
Concordance Measures for Variable Screening and Model Evaluation with

Competing Risks Data

by

Yang Qu

B.S. in Statistics, Shandong University, China, 2016

M.S. in Statistics, University of Wisconsin-Madison, 2017

Submitted to the Graduate Faculty of

Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Yang Qu

It was defended on

September 19th 2022

and approved by

Yu Cheng, Department of Statistics, University of Pittsburgh

Satish Iyengar, Department of Statistics, University of Pittsburgh

Kehui Chen, Department of Statistics, University of Pittsburgh

Ying Ding, Department of Biostatistics, University of Pittsburgh

ii



Copyright © by Yang Qu

2022

iii



Concordance Measures for Variable Screening and Model Evaluation with
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We focus on analysis of time-to-event data with competing risks. In the first project, we

make additional assumption of natural ordered event status, and propose a time-dependent

model-free variable screening method for high-dimensional data that evaluate the discrimina-

tion ability of a biomarker to distinguish multiple event status simultaneously. The proposed

method utilizes the Volume under the ROC surface (VUS), which measures the concordance

between values of biomarkers and event status at certain time points. We show that the

VUS possesses the sure screening property, i.e., true important covariates can be retained

with probability tending to one. Simulations and data analysis show that VUS appears to

be a viable screening metric, and is robust to data contamination.

In the second project, we provide a systematic examination of model evaluation metrics

that evaluate the discrimination ability of prognostic models. Most of the existing metrics

focus on how a particular cause of event can be discriminated from the healthy control

by the prognostic models when competing events exist, and one metric, the polytomous

discrimination index (PDI), additionally provides an overall evaluation of diagnostic accuracy

of a group of models for predicting all competing events. A systematic comparison of PDI

with other existing methods is missing. We thus fill this gap and illustrate the performance

of different model evaluation metrics under various scenarios via simulation studies and data

analyses. Several natural extensions of concordance index are also considered, and their

performance of model evaluation is also assessed. An R package is developed to provide model

evaluation and model comparisons based on existing methods and extended concordance

indices.
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1.0 Introduction

1.1 Background

Variable selection and model evaluation are important tasks in statistical analysis. The

area under the receiver operating characteristic (ROC) curve (AUC) has been widely used in

summarizing sensitivity and specificity, and evaluating the discrimination ability of a marker

with binary outcomes. The marker can either be a single covariate or a regression model

that estimates the probability of belonging to a class. The AUC measures the probability of

concordance between the marker values and the underlying class membership (Pepe, 2003).

In survival analysis, there exists an event of interest, and time-to-event data are observed.

At each time point t, subjects either have experienced the event of interest or are still event-

free. Subject’s status can thus be considered as a time-dependent dichotomous outcome.

One challenge with time-to-event data is that event time is subject to censoring, which is a

special type of missingness. There are different types of censoring, and this dissertation only

focuses on right-censored time-to-event data, where subjects may be lost to follow-up before

the end of study, leaving their event status being unobserved. AUC has been extended to

analyze survival outcomes with adjustment being made to handle censoring and to evaluate

the ability of a marker to discriminate subjects who are at a higher risk of developing an

event. Heagerty et al. (2000) and Heagerty and Zheng (2005) proposed time-dependent ROC

curves for evaluating the discrimination ability of a diagnostic marker or a regression model.

Heagerty and Zheng (2005) also showed that the proposed time-dependent AUC is directly

related to the global concordance summary for survival data, which is the probability that

the subject experienced the event of interest has a larger value of the marker than the healthy

control, assuming that larger values of the marker indicate more severe conditions.

The existence of multiple competing risks brings new challenges. In the real world,

subjects can experience events of different causes, which are called competing risks. The

occurrence of one cause of event may hinder or alter the probability of the occurrence of

other causes of events, therefore may prevent other causes of events from being observed.
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Ignoring competing risks or simply treating competing risks as censoring would lead to

biased analysis (Gooley et al., 1999). Therefore, it is desirable to investigate methods for

variable selection and model evaluation under the competing risks setting. Efforts have been

made to extend AUC methods to competing risks data. Saha and Heagerty (2010) extended

the concept of the ROC curve by estimating sensitivity based on cumulative or incident

cases of one specific cause of event and estimating specificity based on controls that are

free of any event. Zheng et al. (2012) further allowed additional covariates that may affect

the accuracy of the marker of interest in the estimation and provided inference procedure.

Blanche et al. (2013) considered two alternative definitions of the control group in defining

specificity. For one definition, the control group was defined as subjects who were free of any

event by the pre-specified time t. For the other, subjects who didn’t experience the event of

interest were defined as controls, which included subjects who were event free and subjects

who developed competing events before t. Estimators of sensitivity and each definition of

specificity were proposed with the use of inverse probability of censoring weighting (IPCW)

to handle independent censoring. Wolbers et al. (2014) proposed an IPCW estimate of a

cause-specific concordance index for prognostic scores, which was shown to be a weighted

average of time-dependent AUC over time, with the control group defined as subjects who

experienced the event of interest later or not at all. Wu and Li (2018) provided cause-specific

AUC estimates based on two different definitions of time-dependent specificity by weighting

censored subjects with the conditional probability of experiencing event of interest, where

again AUCs were defined as probabilities of concordance of prognostic scores.

We see that in all above works, AUC can only evaluate the predictive accuracy of a marker

or a prognostic model for one specific cause of event at a time. For a single marker, AUC

would be deficient if the marker is related to a sequence of competing events, for example, the

progression of cancer or cognitive impairment, as it cannot evaluate the relationship between

the marker and the whole disease progress. When evaluating a prognostic model, AUC can

only assess how one specific cause of event is discriminated from the control group or all

other events at a time, thus lacking an overall evaluation of effectiveness of a set of models

fitted for all causes of event. Besides, the definition of different types of control groups may

be hard to interpret. As we see above, a control group can either include only event-free
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subjects or all subjects who haven’t experienced the event of interest. The latter definition

combines subjects who developed all other events before the t and event-free subjects.

When there are two competing events, at any time t, subjects can be divided into three

groups: subjects who developed cause-1 event before t, those who developed cause-2 event

before t, and those who are still event-free by time t. We have even more groups when

there are more than two competing events. Therefore one natural way to extend AUC to

competing risks data is to find its multi-dimensional analog. Metrics have been developed

to evaluate decision making procedures or diagnostic tests with traditional multi-category

outcomes. Scurfield (1996) and Mossman (1999) independently introduced the three-way

ROC to handle diagnostic tests with three possible outcomes. Mossman (1999) showed that

the volume under the three-way ROC surface is equal to the probability that three subjects

each from three distinct categories are correctly sorted. Mossman (1999) also proposed

three decision rules that yield the ROC surface. Dreiseitl et al. (2000) provided the standard

deviation of the VUS estimate proposed by Mossman (1999) based on the Mann-Whitney

U-statistic. Nakas and Yiannoutsos (2004) provided a non-parametric estimator of VUS

assuming that a natural order exists for the three possible outcomes, and modifications were

given to handle ties in the marker. The idea can be further extended to multi-category

outcomes with more than three categories, which was done by Li and Fine (2008), where

they rigorously defined the hypervolume under the ROC manifold (HUM). Li and Zhou

(2009) again focused on ordinal outcomes and proposed non-parametric and semi-parametric

estimates of the three-dimensional ROC surface itself. For survival outcomes with competing

risks, recent work by Zhang et al. (2021) utilized VUS to evaluate the time-varying prognostic

accuracy of a biomarker to competing risks outcomes with a natural order, and proposed

VUS estimator based on different interpretation: the volume under the ROC surface and

the concordance index. We’ve seen that AUC has been generalized to various conditions,

yet the usage of VUS under the competing risks setting has not been fully discovered.
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1.2 Overview of the Dissertation

My dissertation consists of two parts: risk screening and model evaluation for right-

censored survival outcome with competing risks. We will focus on conditions with two

competing events. Ideas can be generalized to multi-category outcomes, though inferences

may become more complicated. The aim of risk screening is to reduce the number of co-

variates to a moderate size while keeping all important covariates, so that existing variable

selection methods can be applied.

In Chapter 2, we adopt the VUS proposed by Zhang et al. (2021) as a model-free ultra-

high dimensional variable screening method for competing risks outcomes. The VUS is

shown to possess the sure screening property by locating markers that are associated with

event times from all causes simultaneously under certain conditions. We run simulation

studies under different settings to test the performance of the VUS as a screening metric,

and conduct a real data analysis of gene-expression data from a breast cancer study (van de

Vijver et al., 2002).

Model evaluation follows naturally after we have a candidate sets of covariates and prog-

nostic models. In Chapter 3. we provide a comparison of model evaluation metrics that are

commonly used for competing risks data. Meanwhile, we examine the ability of two natural

extensions of concordance index to perform as model evaluation metrics. These extensions

are supposed to measure the probability that randomly selected subjects from distinct classes

are correctly assigned by the model. We run extensive simulation studies to examine the

performance of model evaluation metrics under different circumstances. The behaviors of

commonly used prognostic models are also evaluated through multiple real data analyses.

The extensions of concordance index are shown to have nice performance in simulations. We

thus develop an R package to provide model evaluation and model comparisons based on

existing methods and extended concordance indices.
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2.0 VUS as a Screening Metric

2.1 Introduction

Traditional variable selection methods have been fully investigated with moderately high

dimensional covariates. However, the performance of these methods is not guaranteed when

the dimension of covariates p is ultra-high, i.e., log(p) is of the order of sample size. Ad-

vanced technology facilitates the availability of ultra-high dimensional data, for example,

gene expressions, and the development of variable screening methods becomes increasingly

necessary.

The goal of a variable screening method is to reduce the number of covariates to a

moderate size, which would then allow the use of traditional or high-dimensional variable

selection methods (Fan and Lv, 2008). Fan and Lv (2008) introduced the concept of sure

screening and proposed the sure independent screening (SIS) method simply by keeping

covariates that are independently highly correlated with the outcome of interest. They

showed that their SIS method possesses the sure screening property, which means that the

screening method would keep all important covariates with probability tending to one.

The use of the sure screening method was extended to survival outcomes. Fan et al.

(2010) extended the SIS to variable screening for Cox’s proportional hazard model via a

penalization method, without rigorous proof of the sure screening property. Zhao and Li

(2012) proposed the principle sure independence screening (PSIS) method using a Wald-type

statistic from the marginal Cox regression model for each single covariate. A cutoff point for

variable selection was provided by controlling the false positive rate. Gorst-Rasmussen and

Scheike (2013) defined the ‘feature aberration at survival times’ (FAST) statistic to measure

marginal association between each covariate and survival. The usage of the FAST statis-

tic was justified for single-index hazard rate models, where hazard function λ(t) is of the

form λ(t) = λ(t, ZTα0) with α0 being a vector of regression coefficients. These methods all

made assumptions that covariates are associated to the hazard rate via some functional form

and thus may not be adequate when the model assumption is violated. Various model-free
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methods were developed to overcome the problem. Song et al. (2014) proposed a censored

rank independence screening method using an IPCW Kendall’s τ statistic that measures

marginal rank correlation. Li et al. (2016) proposed a survival impact index as a weighted

average distance between the covariate-stratified survival function and the marginal survival

function, using the Kaplan-Meier estimator of survival function to avoid strong model as-

sumptions. Hong et al. (2018) proposed an integrated powered density (IPOD) criterion to

screen variables, where for each covariate the maximum absolute difference in IPODs at all

discretized covariate values is used as the screening criterion. Pan et al. (2018) proposed

a non-parametric independence feature screening procedure that utilizes the correlation be-

tween each covariate and the indicator function of whether an event occurred before a specific

time. All of these methods were shown to possess the sure screening property.

We see various extensions to survival outcomes, but the investigation of sure screening

method under competing risks setting is still limited. A naive way to deal with compet-

ing risks problems is to treat failures from other causes as censoring. However, event times

from different causes are usually correlated, which leads to dependent/informative censoring,

and thus the assumption of independent censoring in most screening methods for survival

outcomes is violated. Besides, the naive method can only focus on one cause at a time,

hence it is deficient in evaluating how a marker can predict different competitive failures

simultaneously. Peng (2019) proposed a joint correlation rank screening method for semi-

competing risks data, which utilized the squared correlation between each covariate and the

joint survival function of two competing events as a marginal utility measure. Lu et al. (2020)

adopted the distance correlation between each covariate’s survival function and the joint sur-

vival function of non-terminal event and terminal events as the screening metric. The latter

seems to perform better by using a covariate’s survival function to avoid the subexponential

tail probablity assumption for the covariate and by using the distance correlation to enjoy

the independent property when the distance is zero. However, both methods are developed

under the semi-competing risks setting, and require that the minimum of non-terminal and

terminal events and censoring time and the minimum of the terminal event time and censor-

ing time are both observed, which can be restrictive under the competing risks setting when

only time to the first event is observed.
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We aim to develop a model-free variable screening metric for ultra-high dimensional data

under the competing risks setting. Zhang et al. (2021) proposed to use VUS as an assess-

ment of the overall discrimination capacity of a continuous marker for multi-level categorical

outcomes with a natural ordinal disease status. It measures the time-dependent probability

of concordance between the marker and disease status, with which we can observe how the

discrimination ability changes over time for each marker of interest. Besides, the estimator

of VUS utilizes a U-statistic and does not depend on any model assumption. In this chapter,

we adopt VUS as the screening metric and show that it possesses the sure screening property.

2.2 Volume under the ROC Surface

In this section, we provide a brief review of VUS and focus on the case with two ordered

competing events assuming that the cause-1 event is more severe than the cause-2 event.

Cases with more than two competing events can be generalized. Let T be the time to the

first event and ϵ = 1, 2 be the cause indicator, with ϵ = i indicating subject experienced

event i. Let D(t) denote the disease status of a subject at time t. At a fixed time point t0,

subjects can be divided into three classes:
D(t0) = 1, if T ≤ t0, ϵ = 1,

D(t0) = 2, if T ≤ t0, ϵ = 2,

D(t0) = 3, if T > t0.

In semi-competing risks setting, it’s possible that only the most severe event is observed

because patients are not followed up closely. VUS can still work for semi-competing risks

data, and we define subject’s status at time t0 as the last event observed before t0.

Let Z be a p-dimensional vector of covariates. For each covariate, we assume that smaller

values indicate more severe medical conditions. For a specific single covariate Zl, let c1, c2 ∈

R be two cutpoints with c1 ≤ c2. We assign a subject into class 1 if its Zl ≤ c1, class 2 if

c1 < Zl ≤ c2 and class 3 if Zl > c2. Then the correct classification probabilities are given by
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CCP1 = P (Zl ≤ c1|T ≤ t0, ϵ = 1),

CCP2 = P (c1 < Zl ≤ c2|T ≤ t0, ϵ = 2),

CCP3 = P (Zl > c2|T > t0).

