
Gaussian Transformation Enhanced Semi-Supervised Learning for Sleep Stage

Classification

by

Yifan Guo

Bachelor of Engineering, Jiangsu University, 2016

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Yifan Guo

It was defended on

November 4, 2022

and approved by

Azime Can-Cimino, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Ahmed Hassan Sayed Dallal, Ph.D., Assistant Professor, Department of Electrical and

Computer Engineering

Thesis Advisor: Zhi-Hong Mao, Ph.D., Professor, Department of Electrical and Computer

Engineering

ii

Copyright © by Yifan Guo

2022

iii

Gaussian Transformation Enhanced Semi-Supervised Learning for Sleep Stage

Classification

Yifan Guo, M.S.

University of Pittsburgh, 2022

Sleep disorders are torturing big populations in modern society. To provide efficient help

to people with sleep difficulties, accurate sleep monitoring is essential. However, clinical ex-

aminations have problems of limited measure durations and biased observations and thus are

often insufficient for diagnosis of sleep disorders. Electroencephalogram (EEG) based wear-

able devices are promising compliments for clinical examinations because of their ability for

convenient and reliable long-term monitoring of sleep. This thesis develops both supervised

and semi-supervised learning approaches for sleep stage classification, which can be applied

on EEG wearable devices. Specifically, we design and implement various EEG based sleep

stage classifiers with different feature extraction processes and then compare and analyze

these classifiers through experiments. The classifiers are able to obtain satisfactory perfor-

mance on the test data from a limited number of human subjects, but the learned classifiers

usually cannot generalize well on previously unseen human subjects because the EEG signal

characteristics vary significantly from person to person. To address this issue, we propose a

semi-supervised learning algorithm to mitigate the performance deterioration when dealing

with new subjects. We further study and evaluate several Gaussian transformations on EEG

band power features to improve the robustness and accuracy of the algorithm.

iv

Table of Contents

Preface . ix

1.0 Introduction . 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Thesis Organization . 3

2.0 Prerequisites . 4

2.1 Machine Learning . 4

2.2 Sleep Stages and EEG Band Power . 5

3.0 Related Works . 6

3.1 Sleep Stage Classification . 6

3.2 Domain Generalization . 7

3.2.1 Data Manipulation . 7

3.2.2 Representation Learning . 8

3.2.3 Learning Strategy . 8

3.3 Gaussian Transformations for EEG Signal 9

4.0 Proposed Methods . 11

4.1 Problem Formulation . 11

4.2 Cluster-Then-Label Algorithm . 11

4.3 Affects of Pre-Trained Classifier’s Accuracy 12

4.4 k-Means Clustering and TinySleepNet Classifier 14

4.4.1 Clustering with k-Means . 14

4.4.2 TinySleepNet . 15

4.5 GMM Clustering and LDA Classifier . 15

4.5.1 Linear Discriminate Analysis . 16

4.5.2 Clustering with Gaussian Mixture Model 17

4.5.3 Multitaper Spectrogram . 18

v

4.6 Gaussian Transformations . 19

4.6.1 Assembled Fixed Transformation . 19

4.6.2 Transformations Using Neural Networks 21

4.6.2.1 Training With Jarque–Bera (JB) Normality Test 21

4.6.2.2 Training with Anderson-Darling (AD) Test 22

4.6.2.3 Training with Kullback–Leibler (KL) Divergence 22

4.6.3 One Neural Network for All Stages . 23

5.0 Experiments and Results . 24

5.1 Cluster-Then-Label Using k-Means and TinySleepNet 24

5.2 Cluster-Then-Label Using LDA and GMM 25

5.3 Experiments on Artificial Data . 25

5.3.1 2-D Experiments of Clustering . 26

5.3.2 2-D Experiment on the Effect of Mislabeled Data 30

5.4 Assembled Fixed Gaussian Transformation 30

5.5 Neural Network Based Transformations . 34

5.5.1 Impact of Initialization . 34

5.5.2 Impact of Different Training Loss . 38

5.5.3 Experiments of One-for-All Neural Network 38

5.6 Transformation Networks with Dimensionality Reduction 41

6.0 Conclusions . 43

Bibliography . 44

vi

List of Tables

Table 1: Improvements in accuracy . 25

Table 2: Improvements in F1 score . 25

Table 3: Performance (AD test statistics) of fixed transformation 32

Table 4: Improvements in AD statistics . 33

vii

List of Figures

Figure 1: Cluster-then-label algorithm pipeline. 12

Figure 2: The curves of probabilities of correctly labeling a cluster. 13

Figure 3: The structure of TinySleepNet. 15

Figure 4: The curves of the basic transformation. 19

Figure 5: The cluster-then-label accuracy with respect to the mean difference and

covariance. 29

Figure 6: Visualization of classifiers. 31

Figure 7: Overall trending of risk. 32

Figure 8: Data distribution before and after transformation. 33

Figure 9: Initialization for Gaussian transformation networks. 35

Figure 10:The impact of initialization using KL loss. 37

Figure 11:The impact of initialization using JB loss. 37

Figure 12:The impact of different training loss. 38

Figure 13:Loss history of one-for-all network. 39

Figure 14:Distributions before transformation. 40

Figure 15:Distributions after transformation. 40

Figure 16:Comparison between the resulting distributions of PCA and neural net-

works. 42

viii

Preface

I feel truly grateful for Prof.Mao’s wise and kind help to my research, my academic

journey, and my whole life. I want to thank Prof.Yin, Prof.Dallal, and Prof.Can for their

brilliant and warm suggestions during my work. I also would like to thank my parents for

always been supportive and my cats for their meow.

ix

1.0 Introduction

1.1 Motivation

Sleep is a crucial activity for all human being. Healthy sleep is important for both

physical and mental health [45]. Unfortunately, sleep disorders have become very common,

being observed in 30% to 50% of general population [40]. To provide proper treatments to

patients suffering from sleep disorders, it is necessary collect information from patients’ sleep

rhythms. One of the most common ways to extract valuable information from the rhythms

is sleep stage classification. According to the recent American Academy of Sleep Medicine

(AASM) scoring manual [8], sleep can be divided into non rapid eye movement (NREM) and

rapid eye movement (REM) sleep, and NREM sleep can be subdivided into N1, N2, and N3

stages. Commonly used clinical examinations includes overnight polysomnography (PSG),

EEG and video-EEG monitoring, and multiple sleep latency tests (MSLT), etc [12].

Though these examinations are powerful, several major drawbacks should be noted. The

first one is their limited measure time scale. Standard EEG test lasts for 20-30 minutes [13].

Overnight PSG test monitors patient’s physiological indicators for one or two nights. Their

short observing duration limits their ability to detect long-term sleep patterns. Long-term

sleep monitoring sometimes relies on patient’s self sleep estimation, which is subjective and

noisy. The second disadvantage of current clinical sleep examinations is biased observation.

Because most sleep monitoring procedures are conducted in sleep centers and/or require the

patients to wear sensors on their fingers, chests, and wrists, the data are collected when

the patients sleep in unusual environments. Given most participants are suffering from sleep

disorders, strange environments or wearing alien devices can significantly influence their sleep

process, which makes the collected data very biased. These drawbacks make long-term sleep

measurement in the ambulatory setting a valuable complement to laboratory’s results.

So far, only actigraphy has been widely accepted by the clinical community as a method

for objective, long-term sleep monitoring. Actigraphy refers to measure sleep movements via

FDA-approved, wrist-worn accelerometry [56]. This kind of devices are expensive and have

1

evident limits that it only measure movement data. As a result, it is difficult to be used

for fine-grand sleep stage classification. On the other hand, even though consumer wearable

devices have not formally accepted as an assistance for clinical diagnosis, they have been

widely purchased and are showing promising usability [56].

The two biggest obstacles that prevent current consumer wearable devices from being

formally accepted by the clinical community are 1) commercially used algorithms are con-

fidential thus cannot be peer reviewed, and 2) they typically base on the less accurate

technique—microelectromechanical systems (MEMS) accelerometers and photoplethysmog-

raphy (PPG) [56, 23]. One promising alternative is EEG based technology because EEG

signal contents richest information related to sleep [23]. Hence, with proper designs, EEG

based devices could evidently outperform PPG based ones.

