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Abstract 

The Role of Inhibitory Mechanisms and Memory in Influenza Associated Bacterial Super-

infections 

 

Ellyse Margaret Cipolla, PhD. 

 

University of Pittsburgh, 2022 

 

 

 

 

Influenza associated secondary bacterial super-infections have devastating impacts on 

health and result in an increased risk of morbidity and mortality. The current field suggests that 

immunological mechanisms directed against primary influenza infection act to suppress anti-

bacterial mechanisms resulting in a beneficial lung environment for colonization by opportunistic 

pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). Understanding these 

aberrant immune mechanisms can provide insight into immunological pathways which can be 

targeted for prevention of bacterial super-infections. With this in mind I investigated the role that 

immune inhibitory-receptors play in bacterial super-infection.  Previous studies on chronic and 

acute viral infections suggested that programmed death-1 (PD-1), a well-known inhibitory 

receptor, may play a role in weakening the adaptive immune response, in particular the T cell 

response, to viral infection by suppressing proliferation and production of key cytokines related to 

viral clearance. To study PD-1, I performed mouse studies using wild type (WT) and PD-1 global 

knock-out mice infected with influenza followed by a secondary bacterial infection with MRSA. 

I also performed antibody blockade studies in WT mice targeting PD-1 and its ligand Pd-l1. We 

observed a change in expression of other inhibitory markers, suggesting that they may work in 

conjunction with each other and the loss of one may alter the expression of the others.  In 

conjunction with the PD-1 studies, I also developed a project looking at the role of immune 

memory in susceptibility to secondary infections. I found that immune memory to heterotypic 
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influenza strains resulted in a significant decrease in MRSA colonization. Following this 

observation, I studied multiple pathways commonly associated with bacterial super-infections.  

Results from these studies highlighted changes in both the innate and adaptive immune systems 

suggesting a more effective viral response leading to less hindrance of the innate immune system 

and a more effective anti-bacterial response. These studies presented herein highlight two novel 

areas in the field of super-infection. The first being the role that inhibitory pathways play in 

secondary infections, and the second being the importance of understanding how pre-existing 

immunity to pathogens can shape our immune response to secondary infections.   
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1.0 Introduction 

1.1 The immune system, Influenza, and Bacterial Super-infections 

Throughout the years there have been multiple influenza pandemics, with the most famous 

being the 1918-1919 H1N1 outbreak. The 1918 pandemic is one of the most well-known infectious 

disease pandemics because it resulted in the deaths of more than 50 million people. An interesting 

pattern emerged whereby a majority of those who succumbed to influenza infection also had 

secondary bacterial infections, otherwise known as bacterial super-infections1. This synergy 

between virus and bacteria was subsequently seen in the pandemics that followed, including the 

most recent 2009 H1N1 influenza pandemic2. Individuals who are at most risk for influenza- 

associated bacterial super-infections are the young, elderly, and immunocompromised, although 

previously healthy adults were also at risk during the 1918 pandemic. Today secondary bacterial 

infections have been associated with several other viral pathogens, including SARS-CoV-2, which 

is responsible for the ongoing Covid-19 pandemic3. 
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Figure 1.1 The immune response during an Influenza associated secondary bacterial super-infection. A 

bacterial super-infection begins with the initial infection by influenza virus of target epithelial cells (1). Once 

the epithelium is infected, it signals the innate immune system which is characterized by monocytes, 

macrophages, neutrophils, NK cells, and dendritic cells (2). This innate immune response is important not 

only to control the infection at the early stages but, through antigen presenting cells of the innate immune 

system, for stimulating and activating the adaptive immune response (3). The adaptive immune response is 

characterized by CD4+ and CD8+ T cells as well as B cells. As the adaptive immune system is activated in this 

context, it will be heavily skewed toward an anti-viral response, which in turn will hinder the anti-bacterial 

response through various mechanisms. This results in an environment for opportunistic pathogens to thrive 

and the eventual development of a super-infection (4). In the event of a particularly severe infection, an acute 

respiratory distress syndrome (ARDS) can occur (5). Developed with BioRender. 
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1.1.1 Influenza Infection and Pulmonary Immune Response 

Influenza virus is spread via the aerosolization of liquid droplets from an infected 

individual and is primarily acquired via the naso-oropharyngeal route. After initial infection, 

influenza virus disseminates into the airways and lung space where it primarily targets the 

epithelium for sites of replication and life-cycle completion. The epithelium represents the first 

line of defense against the infection and, once targeted, sets off a cascade of immunological events. 

This is marked by the production of signaling molecules, cytokines, that go on to stimulate the 

innate arm of the immune system. This initial cytokine wave is of a pro-inflammatory nature, 

which stimulates defense mechanisms against invading pathogens. Some of the cytokines of 

particular importance during this initial pro-inflammatory response are Cxcl10, IL-6, IL-1 family 

cytokines, IL-12 family cytokines, and the interferon family which includes Type I, II, and III4. 

These signaling molecules recruit and stimulate the innate immune system, which includes 

dendritic cells, neutrophils, NK cells, monocytes, and macrophages5, 6. Following stimulation of 

the innate immune system, antigen presenting cells, such as dendritic cells, traffic to lymph nodes 

where they stimulate cells of the adaptive immune system which include CD4+ and CD8+ T cells, 

and B cells 6. Once the adaptive cells traffic to the infection site, they are the major players in 

clearance of the viral infection6. Following clearance, the immune system then moves towards a 

recovery phase where long-term protection mechanisms against influenza virus, i.e. antibody 

producing B cells and memory T cells, are formed. 
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1.1.2 Bacterial infection and Pulmonary Immune Response 

The lung has several mechanisms to protect against pathogenic invaders, ranging from 

physical barriers to cellular mechanisms of defense. As pathogens, such as bacteria, travel through 

the respiratory system they first encounter a layer of mucus and ciliated cells that act to physically 

impede tissue invasion of foreign substances7. If foreign particles get through this first line of 

defense, the body has several other mechanisms to target foreign invaders. One of these 

mechanisms consist of antimicrobial peptides, which are part of the innate immune defense, and 

which act in several ways to limit pathogenic infection8. As part of the overall system of innate 

immune defense, there are several cell types that defend against bacterial infection. Alveolar 

macrophages play various roles in antimicrobial defense, including the sensing of pathogens via 

pattern recognition receptors, as well as bacterial phagocytosis9, 10. Neutrophils represent another 

layer of the innate immune defense against bacterial infection. Neutrophils are readily recruited to 

the sight of infection within the lung and their major role is the phagocytosis of invading 

pathogens11. The innate immune system represents only one layer of defense that the host has 

against invading pathogens. The adaptive immune system also plays a critical role in host defense 

in the lung during bacterial infections. In particular, Th17 cells and their respective signaling 

molecules have been implicated in this antibacterial defense due to their role in recruitment of 

phagocytic cells12, 13. All of these immune responses are key to protecting the lungs against 

microbial pathogens. 
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1.1.3 Synergy of Aberrant Immune Mechanisms: How Influenza-associated Bacterial 

Super-infections Form 

When the influenza virus infects a host, the host immune response is focused on eliminating 

infected cells, which is primarily driven by phagocytes and their cytolytic products. During this 

time the host becomes susceptible to super-infection due to reduced accumulation of macrophages, 

impaired neutrophils, immune cell death, and tissue damage due to inflammation, all of which 

creates a favorable environment for bacterial colonization (Fig. 1.1) 2, 14, 15, 16. Super-infection is 

established via a dysregulation in the immune system resulting from the synergy of bacterial 

factors (i.e. LPS and staphylococcal enterotoxin B) and viral infection2, 17, 18. During influenza 

infection both viral and host factors are associated with increased super-infection susceptibility2. 

One hypothesis focuses on the targeting and destruction of the main host sites of bacterial 

colonization, i.e. epithelial cells, by the influenza virus, leading to increased bacterial 

colonization19, 20, 21, 22. Other studies have looked at the role of viral neuraminidase, an enzyme on 

the surface of the virus required for replication that cleaves sialic acid, which disrupts the 

epithelium, allowing bacterial adherence23, 24.  

 

Susceptibility to influenza associated bacterial super-infections is driven by competing 

immune responses that nurture an environment suitable for opportunistic pathogens. The two most 

common opportunistic pathogens that have been found to be associated with influenza infections 

are Staphylococcus aureus including methicillin resistant strains, and Streptococcus pneumoniae.  

One of the prevailing hypotheses regarding susceptibility to bacterial super-infections is the idea 

that the anti-viral immune mechanisms hinder subsequent bacterial immune mechanisms.  
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Interferon pathways have been extensively studied for their role in bacterial super-

infection. Infection with S. pneumoniae followed by an influenza infection has been shown to lead 

to an increase in Type I interferon production which subsequently leads to a reduction in CCL2 

production and phagocytic cell recruitment, resulting in increased bacterial burden25. Another 

study on Type I interferons showed that knocking out the IFNα/β receptor (IFNAR1) in mice led 

to a better antibacterial response, which was also attributed to a reduction in phagocytic 

recruitment26. Type I interferons are not the only members of the interferon family that have been 

implicated in diseases pathogenesis. Type II interferon (IFN-γ) has also been implicated in 

increased susceptibility to bacterial super-infections due to its role in the downregulation of the 

scavenger receptor MARCO, which results in the inhibition of macrophage phagocytic function27. 

Lastly, levels of Type III interferon (IFN-λ) have been shown to be positively correlated with 

bacterial burden, potentially via inhibition of bacterial uptake by phagocytic cells28, 29. In addition 

to the interferon pathways acting in a deleterious way, there is also evidence that Toll-like receptor 

(TLR) pathways are altered following influenza exposure resulting in a reduction in phagocytic 

cell recruitment and subsequent bacterial clearance 30, 31. Alterations in phagocytic cells during 

super-infection are likely not limited to what is discussed here and this remains an area of interest 

for researchers studying bacterial super-infections. 

Phagocytic cells are not the only cell types that become impaired following influenza 

challenge. The impaired production of the cytokine TNF-α by natural killer (NK) cells following 

influenza virus challenge was shown to result in an impaired antibacterial defense32. Cells 

associated with the Type 17 pathway play a pivotal role in bacterial defense and promotion of 

bacterial clearance via their role in recruitment of phagocytic cells such as neutrophils. Studies in 

mice have shown that following an influenza virus challenge, the production of type 17 cytokines, 
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IL-23, IL-22, and IL-17, are suppressed via impairment of IFN signaling through the STAT1 

transcription factor, leading to bacterial outgrowth and promotion of a bacterial superinfection in 

the lung33, 34. Several reviews have detailed the numerous other susceptibility mechanisms 

associated with bacterial super-infection14, 31, 35, 36. Each of these mechanisms aids in creating an 

environment that is beneficial for bacterial colonization (Fig. 1 2).  

 

 

Figure 1.2. Dysregulation of anti-bacterial immune mechanisms by a preceeding influenza infection.  

 

An ideal environment for MRSA resolution is characterized by phagocytic cells, such as 

neutrophils, monocytes, and macrophages, that engulf bacterial species leading to the resolution 

of the infection. Immune responses to preceding influenza infections result in dysregulation of the 

phagocytic component of the immune system and the eventual establishment of a super-infection. 

Developed with BioRender. 
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1.2 Inhibitory Mechanisms 

Mounting an effective immune response is key to defending the host against external 

stimuli, such as pathogens. An effective immune response is characterized by a cascade of 

immunological events that target the area of infection. If left unchecked, this targeted response can 

cause detrimental off-target effects to the infected area in some cases results in immunopathology. 

Due to this the immune system has developed mechanisms that act as brakes on the immune 

response in order to weaken the response and eventually return the host to a state of homeostasis37. 

Several mechanisms are involved in immune regulation, including cellular mechanisms, most 

notably an immunosuppressive sub-population of CD4+ T cells, the regulatory T cells (Tregs)38. 

In addition to cellular mechanisms of immunosuppression there are co-stimulatory and inhibitory 

receptors, which are expressed on various cell types and have diverse modes of action to shut down 

immune cell responses.  

The most well-known inhibitory receptor (or checkpoint receptor) is the programmed 

death-1 (PD-1) receptor, which is found on both adaptive and innate immune cells39, 40. The 

checkpoint receptor PD-1 contains immunoreceptor tyrosine-inhibitory motifs and switch motifs 

within its cytoplasmic tail, which play a key role in its interaction with signaling molecules 

downstream of the T cell receptor (TCR)39. Signaling through PD-1 is diverse and context 

dependent meaning that in some cases it can have stimulatory effects, such as during initial T cell 

stimulation, and in others it can have inhibitory effects, such as during chronic stimulation39. 

Following the discovery of PD-1, several other inhibitory receptors were discovered including T-

cell immunoglobulin and mucin-domain containing-3 (Tim-3), lymphocyte-activation protein 3 

(Lag3), and natural killer cell receptor 2B4. Since the discovery of immune checkpoint receptors, 

researchers have sought to target these pathways for the development of novel immunotherapeutics 
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for the treatment of several diseases from cancers to chronic viral infections and autoimmune 

diseases41, 42, 43. Many of these therapeutics targeting inhibitory pathways are in clinical use today. 

Examples of antibody therapies targeting inhibitory pathways that are in clinical use today are 

pembrolizumab and nivolumab for Pd-1 and ipilimumab for CTLA-4.  These therapies have been 

shown to be effective treatments for several cancers including melanoma44, 45.  