The plot of (CCP1, CCP2, CCP3) for all (c1, c2) forms the ROC surface, and the VUS is

defined as the volume under the ROC surface. Mossman (1999) showed that the VUS also

has an interpretation as a concordance index. Suppose we randomly select three subjects

i, j, k, such that Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2 and Tk > t0, then for a single covariate Zl,

V USl(t0) = P (Zil < Zjl < Zkl|Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0),

where Zil is the lth covariate for subject i.

Let C denote the time of censoring, then for subjects who are censored before t0, their

disease statuses are not observable. Zhang et al. (2021) proposed a VUS estimator using the

inverse probability of censoring weighting (IPCW) method to accommodate censoring. The

idea of inverse probability method is to inversely weight subjects by the probability of being

observed. We assume that C is independent of T and covariates Z. Define X = min(T,C),

and η = I(T ≤ C)ϵ, and the observed data consists of independent and identically distributed

triplets {(Xi, ηi,Zi)}, i = 1 . . . n. Let G be the survival function of C and denote its Kaplan-

Meier estimator as Ĝ. Then from Zhang et al. (2021), an estimator of the VUS for the l-th

covariate based on U-statistics and IPCW is given by

V̂ USl(t0) =

∑
i ̸=j ̸=k

I(Xi≤t0,ηi=1,Xj≤t0,ηj=2,Xk>t0,Zil<Zjl<Zkl)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)∑
i ̸=j ̸=k

I(Xi≤t0,ηi=1,Xj≤t0,ηj=2,Xk>t0)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)

.

In the presence of tied biomarkers, a modification is made by substituting I(Zil < Zjl <

Zkl) with I(Zil < Zjl < Zkl)+
1
2
I(Zil < Zjl = Zkl)+

1
2
I(Zil = Zjl < Zkl)+

1
6
I(Zil = Zjl = Zkl).

Zhang et al. (2021) showed the consistency and weak convergence of V̂ US(t0).
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2.3 VUS for screening

We now use V US(t) as a metric for variable screening. Define M∗ as the set of true

active variables such that

M∗ = {l : P (T ≤ t0, ϵ = 1or 2|Z) depends onZl}.

We select a set of important covariates by comparing their VUS estimates, V̂ US(t) with

1/6, which is the value of VUS when there’s no association between the covariates and event

time. Suppose γn is a pre-specified threshold. The selected set is denoted by

M̂ = {l : |V̂ USl(t0)− 1/6| ≥ γn}.

Note that there are several cases where the VUS can be below 1/6. In constructing the ROC

surface, we assume that a smaller covariate value indicates a more severe condition. This

assumption may be violated in practice. Under a two-dimensional case, the area under the

ROC curve (AUC) can be smaller than 1/2 if the assumed order of the biomarker is incorrect

and we can simply flip the AUC value as 1-AUC. With three categories, things become more

complicated. For example, the important covariates can still be related to the outcome in an

ordinal manner, but with larger values indicating more severe conditions. These covariates

are less likely to be selected than variables satisfying the assumption, because the distance

between their VUSs and 1/6 are bounded by 1/6. For these covariates, we would reverse

their signs to satisfy the assumption, and VUS would still work. However, if the relationship

between the covariate and the outcomes is not ordinal, we cannot tell where the value of

VUS would locate and our metric can fail to pick such covariates.
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2.4 Sure Screening Property

In this section, we establish the sure screening property of the VUS method. The fol-

lowing conditions are required.

Condition 1 There exists a ν > 0 such that P (C = ν) > 0 and P (C > ν) = 0.

Condition 2 minl∈M∗ |V USl(t0)− 1/6| ≥ c0n
−κ for some 0 < κ < 1/2 and c0 > 0.

Condition 3 There exists δ > 0, such that P (Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0) > δ.

Condition 1 is used to show asymptotic properties in Song et al. (2014) for survival

outcomes. Condition 2 indicates that true active covariates can be distinguished from pure

noise. Condition 3 is used to show asymptotic properties and can be easily satisfied with a

properly selected t0.

Theorem 1. Under Conditions 1-3, for any positive constant c6, there exist positive con-

stants c3, c4 and c5 such that for any single covariate Z,

P (|V̂ US(t0)− V US(t0)| ≥ c6n
−κ) ≤ 10n3 exp{− 1

36
ϵ8n}+ 4 exp{−2

3
c23ϵ

6n}

+ 4 exp

{
− 2

27
c24ϵ

6δ2(1 + c4n
−κ)−2n1−2κ

}
+ 2.5n3 exp

{
−1

9
c24δ

2ϵ8(3 + 3c4n
−κ + c4n

−κδ)−2n1−2κ

}
+ 4 exp{− 2

27
c25ϵ

6n1−2κ}

+ 2.5n3 exp{−1

9
c25ϵ

8(3 + c5n
−κ)−2n1−2κ}.

(2.4.1)

Taking γn = cn−κ with c = c0 − c6, we have

P (M∗ ⊂ M̂) ≥ 1− sP (|V̂ US(t0)− V US(t0)| ≥ (c0 − c)n−κ),

where s = |M∗| is the cardinality of M∗.
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Theorem 2. Under the conditions of Theorem 1, with p = o(exp(n1−2κ)) and assuming∑p
l=1 |V USl(t0)− 1/6| = O(nξ) for some ξ > 0, we have

P (|M̂| ≤ O(nξ+κ)) ≥ P (max
1≤l≤p

|V̂ USl(t0)− V USl(t0)| ≤
1

2
c6n

−κ)

≥ 1− pP (|V̂ USl(t0)− V USl(t0)| ≥
1

2
c6n

−κ).

The detailed proofs of Theorem 1 and Theorem 2 can be found in the Appendix A.

We assume the sparsity of true active covariates, thus Theorem 1 shows the sure screening

property of the VUS method. Theorem 2 shows that the size of the selected set M̂ can be

controlled when p = o(exp(n1−2κ)) and
∑p

l=1 |V USl(t0)− 1/6| = O(nξ).

2.5 Simulation

In this section, we evaluate finite sample performance of the VUS-based screening under

different scenarios. The VUS is compared with two existing methods, PSIS (Zhao and Li,

2012) and Kendall’s τ (Song et al., 2014). For the PSIS method, we fit a cause-specific

hazard model for each cause of event by treating events from the other cause as if they

were independent censoring, and look for important biomarkers associated with each cause-

specific hazard. The important set will contain the union of important biomarkers from

the two events. For Kendall’s τ method, it can only handle typical survival outcomes with

independent censoring, and cause-1 and cause-2 events are typically not independent given

the covariates. Thus, subjects who have experienced either event 1 or event 2 are combined

together as the overall event group in implementing this method.

We considered the following three scenarios. Under each scenario, we simulated 200

datasets with number of subjects n = 200 and number of covariates p = 5000. Covariates

Z = (Z1, . . . , Zp)
′ under scenario 1 are generated from a multivariate normal distribution

with mean 0 and correlation 0.5|i−j| between Zi and Zj. For each scenario, there are four

true covariates Z1, Z2, Z3, Z4.

Scenario 1: Latent event times were generated from log-logistic models

log(Tj) = β′
jZ+ σe, j = 1, 2,
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with σ = 0.2, β′
1 = (1, 0.9, 0.8, 0.5, 0, · · · , 0) for the cause 1 event and

β′
2 = (0.5, 0.3, 0.2, 0.1, 0, · · · , 0) for the cause 2 event. If T1 < T2, the time to first event

T was set as T1 and the event indicator ϵ was set as 1; otherwise, the first event time was

set as T2 with ϵ being 2. As only the time to first event is recorded, T1 and T2 cannot be

observed simultaneously and they are thus referred to as latent event times. Censoring time

was generated from a mixture of uniform distributions with censoring rates of 20% and 40%.

The observed event time is the minimum of time to first event and time of censoring, and the

corresponding indicator is the product of the censoring indicator and the cause indicator.

We estimated VUS at t0 = 1 for which there is about 20% censoring and t0 = 1.7 for 40%

censoring.

Scenario 2: Event times were generated from a Fine-Gray model (Fine and Gray, 1999)

with the cumulative incidence function for cause 1 being

F1(t|Y) = 1−
[
1− 0.8

{
1− exp

(
− (t/20)5

)} ]exp(β′
1Y)

.

As noted in the next Chapter, F1 is an improper distribution and may not be invertible. Let

V be a uniform random variable. If V is smaller than F1(∞|Y) which is the asymptote of F1,

we invert F−1
1 (V ) to simulate the event time and set the cause indicator as 1. If V exceeds

F1(∞|Y), F1 is not invertible and the corresponding subject is assumed to have experienced

cause 2 event first, i.e., T2 < T1 under our previous latent framework. With this the event

time is simulated based on the conditional distribution for T given that the cause 2 event

has occurred first. That is,

P (T ≤ t|ϵ = 2,Y) = 1− exp
(
− exp(β′

2Y)(t/20)5
)
.

Y is a long vector containing all discretized biomarkers. Each observed continuous biomarker

Zk is discretized into three categories Zk < −0.5,−0.5 ≤ Zk ≤ 0.5 and Zk ≥ 0.5, and Zk

indicates which category Zk falls into. The associated coefficients for each category are

β′
1k = (log 3, log 1/3, log 1/6) and β′

2k = (log 9, 0, log 1/2) for Z1, Z2, Z3, Z4 and zero otherwise.

Censoring rates were set to be 20% and 40%. The VUS was estimated at t0 = 17 in all cases

in this scenario.
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Scenario 3: Event times were generated from Gerds’ multinomial logistic regression

model (Gerds et al., 2012) with cause-1 CIF

F1(t|Y) =
exp(a1t+ b1 + β′

1Y)

exp(a1t+ b1 + β′
1Y) + exp(a2t+ b2 + β′

2Y) + 1

and cause-2 CIF

F2(t|Y) =
exp(a2t+ b2 + β′

2Y)

exp(a1t+ b1 + β′
1Y) + exp(a2t+ b2 + β′

2Y) + 1
,

where a1 = a2 = 2 and b1 = b2 = −15. Y is the same as scenario 2 and the associated coeffi-

cients for each category are β′
1k = (log 0.9, log 0.1, log 0.05) and β′

2k = (log 0.1, log 0.9, log 0.45)

for Z1, Z2, Z3, Z4 and zero otherwise. The cause indicator was generated from a Bernoulli

distribution with probability F1/(F1+F2), where F1 and F2 were calculated at the simulated

event time for each subject. We again considered censoring rates of 20% and 40%. The VUS

was estimated at t0 = 10 and t0 = 9, respectively.

For VUS and Kendall’s τ , we summarize how many true variables can be captured when

we select 8, 20, 40, 60, 80 variables. For the PSIS method, we selected 4, 10, 20, 30, 40 vari-

ables for each cause of event, and finally the selected covariates were the union of important

biomarkers from each type of event. Following the investigation in Song et al. (2014), under

each setting, we also examined the performance of three metrics when observed covariates

Z were contaminated; with a probability of 0.1 each covariate could be contaminated by a t

distribution with mean 0 and 1 degree of freedom.

Results are summarized in Tables 1, 2 and 3. We first noted that these methods would

not necessarily have a better performance with a lower rate of censoring. It is particurly

clear in Table 3, where data were generated from Gerds’ multinomial regression model. After

a careful investigation, we found that what really matters is the number of subjects falling

in each disease category at the time of prediction, especially for the VUS method, which

requires enough samples in each category. Therefore, when the rate of censoring is low,

there may be few subjects in the ‘survivor’ category at the time of prediction, resulting in a

less satisfactory performance of VUS.

Comparing VUS, Kendall’s τ and PSIS, we see that VUS cannot beat the other two

methods under the log-logistic model with no contamination in covariates. When data
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Table 1: Number of true variables captured under latent log-logistic models

Non-contaminated Contaminated

20% 40% 20% 40%

size VUS τ PSIS VUS τ PSIS VUS τ PSIS VUS τ PSIS

8 3.89 4 4 3.74 3.99 4 3.815 3.98 2.42 3.535 3.965 2.295

20 3.94 4 4 3.805 3.995 4 3.905 3.99 2.615 3.67 3.995 2.51

40 3.95 4 4 3.845 4 4 3.925 3.99 2.69 3.765 4 2.61

60 3.955 4 4 3.865 4 4 3.93 3.99 2.77 3.82 4 2.685

80 3.955 4 4 3.88 4 4 3.935 3.99 2.815 3.84 4 2.78

Table 2: Number of true variables captured under Fine-Gray model

Non-contaminated Contaminated

20% 40% 20% 40%

size VUS τ PSIS VUS τ PSIS VUS τ PSIS VUS τ PSIS

8 3.99 3.98 3.995 3.96 3.955 3.99 3.905 3.94 2.155 3.825 3.765 2.07

20 3.995 3.995 4 3.97 3.985 4 3.905 3.98 2.375 3.915 3.88 2.32

40 4 4 4 3.995 3.99 4 3.985 3.98 2.5 3.935 3.935 2.455

60 4 4 4 4 3.99 4 3.985 3.98 2.555 3.965 3.955 2.525

80 4 4 4 4 3.99 4 3.99 3.99 2.62 3.975 3.97 2.575
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Table 3: Number of true variables captured under Gerds model

Non-contaminated Contaminated

20% 40% 20% 40%

size VUS τ PSIS VUS τ PSIS VUS τ PSIS VUS τ PSIS

8 1.505 0.005 3.630 2.56 0.005 3.67 1.010 0 1.240 1.79 0.005 1.125

20 1.920 0.025 3.870 3.09 0.01 3.89 1.375 0.005 1.460 2.45 0.015 1.345

40 2.155 0.045 3.940 3.335 0.025 3.955 1.685 0.020 1.645 2.8 0.025 1.515

60 2.315 0.075 3.955 3.55 0.05 3.965 1.910 0.030 1.780 3.005 0.045 1.67

80 2.470 0.085 3.960 3.565 0.075 3.975 2.080 0.055 1.885 3.12 0.08 1.745

are contaminated, PSIS is affected the most and has worse performance than the other two

methods. When data were generated from Fine-Gray model, again PSIS fails when covariates

are contaminated. Both VUS and Kendall’s τ perform well. Under the Gerds multinomial

regression model, Kendall’s τ method completely fails, and VUS has a better performance

than PSIS when covariates are contaminated. In this model, after collapsing cause-1 and

cause-2 events for Kendall’s τ method, the overall risk is the same for the two categories

Z < −0.5 and −0.5 < Z < 0.5, although the overall risk for subjects with large covariates is

small. Due to the lack of ability to distinguish these two categories, Kendall’s τ isn’t able

to capture the relationship between the covariate and the outcome, while VUS still works.

