Using data to map & move mountains (of books and more). Developign visualizations to right-size and locate collections

PURPOSE AND GOALS

Hillman Library, built in 1967, serves as the main library for the University Library System (ULS), and like many other libraries of its era, it prioritized the safe storage of books over reader comfort. In 2014, the ULS was given the opportunity to re-imagine the spaces and services in Hillman Library which at that time housed nearly 100K LP of collections. Goals for the renovated library were to:

- Provide more spaces and services for creativity, collaboration, active learning and showcase community achievements
- Increase footprint for user services and decrease footprint of physical collections to house primarily unique, high-demand, and topical collections
- Move 80% of the collection to off-site high-density storage facility, while keeping items accessible on request.

The renovation was slated to proceed in stages, with the library remaining open throughout the work. This meant that collections had to be moved to and from swing spaces, while also selecting and pulling items to be sent to remote storage and keeping the collection accessible to our users. To achieve this, we needed to:

- Model future collection scenarios and test different ‘send to storage’ selection criteria
- Generate lists of items to be sent to storage
- Assist patrons in locating items in swing spaces and new locations
- Right-size collections in the renovated space while accounting for future growth and space needs

METHODS

Collection modelling was used to plan what to move where and when, and to make predictions for future growth and perform collection maintenance once items were moved to their permanent location. Collection mapping was used to plan shelf distribution of remaining material in Hillman in its permanent location. We also developed interactive map visualizations to help users locate items as collections were on the move.

Collection Modelling
- Data from ULS was used as basis for visualizations in Tableau
- Apply different selection criteria to see impact on collection
- Filters for publication date, number of loans, date of last loan, LC class, etc. Criteria could be applied individually or in Boolean combinations [e.g., items published after 2014 OR >2 loans AND last loan date 1/2016]
- Calculate linear footage
- Project growth in LC classes based on recent acquisitions data
- Estimate amount of material to be sent to Storage to assist logistics planning
- Export ‘pull for storage’ lists with selected criteria (filters) applied

Wayfinding
- Hillman floor plan and spreadsheet with location descriptions and coordinates was used to create interactive map in Tableau
- Organized filters by type of collection, services, technology, closed for renovation
- Interactive nested filters applied to Tableau map, so users could select location type, and then subcategory [e.g. Collections => B-BX]
- Embed on the library website
- Stand-alone kiosk in library
- Easily updated and adaptable

Collection Mapping
- Excel spreadsheets were used to calculate shelves needed and visually distribute collection across available shelves and ranges.
- Shelving calculations based on novice physical measurements of collection as well as data from Collection Modelling tool and estimates of future growth. Generated linear footage estimates of material remaining in Hillman by LC class, and added in expected 3-year growth (based on growth previous 18 months) and buffer space
- Enabled us to ‘map’ collections virtually to ensure material would fit, accommodate growth, and follow logical order

RESULTS AND APPLICATIONS

- The tools were used:
 - Over 8,000 views of interactive map
 - Collection model enabled executive level views and granular operational views that informed planning and logistics.
 - Hillman final collection distribution effectively right-sized (fit into available space, with sufficient growth capacity)
 - Renovated spaces feature new, high-use, and boutique collections while low-use materials were shifted to high-density storage.
 - Tools uncovered some data inconsistencies and will play a role in future clean-up plans.
 - Collection modelling has been applied to other Pitt libraries to assist with library mergers and other renovation projects and will continue to be used for collection maintenance and routine ‘send to storage’ processes.
 - All of these tools are easily replicable and applicable to other libraries for a variety of purposes.
 - Tableau public is an option for those who don’t have Tableau desktop & an institutional Tableau server
 - These tools could be useful for planning collections to spotlight, identifying duplicates across various locations and identifying areas of inventory clean-up.

LIMITATIONS

The tools have evolved with the renovation projects, and we continue to make improvements. However, there are some limitations to keep in mind:

- Some data cleaning may be required
- This will vary depending upon the completeness, accuracy and consistency of the cataloging records and other underlying data
- Need some familiarity with Tableau or other data visualization tools
- Especially critical when applying multiple filters and parameters
- Identifying and reviewing of multivolume sets still involves some hands-on evaluation

Anne Koenig, MPIA, MLIS
amk979@pitt.edu | Assessment Senior Specialist
Benrikaa M. Webster, PhD
bwebster@pitt.edu | Director of Assessment and Quality Assurance