1.2.1 Inhibitory Mechanisms and Viral Infections 

The roles of inhibitory mechanisms during both chronic and acute viral infections have 

been extensively studied. Studies in chronic viral infection models have shown that CD8+ T cells 

become functionally impaired over time, which was found to be in part due to the PD-1 pathway46, 

47, 48, 49. As PD-1 was being implicated in multiple chronic infections, researchers then became 

interested in studying its role during acute infections due to the observation that upon T cell 

activation, PD-1 is readily upregulated on the cell surface39, 50. This is of particular interest because 

during acute infections effector cells are extremely important in defense and clearance. Studies on 

the acute Armstrong strain of lymphocytic choriomeningitis virus (LCMV), found that targeting 

the PD-1 pathway early on led to enhanced CD8+ T cell effector function, resulting in better 

clearance50. This pattern of inhibition of effector cell function and proliferation by the PD-1 

pathway was subsequently found in numerous other acute viral infections51, 52, 53. Studies on the 

role of the PD-1/PD-L1 axis in influenza virus infections have corroborated previous findings that 

suggest PD-1 acts to limit the CD8+ T cell response during the effector phase, which when targeted 

leads to a quicker immunological response following viral infection54, 55, 56. Another study looked 

further at impairment of CD8+ T cells during influenza infection by researching the critical role 

that PD-1 plays in regulating the effector to memory cell transition57. The observations seen in this 
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study were found to be dependent on timing of PD-1 blockade relative to infection, where the 

memory compartment is hindered if PD-1 is knocked out from early effector stage and sustained 

through the recovery and memory formation stage57. The role of inhibitory effectors during acute 

viral infections continues to be studied, with the most recent evidence gained from Covid-19 

pandemic patient samples58, 59. T cells were reportedly reduced in these studies and researchers 

observed an exhausted phenotype correlated with expression of PD-1, PD-L1, and Tim-3 on the 

surface of immune cells. Although several studies have determined that targeting PD-1 can 

enhance the immune response to disease, it is important to note that this can lead to a highly 

inflamed state and possible off-target immunopathological effects60.  

1.2.2 Inhibitory Mechanisms and Bacterial Infections 

Inhibitory mechanisms have become an emerging area of interest for researchers studying 

how the immune system is weakened in response to persistent bacterial infections. Studies on 

Helicobactor pylori suggest that the PD-1 pathway plays a role in T cell dysfunction that is 

commonly seen in chronic infections61, 62, 63. Interestingly, targeting the PD-1 pathway during 

Mycobacterium tuberculosis infection resulted in a magnification of the bacterial infection and a 

reduction in infiltrating immune cells resulting in worse infectious outcomes which researchers 

linked to CD4+ T cells64, 65, 66. Several studies on sepsis and another study on acute liver injury, 

showed that the PD-1 pathway plays a role in weakening the immune responses of several immune 

cell types including macrophages, monocytes, and Kupffer cells, making them less able to defend 

against bacteria67, 68, 69, 70, 71. Although several studies regarding the role of inhibitory mechanisms 

during bacterial infections were highlighted here there is still much that remains to be elucidated. 

The studies mentioned above regarding the effects of PD-1 effect on myeloid cell responses during 



 

 11 

bacterial infections provides rationale for studying this pathway in the context of bacterial super-

infections, which are characterized by a dampened bacterial response.   

1.3 Immune Memory 

Following a primary immune response targeted against a pathogen, the immune system 

enters a recovery phase that eventually leads to homeostasis within the previously infected space. 

In order to return to homeostasis, the immune system must shut down its inflammatory response, 

accomplished in part by a contraction in the majority of immune cells and the retention of a small 

amount that will go on to form the memory compartment. Memory lymphocytes are essential 

during re-infection from the original pathogen because of its ability to respond and mobilize 

quickly assisting in the efficient neutralization of the pathogen. Both the innate and adaptive 

immune systems can form a memory compartment. 

1.3.1 Innate Immune Memory or Trained Immunity in Infection 

Innate immune memory, or trained immunity, is the ability of the innate immune system 

to recognize and react against various pathogens without necessarily coming in contact with the 

pathogen previously72, 73.  The innate cells that have been observed to gain memory characteristics 

are macrophages, monocytes, NK cells, and innate lymphoid cells. There have been several studies 

to date looking at the induction of trained immunity in mouse models. In these studies, it has been 

shown that both bacterial ligands as well as cytokines can induce trained immunity against 

bacterial species with no prior exposure72, 74, 75, 76. As researchers began to discover that the innate 
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immune compartment was able to form memory, several studies have looked further at innate 

immune memory at the level of individual innate immune cell subsets. Memory or memory-like 

NK cells have been found in numerous disease models. In murine cytomegalovirus (MCMV), it 

has been reported that a small subset of NK cells that express the receptor Ly49H act similarly to 

CD8+ memory T cells, meaning that they are able to respond and proliferate more quickly upon 

re-challenge77, 78. Additional support for NK cell memory was found in several viral disease studies 

from Epstein-Barr Virus (EBV), as well as human and simian immunodeficiency viruses (HIV and 

SIV) which have been highlighted extensively in detail in review articles79, 80. Macrophages have 

also been shown to develop memory-like phenotypes upon re-exposure to a pathogen. In a mouse 

model of recurrent S. aureus infection, investigators determined that experienced macrophages at 

the site of infection are able to mobilize and respond more quickly against re-challenge81. Although 

there are several studies demonstrating innate memory, this area still remains much less understood 

than its adaptive counterpart. 

1.3.2 Adaptive Immune Memory and its Role in Influenza Infection 

The adaptive immune memory compartment is composed of long-lived, antigen-

experienced, T and B cells that have undergone phenotypic and genotypic changes distinct from 

their naïve and effector counterparts that make them better able to defend against a pathogen upon 

re-challenge72, 82, 83. Both CD4+ and CD8+ T cells can form a memory compartment. The role of 

memory T cells in influenza has been extensively studied due to the role they play in protecting 

against heterotypic influenza strains, which makes them potential candidates for targeting and 

development of universal vaccines84, 85. Once the memory T cell compartment is formed it can be 

further segmented into either tissue-resident memory (Trm), central memory (Tcm), or effector 
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memory (Tem) which are classified based on location and, phenotypically, by surface marker 

expression86. Although each of the memory cell subsets plays essential protective functions, Trm 

cells are of particular importance because of their unique ability to thrive in mucosal tissues and 

act as first responders upon re-challenge. The importance of Trm cells is particularly evident in 

pulmonary diseases such as influenza. Research on influenza and heterotypic immunity in mouse 

models determined that Trm cells are essential for defense and protection against multiple 

influenza strains87, 88. In a mouse model of bacterial pneumonia, CD4+ Trm have been shown to 

play a role in remodeling cells of the lung epithelium leading to a quicker and more robust innate 

immune response upon re-challenge89. Interestingly, lung Trm cells, in particular CD8+ Trm, do 

not persist over long periods of time. This observation is believed to be due to several mechanisms 

ranging from changes in the environmental milieu of cytokines which could lead to the stimulation 

of apoptotic pathways90, 91. The role of immune memory in susceptibility to influenza-associated 

bacterial super-infections is a new frontier for understanding how acute respiratory infections can 

drive changes in the lungs that reinforce protective mechanisms which are stimulated upon re-

challenge events and which can act to lessen the damage incurred by the lung during infection.  
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2.0 The role of the Inhibitory Receptor PD-1 in Susceptibility to Influenza Associated 

Secondary Bacterial Infections. 

2.1 Summary 

T cell inhibitory pathways have been carried out in many diseases, including cancer, 

chronic infections, and most recently acute infections. Most studies have focused on interfering 

with T cell inhibitory pathways to re-invigorate the immune response during immune challenge, 

which is called checkpoint blockade. The targeting of inhibitory T cell mechanisms during 

influenza infection represents a potentially new area of therapeutic treatment. A common 

complication of influenza infection is the development of a bacterial super-infection. Given the 

suppression of antibacterial immune responses during super-infection, targeting of inhibitory 

mechanisms is attractive. As of yet, there is no published research reporting the use of checkpoint 

inhibitor blockade in influenza associated bacterial super-infection. With the emergence of 

antibiotic resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), 

treating super-infections remains an ongoing area of concern. In this study we show that influenza 

drives the expression of inhibitory molecules on both myeloid and adaptive immune cells in the 

lung of infected mice. Using PD-1 KO mice as well as antibody blockade of PD-1 we determined 

that blocking the PD-1 pathway resulted in no change in susceptibility to super-infection in terms 

of bacterial burden and weight loss. However, there were significant changes observed at the 

cellular level in our treatment groups. These findings provide more insight into the role of 

inhibitory molecules, in particular PD-1, during acute infections.  
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2.2 Introduction 

One of the major scientific insights in the field of influenza-associated bacterial super-

infections is that impaired immune cellular responses drive susceptibility. There have been many 

studies on the role of interferons (IFNs) in promoting susceptibility to secondary bacterial 

infections in mouse models92, 93, 94. Type I interferon production and suppression of type 17 

immunity have been implicated in increased susceptibility to bacterial super-infection33, 92, 95, 96. 

When production of type 17 effector molecules by both CD4+ T cells and  T cells is diminished, 

there is altered neutrophil recruitment to the site of infection, resulting in higher bacterial burdens 

in super-infected animals. Studies in other murine super-infection models have shown that 

influenza infection reduces the number of CD8+ T cells that respond to bacterial lung infection, as 

well as rendering CD4+ T cells ineffective, leading to impaired antibacterial immunity31, 97, 98. 

When IFN- production from T cells is ablated during influenza infection, bacterial clearance is 

improved in some mouse models, due to increased macrophage activity27, 92, 93, 94.   

There are currently two main strategies to alleviate bacterial super-infections; one is to 

directly target the virus through therapeutics and vaccines, and the second is to treat the bacterial 

infection with antibiotics. Prevention of influenza spread has been mainly attributed to 

implementation of vaccination strategies. However, due to its high mutation rate, new strains of 

influenza virus emerge yearly, resulting in the yearly development of new vaccine variants with 

varying efficacies against circulating strians99, 100. Antivirals have also been developed, however, 

unless administered early during infection and symptom onset they are considered ineffective101. 

Current treatments for super-infection rely on early administration of antibiotics. Even with the 

advent of new antibiotics and newly developed vaccines against pneumococci bacterial strains19, 
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102, the continued presence of influenza- associated bacterial super-infections highlights the need 

for better strategies and therapeutics to combat infection, especially with the emergence of new 

antibiotic-resistant strains of Staphylococcus aureus like MRSA103.      

Immune-checkpoint blockade is an emerging approach for the treatment of chronic and 

acute infections. During an immune response, co-stimulatory and co-inhibitory receptors are 

upregulated on T cells, collectively referred to as checkpoint receptors104. When T cells are 

chronically stimulated by antigen they are driven into a state of impairment to protect the organism 

against immunopathology105. This state is characterized by high and prolonged expression of 

multiple inhibitory receptors, and gradual loss of effector function in the form of decreased 

proliferation and effector molecule production104, 105. This results in the delay or failure to 

eliminate pathogen105. Studies have uncovered multiple inhibitory receptors that are upregulated 

on exhausted T cells, including but not limited to T-cell immunoglobulin and mucin-domain 

containing-3 (Tim-3), lymphocyte-activation gene 3 (Lag3), natural killer cell receptor 2B4 (2B4), 

and the well-studied PD-113. Immune-checkpoint blockade, currently a therapeutic approach for 

cancer treatment, is the targeting of inhibitory pathways to reverse exhaustion. This is 

predominantly accomplished with in vivo administration of antibodies that block inhibitory 

receptor ligand pairs, leading to increased T cell proliferation and effector function46, 105, 106.  

T cell impairment has been demonstrated in chronic viral infection models where T cells 

failed to proliferate and produce effector molecules to control infection46, 107, 108. When exhaustion 

pathways like the PD- 1/PD-L1 axis are blocked, T cell functionality improves, leading to better 

viral clearance46, 107. T cell impairment has also been documented during acute infections. 

However, studies on checkpoint receptors in acute infections have been controversial, showing 
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both beneficial and detrimental effects, depending on the study. In one study on acute Friend 

retrovirus, it was shown that CD8+ T cells upregulate PD-1 but retain functionality and aid in viral 

clearance109. Studies on human metapneumovirus (HMPV) and influenza virus, both common 

causes of acute respiratory infections, have shown that during infection, PD-1 and PD-L1 are 

upregulated on CD8+ T cells at the site of infection56. Blockade of this axis during infection 

resulted in improved viral clearance by day five in an HMPV model56. This study also showed that 

when mice are challenged with influenza PR8 (H1N1), by day fourteen influenza specific cells are 

impaired56. When PD-1 was knocked out and mice are challenged with X31 (H3N2) there are more 

influenza specific cells and these cells produce more IFN-, and CD107a56. This study also 

characterized the expression of PD-1 by lymphocytes and PD-L1 by alveolar epithelial cells in 

human lung autopsy samples from the 2009 influenza pandemic, and found a role for this pathway 

during acute infection in humans56. Another study on the role of PD-L1 during influenza infection 

showed that blockade of PD-L1, which is expressed by the airway epithelium and regulated by 

type I interferon receptor signaling, improved CD8+ T cell function, characterized by increased 

expression of IFN-, CD107a, and granzyme B by day three in a re-challenge model, resulting in 

increased viral clearance by day five110. During respiratory viral reinfection with HMPV, PD-1 

was the dominant inhibitory receptor upregulated early during re-challenge54. After PD-1 was 

blocked, CD8+ T cell functionality improved, resulting in restored function and improved viral 

clearance in this mouse model54. The authors recapitulated this finding during reinfection using 

influenza virus, showing that more functional influenza specific cells are found at day seven in 

PD-1 KO mice54.  

Cellular impairment of immune cells is a well-known factor that enhances susceptibility to 

bacterial super-infections. As mentioned above, the impairment of T cells during infection has 
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been associated with disease progression in various models of infection. Merging these two ideas 

provides rationale for studying impairment pathways, such as the PD-1 pathway, during acute 

bacterial super-infections. Currently, there has been little research conducted on the role of T cell 

impairment in influenza associated bacterial super-infections,  

2.3 Materials and Methods 

2.3.1 Mouse Model and Sample Collection 

PD-1 global KO mice were a generous gift from Dr. John Williams, and Wild-type 

C57BL/6 mice were purchased from Taconic Biosciences (Germantown, NY). Mice were housed 

in the BSL2 facility at Rangos Research Center (Pittsburgh, PA). On day zero male mice were 

infected with 100 pfu of mouse adapted influenza A/PR/8/34 H1N1 or PBS vehicle. After 6 days 

the mice were challenged with 5x107 colony forming units (cfu) of USA300 MRSA suspended in 

PBS. On day 7 mice were euthanized and harvested. All infections were given via oropharyngeal 

aspiration. Mice were euthanized via pentobarbital injection followed by exsanguination by 

severing the renal artery. No mice died prior to euthanasia. All studies were performed on sex-

matched mice. All animal studies were conducted with approval from the University of Pittsburgh 

Institutional Animal Care and Use Committee. 
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2.3.2 Murine Infections and Pathogen Preparation 

All mice were anesthetized using inhaled isoflurane and were infected via oropharyngeal 

aspiration (OA). Methicillin-resistant Staphylococcus aureus (MRSA) USA300 was grown 

overnight in a S. aureus-specific media using an orbital shaker set at 37• C until the next morning 

at which point stationary phase was reached. Media sterility was ensured with a blank broth control 

tube added at the same time as MRSA incubation. Following incubation, the optical density of 

MRSA was measured at 660 nm and multiplied by the previously calculated coefficient of 

extinction, 1.48x109, to get colony forming units (CFU).  Once this number was calculated it was 

divided by 5x107 to get the dose information per mouse. The culture was then centrifuged at 

10,000×g for five minutes, broth was aspirated, and the cell pellet was resuspended in PBS to 

ensure delivery of 50uLs per mouse. For influenza preparation, frozen stocks of Influenza H1N1 

A/PR/8/34 were diluted in PBS to doses between 1:10 and 1:20, to deliver 50 μLs of virus per 

mouse resulting in a reduction of about 15-20% of body weight by harvest day 7.  