Deep learning is a rapidly developing technology which is powerful to dig out highly

abstract features and patterns from rich data sources like EEG signals. The performance

of deep models improves tremendously compared with that of traditional machine learning

approaches and even surpasses human experts in some fields [6]. However, the state-of-the-art

deep models usually require enormous amount of labeled data for training. For some specific

fields, data labeling could be utterly time-consuming and expensive [58]. In sleep researches,

for example, human experts often need to label patients’ whole night electroencephalogram

(EEG) signal data for every thirty seconds slice [8]. Public EEG data sets typically contain

data from no more than a hundred subjects. Since EEG signal’s distributions could vary

significantly from one subject to another, it is challenging for classifiers to maintain high

performances on previously unseen subjects. The need of additional training and validation

data for new human subjects and the huge workload to label such data make automatic label

generating strategies appealing.

1.2 Contributions

To address the above mentioned challenges, we propose a cluster-then-label strategy,

which follows the spirit of semi-supervised learning and synergistically integrates a cluster-

2

ing procedure in a supervised learning pipeline. The classifier is then retrained with the

generated pseudo-labels. Experiments show that this strategy can evidently improve the

classifier’s performance on data from out-of-distribution human subjects. The procedure is

deployed to various combinations of clustering algorithms and classifiers. Furthermore, to

overcome the intrinsic bottleneck of the proposed cluster-then-label algorithm, i.e., errors in

pseudo-labels, we investigate Gaussian transformations for EEG band power features. With

improved normality statistics (meaning that the probability distributions of the features after

the Gaussian transformation are closer to Gaussian distributions), the strategy can obtain

higher accuracy in both clustering and classification process.

1.3 Thesis Organization

Chapter II provides an introduction on prerequisite knowledge. In Chapter III we survey

though related works. The proposed methods and their experimental results are contained

in Chapter IV and Chapter V, respectively. Chapter VI concludes this thesis and talks about

future works.

3

2.0 Prerequisites

2.1 Machine Learning

Machine learning is a general term which describes all the techniques that can enable

a computer to learn from experience [38]. The word “learning” indicates that the designer

of an ML algorithm do not need to explicitly specify the steps of problem solving. In the

view of learning mechanism, machine learning can be divided into four classes: supervised

learning, unsupervised learning, semi-supervised learning, and reinforcement learning.

Supervised learning entails learning a mapping between a set of of input variables X =

{x1, x2, . . . , xn}, X ∈ Rn×d and an output variable Y ∈ Rn and requires that such mapping

is also feasible for unseen data. The learned models are evaluated on unseen data. When the

scale of the labeled data set is too small to reflect the true data distribution, the generalization

performance can be poor [42].

Unsupervised learning, on the other hand, exploits certain properties directly from unla-

beled data {x1, x2, . . . , xn} ∈ Rn×d. Since unlabeled data are often easier to acquire, less data

deficiency problems appear in this field. However, because the data come without labels, un-

supervised learning can hardly satisfy some typical real world missions such as classification

and regression. It is also harder to find a clear way to evaluate the performance of learned

models [42].

Semi-supervised learning typically uses partially labeled data for training process. There

exist some smart strategies in this field that combine the merits of both supervised and

unsupervised learning so that the model can learn from small labeled data set and also take

advantage of large unlabeled data set [67, 42].

Reinforcement learning aims to learn a map from situations to actions so that the cu-

mulative reward is maximized. The learner is not supervised by the “correct” action in a

certain situation but have to explore which action should be taken [53]. It is also different

from unsupervised learning since it still want to learn a map. Reinforcement learning is

wildly used in robotics, economy, human-computer interaction, etc.

4

2.2 Sleep Stages and EEG Band Power

According to the recent American Academy of Sleep Medicine (AASM) scoring man-

ual [8], sleep can be divided into non rapid eye movement (NREM) and rapid eye movement

(REM) sleep, and NREM sleep can be subdivided into N1, N2, and N3 stages. When used

for diagnosis, physicians prefer using EEG than other physiological measurements such as

electromyography (EMG) and electrooculography (EOG) because of EEG signal’s richness

of sleep information [14].

EEG signals are highly complex time serial signals and are usually organized into thirty

second’s slices. It requires demanding expertise to directly interpret EEG signals. Because

EEG signals are often contaminated by device’s noise and of high dimensionality, it usually

requires a feature extraction step before EEG signals can be used for training ML models.

EEG band power features are one of the most intuitive and natural feature sets for EEG

signals. An EEG slice can be represented by a 4-D vector, where each dimension stands for

the total power distributed into a certain frequency band range (delta: 1-4 Hz, theta: 4-8

Hz, alpha: 8-12 Hz, and beta: 12-30 Hz).

5

3.0 Related Works

3.1 Sleep Stage Classification

Sleep stage classification is an important research problem, and researchers have devel-

oped numerous approaches including supervised, unsupervised, and semi-supervised learning

methods.

As classification is a traditional supervised learning problem, supervised learning becomes

the most exploited field for sleep stage classification. Researchers in this field usually focus

on improving the structure of classifiers and the performance of feature extractions. Support

vector machines (SVM) [14, 66, 2] and artificial neural networks [25, 51, 52, 26] are two most

commonly used classifiers. Other attempts include linear discriminate analysis (LDA) [16],

bagged tree [61], etc. From feature usage point of view, wavelet is a popular method for

feature extraction [16, 25, 2]. Arranging the input of a classifier in a form of graph is also

an inspiring way to discover the patterns hidden in the signals [26, 66, 14]. Some deep

models directly use raw signals to realize end-to-end approaches [26, 52].These approaches

can attain accurate results, but often rely on large sets of labeled data for training and might

not generalize well when dealing with new subjects.

Compared with supervised learning approaches, unsupervised learning methods are rela-

tively infrequent to be used for sleep stage classification. This is mainly because unsupervised

approaches do not take advantage of the information from labels and thus usually require

extra steps before generating predictions. One representative work in this field is done by

Rodŕıguez-Sotelo et al., who extract entropy features from multi-channel EEG signals, an-

alyze feature relevance with the Q-α algorithm, and partition the data with the J-means

clustering algorithm [47].

Semi-supervised learning is a promising technique for sleep stage classification, because

it utilizes both labeled and unlabeled data. Munk et al. add unlabeled data part into

their maximum likelihood estimation (MLE) cost function and propose their own form of

conditional probability of unlabeled data [39]. Wuzheng et al. improve sparse concentration

6

index to evaluate pseudo-labels’ confidence [59], and Bai and Lu use small fully labeled

data to pre-train the classifier and feed the generated pseudo-labels back to the model for

training [5]. Transfer learning has also been explored for sleep stage classification. For

example, Zhao et al. add domain classifiers to basic convolutional neural networks (CNN)

to learn domain information from different levels [62]. Jadhav et al. pre-train a CNN on

ImageNet data set, extract time-frequency features from raw EEG data with continuous

wavelet transform (CWT), and retrain the network on these features [24]. Other transfer

learning researches include [1, 4, 44].

3.2 Domain Generalization

Traditional ML models are trained based on the identically and independently distributed

assumption (i.i.d) that training data and test data are independently sampled from the same

distribution. This assumption fails to hold in many scenarios especially in bio-medical fields

like sleep studies, where data sets’ quantity and/or diversity are usually limited. And be-

cause data collecting is very expensive and expertise intense in these fields, solving the out-

of-distribution problem by simply gathering more data is prohibitively impossible. Various

approaches are proposed in domain generalization (DG) to enhance the model’s generaliza-

tion ability when the test domain’s distribution is different yet related to the training domain.

These approaches can be categorized into three classes: data manipulation, representation

learning, and learning strategy Please find detailed survey in [57] and [64].

3.2.1 Data Manipulation

Data manipulation methods enrich the training set by manipulating existing data points.

Follow this track, there are two popular strategies: data augmentation and data generation.

Data augmentation distorts initial data set with various operations including adding

noise, flipping, rotation, etc. It is a general strategy for improving model’s robustness and not

limited to DG. Being required to handle distorted data, the model is forced to capture general

7

features of different domains. One special data augmentation method is called adversarial

augmentation [49, 55, 65]. Specific noises are designed forcing misclassifications to appear

for the current model. By explicitly overcoming its current weakness, the model generalize

better.

Data generation based DG strengthens model’s generalization capability by generating

diverse new data points. Unlike data augmentation, which manipulates original data, data

generation first trains a generative model using current data set then produces new data

with the generative model. Popular generative techniques include variational auto-encoder

(VAE) [30], generative adversarial networks (GAN) [19], and Mixup [60].

3.2.2 Representation Learning

Representation learning conceptually decomposes a prediction function into two part—

feature extractor and executor (e.g., a classifier). Regularization is imposed implicitly or

explicitly so that the output of feature extractor have certain properties. Two major subcat-

egories of representation learning are domain-invariant representation learning and feature

disentanglement.

