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Neuropeptidergic Inhibition of Pain Transmission
Tyler Scott Nelson, PhD

University of Pittsburgh, 2022

In the following dissertation, I present data implicating glutamatergic dorsal horn
interneurons expressing the inhibitory G protein-coupled neuropeptide Y Y1 receptor (Y 1-INs) in
the development and maintenance of neuropathic pain. Neuropathic pain is a debilitating form of
chronic pain that arises from a lesion or disease affecting the somatosensory system. Many
symptoms of neuropathic pain are hypothesized to result from a loss of spinal cord dorsal horn
inhibition and/or a gain in dorsal horn excitation that allow innocuous peripheral inputs to be
perceived as painful. Thus, promising future pharmacological agents may dampen maladaptive

spinal excitatory signaling.

One promising therapeutic candidate is neuropeptide Y (NPY) which exhibits long-lasting
inhibitory control of spinal nociceptive transmission after injury, primarily through NPY-Y1
receptor signaling. However, NPY Y1 receptors are found on Y1-INs, and NPY Y1 and Y2
receptors are expressed on the central terminals of primary afferent neurons arising from the dorsal
root ganglion. This dual expression complicates the interpretation of the specific site of anti-
nociceptive action for NPY. Thus, a major goal of this thesis was to clarify the specific site(s) of

intrathecal NPY that mediate anti-hyperalgesia in rodent models of neuropathic pain.

In this dissertation I detail an extensive pre-clinical research history supporting spinally-

directed NPY Y1 agonists as a promising therapeutic for chronic pain. I demonstrate that Y1-INs
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are necessary and sufficient for the behavioral signs of neuropathic pain. Additionally, I use single
cell RNA-sequencing data in combination with fluorescence in situ hybridization to segregate Y1-
INs into three distinct dorsal horn interneuron subpopulations and I demonstrate the conservation
of these subpopulations across the murine, rhesus macaque, and human spinal cord dorsal horns. I
also utilize genetic tools in combination with in vivo behavior to show that the Grp/Npylr-
expressing subpopulation specifically is necessary for the manifestation of neuropathic pain.
Finally, I present how endogenous spinal NPY Y1 receptor signaling can synergistically work with
mu opiate receptor signaling to maintain postoperative pain in remission. Together, these
observations increase our understanding of how nerve injury increases the excitability of Y1-INs

and provide rationale for targeting spinal Y 1-INs as a novel approach to treat neuropathic pain.
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Preface

In the following dissertation, I examine the role of neuropeptides and neuropeptide
receptor-expressing neurons and their ability to inhibit the pre-clinical behavioral signs of chronic
pain in rodent models. I predominately focus on the endogenous neuropeptide, neuropeptide Y
(NPY), and its ability to inhibit the behavioral signs of chronic neuropathic pain when applied to

the spinal cord via acting at its’ cognate Y1 receptor.

Chapter 1 is largely based on a review article focusing on the extensive pre-clinical research
history of spinal neuropeptide Y and Y1 signaling in both pain and itch that I published in Progress

in Neurobiology in 2021 (Nelson and Taylor, 2021).

Chapter 2 is a research manuscript focusing on the role of spinal Y1 receptor-expressing
interneurons (Y 1-INs) in the development of neuropathic pain in rats that I published in Scientific

Reports in 2019 (Nelson et al., 2019).

Chapter 3 is a research manuscript focusing on NPY Y1-selective spinal pharmacology
and the characterization/modulation of spinal cord dorsal horn Y1-INs in a mouse model of

neuropathic pain that is currently in revision at Proceedings of the National Academy of Sciences

(Nelson et al., 2022).

Chapter 4 is a research manuscript focusing on the characterization of Y1-IN subtypes,

their role in a mouse model of neuropathic pain, and the conservation of Y1-IN subtypes across
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higher-order mammalian species that is currently in preparation for submission to Proceedings of

the National Academy of Sciences.