2.3.3 Antibody blockade 

Wild-type C57BL/6 mice were given either 200ug of Pd-l1(B7-H1) (clone: 10F.9G2) or 

its corresponding isotype rat IgG2b (clone: LTF-2) or they were given PD-1 (CD279) (clone: 

29F.1A12) or is corresponding isotype rat IgG2a (clone: 2A3) antibodies from BioXCell 

(Lebanon, NH). Injections were given on days 1, 3 and 5 following initial influenza infection on 

day 0. 
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2.3.4 Bacterial Plating  

Right upper lung lobes from mice were collected and homogenized in 1ml of PBS. After 

homogenization, 10-fold dilutions were dot plated on culture plates. Plates were then incubated at 

37o Celsius overnight, and cfu was assessed by bacterial colony counting. 

2.3.5 Bronchoalveolar Lavage Fluid Collection and Differential Cell Counting 

Upon harvest, mice were cannulated and lavaged with 1ml of PBS for bronchoalveolar 

lavage fluid (BALF) collection. BALF was spun down and pelleted and supernatant was collected 

and stored for downstream analysis. Pelleted cells were treated with ACK lysing buffer (Gibco 

Fisher Scientific, Hampton, NH) to remove red blood cells. The cell pellet was then resuspended 

in 500μl of PBS and total cell count was determined by hemocytometer. 200μLs of resuspended 

cells were then concentrated on a microscope slide using a cytocentrifuge (ThermoFisher 

Scientific, Waltham, MA) and stained with Diff-Quik staining solution (Fisher Scientific, 

Hampton, NH) to determine monocyte, neutrophil, eosinophil, and lymphocyte counts. 

2.3.6 RNA Extraction and qPCR 

Mouse lungs were isolated and snap-frozen in liquid nitrogen or suspended in Allprotect 

Tissue Reagent (Qiagen, Hilden, Germany). RNA was extracted as directed using the Qiagen 

Rneasy Mini Kit (Qiagen, Hilden, Germany). cDNA was synthesized using the iScript cDNA 

synthesis kit (Bio-Rad, Hercules, CA).  qPCR was conducted using SsoAdvanced universal probes 

supermix (Bio-Rad, Hercules, CA) and target specific TaqMan real-time PCR assay primer probes 
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(ThermoFisher Scientific, Waltham, MA).  Viral burden was determined by quantitative real-time 

RT-PCR on lung RNA for viral matrix protein (M1) as described previously 111, 112. Forward 

Primer:5′-GGACTGCAGCGTAGACGCTT-3′, Reverse Primer:5′-

CATCCTGTTGTATATGAGGCCCAT-3′,Probe:5′-/56-

FAM/CTCAGTTAT/ZEN/TCTGCTGGTGCACTTGCCA/3IABkFQ/−3′. 

2.3.7 Protein Assays and Lincoplex 

The PierceTM BCA protein assay kit (ThermoFisher Scientific, Waltham, MA) was used as 

directed to determine protein levels in BALF. Cytokine production was measured in lung 

homogenates via Bioplex using the Luminex™ Magpix™ multiplexing platform with the Bio-

Plex Pro Mouse Cytokine 23-plex assay (Bio-Rad, Hercules, CA) as directed. Mouse lung 

homogenates were used to determine IgM protein using an IgM uncoated ELISA kit as directed 

(Invitrogen-ThermoFisher Scientific, Waltham, MA). 

2.3.8 Flow Cytometry  

Mouse lungs were aseptically dissected using sterile scissors. Lungs were then digested for 

an hour at 37o Celsius in 1mg/ml collagenase media (DMEM Gibco Fisher Scientific, Hampton, 

NH). After an hour, lungs were mashed through 70 micron filters to obtain a single cell suspension. 

The single cell suspension was treated with ACK lysing buffer (Gibco Fisher Scientific, Hampton, 

NH) to remove red blood cells. After red blood cell lysis, cells were resuspended in PBS. Single 

cell suspensions were stained as follows for spectral flow cytometry analysis. For the T cell panel, 

cells were stained with anti-CD45 (30-F11, BD OptiBuild, Franklin Lakes, NJ), CD90.2 (30-H12, 



 

 22 

BD OptiBuild, Franklin Lakes, NJ ), FoxP3 (MF-14, BioLegend, San Diego, Ca), Cd4 (RM4-5, 

BD Biosciences, Franklin Lakes, NJ), Tbet (4B10, BioLegend, San Diego, Ca ), Il-10 (JES5-16E3, 

BD Biosciences, Franklin Lakes, NJ), Gata3 (L50-823, BD Biosciences, Franklin Lakes, NJ), Lag3 

(C9B7W,  BioLegend, San Diego, Ca ), Cd8a (53-6.7, BD Biosciences, Franklin Lakes, NJ),Il-

17a (TC11-18H10.1, BioLegend, San Diego, Ca ), Cd44(IM7, BioLegend, San Diego, Ca ), Rorγt 

(Q31-378, BD Biosciences, Franklin Lakes, NJ ), PD-1 (RMP1-30, BioLegend, San Diego, Ca), 

Cd244.2(m2B4(B6)458.1,BioLegend, San Diego, CA), Tim3 (B8.2C12,BioLegend, San Diego, 

CA), Cd11b (M1/70, Invitrogen-ThermoFisher Scientific, Waltham, MA), Cd11c (N418, 

BioLegend, San Diego, Ca), and IFNγ (XMG1.2, BD Biosciences, Franklin Lakes, NJ). NP366 

tetramers were obtained from the NIH tetramer core facility (Bethesda, MD) and were stained at 

37o Celsius for 30 minutes prior to viability stain. For the myeloid panel, cells were stained with 

anti-CD45 (30-F11,Invitrogen-ThermoFisher Scientific, Waltham, MA), Pd-l2 

(TY25,BioLegend,San Diego, CA), F4/80 (T45-2342,BD Biosciences, Franklin Lakes, NJ), 

Cd64a/b (X54-5/7.1,BD Biosciences, Franklin Lakes, NJ), Pd-l1 (10F.9G2,BioLegend, San 

Diego, CA), Cd103 (2E7,Invitrogen-ThermoFisher Scientific ,Waltham, MA), Ly6c 

(HK1.4,BioLegend, San Diego, CA), Cd11b (M1/70,BD Biosciences, Franklin Lakes, NJ), MHC-

II (M5/114.15.2,BD Biosciences, Franklin Lakes, NJ), B220 (RA3-6B2,Invitrogen-ThermoFisher 

Scientific , Waltham, MA), Tcrb (H57-597,BioLegend, San Diego, CA), SiglecF 

(1RNM44N,Invitrogen-ThermoFisher Scientific, Waltham, MA), Cd24 (M1/69,BioLegend, San 

Diego, CA), PD-1 (RMP1-30,BioLegend, San Diego, CA), Cd244.2 (m2B4(B6)458.1,BioLegend, 

San Diego, CA), Nk1.1 (PK136,BioLegend, San Diego, CA), Cd11c (N418,Invitrogen-

ThermoFisher Scientific. Waltham, MA), and Tim3 (B8.2C12,BioLegend, San Diego, CA). The 

viability dye, Zombie NIR (BioLegend, San Diego, CA), was used to exclude live cells from dead 
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cells in both panels. Our mastermix for cell staining contained Super Bright Complete Staining 

Buffer (ThermoFisher Scientific, Waltham, MA) as well as True-Stain Monocyte Blocker 

(BioLegend, San Diego, CA) for the myeloid panel. Intracellular staining was performed at room 

temperature using the eBioscience™ Foxp3/Transcription Factor Staining Buffer Set 

(ThermoFisher Scientific, Waltham, MA) as directed by the manufacturer. All samples were run 

on the Cytek Aurora (Cytek Biosciences, Fremont, CA). Flow cytometric analysis was performed 

using FlowJo (TreeSTAR) software. 

2.3.9 Statistical Analysis 

Data were analyzed using GraphPad Prism software (San Diego, CA). Experiments were 

repeated 3-6 times as indicated. All data are presented as mean ± SEM, unless otherwise noted. 

Mann-Whitney test or one-way ANOVA followed by multiple comparisons were used for 

statistical significance with a p value of equal or less than 0.05. 

2.4 Results 

2.4.1 WT super-infected mice display elevated levels of cells expressing PD-1. 

To determine if the PD-1 pathway was being stimulated during super-infection, we used 

flow cytometry to probe for cells that expressed PD-1 from infected mouse lungs. First, we 

determined the percentage of T cells that expressed PD-1. We found that there was an increase in 

the number (?; proportion?) of PD-1 expressing CD4+ and CD8+ T cells in influenza and super-
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infected mouse lungs, and a significant decrease in PD-1 expressing T cells in MRSA alone 

infected mouse lungs (Fig. 2.1a). Next, we assessed the presence of PD-1 expressing cells in the 

myeloid compartment. There was an increase in PD-1 expressing exudative macrophages in super-

infected lungs which was similar in the influenza alone treatment (Fig. 2.1b). When we looked at 

inducible monocytes and neutrophils, we found that there was a decrease in cells that expressed 

PD-1 in the MRSA alone and super-infected groups, which was not the case for the group infected 

with influenza alone, which displayed an increase in these cells (Fig. 2.1b). These data suggest 

that PD-1 expression is stimulated in response to influenza and could potentially play a role during 

influenza associated bacterial super-infections.  
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Figure 2.1 PD-1 is expressed on multiple cell types in influenza and super-infection and the percentage of PD-

1+ cells increases upon influenza infection. 

 

Lungs from infected WT C57Bl/6 mice were collected and processed for multidimensional 

flow cytometric analysis. Dead cells were excluded from all analyses prior to downstream gating. 

A) T cells were gated via CD45+CD90.2+ and further broken down into percent of CD4+ and CD8+ 

(N=4). B) Myeloid cells were first gated using CD45 followed by CD11b and Cd11c and further 

gated into specific subsets based on major surface marker expression. Gating strategies can be 

found in Appendix fig. A.1.1 and A.2.3 which shows the T cell and myeloid strategy respectively. 

p values: *<0.05, **<0.01, ***<0.001, ****<0.0001.  
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2.4.2 Absence of PD-1 has a limited effect on super-infection susceptibility. 

Due to the increase in immune cells that expressed PD-1 following super-infection, we 

used global PD-1 KO mice to determine if the pathway plays a role in secondary infection 

susceptibility (Appendix Fig. A.1.2).  Super-infected PD-1 KO mice and their WT counterparts 

displayed similar reductions in weight loss following secondary MRSA challenge (Fig. 2.2a). 

MRSA burden as well as PR8 gene expression remained unchanged between the PD-1KO and WT 

MRSA alone and super-infected groups (Fig. 2.2b and c). We further confirmed these results with 

an antibody blockade against PD-1 in WT mice that were MRSA alone or super-infected 

(Appendix Fig. A.1.2b, Fig 2.2d and e). When we targeted one of the ligands, PD-L1, associated 

with PD-1 signaling we again saw no change in weight loss or MRSA burden, however, there was 

a significant increase in expression of PR8 in anti-PD-L1 treated super-infected mice (Appendix 

Fig A.1.3a). These results together suggest that PD-1 plays a limited role in susceptibility to super-

infection, when taking only MRSA burden and weight loss into account. 
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Figure 2.2 Global PD-1 KO mice and PD-1 antibody blockade has little effect on weight loss, MRSA burden, 

and relative gene expression of PR8 as compared to their WT or Isotype control counterparts during super-

infection. A) WT and PD-1 KO treatment groups percent of weight loss was calculated starting from day 

zero, then again on day six when MRSA was given, and lastly on day seven the day of harvest (WT MRSA n= 

19, PD-1 KO MRSA n=18, WT super-infected n=19, PD-1 KO super-infected n=18, WT influenza n=12, PD-1 

KO Influenza n=12). B) Number of MRSA colonies plated from infected mouse lung homogenates (WT: 

MRSA n= 23, super-infected n=31; PD-1 KO: MRSA n=22, super-infected n=28). C) Relative gene expression 

of viral protein was assessed in cDNA from total mouse lung via relative gene expression analysis of PR8 

(matrix protein) (WT influenza n=3, PD-1 KO influenza n=3, WT super-infection n=4, PD-1 KO super-

infection n=4). D) Percent of weight loss was calculated starting from day zero, then sampled again on days 

three and five when antibody blockade was given, day six when MRSA was given, and lastly on day seven the 
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day of harvest (ISO MRSA n=7, anti-PD-1 MRSA n=8, ISO super-infected n=8, anti-PD-1 super-infected 

n=8). E) Number of MRSA colonies plated from infected mouse lung homogenates (ISO MRSA n=7, anti-PD-

1 MRSA n=8, ISO super-infected n=8, anti-PD-1 super-infected n=8). P values: *<0.05, **<0.01, ***<0.001, 

****<0.0001. 

2.4.3 Lungs of global PD-1 KO super-infected mice have increased lung leak compared 

with WT mice. 