Domain-invariant representation based DG is built on the theory that domain invariant

features are general and transferable to different domains. Kernel based methods is one of the

most popular representation learning methods. Kernel based methods project original data

points into high dimensional features and avoid computational burden with kernel tricks [9,

20, 21]. Many methods are also proposed with the idea of domain adversarial learning [33, 17,

34] and explicit feature alignment [63, 27, 41]. The former uses adversarial learning to reduce

domain discrepancy in manifold space and the latter uses explicit distribution alignments or

feature normalization to align the feature distributions across domains.

3.2.3 Learning Strategy

There are plenty number of learning strategies can be used for DG directly or with

minimum modification. They can be categorized into three classes: ensemble learning based

DG, meta learning based DG and others.

8

Ensemble learning is built upon an assumption that any input is a weighted superposition

of existing training domains. Thus, the final predictions can be obtained by assembling

multiple models. Mancini et al. use a domain predictor to generate weights for results from

domain-specific predictors then yield the final predication as a weighted sum [37]. Segu

et al. propose a method that compute the weights according to the distance between the

test sample’s batch norm statistics and those of each training domain. The classifiers share

parameters except for batch normalization parameters.

Meta learning technique is also referred as ”learning to learn”, which inducts a general

model from multiple sources. Li et al. stimulate distribution variations by randomly divide

source domains into meta-train and meta-test domains at each training iteration [31]. Balaji

et al. parameterize the regularization term with a separate neural network. This regularizer

is trained with meta learning so that it can enable generalization through domains [7]. Other

studies in this category include [35, 15, 11].

There are also other learning strategy that can be adopted to DG and the proposed

method in this thesis belongs to this category. Carlucci et al, propose a self-supervised

method that learns general representations by solving jiasaw puzzles [10]. Li et al. train the

feature extractor and the classifier using episodic training [32]. Self-challenging mechanism

is used in [22] to iterativly abandon domain-specific features.

3.3 Gaussian Transformations for EEG Signal

Because we observe random failures in experiments using both real EEG data and arti-

ficial data, we want to use theoretically simplest algorithms in the our procedures so that

we can get insights and intuitions of these failures. Gaussian distribution is an ubiquitous

distribution which many real world data subject to. Many ML algorithms are also designed

upon the Gaussian assumption. However, EEG band power features do not subject to Gaus-

sian distributions by nature. In [18], the authors compare the performance of various fixed

transformations like
√
x, log(x), and log(x/(1 − x)), which can symmetrize skew distribu-

tions. The x’s are either absolute value of EEG band power or relative band power ratios.

9

Boyd and Lacher propose a two-step transformation procedure for clinical data. The first

step removes the skewness and the second step handles kurtosis. All these works transform

data in a complete open loop manner. In other words, their transformations are designed

only with statistical a prior knowledge without any feedback from the transformed results.

In this thesis, we design various data-driven Gaussian transformations (some of them are in

a close loop manner) that are helpful to the proposed cluster-then-label strategy.

10

4.0 Proposed Methods

4.1 Problem Formulation

Denote the a raw EEG signal data set as S0 = {(s1, y1), ..., (sN , yN)} where si’s are raw

EEG signals and yi’s are according sleep stages. The set S = {(x1, y1), ..., (xN , yN)} is the

same set replacing the raw EEG signals with extracted features. The feature extraction

process is represented as F (.), serving as S = F (S0). The clustering algorithm is denoted

as G, which takes S as input and generate a bunch of clusters (groups) {g1, ..., gK}. The

classifier is denoted as C, which receives a feature vector x and predicts the according sleep

stage. Importantly, the classifier’s performance is evaluated on a independent data set Stest

in which the features distribute differently compared with S.

4.2 Cluster-Then-Label Algorithm

The overall pipeline of our proposed cluster-then-label strategy is shown in fig. 1. Blue

nodes stand for data, where X and Y are EEG signal features and labels, respectively. Note

that no label is given except for the initial data set. X0 and Y0 are from S while Xi, i > 0

are from Stest. Yellow triangles denote classifiers, and green rectangles represent clustering

and training processes. We start with a fully labeled yet relatively small data set and train

a classifier C0 on it. Instead of directly generating pseudo labels by the classifier, we use

the clustering process to capture extra geometrical information thus correct the labels of the

points which would have otherwise been mis-classified. Assume we can easily obtain large

amount of unlabeled data, we feed these data into a clustering model—Gaussian mixture

model (GMM) or k-means in our experiment—and get K clusters, where the number K is

given. Using the classifier trained on previous data, each cluster is given a uniform label

which corresponds to the dominating class in that cluster. Then these new data with pseudo

labels can be used to train the classifier again. Such process can be repeated as long as new

11

Figure 1: Cluster-then-label algorithm pipeline.

unlabeled data are available. The feature extraction process F (.) is not shown explicitly

in this figure because sometimes it is a separate process and in other cases is a part of the

classifier. To sum up, the classifier C is initially trained on fully labeled S. Then it is

retrained using pseudo-labeled samples from Stest.

4.3 Affects of Pre-Trained Classifier’s Accuracy

In this section, we analyze the relationship between the classifier’s accuracy and the

probability that a cluster is assigned with correct label (i.e., the label of its major class).

In binary classification scenario, without lose of generality, assume that the majority class

of a cluster has the label “1”. Let n0 and n1 denote the number of negative and positive

samples in the cluster, respectively. The probability of this cluster finally been given a

pseudo-label that consistent with the ground truth label of the majority class in this cluster

12

can be expressed as P (n̂1 > n
2
) where n is the size of this cluster and n̂1 is the number of

data points that are classified to be positive. This is equivalent to the union probability

of P (n̂1 = k), k > n
2
. If we assume that the classifier follows EStest(P (Ŷ = Y)) = β, then

P (n̂1 = k) can be expressed as follows: when 0 ≤ k ≤ n0,

P (n̂1 = k) =
k∑

j=0

(
n1

k − j

)
ak−j(1− a)(n1−k+j) ×

(
n0

j

)
an0−j(1− a)j (4-1)

when n0 ≤ k ≤ n1,

P (n̂1 = k) =

n0∑
j=0

(
n1

k − j

)
ak−j(1− a)(n1−k+j) ×

(
n0

j

)
an0−j(1− a)j (4-2)

when n1 ≤ k ≤ n,

P (n̂1 = k) =

n0∑
j=0

(
n1

j

)
an1−j(1− a)j ×

(
n0

n− k − j

)
aj(1− a)n0−j. (4-3)

The curves of above equations are shown in fig 2. All curves rise up smoothly and different

colors denote different classification accuracy.

Figure 2: The curves of probabilities of correctly labeling a cluster.

13

4.4 k-Means Clustering and TinySleepNet Classifier

The idea of cluster-then-label is firstly instantiated by combining kmeans clustering and

TinySleepNet classifier [52].

4.4.1 Clustering with k-Means

As the most commonly used clustering algorithm, k-means algorithm separates n data

points of D dimensions into k non-overlapping groups so that the total within-cluster varia-

tion (TWCV) is minimized. Formally speaking, given a data set X = {x1, x2, ..., xn}T and

the number of desired clusters K, k-means algorithm forms a indicator matrix W whose

element defined as follows

wki =

1, if xi belongs to kth cluster

0, otherwise
(4-4)

and
K∑
k=1

wki = 1. (4-5)

The centroid of the kth cluster ck is defined as

ck =

∑n
i=1wkixi:∑n
i=1 wki

. (4-6)

And the TWCV is defined as
K∑
k=1

n∑
i=1

wki||xi − ck||2. (4-7)

To minimize TWCV, classic k-means algorithm starts with randomly chosenK centroids and

assigns each data point to the closest centroid. Then the centroids are updated according to

(4-6). Such process is repeated until no reassignment occur.

Though usually being simple and fast in practice, k-means algorithm relies on proper

initialization and may suffer from local minimum.

14

4.4.2 TinySleepNet

TinySleepNet is a composed with a convolutional neural network (CNN) and a recurrent

neural network (RNN) as shown in fig 3. The CNN part serves as a feature extractor and the

RNN part is for capturing temporal dependencies. The outputs of feature extractor (CNN)

can be view as non-normalized probabilities of five sleep stages. They do not subject to

Gaussian distributions by nature and are not suitable to be modified into Gaussians. That

is the reason for choosing k-means over GMM here.

Figure 3: The structure of TinySleepNet.

4.5 GMM Clustering and LDA Classifier

In this section, we introduce required techniques for GMM+LDA cluster-then-label.

Again, choosing these simplest models is not for highly accurate classification results but

15

for insights of cluster-then-label process. Very importantly, since GMM and LDA rely on

prior probabilities of each class, the number of data points for each sleep stage in training

set need to be carefully chosen. This is because sleep stages have sequential dependencies

on each other which means their prior probabilities vary with time. As a default, we keep

the number of samples of each sleep stage the same in our experiments.

