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On the Reliability of Neuromorphic, Event-Based Systems for Space

Seth Roffe, PhD

University of Pittsburgh, 2022

Neuromorphic, event-driven systems can be separated into two main sections: neuromor-

phic vision and neuromorphic processing. Both are remarkably efficient methods that aim

to offer a new archetype of computing. The shared concept between the two is to process

or sense in the temporal domain. Event-based vision sensors replicate biological retinas to

make use of their high power efficiency, sparse output representation, and large dynamic

range. Similarly, neuromorphic processors are modelled after the human brain to simulate

how neurons fire and learn. This computational model improves power efficiency, enables

native machine-learning capabilities, and overcomes the von Neumann memory bottleneck.

This research designs, creates, and evaluates a full system for reliable sensor process-

ing within a neuromorphic classification system from end to end. This evaluation involves

ensuring that the failure modes and reliability of a neuromorphic system are known at ev-

ery step from sensor data, to processing data, to output data. The matrix-multiplication

kernel was chosen as a common algorithm needed for ML/CV applications and evaluated

for its reliability and efficiency under different dependable-computing techniques. Given the

results from this evaluation, a neuromorphic vision sensor was chosen for further study due

to its promise in low-power ML/CV capabilities and low data rate. This research provides

the first radiation test data to observe and model the effects induced by radiation. The

Event-Based Radiation-Induced-Noise Simulation Environment (Event-RINSE) is proposed

as a fault injector to simulate the modeled neutron effects on event data without the need

for radiation testing. Finally, a neuromorphic classification method, the Hierarchy of Event-

Based Time-Surfaces (HOTS) is studied for use in a radiative environment such as space to

build off of the previous two experiments. Specifically, how the Time Surface features and

other common neuromorphic computations such as time delays respond to radiation noise,

and how upsets affect classification accuracy, are evaluated. Given these results, methods

to create a more reliable neuromorphic architecture for use in hazardous environments are
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proposed. Each section provides a piece of a complete neuromorphic classification system.

This research provides a starting point to realizing a reliable, fully neuromorphic sensing

and processing system for future spacecraft.
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1.0 Introduction

As technology improves, spacecraft designers are constantly searching for new sensors

and computers to use in their systems. However, onboard processing still continues to be

outpaced by the computational demands from modern missions. Missions often introduce

stringent limitations in size, weight, power, and cost (SWaP-C), while still requiring complex

algorithms to function. Similarly, the ability to downlink the massive datasets needed to run

compute-intensive applications on the ground becomes infeasible due to limitations in ground

communications, meaning onboard processing becomes vital to mission success.

The recent advancements in machine-learning and computer-vision (ML/CV) algorithms

present novel opportunities for improving sensor processing, data analysis, and autonomy.

To achieve the computational capability required to reasonably run these applications, the

power-efficiency and computation capabilities of commercial-off-the-shelf (COTS) devices

become appealing, as opposed to their antiquated and power-hungry radiation-hardened

counterparts typically used in space missions. However, the space environment is harsh,

introducing new challenges such as ionizing radiation, which can cause faults in the form of

single-event-effects (SEEs) in commercial electronics. Moreover, COTS devices are even more

vulnerable to radiation effects than traditional radiation-hardened devices [81]. Therefore,

it is vital for designers to evaluate the reliability of novel technologies before deployment.

Neuromorphic, event-based systems are perfectly suited to overcome the described chal-

lenges in space computing. Event-based systems can be divided into two key paradigms:

neuromorphic vision and neuromorphic processing. Both paradigms aim to mimic a biolog-

ical equivalent. Neuromorphic-vision systems mimic the biological retina to take advantage

of their low temporal resolution and motion-tracking abilities. Similarly, neuromorphic pro-

cessors are modelled after the human brain’s neuron-synapse system to match its energy-

efficient computing. The shared concept between the two is to collect or process information

asynchronously in the time domain as opposed to the spatial domain in conventional vision

sensors and image-processing applications. This concept provides a fast, efficient method to

realize actionable data at high resolutions while maintaining a low data rate.
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Neuromorphic vision sensors detect changes in light intensity at microsecond levels of

