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Abstract 

Visualizing dynamics of the central dogma in living single cells 
Yue Guo, PhD 

University of Pittsburgh, 2022 
 
 
 
 

Imaging the central dogma at single molecule resolution in single cells reveals the spatial 

and temporal dynamics and ubiquitous cell-to-cell variability of molecular events. In my 

dissertation work, I first implement SunTag-based translation reporter and quantify the copy 

numbers of signaling molecule NEMO in NF-κB pathway to illustrate the use of state-of-the-art 

single molecule approach to study the central dogma. Transcription process to produce mRNAs as 

the start of the central dogma is the chief regulator of gene expression. However, most approaches 

to image mRNAs require cell fixation or have limited single-molecule sensitivity for live-cell 

applications. I therefore develop and characterize SunRISER, an approach for long-term imaging 

of mRNA in living cells. SunRISER employs SunTag as a scaffold to achieve fluorescence signal 

amplification of coat proteins and enhance contrast of mRNAs. Although the naïve design is 

impractical, with inconsistent fluorescent properties that complicate mRNA detection, I optimize 

the approach using computational and synthetic biology to achieve robust and unambiguous 

detection of individual mRNAs. SunRISER-labeled mRNAs are resistant to photobleaching and 

the design principle is generalizable for robust whole-cell mRNA imaging experiments with 

orthogonal tagging systems. SunRISER variants using shorter 8x and 10x stem-loop arrays 

(SunRISER SRv1.1 and SRv1.2, respectively) also result in consistent mRNA labeling and 

detection, while reducing the size of alterations to target mRNA sequences. As an application of 

SunRISER, I interrogate mitotic inheritance of mRNA molecules during a variety of stresses. 

When observed over the period of cell doubling time, it is found that mitotic mRNA inheritance is 

equally partitioned in standard growth conditions and that inflammatory stress or nutrient 
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limitation can enhance diversity among post-mitotic sister cells. SunRISER can be applied to other 

RNA species with further modification. Taken together, SunRISER enables a window into living 

cells to observe aspects of the central dogma in addition to roles of mRNAs in rare and dynamical 

trafficking events.  
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1.0 Chapter 1. Introduction and scope 

1.1 Single cell measurement provides insight into heterogeneity and dynamical properties 

Single cells as the basic computing unit of organisms have been the major focus of 

biological studies in more than a century and become the fundamental resolution to understand 

multi-cellular processes. A central question to be answered in biology is how distinct individual 

cells contribute to define organism as a whole. How do cells differentiate from each other and 

make different cell fate decisions? How do different cells communicate to their neighbors and 

respond to their native environment coordinately? By choosing their dedicated fates and 

performing unique functions, single cells are specialized workers that operate the whole machine 

and require precise instructions. Failure to understand single cell behavior will impose difficulty 

in interpreting biological principles. One contributing factor to this difficulty that necessitates 

single cell analysis is the ubiquitous cell-to-cell heterogeneity in any subpopulation of “seemingly 

identical” cells [1, 2]. Genetic heterogeneity is naturally present in any population of cells due to 

random mutations. Non-genetic or phenotypic heterogeneity [3-8] is more prevalent and now 

recognized as one efficient way cells exploit to cope with various environmental cues. Non-genetic 

heterogeneity can be classified as extrinsic or intrinsic based on the origin [9]. Extrinsic 

heterogeneity refers to diverse cellular responses to particular physical and biological 

environments and stems from complex culture environment such as different neighboring cells or 

specific chemical gradients and is only reflected in subpopulations exposed to the triggering 

factors. Intrinsic heterogeneity conversely cannot attribute to obvious external source and arises 

from inherent diversifications within a complex system and often involves symmetry-breaking 
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distributing events that create discrete distinction or stochastic biochemical reactions resulting 

continuous differentiation. For instance, molecules present at low copy numbers are prone to 

intrinsic heterogeneity resulted from random production, degradation, and partition. Another 

confounding factor the requires single-cell resolution studies is the dynamical nature of every 

biological process [10-14]. Traditionally, biological principles including regulatory networks and 

signaling pathways are established via invasive biochemical assays that isolate target molecules to 

measure amounts and characterize interactomes, which barely preserves the native environment 

where the biological processes take place and let alone the spatiotemporal dynamics. But more and 

more experimental evidence shows that cells can respond distinctly to the same stimulus but with 

different temporal dynamics such as duration and oscillation frequency [15, 16] so average 

analysis from cell populations could misrepresent cells receiving distinct spatiotemporal dynamic 

activation patterns.  

Single cell studies are enabled by blooming of single-cell resolution techniques [17-24]: 

flow cytometry, fluorescence microscopy and single-cell sequencing. Flow cytometry[25] allows 

hundreds of thousands of single cells to flow through a multiple-laser system and be recorded as 

individual data points in a multi-parametric space including size, viability and fluorescence 

properties that mark specific labeled molecules. Flow cytometry is a high-throughput technique 

and widely used to assess protein level and gene expression to classify cell types. However, it is 

impossible to follow single cells over time and retrieve spatial information with conventional flow 

cytometry. Single cell sequencing [26-30] has become the most powerful technique demonstrating 

comprehensive insights into single cell genomics [31], transcriptomics [32], and proteomics [33, 

34] to provide fundamental and transformative understanding of many diseases including cancers 

[35] and COVID-19 [36]. The successful implementation of single cell sequencing technology 
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involves isolation of single cells, extraction and barcoding into sequencing library and final 

sequencing with commercial platforms. But chemical or physical manipulation of single cells can 

potentially cause unintended DNA damage or cell stress and therefore affect detection accuracy 

and introduce higher noise. Additionally, cells are no longer maintained at their native environment 

during isolation and the cell behavior and gene expression profile could also be perturbed 

unexpectedly. By contrast, fluorescence microscopy affords direct imaging of single cells without 

disturbing their innate surroundings. Live cell imaging is further equipped with the capability to 

retain cell identity and capture temporal complexity in biological processes and is the essential 

tool to probe dynamical cellular events. Although fluorescence microscopy methods suffer from 

low-throughput and sophisticated set-up but “seeing is believing” still motivates incessant 

improvement of instrumentation and labeling tools. 

Eukaryotic cells establish specificity by interpreting a multitude of heterogenous signals 

they encounter as inputs and computing appropriate responses. These signals often confer 

dynamics in duration and strength and co-present with other signals. Cells transmit signal 

information by activating multiple signaling pathways, usually manifested as protein location shift 

and protein complexes assembly. The core decoder of signaling pathway is transcription factors, 

which precisely control the expression of a specific set of target gene. Conventional biochemical 

measurements at fixed time points have depicted signaling networks and gene expression patterns 

and it is evident that multiple signaling pathways are interconnected where expressed proteins of 

target genes from one pathway could be inhibitors or activators for another pathway. This structure 

suggests that the temporal features of individual processes including duration and sequence are 

vital to the overall cellular responses and static portray of the signaling system is far from enough 

to define the whole story. Cells must be capable of translating external cues and encoding them as 
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various temporal patterns in signaling networks and also possess the mechanism to decode the 

dynamics and produce corresponding transcriptional responses [37, 38]. The non-linear nature has 

been revealed in many signaling pathways by live cell imaging and following cellular processes 

in the same cell over time [39]. For example, NF-κB signaling pathway can exhibit either 

oscillatory or sustained activation patterns when stimulated with different signals [40, 41] and 

therefore different gene expression profiles. P53 dynamics are also differently modulated in 

response to DNA damage caused by different radiation stimuli and doses and contribute to distinct 

cell fates [42, 43].  

The behavior and fate of single cells are determined by complex cell signaling and gene 

expression regulation. Combined single-cell measurement with mathematical models, it is 

increasingly clear that heterogeneity and dynamics are universal features and governing principles 

in the control of cell fate. Single-cell studies also revealed new complexity and requires an even 

closer look of cellular processes at single molecule resolution. 

1.2 mRNA production is a pivotal process in the central dogma  

The central dogma as the fundamental processes for genetic information flow from DNA 

to mRNA (transcription) and mRNA to protein (translation) is the master machinery where cells 

assimilate its innate state and environmental signals and generate appropriate responses for cell 

fitness and survival. The regulation of gene expression is the key step of single cell responding to 

internal and external stimuli as it would subtly adjust the mRNA and protein composition and drive 

cell fate decisions. The central dogma as a multistep process can be modulated at each step [44-

47]. Starting from association of transcription factors with regulatory regions such as promoters 
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and enhancers, chromatin could undergo remolding to an open state and then assembly of pre-

initiation complex and recruitment of RNA polymerase II initiates the synthesis of mRNAs. After 

elongation, pre-mRNA is modified in nucleus for 5’-capping, splicing and 3’-end processing 

before nuclear export and mature mRNA is translated or degraded in cytoplasm [48-50]. This 

simplistic description leaves out all the complexity and molecular details for dynamic control of 

mRNA life-cycle by RNA binding-proteins but it is obvious that transcription upstream of 

translation is exposed to more stringent controls and can affect the final protein product to a larger 

extent as any regulation at mRNA level would be amplified and accumulated in downstream 

pathways.  

“The central dogma of molecular biology”, DNA to RNA to protein, distilled by Francis 

Crick half a century ago [51] has been the dominant axis in understanding cell behaviors, but more 

and more studies have illustrated complications of the central dogma [52-54]. Reverse 

transcriptases [55, 56] read genetic information from RNA and convert into DNA form that can 

be integrated into genome, the process of which is prevalent in virus [57], prokaryotic [58] and 

eukaryotic cells [59] and enables addition or modification to genomic sequences. Reverse 

transcription has been widely applied to extract information from RNA transcripts in large scale, 

including RT-PCR and RNA-seq [60] and revealed gene expression profiles under particular 

stimuli. Some RNA molecules do not serve as templates to make proteins but undergo structural 

changes and possess catalytic functions [61]. Besides the distort of the classical information flow, 

information content has more inputs than upstream sequence codes. Posttranscriptional RNA 

processing [62, 63] and posttranslational protein modification [64] are discovered as widespread 

mechanisms to determine RNA and protein functional properties that cannot be gained from direct 

copy. DNA viewed as the most stable and inherent elements in the central dogma also subjects to 
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protein-based regulation [65, 66]. The twists of the central dogma have motivated closer studies 

of the key players: DNA, RNA and protein at unprecedented resolutions: single molecule at 

various time scales to recognize new conceptual formulations.  

A growing body of evidence suggests that RNA is the most critical molecule to 

comprehensive and advanced understanding of the central dogma [67]. The birth and decay of 

mRNA molecules [68, 69] that contributes to the fluctuation in mRNA and protein copies is crucial 

for precise control of gene expression levels. Regulation of mRNA distributions at subcellular 

compartments [70, 71] is used to generate spatial patterns of gene expression. Continual progress 

has been made to understand transcription machinery, but the temporal details of molecular 

interactions are still elusive. All the mRNA processing steps can be easily misinterpreted when it 

is impossible to directly follow the events in real time. Therefore, it requires advances in imaging 

methodologies to understand gene expression by mRNA regulation, including transcriptional 

bursting, nuclear export, localized translation and decay mechanisms.  

1.3 Techniques to visualize single mRNA molecules in fixed cell 

Intracellular localization of mRNA is known as an important mechanism to regulate 

localized protein production. In Situ Hybridization (ISH) has been invented to examine distribution 

of transcripts in fixed cell. Initially radioactively labeled probes were used for detection [72, 73] 

but these assays bear the disadvantage of low resolution and hazardous radiations. Later 

development of biotin as labeling molecules conjugated to specific antibody improves the 

applicability of ISH assays but still rely on long labeled probes [74]. In 1998, the Singer laboratory 

presented the first demonstration of fluorescence in situ hybridization achieving single molecule 
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resolution [75]. This early implementation of smFISH (single-molecule FISH) employs as few as 

five 50-nt-long oligonucleotides labeled with five fluorophores each, which makes nonspecific 

excessive probes indistinguishable from true target binding signals and therefore high false-

positive rate. To improve signal-to-background, Raj et al. [76] proposed a refined version where a 

set of 48 20-nt-long probes each carrying single fluorophore is used and single transcript is 

detected with uniform intensity. Finally, with reliable detection efficiency smFISH has become 

the standard approach to label single mRNAs in fixed samples.  

Measuring signaling dynamics and gene expression in the same single cell unravels the 

connection between signaling dynamics and quantitative change in gene expression. Lee et al. [77] 

quantified the dynamics of NF-κB with a fluorescent protein labeled RelA reporter and computed  

better predictors for NF-κB transcriptional response illustrated with end-point smFISH to be fold-

change of nuclear NF-κB. They also proposed a mathematical model and discovered an incoherent 

feed-forward loop motif introduced by competition on NF-κB target promoters is capable of fold-

change detection. smFISH studies also reveal the stochasticity of transcription process as it directly 

measures copy number of transcripts [78]. 

Despite the extensive spatial information and resolving power for single transcript, 

smFISH still lacks temporal dimension to follow mRNA expression dynamics in real time. As a 

snapshot approach, cells are fixed and permeabilized to chemically preserve cell states but are left 

with only the information from selected single time point, which might lead to misinterpretation 

of dynamics by inference. Rare and transient events are even difficult to capture with smFISH as 

it is impossible to predict the appropriate time point beforehand. 
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1.4 Live cell imaging of single mRNAs has limited capability for long-term imaging 

mRNA molecules interact with RNA binding proteins throughout their lifespan to carry 

genetic information and provide precise spatiotemporal regulation within cells. Live-cell single 

molecule imaging techniques have enabled in-depth characterization of dynamics for mRNA 

processing steps, including transcription, translation, splicing, export, degradation, and 

interactions with ribonucleoprotein (RNP) granules [79-96]. However, continuous imaging of 

single mRNAs has numerous challenges coupled to low imaging sensitivity that is exacerbated by 

rapid photobleaching [97, 98]. Typically, live-cell detection of single mRNAs requires 

sophisticated imaging approaches and trade-offs that restrict spatial and temporal aspects of 

imaging experiments.   

Bacteriophage-derived MS2 and PP7 stem-loops are extensively used for labeling mRNA 

molecules. In many applications, the reporter mRNA is tagged with 24x stem-loop copies in the 

3’ UTR and the corresponding coat protein (MCP or PCP) is fused with a fluorescent protein (FP). 

When co-expressed in the same cell, dimers of FP-fused coat proteins bind to each stem loop 

enabling visualization of mRNAs and active transcription sites by fluorescence microscopy [89, 

98-102]. For most applications, coat proteins are also fused to a nuclear localization signal (NLS) 

to deplete unbound FP-MCP and FP-PCP from the cytoplasm, thereby increasing image contrast 

for mRNAs labeled in the cytoplasm [103-108]. Since the NLS on unbound FP-M/PCP will favor 

a nuclear localization, the reduced availability of free coat proteins will limit cycling of fluorescent 

proteins on cytoplasmic mRNAs. Consequently, depletion of fluorescence signals on cytoplasmic 

mRNA molecules resulting from dissociated and photobleached FP-M/PCP molecules is difficult 

to recover, which can constrain cytoplasmic mRNA detection over longer time scales. Although 

variants with increased stem-loop numbers enhance imaging sensitivity (up to 128 copies of 
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extended MS2 repeats; [109-111]), the bulky mRNA extension has the potential to perturb mRNA 

dynamics, and the reporter still suffers from photobleaching and limited resolution for single 

mRNAs. 

1.5 Scope of this dissertation   

In this dissertation, I discuss the implementation of the state-of-the-art signal amplification 

SunTag technology to visualize and quantify aspect of central dogma and molecular signaling 

events in living cells. As a focus of my dissertation, I develop a novel live-cell mRNA reporter 

SunRISER that allows observation of mRNA at single molecule resolution for extended duration 

with resistance to photobleaching. Using SunRISER I investigate the kinetics of single mRNAs 

over the duration of one full day. By quantifying mRNA partitioning between sister cells during 

mitosis, I discover asymmetry mRNA inheritance in cell division upon stresses. 
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2.0 Chapter 2 Antibody-epitope pairs in visualizing gene expression dynamics 

This chapter is adapted from: 

JA Cruz*, CS Mokashi*, GJ Kowalczyk, Y Guo, Q Zhang, S Gupta, DL Schippper, REC Lee, A 

variable-gain stochastic pooling motif mediates information transfer from receptor assemblies into 

NF-κB, Science Advances 7 (30), eabi9410, 2021, of which I was was a co-author, with the 

following author contributions: Conceptualization: J.A.C., C.S.M., and R.E.C.L. Methodology: 

J.A.C., C.S.M., G.J.K., Y.G., S.G., D.L.S., Q.Z., S.W.S., and R.E.C.L. Software: C.S.M., G.J.K., 

S.G., and S.W.S. Formal analysis: J.A.C., C.S.M., G.J.K., Y.G., and D.L.S. Investigation: J.A.C., 

C.S.M., Y.G., C.S.M., and Q.Z. Writing—original draft: J.A.C., C.S.M., and R.E.C.L. Writing—

review and editing: J.A.C., C.S.M., G.J.K., Y.G., S.A.G., D.L.S., Q.Z., and R.E.C.L. Visualization: 

J.A.C., C.S.M., and R.E.C.L. Supervision and funding acquisition: R.E.C.L. 

 

GJ Kowalczyk, JA Cruz, Y Guo, Q Zhang, N Sauerwald, REC Lee, dNEMO: a tool for 

quantification of mRNA and punctate structures in time-lapse images of single cells, 

Bioinformatics 37 (5), 677-683, 2021, of which I was a co-author, with the following author 

contributions: Conceptualization, R.E.C.L.; Methodology, R.E.C.L., G.J.K., and N.S.; Software 

G.J.K., N.S., and R.E.C.L.; Image Acquisition, J.A.C., Y.G., Q.Z., and R.E.C.L.; Software Testing, 

J.A.C., Y.G., Q.Z.; Writing – Original Draft, G.J.K. and R.E.C.L.; Writing – Review & Editing, 

R.E.C.L., G.J.K., J.A.C., Y.G., and N.S.; Visualization, R.E.C.L. and G.J.K; Funding Acquisition, 

R.E.C.L.; Supervision, R.E.C.L. 
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2.1 Signal amplification principle with antibody-epitope pairs 

Varying copy numbers of functional sequences or proteins associated with a target 

substrate is a common regulatory strategy in biological systems. For example, promoter region 

consisting of several binding sites to one transcription factor (TF) facilitates recruiting multiple 

copies of TF to enhance activation and the presence of competing target sites for the same TF can 

reduce the effective copies of available TF [112]. Nuclear import of large proteins is mediated by 

the interaction of short peptide motifs known as nuclear localization signals (NLS) with transport 

machinery importin [113, 114]. Many proteins that are required to reside in nucleoplasm and 

perform specific functions in nucleus contain multiple NLS to prevent mislocalization with 

redundant nuclear import pathways [115, 116]. 

The principle of multimerization has been exploited for signal amplification in biological 

imaging applications. As described in last chapter, bacteriophage-derived stem-loops and 

complementary coat proteins are employed to introduce multiple copies of fluorescent protein to 

single mRNAs for visualization. The most common technique to detect single mRNA molecules 

smFISH [76, 117] also introduces a group of short fluorescence labeled DNA probes to target 

mRNA and enables uniform and accurate detection by eliminating noise from nonspecific binding. 

Similarly, antibody-epitope motifs have been developed to serve as protein recruitment platforms 

for bright labeling of proteins. SunTag [118] system is the most widely used genetically-encode 

antibody-epitope for fluorescent tagging. An scFv derived from a GCN4 antibody is labeled with 

superfolder GFP and 19-aa repeated peptides (V4) are linked by length optimized spacer to allow 

epitopes in the SunTag to be fully occupied by scFvs, generating ultra bright fluorescence signals 

(Figure 2-1). MoonTag [119] is another orthogonal antibody-peptide system to SunTag, where 15-



 12 

aa peptide is from the HIV envelope protein complex subunit gp41 and antibody is a 123-aa llama 

nanobody that binds the peptide in vitro with an affinity of 30 nM.  