4.5.1 Linear Discriminate Analysis

LDA is a kind of Bayes’s classifier. It assumes the distribution of each class subjects

to a multivariate Gaussian distribution. In binary classification scenario, assume class0

and class1have probability density functions f0 = N(µ0,Σ) and f1 = N(µ1,Σ), respectively.

Note that both density functions have the same covariance matrix. The form where two den-

sity functions have different covariance matrices is referred as quadratic LDA. LDA decides

the belonging of a test point x by calculating:

L(x) = π0 × f0 − π1 × f1 (4-8)

where π0 and π1 are the prior probabilities of class0 and class1, respectively. Inserting the

definition of multivariate Gaussian distribution density function with a logarithm trick, we

get

L(x) = aTx+ b (4-9)

where

a = Σ−1
x (µ0 − µ1) (4-10)

b = −1

2
(µT

0Σ
−1
x µ0 − µT

1Σ
−1
x µ1) + log π0 − log π1. (4-11)

In practice, µ0, µ1, and Σ are unknown. We usually estimate these values with statistics of

training samples:

µi =
1

ni

ni∑
j=1

xij, i = 0, 1 (4-12)

Σx =
1

n
(

n0∑
j=1

(x0j − µ0)(x0j − µ0)
T +

n1∑
j=1

(x1j − µ1)(x1j − µ1)
T). (4-13)

16

When L(x) ≥ 0, x is assigned to class0, and to class1 otherwise. This discrimination rule

can be easily adopted to multiply class discrimination scenario by treating such scenario as

several one-to-one classification problems.

4.5.2 Clustering with Gaussian Mixture Model

A Gaussian mixture model, as shown below, is a parametric probability function repre-

senting weighted sum of multiple Gaussian distributions [46],

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (4-14)

∑
i

wi = 1 (4-15)

where x is a D-dimensional continuous data vector, M is the number of components included

in GMM model, wi refers to the mixture weight for the ith component, g stands for the

Gaussian density function of the form:

g(x|µi,Σ) =
1

(2π)D/2|Σi|1/2
e

1
2
(x−µi)

TΣ−1
i (x−µi) (4-16)

where µi and Σi are the mean value and covariance matrix, respectively. λ is the total set

of all the parameters of GMM, i.e.,

λ = {µi,Σi, wi}. (4-17)

Such model is usually trained with expectation-maximization (EM) algorithm, an iterative

algorithm that alternately updates the guess of generating distribution for each data point

(E step) and the estimations of λ (M step)[48].

During test time, we assign a data point to the cluster which maximizes the posteriori

probability. Formally, we assign a data point x to cluster c such that

c = argmax
ci

p(ci|x)

= argmax
ci

p(x|ci)p(ci)∑
j p(x|cj)p(cj)

= argmax
ci

g(x|ci)wi∑
j g(x|cj)wj

.

(4-18)

17

At this stage, we set the criteria to evaluate the performance of clustering process as

α = min
|n′

i|
|ni|

(4-19)

where |ni| stands for the size ith cluster produced by GMM model, |n′
i| is the size of the

majority class in ith cluster.

4.5.3 Multitaper Spectrogram

Because LDA and GMM cannot handle high dimensional temporal inputs like raw EEG

signals, we need a separate feature extraction step. In this thesis, we use a technique called

multitaper spectral analysis [43]. Spectral analysis is a classic tool of signal process. It

extracts the frequency information of a signal. However, typical spectral analysis approaches,

for example, fast Fourier transform (FFT), suffer from the side lobe leakages and the high

variance of EEG signals, which result in very noisy and unclear spectra. Multitaper spectral

analysis uses multiple specially designed tapes (or windows) to reduce the leakages and the

variance by taking the average spectra. The tapes are called discrete prolate spheroidal

sequences (DPSS). They are able to remove the false power from the side lobes and are

orthogonal to each other. The feature extraction steps is formally described in algorithm 1.

Note that N and M have different meaning from the notations in Section 4.1.

Algorithm 1 EEG Band Power Feature Extraction.

1: s is a raw EEG signal, T is the duration of the signal in seconds, df is the required

frequency resolution, β, α, θ, and δ are band of interest as defined in Section 2.2.

2: The time-halfbandwidth product TW ← T×df
2

.

3: The number of tapers is M ← ⌊2TW ⌋ − 1.

4: Generate M DPSS tapers {t1, ..., tM} according to TW , N , and M .

5: Separately multiply the EEG signal to each taper, get St = {s1, ..., sM}.

6: Apply FFT to each element in St, and calculate the average of the results.

7: Sum up St on β, α, θ, and δ get the four dimensional feature x of s.

18

4.6 Gaussian Transformations

In this chapter, we introduce two methods for EEG Gaussian transformation. Because

a multivariate Gaussian is a combination of multiple 1-D Gaussian in each dimension, our

research about Gaussian transformation focuses on scalar transformations, i.e., we transform

one band at a time.

4.6.1 Assembled Fixed Transformation

In [18], the author reports the best result on resting EEG with the transformation

log(x
1−x

), where x stands for the relative band power ratio. The curve of this transformation

is shown in fig 4. This transformation works in a way that dilutes points in tails because the

curve is steep in those areas. We follow this result in our research. The difference is that our

data contain EEG signals from multiple stages. This means the band power features subject

to a mixture distribution in our setting. So, we keep the basic shape of the transformation

curve and apply a variational version of it to each stage. We take the combined curve as our

final transformation. Algorithm 2 formally describes the transformation.

Figure 4: The curves of the basic transformation.

More intuitively speaking, we first select 100×r percent points in each sleep stage. Then

the these data points are scaled into (0, 1) and the original transformation is applied to them.

19

Algorithm 2 Manipulation of Basic Transformation.

1: Input: S = {(x0, y0), .., (xN , yN)}.

2: Define: Rlog is the range of log(x
1−x

), r is the effective ratio.

3: Require: Sets should be treated as sequential data type in this algorithm.

4: for each sleep stage do

5: Sj = {(xi, yi)|yi = current sleep stage}.

6: Define L to be the length of Sj.

7: DownIdx← L× r
2
, UpIdx← L−DownIdx

8: Ssort ← sort(Sj)

9: Define Down ← the DownIdx’th element of Ssort, Up ← the UpIdx’th element of

Ssort

10: Range← Up−Down, Mean← the mean value of xi’s in Sj.

11: Define Schanges = {xi|Down < xi < Up}.

12: Element wise apply Schanges ← Schanges−Down

Range

13: Element wise apply Schanges ← (log(
Schanges

1−Schanges
)/Rlog)×Range+Mean

14: end for

15: S ← element wise mean of all Sj

20

Finally, they are re-scaled into (Mean− 0.5Range,Mean+ 0.5Range).

Although the assembled transformation brings better flexibility and is useful for our

cluster-then-label algorithm, it also has some drawbacks. Firstly, the curve’s basic shape is

still fixed. This limits the overall flexibility. Secondly, at test time, a new point need to go

through the transformation for every stage (because we do not know which stage it belongs

to). As a result, the steep tail of one stage may intrude into other’s flatten area leading to a

groove around other’s center. Finally, the designing process of the assembled transformation

is still in a open loop manner.

4.6.2 Transformations Using Neural Networks

To address the limitations of assembled fixed transformation, we try to parameterize each

stage’s transformation with a neural network. We proposed three loss functions for training.

Two related normality tests are mentioned below. Note that lower normality test statistics

indicate better obedience to Gaussian distributions.

4.6.2.1 Training With Jarque–Bera (JB) Normality Test

JB test [54] is a kind of goodness-of-fit normality test. The statistic of JB test is defined

as:

JB =
n

6
(S2 +

(K − 3)2

4
) (4-20)

where S = µ̂3/µ̂
3/2
2 is the sample skewness, and K = µ̂4/µ̂

2
2 is the sample kurtosis. The

notation µ̂i =
1
n

∑n
j=1(xj − x̄) is the estimation of ith order central moment where x̄ is the

mean value of x’s. In our practice, we use modified JB statistic as our loss function:

L =
n

6
(λ1S

2 +
(K − 3)2

4
) + λ2(X̄in − X̄out)

2. (4-21)

The hyper parameter λ1 is to scale the magnitude of skewness in loss function because we

empirically find the outputs tend to keep large skewness. The hyper parameter λ2 controls

the trade-off between output’s normality and its mean value shifting since the mean value

of the output distribution can shift dramatically without this term resulting in the loss of

21

biological meaning. JB loss is easy to be calculated. However, it estimates the goodness-of-fit

using only skewness and kurtosis which means it may ignore certain types of abnormality.