precision. Timestamped information about the event pixel location and whether the light

intensity was increasing (ON) or decreasing (OFF) is sent as an event. Any static, redundant

background information is therefore not passed through the sensor, reducing the size of the

data being collected and providing a sparse representation of the field of view. Neuromor-

phic processors, on the other hand, aim to overcome the von Neumann bottleneck where

computers are limited by the transfer of data between memory and the processor. Neuro-

morphic processors use time spikes as a method of encoding information in the temporal

response of hardware, providing improved energy efficiency and higher bandwidth due to

their event-driven nature. More details behind both neuromorphic vision and neuromorphic

processing are covered in Chapters 3 and 4, respectively.

Before neuromorphic sensors and processors are flown, however, their resilience to radia-

tion needs to be tested. Similarly, before any missions use neuromorphic applications, their

failure modes and sensitivity to single-event upsets (SEUs), an SEE in the form of a single

bit-flip in memory, must be measured and evaluated. With these measurements and noise

models, spacecraft designers can test their applications beforehand to ensure that the effects

will not impact the science data being gathered, and improve the applications if necessary.

The purpose of this research is to perform these initial measurements on neuromorphic,

event-based vision sensors and architectures and create the models needed to perform such

analyses. Similarly, reliable methods for applications to combat any SEUs are also evaluated

for their efficacy in detecting or correcting errors, and reliable architectures are proposed.

This research aims to design and evaluate a fully neuromorphic system, ensuring reliable

data collection and computation from end to end, providing the necessary information for

future missions to create reliable architectures.

This manuscript consists of three chapters. Chapter 2 covers an evaluation of different

dependable-computing techniques to provide error correction and detection on a matrix-

multiplication kernel, which are the primary type of computation in ML/CV inference ap-

plications. Algorithm-based fault tolerance (ABFT) and duplex redundancy within two

processor cores were tested as the most common dependability techniques for these kinds of

computations, and any performance, reliability, and overhead tradeoffs are discussed. Chap-
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ter 3 covers the first neutron irradiation of a neuromorphic-vision sensor to observe the

effects of radiation on the data and to model the induced noise profile. The neuromorphic

sensor was chosen for its promise in low-power ML/CV capabilities and low data rate. The

Event-Based Radiation-Induced Noise Simulation Environment is introduced to simulate the

observed and modeled effects in recorded neuromorphic data. Finally, Chapter 4 discusses

the reliability of neuromorphic classification algorithms to observe how the use of temporal

features in ML apps behave when introduced to radiation noise. The Hierarchy of Time

Surfaces (HOTS) architecture is used as a case study to measure the behavior of temporal

features features and other common computations used in neuromorphic networks such as

exponential decays and distance computations. Methods to create more reliable neuromor-

phic architectures for use in hazardous environments are then designed and proposed for

future missions. Overall, this manuscript provides methods and information to improve the

reliability at each step in a neuromorphic sensor-processing application, from sensor data

collection, through data processing to the final result.
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2.0 Dependable-Computing Techniques for ML/CV

Using COTS electronics in hazardous environments such as space presents a number of

difficulties leading to the development of new technologies and strategies. For example, the

NSF Center for Space, High-Performance and Resilient Computing (SHREC), located at the

University of Pittsburgh, created the CHREC Space Processor (CSP), employing a Xilinx

Zynq-7020 SoC with a dual-core ARM Cortex-A9 processor and Artix-7 field-programmable

gate array (FPGA), for radiation-tolerant, high-performance, and reconfigurable space com-

puting. The concept behind the CSP is that of hybrid computing, where a high-performance

COTS processor is used alongside radiation-tolerant and radiation-hardened components.

This concept provides a model that maintains the energy efficiency and computational ca-

pabilities of commercial parts, while still remaining capable of withstanding the radiation-

heavy space environment. The CSP has been flight proven on three separate missions on

the International Space Station, further demonstrating its resilience. Namely, the CSP has

successfully been flown on the Space Test Program - Houston 5 (STP-H5) CSP mission, STP-

H6 Spacecraft Supercomputing for Image and Video Processing (SSIVP) mission, STP-H7

Configurable and Autonomous Sensor Processing Research (CASPR) mission. [74,77,93].