The antibody-epitope pairs including SunTag and MoonTag possess several advantages 

over direct fluorescent protein fusion for protein labeling: First, with extreme high signal 

amplification, proteins can be imaged with much lower illumination power and therefore subject 

to less phototoxicity for long-term imaging applications; Second, SunTag/MoonTag enables 

imaging proteins expressed at low levels without potential disturbance and artifacts introduced by 

overexpression; Third, by the time of visualizing tagged proteins, a pool of matured fluorescent 

protein is already formed and does not require further waiting time for protein folding, which 

provides an accessible approach to observe quick biological processes. The capability of 

immediate detection upon antibody binding with multiple pre-existing fluorescent proteins renders 

SunTag the potential to shed light on the core biological processes with super resolution. 
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Figure 2-1 The schematic of SunTag labeling. 

Short peptide sequences (turqoise) not native to mammalian cells bind to soluable GFP fused 

single chain variable fragment (scFv) antibodies (green) and can be used to label protein of interest 

(POI; purple) when multiple copies are attached with super high brightness. Illustration is redrawn 

based on concepts in [118]. 
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2.2 Real-time imaging of single RNA translation dynamics in living cells 

Translation as the final step for genetic information transfer from mRNA to protein is 

tightly regulated in space and time by a variety of mechanisms[120-124]. The regulation happens 

at all three stages of translation process: initiation, elongation and termination. Global regulation 

of protein synthesis is often exerted by changing activities and availabilities of translation initiation 

factors such as cap-binding protein eIF4E [125] and mRNA-specific regulation is dependent on 

particular motifs present in untranslated regions that alter recruitment of translation machinery 

[126, 127]. Ribosome profiling has been applied to study genome-wide translation dynamics as it 

maps the instantaneous position of ribosomes on almost all cellular mRNAs and provides in vivo 

quantitative measurement of protein synthesis rate [128-131]. However, this method lacks 

temporal resolution and assumes a uniform elongation rate among different mRNAs. Dissecting 

sophisticated mechanisms regulating translation rate and heterogeneity between mRNAs still 

requires highly accurate kinetic analysis at single molecule level. Single cell imaging approaches 

have difficulty in resolving nascent peptide chains at translation sites due to the relatively long 

maturation time with fluorescent proteins and are usually limited to measurement of average 

protein synthesis rate and inference of translation sites [83, 132, 133]. With the advent of SunTag 

principle, several groups have proposed use of antibody-epitope pairs to directly monitor the 

translation activity on individual mRNA molecules [93, 96, 134-136]. We adapted the approach 

from [93] to visualize translation of single mRNAs in HEK293 cells. Specifically, a reporter 

transcript encoding an array of 24xSunTag peptides followed by an ornithine decarboxylase 

(ODC) is co-expressed with scFv-GFP. ODC as one of the most short-lived proteins would 

promote degradation of ODC fused protein and help distinguish translating polysomes from 

translation products. 24 copies of PP7 stem-loop sequence are placed into the 3’ UTR of target 
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mRNA and binding to tdTomato-fused PP7 coat proteins (tdTomato-tdPCP) allows independent 

readout of mRNA locations. During translation, single mRNA is occupied by a group of 

consecutive ribosomes called polysome and once the nascent SunTag peptides are translated from 

ribosomes, they will bind multiple copies of already fluorescent scFv-GFP and become detectable 

as bright GFP foci (Figure 2-2) in the cytoplasm as translating polysomes diffuse much slower 

than released protein products. In successful implementation of SunTag-based single molecule 

translation reporter, advanced microscopy such as confocal microscope is utilized to further 

improve signal-to-background ratio and the reporter system is stably integrated into target cell 

lines for better reproducibility. To validate the reporter system in different cell lines and test the 

applicability with standard microscope, we request the plasmids encoding the translation reporter 

and deliver them to HEK293 cells via transient transfection. 12 hours after transfection, we 

observed bright GFP spots in cytoplasm. 
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Figure 2-2 The schematic of SunTag-based labeling of nascent peptides. 

mRNA construct map depicts essential components for SunTag-based translation reporter. 

Reporter mRNA (black) is translated by multiple ribosomes (blue) and newly made V4 peptide 

(turquoise) is bound by scFv-GFP (green) and the whole translating complex will be seen in green 

fluorescence channel. tdPCP-tdTomato is recruited to PP7 stem-loops in 3’-UTR for visualization 

of individual mRNAs in red fluorescence channel. Illustration is redrawn based on concepts in 

[93]. 
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Figure 2-3Visualization of translating polysomes in HEK293 cells.  

Time course for maximum intensity projection images of a representative HEK293 cell expressing 

SunTag-based translation reporter where individual translation polysomes appear as diffraction-

limited spots. Cells were imaged 12hrs after transfection for 6 hr with a 10-minute frame rate. 

Scale bar: 10 μm. 
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2.3 dNEMO: a tool for quantifying fluorescent puncta 

As discussed in previous sections, processes of the central dogma, such as single mRNA 

transcripts and sites of active protein translation and other regulatory multi-protein assemblies can 

be observed by fluorescence microscopy as punctate structures within the cell. Accurate detection 

and quantification of biological puncta is necessary to examine their roles in regulating cellular 

behaviors, and computational analysis is crucial for information extraction and often the rate-

limiting step of experimental pipelines. Here, we developed detecting-NEMO (dNEMO), a free 

application that uses wavelet-based spot detection and supervised segmentation to detect and 

measure properties of fluorescent puncta in fixed-cell and time-lapse images. In contrast with 

many applications that completely automate analysis, dNEMO encourages users to interact 

directly with their data. Intuitive tools for cell segmentation, spot inspection and background 

correction, in addition to manual and automated selection of puncta based on quantifiable features 

(e.g. size, location and fluorescence) ensure that single-cell data are of the highest quality.  

Wavelet-based approaches are used in image analysis for de-noising, compression and 

feature extraction with low computational cost [137, 138]. In wavelet-based feature extraction 

applications, the source image is decomposed into wavelet maps, a series of images where contrast 

is enhanced for particular spatial features. Since the wavelet transform sequentially applies a 

different convolution matrix at successive levels of the algorithm, the size and qualities of spatial 

features that are enhanced in each wavelet map can be modulated. To evaluate the effect of wavelet 

transformation, we used dNEMO to analyze three types of simulated and experimental images that 

contain diffraction-limited puncta (Figure 2-4). As the wavelet map transform level increases, 

zeros are progressively inserted into the à trous wavelet convolution matrix. Comparing 

experimental images of diffraction-limited spots at the first level of the wavelet algorithm (L1 
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wavelet map), noise and the smallest puncta in the source image were enhanced. Consistent with 

previous findings [139, 140], the L2 wavelet map enhanced contrast for puncta at or near the 

diffraction limit. At higher levels, larger puncta were more resolved at the expense of reduced 

clarity for smaller puncta. Although users of dNEMO can select a wavelet map appropriate for 

their application, the L2 wavelet map effectively enhanced contrast in our three test images and 

was used to detect small molecular assemblies in subsequent experiments. 

To identify fluorescent puncta near the diffraction limit, watershed and thresholding 

algorithms in dNEMO were used to segment wavelet maps for three types of imaging data. Puncta 

identified by watershed were then evaluated to prevent over-segmentation, where a single punctum 

with a noisy spatial distribution of fluorescence is erroneously segmented by the watershed into 

two or more puncta. To further prevent misidentification of a single punctum in consecutive slices 

of a 3D image, centroids in adjacent slices of an image stack are merged if their x-y coordinates 

are nearly identical. Using these approaches, the z-coordinate of each centroid can be calculated 

and we observed that distinct yet axially overlapping spots in a 3D image can be resolved by 

dNEMO (Figure 2-5).  

Slow-varying background from non-specific dye accumulation and free fluorescent 

proteins that are not part of molecular assemblies, among other sources, will contribute to the 

measured intensity of a punctum. To correct for these effects, dNEMO collects local background 

pixel information from an annular ring that surrounds each punctum in the source image (Figure 

2-6). Instead of using procedural generation of annuli for each punctum, the method in dNEMO 

operates directly on the wavelet map and consequently background correction is rapid.  

To associate and compare puncta between single cells, dNEMO contains an interactive 

polygon tool for manual cell segmentation (Figure 2-7). Cell segmentation paths can also be 
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imported into dNEMO for compatibility with results from other software. All puncta contained 

within the polygon are associated and puncta features, such as their number and distributions of 

fluorescent intensities among others, can be collated for each single cell. As a demonstration, we 

used dNEMO to detect single molecules of mRNA from smFISH images of TNF-induced 

expression of the NFKBIA gene using a previously collected dataset [77]. Although there was 

significant variability in transcript numbers when compared between single cells, the size and 

fluorescence intensity distributions of puncta were similar. 

Keyframing is a process in animation that denotes the start and end frames in a time series 

where parameter values change. To enable analysis of time-lapse images, dNEMO uses a 

keyframing approach for users to make changes to any user-defined parameter and to track single 

cells in time-lapse experiments. For example, a user may define a region of the time-lapse where 

the wavelet map threshold or bounds for acceptable puncta are modified to account for systematic 

artifacts, and keyframing parameters can be applied in batch across all images in an experiment. 

A more common use for keyframing in dNEMO is to adjust the segmentation polygon to account 

for morphology changes and tracking of a cell’s movement over the time-lapse image. 

As a demonstration of dNEMO in analysis of 3D time-lapse image, we applied dNEMO to 

extract kinetic information for SunTag labeled translating polysomes (Figure 2-8). Translating 

polysomes appearing as diffraction limited GFP puncta in HEK293 cells (Figure 2-3) were 

identified and counted over time and keyframe adjustment is made to accommodate the mobility 

of the same cell segmentation polygons. Fluorescent properties of GFP puncta were extracted over 

the time-lapse to monitor time-courses of corrected intensity, which is a readout of single molecule 

translation activity [93] and shows only modest photobleaching for extended imaging period. The 

drop of numbers for translating polysomes suggests a reduce of global translation possibly due to 



 21 

mRNA degradation. Taken together, distributions for properties of fluorescent puncta can be 

accurately measured and curated in time-lapse images to produce high-quality datasets in each 

single cell. 

 

 

 

 

 

 

 

 

 

 

 



 22 

 

Figure 2-4 The à trous wavelet transform on simulated and experimental images.  

(A) The 3D representations of the convolution matrix (kernel) for levels 1 through 3 of the wavelet 

transform. (B) Images for simulated data (top), smFISH-labeled NFKBIA transcripts (middle) or 

GFP-NEMO (bottom), along with the associated L1, L2 and L3 wavelet maps. The L2 wavelet 

map enhances contrast for diffraction-limited puncta in fluorescence microscopy images. Scale 

bar: 25 μm. Adapted from [141]. 

 



 23 

 

Figure 2-5 Puncta with axial overlap are individually resolved. 

(A) Maximum intensity projection of a representative NFKBIA smFISH fluorescent z-stack from 

HeLa cells. Axial projections across the indicated yellow lines for x-z (right) and y-z (bottom) 

planes show two puncta that overlap in x-y but are axially separated. Scale bar is 10 μm. (B) Axial 

pixel intensities at the x-y intersection of the yellow lines in panel ‘A’ (right). The pixel values are 

measured at each slice of the z-stack (left). Tan lines indicate the axial slice of the centroid for 

each punctum and teal lines indicate the contiguous z-slices in which the same punctum is 

observed. Red vertical lines indicate the local background intensity value determined at the axial 

centroid and used to correct intensity values for each punctum within the 3D image. Adapted from 

[141]. 
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Figure 2-6 Local background information is used to correct intensity values measured for each punctum. 

(A) For each punctum, pixel intensity values are collected from an annulus with user defined inner 

radius (offset) and width, defined in pixel units. The mean intensity value of pixels bound by the 

annulus is subtracted from every pixel within the associated punctum in the source image to correct 

for the local background. Because each punctum is measured relative to local background, images 

do not require pre-processing before analysis with dNEMO. (B) Pixels in the vicinity of a spot will 

be excluded from annuli of all nearby spots. Similarly, when background annuli overlap, 

background pixels will be associated with the nearest spot only, as determined by its centroid. 

Images of smFISH against the NFKBIA transcripts in HeLa cells. Scale bars: 1 μm. Adapted from 

[141]. 
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Figure 2-7 Identification of smFISH transcripts in fixed-cell images. 

(A) NFKBIA transcripts in HeLa cells labeled by smFISH are identified using dNEMO and 

associated to single cells. Scale bar 50 microns. (B) Distribution of puncta identified in individual 

cells reported by intensity (top) or size in number of pixels (bottom). Fluorescence per spot was 

corrected using the local background about each spot. Adapted from [141]. 
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Figure 2-8 Quantification of translating polysomes with dNEMO.  

(A) Copy numbers and (B) Boxplots for corrected intensity of translating polysomes identified 

with dNEMO in a representative cell over time. Corrected intensity is defined as the average of 

background-corrected pixel values within the area of each detected spot. 
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2.4 Application of dNEMO: Estimating signaling molecule numbers in signaling complex  

Signal transmission within the cell is often mediated by formation of punctate structures 

consisting of a set of signaling molecules [142-145]. As a well-established pathway, NF-κB is the 

transcription factor that enters nucleus after release from cytoplasm sequestration and activates 

expression of genes involved in immune and inflammatory responses upon stimulation by 

inflammatory signals such as tumor necrosis factor (TNF) and interleukin-1β (IL-1). The 

stimulation starts with binding of TNF to the TNF receptor and recruitment of a group of adaptor 

proteins and enzymes near the plasma membrane. The enzymes then catalyze the assembly of 

polyubiquitin scaffolds that recruits the NF-κB essential modulator (NEMO) subunit of the 

cytoplasmic IκB kinase (IKK) complex and activates IKK to phosphorylate and degrade IκBs, 

inhibitor proteins to NF-κB and lead to translocation of NF- κB. IKK complexes appear as punctate 

structures in this upstream signal transmission process and dNEMO has been used to reveal the 

size, intensity and dynamical properties of IKK complexes [144] but the exact number of NEMO 

molecules within each IKK complexes is still unknown. 

To quantify the number of NEMO molecules within each IKK complex (spot), the CRISPR 

labeling of NEMO with EGFP allows us to infer the number of NEMO molecules by counting 

GFP molecules and converting with 1:1 ratio. In counting GFP molecules in IKK puncta, we used 

live cell translation reporter developed by Wang et al. [93] and described in Section 2.2 above to 

calibrate the relation between GFP counts and measured GFP intensity and imaged it in HeLa cells 

with the same imaging condition used for NEMO in U2OS EGFP-NEMO cells (Figure 2-10). 

During translation, one mRNA binds to multiple ribosomes simultaneously and forms a 

large polysome complex. We assume that the positioning of each ribosome on mRNA 

independently satisfies a uniform distribution. The signal intensity of each fluorescence foci in the 
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cytoplasm, representing the translating polysomes, varied depending on the total number of 

ribosomes and the location of each ribosome on mRNA. When ribosomes reach the region after 

the coding sequence for the SunTag peptide, the intensity would be the maximum for fully 

assembled complex; when ribosomes are halfway toward the end, the signal would be 

approximately half maximal. To account for this variability, we used Monte Carlo simulations to 

randomly sample the positions of ribosomes and generate the distribution of numbers of SunTag 

peptides being produced when there are n ribosomes present on single mRNA, denoted by 

𝑝𝑝2(𝑚𝑚,𝑛𝑛), where 𝑚𝑚 is the number of SunTag. 𝑛𝑛, as the number of total ribosomes on each mRNA, 

satisfies Poisson distribution 𝑝𝑝1 (𝑛𝑛) = 𝑒𝑒−𝜆𝜆𝜆𝜆𝑛𝑛

𝑛𝑛!
. The average number of ribosomes for each 

translation foci is measured to be 12 experimentally [93]; therefore, we set λ ≈ 12. The possibility 

of m SunTag peptides being translated on each translation foci are calculated as follows 

𝑃𝑃(𝑚𝑚) = �𝑝𝑝2 (𝑚𝑚,𝑛𝑛)
∞

𝑛𝑛=1

𝑝𝑝1(𝑛𝑛) 

 

when 𝑛𝑛 is large, rapidly converges to zero. Therefore, we set 𝑛𝑛 =  30 as the cutoff of the 

summation. 

We quantified the fluorescence intensity of individual translating polysome in HeLa cells 

using dNEMO with the same threshold used for NEMO quantification in U2OS cells. As the GFP 

intensity is proportional to the number of GFP molecules, we determined the scaling factor 

between the measured fluorescence intensity and theoretical distribution of GFP molecule 

numbers. Here, we used the Nelder-Mead algorithm to minimize the square of difference between 

the “measured” GFP distribution and theoretical GFP distribution to obtain the scaling factor. To 

account for effects of photobleaching, we calculated the scaling factors independently for each 
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frame of the time-lapse image. Using the scaling factor obtained from the translation reporter, the 

intensity of NEMO spots was converted to numbers of GFP molecules per spot. 

The results show that TNF induces complexes that recruit roughly 25% the amount of 

NEMO-GFP in contrast with IL-1 - although both receptor systems interact with the same cytosolic 

components. With the quantitative measurement of puncta size and intensity by dNEMO and 

calibrated GFP numbers with translation reporter, we are able to estimate number of signaling 

molecules and provide unprecedented resolution to the composition of signaling complexes and 

facilitate a mathematical understanding of signaling pathways.  
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Figure 2-9 Polysome calibration to estimate numbers of EGFP-NEMO molecules per complex. 

U2OS EGFP-NEMO cells stimulated with 100ng/mL IL-1 or TNF were imaged by timelapse 

microscopy. In parallel, HeLa cells expressing scFv-GFP are transfected with SunTag based 

translation reporter to reveal polysomes (cells were provided by the Zhuang group and prepared 

as described in their original work [93]). Imaging conditions were identical for all. Polysome 

images, with a known number of EGFP molecules per spot were then used tocalibrate the intensity 

of EGFP-NEMO complexes in TNF- or IL-1 stimulated cells at a time when cytokine-induced 

complexes are brightest (red line). Representative maximum intensity projection images are shown 

for each. Scale bar: 20μm. Adapted from [144]. 
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2.5 Naïve Design of SunRISER --- Use of SunTag for labeling of single mRNAs 

The successful employment of SunTag to observe translation dynamics at single-molecule 

resolution with standard wide-field microscope demonstrates the power of signal amplification 

rendered by SunTag. Even the design of SunTag-based translation reporter offers the possibility 

to simultaneously image single mRNAs in a different fluorescent channel using PP7-PCP system, 

we and others encounter severe difficulty in resolving single transcripts with standard PP7-PCP 

using conventional microscopy. We hypothesize that 24 copies of PP7 stem-loops does not provide 

enough concentration of fluorescent proteins on single mRNAs to make it distinguishable from 

background and we believe a higher signal amplification enabled by SunTag could be a solution 

to resolve single transcripts and potentially also facilitate long-term imaging of mRNAs in live 

cells.  