Overall, we observe that when covariates are contaminated, performances of all three metrics

are negatively affected, but compared to the PSIS method, VUS and Kendall’s τ are more

roust to contamination. It can be seen that with higher rate of censoring, VUS outperformed

the other two metrics under both Fine-Gray and Gerds models.
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2.6 Data Analysis

We applied our screening method to a gene-expression dataset from a breast cancer study

(van de Vijver et al., 2002). This dataset is obtained from the R package “cancerdata”

(Budczies and Kosztyla, 2021) and contains 295 women with breast cancer and expression

values of 24881 genes in tumor samples of each woman. Two events of interest are distant

metastasis and death. Among 295 patients, five (1.7%) patients died without metastasis, 101

(34.2%) experienced metastasis, and 74 (25.1%) died after metastasis. The overall censoring

rate, i.e, patients survived without metastasis and death, is 64.1%. The objective of our

analysis is to capture the genes that are associated with the progression from breast cancer

to distant metastasis and/or death.

We looked at patients’ survival at t0 = 5 and considered the most severe event each pa-

tient experienced before t0. At five years, 48 patients died either with or without metastasis,

32 patients were alive but with metastasis, 207 patients were alive and metastasis-free and

eight patients censored before t0.

Different from simulation studies, in real data analysis, we are not sure how covariates are

associated with the outcomes. As mentioned in Section 2.3, for covariates whose larger values

are associated with more severe conditions, we will reverse the relationship. In this dataset,

it is not clear which genes violated our assumption. Therefore, for each gene, we calculated

two VUS estimates, one assuming that lower values are associated with more severe states,

and the other assuming that the relationship is in the opposite direction. For the latter, we

used two minus the observed value of gene expression as values of the covariates to estimate

VUS, where two is the maximum value of all covariates. We kept the VUS estimate that

was further away from 1/6.

Following Fan and Lv (2008), we selected [n/ log(n)] = 51 important variables for VUS

and Kendall’s τ . For the PSIS method, 26 variables were selected for each type of event,

and the final important set contained the union of important variables of two events.

We show the top 51 genes selected by VUS in Table 4. Genes that are selected by both

VUS and Kendall’s τ are denoted by ‘*’, and those selected by both VUS and PSIS are

denoted by ‘**’. Bold-faced genes are selected by all three methods, which include seven
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Table 4: Top 51 genes selected by VUS

U96131** NM 005480* Contig29555 RC

Contig31288 RC M96577 NM 003494

NM 003295 NM 000987 NM 004219

NM 005733 NM 004701* Contig57173 RC

NM 001605** NM 019059 NM 004217

NM 002466* Contig57584 RC NM 007019*

NM 006607 NM 006579* NM 001809

NM 006845 Contig6498 D38553*

Contig38288 RC NM 005804 NM 006623**

D43950** Contig35629 RC NM 018188*

NM 001673 D14678 Contig41828 RC

NM 018410* NM 002624 NM 001255

NM 020313 NM 014454 NM 018688

Contig56390 RC* Contig38901 RC NM 003504

NM 001333 NM 007195 NM 019597**

NM 017761* NM 018834 NM 003600*

Contig41977 RC Contig43747 RC NM 001168*

Bold-faced genes are selected by all three metrics; ’*’ are selected
by VUS and Kendall’s τ ; ’**’ are selected by VUS and PSIS.
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genes. The same dataset was also analyzed in Song et al. (2014) and Lu et al. (2020). In

Song et al. (2014) the event of interest was the overall survival time, and only the top 20

selected genes were shown. We compared the results and found that 13 genes were both

selected by our VUS method and by Song et al. (2014). Lu et al. (2020) treated the data as

semi-competing risks outcomes. While explicitly handling semi-competing risks is beyond

the scope of this work, the proposed VUS is still applicable by counting the most severe

event that occurred. The authors selected 51 genes using the proposed method in Lu et al.

(2020) and improved the results based on an adaptive threshold rule, for which 25 genes

were selected. They showed that the adaptive threshold rule would perform better than

the proposed method itself, so we compared the selected genes with their 25 selected genes.

Among the 25 selected genes, 13 genes were selected by both our VUS method and Lu et al.

(2020), and these 13 genes were partially different from those selected by VUS and Kendall’s

τ in Song et al. (2014). These comparisons imply that there is no one-size-fits-all metric,

and our VUS method is a viable variable screening metric for competing risk outcomes as

it focuses on a different aspect of the association between the covariates and the outcomes

than existing methods.

2.7 Discussion

In this project we have shown that VUS possesses the sure screening property. The VUS

can provide an overall assessment of diagnostic accuracy of covariates in predicting ordinal

outcomes and has a straightforward interpretation as the concordance probability between

the value of covariates and the disease status, and simulation studies and data analysis

have shown that it can serve as an alternative for variable screening, especially with data

contamination in covariates.

A limitation of VUS is that it is designed to pick covariates with an ordinal relationship

with the outcomes. One possible solution is that instead of measuring the concordance be-

tween the value of a biomarker itself and the disease status, we may look at the concordance

between some functions based on each single biomarker and the true event status, for exam-
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ple, the estimated CIF based on each single Z. Similarly, we may evaluate how a group of

biomarkers can be associated with the competing risks outcomes by modeling CIF based on

this group of biomarkers to handle correlated biomarkers and categorical biomarkers. How-

ever, this solution will rely on additional model assumptions on CIF. Besides, when modeling

CIF, we typically assume that the transformed CIF is a linear function of the covariates,

which indicates that a monotone relationship exists between the biomarker and the CIF, and

that is similar to the assumption we’ve made for VUS. We may consider including higher

order terms in CIF estimation, but further investigation is beyond the scope of this work.

We surprisingly found that the PSIS method, which utilizes the Wald-type statistic from

Cox’s proportional hazard model, is quite robust to model misspecification. In all three

scenarios we considered, the PSIS method performed pretty well when there’s no covariate

contamination. There is one limitation with the PSIS method though. When applying it to

competing risks settings, we don’t know how many variables should be selected for cause-1

event and cause-2 event respectively. What we have observed in our simulation is that when

we select equal number of variables for two types of events, variables selected for cause 1

event contain most important variables, yet for cause 2 event, its performance is deficient.

However, we often have no prior knowledge when we are analysing real data and thus cannot

adjust the number of important variables selected for each type of event in advance to further

improve the performance of the PSIS method.

Besides, in both simulation studies and real data analysis, we decided how many variables

k to be selected in an empirical way and then kept those variables whose absolute distances

from 1/6 are among the top k. Variables can also be selected by picking a threshold via

controlling the false positive rate, which was done by Zhao and Li (2012). Zhang et al. (2021)

showed the weak convergence of VUS estimate and provided an estimate of standard error.

Thus, Wald statistics can be computed for each VUS estimate based on some transformation

(e.g., arcsine square root transformation) to improve practial performance. Following Zhao

and Li (2012), we could fix a false positive rate, and the threshold of p-value would be fixed

accordingly. After an inverse transformation, we would get the threshold γn for the distance

between VUS estimate and the null value 1/6.
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3.0 Model Evaluation with Competing Risks Data

3.1 Introduction

In biomedical studies, treatments can be effective for one type of disease, but not for the

other. Also, high-risk individuals may get more benefits from the treatment than those low-

risk ones. Therefore, when analyzing competing risks data, one important goal is to predict

the disease status of a patient at certain time points based on baseline measurements. The

classification of subjects may depend on values of biomarkers, or the absolute risk of certain

events predicted from a prognostic model.

Cumulative incidence function (CIF), or the absolute risk, is used to describe the prob-

ability of the occurrence of an event in existence of competing events, and is defined as

Fl(t|Z) = P (T ≤ t, ϵ = l|Z)

for cause l event at time t given covariates Z. It is not a proper distribution, as Fl(∞|Z) =

P (ϵ = l|Z) < 1. When there are L (L ≥ 2) competing events, we have
∑L

l=1 Fl(t|Z) +

S(t|Z) = 1, where S(t|Z) is the survival function of event time T .

Various models have been developed to analyze competing risks data, and many of them

provide estimates of CIF and survival functions. The most common model for analyzing

competing risks data is the proportional hazards model on cause-specific hazard function

(Kalbfleisch and Prentice, 2011), which is defined as

λl(t|Z) = lim
h→0

P (t ≤ T < t+ h, ϵ = l|T ≥ t,Z)

h
.

It is the instantaneous rate of occurrence of event l among event-free subjects given covariates

Z. To calculate CIF for event l, cause-specific hazards for all events need to be modeled,

and

Fl(t|Z) =
∫ t

0

λl(s|Z)S(s|Z)ds,
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where S(t|Z) = exp
(
−
∑L

l=1

∫ t

0
λl(s|Z)ds

)
. Another model that is frequently considered is

the Fine-Gray subdistribution hazard (Fine and Gray, 1999), where the subdistributional

hazard is defined as

λl(t|Z) = lim
h→0

P (t ≤ T < t+ h, ϵ = l|T ≥ t ∪ (T ≤ t ∩ ϵ ̸= l,Z)

h

and Fl(t|Z) = exp(−
∫ t

0
λl(s|Z)ds). A proportional hazard model of the form λl(t|Z) =

λl0(t) exp(Z
Tβl) was adopted for modeling the subdistribution hazard (Fine and Gray, 1999).

Different from the cause-specific hazard, now the interpretation of covariate effects on CIF

is straightforward. Scheike et al. (2008) extended the model proposed by Fine and Gray

(1999) via binomial regression and allowed for time-varying coefficients. In the Fine-Gray

and Scheike’s models, it is not guaranteed that
∑L

l=1 F̂l(t|Z) ≤ 1, where F̂l are the estimated

CIFs. To fix the issue, Gerds et al. (2012) proposed to use the multinomial logistic regression

to model the probabilities of the occurrence of competing risks and survival as the following:

Fl(t|Z) =
exp(Al(t) + ZTβl)

1 +
∑L

k=1 exp(Ak(t) + ZTβk)

and

S(t|Z) = 1

1 +
∑L

k=1 exp(Ak(t) + ZTβk)
.

There are other models that can provide CIF estimates such as parametric models pro-

posed by Jeong and Fine (2006), Shi et al. (2013) and Haile et al. (2016), among many others.

With the availability of different models, one natural problem to consider is that given the

observed data, which model can provide better prognostic accuracy, in other words, which

model can better predict the probability of occurrence of certain events and discriminate

subjects from different causes of event group.

There are metrics developed to assess the discrimination power of a prognostic model with

survival outcomes. Harrell et al. (1982) introduced the C-index that measures the probability

that the patient with a higher prognostic score would live longer. It is a commonly-used

concordance index to evaluate the goodness-of-fit of the models that estimate prognostic

scores. As mentioned in Chapter 1, Heagerty and Zheng (2005) used AUC to evaluate

the accuracy of a regression model. Besides, Gerds and Schumacher (2006) provided an
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estimation of mean squared prediction error based on IPCW, which is a weighted average

of squared distance between the survivor indicator and the estimated survival function, an

extension of Brier score (Brier, 1950).

Extensions have also been made to competing risks outcomes. Schoop et al. (2011)

extended the Brier score based on IPCW to competing risks data, which estimates the

prediction error of prognostic model for the event of interest. Blanche et al. (2013) extended

AUC to competing risks model evaluation focusing on the specific event of interest and

used the IPCW method to deal with censoring. Two definitions of specificity were provided

depending on how the control group was defined. Gerds et al. (2014) proposed the calibration

plot of predicted risk versus expected risk. Wolbers et al. (2014) proposed a concordance

probability for cause-specific model evaluation and showed how it was related to AUC. Wu

and Li (2018) also extended AUC and Brier scores, with a different weighting scheme to deal

with censoring. The weight was given by the conditional probability of the event of interest

given observed data instead of the probability of censoring.

All above methods focus on evaluating diagnostic accuracy of models for predicting one

particular type of event, given the existence of competing risks. They cannot provide an

overall assessment of diagnostic accuracy of a group of models for predicting all competing

events. To the best of our knowledge, only one work provides an overall evaluation of com-

peting risks prediction models. Ding et al. (2021) extended the polytomous discrimination

index (PDI) (Van Calster et al., 2012) to competing risks data. The PDI of a specific cause

j measures the probability that, of L + 1 randomly selected subjects from L + 1 distinct

groups, the subject from the j-th group has the largest estimate of cause-j CIF compared

to subjects from other groups. The overall evaluation of diagnostic accuracy is the average

probability over all causes, including the survivor, and a larger value of PDI indicates better

discrimination power of the model.

PDI is the first metric that provides both overall and cause-specific evaluations of di-

agnostic accuracy, therefore Ding et al. (2021) only investigated the statistical properties

of PDI itself, and a comparison between PDI and other existing metrics for cause-specific

evaluation is missing. However, PDI may cause confusion in what is considered a correct

classification. Consider two subjects i and j with two competing events. Subject i experi-
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enced cause-1 event with estimated CIFs and survival functions being F̂1i = 0.35, F̂2i = 0.33,

and Ŝi = 0.32 at the time of assessment. Subject j experienced cause-2 event with estimated

functions being F̂1j = 0.4, F̂2j = 0.5, and Ŝj = 0.1. Intuitively, given the estimated func-

tions, we would assign subject i into cause-1 group and subject j into cause-2 group given

the estimated probabilities, while based on the definition of PDI, although subject i belongs

to cause-1 group, the estimated CIF F̂1i is smaller than F̂1j of subject j, and assigning

subject i to cause-1 would not be counted as a correct classification in a triplet of subjects

containing subjects i and j. Thus, the naive way of assigning the subject to the class with

the largest estimated CIF or survival as compared to other classes may not be considered a

correct classification by PDI.

In this project, we aim to provide a systematic evaluation of the performance of commonly

used model evaluation metrics including AUC, Brier score (Schoop et al., 2011) and PDI

(Ding et al., 2021) under the competing risks setting, and provide a practical guide of which

metrics to use under different circumstances. For AUC, the more recent estimator proposed

by Wu and Li (2018) was shown to perform similarly as the IPCW estimator proposed

by Blanche et al. (2013) with independent censoring, and the latter was fully investigated

and has a complete testing procedure. Therefore we used the IPCW based AUC estimator

(Blanche et al., 2013) in this project. We would also like to test ideas of natural extensions

of concordance index based on the naive way of classification and the idea of PDI. Details of

the extension are provided in Section 3.2, and we call the extensions Extended Concordance

Indices.

3.2 Methods

3.2.1 Existing Methods

We provide a brief review of AUC, Brier score and PDI methods in this subsection.

AUC (Blanche et al., 2013) provides a cause-specific evaluation of prognostic models with

competing risks data. It measures the probability that the subject that experienced the event
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of interest has a higher risk score than the subject from the control group. Two definitions

of the control group are provided. The standard control group contains subjects who never

experienced any event, and the augmented control group includes subjects who were event-

free, or experienced other events by the time of evaluation. With different definitions of

control groups, AUCs can be defined as:

AUCl(t0) = P (Fli > Flk|Ti ≤ t0, ϵi = l, Tk > t0),

AUCAl(t0) = P (Fli > Flk|Ti ≤ t0, ϵi = l, {Tk > t0} ∪ {Tk ≤ t0, ϵk ̸= l}),

where Fli is the risk score of subject i for cause-l event. Here AUC uses the standard control

group and AUCA is defined based on the augmented control group with A standing for

augmented. Blanche et al. (2013) proposed the IPCW estimator of AUC and AUCA, and

showed their large sample properties.