Chapter 5 is a research manuscript focusing on a potent and long-lasting endogenous
synergy between mu opiate receptor and NPY Y1 receptor signaling that persists to maintain

chronic postoperative pain in remission that is currently under review at PNAS NEXUS.

Appendix A contains a Journal Club article that I published in The Journal of Neuroscience

highlighting a research manuscript focusing on mechanical allodynia (Nelson, 2019).

Appendix B details a collaborative study where I inhibited downstream NPY Y1 signaling
pathways to reinstate the behavioral signs of inflammatory pain that is published in PAIN (Fu et

al., 2019).

Appendix C details a study where I performed NPY Y2-selective spinal pharmacology in

a mouse model of neuropathic pain that is part of a larger study in preparation for submission.

Appendix D details a collaborative study where I performed pharmacological and

chemogenetic inhibition of the parabrachial nucleus Y1 receptor-expressing neuron population in

a mouse model of neuropathic pain.
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1.0 Introduction and background

1.1 Introduction and overall hypothesis

Nociceptor activation normally provides a protective function that can reduce tissue
damage in the face of potentially hazardous stimuli. However, after tissue damage occurs,
pathological changes within peripheral or central neurons can lead to chronic pain (Gold and
Gebhart, 2010; Kuner, 2010; Latremoliere and Woolf, 2009). Chronic pain conditions place
significant burdens on patients, their families, and society by reducing quality of life and creating
enormous financial consequences that total more than 630 billion USD annually for the United
States of America alone (Gaskin and Richard, 2012; Henschke et al., 2015). One particularly
debilitating form of chronic pain is neuropathic pain that arises from a lesion or disease affecting
the somatosensory system (Costigan et al., 2009; Finnerup et al., 2021; Jensen and Finnerup,
2014). The median population prevalence rate for neuropathic pain is 9.4% (Van Hecke et al.,
2014). Neuropathic pain presents as spontaneous pain (non-stimulus evoked), hyperalgesia (a
noxious stimulus evokes more pain than prior applications of the same stimulus), and/or allodynia

(a non-noxious stimulus evokes a pain response) (Colloca et al., 2017).

Interneurons in the dorsal horn of the spinal cord receive direct inputs from primary
afferents in the periphery that respond to both noxious and innocuous stimuli (Moehring et al.,
2018). The incoming afferent information is processed by complex dorsal horn microcircuits
involving inhibitory and excitatory interneurons before being transmitted via projection neurons

to several higher-order brain areas (Peirs and Seal, 2016; Todd, 2010). The heterogeneous spinal



cord interneuron populations/microcircuits are essential for processing peripheral sensory input,
and changes in their integration/signaling result in sensory dysfunctions such as allodynia
(Benarroch, 2016; Lolignier et al., 2014; Moehring et al., 2018; Todd, 2010). Thus, maladaptive
spinal signaling is hypothesized to be the underlying cause of varying forms of chronic pain and
in particular neuropathic pain (Peirs et al., 2021, 2020; Peirs and Seal, 2016; Woolf and Salter,
2000). Consequently, the dorsal horn spinal cord interneurons represent a promising target for the

development of novel pain therapeutics.

Excitatory and inhibitory dorsal horn interneurons process somatosensory input and the
balance between the two determines the net outflow of pain signals from neurons projecting to the
brain (Koch et al., 2018). In neuropathic pain, loss of dorsal horn inhibition allows the propagation
of low threshold innocuous touch inputs to be perceived as painful (Lu et al., 2013; Miracourt et
al., 2007; Petitjean et al., 2015; Schoffnegger et al., 2008). However, the excitatory interneurons
that propagate the innocuous inputs as painful following nerve injury remain to be determined.
Multiple populations of excitatory interneurons may mediate neuropathic pain (Peirs et al., 2021,
2020; Todd, 2017), but few represent readily druggable pharmaceutical targets. One promising
exception is an excitatory subpopulation that express the Gi protein-coupled Y1 receptor for

neuropeptide Y (NPY) (Diaz-delCastillo et al., 2018).