4.6.2.2 Training with Anderson-Darling (AD) Test

AD test [3] is in general a more powerful normality test method compared with JB test.

Its statistic is in the form:

A2 = −n− 1

n

n∑
i=1

[(2i− 1) log Φ(Yi) + (2(n− i) + 1)(log(1− Φ(Yi)))] (4-22)

where Φ stands for standard Gaussian cumulative probability function (CDF). We form the

final loss function with the same additional term λ2(X̄in−X̄out)
2 as in (4-21). Because we are

using the CDF of standard Gaussian distribution, Xout need to be standardized and sorted

after X̄out is calculated.

4.6.2.3 Training with Kullback–Leibler (KL) Divergence

KL divergence [36] is a wildly used measure of how one distribution P is different from

another distribution Q. The formal definition is KL = Ex(log(
P (x)
Q(x)

)). In a sampling case, it

becomes KL =
∑n

i=1 P (xi) log(
P (xi)
Q(xi)

). In our setting, P is a Gaussian distribution which has

the same mean value and variance with xi’s in S and Q is the distribution of the network’s

outputs. The probability densities of network’s outputs are estimated by a kernel based

estimation method [50]. For a set of inputs {x1, ..., xn}, the probability density at xi is

calculated as

f̂h(xi) =
1

nh

n∑
j=1

K(
xi − xj

h
) (4-23)

where h is a hyper parameter known as bandwidth, and K is Gaussian kernel, i.e., K(x) =

1√
2π

exp−x2

2 .

22

4.6.3 One Neural Network for All Stages

All the neural network based transformations we mentioned above are scalar functions.

This brings clarity when we train this transformations but become an issue when we apply

them to clustering or classification process. The issue is that we have five different neural

networks corresponding to five different sleep stages. But we do not know the label of a

point during inference time.

To address this problem, we proposed two candidate solutions. The first one is using the

same strategy as in assembled fixed transformation, i.e., feed the new data point into every

neural network and take the average value as the final transformed feature. However, the

transformation proposed in 4.6.1 is a combination of multiple local function. This means

each child function only impacts data within its support set and have no impact for data out

of the scope. Neural networks, on the other hand, are global functions. The data point must

be impacted by all the transformations. This approach is potentially feasible but makes each

network very difficult to tune because of the interference.

The second solution is using a single neural network as a transformation for all stages.

We deploy this idea by alternately feed data from each stage. Data in the same batch are of

the same label, and labels are different from batch to batch.

23

5.0 Experiments and Results

5.1 Cluster-Then-Label Using k-Means and TinySleepNet

In this section, we will show how cluster-then-label strategy improves classifier’s perfor-

mance on real EEG signal. We use open-source data set ”Sleep EDF Expanded” [28]. All

the EEG signals in this data set are of 30 seconds window size and 100Hz sampling rate.

The codes are implemented with python 3.6 and TensorFlow 1.13.1.

First, we pre-train the TinySleepNet classifier on the first twenty subjects using ”twenty

folders” method. To be specific, we train twenty classifiers independently which are all start

from random initialization and been trained on 17 of overall 20 subjects. One of the three

left subjects is used for testing and two for validation. The model with best performance on

test set is selected for further training.

In the second step, EEG data from number 80, 81 and 82 subjects are mixed to form a

new data source. At this moment, the annotations that come along from the data set are

only used for evaluating the performance and are invisible in training process. The CNN

part of pre-trained classifier is used as a feature extractor which compresses the raw data of

3000 dimensions into 5 dimensions. Then the data are clustered based on the 5 dimension

feature. Both GMM and k-means algorithms are tried in our experiment, yet only k-means

gives improvement. Each cluster is assigned with the pseudo-label of its major class using the

pre-trained classifier. These data are evenly divided into 6 folders. We retrain the classifier 6

times independently. Each time a different folder is selected as test data and another one for

validation. The results of experiment are shown in table 1 and 2 showing the improvements

on test set.

24

Table 1: Improvements in accuracy

Number of folder 1 2 3 4 5 6

Before training 74.6 74.2 82.4 84.9 89.6 83.4

After training 77.2 78.1 84.7 87.3 90.4 83.8

Table 2: Improvements in F1 score

Number of folder 1 2 3 4 5 6

Before training 55.1 49.7 68.0 68.4 73.6 69.5

After training 58.4 54.8 69.5 70.7 73.6 69.5

5.2 Cluster-Then-Label Using LDA and GMM

In this section, we will demonstrate how cluster-then-label strategy can improve the

performance of simpler the model which takes band power features as their input. We use

the EEG data from first ten subjects from Sleep EDF Expanded [28] and extract band power

features using multitaper spectral analysis. Note that we keep the number of points of each

stage the same in the training set to avoid the bias from prior probability. After feature

extraction, we choose one subject (No.4 subject in our experiment) as the target subject.

For other subjects, twenty percent data are separated as validation set and the rest points

compose the training set. The classification accuracy raised from 75.3% to 79.5%.

5.3 Experiments on Artificial Data

In this section, we display how the distributions’ statistics impact the performance of

the clustering and the classification. Because all the processes and data distributions can be

precisely modeled in these experiments, we can derive related analytical results in the future

25

following these insights and intuitions.

A very natural way to evaluate the performance of cluster-then-label is by the proportion

of data points whose pseudo-labels are consistent with ground truth labels. Formally, we

evaluate the overall performance with

α =
N̂

N
(5-1)

where N̂ is the number of data points whose pseudo-labels are consistent with their ground

truth labels and N is the size of total unlabeled data.

5.3.1 2-D Experiments of Clustering

Clustering algorithms can capture extra geometrical information, but it also means that

the following training process of classifier heavily rely on the clustering process. Hence, it

is important to get some insights about when should we expect satisfying performance from

cluster-then-label algorithm. In our 2-D experiments, we generate data from two Gaussian

distributions N(µ1,Σ1) and N(µ2,Σ2). First we analyze the relationship between the accu-

racy of a single cluster-then-label step and the difference between the mean values of two

Gaussian distributions. The pseudo-code of the experiment is shown in algorithm 3.

The second 2-D experiment is designed to explore the effect of covariance. The angle

between the two eigenvectors that correspond to the largest eigenvalue of each covariance

matrix is varied from 0 to π
2
. The detailed steps are explained in algorithm 4 The results of

these two experiment are shown in fig 5.3.1. The overall accuracy increases as the difference

between the means and also as the angle increases. In fig 5(a), the curve has a long linear-like

region except for the saturation at the end. In fig 5(b), the oscillation evidently decreases

as the angle get closer to π
2
, which implies the confidence of the classifier. Also there is no

obvious linear-like region in this curve. Follow these curves, when the data are distributed

similar to Gaussian distribution, one can evaluate how the clustering process will perform

given the estimated means and covariance matrices.

26

Algorithm 3 2-D mean changing cluster-then-label

1: µ1 ← (0, 0), Σ1 ← I, Σ2 ← I

2: max mean diff ← 5, step size← 0.1, train size← 50, increment← 50, k ← 0

3: while k ≤ max mean diff do

4: Generate train data

5: train1 ∼ N(µ1,Σ1), |train1| = train size

6: train2 ∼ N((k, 0),Σ2), |train2| = train size

7: train data←shuffled(train1 ∪ train2)

8: Train GMM and LDA classifier on train data

9: Generate new data

10: new1 ∼ N(µ1,Σ1), |new1| = increment

11: new2 ∼ N((k, 0),Σ2), |new2| = increment

12: new data←shuffled(new1 ∪ new2)

13: Cluster new data, get clusters C1, C2

14: Give labels to each cluster with classifier

15: calculate α as in (5-1)

16: k ← k + step size

17: end while

27

Algorithm 4 2-D eigenvectors angle changing cluster-then-label

htbp

1: µ1 ← (2, 5), µ2 ← (3.5, 5),Σ1 ←

0.1 0

0 0.1

 ,Σ2 ←

1 0

0 0.1

 ,

2: angle← 0, iters← 20, train size← 50, increment← 50

3: while angle ≤ π
2
do

4: Generate train data

5: train1 ∼ N(µ1,Σ1), |train1| = train size

6: train2 ∼ N(µ2,Σ2), |train2| = train size

7: train data← shuffled(train1 ∪ train2)

8: Train GMM and LDA classifier on train data

9: Generate new data

10: new1 ∼ N(µ1,Σ1), |new1| = increment

11: new2 ∼ N(µ2,Σ2), |new2| = increment

12: new data← shuffled(new1 ∪ new2)

13: Cluster new data, get clusters C1, C2

14: Give labels to each cluster with classifier

15: calculate α as in (5-1)

16: Rotate the eigenvectors of Σ2 by π
2×iters

17: Let angle← angle+ π
2×iters

18: end while

28

Figure 5: The cluster-then-label accuracy with respect to the mean difference and covariance.