To amplify fluorescence intensity of labeled coat proteins, our design employs SunTag 

[118], an array of GCN4 peptide epitopes that recruit multiple antibody molecules. The GCN4 

antibody-peptide pair bind rapidly and serve as a robust scaffold for protein recruitment with a 

complex half-life in the order of minutes [146, 147]. Specifically, SunRISER comprises two stages 

of signal amplification: (1) 24x stem-loop copies are inserted in the 3’ UTR of mRNA and (2) the 

corresponding coat protein is fused with up to 24x SunTag peptides. With co-expression of an FP-

fused single-chain antibody (scFv-GFP or codon-optimized scAB-GFP [148]) that bind GCN4 

epitopes, each SunTag coat protein can be labeled with up to 24 scFv-FPs, resulting in a theoretical 

upper bound of over 1,000 FP molecules per mRNA (24x stem loops, 2x coat proteins per stem 

loop, 24x SunTag arrays, 24x24x2=1,152 (Figure 2-10)). In contrast with previous approaches, we 

reasoned that a two-stage approach where SunTag-fused coat proteins and scAB-GFP are both 
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expressed throughout the cell would bolster active cycling of nascent coat proteins and antibody-

FPs, providing resistance to photobleaching.  

Our initial design for live-cell imaging of mRNAs was first aimed at circumventing 

problems associated with signal detection and cytoplasmic depletion of FP-fused coat proteins. 

We expressed components of the naive design in HeLa cells using 24 copies for both PP7 stem 

loops and SunTag arrays under control of the cytomegalovirus (cmv) promoter and imaged cells 

by 3D epifluorescence microscopy. As a generic transcript for mRNA detection, detection 

plasmids expressed a cyan FP (CFP) open reading frame, followed by 24xPP7 inserted after the 

stop codon in the 3’ UTR. Detection plasmids were transfected together with two additional 

plasmids expressing 24xSunTag-PCP and scFv-GFP. Although diffraction-limited spots were 

visible, we observed spot-to-spot variability in size and intensity (Figure 2-11). 
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Figure 2-10 Design of SunRISER, a SunTag based reporter for imaging signal-enriched mRNA. 

Design schematic of molecular components for the SunRISER strategy to image single mRNA 

molecules. An mRNA transcript (black) tagged at 3’ UTR with PP7 stem-loops (blue) is bound by 

the PCP coat protein (yellow), which is fused to a SunTag GCN4 peptide array (orange). SunTag 

recruits GFP (green) through antibody-peptide specific binding between scFv (grey) and GCN4 

epitopes. Adapted from [149]. 
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Figure 2-11 Naïve design shows significant variability in spot intensity and size. 

(A) Maximum intensity projection of z stacks for representative HeLa cells 24 h after transfection 

with three plasmids: phage-cmv-cfp-24xpp7, cmv-24xSunTag-PCP, and cmv-sfGFP-GB1-scAB 

and (B) histograms of signal intensity and signal-to-background ratio and size of individual foci 

quantified with dNEMO. Signal intensity is defined as the average of background-corrected pixel 

values within the area of each detected spot. Size is measured by number of pixels comprising the 

spot. Signal-to-background ratio is calculated as the ratio of average pixel intensity within an 

mRNA spot divided by the average intensity of background pixels in an annular ring surrounding 

the spot. Inset numbers indicate the coefficient of variation (CV) for each distribution. Adapted 

from [149]. 
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2.6 Concluding remarks 

Application of SunTag has enabled imaging translation at the single molecule level in 

living cells with unprecedented spatial and temporal resolution. This approach allows observation 

of heterogeneity in the translation properties of different mRNA molecules derived from the same 

gene in a single cell and preserves spatial translation information that plays an important role in 

gene regulation in neurons and embryos. We harnessed the remarkable resolution conferred by 

SunTag and estimated copy numbers of signaling molecules to provide the well-studied NF-κB 

pathway additional quantitative descriptions. However, naïve implementation of SunTag to label 

single mRNAs cannot provide single-molecule resolution as expected and shows variability in size 

and intensity for spot-like structure. A further optimization of SunRISER system is needed to 

improve detection capability of single mRNAs. 
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3.0 Chapter 3 Development and optimization of SunRISER 

This chapter is adapted from: 

Y Guo and REC Lee, Long-term imaging of individual mRNA molecules in living cells, Cell 

Reports Methods, 2(6), 100226, 2022, of which I was first author, with the following author 

contributions: 

Conceptualization, Y.G. and R.E.C.L.; methodology, Y.G. and R.E.C.L.; investigation, Y.G.; 

software, Y.G.; formal analysis, Y.G.; writing – original Draft, Y.G. and R.E.C.L.; writing – 

review & editing, Y.G. and R.E.C.L.; visualization, Y.G. and R.E.C.L.; funding acquisition, 

R.E.C.L.; supervision, R.E.C.L. 
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3.1 Modeling of SunRISER system to assist in optimization of SunRISER 

The proposed SunRISER design which consists of two-stage signal amplification is 

expected to enable super bright labeling of mRNAs but naïve attempt without proper modulation 

yields poor detection of single mRNAs. It is anticipated that multi-stage amplification carries non-

linear property and needs meticulous refinement. For example, when scFv-GFP component is 

excessive and pcp-nxSunTag is limited, each mRNA could be bound by varied numbers of fully 

assembled pcp-nxSunTag-scFv-GFP complex and shows significant variability in intensity. 

Another suboptimal scenario is also obvious when superabundant pcp-nxSunTag is present and 

scFv-GFP is not adequate to occupy all the epitope sites therefore each mRNA will not be labeled 

a massive amount of GFP as designed. With the complexity brought by two-stage amplification, 

we constructed a mathematical model to describe SunRISER design quantitatively. 

To estimate the number of FP molecules bound to mRNA for different expression levels 

of SunRISER components, scAB-GFP, SunTag-PCP, and PP7-tagged mRNA, we assume that all 

dynamic processes, e.g. the expression of proteins, the transcription of mRNAs and the 

binding/unbinding of proteins, have reached equilibrium. The dissociation constant of scFv and 

GCN4, can be written as 

𝜅𝜅𝐷𝐷1 =
[𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠] ∙ [𝐺𝐺𝐺𝐺𝐺𝐺4]
[𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝐺𝐺𝐺𝐺𝐺𝐺4] =

(𝑐𝑐1 − 𝑝𝑝1𝑁𝑁1𝑐𝑐2) ∙ (1 − 𝑝𝑝1)𝑁𝑁1𝑐𝑐2
𝑝𝑝1𝑁𝑁1𝑐𝑐2

 

where 𝑐𝑐1 is the molar concentration scFv. 𝑐𝑐2 is the molar concentration of PCP-SunTag. 𝑁𝑁1 is the 

number of GCN4 peptides on the PCP-SunTag. 𝑝𝑝1  is the probability of a GCN4 binding site 

occupied by the scFv. Thus, we obtain 

𝑝𝑝1 =
1

2𝑁𝑁1𝑐𝑐2
�𝜅𝜅𝐷𝐷1 + 𝑁𝑁1𝑐𝑐2 + 𝑐𝑐1 − �(𝜅𝜅𝐷𝐷1 + 𝑁𝑁1𝑐𝑐2 + 𝑐𝑐1)2 − 4𝑐𝑐1𝑁𝑁1𝑐𝑐2� 
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Similarly, the probability of a PP7 binding site occupied by a PCP is 

𝑝𝑝2 =
1

2𝑁𝑁2𝑐𝑐3
�𝜅𝜅𝐷𝐷2 + 𝑁𝑁2𝑐𝑐3 + 𝑐𝑐2 − �(𝜅𝜅𝐷𝐷2 + 𝑁𝑁2𝑐𝑐3 + 𝑐𝑐2)2 − 4𝑐𝑐2𝑁𝑁2𝑐𝑐3� 

where 𝑐𝑐3 is the molar concentration of mRNA, 𝑁𝑁2 is the number of PP7 stem-loops on the mRNA, 

𝜅𝜅𝐷𝐷2 is the dissociation constant between PCP and PP7. 

The number of scFv binding to a single PCP-SunTag satisfies a binomial distribution 

𝐵𝐵1(𝑛𝑛) = �𝑁𝑁1𝑛𝑛 �𝑝𝑝1
𝑛𝑛(1 − 𝑝𝑝1)𝑁𝑁1−𝑛𝑛 

Similarly, the number of PCP-SunTag binding to a single mRNA molecule satisfies 

𝐵𝐵2(𝑚𝑚) = �𝑁𝑁2𝑚𝑚�𝑝𝑝2𝑚𝑚(1 − 𝑝𝑝2)𝑁𝑁2−𝑚𝑚 

The average number of scFv-GFP on a single mRNA molecule is thus 

𝑛𝑛� = � �𝑚𝑚 ∙ 𝐵𝐵2(𝑚𝑚) ∙ � 𝑛𝑛 ∙ 𝐵𝐵1(𝑛𝑛)
𝑁𝑁1

𝑛𝑛=0

�
𝑁𝑁2

𝑚𝑚=0

= 𝑁𝑁1𝑝𝑝1𝑁𝑁2𝑝𝑝2 

To calculate the distribution of number of scFv-GFP binding to a single mRNA molecule, 

we first calculate the probability of n scFv-GFP binding to m PCP-SunTag, which is 

𝐵𝐵1𝑚𝑚(𝑛𝑛) = �𝑚𝑚𝑁𝑁1𝑚𝑚  � 𝑝𝑝1𝑛𝑛(1 − 𝑝𝑝1)𝑚𝑚𝑁𝑁1−𝑛𝑛 

Then the probability of n scFv-GFP on a single mRNA molecule is the sum of 𝐵𝐵1𝑚𝑚(𝑛𝑛) of 

all possible m, which is 

𝑃𝑃(𝑛𝑛) = � 𝐵𝐵2(𝑚𝑚) ∙ 𝐵𝐵1𝑚𝑚(𝑛𝑛)
𝑁𝑁2

𝑚𝑚=0
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Although dissociation constants for variant scFv fragments vary significantly, a value of 
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0.38 nM [150] was selected for scFV-GCN4 in simulations. We note that modeling results showed 

similar patterns with optimization at a 5:1 ratio of system components across orders of magnitude 

in parameter sweeps of the dissociation constant for scFV-GCN4. The dissociation constant for 

PCP/PP7 is 1 nM [151].  

Considering that the signal from one mRNA molecule will spread to an ellipsoidal area, of 

which the size is determined by the Rayleigh radius (Figure 3-1), so we calculate the fluorescence 

intensity of this area in the presence and without the presence of a single mRNA molecule to 

calculate signal-to-background ratio. Here, the volume we chose for calculation is V=200 nm ×200 

nm ×500 nm. If there is no mRNA in the area, the intensity is defined as the background or noise 

intensity, 𝐼𝐼𝐵𝐵. Assuming that the intensity of single GFP-scFv is 1, the background intensity is the 

sum of free scFv-GFP molecules and the GFP-SunTag-PCP complex  

𝐼𝐼𝐵𝐵 = 𝑁𝑁𝐴𝐴𝑉𝑉(𝑐𝑐1 − 𝑁𝑁1𝑝𝑝1𝑐𝑐2) + 𝑁𝑁𝐴𝐴𝑉𝑉(𝑐𝑐2 − 𝑁𝑁2𝑝𝑝2𝑐𝑐3)𝑁𝑁1𝑝𝑝1  

where 𝑁𝑁𝐴𝐴  is Avogadro constant. 

With the intensity of an mRNA molecule as 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑁𝑁1𝑝𝑝1𝑁𝑁2𝑝𝑝2 the signal-to-background 

ratio is 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

=
𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅
𝐼𝐼𝐵𝐵

=
𝑁𝑁1𝑝𝑝1𝑁𝑁2𝑝𝑝2

𝑁𝑁𝐴𝐴𝑉𝑉(𝑐𝑐1 − 𝑁𝑁1𝑝𝑝1𝑐𝑐2) + 𝑁𝑁𝐴𝐴𝑉𝑉(𝑐𝑐2 − 𝑁𝑁2𝑝𝑝2𝑐𝑐3 )𝑁𝑁1𝑝𝑝1 
 

In the sweep of parameter space spanned by number of molecules for scFv-GFP and 

nxSunTag-PCP, we found broad variability in the expected intensity and signal-to-background 

(Figure 3-2), in some cases leading to a quantized distribution of single mRNA intensities (e.g., 

parameter combination 10). Variability between spots will complicate accurate identification and 

measurement of single mRNA molecules. By inspection, we found that a 5:1 ratio between scAB-

GFP and SunTag-PCP with high-abundance expression yields uniform signal intensity 

distributions in cells expressing up to 1000’s of mRNAs (Figure 3-2).  We also simulated 5x, 10x 
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and 24x SunTag-PCP variants. Although longer variants produce more intense signals, all had 

comparable signal-to-background ratios (Figure 3-3).  
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Figure 3-1 The schematic of signal and background definition when using SunRISER to label an mRNA.  

The blue, red and green solid circle represent mRNA, PCP-SunTag and scFv-GFP molecule, 

respectively. In a volume which is defined by Rayleigh radius of the microscope, the background 

is defined as the sum of the number of free scFv-GFP and the number of scFv-GFP on the free 

PCP-SunTag. The signal is defined as the mean number of scFv-GFP on a single mRNA molecule. 
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Figure 3-2 Parameter sweeps in the space spanned by number of molecules for scFv-GFP and nxSunTag-PCP 

(left, (A) n=24 (B) n=5 (C) n=10) using a computational model to calculate number of GFP molecules per 

mRNA.  
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Parameter combinations 1-10 were selected to represent different ratios between scFv-GFP and 

nxSunTag-PCP (solid line 1:1, dotted line 5:1 and dash-dotted line 1:5) and different expression 

levels and frequency plots are shown (right). Different concentrations of mRNAs per cell are 

distinguished by different colors. Adapted from [149]. 
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Figure 3-3 Heatmaps of mean number of GFP molecules per mRNA (left) and signal-to-background ratio 

(right) in the parameter space spanned by the number of molecules for scFv-GFP and ‘n’xSunTag-PCP 

(from left to right, 5x, 10x and 24x).  

Signal-to-background ratio is calculated as ratio of scFV-sfGFP molecules bound to an mRNA 

divided by the average intensity of unbound scFV-sfGFP in the background. Heatmaps were 

calculated assuming 100 mRNA molecules per cell. Adapted from [149]. 
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3.2 Experimental validation of optimal expression ratio predicted by model 

Guided by simulations, we designed SunRISER variants and assayed quantitative 

properties of mRNA spots. The expression level we have described in the mathematical model 

refers to numbers of protein molecules, which are the final product of gene expression process. 

Each step in the transfer of information from DNA to RNA to protein can potentially be regulated 

to adjust the amount of proteins one cell produces, which is determined by the balance between 

biochemical processes of protein synthesis and degradation. Transcription as the initiation step of 

protein production is the primary efficient control for protein levels as one mRNA can be translated 

to many copies of protein. Transcription machinery involves different types of RNA polymerase 

(RNAP) and they recognize specific regulatory sequences upstream of target genes to decide when 

and where a specific gene would be expressed. One major type of regulatory sequences is called 

promoters, the strength of which binding to RNAP and transcription factors dictates the rate of 

transcription and therefore mRNA copies present in the cell. Experimental studies have established 

libraries of promoters with different strengths that are often employed in synthetic biology to 

achieve required level of protein expression.  

To establish an approximately 5:1 ratio of abundance for SunRISER protein components, 

we compared different constitutive promoters in HeLa cells (Figure 3-4) predicted to have different 

strengths [152]. Comparing CMV and ubc, promoters for strong and weak (respectively) 

mammalian gene expression, we found that the abundance of GFP expressed from the cmv 

promoter is approximately 5 times that of ubc (Figure 3-4). 

With promoters selected to approximate the desired expression ratio predicted from 

simulation, we implement SunRISER design with cmv driving expression of scFv-GFP and ubc 

driving expression of pcp-nxSunTag. To reduce the size of labeled mRNA complexes without  
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Figure 3-4 Quantification of strengths for constitutive promoters in HeLa cells. 

HeLa cells transfected with cmv-sfGFP-GB1-scAB, ubc-sfGFP-GB1-scAB, or EF1A -sfGFP-

GB1-scAB were imaged 24 hours after transfection and mean GFP fluorescence intensity was 

measured in single cells. Boxplots (median and interquartile ranges) show expression variability 

for indicated promoters. The expression of GFP driven by the cmv promoter is approximately 5-

times and 7-times that by ubc and EF1A promoters respectively. Adapted from [149]. 
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significantly compromising signal to background, we validated model predictions using 

10xSunTag-PCP (Figure 3-3). HeLa cells were co-transfected with SunRISER components, 

approximating parameter combinations 1, 4, 6, and 9 (Figures 3-2). Consistent with simulations, 

an approximately 5:1 ratio achieved by cmv-scAB-GFP and ubc-SunTag-PCP (Figure 3-5B) 

enhanced signal intensity and signal-to-background values compared to suboptimal ratios (Figure 

3-5A, C, D) that fail to reliably and unambiguously label single transcripts driven by the same 

CMV promoter. Using smFISH against PP7 stem-loop sequences [153] in SunRISER-expressing 

cells, we confirmed co-localization of cytoplasmic mRNAs between SunRISER and smFISH. 

However, smFISH revealed nuclear mRNAs that were not detected by SunRISER (Figure 3-6A). 

Further live-cell and fixed-cell assays demonstrated that GFP-SunTag-PCP is excluded from the 

nuclear compartment (Figure 3-6B, C), suggesting that SunTag-PCP required further optimization 

for whole-cell mRNA detection. 
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Figure 3-5 Varying promoters for scAB-GFP and 10xSunTag-PCP corroborates model predictions.  

HeLa cells transfected with phage-cmv-cfp-24xpp7 and indicated constructs were imaged by 60x 

wide-field microscopy 24 hours after transfection and imaged with identical settings, 

representative maximum intensity projections are shown. Images were analyzed with dNEMO to 

quantify mRNA spots. Signal intensity is defined as the average of background-corrected pixel 

values within the area of each detected spot. Signal-to-background ratio is calculated as ratio of 

signal intensity divided by the average intensity of background pixels in an annular ring 

surrounding the spot. Note that images in (C) and (D) were contrast-enhanced for visualization. 

The combination of cmv-sfGFP-GB1-scAB and ubc-10xSunTag-PCP enabled robust detection of 

diffraction-limited mRNA spots and shows the highest signal intensity and signal-to-background 

ratio. Scale bar: 10 μm. Adapted from [149]. 
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Figure 3-6The preliminary version of SunRISER labels only cytoplasmic mRNA because SunTag-PCP is 

excluded from nuclei. 

(A) Maximum intensity projection images of smFISH performed with probes against the pp7 stem-

loops on HeLa cells transfected with indicated constructs are shown. The combination of cmv-



 50 

sfGFP-GB1-scAB and ubc-10xSunTag-PCP allows visualization of cytoplasmic mRNA, but not 

mRNAs in nucleus. From left to right, FITC CY5, and merged channels are shown. (B) HeLa cells 

were transfected with cmv-sf-GFP-GB1-scAB only (left) or co-transfected with a combination of 

cmv-sfGFP-GB1-scAB and ubc-10xSun-Tag-PCP (right) and imaged after 24 hours. Co-

expression of scAB-GFP and SunTag-PCP depletes scAB-GFP from the nucleus through 

interaction with SunTag-PCP. (C) HeLa cells transfected with cmv-sfGFP-GB1-scAB and ubc-

10xSunTag-PCP (top) and ubc-10xSunTag-PCP only (bottom) were stained for SunTag using a 

α-GCN4 antibody. Since sfGFP-scAB competes with the α-GCN4 antibody for the GCN4 epitope, 

co-expressing cells are lower intensity in the A594 channel (top left). In both conditions, 

10xSunTag-PCP is predominantly cytoplasmic regardless of whether sfGFP-scAB is expressed in 

the same cell. Scale bars: 10 μm for all. Adapted from [149]. 
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3.3 Refinement of SunRISER for whole-cell mRNA imaging 

To alleviate nuclear export effects from repeats of the GCN4 epitope and cytoplasmic 

sequestration of anti-GCN4 [150], we continued with the smaller 5xSunTag variant. Next, we 

focused on modifications to 5xSunTag-PCP for homogeneous expression throughout the cell and 

detection of nuclear and cytoplasmic mRNAs. We also considered that ornithine decarboxylase 

(ODC) tag [154] fused to SunTag-PCP while under control of the cmv promoter as an alternative 

approach to establish a 5:1 deficit of SunTag-PCP that may also alter its sub-cellular distribution. 