The adaption of Brier score to competing risks data was proposed by Schoop et al. (2011),

which is a modification of Brier score proposed by Gerds et al. (2014) for standard survival

outcomes. For each cause of event, the prediction error is defined as the mean squared

distance between the true event status and the CIF:

PEl(t0) = E[I(T ≤ t0, ϵ = l)− Fl(t0|Z)]2.

It measures both discrimination and calibration accuracy of the prognostic model. An es-

timator based on IPCW was introduced and shown to be uniformly consistent. Different

from other metrics, smaller values of Brier score is preferred since it estimates the prediction

error. We denote Brier score as BS in all tables.

PDI proposed by Ding et al. (2021) provides both cause-specific and overall evaluations

of the discrimination power of prognostic models for competing risks data. Suppose there

are L competing events. Subjects i1, · · · , iL, iL+1 are randomly selected from distinct event

group 1, · · · , L, L + 1, such that subject il experienced event l or no events for L + 1, and

we denote event C as {Ti1 ≤ t0, ϵi1 = 1, · · · , TiL ≤ t0, ϵiL = L, TiL+1
> t0}. Then for cause-l,
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PDIl is the probability that subject il has the largest cause-l CIF estimation among subjects

i1, · · · , iL, iL+1:

PDIl(t0) = E

[
j=L+1∏
j=1,j ̸=l

I{Flil(t0|Zil) ≥ Flij(t0|Zij)}|C

]
.

When L = 1 and there’s no competing events, PDIl reduce to AUC with the standard control

group. The overall PDI is the average of cause-specific PDIs over all event groups, including

the survivor group. PDI can be estimated using the IPCW method. Ding et al. (2021)

showed the consistency and asymptotic normality of the estimator.

3.2.2 Extended Concordance Indices

In this subsection we consider natural extensions of concordance index for evaluating

discrimination ability. Ideally, we would like the predicted event status to agree with the

true event status for all subjects, and the extent of agreement indicates the discrimination

ability of the prognostic model. Therefore, a natural measure for evaluation would be the

probability that subjects are correctly classified by the prognostic model. The two indices

under consideration differ in how a successful classification is defined. The construction of

these evaluation metrics were inspired by the concordance probability and VUS in Chapter

2. The first index comes directly from the idea of PDI, but instead of taking the average over

all causes, we consider the probability that subjects are correctly assigned simultaneously.

At a specific time point of interest t0, we consider three randomly selected subjects i, j, k

such that Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2 and Tk > t0. We are interested in the probability

that all three subjects are correctly sorted simultaneously such that subject from cause-j has

the largest cause-j CIF compared to the other two subjects. We define the first extended

concordance index (ExC*) as

ExC∗(t0) = P (maxF1 = F1i(t0),maxF2 = F2j(t0),maxS = (3.2.1)

Sk(t0)|Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0),

where Fl(t0) = (Fli(t0|Zi), Flj(t0|Zj), Flk(t0|Zk)), l = 1, 2, Fli(t0), l = 1, 2, is the cause-l CIF

for subject i given covariates Zi, and S = (Si(t0|Zi), Sj(t0|Zj), Sk(t0|Zk)). We skip Z in
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(3.2.1) for simplicity. Supposedly, ExC∗ would provide an overall evaluation of the ability of

prognostic models to discriminate subjects from all causes, just like PDI.

For cause-specific evaluation, we consider randomly picking a subject i from the cause of

interest and a subject k from the control group, and again we measure the probability that

these two subjects are correctly assigned simultaneously. Based on different definitions of

the control group as shown in Blanche et al. (2013), we come up with two related metrics:

ExC∗
l (t0) = P (Fli > Flk, Sk > Si)|Ti ≤ t0, ϵi = l, Tk > t0),

and

ExC∗
l2
(t0) = P (Fli > Flk|Ti ≤ t0, ϵi = l, {Tk > t0} ∪ {Tk ≤ t0, ϵk ̸= l}),

for cause-l event. Note that ExC∗
l2
(t0) is exactly the augmented AUC in Blanche et al. (2013),

so we will just use the notation AUCAl instead, and l denotes the cause of event.

Now we introduce the second extended concordance index, which we denoted as ExC.

For three randomly selected subjects i, j, k such that Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2 and

Tk > t0, this time we assign a subject to class l if for this subject the probability of belonging

to class l is the largest compared to the probabilities of belonging to other classes. Then

ExC is the probability that three subjects from different groups are all correctly classified

based on our rule of assignment, and is defined as:

ExC(t0) = P (maxpi = F1i(t0),maxpj = F2j(t0),maxpk = (3.2.2)

Sk(t0)|Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0),

where

p = p(t0|Z) = (F1(t0|Z), F2(t0|Z), S(t0|Z))T .

We will simply refer to it as p when there is no confusion. Cause-specific indices can be

defined similarly:

ExCl(t0) = P (maxpi = Fli(t0),maxpk = Sk(t0)|Ti ≤ t0, ϵi = l, Tk > t0),
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Table 5: Notation for Evaluation Metrics

Cause-specific evaluations

AUCl subject il has a larger cause-l CIF than subject iL+1

AUCAl subject il has a larger cause-l CIF than a subject from the augmented control

BSl mean squared distance between true event status and cause-l CIF

PDIl subject il has the largest cause-l CIF compared to all other subjects

ExC∗
l subject il has a larger cause-l CIF and subject iL+1 has a larger survival

ExCl maxpil = Fil , maxpiL+1
= SiL+1

Overall evaluations

PDI average of PDIls, l = 1, . . . , L

ExC∗ subject il has the largest cause-l CIF or survival (l = L+ 1) among all selected subjects

ExC subject il’ cause-l CIF or survival (l = L+ 1) is the largest among all probabilities

and

ExCAl(t0) = P (maxpi = Fli(t0),maxpk ̸= Flk(t0)|

Ti ≤ t0, ϵi = l, {Tk > t0} ∪ {Tk ≤ t0, ϵk ̸= l}).

We summarize each aforementioned metric in Table 5 for easy reference, where we assume

subjects i1, · · · , iL, iL+1 are randomly selected from L+1 distinct groups 1, · · · , L, L+1 with

group L+ 1 being survivors, as we described before.

Although the idea behind ExC seems natural, we have found conditions where this idea

doesn’t work as expected. Consider two competing events, where cause-1 CIF is larger than

cause-2 CIF all the time for each subject. If the prognostic model is well fitted for each cause

of event, then the estimated CIF will be very close to the true CIF, and we will see that

the estimated cause-1 CIF is always larger than the estimated cause-2 CIF for each subject,

even for a subject who actually experienced a cause-2 event. In this case, if we assign each

subject to the group that has the largest estimated CIF compared to other groups, then
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subjects who had cause-2 event are much likely to be assigned to the cause-1 group, causing

ExC estimates to be zero or extremely small, as illustrated in simulation studies.

3.2.3 Estimation of ExC’s and Inference

The estimator of ExC* can be modified from Zhang et al. (2021) to accommodate inde-

pendent censoring:

ÊxC∗(t0) =

∑
i ̸=j ̸=k

I(Xi≤t0,ηi=1,Xj≤t0,ηj=2,Xk>t0,max F̂1=F̂1i(t0),max F̂2=F̂2j(t0),max Ŝ=Ŝk(t0))

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)∑
i ̸=j ̸=k

I(Xi≤t0,ηi=1,Xj≤t0,ηj=2,Xk>t0)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)

,

where F̂1(t0|Z), F̂2(t0|Z), Ŝ(t0|Z) can be estimated from any competing risks model under

evaluation and are allowed to depend on different sets of covariates. Ĝ is the estimated

survival function of censoring. Unlike the screening metric in Chapter 2, where censoring

time is required to be independent of T and covariates Z, and Ĝ is estimated using the

Kaplan-Meier estimator, in this project, censoring time C is allowed to be independent of T

given covariates Z, and Ĝ may be provided by a regression model such as Cox’s proportional

hazards model. Weak convergence of ÊxC∗(t0) to ExC∗ can be shown similarly to Ding et al.

(2021), and the asymptotic normality of ÊxC∗(t0) is established in Appendix B.

The cause-specific metric ExC∗
l (t0) can be estimated straightforwardly by

ẼxC∗
l(t0) =

∑
i ̸=k

I(Xi≤t0,ηi=l,Xk>t0)I(F̂li>F̂lk,Ŝk>Ŝi)

Ĝ(Xi−)Ĝ(t0)∑
i ̸=k

I(Xi≤t0,ηi=l,Xk>t0)

Ĝ(Xi−)Ĝ(t0)

.

The estimator of ExC and its cause-specific relatives are similarly defined as ExC* and are

thus not explicitly given here.

Variance estimation relies on the particular prognostic models that provide the CIF

estimates, and varies across different models. Therefore, an explicit form of the variance is

unavailable, and the bootstrap method may be used to get an estimate of the variance.

In practice, when we have categorical covariates, we may have two subjects from two

distinct groups have same CIF estimates for some causes, which results in ties in CIF esti-

mates. Modifications can further be made in the same way as in Ding et al. (2021) to handle
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ties in CIF estimates. Take ExC∗ for example, if there are ties in cause-l CIF estimates for

l = 1, 2 or the survival function, then I(max F̂l = F̂lil(t0)) can be substituted by

I(max F̂l = F̂lil(t0))

1 +
∑L+1

j=1,j ̸=l{F̂lil(t0) = F̂lij(t0)}
,

where F̂lij is cause-l CIF estimate for subject ij.

3.2.4 Model Comparison

In practice we often encounter problems of model comparison. For example, we would

like to investigate whether the inclusion of a covariate would significantly improve the dis-

crimination ability of the prognostic model. Therefore, it is desirable for a model evaluation

metric to have a testing procedure for whether two models have a significant difference in

diagnostic accuracy. That is, for two different prognostic models m1 and m2 and for any

model evaluation metric R, we want to test H0 : R(m1)−R(m2) = 0.

Due to the difficulty in deriving the test statistic, especially of the variance, we can use

the Bootstrap method to build a confidence interval for R(m1)−R(m2) and see whether the

confidence interval covers zero. More specifically, we use the bias-corrected and accelerated

(BCa) bootstrap procedure (Efron, 1987), which was implemented in function “bcanon” in

R package “bootstrap”.

3.3 Simulation

We compare the performance of model evaluation metrics under various settings. Metrics

examined include AUC (Blanche et al., 2013), Brier score (Schoop et al., 2011), PDI (Ding

et al., 2021) and the two sets of overall and cause-specific metrics we proposed in Section

3.2.

We generated data from three different models: Cox’s cause-specific proportional hazard

(Kalbfleisch and Prentice, 2011), Gerds’ multinomial logistic regression (Gerds et al., 2012)

and Fine-Gray subdistribution hazard model (Fine and Gray, 1999). For Cox’s and Gerds’
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models, we consider two scenarios: cause-1 and cause-2 CIFs are equal everywhere, and

cause-1 and cause-2 CIFs are different. For the Fine-Gray model, we mainly examine the

scenario where cause-1 and cause-2 are different. Under each scenario, we consider two model

evaluation problems that generally arise in practice: which model to fit among Cox’s, Fine-

Gray, and Gerds’ models, and which combination of covariates can provide better prediction.

For both problems, we would like to see whether the model evaluation metrics are able to

select the true model under which the data have been generated. For each problem under

different scenarios and models, we generated data with sample size n = 500. Five-folds

cross-validation was implemented, with training sets used for model fitting and test sets for

CIF prediction and model evaluation. We considered 30% and 15% overall rates of censoring,

and conducted 1000 simulations in each case. The proportions of each model selected and

the average of estimated values over 1000 simulations are summarized for each metric.

Setting 1: Event times were generated from Cox’s cause-specific proportional hazard

model. Cause-1 and cause-2 hazards are given by

λ1(t|Z) = t1/2 exp(βT
1Z), and λ2(t|Z) = t1/2 exp(βT

2Z).

When comparing Cox’s, Gerds’ and Fine-Gray models, we generated Z = (Z1, Z2, Z3, Z4),

with Z1, Z2
iid∼ N(0, 1), Z3 ∼ Binom(1, 0.6), Z4 ∼ Binom(1, 0.3). Under the scenario where

cause-1 and cause-2 CIFs are equal, we set β1 = β2 = (0.5, 0.5, 0.5, 0.5), with censoring

time being generated from U(0, 2) for 30% censoring and from U(0, 4.2) for 15% censoring.

Models were evaluated at t0 = 0.8. Under the scenario where cause-1 and cause-2 CIFs

are different, we used β1 = (0.3, 0.3, 0.3, 0.3) and β2 = (0.5, 0.5, 0.5, 0.5), U(0, 2.1) for 30%

censoring, and U(0, 4.3) for 15% censoring, and predicted time at t0 = 0.8. We fitted Cox’s,

Gerds’ and the Fine-Gray models on training datasets with cause-1 and cause-2 events both

relying on Z1 to Z4. We examine whether these model evaluation methods can successfully

pick the true underlying Cox model.