29

5.3.2 2-D Experiment on the Effect of Mislabeled Data

In this section, we use experiments in 2-D to verify our analysis in 4.3. Let µ0 = (0, 0),

µ1 = (0, 1) and the covariance matrix be 0.1 × I. Sample 200 points from each Gaussian

distribution as the test set. In the ith run, let a be 0.01i and sample 50 points from each

Gaussian distribution and use these data to estimate µ0 and µ1. Then calculate the risk on

test set. Fig 5.3.2 visualizes how the true data, the mislabeled data and the classifier look

like when a is 0 and 0.5, respectively. Fig 7 shows the overall trending of risk as a varies

from 0 to 1. Since the classifier only depends on estimated means, it is insensitive to outliers

thus the curve has two flat regions at the beginning and the end. However, the confidence

is clearly low when a is close to 0.5.

5.4 Assembled Fixed Gaussian Transformation

According to [18], applying the transformation log x
(1−x)

to relative band power ratio

features can effciently convert current feature distributions to ones more like Gaussian dis-

tributions. We reproduce their experiment on our data and the result is shown in table 5.4.

Note that data from multiple human subjects are content in this experiment. Though this

fixed transformation can already reduce the statistics of AD test, it cannot handle the sce-

nario where data from different stages are mixed together. As designed in algorithm 2, we

conduct experiments of the assembled fixed Gaussian transformation. We use the same data

set as in Section 5.2. One of the representative results is shown in fig 8 and table 4. The

transformation is applied on the δ band of the data from the third subject in this figure. We

choose δ band because it gives best separability. We can observe that the transformation

clearly fixes the skewness of the awake stage and makes the peak of every stage more evident.

The grooves (most clear at the middle of the awake stage) appear just as expected.

30

Figure 6: Visualization of classifiers.

31

Figure 7: Overall trending of risk.

Table 3: Performance (AD test statistics) of fixed transformation

Before transformation

Band beta alpha theta delta

Awake 137.09 252.17 93.45 178.01

N1 4.15 6.39 2.14 4.86

N2 1.81 30.19 0.48 10.01

N3 2.49 2.70 1.16 0.22

REM 5.92 4.09 2.07 1.47

After transformation

Band beta alpha theta delta

Awake 156.99 223.13 52.09 49.78

N1 2.26 3.96 2.87 2.40

N2 0.73 18.64 1.26 4.09

N3 1.19 2.44 1.54 0.38

REM 3.67 7.44 1.27 0.55

32

Figure 8: Data distribution before and after transformation.

Table 4: Improvements in AD statistics

Sleep stage Awake N1 N2 N3 REM

Before transformation 20.13 1.16 6.91 0.42 0.75

After transformation 26.70 0.82 1.44 0.28 0.21

33

5.5 Neural Network Based Transformations

In this section, we show the results of neural network based Gaussian transformation.

For all three set of experiments in this section, we use three layers shallow, fully connected

network structure. The hidden layer contents 150 nodes with rectified linear unit (ReLU)

activation function. Adam algorithm [29] is used for optimization. The hyper parameters of

JB loss function are set as λ1 = 1, λ2 = 5 unless otherwise specified.

Gaussian transformations should be monotonically increasing functions and this cannot

be easily promised when we are treating a neural network. To induce such property, we

first initialize all the networks by imitating the fixed transformation log x
(1−x)

. The training

data for initialization is uniformly sampled in the range of 1 − r percent EEG data points,

where r has the same meaning as in algorithm 2. These EEG data are used for fine-tuning

later. We try initialization training set of size 10000 and 100000 and the resulting curves are

shown in 5.5. We conduct the same fine-tuning process on both initializations to compare

their impacts on final results.

Data usage in our experiments are very special because of a major dilemma to use neural

networks for Gaussian transformations. The target transformation is a scalar function that

transform a single distribution to a more Gaussian one. The dilemma is that, on one hand,

the feature distributions of different subjects (or different sleep stage) are very different. This

means that the overall distribution of data from multiple subjects (or multiple sleep stages)

is a mixture distribution which is against our target. On the other hand, if we only use data

from one subject, the size of data set may not sufficient for training, and more importantly,

the network may loss generalization ability. We report our experiments training the network

on one subject’s one sleep stage (N1) data along with our discussions and reflections on

them.

5.5.1 Impact of Initialization

In fig 10 we present the resulting transformation function and the according distributions.

The networks are trained with the same process from different initialization. The networks

34

Figure 9: Initialization for Gaussian transformation networks.

35

are trained using KL divergence loss function in this figure. On the left of the first row is the

transformation initialized with ten thousands samples, in the middle is the one initialized

with a hundred thousands samples, and on the right is the one without any initialization.

The second row, from left to right, are the distribution of input features, the distribution of

the output of first transformation, the distribution of the second transformation, and that

of the last transformation. The AD normality statistics of these distributions are 1.19, 2.06,

10.73, and 1.09. In fig 11, we show the results of the same experiment only now we train

the network using JB loss. As before, the first row as the resulting transformations and two

results of no initialization are included. The right-most two figures in the second row are

the resulting distributions of them. The AD statistics of the resulting distributions in the

second row are 1.19, 0.85, 0.60, 0.62, and 1.19. Here are some conclusions we can get from

these two figures and the statistics:

1. Initialization by imitating the fixed transformation can actually induce a monotonically

increasing property. In the absence of initialization, the resulting transformation may

become monotonically decreasing or not monotonic at all (not shown in the figures).

2. Initialization strongly impacts the final shape of the transformations. Transformation

with same initial parameters tend to end up with similar shapes though they usually have

different ranges. The resulting shape of no initialization training are more of random.

3. Initialization does not always benefits the AD statistics of resulting distributions. In

fact, initialization is always poisonous to the statistics when we use KL loss for training.

Using the initialization from a hundred thousands samples, the network squeezes the

distribution into a sharp peak. This does not have to be a bad news because we finally

want to use the transformed data for clustering and classification. A sharp peak may

indicates better separability. When training with JB loss function, initialization makes

the transformation more steady (AD statistics always decrease) and better (compared

with no initialization situations).

36

Figure 10: The impact of initialization using KL loss.

Figure 11: The impact of initialization using JB loss.

37

5.5.2 Impact of Different Training Loss

Now we compare the results from experiments using different training loss. Unless other-

wise specified, all the experiments discussed in this section use initial parameters trained on

ten thousands sample because it is in general beneficial. Fig 12 shows most representative

behaviours of these three experiments. The first row shows the resulting transformations,

and the second row presents the transformed distributions. When we train with KL loss, we

never observe any resulting transformations violate the monotonically increasing require-

ment even if they start from random initialization. Training process using JB loss tends to

generate smoother and linear like transformations, and training with AD loss prefer to the

transformations that squeezes the outputs into a narrow range.

Figure 12: The impact of different training loss.

5.5.3 Experiments of One-for-All Neural Network

In this experiment, we use the same training set and test set as before. But now the

absolute values of band power (instead of relative band power ratio) are used as input

features. This is because the network cannot be effectively trained using relative band power

38

ratios. Training set takes 90 percent data from training subject and validation set takes

the rest. Testing process still uses data from another subject. We train the network for 300

epochs using JB loss as the objective. The hyper parameter are set as λ1 = 0.1, λ2 = 1. Fig 13

shows the tracks of training and validation losses. The oscillation raises from the switch of

sleep stage, and the overall decreasing trend indicates the training progress. Fig 14 and

Figure 13: Loss history of one-for-all network.

fig 15 are the distributions of test data from each stage, before and after the transformation,

respectively. The “s” above each mini-figure stands for the according AD statistic and

the “mean” is the mean value for that distribution. The transformation reduced the AD

statistics of most feature distributions, implying that it turned the original distributions

closer to Gaussian in general. However, it is seen that when the original distributions are

already close to normal distributions, the transformation might not work as expected.

39

Figure 14: Distributions before transformation.

Figure 15: Distributions after transformation.

40

5.6 Transformation Networks with Dimensionality Reduction

This section describes an unsuccessful trail. At the beginning stage, we also consider a

kind of neural network which compress the four dimensional feature into a scalar feature.

This is because we observe networks with this structure are much easier to optimized. The

network is trained with JB loss function, and we use the same data set as in Section 5.2.