Traditional radiation-hardened electronic systems are often employed to tolerate a high

total ionizing dose (TID) and single-event effects (SEEs) from the harsh space environ-

ment. However, these processors tend to be generations behind their COTS counterparts

in terms of performance, energy-efficiency, and cost. Using commercial devices combined

with radiation-hardened components and dependability-enhancing software allows for high-

performance required for neuromorphic applications while still remaining a high degree of

radiation tolerance. Better performance while still remaining close to the reliability of a

radiation-hardened system enables the use of more complex applications in harsh environ-

ments such as space.

Using COTS solutions, the capability of on-board processing for these neuromorphic

ML/CV applications, such as HOTS, improves. However, COTS electronics are very sus-

ceptible to radiation. As a result, the reliability of computationally complex kernels, such as

4



matrix multiplication for machine learning and computer vision, becomes a concern. Namely,

single-event upsets (SEUs) occur when a high-energy particle strikes a microelectronic com-

ponent and either changes the state of the circuit [81]. These faults can then manifest as

transient-data errors, corrupting the output of the application.

Algorithm-based fault tolerance (ABFT) was introduced by Huang and Abraham as a

method of information redundancy in matrix operations [32]. Their algorithm focuses on

encoding a vector of data using a checksum in order to detect and correct data errors caused

by SEUs. Since the dimensionality of the data is reduced on encoding, the memory overhead

is relatively insignificant.

In this chapter, the efficacy of ABFT for error mitigation in neuromorphic ML/CV

applications was tested by means of fault injection and neutron irradiation with a focus

specifically on output-data errors as opposed to control errors or input-data errors. The

results demonstrate the use of ABFT to ensure that compute time is not being wasted

on corrupted data. This capabilities of this technique are then assessed by examining the

reliability and performance impact on processing time.

2.1 Background

This section provides a cursory overview of reliability testing in computing, ABFT, ma-

chine learning and computer vision in spacecraft, and computational complexity. This dis-

sertation combines strategies from variously studied fields in order to demonstrate methods

to create a more reliable system for applications.
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2.1.1 Fault Injection

Fault injection is a methodology that is commonly used to validate the dependability of

fault-tolerant systems [98]. Typically fault-injection experiments consist of controlled tests

where the behavior of a system in the presence of faults is observed by writing faults directly

into the system during operations. Therefore, the reliability of a system can be measured

and tested before deployment. Similarly, any vulnerabilities in the system can be found and

adjusted through fault injection.

The two main categories of fault injection used in this experiment consist of hardware and

software fault injection. Hardware-based fault injection happens at a physical level, where

faults are induced by disturbing the hardware from the environment. This disturbance could

consist of causing a dip in the voltage of the system’s power supply, radiation-beam testing to

cause electromagnetic interference in the computing, or even manually modifying the value

of specific pins on the device-under-test [98].

Software-based fault injection can happen at a variety of levels of abstraction. Namely,

the registers can be affected to induce faults on a low-level. The objective of this kind

of testing would be to observe the response of the system for data faults as well as control

faults. Similarly, this type of low-level injection gives a more realistic view of how the system

would behave in a harsh environment. Conversely, faults can be injected at a high-level in

software. This injection would consist of directly changing elements of data in software

to observe the response of the tested reliability technique. Injecting directly in the data

increases the number of samples by guaranteeing where the injection takes place, but it

unfortunately does not give a good indication of how the system would behave in a harsh

environment. This high-level fault injection would primarily be used to test the response of

a specific reliability technique.
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2.1.2 Neutron Beam Testing

Models describing galactic cosmic radiation show that the majority of radiation experi-

enced in orbit would consist of protons and heavy ions [10]. However, neutron beam testing

proves to be useful for testing error mitigation strategies with a lower risk of permanently

damaging the device under test. Specifically, when testing the response of a mitigation

technique to SEUs, the source of said SEU becomes irrelevant.