When comparing models depending on different combinations of covariates, we generated

(Z1, Z4) ∼ N

0

0

 ,

 1 0.04

0.04 1

, Z2, Z3
iid∼ N(0, 1), and Z = (Z1, Z2, Z3). Z4 is only

used in model fitting, and the true model doesn’t rely on Z4. True coefficients were set as
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β1 = β2 = (0.5, 0.5, 0.5) for equal cause-1 and cause-2 CIFs, with censoring time generated

from U(0, 2.8) for 30% censoring and from U(0, 5.9) for 15% censoring. The prediction time

was set to be t0 = 1.1. For different cause-1 and cause-2 CIFs, we used β1 = (0.3, 0.3, 0.3)

and β2 = (0.5, 0.5, 0.5), with U(0, 2.6) for 30% censoring, U(0, 5.4) for 15% censoring and

t0 = 1. We fitted two sets of Cox’s cause-specific model; one model, denoted as “Cox”,

was fitted with both cause-1 and cause-2 hazards depending on (Z1, Z2, Z3), and the other

model with hazards of both causes depending on (Z2, Z3, Z4) is denoted as “CoxR” with

“R” standing for the reduced model. We examine the probability that the model depending

on (Z1, Z2, Z3) can be selected. Results on proportions of models being selected and mean

values of each evaluation metric are summarized in Table 6 and Table 7, respectively.
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Table 6: Proportion of Model Selected under Cox’s Model

Metrics

Different Models Combination of Covariates

Same Hazard Diff Hazard Same Hazard Diff Hazard

30% 15% 30% 15% 30% 15% 30% 15%

Cox FG Gerds Cox FG Gerds Cox FG Gerds Cox FG Gerds Cox CoxR Cox CoxR Cox CoxR Cox CoxR

ExC 0.401 0.215 0.384 0.458 0.130 0.412 0.427 0.088 0.485 0.361 0.199 0.440 0.744 0.256 0.742 0.258 0.768 0.232 0.789 0.211

ExC∗ 0.145 0.002 0.853 0.166 0.483 0.351 0.106 0.004 0.890 0.121 0.111 0.768 0.738 0.262 0.744 0.256 0.823 0.177 0.826 0.174

PDI 0.420 0.468 0.112 0.637 0.074 0.289 0.643 0.134 0.224 0.692 0.006 0.302 0.994 0.006 0.996 0.004 0.982 0.018 0.991 0.009

ExC1 0.519 0.267 0.214 0.610 0.036 0.354 0.476 0.068 0.456 0.403 0.143 0.454 0.839 0.161 0.851 0.149 0.724 0.276 0.751 0.249

ExCA1 0.414 0.268 0.318 0.417 0.252 0.331 0.341 0.113 0.546 0.190 0.503 0.307 0.640 0.360 0.656 0.344 0.576 0.424 0.593 0.407

ExC∗
1 0.904 0.045 0.051 0.879 0.000 0.121 0.976 0.005 0.019 0.915 0.000 0.085 0.986 0.014 0.994 0.006 0.853 0.147 0.887 0.113

AUCA1 0.544 0.347 0.108 0.697 0.053 0.250 0.657 0.100 0.243 0.666 0.023 0.311 0.900 0.100 0.922 0.078 0.722 0.278 0.740 0.260

PDI1 0.380 0.487 0.133 0.576 0.155 0.269 0.617 0.133 0.250 0.648 0.007 0.345 0.771 0.229 0.786 0.214 0.644 0.356 0.650 0.350

AUC1 0.686 0.209 0.105 0.798 0.015 0.187 0.929 0.028 0.043 0.887 0.000 0.113 0.992 0.008 0.996 0.004 0.814 0.186 0.847 0.153

BS1 0.465 0.171 0.365 0.490 0.044 0.465 0.400 0.204 0.396 0.439 0.040 0.521 0.913 0.087 0.924 0.076 0.717 0.283 0.735 0.265

ExC2 0.283 0.414 0.303 0.414 0.084 0.502 0.480 0.400 0.120 0.640 0.033 0.327 0.784 0.216 0.786 0.214 0.940 0.060 0.957 0.043

ExCA2 0.255 0.352 0.394 0.255 0.333 0.412 0.525 0.245 0.230 0.589 0.060 0.350 0.603 0.397 0.609 0.391 0.891 0.109 0.912 0.088

ExC∗
2 0.868 0.053 0.080 0.817 0.001 0.182 0.809 0.056 0.136 0.823 0.007 0.169 0.992 0.008 0.996 0.004 0.993 0.007 0.997 0.003

AUCA2 0.516 0.341 0.142 0.631 0.054 0.315 0.545 0.273 0.182 0.668 0.097 0.235 0.913 0.087 0.935 0.065 0.981 0.019 0.992 0.008

PDI2 0.373 0.491 0.136 0.533 0.162 0.305 0.481 0.344 0.175 0.620 0.135 0.244 0.799 0.201 0.818 0.182 0.963 0.037 0.971 0.029

AUC2 0.629 0.245 0.126 0.714 0.014 0.272 0.558 0.254 0.188 0.654 0.101 0.245 0.993 0.007 0.995 0.005 0.995 0.005 1.000 0.000

BS2 0.475 0.136 0.389 0.477 0.047 0.477 0.477 0.212 0.312 0.554 0.081 0.364 0.932 0.068 0.947 0.053 0.983 0.017 0.988 0.012
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Table 7: Averaged Estimated Values under Cox’s Model

Metrics

Different Models Combination of Covariates

Same Hazard Diff Hazard Same Hazard Diff Hazard

30% 15% 30% 15% 30% 15% 30% 15%

Cox FG Gerds Cox FG Gerds Cox FG Gerds Cox FG Gerds Cox CoxR Cox CoxR Cox CoxR Cox CoxR

ExC 0.079 0.074 0.078 0.077 0.067 0.077 0.039 0.032 0.041 0.036 0.030 0.037 0.075 0.061 0.074 0.061 0.065 0.051 0.064 0.050

ExC∗ 0.130 0.102 0.141 0.123 0.129 0.128 0.157 0.125 0.170 0.156 0.117 0.167 0.122 0.102 0.114 0.096 0.155 0.126 0.152 0.124

PDI 0.527 0.527 0.525 0.529 0.521 0.527 0.501 0.491 0.498 0.503 0.477 0.501 0.543 0.499 0.544 0.500 0.516 0.475 0.517 0.477

ExC1 0.254 0.241 0.236 0.253 0.197 0.241 0.062 0.048 0.062 0.055 0.041 0.056 0.273 0.222 0.275 0.224 0.119 0.101 0.116 0.098

ExCA1 0.256 0.246 0.251 0.252 0.241 0.247 0.090 0.078 0.098 0.081 0.096 0.086 0.253 0.236 0.252 0.235 0.146 0.140 0.143 0.137

ExC∗
1 0.751 0.731 0.737 0.758 0.694 0.750 0.563 0.439 0.519 0.572 0.274 0.540 0.787 0.709 0.791 0.713 0.612 0.546 0.620 0.554

AUCA1 0.622 0.619 0.618 0.624 0.608 0.622 0.539 0.511 0.533 0.541 0.486 0.537 0.634 0.605 0.635 0.606 0.552 0.535 0.554 0.537

PDI1 0.450 0.451 0.446 0.453 0.441 0.450 0.370 0.342 0.364 0.373 0.303 0.368 0.460 0.437 0.461 0.438 0.376 0.363 0.378 0.365

AUC1 0.779 0.771 0.770 0.783 0.744 0.778 0.628 0.550 0.596 0.634 0.431 0.612 0.807 0.740 0.809 0.743 0.660 0.618 0.665 0.623

BS1 0.225 0.227 0.225 0.224 0.227 0.224 0.218 0.219 0.218 0.217 0.220 0.217 0.223 0.228 0.222 0.227 0.225 0.226 0.224 0.225

ExC2 0.242 0.247 0.238 0.248 0.208 0.251 0.409 0.402 0.385 0.419 0.317 0.407 0.254 0.213 0.252 0.213 0.385 0.321 0.391 0.328

ExCA2 0.249 0.250 0.253 0.248 0.247 0.253 0.367 0.359 0.358 0.368 0.335 0.364 0.240 0.229 0.237 0.228 0.380 0.339 0.383 0.342

ExC∗
2 0.752 0.733 0.740 0.757 0.698 0.751 0.758 0.748 0.752 0.762 0.742 0.758 0.786 0.707 0.790 0.712 0.785 0.716 0.788 0.721

AUCA2 0.623 0.620 0.619 0.624 0.608 0.622 0.677 0.675 0.675 0.679 0.674 0.677 0.634 0.605 0.635 0.606 0.690 0.651 0.691 0.652

PDI2 0.451 0.452 0.448 0.452 0.441 0.450 0.516 0.514 0.514 0.518 0.513 0.516 0.460 0.437 0.461 0.438 0.533 0.491 0.533 0.492

AUC2 0.779 0.772 0.771 0.783 0.746 0.779 0.783 0.780 0.780 0.785 0.777 0.783 0.806 0.739 0.808 0.742 0.805 0.743 0.805 0.745

BS2 0.225 0.227 0.225 0.224 0.227 0.224 0.222 0.223 0.223 0.221 0.223 0.222 0.223 0.228 0.222 0.227 0.213 0.221 0.212 0.221
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Setting 2: Event times were generated from Gerds’ multinomial logistic regression model

(Gerds et al., 2012). Cause-1 and cause-2 CIFs are given by

F1(t|Z) =
exp(a1t+ b1 + βT

1Z)

exp(a1t+ b1 + βT
1Z) + exp(a2t+ b2 + βT

2Z) + 1
,

and

F2(t|Z) =
exp(a2t+ b2 + βT

2Z)

exp(a1t+ b1 + βT
1Z) + exp(a2t+ b2 + βT

2Z) + 1
.

Again we consider two problems: comparison among different models and comparison

among different combinations of covariates. For each problem under each scenario, the same

distributions were used to generate covariates as in Setting 1. We used a1 = a2 = 1 and

b1 = b2 = −15 acroass all scenarios in Setting 2. βs were the same as those in Setting

1. When comparing which model fits the data better, whether cause-1 and cause-2 CIFs

are equal or not, censoring times were generate from U(0, 46) for 30% censoring and from

U(0, 93) for 15% censoring, with t0 = 15. When comparing models depending on different

combination of covariates, we used U(0, 47) for 30% censoring and U(0, 94) for 15% censoring,

with t0 = 15. Results are shown in Table 8 and Table 9.
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Table 8: Proportion of Model Selected under Gerds Model

Metrics

Different Models Combination of Covariates

Same CIF Diff CIF Same CIF Diff CIF

30% 15% 30% 15% 30% 15% 30% 15%

Cox FG Gerds Cox FG Gerds Cox FG Gerds Cox FG Gerds Gerds GerdsR Gerds GerdsR Gerds GerdsR Gerds GerdsR

ExC 0.379 0.027 0.595 0.404 0.013 0.583 0.315 0.114 0.571 0.318 0.085 0.597 0.637 0.363 0.646 0.354 0.668 0.332 0.661 0.339

ExC∗ 0.069 0.722 0.209 0.042 0.836 0.123 0.157 0.058 0.785 0.133 0.042 0.825 0.543 0.457 0.495 0.505 0.757 0.243 0.782 0.218

PDI 0.398 0.028 0.575 0.402 0.007 0.591 0.308 0.088 0.604 0.298 0.063 0.639 0.948 0.052 0.968 0.032 0.909 0.091 0.930 0.070

ExC1 0.451 0.002 0.547 0.449 0.002 0.549 0.329 0.101 0.570 0.329 0.078 0.593 0.642 0.358 0.645 0.355 0.597 0.403 0.573 0.427

ExCA1 0.307 0.266 0.427 0.316 0.265 0.419 0.061 0.797 0.142 0.033 0.881 0.086 0.564 0.436 0.591 0.409 0.548 0.452 0.537 0.463

ExC∗
1 0.401 0.000 0.599 0.355 0.000 0.645 0.231 0.004 0.765 0.173 0.003 0.824 0.932 0.068 0.955 0.045 0.692 0.308 0.712 0.288

AUCA1 0.431 0.042 0.527 0.445 0.018 0.537 0.241 0.325 0.435 0.201 0.324 0.474 0.824 0.176 0.852 0.148 0.613 0.387 0.607 0.393

PDI1 0.447 0.068 0.486 0.497 0.024 0.479 0.295 0.175 0.530 0.265 0.148 0.587 0.690 0.310 0.726 0.274 0.569 0.431 0.578 0.422

AUC1 0.397 0.010 0.593 0.414 0.003 0.583 0.229 0.039 0.731 0.189 0.023 0.788 0.951 0.049 0.967 0.033 0.657 0.343 0.664 0.336

BS1 0.281 0.094 0.626 0.314 0.046 0.640 0.319 0.123 0.558 0.359 0.061 0.580 0.830 0.170 0.846 0.154 0.585 0.415 0.596 0.404

ExC2 0.408 0.012 0.580 0.412 0.004 0.584 0.401 0.001 0.598 0.401 0.001 0.598 0.648 0.352 0.667 0.333 0.827 0.173 0.838 0.162

ExCA2 0.295 0.308 0.396 0.302 0.272 0.426 0.378 0.062 0.560 0.373 0.057 0.571 0.578 0.422 0.598 0.402 0.804 0.196 0.834 0.166

ExC∗
2 0.353 0.000 0.647 0.330 0.000 0.670 0.359 0.017 0.624 0.342 0.004 0.654 0.932 0.068 0.956 0.044 0.957 0.043 0.978 0.022

AUCA2 0.390 0.032 0.578 0.391 0.012 0.598 0.390 0.124 0.486 0.409 0.084 0.507 0.846 0.154 0.859 0.141 0.949 0.051 0.956 0.044

PDI2 0.429 0.060 0.511 0.429 0.030 0.540 0.406 0.129 0.466 0.434 0.099 0.467 0.711 0.289 0.728 0.272 0.898 0.102 0.916 0.084

AUC2 0.368 0.017 0.615 0.359 0.003 0.638 0.378 0.129 0.493 0.378 0.102 0.521 0.952 0.048 0.970 0.030 0.966 0.034 0.980 0.020

BS2 0.276 0.082 0.641 0.293 0.044 0.663 0.277 0.142 0.581 0.294 0.093 0.613 0.824 0.176 0.865 0.135 0.952 0.048 0.961 0.039
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Table 9: Averaged Estimated Values under Gerds Model

Metrics

Different Models Combination of Covariates

Same CIF Diff CIF Same CIF Diff CIF

30% 15% 30% 15% 30% 15% 30% 15%

Cox FG Gerds Cox FG Gerds Cox FG Gerds Cox FG Gerds Gerds GerdsR Gerds GerdsR Gerds GerdsR Gerds GerdsR

ExC 0.052 0.027 0.054 0.052 0.021 0.055 0.032 0.015 0.035 0.031 0.011 0.034 0.044 0.037 0.044 0.038 0.037 0.032 0.036 0.031

ExC∗ 0.113 0.128 0.118 0.107 0.129 0.111 0.123 0.089 0.133 0.123 0.083 0.135 0.087 0.085 0.078 0.079 0.133 0.115 0.133 0.115

PDI 0.453 0.437 0.454 0.454 0.436 0.455 0.434 0.423 0.437 0.435 0.423 0.438 0.471 0.443 0.471 0.444 0.452 0.425 0.452 0.426

ExC1 0.169 0.074 0.173 0.169 0.057 0.173 0.050 0.021 0.055 0.046 0.015 0.052 0.210 0.190 0.207 0.187 0.078 0.075 0.073 0.068

ExCA1 0.231 0.219 0.232 0.228 0.215 0.230 0.120 0.166 0.122 0.113 0.171 0.116 0.217 0.205 0.212 0.202 0.106 0.105 0.100 0.098

ExC∗
1 0.601 0.498 0.606 0.611 0.494 0.616 0.326 0.172 0.354 0.322 0.152 0.356 0.664 0.610 0.670 0.616 0.441 0.402 0.442 0.404

AUCA1 0.572 0.546 0.573 0.572 0.544 0.573 0.506 0.499 0.509 0.507 0.499 0.511 0.608 0.584 0.607 0.584 0.520 0.511 0.519 0.511

PDI1 0.406 0.382 0.406 0.408 0.380 0.408 0.334 0.313 0.339 0.335 0.310 0.341 0.421 0.404 0.420 0.404 0.345 0.339 0.345 0.339

AUC1 0.662 0.602 0.664 0.667 0.599 0.669 0.498 0.425 0.514 0.496 0.416 0.515 0.700 0.656 0.702 0.659 0.554 0.535 0.557 0.537

BS1 0.231 0.232 0.231 0.230 0.232 0.230 0.221 0.223 0.221 0.221 0.222 0.220 0.213 0.216 0.213 0.215 0.217 0.218 0.217 0.217

ExC2 0.165 0.077 0.172 0.168 0.059 0.175 0.250 0.094 0.261 0.257 0.067 0.267 0.212 0.192 0.214 0.194 0.336 0.298 0.344 0.306

ExCA2 0.228 0.220 0.231 0.228 0.216 0.232 0.311 0.281 0.315 0.308 0.274 0.313 0.217 0.206 0.218 0.208 0.351 0.319 0.355 0.324

ExC∗
2 0.604 0.504 0.611 0.612 0.498 0.618 0.641 0.614 0.645 0.647 0.619 0.650 0.664 0.609 0.670 0.617 0.683 0.631 0.687 0.636

AUCA2 0.571 0.546 0.573 0.571 0.543 0.573 0.630 0.624 0.630 0.630 0.625 0.630 0.608 0.584 0.608 0.586 0.655 0.623 0.655 0.624

PDI2 0.405 0.382 0.406 0.406 0.379 0.407 0.470 0.465 0.471 0.471 0.466 0.472 0.420 0.404 0.422 0.406 0.490 0.456 0.491 0.458

AUC2 0.662 0.604 0.664 0.666 0.600 0.670 0.687 0.679 0.688 0.689 0.682 0.690 0.700 0.656 0.702 0.659 0.713 0.669 0.713 0.671

BS2 0.231 0.233 0.231 0.230 0.232 0.230 0.231 0.232 0.231 0.231 0.231 0.230 0.214 0.216 0.213 0.216 0.211 0.217 0.211 0.216

36



Setting 3: We generated data from the Fine-Gray subdistribution hazard model (Fine

and Gray, 1999). Following their simulation strategy, we generated cause-1 event times from

subdistribution hazard and cause-2 event times from the exponential distribution given that

subject experienced a cause-2 event. Note that cause-2 event times generated in this way

don’t follow subdistribution hazard, and we cannot let cause-1 and cause-2 CIFs be equal.