Because the original features and the outputs are of different dimensionalities, we compare

the outputs with the results of principle component analysis (PCA). The results are shown

in 5.6. Both the first row in fig 16(a) and 16(b) are the results from PCA and the second rows

are the results of neural networks. Each column stands for a distinct sleep stages, namely

awake, N1, N2, N3, and REM. Indeed, this kind of neural networks can perform Gaussian

transformations, and even have good generalization ability (subject wise). But there are two

major problems of this approach. Firstly, we empirically find the output’s mean values shift

dramatically even with the second term in (4-20). This shift completely ruins the biological

meaning in original features. Thus, taking the mean value of all outputs (as mentioned in

Section 4.6.3) will be totally meaningless. We first assume that these networks can obtain

a implicit selectivity. For example, if one “awake” data point is fed into all five neural

networks, the output of the “awake” network will be closer to the mean value of its outputs

on training set. Unfortunately, we fail to endow the networks such property. The second

major drawback of this kind of network is the dimensionality reduction itself. Band power

features from each band are necessary (at least from a human’s point of view) for correct

sleep stage classification. Compressing the dimensionality of this kind of feature set loses

critical information.

41

Figure 16: Comparison between the resulting distributions of PCA and neural networks.

42

6.0 Conclusions

In this thesis, we introduced how wearable sleep monitoring devices can help people

who are suffering from sleep disorders. A cluster-then-label strategy is proposed to help the

classifier to generalize on out-of-distribution subjects and prove the algorithm’s effectiveness

through experiments. To make the cluster-then-label process more accurate and robust,

various Gaussian transformations approaches are designed and compared.

In the future, we will introduce additional components into the neural network process

to make the output features more separable. The transformation’s effectiveness need to be

further proved by integrating them into cluster-then-label procedure. Theoretical analysis

regarding the effect of pseudo label’s errors still need to be accomplished.

43

Bibliography

[1] Mehdi Abdollahpour, Tohid Yousefi Rezaii, Ali Farzamnia, and Ismail Saad. Transfer
learning convolutional neural network for sleep stage classification using two-stage
data fusion framework. IEEE Access, 8:180618–180632, 2020.

[2] Emina Alickovic and Abdulhamit Subasi. Ensemble SVM method for automatic
sleep stage classification. IEEE Transactions on Instrumentation and Measurement,
67(6):1258–1265, 2018.

[3] Theodore W Anderson and Donald A Darling. A test of goodness of fit. Journal of
the American Statistical Association, 49(268):765–769, 1954.

[4] Fernando Andreotti, Huy Phan, Navin Cooray, Christine Lo, Michele TM Hu, and
Maarten De Vos. Multichannel sleep stage classification and transfer learning using
convolutional neural networks. In 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 171–174, 2018.

[5] Haoran Bai and Guanze Lu. Semi-supervised end-to-end automatic sleep stage clas-
sification based on pseudo-label. In 2021 IEEE International Conference on Power
Electronics, Computer Applications, pages 83–87, 2021.

[6] Stephen Balaban. Deep learning and face recognition: The state of the art. In
Biometric and Surveillance Technology for Human and Activity Identification XII,
volume 9457, 2015.

[7] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards
domain generalization using meta-regularization. Advances in Neural Information
Processing Systems, 31, 2018.

[8] Richard B Berry, Rita Brooks, Charlene E Gamaldo, Susan M Harding, C Marcus,
Bradley V Vaughn, et al. The AASM manual for the scoring of sleep and associated
events: Rules, terminology and technical specifications. American Academy of Sleep
Medicine, 176, 2012.

[9] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related
classification tasks to a new unlabeled sample. Advances in Neural Information Pro-
cessing Systems, 24, 2011.

44

[10] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana
Tommasi. Domain generalization by solving jigsaw puzzles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2229–
2238, 2019.

[11] Keyu Chen, Di Zhuang, and J Morris Chang. Discriminative adversarial domain
generalization with meta-learning based cross-domain validation. Neurocomputing,
467:418–426, 2022.

[12] Sudhansu Chokroverty. Overview of sleep and sleep disorders. Indian J Med Res,
131(2):126–140, 2010.

[13] Mayo Clinic. EEG (electroencephalogram). https://www.mayoclinic.org/

tests-procedures/eeg/about/pac-20393875.

[14] Mohammed Diykh, Yan Li, and Peng Wen. EEG sleep stages classification based on
time domain features and structural graph similarity. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 24(11):1159–1168, 2016.

[15] Yingjun Du, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek,
and Ling Shao. Learning to learn with variational information bottleneck for domain
generalization. In European Conference on Computer Vision, pages 200–216. Springer,
2020.

[16] Luay Fraiwan, Khaldon Lweesy, Natheer Khasawneh, Mohammad Fraiwan, H Wenz,
and H Dickhaus. Classification of sleep stages using multi-wavelet time frequency
entropy and LDA. Methods of Information in Medicine, 49(3):230–237, 2010.

[17] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backprop-
agation. In International Conference on Machine Learning, pages 1180–1189. PMLR,
2015.

[18] Theo Gasser, Petra Bächer, and Joachim Möcks. Transformations towards the normal
distribution of broad band spectral parameters of the EEG. Electroencephalography
and Clinical Neurophysiology, 53(1):119–124, 1982.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

45

https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875
https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875

[20] Thomas Grubinger, Adriana Birlutiu, Holger Schöner, Thomas Natschläger, and Tom
Heskes. Domain generalization based on transfer component analysis. In International
Work-Conference on Artificial Neural Networks, pages 325–334. Springer, 2015.

[21] Shoubo Hu, Kun Zhang, Zhitang Chen, and Laiwan Chan. Domain generalization
via multidomain discriminant analysis. In Uncertainty in Artificial Intelligence, pages
292–302. PMLR, 2020.

[22] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging improves
cross-domain generalization. In European Conference on Computer Vision, pages
124–140. Springer, 2020.

[23] Syed Anas Imtiaz. A systematic review of sensing technologies for wearable sleep
staging. Sensors, 21(5):1562, 2021.

[24] Pankaj Jadhav, Gaurav Rajguru, Debabrata Datta, and Siddhartha Mukhopadhyay.
Automatic sleep stage classification using time–frequency images of CWT and transfer
learning using convolution neural network. Biocybernetics and Biomedical Engineer-
ing, 40(1):494–504, 2020.

[25] Vijaylaxmi P Jain, VD Mytri, VV Shete, and BK Shiragapur. Sleep stages classifica-
tion using wavelettransform and neural network. In Proceedings of 2012 IEEE-EMBS
International Conference on Biomedical and Health Informatics, pages 71–74, 2012.

[26] Ziyu Jia, Youfang Lin, Jing Wang, Xiaojun Ning, Yuanlai He, Ronghao Zhou, Yuhan
Zhou, and L.-W. H Lehman. Multi-view spatial-temporal graph convolutional net-
works with domain generalization for sleep stage classification. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 29:1977–1986, 2021.

[27] Xin Jin, Cuiling Lan, Wenjun Zeng, Zhibo Chen, and Li Zhang. Style normaliza-
tion and restitution for generalizable person re-identification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3143–
3152, 2020.

[28] B. Kemp, A.H. Zwinderman, B. Tuk, H.A.C. Kamphuisen, and J.J.L. Oberye. Anal-
ysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of
the EEG. IEEE Transactions on Biomedical Engineering, 47(9):1185–1194, 2000.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

46

[30] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[31] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize:
Meta-learning for domain generalization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[32] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M
Hospedales. Episodic training for domain generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1446–1455, 2019.

[33] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization
with adversarial feature learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5400–5409, 2018.

[34] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and
Dacheng Tao. Deep domain generalization via conditional invariant adversarial net-
works. In Proceedings of the European Conference on Computer Vision, pages 624–639,
2018.

[35] Yiying Li, Yongxin Yang, Wei Zhou, and Timothy Hospedales. Feature-critic networks
for heterogeneous domain generalization. In International Conference on Machine
Learning, pages 3915–3924. PMLR, 2019.

[36] David JC MacKay, David JC Mac Kay, et al. Information theory, inference and
learning algorithms. Cambridge University Press, 2003.

[37] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Best
sources forward: Domain generalization through source-specific nets. In 2018 25th
IEEE International Conference on Image Processing, pages 1353–1357. IEEE, 2018.

[38] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw-Hill
New York, 1997.

[39] Andreas Muff Munk, Kristoffer Vinther Olesen, Sirin Wilhelmsen Gangstad, and
Lars Kai Hansen. Semi-supervised sleep-stage scoring based on single channel EEG.
In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 2551–2555, 2018.