We next sought to determine if targeting the PD-1 pathway during super-infection resulted 

in detrimental alterations to the lung environment. To test this, we checked protein levels in the 

bronchoalveolar lavage fluid (BALF), a measure of epithelial leak during injury. This resulted in 

the observation that PD-1 KO super-infected mice displayed a significant increase in protein 

concentration, suggesting that lung leak was more prevalent in this group as compared to their WT 

counterparts (Fig. 2.3a). However, the increase in BALF protein seen in global KOs was not 

recapitulated following antibody blockade of PD-1 or PD-L1 in WT mice (Fig. 2.3b, Appendix 

A.1 3b). To further determine if the lungs of super-infected KO mice were shifting towards a more 

damaged phenotype, we tested various molecular markers associated with lung integrity such as 

tight junction protein 1 (Tjp1), secretoglobin family 1A member 1 (scgb1a1), and surfactant 

protein-c (sftpc). Expression of all of these markers was decreased in PD-1 KO super-infected 

mice, compared to infection with MRSA alone; however, the levels were not significantly changed 

when they were compared to their WT super-infected counterparts (Fig. 2.3c). From histological 

analysis of the lungs of global PD-1 KO and WT mice, we determined that there is no significant 

difference in damage assessed in either the parenchyma, airways, or blood vessels beyond the 

elevated trend seen in super-infected mice compared to MRSA alone (Fig. 2.3d). These data 
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suggest that globally knocking out PD-1 potentially results in greater susceptibility to lung leak 

during super-infections. 

 

 

 

 

 

 



 

 30 

 

 

Figure 2.3 Global PD-1 KO mice have higher levels of protein in the BAL of MRSA alone and super-infected 

treated mice than WT mice or mice treated with an antibody against PD-1. A) BAL protein from PD-1 KO 

and WT infected mice was quantified from BAL collected at day of harvest (WT MRSA n= 15, PD-1 KO 

MRSA n=12, WT super-infected n=15, PD-1 KO super-infected n=13, WT Influenza n=6, PD-1 KO Influenza 

n=8). B) BAL protein from antibody PD-1 and isotype treated mice was quantified from BAL collected at day 

of harvest (ISO MRSA n=7, anti-PD-1 MRSA n=8, ISO super-infected n=8, anti-PD-1 super-infected n=8). C) 

RNA was extracted from mouse lungs and made into cDNA which we then used to probe for various genetic 
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targets (Tjp1: WT MRSA n= 14, PD-1 KO MRSA n=10, WT super-infected n=11, PD-1 KO super-infected 

n=12; Scgb1a1: WT MRSA n= 11, PD-1 KO MRSA n=8, WT super-infected n=8, PD-1 KO super-infected 

n=9; Sftpc: WT MRSA n= 11, PD-1 KO MRSA n=8, WT super-infected n=8, PD-1 KO super-infected n=8). 

D) Histological scoring of lung sections from WT and PD-1 KO mice looking at the parenchyma, airways, and 

arteries (WT MRSA n= 6, PD-1 KO MRSA n=5, WT super-infected n=7, PD-1 KO super-infected n=5). p 

values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 

2.4.4 Lung infiltrating cells in global PD-1 KO super-infected mice remain unchanged 

compared to their WT counterparts, however they are reduced in an antibody 

blockade model. 

Due to the minimal role of PD-1 in susceptibility to super-infection in terms of burden, 

morbidity, and injury markers, we wanted to determine if there were changes at the cellular level. 

The total number of lung-infiltrating cells in our global PD-1 KO super-infected group was not 

significantly changed compared to its WT counterpart (Fig. 2.4a). Interestingly, we did see a 

reduction in infiltrating cell number between global PD-1 KO and WT animals infected with 

influenza (Fig. 2.4a). When we compared these results with our PD-1 antibody blockade we found 

that in contrast to global PD-1 KO mice, there was a significant reduction in total infiltrating cell 

number in the anti-PD-1 treated group (Fig. 2.4b). When we broke down the infiltrating cell 

numbers into more specific subsets, we again saw no significant change in either monocyte or 

neutrophil number between PD-1 KO and WT mice (Fig. 2.4c and e). However, we did see a 

significant reduction in neutrophil number in the PD-1 KO mice infected with influenza alone (Fig. 

2.4e). Our antibody blockade experiments also showed a reduction in the number of neutrophils, 

but not monocytes, in the anti-PD-1 super-infected mouse group, compared to WT mice (Fig. 2.4d 

and f). Blocking of PD-L1 had no significant change in total cell, monocyte, or neutrophil numbers 
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in super-infected groups (Appendix Fig. A.1.3c). These data suggest that targeting PD-1 via 

antibody blockade during super-infection, rather than with a global PD-1 KO mouse model, does 

result in a change in cellular infiltrate, but this does not result in a significant change in 

susceptibility to bacterial burden and morbidity.  
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Figure 2.4 Super-infected PD-1 KO mice have similar levels of infiltrating cells compared to WT mice, but, 

treating with an antibody against PD-1 led to a significant reduction in total cells. A-F)Total infiltrating cell 

counts, number of monocytes, as well as number of neutrophils were determined by cytospins using 

bronchoalveolar lavage fluid collected from infected mouse lungs at time of harvest (PD-1 KO studies→total 

cells, monocytes, and neutrophils: WT MRSA n= 15, PD-1 KO MRSA n=14, WT super-infected n=15, PD-1 

KO super-infected n=13, WT Influenza n=8, PD-1 KO Influenza n=8; anti PD-1 blockade→ total cells, 

monocytes, and neutrophils ISO MRSA n=7, anti-PD-1 MRSA n=8, ISO super-infected n=8, anti-PD-1 super-

infected n=8). P values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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2.4.5 Global knock out of PD-1 results in changes in the T cell compartment in various 

disease states. 

We further assessed changes in the cellular compartment caused by the absence of PD-1 

via flow cytometry during super-infection. Using our global PD-1 KO super-infection model, we 

first determined if CD4+ T cell subsets changed in the absence of PD-1 following our different 

infection scenarios. Within our infection groups, we saw no change in the percentage of cells 

expressing GATA3, a canonical transcription factor for Th2 cells, between our WT or PD-1KO 

mice (Fig. 2.5a). When we looked at the changes in cells that expressed FoxP3, the Treg cell 

transcription factor, we did see a significant reduction in our PD-1 KO super-infected and influenza 

alone groups when we compared them to WT counterparts (Fig. 2.5b). Cells expressing Rorgt, the 

Th17 transcription factor, were reduced across all treatment groups, however, there was 

significantly fewer of these cells in the MRSA alone PD-1KO mice (Fig. 2.5c). One of the 

prevailing ideas in the field of inhibitory receptors is that multiple inhibitory receptors work 

together resulting in a more powerful downregulation of immune mechanisms. With this in mind 

we also looked at changes in the percentage of cells that express the other inhibitor receptors: 

Lag3, Cd244, and Tim3. Cells expressing Cd244 and Lag3 increased in WT and PD-1KO super-

infected and influenza alone infected groups (Fig. 2.5d). Interestingly, in our MRSA alone and 

super-infected groups Tim3 was decreased in our WT and PD-1KO mice, however, it was 

significantly elevated in influenza alone WT infected mice compared to their PD-1KO 

counterparts (Fig. 2.5d). We further assessed changes in the CD8+ T cell compartment in the 

absence of PD-1 across treatment groups. Although all PD-1 KO mice seemed to have lower levels 

of tetramer positive cells, this was not significantly different that their WT counterparts in all three 

of the infection conditions (Fig. 2.5e). Again, as we did with the CD4+ T cells, we looked at 
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changes in the percentage of cells expressing inhibitory markers and again we saw an increase in 

these cell types in influenza alone and super-infected WT and PD-1KO groups, with the exception 

being in Tim3 where we did see an elevation in our super-infected WT and PD-1 KO groups (Fig. 

2-5f). Lastly, we looked at changes in protein concentration of molecules associated with T cell 

activity during infection. We found that Ifnγ is significantly elevated in PD-1 KO super-infection 

and IL-4 expression is significantly decreased as compared to WT mice (Fig. 2.5g). Together these 

data suggest that knocking out PD-1 does affect both CD4+ and CD8+ T cells when looking at PD-

1 KO groups across infectious states from MRSA, super-infection, and influenza. In particular an 

increase in percentage of cells expressing other inhibitory factors was seen when PD-1 KO groups 

were compared to each other, which could potentially act to compensate for the loss of PD-1. 



 

 36 

 

Figure 2.5 PD-1 KO mice exhibit changes in expression of markers related to cell subset and inhibitory 

marker expression between treatment groups. A) Percentage of CD45+ CD90.2+ CD4+ Gata3+ Th2 cells 

determined from flow cytometry in mouse lungs (n=4). B) Percentage of CD45+ CD90.2+ CD4+ FoxP3+ Treg 
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cells determined from flow cytometry in mouse lungs (n=4). C) Percentage of CD45+ CD90.2+ CD4+ Rorgt+ 

Th17 cells determined from flow cytometry in mouse lungs (n=4). D) Percentage of CD45+ CD90.2+ CD4+ T 

cells expressing inhibitory markers Tim3, Cd244, or Lag3 determined from flow cytometry in mouse lungs 

(n=4). E) Percentage of CD45+ CD90.2+ CD8+ NP+ T cells determined from flow cytometry in mouse lungs 

(n=4). F) Percentage of CD45+ CD90.2+ CD8+ T cells expressing inhibitory markers Tim3, Cd244, or Lag3 

determined from flow cytometry in mouse lungs (n=4). G) Protein expression of Ifnγ and IL-4 in PD-1 KO or 

WT MRSA alone, influenza alone, or super-infected mice (Ifnγ and IL-4: MRSA alone: WT n=8, PD-1 KO n= 

6, Influenza alone: WT n=3, PD-1 KO n=4, super-infection: WT n=8, PD-1 KO n=7).p values: *<0.05, 

**<0.01, ***<0.001, ****<0.0001. 

2.4.6 Targeting the PD-1 pathway results in changes to the myeloid compartment. 

The important role that the myeloid compartment plays during bacterial infections, led us 

to investigate if PD-1 alters the myeloid compartment. We did this by looking at the different 

myeloid cell subsets via flow cytometry. There was minimal change seen in percentage of 

neutrophils, monocytes, macrophages, dendritic cells or eosinophils when PD-1 was knocked out 

when compared to their WT counterparts within groups (Appendix Fig. A.1.4). When we looked 

at percentage of cells expressing other inhibitory markers, we did see an increase in exudative 

macrophages expressing Tim3 in influenza and super-infected groups, and a reduction in Pd-l1 

expressing cells in exudative macrophages in our superinfected and influenza alone infected WT 

and PD-1KO groups (Fig. 2.6a). More changes in percentage of cells expressing inhibitory markers 

were seen in neutrophils.  Neutrophils expressing Cd244 were elevated in PD-1 KO influenza 

alone and super-infected mice, however they were reduced significantly in MRSA alone infected 

mice (Fig. 2.6b). PD-12 and Tim3 expressing neutrophils were significantly decreased in PD-1 

KO mice that were infected with influenza alone or super-infected (Fig. 2.6b). As we did with T 



 

 38 

cells we determined if protein concentration of molecules associated with the myeloid 

compartment are changed between treatment groups. We found that the inflammatory cytokines 

Il-1α and Tnfα are both significantly reduced in PD-1 KO MRSA alone infected mice (Fig. 2.6c). 

Lastly, we looked at cytokines important in differentiation of macrophages, M-CSF, as well as 

migration of inflammatory cells to sites of infection, Cxcl10 and MCP-3. Each of these cytokines 

was significantly reduced in our PD-1KO MRSA alone infected mice, suggesting that the myeloid 

compartment is potentially hindered during bacterial infections alone (Fig. 2.6d). These results 

suggest that global deletion of PD-1 plays a role on myeloid cells during super-infection, however, 

it may play a more robust role during MRSA alone infections.  
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Figure 2.6 PD-1 KO mice exhibit only slight changes in expression of markers related to changes in myeloid 

cell subset expression across treatment groups as comapred to WT mice, howver they do exhibit changes in 

inhibitory marker expression, as well as migration, differentiation and inflammatory potential during a 

MRSA alone infection. A) Percentage of CD45+ CD11b+ CD11c+ MHC-II+ CD64+ Ly6c+ cells expressing 

inhibitory markers Tim3 and Pd-l1(n=4). B) Percentage of CD45+ Ly6g+ cells expressing inhibitory markers 

Cd244, Pd-l2, and Tim3 (n=4). C-D) Protein expression of Il-1α, Tnfα, MCP-3, Cxcl10, and M-CSF in PD-1 

KO or WT MRSA alone, influenza alone, or super-infected mice (Il-1α, Tnfα, MCP-3, Cxcl10, and M-CSF: 
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MRSA alone: WT n=8, PD-1 KO n= 6, Influenza alone: WT n=3, PD-1 KO n=4, super-infection: WT n=8, 

PD-1 KO n=7). P values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 

2.5 Discussion 

With the emergence of drug resistant bacterial strains, the development of novel 

therapeutics is of particular importance especially in the context of secondary bacterial infections 

where the immune system is in a weakened state. Research on super-infections has uncovered 

several pathways that are associated with susceptibility and establishment of secondary infections. 

Much of this research has focused on the role that influenza plays on shaping the subsequent anti-

bacterial response27, 92, 95, 113, 114. The research presented here focuses on the role of inhibitory 

markers and their pathways on multiple cells types in susceptibility to secondary infections 

following an acute viral challenge.  

Studies on inhibitory pathways during acute viral infections have implicated inhibitory 

mechanisms, such as PD-1, in driving susceptibility to infection53, 54, 56. In our study we determined 

that PD-1 expressing cells are found at higher levels in super-infected and influenza alone infected 

mice on multiple cell types of the myeloid and adaptive immune cell compartment when compared 

to MRSA alone groups. This increase in PD-1 expressing cells that we observed in our groups is 

most likely due to the presence of viral antigen driving upregulation as was the case in previous 

studies on acute viral respiratory infections53, 56. Interestingly, global targeting of the PD-1 

pathway during super-infection resulted in no difference to susceptibility when MRSA burden and 

morbidity was assessed. This observation may be due to our use of global PD-1 KOs, which creates 

an environment where PD-1 is ablated at all stages of infection on all cell types. Of note, these 
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results were recapitulated when we used antibody blockade against PD-1 as well as Pd-l1. Super-

infections are complex and dynamic infections so a targeted approach to knock down PD-1 in 

specific cell subsets may change the outcome observed in these studies.  