The cause-1 CIF was given by

F1(t|Z) = 1− [1− γ{1− exp(−t)}]exp(βT
1 Z)

and the conditional distribution of cause-2 event was

P (t|Z, ϵ = 2) ∼ Exp(exp(βT
2Z)).

Covariates were generated the same way as in Setting 1 for each scenario. For comparison

among Cox’s, Gerds’ and Fine-Gray models, parameter values were β1 = (0.3, 0.3, 0.3, 0.3),

β2 = (−0.3,−0.3,−0.3,−0.3) and γ = 0.48. C = U(0, 3.2) was used for 30% censoring

and C = U(0, 6.8) was for 15% censoring with prediction time t0 = 1.2. When comparing

two models depending on (Z1, Z2, Z3) and (Z2, Z3, Z4), we had β1 = (0.3, 0.3, 0.3), β2 =

(−0.3,−0.3,−0.3) for (Z1, Z2, Z3) and γ = 0.48. Censoring times were generated from

U(0, 2.9) for 30% censoring and from U(0, 6.2) for 15% censoring, with t0 = 1.2. Results are

shown in Table 10 and Table 11.

First, for the overall evaluation, when we look at the proportion of correct selection, we

see that PDI has a higher probability of selecting the true model than the two extended

overall evaluation methods ExC and ExC∗ most of the time under Cox’s and Gerds’ models.

ExC can select the true model sometimes, but with a lower proportion. Besides, when we

look at the averaged estimated values of each metric, we can see that ExC tends to have a

lower estimated value when cause-1 and cause-2 CIFs are different. This may be because

many estimated values are zero, as discussed earlier. ExC∗ is more likely to prefer Gerds’

model when data are generated from a Cox model, and fails again when data are generated

from Gerds’ model with equal cause-1 and cause-2 CIFs. Besides, ExC∗ tends to have worse

performance when cause-1 and cause-2 CIFs are equal, as we can see when choosing different

combinations, the probability of selecting true model is lower in this case. The estimated
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Table 10: Proportion of Model Selected under Fine-Gray Model

Metrics

Different Models Combination of Covariates

Diff CIF Diff CIF

30% 15% 30% 15%

Cox FG Gerds Cox FG Gerds FG FGR FG FGR

ExC 0.211 0.759 0.030 0.219 0.632 0.149 0.832 0.168 0.878 0.122

ExC∗ 0.146 0.821 0.033 0.174 0.802 0.025 0.888 0.112 0.932 0.068

PDI 0.311 0.438 0.251 0.379 0.458 0.163 0.957 0.043 0.981 0.019

ExC1 0.197 0.770 0.033 0.225 0.610 0.165 0.820 0.180 0.867 0.133

ExCA1 0.161 0.667 0.172 0.089 0.715 0.196 0.827 0.173 0.845 0.155

ExC∗
1 0.030 0.786 0.184 0.003 0.878 0.118 0.734 0.266 0.781 0.219

AUCA1 0.179 0.479 0.342 0.137 0.649 0.215 0.959 0.041 0.972 0.028

PDI1 0.184 0.500 0.316 0.149 0.641 0.209 0.878 0.122 0.917 0.083

AUC1 0.241 0.419 0.340 0.223 0.536 0.241 0.645 0.355 0.660 0.340

BS1 0.134 0.598 0.268 0.087 0.676 0.237 0.961 0.039 0.978 0.022

ExC2 0.185 0.787 0.028 0.207 0.646 0.147 0.827 0.173 0.865 0.135

ExCA2 0.191 0.228 0.581 0.203 0.411 0.386 0.931 0.069 0.941 0.059

ExC∗
2 0.625 0.135 0.240 0.811 0.041 0.148 0.803 0.197 0.814 0.186

AUCA2 0.361 0.320 0.319 0.409 0.340 0.251 0.995 0.005 0.998 0.002

PDI2 0.344 0.326 0.330 0.395 0.364 0.241 0.989 0.011 0.996 0.004

AUC2 0.336 0.327 0.337 0.385 0.366 0.249 0.958 0.042 0.981 0.019

BS2 0.244 0.213 0.543 0.341 0.300 0.359 0.998 0.002 1.000 0.000
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Table 11: Averaged Estimated Values under Fine-Gray Model

Metrics

Different Models Combination of Covariates

Diff CIF Diff CIF

30% 15% 30% 15%

Cox FG Gerds Cox FG Gerds FG FGR FG FGR

ExC 0.027 0.036 0.016 0.020 0.028 0.018 0.030 0.018 0.020 0.010

ExC∗ 0.178 0.188 0.167 0.173 0.188 0.163 0.174 0.141 0.180 0.146

PDI 0.482 0.483 0.480 0.483 0.482 0.478 0.490 0.455 0.491 0.456

ExC1 0.059 0.080 0.036 0.045 0.063 0.039 0.045 0.027 0.029 0.015

ExCA1 0.317 0.328 0.312 0.303 0.321 0.308 0.368 0.340 0.373 0.345

ExC∗
1 0.327 0.361 0.326 0.309 0.381 0.324 0.274 0.240 0.289 0.251

AUCA1 0.654 0.655 0.654 0.653 0.656 0.654 0.663 0.632 0.665 0.633

PDI1 0.500 0.502 0.501 0.500 0.503 0.500 0.489 0.459 0.490 0.460

AUC1 0.577 0.577 0.577 0.576 0.577 0.576 0.559 0.547 0.559 0.547

BS1 0.229 0.229 0.229 0.228 0.228 0.228 0.213 0.219 0.211 0.218

ExC2 0.039 0.053 0.023 0.029 0.041 0.024 0.059 0.037 0.037 0.020

ExCA2 0.376 0.374 0.384 0.372 0.376 0.377 0.436 0.391 0.435 0.389

ExC∗
2 0.474 0.449 0.450 0.490 0.421 0.444 0.553 0.512 0.538 0.499

AUCA2 0.721 0.721 0.721 0.722 0.721 0.721 0.729 0.685 0.729 0.684

PDI2 0.573 0.573 0.573 0.574 0.573 0.573 0.588 0.534 0.588 0.534

AUC2 0.687 0.687 0.687 0.688 0.687 0.687 0.708 0.665 0.708 0.664

BS2 0.177 0.177 0.177 0.177 0.177 0.177 0.202 0.214 0.201 0.213
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values, which are the conditional probabilities of subjects being correctly sorted, are also

smaller. One possible explanation is that, when models are well fitted and cause-1 and

cause-2 CIFs are equal, for any two subjects i and j with i from cause-1 group and j from

cause-2 group, if i had larger cause-1 CIF estimate than j, then it is much likely that i also

had larger cause-2 CIF estimate than j, since for each subject the true cause-1 and cause-2

CIF are set to be equal and their estimates are likely to be close to each other. Then these

two subjects could not be correctly sorted by the definition of ExC∗. PDI is not affected

because it is the average of correct classification probabilities across all groups, while ExC∗

requires all groups are well distinguished simultaneously.

For the cause-specific evaluation, the cause-specific ExC∗ outperforms the standard AUC,

the augmented AUC, PDI, and the Brier score for both cause-1 and cause-2 events when

data are generated from Cox’s or Gerds’ model and the goal is to compare models from

three different families. ExC∗ and AUC are comparable in distinguishing models relying on

different combinations of covariates, with AUC working better when cause-1 and cause-2

CIFs are equal and ExC∗ working better otherwise, and both of them perform better than

other metrics in cause-specific evaluations. When data are generated from the Fine-Gray

model and the goal is to pick the right underlying model from three fitted prognostic models,

it is not surprising that almost all metrics fail for the cause-2 event, because the cause-2

event time was actually generated from a conditional distribution that does not follow the

subdistribution hazard.

We observe that all metrics perform better when the goal is to select the combination

of covariates that can provide better prediction. This can be seen from both the proportion

of correct selection and the averaged estimated values. When choosing whether to fit Cox’s,

Gerds’ or the Fine-Gray model, the discrepancies among estimated values for the three

models are not obvious, especially between the Cox and Gerds models, while for selecting

the combination of covariates, models depending on different sets of covariates can be well

distinguished. This shows that even the model is misspecified, the Cox model and the

Gerds model may still provide reliable prediction of event status. Gerds’ model is often

preferred when the true model is not Gerds’. The use of b-splines method in estimating the

non-parametric part in the CIF makes Gerds’ model quite flexible. Yet failing to include
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important covariates may cause poorer prediction and should be avoided.

Overall, we think PDI provides a better overall evaluation of prognostic models. For

cause-specific evaluation, both ExC∗ and AUC perform well. Besides, Brier score evaluates

not only the diagnostic accuracy, but also the calibration accuracy. We observe that Brier

score also works quite reliable for cause-specific evaluation, although sometimes it is not

sensitive to the difference between models, as can be seen in the estimated values.

3.4 Data Analysis

We apply AUC (Blanche et al., 2013), Brier score (Schoop et al., 2011), PDI (Ding et al.,

2021) and ExCs to the following datasets to see how they perform in real data.

3.4.1 Malignant Melanoma

Malignant melanoma data are available from the R package “riskRegression,” where 205

patients with malignant melanoma, a skin cancer, were followed from 1962 to 1977. By the

end of 1977, 134 patients were still alive, 57 died from the cancer and 14 died from other

causes. We show the evaluation of Cox’s, the Fine-Gray and Gerds’ models in predicting

event status at different time points. Models are evaluated at t0 = 1000, 2000, 3000 to avoid

extrapolation issues.

It is known that age, sex, tumor thickness and ulceration are risk factors on survival.

Here we used the tumor thickness on log-scale instead of the original measurement. Models

were fitted with both cause-1 and cause-2 events relying on these four covariates, and the

cause-1 event, death from the malignant melanoma, was of primary interest. We summarize

estimated values of each model evaluation metric in Table 12.

From Table 12 it can be seen that different models may be preferred by the same metric

at different time of evaluation. For example, the overall PDI prefers the Fine-Gray model

at t0 = 1000, cannot distinguish the Fine-Gray and Gerds models at t0 = 2000, and selects

Gerds’ model at t0 = 3000. Besides, metrics we listed here fail to reach an agreement of
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Table 12: Estimated Values of Model Evaluation for Malignant Melanoma Data

t0 = 1000 t0 = 2000 3000

Estimates Cox FG Gerds Cox FG Gerds Cox FG Gerds

ExC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ExC∗ 0.195 0.195 0.205 0.222 0.212 0.245 0.248 0.224 0.286

PDI 0.589 0.596 0.593 0.602 0.604 0.604 0.619 0.616 0.623

ExC1 0.038 0.000 0.038 0.295 0.318 0.385 0.404 0.407 0.443

ExCA1 0.038 0.000 0.038 0.288 0.311 0.376 0.392 0.397 0.431

ExC∗
1 0.774 0.778 0.781 0.756 0.759 0.761 0.745 0.747 0.736

AUCA1 0.799 0.803 0.800 0.765 0.767 0.765 0.746 0.747 0.740

PDI1 0.485 0.491 0.520 0.454 0.458 0.480 0.471 0.465 0.493

AUC1 0.806 0.814 0.805 0.779 0.784 0.773 0.763 0.764 0.753

BS1 0.094 0.094 0.093 0.150 0.149 0.151 0.185 0.184 0.187

ExC2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ExCA2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ExC∗
2 0.694 0.670 0.696 0.732 0.715 0.716 0.737 0.725 0.730

AUCA2 0.825 0.825 0.817 0.860 0.858 0.850 0.894 0.896 0.888

PDI2 0.647 0.656 0.619 0.693 0.694 0.678 0.741 0.743 0.732

AUC2 0.838 0.832 0.823 0.889 0.885 0.878 0.951 0.955 0.945

BS2 0.032 0.032 0.032 0.045 0.045 0.045 0.051 0.051 0.050
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what model to use. The zeros in ExC estimates are not surprising since cause-1 and cause-2

CIFs are well separated, as can be seen in Figure 1. From the estimated values we see that

Gerds’ model and the Fine-Gray model are selected by more metrics, but the discrepancies

between models are really small regarding the discrimination of subjects with different event

status at the time of prediction. Both the Fine-Gray and Gerds’ models seem to provide

reliable prediction of event status.

Figure 1: Raw CIF Estimates for Melanoma Data

3.4.2 Primary Biliary Cholangitis

We use Mayo clinic primary biliary cholangitis (PBC) data to show that failure to involve

important risk factors in prognostic models can result in worse prediction of event status,

which can be detected by the model evaluation metrics. The PBC data are available in R

package “survival.”

The PBC data contain 418 subjects in total who were followed between 1974 and 1984.
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From the analysis conducted by Mayo clinic (Dickson et al., 1989), patients’ age, total

serum bilirubin, serum albumin concentrations, prothrombin time and severity of edema are

important risk factors for PBC. A Cox’s proportional hazard model was fitted for survival

time, with transplant being treated as independent censoring (Dickson et al., 1989). Here we

re-analyze the data by treating transplant as competing risks, as transplant (cause-1 event)

can alter the probability of the event of primary interest, which is death (cause-2 event). Two

subjects had missing values in prothrombin time and were removed for model evaluation.

