated to the appropriate
language to be deployed on a CPS.

A. Linear Temporal Logic and Automata Formal Models for
Water Flow Cyber-Physical System

This work-in-progress paper will investigate linear temporal
logic (LTL) formulas, which enable formal formulas that can



Fig. 3. Cyber-physical system architecture of a water flow system with
formally verified control and security properties.

express the desired control logic and security properties for the
water flow control system. Such formulas can capture safety
properties, liveliness, and more complex combinations of
Boolean and temporal statements. LTL uses standard Boolean
operators with temporal operators ◦ to denote ‘next’ and U to
denote ‘until’. The syntax of LTL formulas ϕ over a given set
of observations O is defined as:

ϕ = ⊤|o|ϕ1 ∧ ϕ2|¬ϕ| ◦ ϕ|ϕ1Uϕ2 (1)

where ⊤ is constant Boolean true, o ∈ O is an observation
and ϕ, ϕ1, and ϕ2 are LTL formulas. LTL contains temporal
operators to construct more complication expressions:

⋄ϕ := ⊤Uϕ

□ϕ := ¬ ⋄ ¬ϕ
(2)

where ⋄ denotes the temporal operator ‘eventually’ and □
denotes the temporal operator ‘always’. LTL semantics and
satisfaction of formula over a set of observations can be found
in Belta et al. [19].

Applying LTL to the water flow control system, assume
that the flow into the container is defined by B and that the
container level is defined by G. As the container fills, then
the control system must avoid overfilling, which is defined by
D. This simple task can be represented as the following LTL
formula:

ϕ = □ ⋄G ∧□ ⋄B ∧□¬D. (3)

This work-in-progress paper will investigate LTL applications
for CPS and will attempt to integrate LTL formulas in formal
models such as timed automata.

Timed automata will be used as the formal modelling
methodology for both control logic and security control pur-
poses. Timed automata are mathematical models of computa-
tion whose abstraction can be described using LTL formulas.
As an example, the control logic for the pump that fills the
container is modeled with the finite state automaton shown
in Fig. 4. The container level, LC , is assumed to be below
the desired setpoint level, LD, which enables the action
‘flowOn’ of the initial state, s0, to start the pump and reset
the clock variable c := 0. The desired setpoint level has a
deadzone LD1 < Ld < LD2. The pump will remain in the
l0 state while LC < LD2 at some clock time t1. Once the
level of the container is greater than or equal to the desired
state, LD2 ≤ LC , the action ‘flowOff’ turns the pump off
transitioning the pump to the l1 state at some clock time t2.

Fig. 4. Timed automaton for the pump in the water flow control system.

TABLE I
SECURITY AND PRIVACY CONTROL POLICIES WITH THEIR ASSOCIATED

IDENTIFIER.

Control Identifier Control Name
SC-24 Fail in Known State
SI-10 Information Input Validation
SI-15 Information Output Filtering

The pump will remain in this state as long as the level of
the container is greater than the desired level. If the level of
the container goes below the desired setpoint then the action
‘flowOn’ is enabled and the system transitions back to the l0
state at some clock time t4.

The timed automaton model will be amended to include
security and privacy controls found in NIST Special Pub-
lication 800-53, Revision 5 [20]. This publication provides
guidance on how to strengthen the underlying information
systems, component products, and services used in critical
infrastructure through a family of controls. The controls have
unique protection capabilities and objectives according to the
family that the control belongs to such as access control,
system and information integrity, and systems and communica-
tions protection. Each family contains individual security and
privacy control actions that can be carried out by information
systems. Table I lists several control names that this proposed
work plans to formally model along with their identifier that
points to their control family.

The security and privacy controls are selected from the
System and Communication Protection (SC) family and the
System and Information Integrity (SI) family. The SC-24 Fail
in Known State guideline forces a component to fail in a
specified state where this state can be crucial for safety-
critical applications. This control protocol will be simulated to
demonstrate security concerns in the event that an adversary
has caused a failure in the water flow system. The SI-10
Information Input Validation checks the validity of information
inputs for a defined system. This work will implement this
security control in order to enforce acceptable inputs for fields
in the application layer of the water flow system. This will
prevent injection attacks from adversaries while maintaining
correct and accurate inputs from authorized personnel. The SI-
15 Information Output Filtering validates output information
from defined applications. For this work, the output data
displayed in the application layer will be filtered to detect



anomalous behavior that may result from SQL injections.
Finally, this work-in-progress paper will define quantitative

resilient properties for cybersecurity and physical process
control. For cybersecurity, future work will investigate the
minimum effort an adversary will need to find an exploitation
in the system and to reach an undesirable effect. This involves
a measurement of the effort in the formalized model and in
an informal model, which will serve as a baseline. For the
control of the physical process, future work will adopt control
theory techniques to measure the time for the physical process
to return to normal operation when forced into an undesirable
state.

B. Model Checking Formalized Water Flow Cyber-Physical
Systems

Model checkers take a formal model along with its spec-
ification as an input and determines if the model behavior
satisfies the given specification. The formalized water flow
CPS and its specifications will be verified using the UPPAAL
and the PRISM model checker [21]. The UPPAAL model
checker is a sequential model checker tool whereas the PRISM
model checker uses probabilistic methods to verify finite state
machines and their specified properties. Both model checkers
will be used to verify the water flow CPS and compared in
terms of their ability to verify the proposed system using
different semantics to describe the system.

V. SUMMARY

This work-in-progress paper proposes a methodology for
developing and securing cyber-physical systems using timed
automata formal models and linear temporal logic. Future
work seeks to investigate using linear temporal logic with
timed automata as a formalizing methodology. Designing the
water flow control system using linear temporal logic (LTL)
provides a mathematical, proof-based approach to overcome
complex system properties and security protocols. The LTL
language is extended through state-transition diagrams to fully
model the water flow control CPS using timed automata. By
translating the control and communication behaviors of a water
flow control CPS to a formal timed automata model, then the
control logic and security properties can be mathematically
verified to ensure proper system behavior and a cyber secure
environment. The formal model is precise and unambiguous,
formally analyzable, and can be readily processed by computer
programs to mathematically prove the model as was demon-
strated by the seL4 microkernel and robot control examples. To
this end, formal models can be used in the design of complex
CPS environments in order to verify the desired control logic
specifications and security properties.
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