The role of PD-1 during infection is to act as a brake on the immune system effectively 

shutting down the immune response and protecting the area from immunopathology. In the present 

study we did find an increase in protein in the BALF as well as a decrease in relative gene 

expression of markers associated with epithelial integrity in our PD-1 KO super-infected mice. 

These data suggest that the lungs of PD-1 KO mice during super-infection appear to be altered in 

ways that drive a more immunopathological phenotype. Interestingly, these alterations played little 

role in susceptibility to MRSA colonization which has been shown to correlate with lung damage. 

Super-infections are characterized by several immune cell types of both the innate and 

adaptive immune system acting on each other and in several circumstances acting to hinder each 

other. The presence of PD-1 on several cell subsets led us to study what role knocking out PD-1 

during super-infection plays at the cellular level. The results presented herein suggest that the 

global loss of PD-1 did not result in an increase in inflammatory mechanisms infiltrating into the 

lung space during super-infection. Interestingly, when we looked further at the composition of 

immune cells in the lungs of infected mice of both the innate and adaptive immune systems, we 

did see changes in T cell subsets. We did not see this type of change in myeloid cell composition. 

One of the most striking observations from our studies suggests that knocking out PD-1 results in 

a higher percentage of cells expressing other inhibitory markers in both the myeloid and adaptive 

cell compartments when comparing within PD-1 KO mice across infectious groups. This could 

potentially be due to the prevailing idea that these inhibitory mechanisms act in concert with each 

other, resulting in compensation when one is lost and the preservation of an inhibitory phenotype. 
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Further research on the PD-1 pathway should be conducted to specifically target PD-1 on distinct 

cell types rather than with a global knock out model.  
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3.0 Heterotypic Influenza Infections Mitigate Susceptibility to Secondary Bacterial 

Infection 

3.1 Summary 

Influenza-associated bacterial super-infections have devastating impacts on the lung and 

can result in increased risk of mortality, compared with single infection. New strains of influenza 

circulate throughout the population yearly, promoting the establishment of immune memory. 

Nearly all individuals have some degree of influenza memory prior to adulthood. Due to this, we 

sought to understand the role of immune memory during bacterial super-infections. An influenza 

heterotypic immunity model was established using influenza A/PR/8/34 and A/X31. We report 

here that influenza experienced mice are more resistant to secondary bacterial infection with 

methicillin-resistant Staphylococcus aureus, as determined by wasting, bacterial burden, 

pulmonary inflammation, and lung leak, despite significant ongoing lung remodeling. 

Multidimensional flow cytometry and lung transcriptomics revealed significant alterations in the 

lung environment in influenza-experienced mice compared with naïve animals. These include 

changes in the lung monocyte and T cell compartments, characterized by increased expansion of 

influenza tetramer-specific CD8+ T cells. The protection that was seen in the infection-experienced 

(memory) mouse model is associated with the reduction in inflammatory mechanisms, making the 

lung less susceptible to damage and subsequent bacterial colonization. These findings provide 

insight into how influenza heterotypic immunity re-shapes the immune response and the overall 

lung environment, including to a re-challenge event, which is highly relevant to the context of 

human infection. 
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3.2 Introduction 

Seasonal influenza infections account for significant numbers of hospitalizations and 

increased morbidity and mortality annually, especially in the young, immunocompromised, and 

the elderly. The WHO estimates that yearly influenza infections led to 290,000-600,000 deaths 

globally prior to the COVID-19 pandemic 115.  Influenza infection begins by primarily targeting 

epithelial cells as sites for viral replication 116. Once epithelial cells become infected, a cascade of 

innate and adaptive immunological mechanisms is initiated resulting in clearance of the virus. This 

process of viral clearance creates a highly inflamed lung environment that can lead to excessive 

damage to the lung epithelium and an increased risk of development of a secondary bacterial 

infection and subsequent pneumonia 31, 35, 117, 118, 119. Influenza-associated secondary bacterial 

infections heighten the risk of mortality, as is evidenced by histology records from the 1918 

influenza pandemic, which indicate the presence of bacterial infections in the lungs of 

approximately 95% of those who succumbed to infection 1, 15. Mouse models have provided 

evidence of dysregulated immune responses to the bacteria, which are thought to be caused by the 

preceding anti-viral response 25, 27, 29, 32, 33, 34, 95, 120, 121, 122, 123. These mechanisms in the lung 

environment allow for influenza and bacteria to act in a synergistic way, with influenza promoting 

subsequent bacterial colonization and outgrowth 124. Due to the extensive damage that influenza-

associated secondary bacterial infections can have on the host lung, it is imperative to understand 

the mechanisms that shape the host-pathogen response to these types of infections.  

Influenza evades host immunity by readily mutating its surface proteins, neuraminidase 

(NA) and hemagglutinin (HA), in response to evolutionary pressure that is driven in part by host 

antibodies directed against HA and NA 125, 126. This helps drive the yearly emergence of novel 

influenza strains. Although the antibody response may be evaded by heterotypic influenza strains, 



 

 45 

the host also establishes a memory immune cell compartment distinct from the antibody response 

that is able to mobilize and respond against multiple influenza strains 125, 126. Both the innate and 

adaptive immune systems can produce memory immune cells against a variety of pathogens 127, 

128. The importance of the immune response following priming and repeated exposure to antigens 

has been studied extensively at both the basic and translational level for vaccine and therapeutic 

purposes 129, 130, 131, 132. There is evidence that priming by influenza reprograms immune cells over 

time, specifically myeloid cells, to display enhanced antibacterial functions 133. Both CD8+ and 

CD4+ memory T cells have been shown to be of particular importance in the memory response to 

heterologous strains of influenza because they are able to react against internally conserved pieces 

of the virus that are less likely to undergo mutations driven by evolutionary pressure, ensuring 

quick mobilization and responses against infection 134, 135, 136. There are several memory T cell 

subsets: central memory (Tcm), effector memory (Tem), and resident memory (Trm). The different 

subsets of memory T cells are defined by both their localization and surface marker expression. 

Due to their location at the site of infection, i.e. within the lung, Trm cells have been implicated in 

the augmented clearance of viral respiratory infections including influenza 137. Nearly all humans 

have some level of pre-existing memory against influenza from early life exposures. Although 

memory cells are imperative for clearance of heterotypic viral strains, a fine balance in the 

inflammatory response must be achieved to limit the amount of damage to the lung tissue.  

Currently, most of the studies in the field on influenza-associated bacterial infections focus 

on the acute stage in naïve mice, whereas our study takes into account pre-existing influenza 

memory akin to human influenza immunity. To better understand the role of memory in influenza-

associated bacterial infections, we used a mouse model to mimic a heterotypic influenza infection, 

using H3N2 and re-challenging approximately two months later with H1N1 followed in six days 
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by infection with methicillin-resistant Staphylococcus aureus (MRSA). With spectral flow 

cytometry and transcriptomics we studied the role that antigen experience has on susceptibility to 

secondary bacterial infections. The model we used here is intended to provide a more clinically 

relevant representation of how heterotypic influenza strains infect the human population annually 

and how the immune response is shaped over time. These data provide insight into how viral 

infections reprogram the lung to respond to subsequent infections and the repercussions this has 

for susceptibility to secondary infections, further highlighting the importance of antigen-

experienced cells in the response to lung pathogens. 

The following study was published August 1, 2022 in The Journal of Immunology. 

“Heterotypic Influenza Infection Mitigates Susceptibility to Secondary Bacterial Infection” by 

Ellyse M. Cipolla, Molin Yue, Kara L. Nickolich, Brydie R. Huckestein, Danielle Antos, Wei 

Chen, and John F. Alcorn. Copyright © 2022 Journal of Immunology.  

3.3 Materials and Methods 

3.3.1 Mouse Model and Sample Collection 

On day zero, six to eight-week old male WT C57BL/6 mice (Taconic Farms, Germantown, 

NY) were infected with 105 pfu of mouse adapted influenza A/X31 H3N2 or PBS vehicle. After 

53-54 days the mice were re-challenged with 100 pfu of a heterotypic strain of mouse adapted 

influenza A/PR/8/34 H1N1. 6 days after influenza re-challenge (day 59/60) the mice were 

challenged with 5x107 colony forming units (cfu) of USA300 MRSA suspended in PBS and 

harvested a day later. All infections were given via oropharyngeal aspiration. Mice were 
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maintained under pathogen-free conditions at UPMC Children’s Hospital of Pittsburgh and all 

animal studies were conducted with approval from the University of Pittsburgh Institutional 

Animal Care and Use Committee. All studies used age- and sex-matched mice. Mice were 

euthanized via pentobarbital injection followed by exsanguination by severing the renal artery. No 

mice died prior to euthanasia.  

3.3.2 Bronchoalveolar Lavage Fluid Collection and Differential Cell Counting 

Upon harvest, mice were cannulated and lavaged with 1ml of PBS for bronchoalveolar 

lavage fluid (BALF) collection. BALF was spun down and pelleted and supernatant was collected 

and stored for downstream analysis. Pelleted cells were treated with ACK lysing buffer (Gibco 

Fisher Scientific, Hampton, NH) to remove red blood cells. The cell pellet was then resuspended 

in 500μl of PBS and total cell count was determined by hemocytometer. 200μLs of resuspended 

cells were then concentrated on a microscope slide using a cytocentrifuge (ThermoFisher 

Scientific, Waltham, MA) and stained with Diff-Quik staining solution (Fisher Scientific, 

Hampton, NH) to determine monocyte, neutrophil, eosinophil, and lymphocyte counts. 

3.3.3 Bacterial Plating 

Right upper lung lobes from mice were collected and homogenized in 1ml of PBS. After 

homogenization, 10-fold dilutions were dot plated on culture plates. Plates were then incubated at 

37o Celsius overnight, and cfu was assessed by bacterial colony counting. 
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3.3.4 Flow Cytometry  

Mouse lungs were aseptically dissected using sterile scissors. Lungs were then digested for 

an hour at 37o Celsius in 1mg/ml collagenase media (DMEM Gibco Fisher Scientific, Hampton, 

NH). After an hour, lungs were mashed through 70 micron filters to obtain a single cell suspension. 

The single cell suspension was treated with ACK lysing buffer (Gibco Fisher Scientific, Hampton, 

NH) to remove red blood cells. After red blood cell lysis, cells were resuspended in PBS. Single 

cell suspensions were stained as follows for spectral flow cytometry analysis. For the T cell 

memory panel, cells were stained with anti-Cd45 (30-F11,BD Pharmingen, San Diego, CA ), Cd4 

(RM4-5,BD Biosciences, Franklin Lakes, NJ), Cd103 (M290,Invitrogen-ThermoFisher Scientific, 

Waltham, MA), Cd49a (HA31/8,BD Biosciences, Franklin Lakes, NJ), Cd69 (H1.2F3, 

BioLegend, San Diego, CA), Pd-l2 (TY25,BioLegend, San Diego, CA), Pd-l1 

(10F.9G2,BioLegend, San Diego, CA), Cx3cr1 (SA011F11,BioLegend, San Diego, CA), Lag3 

(C9B7W,BioLegend, San Diego, CA), Cd8 (53-6.7,Invitrogen-ThermoFisher Scientific, 

Waltham, MA), Cd11a (M17/4,BioLegend, San Diego, CA), Cd127 (SB/199,Invitrogen-

ThermoFisher Scientific, Waltham, MA), Klrg1 (2F1,BD Biosciences, Franklin Lakes, NJ), Foxp3 

(FJK-16s,Invitrogen-ThermoFisher Scientific,  Waltham, MA), Tetramer (I-A(b) Influenza A NP 

311-325 QVYSLIRPNENPAHK), Tim3 (RMT3-23,BioLegend, San Diego, CA), CD244.2 

(m2B4(B6)458.1,BioLegend, San Diego, CA), PD-1 (29F.1A12,BioLegend, San Diego, CA), 

Cd90.2 (30-H12,BD Biosciences, Franklin Lakes, NJ), Cd62L (MEL-14,BD Biosciences, Franklin 

Lakes, NJ), and Cd44 (IM7,BD Biosciences, Franklin Lakes, NJ). NP366 tetramers were obtained 

from the NIH tetramer core facility (Bethesda, MD) and were stained at 37o Celsius for 30 minutes 

prior to viability stain. For the myeloid panel, cells were stained with anti-CD45 (30-

F11,Invitrogen-ThermoFisher Scientific ,Waltham, MA), Pd-l2 (TY25,BioLegend,San Diego, 
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CA), F4/80 (T45-2342,BD Biosciences, Franklin Lakes, NJ), Cd64a/b (X54-5/7.1,BD 

Biosciences, Franklin Lakes, NJ), Pd-l1 (10F.9G2,BioLegend, San Diego, CA), Cd103 

(2E7,Invitrogen-ThermoFisher Scientific ,Waltham, MA), Ly6c (HK1.4,BioLegend, San Diego, 

CA), Cd11b (M1/70,BD Biosciences, Franklin Lakes, NJ), MHC-II (M5/114.15.2,BD 

Biosciences, Franklin Lakes, NJ), Cd80 (16-10A1,BD Biosciences, Franklin Lakes, NJ), Cd86 

(GL1,BD Biosciences, Franklin Lakes, NJ), B220 (RA3-6B2,Invitrogen-ThermoFisher Scientific 

, Waltham, MA), Tcrb (H57-597,BioLegend, San Diego, CA), SiglecF (1RNM44N,Invitrogen-

ThermoFisher Scientific, Waltham, MA), Cd24 (M1/69,BioLegend, San Diego, CA), PD-1 

(RMP1-30,BioLegend, San Diego, CA), Cd244.2 (m2B4(B6)458.1,BioLegend, San Diego, CA), 

Nk1.1 (PK136,BioLegend, San Diego, CA), Cd11c (N418,Invitrogen-ThermoFisher Scientific. 