ODC is one of the most short-lived proteins, which can facilitate fast degradation of tagged 

proteins. Although ODC tagging is not as precise as controlling transcript abundance using 

promoters, ODC fusion of SunTag-PCP is a viable approach to limit its expression relative to 

scAB-GFP. Although several variants enable whole-cell mRNA detection, an optimized design 

was eventually achieved by switching the fusion order of PCP and 5xSunTag, in addition to 

inserting a 5’ NLS (Figures 3-7 and Table 3-1). We note that addition of a 5’ NLS without 

switching the fusion order to PCP-SunTag still fails to detect nuclear mRNAs when expressed 

with other SunRISER components.  

The optimized SunRISER version 1 (SRv1) design consists of three plasmids (i: cmv-GFP-

GB1-scAB, ii: phage-nls-PCP-5xSunTag, and iii: a detection plasmid expressing mRNA tagged 

with 24XPP7) and has an overall molecular weight comparable with MS2x128 (Table 3-2). 

SunRISER faithfully labels single mRNAs in the nucleus and cytoplasm with uniform 

fluorescence intensity and high signal-to-background, allowing for long term imaging (Figures 3-

8). We also compared fluorescence distributions of single cytoplasmic mRNAs detected by 

smFISH in cells expressing either the detection plasmid only or the complete SunRISER system. 

We found that expression of SunRISER components does not significantly alter the fluorescence 
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intensity and signal-to-background of mRNA spots (Figure 3-8D), suggesting that each SunRISER 

spot represents a single mRNA molecule. Similarly, detection plasmids using weak and strong 

promoters to express low and high mRNA numbers result in expected mRNA abundances, 

consistent fluorescence intensity, and signal-to-background, in-line with expectations from the 

model (Figure 3-9A, B, C). For some cell lines, calibration of promoters for protein components 

may be necessary to ensure optimal SunRISER labeling. Nevertheless, even though promoter 

activity will vary by cell type, expression of SRv1 components in A549 cells produced 

qualitatively similar results even though A549 cells are phenotypically distinct from HeLa by 

many criteria (Figure 3-9D). Furthermore, the same optimization can be applied to orthogonal 

stem-loops and antibody-epitope pairs, such as MS2, MS2V6 [107], and MoonTag [119] (Figures 

3-10 and 3-11).  
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Figure 3-7 Modifications to SunTag-PCP alter sub-cellular distribution of SunRISER components. 
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(A)-(B) HeLa cells transfected with cmv-sfGFP-GB1-scAB, phage-cmv-cfp-24xpp7 and indicated 

constructs were imaged with identical settings by 60x wide-field microscopy 24 hours after 

transfection and quantified with dNEMO. Maximum intensity projections of representative cells 

are shown. Signal intensity is defined as the average of background-corrected pixel values within 

the area of each detected spot. Signal-to-background ratio is calculated as ratio of signal intensity 

divided by the average intensity of background pixels in an annular ring surrounding the spot. 

Coefficient of variation (CV) is the ratio of the standard deviation to the mean. ODC acts as a 

degron to reduce the expression level of SunTag-PCP driven by cmv promoter; nls, nuclear 

localization signal; nes, nuclear export signal. Scale bar: 10 μm. See also Table 3-1. Adapted from 

[149].  
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Figure 3-8 The optimal SunRISER design allows long-term imaging of single mRNA molecules throughout 

the cell. 

(A) Maximum intensity projections of HeLa cells transfected with SunRISER, consisting of the 

detection plasmid phage-cmv-cfp-24xpp7, as well as ubc-nls-PCP-5xSunTag and cmv-sfGFP-

GB1-scAB. Cells were imaged by 60x widefield fluorescence microscopy for 8 hours with a 10-

minute framerate. Scale bar: 10 μm. (B) Histograms of signal intensity and signal-to-background 

ratio of SunRISER labeled single mRNAs quantified with dNEMO. Signal intensity is defined as 

the average of background-corrected pixel values within the area of each detected spot. Signal-to-

background ratio is calculated as the ratio of average pixel intensity within an mRNA spot divided 

by the average intensity of background pixels in an annular ring surrounding the spot. (n=23 for 

cell numbers and n=5611 for spots numbers). (C) Maximum intensity projection images of 

smFISH performed with probes against the PP7 stem-loops in HeLa cells transfected with 

SunRISER protein components (ubc-nls-PCP-5xSunTag and cmv-sfGFP-GB1-scAB) only (top) 

or complete SunRISER with detection plasmid (bottom). Scale bar: 10 μm. (D) Histograms of 
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signal intensity and signal-to-background ratio for single mRNAs labelled with smFISH Q670 

probes against the mCherry coding sequence in cells expressing phage-cmv-mCherry-24xpp7 

detection plasmid without (blue, n=10 for cell numbers and n=2156 for spots numbers) and with 

(orange, n=11 for cell numbers and n=2842 for spots numbers) remaining SunRISER components. 

Adapted from [1]. 
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Figure 3-9 SunRISER-labeled mRNAs comparing weak and strong promoters in the detection plasmid, and 

expression in A549 cells. 

(A-C) Comparison of signal intensity (A), signal-to-background ratio (B), and mRNA numbers 

(C), between mRNAs expression driven by cmv and ubc promoters in the detection plasmid. Blue 

bars are cmv-driven and orange bars are ubc-driven SRv1-labeled mRNA. (D) Maximum intensity 

projection images of A549 cells transfected with SunRISER SRv1 phage-cmv-cfp-24xpp7, ubc-

nls-PCP-5xSunTag and cmv-sfGFP-GB1-scAB are shown. Note that A549 cells were imaged with 

longer exposure times to HeLa for similar overall image intensity, possibly related to the large size 

of A549 cells. Scale bar: 10 μm. Adapted from [149]. 
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Figure 3-10 Design principles of SunRISER are generalizable to orthogonal stem-loops and protein tagging 

systems.  

(A) HeLa cells transfected with detection plasmids phage-cmv-CFP-24xMS2 (top) and phage-

cmv-CFP-24xMS2V6 (bottom) stem loops variants of SunRISER with ubc-nls-MCP-5xSunTag 

show similar characteristics and intensity distributions, quantified in histograms (right). (B) HeLa 

cells transfected with detection plasmid phage-cmv-cfp-24xpp7 with cmv-sfGFP-GB1-Nb-gp41, 

and ubc-nls-PCP-12xMoonTag, quantified in histograms (right). We note that the MoonRISER 

example can be further optimized as it uses a longer 12x MoonTag and a nanobody which has 

different binding properties. Cells were imaged with 60x wide-field microscope 24 hours after 

transfection and quantified with dNEMO. Scale bar: 10 μm. Adapted from [149]. 
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Figure 3-11 Model calibrated to orthogonal RNA hairpin and coat protein systems are comparable with 

previous observations for PP7.  

(A) Parameter sweeps in the space spanned by the number of molecules for scFV-GFP and 

5xSunTag-MCP (left) using a computational model to calculate number of GFP molecules per 

mRNA. Parameter combinations 1-10 were selected to represent different ratios between scFV-

GFP and 5xSunTag-MCP (solid line 1:1, dotted line 5:1 and dash-dotted line 1:5) and different 

expression levels and frequency plots are shown (right). Different concentrations of mRNAs per 

cell are distinguished by different colors. (B) Parameter sweeps in the space spanned by the number 

of molecules for Nb-gp41-GFP and 12xMoonTag-PCP (left) using a computational model to 

calculate number of GFP molecules per mRNA. Parameter combinations 1-10 were selected to 
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represent different ratios between Nb-gp41-GFP and 12xMoonTag-PCP (solid line 1:1, dotted line 

5:1 and dash-dotted line 1:5) in plots of frequency versus intensity of GFP labeling (right). 

Different concentrations of mRNAs per cell are distinguished by different colors. Adapted from 

[149]. 
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Table 3-1 Summary of SunTag/PCP plasmid variants.  

PCP/SunTag variants Nuclear GFP Nuclear spots Cytoplasmic 
spots 

ubc-10xSunTag-PCP-nls No Limited Yes 
ubc-10xSunTag-PCP-nls-nes No Limited Yes 
cmv-10xSunTag-PCP-ODC Yes No Yes 
cmv-10xSunTag-PCP-nls-ODC Yes Yes Yes 
cmv-10xSunTag-PCP-nes-ODC Yes Limited Yes 
cmv-10xSunTag-PCP-nls-nes-ODC Yes Limited Yes 
ubc-10xSunTag-PCP-ODC Limited No Limited 
ubc-10xSunTag-PCP-nls-ODC Yes Limited Limited 
ubc-10xSunTag-PCP-nes-ODC Limited No Limited 
ubc-10xSunTag-PCP-nls-nes-ODC Yes No Limited 
cmv-5xSunTag-PCP-ODC Limited No Yes 
cmv-5xSunTag-PCP-nls-ODC Yes No Yes 
cmv-5xSunTag-PCP-nes-ODC No No Yes 
ubc-5xSunTag-PCP-nls No Limited Yes 
ubc-nls-5xSunTag-PCP Limited Limited Yes 
ubc-5xSunTag-PCP-nls-nes No Limited Yes 
ubc-nls-5xSunTag-PCP-nls Yes No Yes 
ubc-nls-5xSunTag-PCP-2xnls Yes No Limited 
ubc-2xnls-5xSunTag-PCP-2xnls Yes No No 
ubc-PCP-5xSunTag Limited Limited Yes 
ubc-nls-PCP-5xSunTag Yes Yes Yes 
ubc-nls-PCP-5xSunTag-nes Limited Limited Yes 

 

SunTag-PCP sequence modifications include varying promoters (ubc and cmv), nuclear 

localization sequences (nls), nuclear export sequences (nes) and ornithine decarboxylase (ODC). 

Note that “Limited” indicates that significant cell-to-cell variability or lower number than expected 

was observed for the associated property. Adapted from [149]. 

 

 

 

 



 62 

Table 3-2 Molecular weight for SunRISER variants and other mRNA labeling techniques for labeling single 

mRNAs. 

Variants Molecular weight of 
mRNA stem-loops 

Molecular weight of 
protein cargos 

Total molecular 
weight 

24xPP7 426.34kDa 2100.48kDa 2526.82kDa 

MS2x128 2233.6kDa 10931.2kDa 13164.8kDa 

SunRISER-V1 
(24xPP7-5xST) 

426.34kDa 15528.48kDa 15954.82kDa 

SunRISER-V1.1 
(8xPP7-10xST) 

134.86kDa 10085.76kDa 10220.62kDa 

SunRISER-V1.2 
(10xPP7-12xST) 

154.17kDa 15062kDa 15216.17kDa 

 

Molecular weight calculations for fully assembled mRNA labeled complexes, including associated 

coat proteins fused to GFP. Calculated weight for mRNA includes only the stem loops and does 

not consider an associated ORF. RNA molecular weight is calculated with Quest Calculate™ RNA 

Molecular Weight Calculator [155] and protein molecular weight is calculated with The Sequence 

Manipulation Suite [156]. 
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Table 3-3 Summary of parameters used in simulation. 

 Kd of antibody-
peptide pair 

(mol/L) 

Kd of coat protein and 
stem-loop pair 

(mol/L) 

# of epitopes on 
coat protein 

PCP-5xSunTag 
+mRNA-24xPP7 

0.38e-9 1e-9 5 

PCP-10xSunTag 
+mRNA-24xPP7 

0.38e-9 1e-9 10 

PCP-24xSunTag 
+mRNA-24xPP7 

0.38e-9 1e-9 24 

MCP-5xSunTag 
+mRNA-24xMS2 

0.38e-9 1e-9 5 

MCP-5xSunTag 
+mRNA-

24xMS2V6 

0.38e-9 2.4e-9 5 

PCP-
12xMoonTag 

+mRNA-24xPP7 

30e-9 1e-9 12 

Common 
constants 

Volume of whole 
cell = 1745 μm3 

Volume of Rayleigh 
criterion = 0.02 μm3 

# of stem-loops = 
24 

 

List of tunable parameters used in models simulating different variants of SunRISER with 

orthogonal stem-loops and antibody-epitope pairs. The volume of HeLa cell is from Bionumbers 

database (ID 103725), which can be adjusted for different cell types or modified for use with other 

measurements of cell volume. The volume of Rayleigh criterion is calculated as 

200nmx200nmx500nm (lateral resolution for light microscope is 200nm and axial resolution is 

500nm). Note that Kd for anti-GCN4 scFv can range from 10-6 to 10-11 M. 
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3.4 SunRISER variants with small stem-loop arrays and reduced plasmid requirements 

Most mRNA-tagging applications using bacteriophage-derived stem-loops use a 24x copy 

array or larger for signal amplification. Shorter stem-loop arrays exist, but are often used in 

CRISPR based genome imaging, where multiple copies of target sites are present to detect bright 

foci, or engineered to reduce impact on general mRNA metabolism [157-159]. We therefore asked 

whether SunRISER can be used to label single mRNAs using shorter stem-loop arrays.  

To establish versatility of our approach, we developed SunRISER configurations using 

shorter PP7 stem-loop arrays (8x, 10x, 12x), and varying lengths of PCP-SunTag arrays (5x, 10x, 

12x, and 24x). For each array combination, we measured median and variance of signal-to-

background for distributions of single mRNA molecules (Figure 3-12 and 3-13). We found that 

although longer SunTag arrays tend to correspond with greater signal-to-background, they also 

result in greater inter-spot variance which reduces mRNA detection efficiency (Figure 3-12A and 

B). Of all combinations tested, we found two SunRISER variants capable of labeling mRNAs with 

low variance, comparable signal-to-background, and comparable mRNA detection numbers to 

SunRISER (Figures 3-12 and 3-13). We refer to these as SRv1.1 and SRv1.2 respectively for 

8xPP7 with 10xSunTag, and 10xPP7 with 12xSunTag. Although mRNA labeled with SRv1, 

SRv1.1, and SRv1.2 have comparable molecular weights to MS2x128 (Table 3-2), these 

alternative designs provide flexibility in SunRISER applications to label shorter mRNAs without 

compromises to mRNA detection.   

Finally, to further enhance versatility of the SunRISER approach, we considered whether 

the protein components of SunRISER can be expressed from a single plasmid with multiple 

promoters. We generated a plasmid with two components to independently regulate expression of 

GFP-scAB and PCP-5xST, thereby in combination with the detection plasmid reducing the system 
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to two plasmids (referred to as SRv1-2P; Figure 3-12C). Single mRNAs detected using the 

SunRISER variant SRv1-2P again showed comparable imaging and detection properties to SRv1 

(Figures 3-12 and 3-13). As expected, SRv1.1-2P and SRv1.2-2P also produce results that are 

indistinguishable from their 3-plasmid counterparts. 
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Figure 3-12 Design of SunRISER variants. 

(A) Scatter plot of variance and median for signal-to-background ratio of single mRNAs labelled 

with different combinations of PP7 stem-loop and SunTag arrays. Vertical and horizontal lines 

mark the preferred region in the bottom-right quadrant with small inter-spot variance and strong 

signal. Optimized SunRISER SRv1 is indicated with a star. (B) Boxplots for mRNA numbers 

detected by different combinations of PP7 stem-loop and SunTag arrays. Grey region marks the 

first and third quantile for mRNA numbers detected by optimal SunRISER SRv1. Configuration 

with significantly different mRNA numbers from SRv1 are indicated with red stars (P-value < 

0.05, 2 tailed t-test). (C) Diagram of single plasmid encoding 2 protein components (C1) cmv-

sfGFP-GB1-scAB and (C2) ubc-nls-PCP-5xSunTag for the SunRISER SRv1-2P variant. (D) 

Histograms of signal-to-background ratio and mRNA numbers in cells labelled with SunRISER 

variants SRv1 and SRv1-2P. Adapted from [149]. 
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Figure 3-13 Quantification and representative images of different configurations for SunRISER. 

(A) Distribution of signal-to-background ratio for different stem-loops paired with different 

SunTag array lengths. Different color groups indicated different stem-loops and darker shades 

represent larger SunTag array. Vertical lines mark median values for different combinations. (B) 

Representative maximum intensity projection images of HeLa cells transfected with cmv-

mCherry-8xpp7, phage-nls-pcp-10xSunTag, cmv-sfGFP-GB1-scAB (SR v1.1). (C) 

Representative maximum intensity projection images of HeLa cells transfected with cmv-

mCherry-10xpp7, phage-nls-pcp-12xSunTag, cmv-sfGFP-GB1-scAB (SR v1.2). (D) 

Representative maximum intensity projection images of HeLa cells transfected with phage-cmv-
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cfp-24xpp7 and single construct encoding phage-nls-pcp-5xSunTag and cmv-sfGFP-GB1-scAB 

(SR v1-2P). Scale bar: 10 μm. Adapted from [149]. 
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3.5 Concluding remarks 

Guided by mathematical models, we used synthetic biology to systematically optimize 

SunRISER design and achieve the optimal molecular configurations that enables mRNA detection 

at single transcript resolution and maintain high signal intensity and signal-to-background for a 

long period of time. The same optimization principle is generalizable to orthogonal stem-loop and 

antibody-epitope pairs and smaller system with shorter stem-loop arrays. We further provided 

single plasmid version for easier gene delivery. However, the molecular weight of optimal 

SunRISER is still significantly larger than standard PP7-PCP and could be a potential source for 

disturbing mRNA metabolism. We continue characterization of SunRISER to investigate if the 

labeling alters normal mRNA functions.  
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4.0 Chapter 4. Characterization and application of SunRISER 

This chapter is adapted from: 

Y Guo and REC Lee, Long-term imaging of individual mRNA molecules in living cells, Cell 

Reports Methods, 2(6), 100226, 2022, of which I was first author, with the following author 

contributions: 

Conceptualization, Y.G. and R.E.C.L.; methodology, Y.G. and R.E.C.L.; investigation, Y.G.; 

software, Y.G.; formal analysis, Y.G.; writing – original Draft, Y.G. and R.E.C.L.; writing – 

review & editing, Y.G. and R.E.C.L.; visualization, Y.G. and R.E.C.L.; funding acquisition, 

R.E.C.L.; supervision, R.E.C.L. 
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4.1 Characterization of SunRISER system 

As mRNA is the vital molecule to integrate internal and external environmental cues and 

dictate the patterns of correct gene expression, perturbation to mRNA metabolism introduced by 

labeling is always a major concern in applications: whether a specific labeling faithfully reports 

innate mRNA behavior and whether the alteration is significant and leads to misinterpretation? 

Stem-loop and its cognate coat-protein as the most widely used technique for imaging mRNA in 

living cells has been scrutinized for their disturbance effect on mRNA half-life [160] and protein 

production [161]. So we use general PP7-PCP system as a point of reference to characterize 

labeling property of SunRISER system. 