A rich and growing body of preclinical evidence implicates spinal NPY, acting via its
cognate Y1 and Y2 receptors, in the potent inhibition of chronic pain (Brumovsky et al., 2007;
Diaz-delCastillo et al., 2018; Hokfelt et al., 2007; Smith et al., 2007). In vitro quantitative receptor

autoradiography demonstrates the highest density of NPY binding sites in superficial laminae I-II



of the dorsal horn (Kar and Quirion, 1992), a key relay of noxious sensations from the periphery
to the brain. The antinociceptive actions of NPY may be occurring via targeting Y1 receptor-
expressing interneurons (Y 1-INs) that are an abundant subpopulation of interneurons in laminae
I-1I of the dorsal horn (Brumovsky et al., 2007, 2006), the central terminals of Y1 receptor-
expressing peptidergic primary afferents (Taylor et al., 2014; Zhang et al., 1994), or the central
terminals of Y2 receptor-expressing small-to-medium sized, peptidergic, thinly myelinated,

putative A-nociceptor primary afferents (Brumovsky et al., 2005).

This dissertation tests the hypothesis that exogenous or endogenous spinal neuropeptide Y
potently inhibits the behavioral signs of chronic pain via inhibiting pain facilitatory Y1 receptor-

expressing dorsal horn interneurons.



1.2 Brief overview of spinal pain circuitry implicated in neuropathic pain

A hallmark of pathological pain stemming from nerve injury is pain experienced in
response to light mechanical touch, clinically referred to as mechanical allodynia or touch-evoked
pain (Lolignier et al., 2014). Changes in the spinal cord dorsal horn microcircuitry are strongly
implicated as the underlying cause of mechanical allodynia (Peirs et al., 2020; Peirs and Seal,
2016). Within the dorsal horn, a laminar architecture largely segregates noxious and innocuous
sensory inputs (Rexed, 1952). High threshold C and Ad-fibers that transmit noxious inputs, itch,
and temperature synapse in superficial laminae I-II in the dorsal horn. Conversely, low threshold
C and Aod-fibers transmitting aspects of touch largely synapse in inner lamina II-III, while
innocuous touch A-fibers largely synapse in inner laminae II-IV. Therefore, superficial dorsal horn
is primarily involved in the processing and transmission of noxious inputs, while inner laminae II-
IV process innocuous inputs or aspects of touch, denoting this region the low-threshold
mechanosensor-recipient zone (LTMR-RZ) (Moehring et al., 2018) (Figure 1). However,
following peripheral nerve injury, pathological changes within the dorsal horn allow innocuous
inputs to the LTMR-RZ to be propagated to the superficial dorsal horn and ultimately be perceived

as noxious.
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Figure 1. General organization of pain and touch circuitry in the spinal cord
Inner lamina II through lamina IV represents the low-threshold mechanosensory recipient zone (LTMR-RZ) shown
in light blue. PKCy interneurons are found in a dense band in inner lamina II at the boundary between the LTMR-

RZ and superficial lamina that receive, modulate, and transmit noxious stimuli.

Input from low threshold mechanoreceptors does not excite nociceptive projection neurons
in lamina I. AP activation in slices from naive rats remains confined to the LTMR-RZ, but
following spared nerve injury (SNI), excitation spreads to the superficial dorsal horn
(Schoffnegger et al., 2008). This spread of innocuous touch input into superficial dorsal horn is
believed to be mediated through a loss of inhibition in the spinal cord as bath applications of
GABAA and glycine receptor antagonists in slices from naive rats is sufficient to reproduce the
spread of excitation into superficial dorsal horn (Schoffnegger et al., 2008). Further evidence for
the loss of inhibition mediating allodynia stems from ablation or inhibition of dynorphin, glycine,
parvalbumin, and neuropeptide Y inhibitory neuron populations in the dorsal horn, all of which
are able to induce tactile allodynia (Duan et al., 2014; Foster et al., 2015; Petitjean et al., 2015;