Waltham, MA), Tim3 (B8.2C12,BioLegend, San Diego, CA), and Arg-1 (A1exF5,Invitrogen-

ThermoFisher Scientific, Waltham, MA). The viability dye, Zombie NIR (BioLegend, San Diego, 

CA), was used to exclude live cells from dead cells in both panels. Our mastermix for cell staining 

contained Super Bright Complete Staining Buffer (ThermoFisher Scientific, Waltham, MA) as 

well as True-Stain Monocyte Blocker (BioLegend, San Diego, CA) for the myeloid panel. 

Intracellular staining was performed at room temperature using the eBioscience™ 

Foxp3/Transcription Factor Staining Buffer Set (ThermoFisher Scientific, Waltham, MA) as 

directed by the manufacturer. All samples were run on the Cytek Aurora (Cytek Biosciences, 

Fremont, CA). Flow cytometric analysis was performed using FlowJo with UMAP 138 and 

FlowSOM 139 integrated plug-ins (Tree Star, Ashland, OR). Absolute cell counts were determined 

following manufacturer’s instructions using UltraComp eBeadsTM Plus Compensation Beads 

(Invitrogen-ThermoFisher Scientific, Waltham, MA). 
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3.3.5 Histology 

Left lung lobes from mice were inflated with and preserved in 10% neutral buffered 

formalin solution. Formalin fixed tissues were then transferred to 70% ethanol and shipped to 

StageBio (Mount Jackson, VA), where they were paraffin embedded and sectioned for 

histopathological analysis. Upon sectioning, hematoxylin and eosin (H&E) staining was 

performed. Histological scoring was performed on H&E stained slides using a scale from 1 to 4 

with 1 being no damage and 4 being severely damaged. Cellular infiltration and tissue damage was 

assessed for the lung parenchyma, peribronchial, and perivascular regions. Scoring was performed 

sample blinded by two separate investigators. Percent of metaplasia was measured using Fiji 

software and calculating threshold values for areas of metaplasia and dividing by threshold of total 

damaged imaged area , which was graphed separately140. 

3.3.6 RNA extraction and qPCR 

Mouse lungs were isolated and snap-frozen in liquid nitrogen or suspended in Allprotect 

Tissue Reagent (Qiagen, Hilden, Germany). RNA was extracted as directed using the Qiagen 

Rneasy Mini Kit (Qiagen, Hilden, Germany). cDNA was synthesized using the iScript cDNA 

synthesis kit (Bio-Rad, Hercules, CA). qPCR was conducted using SsoAdvanced universal probes 

supermix (Bio-Rad, Hercules, CA) and target specific TaqMan real-time PCR assay primer probes 

(ThermoFisher Scientific, Waltham, MA). Viral burden was determined by quantitative real-time 

RT-PCR on lung RNA for viral matrix protein (M1) as described previously 111, 112. Forward 

Primer:5′-GGACTGCAGCGTAGACGCTT-3′, Reverse Primer:5′-
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CATCCTGTTGTATATGAGGCCCAT-3′,Probe:5′-/56-

FAM/CTCAGTTAT/ZEN/TCTGCTGGTGCACTTGCCA/3IABkFQ/−3′. 

3.3.7 Protein Assays and Lincoplex 

The PierceTM BCA protein assay kit (ThermoFisher Scientific, Waltham, MA) was used as 

directed to determine protein levels in BALF. Cytokine production was measured in lung 

homogenates via Bioplex using the Luminex™ Magpix™ multiplexing platform with the Bio-

Plex Pro Mouse Cytokine 23-plex assay (Bio-Rad, Hercules, CA) as directed. Mouse lung 

homogenates were used to determine IgM protein using an IgM uncoated ELISA kit as directed 

(Invitrogen-ThermoFisher Scientific, Waltham, MA). 

3.3.8 Bulk-RNA Sequencing 

RNA for sequencing was isolated from total mouse lungs as described above.  Library 

preparation and sequencing was performed at UPMC Children’s Hospital of Pittsburgh. Samples 

were run on the Illumina NEXT-Seq 500 platform: 1x75bp single-end reads and 20 million reads 

per sample. 

3.3.9 Bioinformatics 

Bulk-RNA seq reads were aligned using CLC Genomics Workbench 22 (Qiagen, Hilden, 

Germany). Once aligned, raw counts were extracted and exported to R workspace where the data 

was further processed with the DESEQ2 and clusterprofiler packages 141, 142. We used Cell-type 
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Identification by Estimating Relative Subsets of RNA Transcripts, CibersortX, to estimate and 

define cell-types via RNA transcript information from our bulk-RNA memory versus acute super-

infected sequencing data using a single-cell reference dataset 143, 144. In brief, a signature matrix 

was built from a publicly available single-cell dataset from PBS and 48-hour influenza infected 

mouse lung tissue that consisted of 6,528 cells 145 with 50% sampled without replacement for our 

10 cell types of interest. Default parameters were used for the signature matrix building and 

CIBERSORTx analysis was conducted on our bulk-RNA sequencing dataset. Relative mode and 

number of permutations was set at 100 and cell type proportions, Pearson correlation coefficient, 

p value, and root mean squared error was calculated (RMSE). All sequencing data will be uploaded 

to Gene Expression Omnibus upon publication. 

3.3.10 Statistical Analysis 

Data were analyzed using GraphPad Prism software (San Diego, CA). Experiments were 

repeated 3-6 times as indicated. All data are presented as mean ± SEM, unless otherwise noted. 

Mann-Whitney test or one-way ANOVA followed by multiple comparisons were used for 

statistical significance with a p value of equal or less than 0.05. Mouse studies were repeated at 

least three times, in most cases. 
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3.4 Results 

3.4.1 Preceding heterotypic influenza infection is protective against subsequent secondary 

bacterial infection. 

To determine the role that immune memory plays in influenza associated super-infections 

we primed wild-type (WT) C57BL/6 mice with influenza A/X31 H3N2 (X-31) on day zero 

followed by re-challenge with a heterotypic influenza strain, A/PR/8/34 H1N1 (PR8), and 

inoculation with methicillin-resistant Staphylococcus aureus USA300 (MRSA) six days after PR8 

infection (Fig. 3.1a). We used the mouse adapted strains X-31 and PR8 in these studies because 

they share genetic similarities in internal proteins, and have previously been used to model memory 

in influenza mouse models 146, 147. Super-infected mice that had pre-existing heterotypic influenza 

immunity were better protected upon bacterial infection, with less weight loss and bacterial burden 

than matched acute infection controls, but they did have similar levels of weight loss and bacterial 

burden to mice infected with MRSA alone (Fig. 3.1b and c). When lung infiltrating cells were 

assessed, super-infected memory mice had lower levels of total infiltrating cells comparable to 

those of MRSA alone infected mice, and upon further assessment it was determined that 

monocytes made up more of the total cell distribution (Fig. 3.1d). Previous research on influenza-

associated bacterial super-infections have elucidated several potential mechanisms behind these 

types of infections, with one of the prevailing ideas being that the anti-viral mechanisms in the 

lung environment dampen the anti-bacterial response 15, 31, 148, 149. We observed that memory super-

infected mice at the time of MRSA challenge had non-detectable levels of PR8 gene expression in 

their lungs indicating that the anti-viral memory mechanisms controlled the infection, potentially 

ensuring a more effective anti-bacterial response to secondary bacterial infection (Fig. 3.1e). 
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Finally, we observed a reduction in levels of Type I, II, and III interferons during super-infection. 

Interferons are are important signaling molecules during viral infection and have been shown to 

interfere with antibacterial responses and outcomes (survival) in secondary bacterial infections 25, 

92, 150, 151 (Fig. 3.1f). These data suggest that mice with influenza memory have an advantage over 

matched naïve acute infection counterparts upon challenge with MRSA, due to a more controlled 

and targeted anti-viral response. 
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Figure 3.1 Influenza memory experienced mice are better protected against secondary bacterial infection 

with Staphylococcus aureus compared to acute counterparts. A) Infection scheme for memory super-infected 

C57BL/6 mice. Mice were infected on day 0 with A/X-31 H3N2 (X-31) and at 53 to 54 days post-infection (p.i.) 
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mice were given A/Puerto Rico/8/1934 H1N1 (PR8). MRSA USA300 (MRSA) was given on day 59 or 60 p.i. 

and mice were harvested on day 60 or 61 p.i. B) Percent of weight loss was calculated starting from secondary 

infection with PR8 for each of the treatment groups and compared to mice that received PBS only and MRSA 

only, with day 6 being the date that MRSA was given on (PBS= 15, acute n=17, memory n=23, PBS+MRSA 

n=15). C) Number of MRSA colonies plated from infected mouse lung homogenates (acute n=30, memory 

n=34, PBS+MRSA n=15). D) Total infiltrating cell counts, percent of monocytes, as well as percent of 

neutrophils were determined by cytospins using bronchoalveolar lavage fluid collected from infected mouse 

lungs at time of harvest (acute n=12, memory n=16, PBS+Memory n=11). E) Presence of viral protein was 

assessed in cDNA from total mouse lung via relative gene expression analysis of PR8 (Matrix protein) (acute 

n=8, memory n=8). F) Relative gene expression of interferon classes (Ifn-λ3, Ifn-γ, and Ifn-β) from total 

mouse lung cDNA. ND=non-detectable. P values: *<0.05, **<0.01 ***<0.001, ****<0.0001. Mouse figure was 

created with BioRender.com. 

3.4.2 Lung injury is present in acute and memory influenza challenged mice.   

Since viral burden was effectively controlled in heterotypic influenza challenged mice, we 

investigated if lung injury was altered in our model. Memory and acute super-infected mice were 

equally susceptible to lung damage following PR8 and MRSA challenge; however, the memory 

mice displayed areas of epithelial remodeling and metaplasia (Fig. 3.2a and b). These results were 

compared against mice infected with MRSA alone, which had minimal damage (Appendix Fig. 

A.2.1). Percent damage and percent metaplasia were further assessed using Fiji software and 

compared against influenza alone memory experienced mice (Appendix Fig. A.2.1b). 

Interestingly, when we looked at other measures to assess tissue integrity, we found that memory 

mice had attenuated levels of IgM and protein in their BALF when compared to their acute 

counterparts (Fig. 3.2c). The respiratory system has several mechanisms to defend itself against 

pathogens and to ensure a balance in the lung environment, because of these protective factors we 
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also examined the expression of genes associated with lung function, protection, and remodeling. 

Memory experienced mice displayed elevated expression levels of important molecules involved 

in the mucociliary escalator, including mucin 5b (Muc5b) and mucin 5ac (Muc5ac) (Fig. 3.2d). 

Further, secretoglobin family 1a member 1 (Scgb1a1), a key club cell protein, and forkhead box 

j1 (Foxj1), a key transcription factor in ciliated epithelial cells, were elevated in memory super-

infection versus acute infection (Fig. 3.2e). Interestingly, we did see reductions in gene expression 

of epithelial remodeling markers in the memory mice most notably in collagen 1 a 1 (col1a1) and 

α – smooth muscle actin (Acta2), but saw no change in tight junction protein (Tjp1) (Fig. 3.2f). 

These data indicate that heterotypic memory to influenza drives changes in the lung environment 

that differ from their previously naïve acute counterparts and may hinder opportunistic bacterial 

infections. 
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Figure 3.2 Lung damage is evident in acute and memory challenge. A) Representative histology sections of 

acute (n=2) and memory (n=2) super-infected WT C57BL/6 mice from formalin inflated mouse lungs stained 

with H&E at 40X,100X, and 200X. Black arrows denote areas of metaplasia in memory mice. B) Blinded 
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histology scores from paraffin embedded lung tissue sections. Lung injury scoring was carried out on three 

areas of the lung: parenchyma, artery, and airway (acute n=9, memory n=13).C) IgM was quantified from 

mouse lung homogenates using an IgM ELISA (acute n=11, memory n=12). BAL protein was quantified from 

BAL collected at day of harvest (PBS n=3, acute n=10, memory n=12, PBS+MRSA n=7). D-F) RNA was 

extracted from mouse lungs and made into cDNA which we then used to probe for various genetic targets 

(Muc5b, Muc5ac, Scgb1a1: acute n=8, memory n=8; foxj1: PBS n=6,acute n=7, memory n=5; Col1a1:acute 

n=6, memory n=7; acta2: acute n=12, memory n=8; Tjp1: acute n=11, memory n=9). P values: *<0.05, 

**<0.01 ***<0.001, ****<0.0001. 

 

3.4.3 Lung transcriptomics indicate an altered inflammatory microenvironment and 

epithelial biology in influenza memory infected mice.  

To study the broad-spectrum changes in the lung environment of influenza memory super-

infected mice and matched naïve acute mice, we compared gene expression changes via bulk-RNA 

sequencing analysis. We performed a deconvolution analysis on data obtained at day seven, using 

a single-cell reference dataset of combined PBS and 48-hour influenza infected mice 145. 

Deconvolution analysis revealed changes in the proportions of genes associated with granulocytes, 

mononuclear phagocytic cells, epithelial cells, and α-sma between memory and acute infected 

groups (Fig. 3.3a). Influenza super-infected memory experienced mice had a transcriptomic 

signature driven more by epithelial cells and less by granulocytes compared with acute infection 

controls. Sequencing analysis showed clustering of samples within groups (Fig. 3.3b). When up- 

or down-regulated genes were assessed in memory versus acute infection we found that memory 

mice displayed a reduction in genes typically associated with inflammation and control of 

inflammatory mechanisms such as interferon gamma (Ifng), granzyme B (Gzmb), and interleukin 
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10 (Il10) (Fig. 3.3c). Next, we performed gene ontology analysis on our sample groups and found 

that the pathways activated in memory are associated with the epithelium and mucociliary 

mechanisms, whereas those that are suppressed deal with response to virus, and immune effector 

processes as well as the inflammatory response (Fig. 3.3d). Gene ontology biological pathway 

analyses revealed that the top enriched pathways dealt with leukocyte migration, response to 

interferon-beta, response to chemokine, and chemotaxis (Fig. 3.3e). Together these data 

demonstrate that the controlled lung environment of influenza memory experienced mice is 

characterized by changes towards a state of lower inflammation and a balance in inflammatory 

mechanisms potentially accounting for a better immune response to a secondary bacterial 

infection.  
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Figure 3.3 The immune signature of memory experienced mice shows a shift in inflammatory pathways and 

highlights a trend towards a less inflamed lung environment. 
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Illumina reads were aligned using CLC Genomics Workbench 22 and raw counts were 

extracted for bulk RNA seq analysis using DESEQ2 and clusterProfiler R software packages (acute 

n=3, memory n=3). A) CibersortX was used to perform deconvolution on bulk-RNA sequencing 

data using a single reference dataset that contained 48-hour influenza and PBS-treated mouse lung 

data. Numbers in boxes reflect the proportion of cells in each group. B) PCA plot and clustering 

heatmap from bulk RNA-seq analysis showing how the acute and memory infected groups cluster. 