To compare SunRISER directly with widely used approaches, we imaged cells expressing 

the 24xpp7 detection plasmid with PCP-GFP. Signal-to-background for standard PP7-labeling was 

near the detection limit throughout, and most cytoplasmic mRNAs fell below detectable signal 

levels within 10 minutes of imaging (Figure 4-1). By contrast, signal intensity and signal-to-

background for SunRISER remained strong and consistent between single cells throughout the 10-

minute experiments (Figure 4-1). To characterize photobleaching properties of SunRISER in more 

challenging imaging conditions, cells were exposed to a rapid time-lapse experiment where 7200 

consecutive epifluorescence images were collected within one hour (Figure 4-2). Although signal 

intensity values decreased to approximately 40% by the end of the experiment, the signal-to-

background was reduced only modestly, and mRNAs were robustly detected in single cells 

throughout (Figure 4-2B and C). Taken together, we conclude that SunRISER is resistant to 

photobleaching and provides greater robustness for detection of mRNAs when compared with the 

well-established PP7-PCP systems. 
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Figure 4-1 Comparison between mRNAs labeled with SunRISER SRv1 and PP7-PCP-GFP. 

Adapted from [149]. 

(A) maximum intensity projection images of HeLa cells transfected with phage-cmv-cfp-24xPP7 

and phage-ubc-nls-ha-pcp-gfp. Cytoplasmic region (yellow box) was zoomed in and shown in time 

series. (B) Representative Time course of signal-to-background values for SunRISER SRv1 

(green; n=12 for cell numbers) and PCP-GFP (grey; n=12 for cell numbers) labeled mRNAs. 

Imaging conditions were selected to minimally facilitate detection of single mRNA spots while at 

the same time minimizing phototoxicity for the two reporter systems. (C) Time course of detected 

mRNA numbers with SunRISER SRv1 (green) and PCP-GFP (grey). (D) Boxplot for ratio of 

mRNAs detected with SunRISER SRv1(left) and PCP-GFP (right) between t=10min and t=0. The 

mRNA numbers were calculated as average of 50 frames at specified time points. P-value was 

calculated using a 2-tailed t-test. 
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Figure 4-2 SunRISER is resistant to photobleaching and robustly labels mRNA molecules during prolonged 

imaging conditions. 

(A) Maximum intensity projections of SunRISER SRv1-labeled mRNAs at different time points. 

24 hrs after transfection of HeLa cells with detection plasmid phage-cmv-cfp-24xpp7 with ubc-

nls-PCP-5xSunTag, and cmv-sfGFP-GB1-scAB (SunRISER), cells were imaged by 60x widefield 

fluorescence microscopy as 4x frame z-stacks at 2-second interval over a 1-hour duration. Scale 

bar: 10 μm. (B) Time course of normalized signal intensity (top) and signal-to-background values 

(bottom) for spots labeled with SunRISER across different single cells (n = 14). Solid line marks 

the mean signal intensity and mean signal-to-background values averaged among single cells 

(signal intensity was normalized by the average spot intensity across cells at the first frame of 

imaging) and shaded area indicates the standard deviation between single cells. (C) Time course 

of mRNA counts for 1-hr fast movies across different cells. The counts were smoothed by a sliding 

window of 5 frames. Adapted from [149]. 
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Next, we compared functional properties of SunRISER-labeled mRNA with expectations 

from unlabeled mRNA, as well as previous reports from the literature. Comparing mCherry 

fluorescence expressed from a detection plasmid in single cells from a transcript with 24xPP7 stem 

loops, SunRISER labeling did not have significant effects on protein production (Figure 4-3A). 

SunRISER-labeled mRNA maintained a mean ratio of 5 between nuclear and cytoplasmic 

compartments (Figure 4-3B), which is consistent with mean value expectations of 3.8 to 6.5 based 

on RNAseq of subcellular fractions [162], suggesting the subcellular distribution of SunRISER-

labeled mRNA is unaltered. Remarkably, SunRISER-labeled mRNA numbers in response to 

transcription inhibition revealed mRNA half-lives with significant cell-to-cell variability (Figure 

4-3C). Single cell mRNA half-lives were consistent with previous results, spanning the divide that 

separates median mRNA half-lives expected of stable and unstable mRNA molecules [163]. 

Although this may represent a source of cellular heterogeneity, cells with particularly long mRNA 

half-lives can also indicate partial escape from transcriptional inhibition through enhanced 

chemical efflux or other mechanisms that also vary between cells. Finally, extended extensions of 

widely used RNA tags have the potential to alter diffusion rates, so we also measured diffusive 

properties of SunTag-labeled mRNA. Since the SunRISER-labeled mRNA complex is larger than 

24xPP7-PCP, it is expected to result in lower single-mRNA diffusion rates within the cell. When 

measured from high-frequency time-lapse images, diffusive motion of SunRISER-labeled mRNA 

molecules was 0.19 µm2/s (Figure 4-4), which is lower yet within the expected range of values 

(0.15-0.72 µm2/s) measured from 24xPP7-PCP-labeled endogenous mRNAs [108]. Taken 

together, although the SunRISER mRNA-protein complex is bulkier, it does not significantly alter 

mRNA function beyond expectations from previous analysis of conventional fluorescent mRNA 

reporters [99]. 
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Figure 4-3 Characterization of translation, half-life, and cytoplasm-to-nucleus ratio for SunRISER-labeled 

mRNA. 

(A) Boxplots of mCherry fluorescence intensity in Hela cells transfected with SunRISER labeled 

mCherry-24xPP7 (left) and mCherry-24xPP7 only (right) quantified 24 hours after transfection. 

The p-value (0.17) of a 2-tailed t-test suggests that SunRISER does not significantly alter protein 

expression from labeled mRNAs. (B) Histogram of cytoplasm:nucleus mRNA ratios for 

SunRISER labeled mRNAs in Hela cells transfected with SunRISER labeled CFP-24xPP7 (n=56 

for cell numbers). mRNA numbers are counted with dNEMO. (C) Boxplot of mRNA half-lives 

for SunRISER labeled CFP-24xPP7 mRNAs measured in single cells 24 hours post-transfection. 

Transcription was inhibited via treatment with 50μM DRB and cells were imaged with 10-minute 

intervals over a period of 10 hours. To calculate half-lives, single-cell mRNA time courses were 

fit to exponential functions. Shaded area approximates the half-lives measured for global mRNAs 

[163, 164]. Adapted from [149]. 
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Figure 4-4 Diffusion of SunRISER labeled mRNAs. 

(A) Maximum intensity projection images from a representative high frame rate movie of 

SunRISER labeled mRNAs. Spots were detected by dNEMO and tracked by u-track [165] to 

establish single-mRNA time course trajectories. Individual trajectories are distinguished by 

different colours. Scale bar: 10 μm. (B) Representative histogram of diffusion constants calculated 

from mRNA trajectories within a single cell. Mean and standard deviation are extracted from 

Gaussian fit (n=495 for spots numbers). (C) Boxplot of mean diffusion constants from 16 cells. 

Adapted from [149]. 
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4.2 Application of SunRISER: Variability of mitotic mRNA inheritance between sister cells 

Random partitioning of biomolecules between daughter cells during cell division is a 

contributing source to non-genetic heterogeneity [4, 166]. The symmetry of mRNA inheritance 

during mitosis is tightly regulated during embryonic development and tissue homeostasis as the 

distribution of specific mRNAs controls cell signaling pathways and subsequent cell fate decisions 

[167-171]. However previous studies on mRNA division have been performed mostly across 

populations and in fixed samples, therefore lacking the resolution to examine mRNA partitioning 

in single mother and daughter cells in real time. Since SunRISER is theoretically capable of 

imaging mRNAs over time scales of cell division, we set out to quantify mRNA partitioning 

between single mother-daughter and sister cells pairs in various growth conditions. 

Enabled by the long-term mRNA imaging capability of SunRISER, we imaged HeLa cells 

transfected with CMV-promoter driven mRNAs labeled with SunRISER for 24h and quantified 

mRNA abundance during cell division with and without cellular stress (Figure 4-5A, B). SRv1-

labeled mRNAs that encode CFP were used to examine the mitotic partitioning mechanisms for a 

generic mRNA species that is not subject to particular mitotic regulation mechanisms. The relative 

difference in mRNA levels between sister cells was used as a metric for symmetry of mRNA 

partitioning. We observed significant variability between pairs of sister cells in the same culture 

condition (Figures 4-5 and 4-6). To classify differences between sister cell pairs, we used 

information criteria and k-means clustering (Figure 4-6A, B) and found 4 clusters that we refer to 

as ‘Symmetric’, ‘Weak asymmetry’, ‘Asymmetric’, ‘Strong asymmetry’. Cells cultured in the 

presence of tumor necrosis factor (TNF; 15 ng/mL) or low serum conditions (5% FBS), showed a 

significant shifts favoring 'Asymmetric’ with the emergence of rare sister-cell pairs with ‘Strong 

asymmetry’ (Figures 4-5C and 4-6B). We further compared mRNA ratios between the sum of 
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daughter cells and their corresponding mother (Figure 4-5D) and observed evidence of significant 

mitotic transcription (defined as mRNA ratio significantly greater than 1 for the sum of daughter 

cells divided by the mother cell) induced by cells exposed to lithium chloride (LiCl) as well as low 

serum conditions (Figures 4-5D and 4-6C, D). Notably, although LiCl promoted escape from 

silencing of mitotic transcription, it only had modest effects on asymmetric mRNA inheritance 

between post-mitotic sister cells (Figures 4-5 and 4-6D). For all environmental stresses, 

distributions of mRNAs allocated to daughter cells shifted significantly away from the binomial 

distribution observed for cells dividing in the growth medium condition (Figure 4-7A). Although, 

R2-values suggest that partitioning of mRNA between daughter cells is partly explained by 

distribution of total cellular mass (Figure 4-7B), our data suggest that other factors also contribute 

to the observed diversification between sister cells. 
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Figure 4-5 Long-term imaging to monitor mRNA partitioning during cell division. 

(A) Time course for maximum intensity projection images of HeLa cells expressing SunRISER 

SRv1 in standard growth medium undergoing mitosis. Frame 0 is the last frame where mother cell 

remains as a single cell with a semi-detached circular appearance. Cells were imaged for 24h with 

a 10-minute frame rate. (B) Representative trajectories of mRNA counts during mitosis for the cell 

depicted in panel (A). Solid black line marks mRNA numbers for the mother cell and red lines 

indicate mRNA numbers for each daughter cell. Grey bar marks the window around Frame 0 

during which time mRNA counts are not accurate due to morphological changes and temporary 

detachment of the dividing cell. Yellow bars mark the 3-frame window used for extraction of 

mRNA counts for mother and daughter cells in subsequent analysis. (C) Bar graphs for relative 

difference of mRNA between sister cells during mitosis when cells are cultured in media without 

or with indicated stress. Classifications are based on information criteria and k-means clustering 

(see also Figure S9). Yellow colored bars indicate the fraction of cells identified as undergoing 

asymmetric division with different shades representing the indicated subcategories. Blue colored 

bars indicate the symmetric division category. P-value was calculated using the Levene test. (D) 
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Box plots of ratios for the sum of post-mitotic daughter mRNAs divided by the mRNA number 

for the pre-mitotic mother cell. Media composition without or with stress is as indicated. Black 

dots represent individual sister pairs. Red line marks ratio value equal to 1. P-value was calculated 

using 2-tailed t-tests. Outliers with more than 8-fold increase in transcript numbers are not plotted. 

Adapted from [149]. 
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Figure 4-6 Symmetry and asymmetry of mitotic mRNA partitioning identified by k-means clustering and 

active transcription during mitosis. 

(A) AIC/BIC calculation for determining the number of clusters (k) used for subsequent k-means 

clustering on mRNA symmetry between post-mitotic sister cells. Vertical line indicates the optimal 

cluster number as 4 for both analyses. (B) Box plots for relative difference of mRNA between 

post-mitotic sister cells when cultured in media without or with indicated stress. Black dots 

represent individual sister pairs. Red lines mark the boundaries of k-means clustering. (C) Box 

plots for mRNA ratio between the sum of daughters and mother in different symmetry groups 

identified by k-means clustering on mRNA relative difference. (D) P-value table for t-tests 

between mRNA ratio between the sum of daughters and mother for each cluster and growth media 

group shown in panel (C). P-values indicate significant evidence of mitotic transcription in LiCl 

and low serum conditions. Adapted from [149]. 
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Figure 4-7 Mitotic mRNA partitioning between daughter cells during stress. 

(A) Histograms for ratios of mRNAs allocated to daughter cells when cultured in media without 

or with indicated stress. Binomial distributions are overlayed with grey lines. P-values for binomial 

tests are marked, showing that partitioning deviates significantly from a binomial distribution in 

all stress conditions. (B) Scatter plots for the ratios of mRNA numbers and the ratios of areas 

between daughter cells when cultured in media without or with indicated stress.  R2 values are 

marked. Coefficients of determination suggest that asymmetry of mRNA inheritance is partially, 

but not completely, explained by variance in cellular mass distribution between daughter cells. 
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4.3 Concluding remarks 

The SunRISER system outperforms common PP7-PCP with exceptionally high signal-to-

background and resistance to photobleaching for over 7000 consecutive acquisitions. We tested 

the perturbations of SunRISER to mRNA translation, transport, half-life and diffusion properties 

and compared the results to reported values in literature. It shows that SunRISER did not 

significantly alter mRNA functions than PP7-PCP but did reveal heterogeneity in half-life that 

cannot be measured with ensemble methods. Application of SunRISER to follow mRNA 

distribution dynamics during mitosis at single mother-daughter pair resolution affords accurate 

quantification of mitotic inheritance asymmetry in live cells. 
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5.0 Chapter 5 Materials and methods 

Further protocol details in applying SunRISER and dNEMO [141] to label and quantify single 

mRNAs in single cells can be found in Appendix A and based on the paper where I am a co-first 

author that is in press with Star Protocols: 

Y Guo*, GJ Kowalczyk*, REC Lee, Label and quantify mRNA molecules in live cell experiments 

using SunRISER and dNEMO, Star Protocols, In Press. 
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5.1 Plasmid construction 

The 24xSunTag-PCP plasmids were constructed with 24xGCN4 repeats flanked by HindIII 

and BamHI sites and coat protein flanked by BamHI and EcoRI sites in a pcDNA3 vector. Ubc 

promoter was PCR amplified from phage-ubc-nls-ha-pcp-gfp (Addgene #64539) and inserted 

between MluI and HindIII sites to make ubc-nxSunTag-PCP. 5xSunTag,10xSunTag and 

12xSunTag variants were generated by PCR amplification of 5xGCN4, 10xGCN4 and 12xGCN4 

from pcDNA4TO-5xGCN4_v4-kif18b-24xPP7 (Addgene #74927), pcDNA4TO-mito-mCherry-

10xGCN4_v4 (Addgene #60914) and 12xMoonTag-12xSunTag-kif18b-24xPP7 (Addgene 

#128606) and replacing 24xSunTag respectively. SV40NLS, a 57bp NES signal 

(ATGAACCTGGTGGACCTCCAAAAGAAGCTGGAGGAGCTGGAGCTGGACGAGCAGC

AG) or NES from HIV Rev protein and ODC fragment amplified from pEF-24xV4-ODC-24xPP7 

(a gift from Dr. Xiaowei Zhuang’s lab) were added at the C-terminus of nxSunTag-PCP between 

EcoRI and XbaI for various modifications. The ubc-nls-PCP-5xSunTag plasmids were created by 

replacing gfp sequence in phage-ubc-nls-ha-pcp-gfp with 5xGCN4 flanked by BamHI and BsrGI 

sites. Similarly, ubc-nls-MCP-5xSunTag were obtained by insertion of 5xGCN4 to UbC-NLS-

HA-MCP-YFP (Addgene #31230) after digestion of XbaI and BsrGI restriction enzymes. 

cmv-sfGFP-GB1-scAB was assembled by inserting sfGFP-GB1 fragment from 

pHRdSV40-scFv-GCN4-sfGFP-VP64-GB1-NLS (Addgene #60904) and scAB fragment from 

phage UbiC scAB-GFP (Addgene #104998) into a pcDNA3 vector.  

phage-cmv-cfp-24xms2 (Addgene #40651) and phage-cmv-cfp-24xpp7 (Addgene 

#40652) act as reporter mRNA labeled with different stem-loops. 24xMS2V6 stem-loops from 

pET259-pUC57-24xMS2V6 (Addgene #104391) was amplified using BamHI and SacII sites to 
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label cfp the same way as other two stem-loops. Phage-cmv-mCherry-24xPP7 was obtained by 

replacing cfp between AgeI and BamHI with mCherry. 

For MoonRISE variant, cmv-sfGFP-GB1-Nb-gp41 was created by replacing scAB with 

Nb-gp41 from Nb-gp41-Halo (MoonTag-Nb-Halo) (Addgene #128603). Ubc-nls-PCP-

12xMoonTag is made by using 12xMoonTag-12xSunTag-kif18b-24xPP7 (Addgene #128606) as 

backbone and removing sequences after 12xMoonTag and inserting stop codon and inserting ubc-

nls-PCP fragment between SpeI and HindIII sites in front of 12xMoonTag. 

cmv-mCherry-12xPP7 was constructed by inserting cmv promoter between NotI and 

BamHI sites into pDZ645 pKAN 1x-mCherry-12xPP7 V4 (Addgene #73173). 8xPP7 and 10xPP7 

fragment were amplified from pLH-sgRNA-Sirius-8XPP7 (Addgene #121940) and CMV-10xPP7 

oligo-library based (Addgene #158199) respectively and replacing 12xPP7 to create cmv-

mCherry-8xPP7 and cmv-mCherry-10xPP7. 

Single plasmid encoding SunRISER SRv1 protein components for SRv1-2P was produced 

by ligating PCR amplified cmv-sfGFP-GB1-scFv-bGH poly(A) into ubc-nls-PCP-5xSunTag 

backbone. 

5.2 Live cell imaging and quantification of single mRNA spots with dNEMO 

HeLa cells were plated on 96-well glass bottom plates (Matriplate) at the density of 8x103~ 

1x104 per well. Transient transfection was performed with Fugene HD (Promega) 24hrs later 

according to manufacturer’s protocol. A mixture of plasmids comprising SunTag system with 

equal amount (50ng) for each was first made in Opti-MEM then Fugene HD was added and 

incubated for 15 mins at room temperature. The amount of DNA and Fugene HD can be optimized 
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accordingly. 24hrs after transfection cells were imaged using a DeltaVision Elite microscope with 

a 60x objective (1.42 NA; Olympus) and temperature-matched oil in an environmentally controlled 

chamber (37°C, 5% CO2). Z-stacks of 5 images with 1 μm interval were acquired for 

quantification with dNEMO. Cell segmentation was manually performed in dNEMO and the spot 

detection parameters are set as default. In comparison of SunRISER and MS2-MCP, stacks of 4 

planes with a z-spacing of 0.5 μm were obtained for high frame rate (one 3D stack per 2s). For 

comparison of promoters, mean fluorescence intensity was measured using ImageJ for a fixed 

region in cytoplasmic area. 

5.3 Stress treatments 

Cells were plated on 96-well glass bottom plates (Matriplate) for fixed-cell and live cell 

imaging experiments. For perturbation of mitosis, cells were cultured in DMEM with 15ng/mL 

TNF, 10mM LiCl or 5% FBS.  

5.4 smFISH probes and image acquisition 

Five 3’ Cy5 fluorescently labeled DNA oligos [153](ggcaattaggtaccttagg, 

catatcgtctgctcctttc, gagtcgacctgcagggag, atatgctctgctggtttc, atactgcagccagcgagc) as smFISH 

probes against PP7 stem-loops were synthesized by Genewiz. Stellaris® Design Ready probes 

mCherry with Quasar® 670 Dye (VSMF-1031-5) against mCherry CDS were synthesized by 

Biosearch™ technologies. HeLa cells were plated on 96-well glass bottom plates and transfected 
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with SunRISE components for 24hrs. Cells were then fixed with 3.7% formaldehyde, washed three 

times in 1xPBS for 5 mins each and permeabilized in 70% (v/v) EtOH overnight at 4℃. The 

hybridization was then performed overnight at 37℃ with 100 nM probes in 2XSSC with 10% 

formamide and 10% dextran sulfate. Nuclei were labeled in the wash step after the hybridization. 