Tashima et al., 2021). Pharmacologically-mediated glycinergic disinhibition is also sufficient to



induce spikes and cFos activation in superficial laminae of the dorsal horn in response to Ap-fiber
range stimuli (Miracourt et al., 2007). At the boundary between the LTMR-RZ and the superficial
dorsal horn, Fos positive cells colocalize with neurons immunoreactive for protein kinase C y
(PKCy), implicating PKCy interneurons in the transmission of innocuous input to nociceptive
projection neurons (Figure 1) (Neumann et al., 2008; Peirs et al., 2015). Intracisternal
administration of a selective PKCy inhibitor prevents both behavioral mechanical allodynia and
superficial Fos activation in animals with glycinergic disinhibition (Miracourt et al., 2007), and
intrathecal PKCy inhibitors also attenuate SNI-induced mechanical allodynia (Peirs et al., 2021;

Petitjean et al., 2015).

PKCy interneurons are primarily found in a dense band within inner lamina II of the dorsal
horn and are activated by innocuous but not noxious stimuli (Neumann et al., 2008; Polgéar et al.,
1999). Paired neural recordings demonstrate that PKCy interneurons undergo strong glycinergic
feedforward inhibition in response to dorsal root stimulation at C, Ad, and AP fiber input ranges
(Lu et al., 2013). However, following peripheral nerve injury, this feedforward inhibition is lost
and activation at each of C, Ad, and AP fiber inputs produces EPSPs in both PKCy interneurons
as well as in paired transient central cells superficial to the PKCy interneurons (Lu et al., 2013;
Wang et al., 2020). Transient central cells are excitatory neurons in lamina II that receive direct C
fiber input and can activate vertical cells, which in turn can activate pain projection neurons in
lamina I (Lu and Perl, 2005). One potential source for the loss of feedforward inhibition is the loss
of parvalbumin-positive inhibitory synaptic appositions onto PKCy interneurons that has been
found following SNI (Petitjean et al., 2015). Furthermore, pharmacological inhibition of PKCy

attenuates tactile allodynia after SNI as well as the induction of Fos in superficial laminae after



light mechanical stimulation (Peirs et al., 2021; Petitjean et al., 2015). Thus, it is hypothesized that
loss of feedforward inhibition onto PKCy interneurons opens a “gate” and permits innocuous input
to be propagated throughout the nociceptive circuitry, and consequently, selective inhibition of
PKCy attenuates both behavioral and immunohistochemical markers of tactile allodynia following

nerve injury.

Models of the spinal neural circuit for allodynia include propagation of low threshold
mechanosensory information from disinhibited PKCy interneurons, to transient central cells, to
vertical cells, and then to NKIR projection neurons (Peirs and Seal, 2016; Todd, 2017) (Figure
2). While the vertical cell population has recently been denoted as interneurons that express the
gastrin releasing peptide receptor (Polgar et al., 2022), the identity of transient central cells remains
unknown, The transient central cell population likely involves a subset of somatostatin-expressing
excitatory interneurons as their ablation causes loss of mechanical pain (Duan et al., 2014). One
population of transient central cells has been identified that expresses gastrin releasing peptide but
this population is hypothesized to be involved in itch and not pain (Albisetti et al., 2019; Dickie et
al., 2019). Peirs et al. have identified the calretenin interneurons as a candidate transient central
cell population based on the fact that chemogenetic activation of dorsal horn calretenin
interneurons produces mechanical allodynia (Peirs et al., 2015). However, neuronal activity (Fos
immunohistochemistry) and behavioral analyses demonstrate that calretenin interneurons play a
larger role in inflammatory mechanical allodynia than neuropathic injury-mediated mechanical
allodynia (Peirs et al., 2015), and calretenin firing patterns in response to current injection do not
match well with the transient firing type (Smith et al., 2015). Excitatory interneurons that express

the neuropeptide Y1 receptor are one likely candidate transient central cell population as their



firing pattern in response to current injection closely matches the transient type (Sinha et al., 2021),
and we have recently implicated this population as necessary for the manifestation of peripheral
nerve injury-induced mechanical allodynia (Nelson et al., 2019). In conclusion, more research is
needed to identify the excitatory interneuron populations that connect low threshold

mechanoreceptors with lamina I projection neurons to propagate nerve injury-induced allodynia.