C) Volcano plot of differentially expressed genes in memory versus acute infected mice. Red dots 

denote genes with a -log10FDR >2. Genes highlighted are the top 20 genes with -log10FDR >2. D) 

Gene Ontology analysis of activated and suppressed pathways in memory vs acute infected mice 

with p values>0.05. E) Gene set enrichment analysis (GSEA) on biological pathways in memory 

versus acute infected mice, based on genes with p values<0.05. 

3.4.4 Heterotypic influenza memory alters the lung T cell compartment during bacterial 

super-infection. 

To further characterize the changes in the mouse lung inflammatory environment driven 

by the presence of pre-existing influenza memory, we examined pulmonary immune cell subsets. 

T cell populations play a vital role in clearance of influenza infections, therefore, we looked at 

how the T cell compartment changes in influenza super-infected memory versus acute super-

infected mice. Using clustering (FlowSOM) and dimensionality reduction (UMAP) methods, we 

tracked changes in marker expression in T cell populations from mouse lungs. From our gating 

strategy we found that (Appendix Fig. A.2.2), in an acute super-infection there are a higher 

proportion of CD4+ FoxP3+ regulatory T cells, this significant change was seen in both percentage 

of parent gate as well as absolute cell counts (Fig. 3.4a-c). The shift towards a lower proportion of 
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regulatory T cells in the memory lung environment could indicate an earlier controlled 

inflammatory response towards viral infection, allowing for an unimpeded switch towards immune 

mechanisms generated in response to bacterial infections. Further, we observed an increase in the 

proportion of CD8+ NP+ tetramer-positive T cells, an immunodominant epitope, in memory 

experienced mice when compared to the acute infected mice. This was again confirmed by 

significant differences in cell proportions and absolute cell counts consistent with increased 

memory expansion (Fig. 3.4a, b, d). The reduction in CD4+ FoxP3+ regulatory T cells and increase 

in CD8+ NP+ tetramer-positive T cells was also seen when we compared influenza alone memory 

and acute infected mice, adding further support to our hypothesis that influenza alters the immune 

response (Appendix Fig. A.2.2).  
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Figure 3.4 Memory experienced mice have a distinct T cell landscape characterized by an increase in NP+ 

tetramer specific CD8+ T cells. A) Flow cytometry analysis on previously naïve acute super-infected mouse 

lungs. Samples were initially gated on CD45+ CD90.2+ live cells. Once gated samples were concatenated (n=4) 
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and populations were visualized using FlowSOM and UMAP plugins in FlowJo. FlowSOM populations were 

further analyzed by conventional gating techniques to determine breakdown of T cell types. B) Flow 

cytometry analysis on memory super-infected mouse lungs (n=5). Gating and visualization of T cell types 

were determined as noted above for A. C) Percentage and absolute cell count of CD45+ CD90.2+ CD4+ FoxP3+ 

Treg cells determined from flow cytometry in mouse lungs (percentage FoxP3+ acute n=13, memory n=14, 

absolute number FoxP3+ acute n=3, memory n=6). D) Percentage of CD45+ CD90.2+ CD8+ T cells and NP+ T 

cells with absolute cell counts determined by flow cytometry in mouse lungs (percentage acute n=13, memory 

n=14, absolute cell counts acute n=3, memory n=6). P values: *<0.05, **<0.01 ***<0.001, ****<0.0001. 

 

We next looked at the expression of cytokines associated with T cell migration, 

proliferation, and regulation. We found that protein levels of pro-inflammatory cytokines IL-12p40 

and IL-12p70 were significantly elevated in influenza memory experienced super-infected mouse 

lungs (Fig. 3.5a). Other cytokines that significantly changed in the lungs of memory or acute super-

infected mice were CXCL10, IL-6, and IL-10, all of which are significantly decreased in memory 

experienced mice based on either protein expression or gene expression (Fig. 3.5b-d). Lastly, we 

saw a trend toward higher levels of IL-17a and IL-22, based on gene expression, although this was 

not significant. However, we did see a significant increase in expression of the Type 17 immune 

promoting cytokines IL-23 and IL-1β (Fig. 3.5e). These data demonstrate that the T cell 

compartment in memory experienced mice is characterized by an influx of tetramer positive CD8+ 

T cells that are better able to control influenza infection, thus creating an environment that is 

potentially oriented towards improved bacterial immunity. 
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Figure 3.5 Memory experienced mice have reduced levels of cytokines that act as indicators of severe 

influenza infection, but display elevated levels of cytokines with roles in bacterial clearance. A-E) Relative 

gene expression and protein levels in memory versus acute super-infected mouse lungs. (IL-12p40: PBS 

n=23,acute n=20, memory n=32; IL-12p70: PBS n=21, acute n=21, memory n=30; IL-6: PBS n=21, acute 

n=19, memory n=29; IL-6 message: PBS n=7, acute n=13, memory n=16; IL-10: PBS n=22, acute n=20, 

memory n=34; CXCL10 message: PBS n=6, acute n=8, memory n=8; Il-17a message: PBS n=3, acute n=10, 
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memory n=13; IL-22 message: PBS n=7, acute n=13, memory n=14; IL-23 message: PBS n=7, acute n=4, 

memory n=7; IL-1β: PBS n=18, acute n=21, memory n=31). P values: *<0.05, **<0.01, ***<0.001, 

****<0.0001. 

3.4.5 Heterotypic influenza memory alters the innate immune cell compartment during 

bacterial super-infection. 

Finally, we explored the impact of heterotypic influenza memory on innate immune cell 

populations, which are crucial for defense against bacterial infections. We used FlowSOM and 

UMAP to visualize changes in the myeloid compartment of mice with an established memory 

compartment. We found that neutrophils make up the largest proportion of myeloid cells in both 

super-infected treatment groups (Fig. 3.6a and b). Using our myeloid gating strategy (Appendix 

Fig. A.2.3), we also found that the total number of NK cells, monocytes, macrophages, and 

eosinophils were significantly reduced in the influenza super-infected memory mice as compared 

to their acute counterparts (Fig. 3.6c). Interestingly, no change was seen in the total number of 

neutrophils between both groups (Fig. 3.6c). Further flow cytometry analysis was conducted on 

acute and memory influenza alone infected mice, which we used to determine influenza-specific 

changes that occur in myeloid subsets (Appendix Fig. A.2.3). Influenza memory resulted in 

increases in proportions of NK cells, eosinophils, and monocytes (Appendix Fig. A.2.3). Next, we 

assessed changes in common cytokines and markers associated with myeloid cells and their 

function via both gene and protein expression. We first looked at two mediators of the 

inflammatory response, the alarmins IL-1α and IL-33. Both of these cytokines were significantly 

elevated in the lungs of memory mice via protein gene expression (Fig. 3.6d). When we examined 

markers that were significantly downregulated in the influenza super-infected memory mice, we 
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observed a decrease in protein expression of monocyte chemoattractant protein-1 (MCP-1), 

macrophage inflammatory protein-1 beta (MIP-1β), macrophage inflammatory protein-1 alpha 

(MIP-1α), and eotaxin (Fig. 3.6e), all of which suggests a less inflamed environment. Lastly, we 

found that arginase-1 (Arg1), cathepsin g (Ctsg), nitric oxide synthase 2 (Nos2), and amphiregulin 

(Areg) gene expression were also downregulated in memory mice (Fig. 3.6f). The promotion of an 

inflammatory balance in the lung environment through the stages of infection from influenza to 

secondary bacterial infection in the heterotypic memory mice may create an environment that is 

suitable for bacterial clearance. 
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Figure 3.6 The myeloid cell landscape in memory experienced mice is characterized by a reduction in the 

number of cell types. A) Flow cytometry analysis on acute super-infected mouse lungs. Samples were initially 

gated on CD45+ TCRβ-B220-Live cells. Once gated samples were concatenated (n=5) then downsampled and 
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populations were visualized using FlowSOM and UMAP plugins in FlowJo. FlowSOM populations were 

further analyzed by conventional gating techniques to determine breakdown of myeloid cell types. B) Flow 

cytometry analysis on memory super-infected mouse lungs (n=4). Gating and visualization were determined 

as noted above for A. C) Absolute cell counts of myeloid cell subsets from flow cytometry analysis (acute n=3, 

memory n=6). D) Protein expression of IL-1α (PBS n=22, acute n=20, memory n=32) and relative gene 

expression of IL-33 (acute n=8, memory n=8) in mouse lungs. E) Protein expression of cytokines associated 

with the myeloid compartment (MCP-1: PBS n=22, acute n=20, memory n=34; MIP-1β: PBS n=22, acute 

n=21, memory n=33; MIP-1α: PBS n=22 , acute n=13, memory n=29; eotaxin: PBS n=23 , acute n=20, 

memory n=33). F) Relative gene expression of molecules associated with myeloid cell function (Arg1: acute 

n=12, memory n=16; Ctsg: acute n=11, memory n=10; Nos2: acute n=8, memory n=8; Areg: acute n=12, 

memory n=12). P values: *<0.05, **<0.01 ***<0.001, ****<0.0001. 

3.5 Discussion 

The importance of understanding how bacterial and viral infections synergize is widely 

applicable across many respiratory viral diseases including the recent Covid-19 pandemic 152. 

Influenza-associated secondary bacterial infections are multi-faceted infections that employ 

multiple immune cell players of both the adaptive and innate immune systems to cover the broad 

spectrum of the host response from viral infection to bacterial infection. It is widely established 

that during an acute secondary bacterial infection the anti-viral response hinders the anti-bacterial 

mechanisms that are required to protect against opportunistic pathogens such as MRSA 14, 15, 16, 31, 

33, 34, 92, 95, 121, 149, 153, 154, 155. Secondary bacterial infection also results in heightened 

immunopathology driven by an overactive immune landscape, ultimately creating an ideal 

environment for opportunistic pathogens 122. The results presented herein expand on the prevailing 

views in the field generated in previously infected(?) animals and suggest that memory to influenza 



 

 74 

infections creates a balanced lung environment at the time of secondary bacterial infection 

susceptibility, resulting in a more effective anti-bacterial response.  

The epithelium represents the first line of defense against respiratory pathogens and assault 

from environmental stressors. Influenza directly targets the epithelial barrier leading to extensive 

damage and impairment of the mucocilliary escalator resulting in an environment that heavily 

favors bacterial adherence and colonization 153, 156. In the present study we found that influenza 

super-infected memory experienced mice have an altered lung epithelial environment as compared 

to their previously naïve acute infection counterparts. Interestingly, our data show that influenza 

super-infected memory lungs still undergo significant damage due to influenza infection. 

However, we observed preservation of epithelial gene expression of structural and functional 

markers in influenza super-infected memory mouse lungs. We saw an increase in the expression 

of Scgb1a1 (also known as club cell secretory protein), which has been shown to promote alveolar 

macrophage survival and response to inflammation 157. Deconvolution analysis also suggested that 

memory mice expressed a higher proportion of the lung gene signature associated with the 

epithelium. Further, we observed upregulation of markers associated with cilium and ciliary 

movement, as well as mucus production. Taken together these data suggest that influenza memory 

does not prevent lung injury, rather the epithelium is re-programmed in a manner that favors the 

enhancement of bacterial clearance. Barrier integrity is also targeted by aberrant immune 

mechanisms including enhanced cytokine production in response to influenza that in cases of 

severe viral infections can cause severe edema 158. Lung leak was also limited in the context of 

heterotypic influenza super-infected memory. Aberrant immune activation, such as cytokine 

storm, is key to influenza-related lung injury. Our data suggests that there is a reduction in 
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production of cytokines that are detrimental and associated with immunopathology, in particular 

MCP-1, MIP-1α, CXCL10, and IL-6 158, 159, 160, 161.  

A critical immune response to viral infection Is the production of interferons, a highly 

inducible first line defense against influenza infection. The interferon group is made up of three 

classes: type I (IFN-α and IFN-β), type II (IFN-γ), and type III (IFN-λ). Previous studies have 

shown that interferons enhance susceptibility during bacterial super-infection. These effects have 

been attributed to decreased Type 17 immune activation and destabilization in function and 

recruitment of phagocytic cells 25, 26, 27, 28, 29, 92, 120. Our data suggest that at the time of super-

infection, influenza memory experienced mice have reduced levels in expression of interferons, 

which based on prior studies would indicate that anti-bacterial mechanisms are preserved. One of 

the major roles that interferons play in the immune system is to induce production of other 

chemokines such as cxcl10, an important molecule associated with the trafficking of immune cell 

types including activated T cells 161. Although, this immune cell trafficking to the site of infection 

is imperative for resolution of infection, too many pro-inflammatory cells in the lung environment 

can lead to detrimental outcomes. In this study, we observed a decrease in the relative gene 

expression of CXCL10, which could indicate decreased inflammation in the lung environment of 

memory experienced mice, and which adds further support to the reduction seen in infiltrating 

cells at time of super-infection. 