Cells were finally imaged in Glox buffer [172] using a 60X objective on a DeltaVision microscope. 

Z-stack images of both FITC channel (SunRISER) and Cy5 channel (smFISH) were collected. 

5.5 Fixed-cell Immunofluorescence 

HeLa cells were plated on 96-well glass bottom plates and transfected with 10xSunTag-

PCP or the combination of scAB-GFP and 10xSunTag-PCP for 24hrs. Cells were then fixed with 

3.7% formaldehyde for 10 minutes, rinsed three times in 1xPBS for 5 mins each and incubated in 

100% methanol for 10 min. Cells were washed three times in PBST (1XPBS 0.1% Tween 20) for 

5 mins each and then a primary antibody α-GCN4 (Absolute Antibody C11L34) diluted 1:100 in 

3% BSA PBST was applied and incubated overnight at 4°C. After several washes, cells were 

incubated with secondary antibody (3% BSA PBST with 1:1000 Alexa594-conjugated anti-mouse 

IgG antibody) for one hour at room temperature. Nuclei were stained in the wash step after 

secondary antibody. Cells were finally imaged using a 60X objective on a DeltaVision microscope. 
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5.6 Statistical analysis 

Levene test was performed to calculate p-values using raw data from Figure 4-5C, 

demonstrating significant changes in the variance of the indicated distributions. Binomial test was 

used to determine if partitioning of mRNA into daughter cells follows binomial distribution. Two-

tailed t tests were performed for calculation of p-values for other figures. All analysis is performed 

with Scipy stats packages in Python. 

In Figures 3-12 and 3-13, the same data set is analyzed with the following cell numbers for 

each condition: 8xPP7-5xST: n=8; 8xPP7-10xST: n=12; 8xPP7-12xST: n=14; 8xPP7-24xST: 

n=9; 10xPP7-5xST: n=11; 10xPP7-10xST: n=11; 10xPP7-12xST: n=10; 10xPP7-24xST: n=11; 

12xPP7-5xST: n=11; 12xPP7-10xST: n=14; 12xPP7-12xST: n=15; 12xPP7-24xST: n=17. In 

Figures 6C, 6D, S9 and S10, the same data set is analyzed with the following numbers for mother-

daughter pairs: growth medium, LiCl, TNF, low serum are 31, 30, 40 and 32, respectively.  

Other number of samples are all listed in figure legends or marked in figures. 

5.7 Half-life and diffusion constant measurement 

HeLa cells transfected with SunRISER for 24hrs was treated with 50µM DRB (5,6-

Dichlorobenzimidazole 1-β-D-ribofuranoside, Sigma-Aldrich) and imaged for 10hrs with frame 

rate of 10 mins. The time course of mRNA counts was fitted to exponential function 𝑦𝑦 = 𝐴𝐴𝑒𝑒−
𝑥𝑥
𝜏𝜏  to 

extract mRNA half-life 𝜏𝜏1/2 = ln 2 ×  𝜏𝜏. For mRNA tracking, fast movie (frame rate of 1.1s) of 

HeLa cells transfected with SunRISER was taken 24hrs after transfection and mRNAs were 

identified with dNEMO and tracked with u-track. The diffusion constant is calculated as: 
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𝐷𝐷 =
𝑒𝑒𝛾𝛾/𝛼𝛼

6
 

Where γ and α are intercept and slope from linear fit to log-log representation of mean 

square displacement provided by u-track. 

5.8 mRNA inheritance during mitosis analysis 

HeLa cells were transfected with SunRISER for 24hrs and then cultured in DMEM with 

TNF (15 ng/mL; Peprotech), LiCl (10 mM; Sigma-Aldrich) or 5% FBS and imaged for 24hrs after 

media replacement with a frame rate of 10 mins. mRNA counts are extracted by dNEMO and 

mother-daughter pairs are manually assigned. The last frame where mother cell remains as a single 

cell with a semi-detached circular appearance was set as frame 0. The frames -2, -1, 0, of mother 

cell and 1, 2, 3, of daughter cells are discarded for mRNA quantification because mRNA counts 

are not accurate during this period due to morphological changes and temporary detachment of the 

dividing cell. mRNA counts from frames -5, -4, -3, of mother cell and 4, 5, 6 of daughter cells 

were averaged to represent mRNA abundance before and after division. mRNA relative difference 

between sister cells is defined as  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡𝑡𝑡𝑡𝑡1 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡𝑡𝑡𝑡𝑡2|
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡𝑡𝑡𝑡𝑡1 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡𝑡𝑡𝑡𝑡2

 

 

It is noted that daughter1 and daughter2 are randomly assigned so we use absolute value 

of the difference. mRNA ratio between the sum of post-mitotic sister cells and mother cell is 

defined as ((𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡𝑡𝑡𝑡𝑡1 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡𝑡𝑡𝑡𝑡2)) ⁄ 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒. 
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6.0 Chapter 6 Discussion  

SunTag technology used for fluorescence signal amplification has empowered imaging and 

quantification of translation, partial story of the central dogma, at single transcript level and also 

served as a point of reference in dissecting copy numbers of signaling molecules. This highly 

quantitative tool also imparts an exact control to the fold of signal amplification by varying 

numbers of SunTag epitope repeats. Another half of the central dogma, transcription, subjected to 

more tight regulation has been studied extensively at single molecule level but there is still a lack 

of time-lapse live-cell reporter for resolving single transcripts over extended duration. 

The lifespan of mRNA molecules in mammalian cells occurs over timescales of hours to 

days. During which, mRNAs participate in highly dynamic processes that are tightly regulated in 

time and space. Bacteriophage-derived stem-loops and FP-tagged coat proteins are current state-

of-the-art approaches to detect single mRNA molecules in live cells, however there are still 

significant limitations of these seminal reporter systems.  Furthermore, to take full advantage of 

typical stem-loop and coat-protein labeling systems requires highly customized microscopy 

equipment. For example, two-photon fluorescence fluctuation spectroscopy can provide accurate 

measurement of single mRNAs up to several minutes, but these measurements cannot be sustained 

over longer durations. By contrast, SunRISER enables long-term investigation of dynamical 

mechanisms of mRNAs over timescales of at least 24 hours using standard epifluorescence 

microscopy. 

To optimize SunRISER, simulations were used to explore non-linear interrelations 

between the components of the two-stage reporter system. As a static model, we assume all the 

binding events in the system have reached equilibrium. The steady state assumption allows 
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conversion of binding affinity to binding probabilities, which reduces the computational load while 

preserving key features of the system. Selected binding constants for our simulations were chosen 

specific to stem-loop, coat-protein, and antibody-epitope pairs used in this study (summarized in 

Table 3-3). With appropriate modifications to the kinetic parameters, the mathematical model 

(https://github.com/recleelab/SunRISER_SupplementalModel) is generalizable to any two-stage 

molecular amplification reporter and is extensible to higher-order systems. 

Direct comparison between SunRISER and PP7-PCP systems showed significant 

improvements to signal intensity, stability, and signal-to-background ratios. Furthermore, 

SunRISER minimally perturbs normal mRNA function and is highly resistant to photobleaching. 

Although our stress-test and long-term experiments concluded after 7200 consecutive images and 

24 hours respectively, we expect that these represent lower limits and that mRNA signals will 

remain detectable over longer repeat-exposure conditions. We also note that several ‘sub-optimal 

variants’ of the PCP-SunTag component of SunRISER that were tested in our synthetic biology 

approach showed an exclusively cytoplasmic localization (Table 3-1). Although these sub-optimal 

variants of the reporter do not identify nuclear mRNAs, they may still have value in certain 

experimental settings where selective labeling of only cytoplasmic mRNAs is preferred. Finally, 

SunRISER variants SRv1, SRv1.1, and SRv1.2 offer flexibility to label shorter mRNAs by 

balancing the reporter’s mRNA:protein composition, reducing sequence perturbations on mRNAs 

without compromising signal-to-background and detection. 

Asymmetric mitotic mRNA inheritance is an essential mechanism to control the 

maintenance and emergence of specialized cellular phenotypes during development. Previous 

studies on mRNA partitioning during mitosis typically required cell fixation and chemical 

synchronization, with mRNA levels assessed via bulk cell measurements that are incapable of 
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providing dynamical single-cell information. Here we used SunRISER to visualize the mRNA 

partitioning during mitosis in single cells without chemical perturbations associated with 

synchronization. We observed significant heterogeneity between sister cells in terms of mRNA 

partitioning during both TNF stimulation and in low-serum conditions. Remarkably upon serum 

starvation, a distinct population of cells that exhibit very strong asymmetry in mRNA partitioning 

arises concomitant with evidence for active mitotic transcription. We surmise that asymmetric 

segregation of mRNA and rapid divergence via mitotic transcription is a strategy to increase 

molecular diversity in the cell population. Similar bet-hedging strategies have been observed in 

yeast and attributed to asymmetric mitotic inheritance of proteins, imparting increased fitness to 

more diverse populations growing in harsh environments. During stress, such as nutrient 

limitation, asymmetric partitioning of mRNA in mammalian cells may similarly enhance 

population-level fitness via diversification of cellular states. 

In summary, SunRISER enables unambiguous detection of mRNA molecules in living 

cells. By using an optimized two-phase design, our reporter system is robust to photobleaching 

over long term experiments, and the approach is generalizable to other stem-loop and peptide 

arrays using the accompanying computational tool. We anticipate the approach will facilitate 

studies of dynamical properties for single mRNAs and biological variability between single-cells, 

cell types, and eventually in tissues, with applications across biological disciplines. 
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6.1 Limitation of SunRISER 

While SunRISER presents a solution for robust labeling of single mRNAs in mammalian 

cells, there are limitations to be considered. Optimal mRNA labeling with SunRISER requires an 

expression ratio of protein components using promoters which may be diversely regulated in 

different cell types and may also vary in different environmental conditions. When applying 

SunRISER to a new cell line, a stable cell line, or to certain environmental conditions that impact 

mRNA detection, it may be necessary to test different promoters to ensure the optimal expression 

ratio is achieved. In our application of SunRISER to study mRNA partitioning during mitosis, a 

generic transcript was used to examine passive mechanisms of mitotic inheritance of mRNAs. 

Expectations for mRNA distributions between daughter cells may change significantly for mRNAs 

associated with specific functions such as mitosis, development, and cell-fate specification. 

Furthermore, SunRISER-labeled transcripts comprise a large complex that does not significantly 

alter normal function of mRNAs assessed here, but may still affect other dynamical properties of 

mRNAs, for example, structural complexes or particular biological processes. When mRNA 

translation and stability are important aspects of a study, careful controls should be performed to 

verify there are no specific effects from SunRISER labeling on the particular mRNA species. 

Therefore, other mRNA labeling methods such as 24xPP7/PCP-GFP may be more appropriate for 

applications that do not require imaging of cytoplasmic mRNAs, long-term processes, or rapid 

assemblies such as transcriptional start sites. When SunRISER is used to study mRNA-mRNA 

interaction or stoichiometry relations, verification via orthogonal approaches will be necessary. It 

is worth noting that mRNA half-life could be a confounding factor in studying long-term 

correlations and must be carefully calibrated. Finally, we note that simulations predict SunRISER 

will perform poorly at extremely high mRNA expression levels. Caution on interpretation should 
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be taken when mRNA numbers exceed 1000’s per cell, or for applications where large numbers of 

mRNAs are bundled in close proximity. 

6.2 Future perspectives in application of SunRISER 

mRNA is only a small fraction of the genomics information transcribed that encodes 

proteins [173]. The majority of RNAs in eukaryotic cells is referred to as non-coding RNAs and 

can be classified into different categories based on their lengths (lncRNA, miRNA), functions 

(tRNA, rRNA) and localizations (snRNA, snoRNA). SunRISER holds the potential to be applied 

to non-coding RNAs with shorter stem-loop variant. For example, the standard 24xPP7-PCP 

cannot be used to label miRNAs as miRNAs are only around 22-nt long [174] and an over 50-fold 

longer stem-loop appendage would definitely confound the interpretation of observed dynamics. 

With SunRISER design principle generalizable to shorter stem-loops we propose that 3-5 copies 

of miRNA labeled with 8xPP7 (SRv.1.1) can be used to study miRNA metabolism. CircRNA 

[175] is another interesting RNA species that is produced by non-canonical splicing and resistant 

to common cellular RNA degradation pathways. Similarly, due to the length of 24xPP7, standard 

PP7-PCP approaches has not been applied to label circRNA. If circRNA can be visualized by 

shorter SunRISER and followed over its extended lifetime, it will shed light on the degradation 

mechanism of circRNAs. 

Asymmetrical cell division is a fundamental mechanism to produce daughter cells that 

adopt distinct fates in developmental biology and cancer biology. However, quantitative study of 

symmetrical properties in mRNA inheritance between mitotic sister cells is limited to biochemical 

measurements that lack single-cell resolution and dynamical information. With SunRISER, we are 
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not only able to examine the moment right after division and dissect the direct connection between 

mother and daughter cells in terms of mRNA counts, but also quantify the potential entanglement 

between sister cells at varied time scales. It has been proposed [176] that symmetry is established 

in mitosis via quantum coherence and entanglement among centrioles and mitotic spindles and 

asymmetry arise from destruction of the communicable entanglement. SunRISER allows 

following mRNAs dynamics in sister cells for a long time after division so we can determine the 

correlation in mRNA movements within cells and between sister cells and inspect quantum 

entanglement in addition to electromagnetic and chemical gradient fields effects. Symmetry in 

mRNA inheritance is well preserved in normal growth medium and perturbed in stress conditions 

when a generic gene is studied. When a functional mRNA is tracked, would the symmetry still be 

observed within its own distribution or intertwined with its related genes or cell-cycle related 

genes? For example, is it possible that asymmetric inheritance of one mRNA is compensated by 

another mRNA and the overall mRNA contents partitioned to daughter cells are still even? Are 

there certain mRNA sequences or structures that serve as the driving force and dictate the 

proportionate asymmetry of other associated mRNAs? Can the asymmetry of mRNAs expressed 

upstream predict the symmetrical property of downstream mRNAs? These questions can be 

answered by examining several related genes at different time points to fully reveal the temporal 

feature and biological meaning in future applications of SunRISER. With imaging time extended, 

we can further evaluate whether mRNA asymmetry has functional consequences on the cell 

lineages, for example in response to subsequent stresses. 
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Appendix A  

Here we present a copy of the paper listed below currently in press with Star Protocols: 

Y Guo*, GJ Kowalczyk*, REC Lee, Label and quantify mRNA molecules in live cell 

experiments using SunRISER and dNEMO, Star Protocols, In Press. 
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Summary 
Visualization of mRNA molecules in single cells has revealed core mechanisms of the central dogma as 
well as sources of cell-to-cell and spatiotemporal heterogeneity. Here we describe a protocol to label, 
visualize, and quantify mRNA molecules by time-lapse imaging with the capability of resolving mRNA 
molecules over durations of hours to days. We provide links to mRNA-labeling plasmids as well as free 
software for a semi-automated image analysis pipeline.  
 
For complete details on the use and execution of this protocol, please refer to (Guo and Lee, 2022) 
and (Kowalczyk et al., 2021). 
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Graphical abstract 
 

 
Before you begin 
 
The following protocol is for labeling and visualization of single mRNA molecules, followed by image 
analysis with a semi-automated pipeline. This protocol is described using HeLa cells but is adaptable 
to other mammalian cells. 
 
 
Label a gene of interest with stem-loops in mammalian cells 
 
Single-molecule imaging of mRNA has revealed fundamental properties of mechanisms in the central 
dogma that lead to variability between single cells. Continuous imaging of mRNA in living cells enables 
higher spatiotemporal resolution for mRNA shuttling and processing events that occur within the 
timescales of minutes, and more recently shown in the timescales of hours and days (Cawte et al., 
2020; Guo and Lee, 2022; Tantale et al., 2016). To visualize single mRNA molecules for extended 
durations by wide-field microscopy, we developed a live-cell reporter called SunRISER (Guo and Lee, 
2022). SunRISER uses a two-stage labeling approach (Fig. 1). In the first stage, an mRNA of interest is 
extended in the 3’ UTR with a short array of bacteriophage-derived stem-loops (Bertrand et al., 1998; 
Chao et al., 2008). In the second stage of labeling, individual stem-loop structures are specifically 
bound by bacterial coat proteins (CP) tagged with a SunTag (Tanenbaum et al., 2014) array of 
epitopes (CP-SunTag). Fluorescence amplification on an mRNA occurs when CP-SunTag binds to a 
stem loop, and the SunTag epitope array recruits multiple scFv-GFP molecules (Figs. 1A and 1B). 
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Previously, we used computational modeling and experiments to establish the optimal SunRISER 
configuration. An important finding from this work was that a 5:1 protein expression ratio 
respectively for scFv-GFP and CP-SunTag is necessary for consistent imaging and detection of mRNA 
molecules. We subsequently demonstrated that a 5:1 ratio can be achieved in HeLa cells by transient 
transfection using CMV and UBC promoters to drive expression for fluorescent proteins, followed by 
microscopy and quantitative image analysis (Guo and Lee, 2022).  
 
Although we have had success using this SunRISER configuration to label mRNAs in other human cells, 
such as A549, this may not always be the case for all cell lines. We therefore suggest for new cell lines, 
or for stable cell lines, to consider the SunRISER design as a starting point which may require further 
optimization at the level of promoters to achieve the optimal 5:1 protein expression ratio. We 
routinely evaluate expression of coding sequences (CDS) for fluorescent proteins for different 
promoters, using microscopy or flow cytometry to establish the average fluorescence among a 
population of cells.  
 
Another important consideration is the choice of which RNA species to visualize for a SunRISER-
labeling experiment. We evaluated SunRISER using the CDS for mCherry to represent a generic 
template that does not undergo particular regulation. In general, we expect that many SunRISER-
labeling experiments will opt to switch the CDS template to other sequences (described below). See 
(Guo and Lee, 2022) for complete details on the modeling, optimization, and experimental validation 
of the SunRISER labeling system, as well as description of different SunRISER variants. Component 
plasmids for different versions of SunRISER (Fig. 1C and Table 1) are available on Addgene (see the 
Key Resource Table). 
 
Timing: 2 weeks 
 
Clone the gene of interest (GOI) into a reporter expression vector suitable for the specific application. 
Among the SunRISER plasmid toolkit, we provide 2 different stem-loop array lengths of PP7 stem-
loops (8xPP7, 10xPP7), and plasmids for 24xPP7 are also available (Addgene #40652).  In these 
plasmids, the CDS for the mCherry reporter gene is flanked by standard restriction enzymes to 
facilitate replacement with another GOI via typical molecular cloning methods. Although the plasmids 
have repeat sequences which can lead to technical difficulties, in our experience we have had no 
issues inserting GOIs and plasmid amplification in typical E. coli strains such as DH5-alpha is routinely 
successful. See (Guo and Lee, 2022)  or Addgene for further information and plasmid maps. The 
resulting plasmid containing the GOI with stem loop extensions is referred to as the ‘detection 
plasmid’.  