i APBrur

Figure 2. A diagram of the mechanical allodynia circuitry.
Myelinated low-threshold afferent A fibers synapse in the LTMR-RZ. A feedforward circuit involving inhibitory
parvalbumin and glycinergic interneurons normally prevents activation of PKCy interneurons by the A fibers,
however, following peripheral nerve injury this feedforward inhibition is lost. A dorsally-directed polysynaptic
circuit allows activation of PKCy interneurons, transient central cells, vertical cells, and lamina I projection neurons
by low-threshold mechanosensory afferent input. This schematic is taken from (Todd, 2017) and largely based on

the work of (Grudt and Perl, 2002; Lu et al., 2013).



1.3 Neuropeptide Y receptor anatomy and physiology in the dorsal root ganglion and
dorsal horn of the spinal cord

Neuropeptide Y (NPY) is a 36 amino acid peptide first described in 1982 (Tatemoto et al.,
1982). It is highly expressed throughout the body and regulates a wide variety of physiological
processes that include food intake, emotional regulation, and cardiovascular function (Brothers
and Wahlestedt, 2010). Most species express at least 4 of the different receptor subtypes that bind
NPY: Y1, Y2, Y4, and Y5. All NPY receptor subtypes are Gi protein-coupled receptors, so NPY
agonists decrease the production of cyclic adenosine monophosphate (cAMP) thus dampening
intracellular signaling (Brothers and Wahlestedt, 2010; Brumovsky et al., 2007). NPY receptors
are located in the spinal cord across a wide variety of species, including humans (Allen et al., 1984;
Gibson et al., 1984). In vitro quantitative receptor autoradiography demonstrates the highest
density of NPY binding sites in superficial laminae I-II of the dorsal horn (Kar and Quirion, 1992),
a key relay of noxious sensations from the periphery to the brain. Evidence suggests that only Y1
and Y2 receptor expression is found at the spinal level (Brumovsky et al., 2007; Diaz-delCastillo

et al., 2018; Hokfelt et al., 2007; Smith et al., 2007).

1.3.1 Expression of NPY receptors in the dorsal root ganglion

Y1 receptor expression is found in the somatic plasmalemma of small, unmyelinated,
calcitonin gene-related peptide (CGRP)-expressing, peptidergic neurons in the dorsal root
ganglion (DRG) (Taylor et al., 2014; Zhang et al., 1994). Y1 and CGRP are co-expressed
extensively in the DRG soma, and it is becoming increasingly apparent that Y1 is trafficked to
central terminals in the dorsal horn only to a limited degree. First, CGRP-positive primary afferent

terminals rarely (if-ever) co-express Y1 receptor-like immunoreactivity in the substantia



gelatinosa (Brumovsky et al., 2002; Taylor et al., 2014; Zhang et al., 1994); this could be due to
extremely sparse expression or limitations in currently available detection tools. Second, despite
the clear finding that sciatic nerve ligation robustly downregulates Y1 receptor expression in the
DRG and slightly alters Y1 expression in the dorsal horn (proposed to be an effect on Y1-INs and
not central terminals) (Brumovsky et al., 2004), other forms of peripheral nerve injury, including
dorsal rhizotomy, sciatic nerve transection, or spared nerve injury, cause little to no change in Y1
immunoreactivity in the superficial dorsal horn (Nazli and Morris, 2000; Nelson et al., 2019;
Zhang et al., 1994). Thus, it seems 