An effective anti-bacterial response is marked by increased numbers of activated 

phagocytic cells. Support for a more effective anti-bacterial response to MRSA infection in our 

heterotypic memory experienced super-infected mice is demonstrated by the increase in the IL-1 

family of cytokines, including IL-1β, IL-1α, and IL-33. It has been shown that restoration of IL-

33 during an influenza associated bacterial super-infection is beneficial for bacterial clearance of 
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both S. aureus and MRSA, due to the role it plays in neutrophil recruitment to the infected lung 

162. IL-1β production is impaired by preceding influenza infection during secondary bacterial 

super-infections. This results in a detrimental outcome for the host because of the ability of IL-1b 

to promote the Type 17 pathway, which is important during antibacterial responses against 

numerous extracellular pathogens including S. aureus 114. The IL-12 family has also been 

implicated in protection against bacterial infections. In our model, we found that three members 

of the IL-12 family (IL-12p40, IL-12p70 and IL-23) were increased. IL-12p70 and IL-23 have 

been shown to play a role in bacterial super-infections in human cells due to their alteration by 

influenza, resulting in impairment of the Ifn-γ and Type 17 pathways, respectively 163. Another 

study suggested that IL-12p40 is crucial to early protection against bacterial infections due to its 

role in neutrophil recruitment 164. However, this study also determined that IFN-γ was important 

in their model and we saw neither an increase in the relative gene expression of IFN-γ or neutrophil 

recruitment in our memory mice at the time of super-infection. Although, we did not see a 

significant increase in Type 17 cytokines, IL-17a and IL-22 in our influenza super-infected 

memory versus acute infected mice, we did see increased IL-1β, IL-23 and decreased IFN-γ, 

suggesting promotion of Type 17 immunity. Together these data indicate that heterotypic memory 

mice display increases in pathways related to bacterial defense. These pathways should be studied 

further to elucidate direct mechanisms by which they are regulated. 

The lung is a dynamic organ that requires a state of homeostasis characterized by a balance 

in proinflammatory and anti-inflammatory factors 165. Influenza infection results in a highly 

inflamed lung environment that is characterized by an influx in immune cells and increase in their 

soluble mediators. To return to homeostasis, the lung initiates anti-inflammatory mechanisms. One 

of the key anti-inflammatory mechanisms of the immune system consists of Foxp3+ regulatory T 
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cells. These cells expand in response to an inflamed mucosal environment to dampen the immune 

response and they have been shown to acquire memory recall for targeted pathogen responses 

during re-challenge events 166, 167 which are imperative to restore homeostasis. In our study we saw 

a reduction in the proportion and numbers of FoxP3+ regulatory T cells in heterotypic memory 

experienced mice, as well as a reduction in the production of the anti-inflammatory cytokine IL-

10. IL-10 has further been implicated in impairment of immune defense against influenza-

associated secondary bacterial infections with Streptococcus pneumoniae and Staphylococcus 

aureus 113, 168, 169. These data suggest that the lung environment of the influenza super-infected 

memory mice is targeted against the virus early on in re-challenge, which is reflected in the lower 

number of regulatory T cells present at time of bacterial infection. Our data further support this 

notion with the increase seen in tetramer specific T cells in memory mice and reduction in innate 

immune cells that are elevated in acute infections and are associated with aberrant pro-

inflammatory responses. 

In order to promote an environment that is beneficial for bacterial clearance and limits 

immunopathology caused by aberrant immune activation, a balancing act must be struck between 

anti-viral and anti-bacterial host defense. As shown herein, this balance can be accomplished in 

memory experienced mice by a quick and controlled response against the influenza infection, 

ultimately limiting the deleterious impact of anti-viral mechanisms on anti-bacterial immunity. 

This finding is highly relevant to the human condition where nearly all humans have some level 

of pre-existing immunity against influenza and is suggestive of an important role for pre-existing 

heterotypic influenza memory in limiting super-infection susceptibility. Although our studies are 

limited to two influenza strains, PR8 and X-31, recognition of conserved epitopes and subsequent 

heterotypic immunity has been found in multiple mouse adapted strains of influenza and even in 
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mouse models infected with some human strains, the use of which could further enhance the results 

found here 170, 171. Further research on the role that heterotypic memory plays to enable 

susceptibility or protection against secondary bacterial infections is necessary and could provide 

further avenues of therapeutic intervention. 
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4.0 Conclusion and Future Directions 

Influenza associated bacterial super-infections represent an ongoing area of therapeutic 

interest due to their devastating impacts and long-term consequences on the lung. Due to the 

multifaceted nature of this disease, current therapies for treatment rely heavily on treating the virus 

with antivirals or giving broadly neutralizing antibiotics. Both of these therapies rely heavily on 

timing of administration for effectiveness as well as the probability of the bacterial species to 

respond to the antibiotic. Here we presented novel research that furthers our understanding of the 

role of the immune system in establishment and susceptibility to secondary bacterial super-

infections.  

Our studies with the inhibitory marker PD-1 showed minimal changes in susceptibility to 

super-infection, as evidenced by the lack of significant change in MRSA burden during super-

infection. In chronic and cancer models, where stimulation of the immune system is constant, 

inhibiting pathways that downregulate the immune response results in better control of infection172. 

Some studies on acute infections have resulted in a slightly different outcome with the observation 

that downregulation of these pathways results in heightened immune responses by T cells, but at 

the cost of immunopathology172. Interestingly, in our model we did see data that hinted at more 

damage in PD-1 KO super-infected mice as compared to their WT counterparts. Many disease 

models that have been published with the use of checkpoint inhibitors have stressed the timing of 

therapy 173. From our research, we concluded that loss of PD-1 on all cell types during the course 

of infection is a potential caveat in our studies. With this in mind, we have obtained PD-1fl/fl mice 

from Drs. Arlene Sharpe and Dario Vignali, which we will use in the future to study the role of 

PD-1 on specific cell subsets, with particular interest on myeloid cells. We are particularly 
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interested in studying the role on macrophages (Cx3cr1CreER) and neutrophils (Mrp8Cre). PD-1 

expression is dependent upon stimulation; therefore, we could use our mouse memory model to 

study the long-term impacts of PD-1 on regulation of the immune memory compartment and super-

infection susceptibility.  

The study of immune memory during influenza challenge has shaped our understanding of 

the role of the immune system in the face of evolved viral strains. This knowledge has led to new 

potential targets for development of universal vaccines to effectively defend against mutated 

influenza viruses. In our studies we looked further at the role that immune memory plays following 

influenza infection, specifically how it shapes super-infection susceptibility. Our studies 

determined that immune memory plays a role in bacterial super-infection. The exact mechanism 

that drives the reduction in MRSA burden in our model is still to be elucidated. Our data pinpoint 

several pathways of interest to pursue in the future. Two cytokines of interest that were increased 

during memory super-infection were Il-1β and Il-12p40. With antibody blockade we can target 

both of these cytokines and their signaling pathways to determine if they have any role in MRSA 

reduction. We also are currently diving deeper into understanding the role of B cells in our model, 

with a particular interest in antigen presenting B cells and how they influence the establishment of 

the memory compartment. Using mouse models, we can target B cells to determine the role they 

play in establishment of the memory response to secondary bacterial super-infections. Two mouse 

models that we are interested in using to study these responses are muMT, which lack mature B 

cells, and MD4 mice, which lack antigen presenting B cells. 

In conclusion, we are still at the early stages of understanding the role of inhibitory 

pathways as well as memory in susceptibility to influenza associated secondary bacterial super-

infections. Ongoing studies in both of these areas could help us further understand super-infection 
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susceptibility, with the goal of eventually targeting one of these pathways for therapeutic purposes. 

Regarding influenza, there has been ongoing interest in designing universal vaccines which could 

stimulate the memory cell compartment enabling broad spectrum immunity across strains. Our 

research suggests that the influenza immune memory compartment is also protective against 

secondary bacterial infections; therefore, if a universal vaccine can be synthesized it may also 

confer protection against secondary bacterial infections. 
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Appendix A Supplementary Figures and Tables  

Appendix A.1 The role of Inhibitory Marker PD-1 in Susceptibility to Influenza Associated 

Secondary Bacterial Infections. 

 

Appendix Figure A.1.1 T cell flow cytometry  gating strategy. T cells were initially gated on Cd45+ Live cells 

then gated further into their individual subsets. 
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Appendix Figure A.1.2Mouse model of global PD-1 KO and antibody blockade of PD-1 and Pd-l1. A)WT 

C57Bl/6 and global PD-1 KO micewere infected on day zero with eithe PBS or influenza strain PR8. 

Following influenza infection, mice were challenged with MRSA USA300 or PBS at day six. On day seven 

mice were euthanized and lungs, and bronchoalveolar lavage fluid was collected for downstream analysis. B) 

WT C57Bl/6 mice were infected with PBS or influenza strain PR8. Antibody injections of either PD-1, its 

ligand Pd-l1, or their corresponding isotype controls were given at 200ug doses on days one, three, and five 

(all antibodies came from BioXCell, Lebanon NH). On day six mice were given PBS or MRSA strain USA300. 

Mice were harvested ond ay seven for downstream analysis. 
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Appendix Figure A.1.3 Antibody blockde against PD-L1 has a minimal impact on susceptibility to super-

infection. A) Percent of weight loss in anti-PD-L1 or isotype treated WT C57Bl/6 was calculated starting from 

day zero, then again on day six when MRSA was given, and lastly on day seven the day of harvest (Influenza: 

ISO n=4, anti-Pd-l1 n=4; super-infected: ISO n=12, anti-Pd-l1 n=12).  Relative gene expression of Presence of 

viral protein was assessed in cDNA from total mouse lung via relative gene expression analysis of PR8 
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(Matrix protein) (Influenza: ISO n=4, anti-Pd-l1 n=4; super-infected: ISO n=7, anti-Pd-l1 n=8). Number of 

MRSA colonies plated from infected mouse lung homogenates (super-infected: ISO n= 12, anti-PD-l1 n=12). 

B) BAL protein from Isotype and anti-Pd-L1 treated mice were quantified from BAL collected at day of 

harvest (Influenza: ISO n=4, anti-Pd-l1 n=4; super-infected: ISO n=12, anti-Pd-l1 n=12). C) Total infiltrating 

cell counts, number of monocytes, as well as number of neutrophils were determined by cytospins using 

bronchoalveolar lavage fluid collected from infected mouse lungs at time of harvest (Influenza: ISO n=4, anti-

Pd-l1 n=4; super-infected: ISO n=8, anti-Pd-l1 n=8). P values:*<0.05, **<0.01,***<0.001,****<0.0001. 
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Appendix Figure A.1.4 Global knock out of PD-1 plays a minimal role on changes in myeloid ell subset. 

 

Flow cytometry staining of myeloid cell subsets in PD-1 KO and WT super-infected, 

MRSA alone, or Influenza alone groups. Samples were initially gated on CD45+ TCRβ-B220-Live 

cells (n=4).  
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Appendix A.2 Heterotypic Influenza Infections Mitigate Susceptibility to Secondary 

Bacterial Infection 

 

Appendix Figure A.2.1 Visualization of lung damage MRSA alone infected mice and quantification of damage 

and metaplasia in memory experienced mice. A) Representative histology sections of acute (n=2) and memory 

(n=2) influenza infected WT C57Bl/6 mice from formalin inflated mouse lungs stained with H&E at 
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40X,100X, and 200X. B) Percent of damage and metaplasia in influenza alone and super-infected memory 

groups quantified by calculating thresholds of damaged areas and areas of metaplasia using Fiji software 

(influenza n=8, super-infected n=9). P values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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Appendix Figure A.2.2 Gating strategy for T cell compartment analysis and flow cytometry analysis for acute 

and memory influenza alone infections. T cells were initially gated on CD90.2+CD45+Live cells and further 

gated to parse out changes in CD4+ and CD8+ T cells. B) Flow cytometry analysis on acute influenza infected 

mouse lungs. Once gated samples were concatenated (n=3) and populations were visualized using FlowSOM 

and UMAP plugins in FlowJo. FlowSOM populations were further analyzed by conventional gating 

techniques to determine breakdown of T cell types. C) Flow cytometry analysis on memory influenza alone 

infected mice (n=4). 
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Appendix Figure A.2.3 Gating strategy for myeloid cell subset analysis and flow cytometry analysis for acute 

and memory influenza alone infections. A) Myeloid cells were initially gated on TCRB-B220-CD45+Live cells 

and further gated to determine changes in myeloid cell subsets. B) Flow cytometry analysis on acute influenza 

infected mouse lungs. Once gated samples were concatenated (n=3) and downsampled then visualized using 

FlowSOM and UMAP plugins in FlowJo. FlowSOM populations were further analyzed by conventional 

gating techniques to determine breakdown of myeloid cell types. C) Flow cytometry analysis on memory 

influenza alone infected mice (n=4). 
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Appendix B Supplementary Materials and Methods 

Appendix B.1  

Mouse real-time PCR primers used in all experiments, purchased as a proprietary primer 

probe set as TaqMan “Assay on Demand”. 

Table 1 “Assay on Demand” Probes 

Gene Name Assay ID 

tjp1 Mm00493699_m1 

scgb1a1 Mm00442046_m1 

sftpc Mm00488144_m1 

Ifnγ Mm01168134_m1 

Ifnα Mm03030145-gH 

Ifnβ Mm00439546_s1 

Ifnλ3 Mm00663660_g1 

muc5b Mm00466376_m1 

muc5ac Mm01276725_g1 

foxj1 Mm01267279_m1 

col1a1 Mm01302040_g1 

acta2 Mm01546133_m1 

Il-6 Mm00446190_m1 

Il-10 Mm00439614_m1 

cxcl10 Mm00445235_m1 

Il-17a Mm00439618_m1 

Il-23 Mm00518984_m1 

Il-1β Mm00434228_m1 

Il-22 Mm0044421_m1 

Il-1α Mm00439620_m1 

Il-33 Mm00505403_m1 

arg1 Mm00475988_m1 

ctsg Mm00456011_m1 

nos2 Mm00440502_m1 

areg Mm01354339_m1 
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Appendix B.2 Staphylococcus Aureus Media Recipe 

1) Mix the following in a 1L Erlenmeyer flask: 

7.5g agar 

15g yeast extract 

10g casamino acids 

1.24g Na2HPO4 

0.205g KH2PO4 

10mg MgSO4  7H2O 

3.75mg MnSO4  H2O 

3.2mg FeSO4  7H2O 

3.2mg citric acid 

450mL distilled water 

2) pH to 7.3 

3) Autoclave 

4) Meanwhile mix: 

11.6g sodium pyruvate 

50mL distilled water 

5)Filter-sterilize sodium pyruvate mixture and add to autoclaved portion once it has cooled 

slightly. 

6) Distribute 10mL of media to sterile plates under cell culture hood, swirling to spread 

evenly and popping any bubbles with a sterile glass pipet tip. 

To make broth, follow all above steps and exclude the addition of agar.  
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