 

Key resources table 
 
REAGENT or RESOURCE 
 
 
 

SOURCE IDENTIFIER 
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Chemicals, peptides, and recombinant proteins 
 
 
Fugene HD 
 

Promega Cat # E2311 

Opti-MEM, Reduced Serum Medium  Thermo Fisher Scientific Cat # 31985062 
DMEM Corning Cat # 10-017-CV 
FBS Corning Cat # 35-010-CV 
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific Cat # 15140122 
L-Glutamine (200 mM) Thermo Fisher Scientific Cat # 25030081 
FluoroBrite™ DMEM Thermo Fisher Scientific Cat # A1896701 
Experimental models: Cell lines 
Human: HeLa cell ATCC RRID: CVCL_0030 
Recombinant DNA 
cmv-sfgfp-gb1-scAB (Guo and Lee, 2022) Addgene #185794 
cmv-mCherry-8xPP7 (detection plasmid) (Guo and Lee, 2022)  Addgene #185795 
cmv-mCherry-10xPP7 (detection plasmid) (Guo and Lee, 2022)  Addgene #185796 
ubc-nls-pcp-5xSunTag (SRv.1) (Guo and Lee, 2022)  Addgene #185797 
ubc-nls-pcp-10xSunTag (SRv.1.1) (Guo and Lee, 2022)  Addgene #185798 
ubc-nls-pcp-12xSunTag (SRv.1.2) (Guo and Lee, 2022)  Addgene #185799 
cmv-sfgfp-gb1-scAB-ubc-nls-pcp-5xSunTag 
(SRv.1-2P) 

(Guo and Lee, 2022)  Addgene #185800 

cmv-sfgfp-gb1-scAB-ubc-nls-pcp-10xSunTag 
(SRv.1.1-2P) 

(Guo and Lee, 2022)  Addgene #185801 

cmv-sfgfp-gb1-scAB-ubc-nls-pcp-12xSunTag 
(SRv.1.2-2P) 

(Guo and Lee, 2022)  Addgene #185802 

phage-cmv-cfp-24xpp7 (detection plasmid) (Wu et al., 2012) Addgene #40652 
5-alpha Competent E. coli (high efficiency)  New England Biolabs 

(NEB) 
Cat # C2987H 

Software and algorithms 
ImageJ (Schneider et al., 2012) https://imagej.nih.

gov/ij/ 
dNEMO (Kowalczyk et al., 2021) https://github.com

/recleelab 
Cellpose (Stringer et al., 2021) https://github.com

/MouseLand/cellp
ose 

Python Python Software 
Foundation 

https://www.pyth
on.org 
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Digital resources associated with this protocol This paper DOI: 
10.17632/8j4x6dj2
f7.1 

Other 
DeltaVision Elite GE N/A 
96-well glass bottom plate Matriplate Cat # MGB096-1-2-

LG-L 
 
 
Step-by-step method details 

 
SunRISER plasmids delivery into HeLa cells to label single mRNAs 
 
Timing: 4 days 
 
This step allows delivery of GOI labeled with stem-loops and SunRISER labeling component plasmids 
via transient transfection. 
 

1. Choose the appropriate SunRISER setup for your application   
a. Choose the variant of SunRISER that favors either a shorter or longer stem-loop 

extension (Fig.1 and Table 1) and select the appropriate detection plasmid available 
from Addgene (SRv.1: 24xPP7; SRv.1.1: 8xPP7; SRv.1.2: 10xPP7) or use the user-
generated detection plasmid as described in the ‘Before you begin’ section above. 

 
Table 1. SunRISER plasmid variants. 
SunRISER system Detection plasmid pcp-nxSunTag scFv-GFP 
Variation 1 – 
SRv.1 

Phage-cmv-CFP-24xpp7 
(Addgene #40652) 

ubc-nls-pcp-5xSunTag  
(Addgene #185797) 

cmv-sfgfp-gb1-scAB 
(Addgene #185794) 

Variation 2 – 
SRv.1-2P 

Phage-cmv-CFP-24xpp7  
(Addgene #40652) 

cmv-sfgfp-gb1-scAB-ubc-nls-pcp-5xSunTag  
(Addgene #185800) 

Variation 3 – 
SRv.1.1 

cmv-mCherry-8xPP7 
(Addgene #185795) 

ubc-nls-pcp-10xSunTag 
(Addgene #185798) 

cmv-sfgfp-gb1-scAB 
(Addgene #185794) 

Variation 4 – 
SRv.1.1-2P 

cmv-mCherry-8xPP7 
(Addgene #185795) 

cmv-sfgfp-gb1-scAB-ubc-nls-pcp-10xSunTag  
(Addgene #185801) 

Variation 5 - 
SRv.1.2 

cmv-mCherry-10xPP7 
(Addgene #185796) 

ubc-nls-pcp-12xSunTag 
(Addgene #185799)  

cmv-sfgfp-gb1-scAB 
(Addgene #185794) 

Variation 6 - 
SRv.1.2-2P 

cmv-mCherry-10xPP7 
(Addgene #185796) 

cmv-sfgfp-gb1-scAB-ubc-nls-pcp-12xSunTag  
(Addgene #185802) 
 

 
 
Note: Although SRv.1.1 and SRv.1.2 extend the target mRNA with a smaller stem-loop 
array than SRv.1, the associated protein component (consisting of pcp-nxSunTag and 
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scFv-GFP proteins, see Fig. 1) of the labeled-mRNA complexes for SRv.1.1 and SRv.1.2 
are larger than for SRv.1. Because of this complementarity, SRv.1 and SRv.1.2 are 
similar in overall molecular weight. The overall molecular weight of labeled mRNA 
complexes for SRv.1.1 is approximately 35% smaller than for SRv.1 and SRv.1.2, as 
described in (Guo and Lee, 2022) . For all SunRISER variants, the mRNA:protein 
composition of the labeled mRNA is balanced for optimal signal-to-background. The 
user can therefore select a SunRISER variant that works best with their application. 
For example, extending shorter mRNAs with a smaller stem-loop array reduces 
sequence perturbations, which may be favorable, but may not necessarily lead to the 
best mRNA detection. The choice of SunRISER variant should ultimately weigh the 
particular application and experimental goals against empirical imaging results. 
  

b. Based on the stem-loop lengths, choose the corresponding SunTag array lengths. 
(SRv.1: 24xPP7-5xSunTag; SRv.1.1: 8xPP7-10xSunTag; SR.v1.2: 10xPP7-12xSunTag). 

c. Choose the plasmid version suitable for your system. In SunRISER, we provide both a 
single plasmid encoding both scFv-GFP and pcp-nxSunTag and a version where the 
two constructs are on separate plasmids (see Fig.1 and Table 1). Separate plasmids 
can be useful in determining proper expression ratios are achieved as well as to 
alleviate any unexpected complications that could arise from a double-expression 
plasmid. 

d. Calculate the amount of each component based on the selected version of SunRISER. 
For three-plasmids, equal molar amounts of each plasmid (1:1:1) is optimal. Since the 
three plasmids as supplied have comparable size, this also works out to a 1:1:1 weight 
ratio. Similarly, a 1:1 molar ratio is optimal for the two-plasmid version. For the 2-
plasmid version as supplied, note that a 1:1 molar ratio equates to a 1.5:1 weight 
ratio because the double expression plasmid as supplied is approximately 1.5x the 
size of the detection plasmid. This ratio may change depending on the size of the GOI. 
 

2.  Seed HeLa cells in 96-well imaging plates. 
a. Seed 1x104 HeLa cells per well of 96-well glass bottom imaging plates (Matriplate; 

.17mm Flat Clear Glass Bottom) in 300μL of DMEM (supplemented with 10% FBS, 1% 
streptomycin/penicillin, and 1% L-glutamine) 
 
Note: While culture conditions for HeLa cells as described in this protocol do not 
require coating (fibronectin, collagen, etc.), other cell lines may. We do not expect 
any compatibility issues in imaging SunRISER with cell lines using fibronectin, poly-L 
and poly-D lysine. Other coatings such as collagen should be tested to ensure they do 
not have autofluorescence properties that interfere with fluorescence imaging. 

 
b. Incubate cells at 37°C in 5% CO2 incubator overnight (18-24 hours) to allow cells to 

recover and adhere to the plate at approximately 70% confluency. 
 

3. Transfect cells with SunRISER plasmids using FuGENE® HD following manufacturer’s 
instructions. 

a. Warm FuGENE® HD Transfection Reagent to room temperature. 

https://www.promega.com/resources/protocols/technical-manuals/101/fugene-hd-transfection-reagent-protocol/
https://www.promega.com/resources/protocols/technical-manuals/101/fugene-hd-transfection-reagent-protocol/
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b. Mix DNA and FuGENE® HD Transfection Reagent according to manufacturer’s 
instructions. For this protocol, we mixed 150 ng total plasmid with 0.45μL FuGENE® 
HD Transfection Reagent in 10μL Opti-MEM™ for each well. [See Troubleshooting 
Problem 1] 

c. Incubate the mixture for 10-15 minutes at room temperature. 
d. Add mixture into each well and mix by pipetting. 
e. Return cells to incubators for 24-48 hours. Post-transfection media is supplemented 

with 10% FBS, 1% streptomycin/penicillin, and 1% L-glutamine. The cells should be 
approximately 85% confluent post-transfection.   
 
Note: Each step can be optimized with the instructions from the FuGENE® HD 
transfection protocol. Although we have only used FuGENE® HD for our SunRISER-
labeling experiments, we expect other transfection reagents and techniques (such as 
electroporation) will lead to equivalent results. 
 
 

Imaging of SunRISER-labeled mRNAs   
 
Timing: 2 days 
 
This step allows imaging of SunRISER-labeled mRNAs for up to 24 hours. For time-lapse live cell 
imaging we used a DeltaVision Elite microscope (GE Healthcare) equipped with a 60x NA1.42 oil-
immersion objective, sCMOS camera, solid-state illumination module, and an environmental 
controlled chamber (37°C, 5% CO2). A minimum of 60x magnification is required to resolve single 
mRNA puncta as diffraction-limited objects (Fig. 2, see also (Guo and Lee, 2022)). 
 
Note: We expect any epifluorescence microscope equipped with an environment control chamber 
can be used for imaging SunRISER-labeled mRNAs. Other more advanced microscopes (e.g., confocal, 
light sheet, and many others) are likely to produce SunRISER images with even greater signal-to-
background. We have successfully imaged SunRISER in 24-hour experiments and expect that longer 
duration experiments may also be possible. 
 

4. Before beginning, replace complete growth medium with FluoroBrite medium (supplemented 
with 10% FBS, 1% streptomycin/penicillin, and 1% L-glutamine). 
 
Note: FluoroBrite or any phenol-red free cell culture medium is recommended to increase the 
signal-to-background of fluorescence images. 
 

5. Place the imaging plate in the microscope incubation chamber to allow the whole system to 
equilibrate for at least 30 mins before the experiment starts. 

6. Set up appropriate imaging conditions for live cell imaging. For 24-hour imaging, we select 
FITC as Ex and Em filters and set the exposure time to 0.005 sec and ND filter to 10%. Images 
were taken as Z-stacks with 1 μm slices spacing and total thickness 5 μm every 10 mins for 24 
hours. Data acquisition was performed in 1024 × 1024-pixel format. 
 

https://www.promega.com/resources/protocols/technical-manuals/101/fugene-hd-transfection-reagent-protocol/
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Note: Multi-channel imaging using spectrally compatible filter sets can be used to select for 
successfully transfected cells based on expression of mCherry or CFP if these are the GOIs 
expressed from the detection plasmid.   

 
Note: For a typical widefield microscope equipped with a NA1.4 60x oil objective, 0.3 μm z-
spacing will be approximately the ideal Nyquist sampling, where each diffraction-limited 
object will appear in at least two to three consecutive z-slices. Although the z-spacings 
between 0.5 and 1 μm will not oversample as effectively as Nyquist conditions, it allows 
coverage over wider axial range with fewer exposures at each time point. In our experience 
these settings lead to quantitatively similar results for mRNA numbers, while reducing the 
effects of photobleaching and phototoxicity in long-term experiments. For particular 
applications, ideal combinations of z-spacing and z-slice numbers can be chosen to favor 
oversampling for increased spatial resolution in the z-axis, or increased depth, or reduced 
molecular and cellular strain as appropriate to the usage case. Experiments demonstrating 
resistance to photobleaching with these settings can be found in (Guo and Lee, 2022) . 
 

7. Select cells expressing SunRISER-labeled mRNA as diffraction-limited spots and mark the 
region of interest for live-cell imaging experiments. 
 
Note: Imaging conditions are considerably variable between different microscope setups. 
SunRISER-labeled mRNAs appear as diffraction-limited spots (Fig. 2A, B), and the raw pixel 
intensity range for the spots detected under the imaging conditions described in this protocol 
have an average intensity of 673 +/- 189 units from a 16-bit sCMOS detector when pixel 
values are examined in image analysis software like ImageJ  (Schneider et al., 2012). For cells 
expressing lower scFv-GFP abundance, mRNA spots can be difficult to distinguish with a poor 
signal-to-background ratio and can suffer from rapid photobleaching if the excitation 
illumination is too intense. [See Troubleshooting Problem 2] 

 
Note: Transient transfection can lead to subpopulations of cells with GFP expression that is 
significantly higher than average. We typically avoid imaging and analysis of cells expressing 
too much GFP that show very bright background fluorescent intensity, and cells with spots 
that are larger than the diffraction limit Fig. 2C).  [See Troubleshooting Problem 3] 

 
8. When possible, use Ultimate Focus or a related auto-focusing mechanism to prevent the loss 

of the imaging planes during long-term imaging experiments. [See Troubleshooting Problem 
4] 

9. Begin time-lapse imaging experiment. The resulting movie file can be opened with ImageJ and 
quantified with dNEMO as described below. The included file ‘SunRISER_SAMPLE_MOV.tif’ 
(DOI: 10.17632/8j4x6dj2f7.1; see also, Fig. 3A) is representative of a typical imaging 
experiment result using HeLa cells transfected with stock 24xPP7 and SRv.1-2P plasmids as 
described here.  
 

 
Image analysis with dNEMO and Cellpose   
 
Timing: ~20 minutes (for sample SunRISER movie with 145 time points each with 4 z-slices) 
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Note: The timing for this step can increase depending on the number of timepoints in a given time-
lapse series, the number of cells in the given image, and the hardware running both dNEMO and 
Cellpose. The reported time is given for the sample SunRISER image provided alongside the software 
on a 2015 MacBook Pro laptop (16 GB RAM, 2.5 GHz processor). 
 
This section describes the semi-automated image analysis which identifies individual mRNA 
transcripts, extracts the fluorescence intensity from each transcript, and assigns mRNAs to individual 
cells to create single-molecule single-cell datasets over time-lapse images (Fig. 3). We use the spot 
detection and quantification tool dNEMO (detecting-NEMO) which is optimized for rapid and accurate 
detection of punctate structures (spots) in time-lapse fluorescence microscopy images. While dNEMO 
contains dedicated tools for the manual segmentation of individual cells, the most recent version of 
the software interfaces with Cellpose (Stringer et al., 2021), a generalist algorithm for automated cell 
and nucleus segmentation. Cellpose automatically segments multiple cells in each input image and 
typically performs better when cells are sub-confluent. With Hela cells, we typically have less than 5 
cells per 60x image with a 1024x1024 sCMOS detector. Individual cells are reconstituted as single-cell 
trajectories when input into dNEMO. In this protocol, the combination of dNEMO and Cellpose is used 
for automated spot detection, cell segmentation, and cell tracking. Sample images acquired using 
SunRISER and the corresponding results files from both dNEMO and Cellpose are provided with this 
protocol (DOI: 10.17632/8j4x6dj2f7.1). Also included for users is an additional sample image of cells 
labeled with smFISH probes and corresponding dNEMO/Cellpose results files. 
 
Note: There are standalone executables of the dNEMO software available with this protocol (DOI: 
10.17632/8j4x6dj2f7.1) which do not require MATLAB to be installed. Use of Cellpose and dNEMO 
outside of the standalone executables requires installation of Python 3, MATLAB, and the OME 
bioformats package. Detailed installation instructions can be found in the dNEMO documentation on 
https://github.com/recleelab.  
 
Optional: If Cellpose is not installed, dNEMO implements a manual cell segmentation tool which can 
be used to segment cells within the dNEMO interface.  
 

10. Open the time-lapse image in dNEMO. 
a. To open the standalone dNEMO executable, navigate to the dNEMO application 

within the executable folder and double-click the application icon. 
 

Alternatives: If using the MATLAB script package, type the following into MATLAB’s 
command window:  
 
>addpath(fullfile(cd, dNEMO_MATLAB_scripts)) 
>RUN_ME 

 
b. With the interface open, navigate to File > Load Images. Select the image to be 

analyzed in the subsequent file selection pop-up window. The image 
‘SunRISER_SAMPLE_MOV.tif’ is provided with the software for this protocol (DOI: 
10.17632/8j4x6dj2f7.1) and can be opened and analyzed using the settings and steps 

https://github.com/recleelab
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described here. This image (Figs. 3 and 4A) is also depicted in subsequent figures as 
an example for detection of SunRISER-labeled mRNAs within the dNEMO interface. 
 
Note: Image formats supported by BioFormats (Linkert et al., 2010) can be opened by 
dNEMO. Upper limit on image size may vary with available system memory. 
 

11. Run spot detection on the currently displayed image. 
a. Select ‘Test Detect (Full)’ in the upper right ‘Spot Filter’ panel. This will run the spot 

detection algorithm over the currently displayed image (Fig. 4A). 
b. Confirm visually that all spots are being detected by toggling the ‘Display All Signals in 

Current Frame’ toggle in the ‘Display’ panel.  
i. Adjust the value in the ‘Wavelet Threshold’ box (Fig. 4A) and click ‘Test Detect 

(Full)’ (Fig. 4A), both in the ‘Spot Filter’ panel, to re-run spot detection with an 
updated threshold value. The higher this value is, the fewer objects will be 
considered above the watershed threshold and thus detected. For images 
shown detecting SunRISER-labeled mRNAs in this protocol, the ‘Wavelet 
Threshold’ value was set to 2.25. 

 
CRITICAL: Properly detecting spots in an image requires examining the detected 
spots and adjusting the parameters as needed. Two additional parameters for 
spot detection that affect the generation of the wavelet map and cross-
referencing the resulting wavelet maps of a 3D image stack can be found in 
Settings > Signal Parameters (Fig. 4B). The ‘Frame Limit’ parameter indicates the 
number of consecutive slices in a 3D stack a spot must be detected in to be 
considered valid. In order to detect spots which only appear in one slice, for 
example, this value would need to be set to 1. The ‘Wavelet Level’ parameter 
dictates the level of the wavelet transform to use when generating the wavelet 
map to detect spots. The higher this value is, the larger the objects detected will 
be in the resulting wavelet map. In detecting the SunRISER-labeled mRNAs for this 
protocol, the ‘Wavelet Level’ was set to 2 and the ‘Frame Limit’ was set to 1. All 
other settings were kept at the default values. For complete details on the 
implementation of the wavelet transform and watershed segmentation 
operations in dNEMO, see (Kowalczyk et al., 2021). [See Troubleshooting Problem 
5] 
 

c. Once satisfied that the spots are being accurately detected, run spot detection with 
the current detection parameters over all images in the time-series by clicking ‘Create 
Keyframe’ in the upper right ‘Spot Filter’ panel (Fig. 4A). The Keyframes box (Fig. 4C) 
will update with information for detected spots and the associated parameters.  
 

12. Run Cellpose to segment single cells over the time-lapse image sequence. 
a. Initiate Cellpose from dNEMO by navigating to Cell Masks > Run Cellpose (Fig. 5A). 

This will startup Cellpose and run on the movie currently loaded into dNEMO. [See 
Troubleshooting Problem 6] 

b. Upon completion, dNEMO will display a prompt for confirming the imported mask. 
Click ‘Ok’ to confirm the mask import. 



 
 
 

108 
 

 
Note: Cellpose does not provide any tracking of the segmented cells. Cells are tracked 
over time using several parameters found in dNEMO by navigating to Cell Masks > Adjust 
Import Settings. For more information on how these parameters function see 
documentation of dNEMO at https://github.com/recleelab. 
 