After removal, there were 231 subjects alive at the end of study, 25 had transplant and 160

were dead. We fitted two models, both assuming cause-specific proportional hazards, with

one model relying on all important risk factors captured by Dickson et al. (1989) for both

causes of event, and the other model relying on risk factors other than bilirubin for both

causes. Following Dickson et al. (1989), natural logarithm was taken for bilirubin, albumin

and prothrombin time, and we evaluate the model performance at predict time t0 = 3000.

We summarize estimated values of each metric for the two fitted models. Besides, to see

whether evaluation metrics can capture the significant reduction of the discrimination ability

of prognostic model caused by the exclusion of important covariates, we constructed 95%

BCa bootstrap confidence intervals based on 1000 bootstrap samples. We didn’t provide

the confidence intervals in simulation studies, since we know the true model in simulation

settings, and we have instead focused on the probability that the true model can be selected.

For the PBC data, results are summarized in Table 13. The 95% BCa confidence intervals

of ExC∗
2, AUCA2, AUC2 and BS2 indicate that the exclusion of total serum bilirubin does

significantly affect model’s ability to predict the probability of death. Regarding the cause-1

event, which is the transplant, there is some disagreement among metrics. ExC1 and ExCA1

completely fail in this example. The small sample size of subjects who had transplant

and the bootstrap method caused unstable estimates. Besides, from Figure 2 we can see

that the cause-2 CIF is constantly larger than the cause-1 CIF, and subjects who actually

had transplant, which is the cause-1 event, would have a large estimated probability of

experiencing cause-2 event, causing zero estimates. The same problem also happened in the

Melanoma example with the cause-2 event. For the overall evaluation that measures how

different causes of events were fitted simultaneously, we see that PDI shows a significant
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difference between two models. ExC fails for the same reason as ExC1 and ExCA1. Both

ExC∗
1 and ExC∗

2 suggest significant improvement in predicting transplant and death with

bilirubin in the model. PDI1 and PDI2 suggest improvement when bilirubin is added in the

model, though the improvement has not reached statistical significance. All these indicate

the important role of bilirubin in predicting transplant and death.

Figure 2: Raw CIF Estimates for PBC Data

3.5 Discussion

In this project, we performed a systematic examination of various model evaluation

metrics with competing risks data. These model evaluation metrics were designed to measure

the ability of prognostic models to estimate CIF and to predict event status, where AUC

(Blanche et al., 2013) and Brier score (Schoop et al., 2011) focus on cause-specific evaluation
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Table 13: Model Evaluation for PBC Data

Estimates W/ Bilirubin W/out Bilirubin 95% BCa CI

ExC 0 0 (-0.074, 0)

ExC∗ 0.459 0.355 (-0.011, 0.194)

PDI 0.723 0.644 (0.015, 0.127)

ExC1 0 0 (-0.147, 0.003)

ExCA1 0 0 (-0.252, 0)

ExC∗
1 0.716 0.547 (0.031, 0.341)

AUCA∗
1 0.892 0.876 (-0.010, 0.061)

PDI1 0.809 0.785 (-0.015, 0.088)

AUC1 0.892 0.876 (-0.017, 0.049)

BS1 0.056 0.057 (-0.005,0.001)

ExC2 0.525 0.447 (-0.021, 0.202)

ExCA2 0.52 0.444 (-0.022, 0.19)

ExC∗
2 0.798 0.684 (0.055, 0.184)

AUCA2 0.806 0.727 (0.025, 0.132)

PDI2 0.675 0.634 (-0.044, 0.093)

AUC2 0.806 0.727 (0.029, 0.128)

BS2 0.173 0.210 (-0.057, -0.017)
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and PDI (Ding et al., 2021) can additionally provide overall assessment of diagnostic accuracy

of models for predicting all competing events. Besides, we proposed and considered several

overall and cause-specific extensions of concordance index that measure the probability of

all subjects randomly selected from distinct groups are correctly sorted. The extended

concordance indices and the bootstrap-based model comparisons are implemented in the R

package “crModelEval”, which is available for download at https://github.com/YAQgh/

crModelEval.

In practice, model evaluation are performed for different purposes, such as comparing

models from different families, and comparing models from the same family that depend

on different combinations of covariates. We investigated these two problems in simulation

studies under different scenarios and provided two data examples for further illustration.

Overall, these model evaluation metrics are quite sensitive to the exclusion of important

covariates in fitting prognostic models. While for comparison among models from different

classes, although some metrics were able to select the true model with a relatively high

proportion, we saw from simulation studies and data analysis that estimates didn’t differ

too much among different models, and metrics can even select models from different families

at different times of evaluation. This indicates that regarding the prediction of event status,

a misspecified model may still have reliable prediction, but the failure to include important

covariates would more likely impair the ability to discriminate different classes.
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Appendix A Supplement to Chapter 2

A.1 Proof of Theorem 1

A.1.1 Notation

We consider a single covariate Z here instead of a set of covariates Z = {Zl}pl=1. Sub-

scripts i, j and k in the following notations simply denote subjects i, j and k.

V̂ US =

∑
i ̸=j ̸=k

I(Xi≤t0,ηi=1,Xj≤t0,ηj=2,Xk>t0,Zi<Zj<Zk)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)∑
i ̸=j ̸=k

I(Xi≤t0,ηi=1,Xj≤t0,ηj=2,Xk>t0)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)

V US = P (Zi < Zj < Zk|Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0)

Â =
1

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

I(Xi ≤ t0, ηi = 1, Xj ≤ t0, ηj = 2, Xk > t0, Zi < Zj < Zk)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)

Ã =
1

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

I(Xi ≤ t0, ηi = 1, Xj ≤ t0, ηj = 2, Xk > t0, Zi < Zj < Zk)

G(Xi−)G(Xj−)G(t0)

A = Pr(Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0, Zi < Zj < Zk)

B̂ =
1

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

I(Xi ≤ t0, ηi = 1, Xj ≤ t0, ηj = 2, Xk > t0)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)

B̃ =
1

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

I(Xi ≤ t0, ηi = 1, Xj ≤ t0, ηj = 2, Xk > t0)

G(Xi−)G(Xj−)G(t0)

B = Pr(Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0)

A.1.2 Conditions

Condition 1 There exists a ν > 0 such that P (C = ν) > 0 and P (C > ν) = 0.

Condition 2 minl∈M∗ |V USl(t0)− 1/6| ≥ c0n
−κ for some 0 < κ < 1/2 and c0 > 0.

Condition 3 There exists δ > 0, such that P (Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0) > δ.
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A.1.3 Lemmas

Lemma 1 Bitouzé et al. (1999)

Let {Ti}ni=1 and {Ci}ni=1 be independent sequences of independently identically dis-

tributed non-negative random variables with distribution functions F and G, respec-

tively. Let F̂n be the Kaplan-Meier estimator of the distribution function F . There

exists a positive constant, D, such that for any positive constant λ,

P (
√
n∥(1−G)(F̂n − F )∞ > λ∥) ≤ 2.5 exp{−2λ2 +Dλ}.

Lemma 2 Hoeffding (1963)

Let g = g(x1, . . . , xm) be a kernel of the U-statistic, U, with

a ≤ g(x1, . . . , xm) ≤ b.

For any t > 0 and m ≤ n, we have

P (|U − EU | > t) ≤ 2 exp

{
−2[n/m]t2

(b− a)2

}
Lemma 3 Pan et al. (2018)

Under Condition 1, for any c1 > 0, when n ≥ D2c−1
2 with D being the constant from

Lemma 1,

P

(
max
i,j,k

|G(Xi)G(Xj)G(Xk)

Ĝ(Xi)Ĝ(Xj)Ĝ(Xk)
− 1| ≥ c1

)
≤ 2.5n2 exp{−c2n},

where c2 = 1
9
( c1
1+c1

)2ϵ8, and ϵ > 0 such that ϵ < S(x) < 1 and ϵ < G(x) < 1 under

Condition 1.
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A.1.4 Proof

We first show that |V̂ US − V US| > cn−κ with low probability. For any single covariate

Z in general, we have

|V̂ US − V US| =

∣∣∣∣∣ ÂB̂ − A

B

∣∣∣∣∣
=

∣∣∣∣∣ÂB − AB̂

B̂B

∣∣∣∣∣
=

∣∣∣∣∣ÂB − ÂB̂ + ÂB̂ − AB̂

B̂B

∣∣∣∣∣
=

∣∣∣∣Â( 1B̂ − 1

B
) +

1

B
(Â− A)

∣∣∣∣
≤ |Â|

∣∣∣∣ 1B
∣∣∣∣ ∣∣∣∣BB̂ − 1

∣∣∣∣+ ∣∣∣∣ 1B
∣∣∣∣ |Â− A|

= p1 + p2.

(A.1.1)

We start with bounding Â in p1.

|Â| = |Â− Ã+ Ã− A+ A|

≤ |Â− Ã|+ |Ã− A|+ |A|.
(A.1.2)

Denote I(Xi ≤ t0, ηi = 1, Xj ≤ t0, ηj = 2, Xk > t0, Zi < Zj < Zk) by KN .

|Â− Ã| = 1

n(n− 1)(n− 2)

∣∣∣∣∣ ∑
i ̸=j ̸=k

KN

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
−
∑
i ̸=j ̸=k

KN

G(Xi)G(Xj)G(t0)

∣∣∣∣∣
=

1

n(n− 1)(n− 2)

∣∣∣∣∣ ∑
i ̸=j ̸=k

KN

(
1

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

G(Xi)G(Xj)G(t0)

)∣∣∣∣∣
=

1

n(n− 1)(n− 2)

∣∣∣∣∣ ∑
i ̸=j ̸=k

KN

G(Xi)G(Xj)G(t0)

(
G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

)∣∣∣∣∣
≤ max

i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |Ã|
≤ max

i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |Ã− A|+ max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |A|.
(A.1.3)
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By Lemma 3,

P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ ≥ 1

)
≤ 2.5n3 exp{− 1

36
ϵ8n}. (A.1.4)

By Lemma 2 and Condition 1, for any c3 > 0,

P (|Ã− A| ≥ c3) ≤ 2 exp{−2

3
c23ϵ

6n}. (A.1.5)

Since A is a probability, we always have |A| ≤ 1. By A.1.3, A.1.4, and A.1.5,

P (|Â− Ã| ≥ c3 + 1) ≤ P (max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |Ã− A| ≥ c3)

+ P (max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |A| ≥ 1)

≤ 2× P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ ≥ 1

)
+ P (|Ã− A| ≥ c3)

= 5n3 exp{− 1

36
ϵ8n}+ 2 exp{−2

3
c23ϵ

6n}.

(A.1.6)

From A.1.2, A.1.5 and A.1.6,

P (|Â| ≥ 2c3 + 2) ≤ P (|Â− Ã| ≥ c3 + 1) + P (|Ã− A| ≥ c3) + P (|A| ≥ 1)

≤ 5n3 exp{− 1

36
ϵ8n}+ 2 exp{−2

3
c23ϵ

6n}+ 2 exp{−2

3
c23ϵ

6n}

= 5n3 exp{− 1

36
ϵ8n}+ 4 exp{−2

3
c23ϵ

6n}

(A.1.7)

We now show that |B
B̂
− 1| can be bounded with high probability.

We start with showing that for any c4 > 0,∣∣∣∣BB̂ − 1

∣∣∣∣ ≥ c4n
−κ =⇒ |B̂ −B| ≥ c4n

−κ

1 + c4n−κ
B

1. B > B̂

From B − B̂ ≥ c4n
−κB̂, we have B̂ ≤ 1

c4n−κ+1
B, and it follows that c4n−κ

1+c4n−κB = (1 −
1

c4n−κ+1
)B ≤ B − B̂.
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2. B < B̂

We have B − B̂ ≤ −c4n
−κB̂. Add 2c4n

−κB̂ and minus c4n
−κB on both side, we get

(1 + c4n
−κ)(B̂ − B) ≥ 2c4n

−κB̂ − c4n
−κB. Since B < B̂, it follows that 2c4n

−κB̂ −

c4n
−κB > c4n

−κB, which leads to B̂ −B ≥ c4n−κ

1+c4n−κB

By Condition 3, it follows that

P

(∣∣∣∣BB̂ − 1

∣∣∣∣ ≥ c4n
−κ

)
≤ P

(
|B̂ −B| ≥ c4n

−κ

1 + c4n−κ
B

)
≤ P

(
|B̂ −B| ≥ c4n

−κ

1 + c4n−κ
δ

)
≤ P

(
|B̂ − B̃|+ |B̃ −B| ≥ c4n

−κ

1 + c4n−κ
δ

)
≤ P

(
|B̂ − B̃| ≥ 2

3

(
c4n

−κ

1 + c4n−κ

)
δ

)
+ P

(
|B̃ −B| ≥ 1

3

(
c4n

−κ

1 + c4n−κ

)
δ

)
(A.1.8)

Similar to Equation A.1.3, |B̂ − B̃| can be decomposed as

|B̂ − B̃| ≤ max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |B̃ −B|+ max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |B|

By Lemma 2,

P

(
|B̃ −B| ≥ 1

3

(
c4n

−κ

1 + c4n−κ

)
δ

)
≤ 2 exp

{
− 2

27
c24ϵ

6δ2(1 + c4n
−κ)−2n1−2κ

}
.

Again by Lemma 3,

P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ ≥ 1

3

(
c4n

−κ

1 + c4n−κ

)
δ

)

≤ 2.5n3 exp

{
−1

9
c24δ

2ϵ8(3 + 3c4n
−κ + c4n

−κδ)−2n1−2κ

}
.
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By Equation A.1.8,

P

(∣∣∣∣BB̂ − 1

∣∣∣∣ ≥ c4n
−κ

)
≤ P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |B̃ −B| ≥ 1

3

(
c4n

−κ

1 + c4n−κ

)
δ

)

+ P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |B| ≥ 1

3

(
c4n

−κ

1 + c4n−κ

)
δ

)

+ P

(
|B̃ −B| ≥ 1

3

(
c4n

−κ

1 + c4n−κ

)
δ

)
≤ 2.5n3 exp{− 1

36
ϵ8n}+ 2 exp

{
− 2

27
c24ϵ

6δ2(1 + c4n
−κ)−2n1−2κ

}
+ 2.5n3 exp

{
−1

9
c24δ

2ϵ8(3 + 3c4n
−κ + c4n

−κδ)−2n1−2κ

}
+ 2 exp

{
− 2

27
c24ϵ

6δ2(1 + c4n
−κ)−2n1−2κ

}
= 2.5n3 exp{− 1

36
ϵ8n}+ 4 exp

{
− 2

27
c24ϵ

6δ2(1 + c4n
−κ)−2n1−2κ

}
+ 2.5n3 exp

{
−1

9
c24δ

2ϵ8(3 + 3c4n
−κ + c4n

−κδ)−2n1−2κ

}
(A.1.9)

Equation A.1.7 and Equation A.1.9 together showed p1 can be bounded with high prob-

ability:

P

(
|Â|
∣∣∣∣ 1B
∣∣∣∣ ∣∣∣∣BB̂ − 1

∣∣∣∣ ≥ 1

δ
(2c3 + 2)c4n

−κ

)
≤ P (|Â| ≥ (2c3 + 2)) + P

(∣∣∣∣BB̂ − 1

∣∣∣∣ ≥ c4n
−κ

)
≤ 7.5n3 exp{− 1

36
ϵ8n}+ 4 exp{−2

3
c23ϵ

6n}

+ 4 exp

{
− 2

27
c24ϵ

6δ2(1 + c4n
−κ)−2n1−2κ

}
+ 2.5n3 exp

{
−1

9
c24δ

2ϵ8(3 + 3c4n
−κ + c4n

−κδ)−2n1−2κ

}
.