47

[40] W Chance Nicholson and Kate Pfeiffer. Sleep disorders and mood, anxiety, and post-
traumatic stress disorders: Overview of clinical treatments in the context of sleep
disturbances. Nursing Clinics, 56(2):229–247, 2021.

[41] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation
via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–
210, 2010.

[42] Mohammad Peikari, Sherine Salama, Sharon Nofech-Mozes, and Anne L Martel. A
cluster-then-label semi-supervised learning approach for pathology image classifica-
tion. Scientific Reports, 8(1):1–13, 2018.

[43] Michael J Prerau, Ritchie E Brown, Matt T Bianchi, Jeffrey M Ellenbogen, and
Patrick L Purdon. Sleep neurophysiological dynamics through the lens of multitaper
spectral analysis. Physiology, 32(1):60–92, 2017.

[44] Mustafa Radha, Pedro Fonseca, Arnaud Moreau, Marco Ross, Andreas Cerny, Pe-
ter Anderer, Xi Long, and Ronald M Aarts. A deep transfer learning approach for
wearable sleep stage classification with photoplethysmography. NPJ Digital Medicine,
4(1):1–11, 2021.

[45] Kannan Ramar, Raman K Malhotra, Kelly A Carden, Jennifer L Martin, Fariha
Abbasi-Feinberg, R Nisha Aurora, Vishesh K Kapur, Eric J Olson, Carol L Rosen,
James A Rowley, and Anita V Shelgikar. Sleep is essential to health: An American
Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine,
17(10):2115–2119, 2021.

[46] Douglas A Reynolds. Gaussian mixture models. Encyclopedia of Biometrics, 741(659-
663), 2009.

[47] Jose Luis Rodŕıguez-Sotelo, Alejandro Osorio-Forero, Alejandro Jiménez-Rodŕıguez,
David Cuesta-Frau, Eva Cirugeda-Roldán, and Diego Peluffo. Automatic sleep stages
classification using eeg entropy features and unsupervised pattern analysis techniques.
Entropy, 16(12):6573–6589, 2014.

[48] Donald B Rubin and Dorothy T Thayer. EM algorithms for ML factor analysis.
Psychometrika, 47(1):69–76, 1982.

48

[49] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi
Jyothi, and Sunita Sarawagi. Generalizing across domains via cross-gradient training.
International Conference on Learning Representations, 2018.

[50] Simon J Sheather. Density estimation. Statistical Science, pages 588–597, 2004.

[51] Michael Sokolovsky, Francisco Guerrero, Sarun Paisarnsrisomsuk, Carolina Ruiz, and
Sergio A Alvarez. Deep learning for automated feature discovery and classification of
sleep stages. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
17(6):1835–1845, 2019.

[52] Akara Supratak and Yike Guo. TinySleepNet: An efficient deep learning model for
sleep stage scoring based on raw single-channel EEG. In 2020 42nd Annual Inter-
national Conference of the IEEE Engineering in Medicine & Biology Society, pages
641–644, 2020.

[53] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 2018.

[54] Thorsten Thadewald and Herbert Büning. Jarque–bera test and its competitors for
testing normality–a power comparison. Journal of Applied Statistics, 34(1):87–105,
2007.

[55] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino,
and Silvio Savarese. Generalizing to unseen domains via adversarial data augmenta-
tion. Advances in Neural Information Processing Systems, 31, 2018.

[56] Olivia Walch, Yitong Huang, Daniel Forger, and Cathy Goldstein. Sleep stage predic-
tion with raw acceleration and photoplethysmography heart rate data derived from a
consumer wearable device. Sleep Research Society, 42(12):zsz180, 2019.

[57] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang
Chen, Wenjun Zeng, and Philip Yu. Generalizing to unseen domains: A survey on
domain generalization. IEEE Transactions on Knowledge and Data Engineering, 2022.

[58] Hao Wu and Saurabh Prasad. Semi-supervised deep learning using pseudo labels
for hyperspectral image classification. IEEE Transactions on Image Processing,
27(3):1259–1270, 2017.

49

[59] Xiaolei Wuzheng, Shigang Zuo, Li Yao, and Xiaojie Zhao. Semi-supervised sparse
representation classification for sleep EEG recognition with imbalanced sample sets.
Journal of Mechanics in Medicine and Biology, 21(5):2140006–1–2140006–13, 2021.

[60] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup:
Beyond empirical risk minimization. International Conference on Learning Represen-
tations, 2018.

[61] Li Zhang, Junjun Xiong, Heng Zhao, Hong Hong, Xiaohua Zhu, and Changzhi Li.
Sleep stages classification by CW Doppler radar using bagged trees algorithm. In
2017 IEEE Radar Conference, pages 788–791, 2017.

[62] Ranqi Zhao, Yi Xia, and Yongliang Zhang. Unsupervised sleep staging system based
on domain adaptation. Biomedical Signal Processing and Control, 69:1–9, 2021.

[63] Fan Zhou, Zhuqing Jiang, Changjian Shui, Boyu Wang, and Brahim Chaib-draa.
Domain generalization with optimal transport and metric learning. arXiv preprint
arXiv:2007.10573, 2020.

[64] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain gener-
alization: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

[65] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-
adversarial image generation for domain generalisation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 13025–13032, 2020.

[66] Guohun Zhu, Yan Li, and Peng Wen. Analysis and classification of sleep stages based
on difference visibility graphs from a single-channel EEG signal. IEEE Journal of
Biomedical and Health Informatics, 18(6):1813–1821, 2014.

[67] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Syn-
thesis Lectures on Artificial Intelligence and Machine learning, 3(1):1–130, 2009.

50

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	Table 1: Improvements in accuracy
	Table 2: Improvements in F1 score
	Table 3: Performance (AD test statistics) of fixed transformation
	Table 4: Improvements in AD statistics

	List of Figures
	Figure 1: Cluster-then-label algorithm pipeline.
	Figure 2: The curves of probabilities of correctly labeling a cluster.
	Figure 3: The structure of TinySleepNet.
	Figure 4: The curves of the basic transformation.
	Figure 5: The cluster-then-label accuracy with respect to the mean difference and covariance.
	Figure 6: Visualization of classifiers.
	Figure 7: Overall trending of risk.
	Figure 8: Data distribution before and after transformation.
	Figure 9: Initialization for Gaussian transformation networks.
	Figure 10: The impact of initialization using KL loss.
	Figure 11: The impact of initialization using JB loss.
	Figure 12: The impact of different training loss.
	Figure 13: Loss history of one-for-all network.
	Figure 14: Distributions before transformation.
	Figure 15: Distributions after transformation.
	Figure 16: Comparison between the resulting distributions of PCA and neural networks.

	Preface
	1.0 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2.0 Prerequisites
	2.1 Machine Learning
	2.2 Sleep Stages and EEG Band Power

	3.0 Related Works
	3.1 Sleep Stage Classification
	3.2 Domain Generalization
	3.2.1 Data Manipulation
	3.2.2 Representation Learning
	3.2.3 Learning Strategy

	3.3 Gaussian Transformations for EEG Signal

	4.0 Proposed Methods
	4.1 Problem Formulation
	4.2 Cluster-Then-Label Algorithm
	4.3 Affects of Pre-Trained Classifier's Accuracy
	4.4 k-Means Clustering and TinySleepNet Classifier
	4.4.1 Clustering with k-Means
	4.4.2 TinySleepNet

	4.5 GMM Clustering and LDA Classifier
	4.5.1 Linear Discriminate Analysis
	4.5.2 Clustering with Gaussian Mixture Model
	4.5.3 Multitaper Spectrogram

	4.6 Gaussian Transformations
	4.6.1 Assembled Fixed Transformation
	4.6.2 Transformations Using Neural Networks
	4.6.2.1 Training With Jarque–Bera (JB) Normality Test
	4.6.2.2 Training with Anderson-Darling (AD) Test
	4.6.2.3 Training with Kullback–Leibler (KL) Divergence

	4.6.3 One Neural Network for All Stages

	5.0 Experiments and Results
	5.1 Cluster-Then-Label Using k-Means and TinySleepNet
	5.2 Cluster-Then-Label Using LDA and GMM
	5.3 Experiments on Artificial Data
	5.3.1 2-D Experiments of Clustering
	5.3.2 2-D Experiment on the Effect of Mislabeled Data

	5.4 Assembled Fixed Gaussian Transformation
	5.5 Neural Network Based Transformations
	5.5.1 Impact of Initialization
	5.5.2 Impact of Different Training Loss
	5.5.3 Experiments of One-for-All Neural Network

	5.6 Transformation Networks with Dimensionality Reduction

	6.0 Conclusions
	Bibliography