Alternatives: If Cellpose is not installed on your system, manual segmentation is an 
option implemented in dNEMO. Similarly, cell masks generated in other applications can 
be imported using the ‘Cell Masks’ dropdown menu provided the masks are in a 
compatible matrix format (TIFF or excel/csv spreadsheet). Manual segmentation uses a 
process called keyframing where user-defined cell boundaries are propagated across 
frames of a time-lapse image. Briefly, the ‘Add Cell’ button of the ‘Cells’ panel will create 
an interactive polygon drawing tool over the current image (Fig. 5B). Clicking on the 
image will begin the manual segmentation process and completing the polygon will create 
a new cell. The polygon for each cell can be left alone or modified as needed to create 
subsequent keyframes to refine changes to cell morphology or position at later time 
points. See (Kowalczyk et al., 2021) for full description of keyframing for cell 
segmentation and additional spot detection parameters. 
 
c. Cells can be adjusted using both the ‘Cells’ and ‘Keyframes’ panels in dNEMO.  

i. The slider along the bottom of the image can be used to navigate through the 
frames of a time-lapse image. 

ii. Select a cell using the ‘Cell Selection’ dropdown menu in the ‘Cells’ panel or 
clicking on a cell in the ‘Keyframes’ panel (Fig. 5C).  

iii. Segmentations can be adjusted for the current frame by clicking the ‘Modify 
Cell’ button in the ‘Cells’ panel.  

iv. Multiple operations to adjust segmentations over time and deleting a cell can 
be accessed by right-clicking on a cell in the ‘Keyframes’ panel and selecting 
an option from the pop-up menu (Fig. 5D). In conjunction these can be used 
to modify segmentations or delete inaccurate segmentations. For complete 
details on dNEMO’s keyframing functions, see (Kowalczyk et al., 2021) and 
https://github.com/recleelab. [See Troubleshooting Problem 7] 

 
13.  Further curate data using keyframing tools and manual exclusion tools.  

a. Spots can be curated in an automated fashion by assigning keyframes for detected 
spots’ physical features. For example, using the histogram display axis in the ‘Spot 
Filter’, detected transcripts can be limited to those which have maximum intensities 
greater than or equal to 0.0075 by selecting ‘Max’ from the dropdown menu below 
the axis and typing 0.0075 into the ‘Min’ value to the right of the axis (Fig. 6A, B). 

b. Click ‘Create Keyframe’ in the spot filter panel to create a new keyframe for this 
feature. This creates a parameter for the upper and lower bounds of fluorescence 
intensity for spots deemed as acceptable. These bounds are propagated over the 
entire movie and can be adjusted by creating additional keyframes at different time-
points. The bounds can also be deleted by selecting and right-clicking a given 
parameter in the ‘Manual Curation’ section of the ‘Keyframes’ panel (Fig. 6C). 

https://github.com/recleelab
https://github.com/recleelab
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c. Detected spots which are determined erroneous (e.g., lysosomal accumulation of 
fluorescent molecules) or oversegmented (Fig. 3C) can be curated manually using the 
manual removal tool. [See Troubleshooting Problem 8] 

i. Navigate to the ‘Manual Removal’ panel and click ‘Remove Signals’ (Fig. 6C). 
ii. A crosshair will replace the mouse pointer icon when hovering over the main 

image axis in dNEMO. Clicking on detected spots in the image will remove 
them. Clicking on them again will undo the removal. Clicking and dragging the 
cursor will create a box allowing removal of numerous detected spots. 

iii. Click ‘Update Removal Keyframe’ to save the manual exclusions performed. 
iv. Click ‘Stop Removing Signals’ in the Manual Removal Panel to terminate the 

manual exclusion process. 
 

14. Save data collected in dNEMO to mat-file and excel spreadsheet. 
a. Navigate to File > Save to output results. This will result in a number of output files 

which are detailed later in this protocol and within dNEMO’s documentation on 
https://github.com/recleelab. 
 

 
Expected outcomes 
 
For over two decades, techniques such as single molecule fluorescent in situ hybridization (smFISH) 
have been powerful tools to resolve single molecules of RNA (Femino et al., 1998; Raj and van 
Oudenaarden, 2008). Studies using smFISH have revealed mechanisms of gene expression and 
numerous consequences of cell-to-cell heterogeneity but are generally limited to single timepoints 
because hybridization requires cell fixation. As a live-cell reporter, transfection of HeLa cells with 
SunRISER components enables high-intensity and photostable labeling of individual mRNA molecules 
that can be imaged by wide-field fluorescence microscopy for many hours (Fig. 3). When analyzed 
with dNEMO, the number and intensity of mRNA spots can be quantified over time in each fame of 
the time-lapse image (Figs. 3C and 3D). After the mRNA spots are detected across frames of the time-
lapse images, cells can be manually segmented, automatically segmented using the Cellpose software, 
or a combination thereof to generate single-cell time-lapse RNA datasets. These results are written to 
an excel file and several mat-files, one (‘full_results’ mat-file) which can be reloaded into dNEMO for 
additional analysis at later time points (Fig. 3D). An optional AVI file depicting circles around 
transcripts detected within the segmented cells as displayed in the dNEMO interface can also be 
created by the user by navigating to File > Save as AVI. 
 

 
Quantification and statistical analysis 
 
Additionally included in the MATLAB version of the software package for this protocol is an interface 
for batch processing a folder of image files to automate spot detection and cell segmentation. To run, 
ensure the ‘batch_processing’ folder is both within the dNEMO directory and on the current path in 
MATLAB and type the following into the command window: 
 
>RUN_ME_BATCH 

https://github.com/recleelab
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On the lefthand side of the interface, select the input directory containing image data and the output 
directory to save results. The center panel contains the parameters for detection of spots, keyframing 
spots’ features, Cellpose segmentation import parameters, and additional settings. These can be 
interacted and set manually, or a text file containing preset parameters can be loaded into the 
workspace by clicking the ‘Browse’ button on the top of the center panel. At the bottom of the center 
panel, you can select which of the 2 major operations (dNEMO and/or Cellpose) should be 
propagated over the selected input image directory. The right panel of the interface contains a log 
window which records what operations are happening on which input files. When a valid input 
directory, output directory, and operation settings are selected, click ‘Confirm Valid Input Arguments’ 
to lock in the settings and ‘Start’ to run operations over the selected input directory. For full details on 
the arguments input into the batch processing tool, please see https://github.com/recleelab. 
 

 
Limitations 
When adapting SunRISER for cell lines other than HeLa, the promoters used in HeLa cells may require 
optimization to achieve the most effective expression levels for SunRISER labeling. It was previously 
shown in (Guo and Lee, 2022) that SunRISER is capable of resolving small numbers of transcripts in 
cells, and while SunRISER is optimized for expression on the order of hundreds of transcripts, caution 
in interpretation of results should be observed for mRNA numbers exceeding the order of thousands 
per cell. We suggest using SunRISER as a starting point and further calibrate the strengths of 
promoters in your cell lines to reach desirable labeling. The expression ratio of protein components in 
different cell types may similarly need to be adjusted through the use of different promoters to reach 
the 5:1 protein expression ratio for optimal mRNA labeling. As with other live-cell reporter systems, 
SunRISER can introduce significant changes to your GOI and alter its normal function. We recommend 
that orthogonal techniques should be used where possible to verify the biological results obtained 
using SunRISER. Photobleaching of fluorescent reporters in wide-field fluorescent microscopes can 
vary widely between different microscope setups. In our experience with HeLa cells, 24-hour imaging 
with 10’ intervals between frames is routinely accomplished with a DeltaVision Elite microscope. We 
believe with high signal-to-background, SunRISER is generally resistant to photobleaching and capable 
of even longer imaging experiments than described here, although this may depend on cell culture 
conditions and may vary between cell types. We note that we have used SunRISER successfully in 
human cancer cell lines and although we expect SunRISER will work in many cellular systems, 
extensions to primary cell lines and in vivo experiments have yet to be established. Settings for the 
exposure, axial spacing, and time-lapse duration may require optimization specific to other 
experimental designs that balance photostability, phototoxicity, as well as mRNA signal-to-
background and spot detection. See (Guo and Lee, 2022)  for full details on long-term imaging of 
mRNA molecules with SunRISER. 

 
 

Troubleshooting 
 
 

https://github.com/recleelab
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Problem 1: 
 
Decreased cell viability after SunRISER delivery. 
 
Potential solution:  
 
To reduce the toxicity associated with transfection, endotoxin-free plasmid can be used and the 
specific conditions of transfection (e.g., amount of FuGENE® HD Transfection Reagent/DNA mixture, 
incubation time) should be considered. 
 
Problem 2: 
 
High fluorescent background in cells and low signal-to-background for SunRISER-labeled mRNAs. 
 
Potential solution:  
 
Excessive GFP concentrations within the cells can result in a high background intensity and affect 
signal-to-background. Reducing the expression level of GFP could lower the basal fluorescence in 
transfected cells. Also check the microscope setting to find exposures that achieve the recommended 
intensity range. In addition, SunRISER is optimized to label mRNAs with expression levels up to several 
thousand transcripts per cell. GOIs expressed with higher mRNA numbers may require additional 
optimization. In Hela cells, cmv and ubc promoters have been shown to achieve a 5:1 ratio of protein 
expression. In different target cells it may be necessary to confirm that these two promoters produce 
the optimal expression ratio for SunRISER components. 
 
Problem 3: 
 
Highly variable intensity and size of mRNA spots. 
 
Potential solution:  
 
When SunRISER is introduced to cells via transient transfection, different cells will show significant 
variations depending on the amount of DNA they receive. We advise choosing cells that express 
SunRISER at relatively low to moderate levels to focus on cells that are not undergoing stress 
responses to extreme overexpression. Within one cell, we expect the intensity and size of spots are 
reasonably consistent and should appear as diffraction-limited spots bounded by the physical limits of 
the microscope. Significant variation between spot intensity within the same cell could result from the 
suboptimal ratio of SunRISER components, and we would generally consider this cell unsuitable for 
imaging or further analysis. If suboptimal labeling is frequent, we recommend switching to low 
passage cells and check routinely for Mycoplasma.  
 
Problem 4:  
 
Loss of focus during long-term imaging. 
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Potential solution:  
 
Check autofocus settings and consider reducing the number of positions imaged within a single 
experiment. We typically do not choose regions of the cell culture well that are confluent and instead 
select areas where at least 20% of the region of interest is unoccupied. 
 
Problem 5: 
 
Spots are present in the image but dNEMO does not appear to be detecting all spots. 
 
Potential solutions:  
 
Confirm that the axial resolution value is set appropriately. If imaging 3D stacks with a larger distance 
between each slice (> 1 µm) it is advisable to reduce the axial resolution to ensure most diffraction-
limited spots are detected. Also check settings in dNEMO to be sure spots are not being omitted for 
not being detected in at least the minimum number of slices (Frame Limit, Fig. 4B). The 3D image can 
be viewed slice-by-slice in the dNEMO interface by navigating to Image > 3D Display and selecting ‘Full 
3D Stack’. 
 
Confirm that any user-defined thresholds for spot properties are not defined too narrowly so as to 
omit spots from consideration (Fig. 6A, B). User-defined spot feature keyframes can be examined and 
deleted in the ‘Keyframes’ panel by clicking on feature keyframes in the ‘Manual Curation’ dropdown 
menu (Fig. 6C). 
 
Problem 6: 
 
Cellpose is unable to run from dNEMO (Cell Masks > Run Cellpose). 
 
Potential solutions:  
 
Consult with the ‘READ_ME’ file in dNEMO’s documentation on https://github.com/recleelab to 
ensure that the associated text file storing the location to your system’s copy of Python3 is correct. 
Cellpose requires Python 3 to run, and MATLAB can by default navigate to Python 2 when both 
Python 2 and 3 are installed on the system. 
 
Resulting masks from Cellpose or another automated segmentation software can also be imported 
into dNEMO by navigating to Cell Masks > Import Cell Mask TIFF (Fig. 5A). 
 
Problem 7: 
 
The segmentations imported from Cellpose are inaccurate and need to be altered or deleted. 
 

https://github.com/recleelab
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Potential solutions:  
 
Segmentations imported from Cellpose can be adjusted by either clicking on ‘Modify Cell’ in the ‘Cells’ 
panel to modify the given segmentation or by right-clicking the cell in question from the ‘Cells’ section 
of the ‘Keyframes’ panel and selecting ‘Quick Seg. Redraw’ to manually re-segment the cell (Fig. 5D). 
 
The start and stop point of a tracked cell can be similarly adjusted. Right click on the cell in question in 
the ‘Cells’ section of the ‘Keyframes’ panel and select ‘Reset Cell Start/Stop’ to set the start and stop 
point of a given cell. This will delete any segmentations of the cell that lie outside the range of frames 
defined as the cell’s starting and stopping time point (Fig. 5D).  
 
Problem 8: 
 
Individual objects are being detected as clusters of smaller objects (oversegmentation). 
 
 
Potential solutions:  
 
If oversegmentation of valid detected spots is broadly happening, the ‘Wavelet Level’ parameter may 
need to be increased in the detection settings. Navigate to the Settings > Signal Parameters in the 
interface (Fig. 4B) and increase the Wavelet Level setting to detect larger objects as single spots. Note 
that this will results in less reliable detection of smaller objects in the image. 
 
There is an additional operation that is meant to reduce instances of oversegmentation in dNEMO. 
This operation is set on by default but may have been turned off inadvertently. Navigate to this 
setting in Settings > Signal Parameters and confirm that the ‘Oversegmentation Check’ setting is set to 
‘Yes’. 
 
If the image contains artifacts which are larger than diffraction-limited spots (Fig. 2C) and are clearly 
not mRNA transcripts that dNEMO is identifying as multiple valid spots, the manual exclusion tool can 
be used to remove the artifacts from consideration (Fig. 6C, right).  
 
 
Resource availability 
Lead contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the lead contact, Dr. Robin E. C. Lee (robinlee@pitt.edu). 
 
Materials availability 
All reagents used have been cited in the key resources table. Plasmids generated in this study are 
available from Addgene (plasmid IDs: 185794-185802). 
 
Data and code availability 
• All data in the paper are available from Mendeley Data (DOI: 10.17632/8j4x6dj2f7.1). 
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• All original code been deposited on a Github repository (https://github.com/recleelab/ ), as 
well as on Mendeley Data where executable files are also available (DOI: 10.17632/8j4x6dj2f7.1). 
• Any additional information required to reanalyze the data reported in this paper is available 
from the lead contact upon request. 
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Figure 1: Schematic of components and plasmid combinations for typical SunRISER mRNA-labeling 
experiments.  
(A) mRNA and protein components for SunRISER labeling experiments. (B) Schematics of SunRISER 
variants SRv.1 (top), SRv.1.1 (center), and SRv.1.2 (bottom) for fluorescence signal amplification. The 
mRNA transcript (black) is tagged at 3’ UTR with PP7 stem loops (blue). In the first stage of signal 
amplification, each stem loop can be bound by two PCP coat proteins (yellow) fused to a SunTag 
GCN4 peptide array (orange). In the second stage of signal amplification, GFP (green) is recruited 
through antibody-peptide-specific binding between scFv (gray) and GCN4 epitopes. (C) Plasmid maps 
of the SunRISER two-plasmid (2P) variants consisting of detection plasmids (left) and protein plasmids 
for SRv.1-2P (top), SRv.1.1-2P (center), and SRv.1.2-2P (bottom). Using the indicated plasmids from 
Addgene, the GOI CDS for SRv.1 (top, left) is CFP and the GOI CDS for SRv.1.1 and SRv.1.2 (center and 
bottom, left) is mCherry. Although the 2P variants of SunRISER are simpler to work with, SunRISER 
variants using three plasmids as described previously in (Guo and Lee, 2022) can be used as outlined 
previously and in Table 1. 
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Figure 2: SunRISER-labeled mRNAs appear as diffraction-limited spots. 
(A) Image of theoretical point spread functions (PSFs) for diffraction limited signals. The simulated 
image was generated as described previously (see (Kowalczyk et al., 2021)). (B, C) Representative 
maximum intensity projections of HeLa cells transfected with SunRISER SRv.1-2P and detection 
plasmid CFP-24xPP7 (top images). Bottom images represent detail of fluorescence images as 
indicated, with blue circles representing spots detected by dNEMO analysis. In good labeling 
conditions, (B) mRNA molecules labeled with SunRISER appear as diffraction-limited spots comparable 
to those generated in the simulated image. In poor labeling (C) fluorescent structures are larger than 
diffraction-limited objects and do not represent single mRNA molecules. Large objects also show 
evidence of oversegmentation where a single fluorescent structure is detected as multiple spots. 
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Figure 3: Quantification of SunRISER-labeled mRNAs in time-lapse live-cell images with dNEMO. 
(A) Maximum intensity projection of HeLa cells transfected with SunRISER SRv.1-2P and detection 
plasmid CFP-24xPP7. Cells were imaged every 10 minutes for 24 hours. (B) SunRISER-labeled mRNAs 
detected by dNEMO (blue or orange circles) and associated with cells segmented using Cellpose. (C) 
Time-courses for the number of mRNA molecules identified within the 2 cells shown in (A). (D) 
Example results file generated by dNEMO and output to excel. Features are collected for every spot, 
and spots within each single cell are separated by tabs. 
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Figure 4: Spot detection settings and operations in dNEMO. 
(A) The dNEMO software interface with an open image of HeLa cells transfected with SunRISER SRv.1-
2P and detection plasmid CFP-24xPP7. Highlighted within the ‘Spot Filter’ panel (upper-right) are 
critical user operations: the ‘Wavelet Threshold’ value; the detection of spots over the currently 
displayed image (‘Test Detect’ buttons); and the generation of a keyframe of the current detection 
settings (‘Create Keyframe’ button). (B) Settings GUI accessible in dNEMO which holds user-defined 
parameters for spot detection. Highlighted are the ‘Frame Limit’ parameter (upper left) and the 
‘Wavelet Level’ parameter (upper right). (C) Screenshot of the ‘Keyframes’ panel after the spot 
detection operation has completed operating over the time-lapse images.  
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Figure 5: dNEMO interfaces with Cellpose for automated segmentation of cells. 
(A) Screenshot of ‘Cell Masks’ drop-down menu to access Cellpose for cell segmentation over the 
currently displayed image as well as importing previously generated cell segmentation mask files into 
dNEMO. (B) Manual segmentation function operating over a displayed image in dNEMO with a user-
defined polygon. (C) Screenshot of the ‘Cells’ and ‘Keyframes’ panels after Cellpose has completed 
segmentation and imported the resulting masks into dNEMO. (D) Screenshot of the user operations 
available to edit imported Cellpose results within the dNEMO interface after right clicking a cell within 
the ‘Keyframes’ panel.  
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Figure 6: Keyframing and manual exclusion tools for curation of spot datasets. 
(A, B) Screenshots of the feature selection in dNEMO for user-assisted filtering of spots based on their 
size or intensity, among other features. User-defined parameters for the maximum intensity of 
detected spots set with a lower bound of 0 (A, top) or 0.0075 (B, top). Resulting dNEMO spots either 
accepted (blue) or filtered (red) based on analysis with the values as shown (bottom). (C) Keyframe 
information window after clicking the ‘Create Keyframe’ button using the intensity-filtering settings in 
B (Left). The results of the filter can be deleted by clicking the entry. The ‘Manual Removal’ panel 
(Right) with the spot removal operation indicated (highlighted, red) is used to supplement user-
assisted filtering, enabling keyframe entries for removal of user-selected spots from further analysis.  
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