(A.1.10)

Now we show p2 can be bounded with high probability, where p2 =
∣∣ 1
B

∣∣ |Â−A|. For any

c5 > 0,
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P (|Â− A| ≥ c5n
−κ)

≤ P (|Â− Ã| ≥ 2

3
c5n

−κ) + P (|Ã− A| ≥ 1

3
c5n

−κ)

≤ P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |Ã− A| ≥ 1

3
c5n

−κ

)

+ P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ |A| ≥ 1

3
c5n

−κ

)
+ P (|Ã− A| ≥ 1

3
c5n

−κ),

(A.1.11)

where we used Equation A.1.3 again for the second inequality, and by Lemma 2 and Lemma

3, we can bound each component as the following

P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ ≥ 1

)
≤ 2.5n3 exp{− 1

36
ϵ8n},

P (|Ã− A| ≥ 1

3
c−κ
5 ) ≤ 2 exp{− 2

27
c25ϵ

6n1−2κ},

P

(
max
i ̸=j ̸=k

∣∣∣∣∣G(Xi)G(Xj)G(t0)

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
− 1

∣∣∣∣∣ ≥ 1

3
c5n

−κ

)
≤ 2.5n3 exp{−1

9
c25ϵ

8(3 + c5n
−κ)−2n1−2κ}.

Plug into Equation A.1.11, we have

P (|Â− A| ≥ c5n
−κ) ≤ 2.5n3 exp{− 1

36
ϵ8n}+ 2 exp{− 2

27
c25ϵ

6n1−2κ}

+ 2.5n3 exp{−1

9
c25ϵ

8(3 + c5n
−κ)−2n1−2κ}+ 2 exp{− 2

27
c25ϵ

6n1−2κ}

= 2.5n3 exp{− 1

36
ϵ8n}+ 4 exp{− 2

27
c25ϵ

6n1−2κ}

+ 2.5n3 exp{−1

9
c25ϵ

8(3 + c5n
−κ)−2n1−2κ}.

(A.1.12)
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Now for any positive constant c6, there exist positive constants c3, c4 and c5 such that

c6 =
1
δ
(2c3 + 2)c4 +

1
δ
c5. By Equation A.1.10 and Equation A.1.12

P (|V̂ US − V US| ≥ c6n
−κ) ≤ P

(
|Â|
∣∣∣∣ 1B
∣∣∣∣ ∣∣∣∣BB̂ − 1

∣∣∣∣ ≥ 1

δ
(2c3 + 2)c4n

−κ

)
+ P

(∣∣∣∣ 1B
∣∣∣∣ |Â− A| ≥ 1

δ
c5n

−κ

)
≤ P

(
|Â|
∣∣∣∣BB̂ − 1

∣∣∣∣ ≥ (2c3 + 2)c4n
−κ

)
+ P

(
|Â− A| ≥ c5n

−κ
)

≤ 10n3 exp{− 1

36
ϵ8n}+ 4 exp{−2

3
c23ϵ

6n}

+ 4 exp

{
− 2

27
c24ϵ

6δ2(1 + c4n
−κ)−2n1−2κ

}
+ 2.5n3 exp

{
−1

9
c24δ

2ϵ8(3 + 3c4n
−κ + c4n

−κδ)−2n1−2κ

}
+ 4 exp{− 2

27
c25ϵ

6n1−2κ}

+ 2.5n3 exp{−1

9
c25ϵ

8(3 + c5n
−κ)−2n1−2κ}.

(A.1.13)

We now show the second statement of Theorem 1.

M̂ = {k : |V̂ USk − 1/6| ≥ γn}

where γn = cn−κ with c < c0. By Condition 2,

1− P (M∗ ⊂ M̂) = P (∃l ∈ M∗, |V̂ USl − 1/6| < γn)

≤ P (max
l∈M∗

|V̂ USl − V US| ≥ (c0 − c)n−κ)

≤ sP (|V̂ US − V US| ≥ (c0 − c)n−κ).

(A.1.14)

Therefore,

P (M∗ ⊂ M̂) ≥ 1− sP (|V̂ US − V US| ≥ (c0 − c)n−κ).

See Equation A.1.13, s = |M∗|, the cardinality of M∗.
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A.2 Proof of Theorem 2

Assume
∑p

l=1 |V USl−1/6| = O(nξ). Based on Condition 3 that minl∈M∗ |V USl−1/6| ≥

c0n
−κ for some 0 < κ < 1/2 and c0 > 0, the cardinality of the set {l : |V USl−1/6| ≥ c0n

−κ}

is at most O(nξ+κ).

On the set {max1≤l≤p |V̂ USl − V USl| ≤ c0n
−κ}, the number of {l : |V̂ USl − 1/6| >

2c0n
−κ} is no bigger than the number of {l : |V USl − 1/6| > c0n

−κ}. Therefore, the number

of {l : |V̂ USl − 1/6| > 2c0n
−κ} is smaller than or equal to O(nξ+κ) on {max1≤l≤p |V̂ USl −

V USl| ≤ c0n
−κ}.

The size of M̂ is the size of {l : |V̂ USl − 1/6| > cn−κ} for some c < c0.

P (|M̂| ≤ O(nξ+κ)) ≥ P ({max
1≤l≤p

|V̂ USl − V USl| ≤
1

2
cn−κ})

≥ 1− pP (|V̂ USl − V USl| ≥
1

2
cn−κ).
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Appendix B Supplement to Chapter 3

Let θ = (θ1, · · · ,θL) denote the unknown parameters in CIF functions for L causes,

which include the coefficients and the non-parametric part. The true value of θ is denoted as

θ0 and the estimated value is denoted as θ̂. Dependence of CIFs on covariates Z are skipped

for now and will be shown whenever needed. We also define the following quantities:

Iijk = I(Xi ≤ t0, ηi = 1, Xj ≤ t0, ηj = 2, Xk > t0)

Q0(t0) = P (Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0)

Q̂0(t0) =
1

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

Iijk

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)

Cijk(F (t0|θ)) = I(maxF1(t0|θ) = F1i(t0|θ),maxF2(t0|θ) = F2j(t0|θ),maxS = Fk(t0|θ))

Q̂(F ) =
1

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

Cijk(F )Iijk

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)

Q(F ) = E[Cijk(F )I(Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0)]

We show the asymptotic normality of ÊxC∗, then ÊxC∗ = Q̂(F (θ̂))

Q̂0(t0)
. Asymptotic normality of

ÊxC can be shown similarly with a different Cijk. To show the asymptotic normality, we

make the following assumptions:

Condition 1 There exists δ > 0, such that P (Ti ≤ t0, ϵi = 1, Tj ≤ t0, ϵj = 2, Tk > t0) > δ.

Condition 2
√
n(θ̂l − θl0) =

1√
n

∑n
s=1 Ils + op(1), where Ils is the influence function with

mean 0.

Condition 3 ∂Fl(t0|θl,Z)
∂θl

is uniformly bounded in Z.

We use the martingale representation Ĝ(t0)
G(t0)

− 1 = − 1
n

∑n
s=1

∫ t0
0

dMCs (u)

SX(u)
+ op(1) and the

Taylor expansion

C

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
=

C

G(Xi)G(Xj)G(t0)
[1− (

Ĝ(Xi)

G(Xi)
− 1)− (

Ĝ(Xj)

G(Xj)
− 1)− (

Ĝ(t0)

G(t0)
− 1)] + op(1).
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First for the denominator Q̂0(t0),

√
n(Q̂0 −Q0)

=

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

{
Iijk

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
−Q0

}

=

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

{
Iijk

G(Xi)G(Xj)G(t0)
×[

1− (
Ĝ(Xi)

G(Xi)
− 1)− (

Ĝ(Xj)

G(Xj)
− 1)− (

Ĝ(t0)

G(t0)
− 1)

]
+ op(1)−Q0}

=

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

{
Iijk

G(Xi)G(Xj)G(t0)
−Q0 + op(1)

}
+

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

Iijk
G(Xi)G(Xj)G(t0)

×{
1

n

n∑
s=1

∫ Xi

0

dMCs(u)

SX(u)
+

1

n

n∑
s=1

∫ Xj

0

dMCs(u)

SX(u)
+

1

n

n∑
s=1

∫ t0

0

dMCs(u)

SX(u)
+ op(1)

}

=

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

{
Iijk

G(Xi)G(Xj)G(t0)
−Q0 + op(1)

}
+

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

Iijk
G(Xi)G(Xj)G(t0)

×{
1

n

n∑
s=1

∫ t0

0

[1 + I(Xi ≥ u) + I(Xj ≥ u)]
dMCs(u)

SX(u)
+ op(1)

}

=

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

{
Iijk

G(Xi)G(Xj)G(t0)
−Q0 + op(1)

}

+
1√
n

n∑
s=1

∫ t0

0

{
1

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

Iijk[1 + I(Xi ≥ u) + I(Xj ≥ u)]

G(Xi)G(Xj)G(t0)

}
dMCs(u)

SX(u)
+ op(1)

=

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

{
Iijk

G(Xi)G(Xj)G(t0)
−Q0 + op(1)

}

+
1√
n

n∑
s=1

∫ t0

0

E

[
Iijk{1 + I(Xi ≥ u) + I(Xj ≥ u)}

G(Xi)G(Xj)G(t0)SX(u)

]
dMCs(u) + op(1)

=
1√
n

n∑
s=1

h1s +
1√
n

n∑
s=1

∫ t0

0

h2sdMCs(u) + op(1),
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where we use projection of U-statistic to the first sum to get the last inequality:

Û =
n∑

s=1

E(U |Xs, ηs,Zs)

=
n∑

s=1

(n− 1)(n− 2)

n(n− 1)(n− 2)

[
E{I(Xs ≤ t0, ηs = 1)IjIk

G(Xi)G(Xj)G(t0)
|Xs, ηs,Zs}

+ E{IiI(Xs ≤ t0, ηs = 2)Ik
G(Xi)G(Xj)G(t0)

|Xs, ηs,Zs}

+ E{ IiIjI(Xs > t0)

G(Xi)G(Xj)G(t0)
|Xs, ηs,Zs} − 3Q0

]
=

1

n

n∑
s=1

h1s

and

h1s = E

[
I(Xs ≤ t0, ηs = 1)IjIk
G(Xi)G(Xj)G(t0)

+
IiI(Xs ≤ t0, ηs = 2)Ik
G(Xi)G(Xj)G(t0)

+
IiIjI(Xs > t0)

G(Xi)G(Xj)G(t0)

−3Q0|Xs, ηs,Zs] ,

h2s = E

[
Iijk{1 + I(Xi ≥ u) + I(Xj ≥ u)}

G(Xi)G(Xj)G(t0)SX(u)

]
.

For
√
n(Q̂(F (θ̂))−Q(F (θ0))), we use decomposition

√
n(Q̂(F (θ̂))−Q(F (θ0))) =

√
n(Q̂(F (θ̂))−Q(F (θ̂))) +

√
n(Q(F (θ̂))−Q(F (θ0))).

From Condition 2 and Condition 3, we have
√
n(Fl(t0|θ̂l,Z)−Fl(t0|θ0,Z)) =

1√
n

∑
s=1Ψs +

op(1), where Ψs = ∂Fl(t0|θl,Z)
∂θl

∣∣∣
θl=θl0

Ils. Let Γ be the Hadamard derivative of Q at F (θ0),

then
√
n(Q(F (θ̂))−Q(F (θ0))) =

1√
n

n∑
s=1

Γ(Ψs) + op(1).

For
√
n(Q̂(F (θ̂))−Q(F (θ̂))), similar to the denominator,

√
n(Q̂(F (θ̂))−Q(F (θ̂)))

=

√
n

n(n− 1)(n− 2)

∑
i ̸=j ̸=k

{
IijkCijk(F (θ̂))

Ĝ(Xi)Ĝ(Xj)Ĝ(t0)
−Q(F (θ̂))

}

=
1√
n

n∑
s=1

h3s +
1√
n

n∑
s=1

∫ t0

0

h4sdMCs(u) + op(1),
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h3s = E

[
I(Xs ≤ t0, ηs = 1)IjIkCsjk

G(Xi)G(Xj)G(t0)
|Xs, ηs,Zs

]
+ E

[
IiI(Xs ≤ t0, ηs = 2)IkCisk

G(Xi)G(Xj)G(t0)
|Xs, ηs,Zs

]
+ E

[
IiIjI(Xs > t0)Cijs

G(Xi)G(Xj)G(t0)
|Xs, ηs,Zs

]
− 3Q(F (θ̂)),

h4s = E

[
IijkCijk

G(Xi)G(Xj)G(t0)SX(u)
{1 + I(Xi ≥ u) + I(Xj ≥ u)}

]
.

Using delta method, we have

√
n(ÊxC∗ − ExC∗) =

√
n

(
Q̂(F (θ̂))

Q̂0(t0)
− Q(F (θ0))

Q0(t0)

)

=

√
n(Q̂(F (θ̂))−Q(F (θ0)))− ExC∗√n(Q̂0(t0)−Q0(t0))

Q0(t0)
+ op(1)

= Q−1
0 (t0){

√
n(Q̂(F (θ̂))−Q(F (θ̂))) +

√
n(Q(F (θ̂))−Q(F (θ0)))}

+Q−1
0 (t0) · ExC∗ ·

√
n(Q̂0 −Q0) + op(1)

= Q−1
0

{
1√
n

n∑
s=1

Γ(Ψs) +
1√
n

n∑
s=1

h3s +
1√
n

n∑
s=1

∫ t0

0

h4sdMCs(u)

}

+Q−1
0 · ExC∗ ·

{
1√
n

n∑
s=1

h1s +
1√
n

n∑
s=1

∫ t0

0

h2sdMCs(u)

}
+ op(1).

By functional central limit theorem,
√
n(ÊxC∗ − ExC∗) is asymptotically normal.
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