Beam testing is popular in the field of computing to classify SEUs of new systems and

mitigation strategies. Knowledge of radiation data is critical to the design process for space

missions by giving an overview of the form of upsets a system might see. For example,

Anderson et al. performed a neutron beam experiment on the Xilinx UltraScale+ MPSoC

to observe the number system crashes and silent data errors invoked from radiation [7]. With

each new device destined for spaceflight, beam testing is vital in determining its viability in

space.

Similarly, neutron beam testing is commonly used to test the robustness of systems to

SEUs. NASA Langley Research Center and Honeywell used neutron radiation testing to

test the robustness of their flight control computer architecture to test flight capabilities in

a hazardous environment. In their experiment, they were able to measure the ability of their

architecture to recover from neutron-induced faults [36].

The experiment detailed in this chapter follows a structure similar to the latter ex-

periment. Namely, the ability for ABFT to recover faults in a radiation environment was

measured to test its viability for applications in space missions.

2.1.3 Reliability Techniques

All reliability techniques center around one main concept: redundancy. In order to detect

or correct errors in a fallen system, there must be some form of redundant information that

is able to detect when something changes. Redundancy can take many forms and typically

fall within one of five categories: hardware redundancy, information redundancy, network

redundancy, software redundancy, and time redundancy [39]. The techniques presented in

this chapter fall under hardware and information redundancy.
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Hardware redundancy involves adding additional hardware to catch any faulty modules.

One popular form of hardware redundancy is modular redundancy which involves having

multiple modules run the same application and compare the outputs to ensure they match.

One common forms of this kind of redundancy is Triple Modular Redundancy which involves

using three redundant modules and taking a majority voter to get the output. This type

of redundancy enables single error correction since a faulty module will be out-voted by the

other two [39]. However, it tends to be expensive since three redundant hardware modules

are required. Another form of modular redundancy is duplex redundancy which involves

using two redundant modules and restarting the execution if the outputs differ. Duplex

redundancy enables single error detection only since there is no method in determining

which module has the correct output.

Conversely, information redundancy involves having additional bits of data that holds

identifying information about the application. The number of errors that can be corrected

or detected depends directly on how many extra pieces of information are stored [39]. This

extra information causes the memory overhead to increase as the number of detectable errors

increases. Information redundancy tends to be cheaper than hardware redundancy since no

additional modules are needed at the cost of being less reliable. ABFT falls under this form

of redundancy as it holds encoded data from a matrix in checksum vectors separate from

the matrices they represent.

2.1.4 Algorithm-Based Fault Tolerance

To make matrix operations more reliable, ABFT uses extra bits to encode data in order

to detect and correct errors. A popular encoding sequence for this method is performed

by adding additional checksum vectors, called weighted checksums, to the matrix operands.

These vectors containcontaining redundant information about the matrix, such as the sum

of the rows or the sum of the columns. These weighted checksums can be expanded to enable

detection and correection of more errors within the matrix as long as it contains different

types of redundant data. For example, two possible row checksum vectors could be the sum

of the columns and the sum of 2k times the columns where k is the index of the element’s
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row. If there are n checksum vectors, then either n errors can be detected, but not necessarily

corrected, or ⌊n
2
⌋ errors can be corrected [32]. If an error were to exist in one of the elements of

the operand, the information contained in the matrix and the checksums would be different,

leading to an error detection. With multiple checksums, the error can be pinpointed in

the matrix using the indices of the mismatched checksum vector elements. Then, through

subtracting the checksum value from the sum of the row or column while excluding the

error value, the corrupted data can be recovered in the original matrix without the need to

restart the entire application. There has been much research into different applications and

techniques of ABFT. There are many matrix operations that are of interest to the studies of

fault-tolerant computing, such as lower-upper (LU) decomposition and gaussian elimination

that use similar checksum vectors to detect errors in computation [51]. As mentioned, ABFT

is specific to the application under study, so each operation or algorithm needs to be verified

that the output preserves the encoding scheme prior to use.

NASA’s Jet Propulsion Laboratory (JPL) has investigated the use of ABFT for onboard

data analysis in the presence of SEUs. They performed fault injection as a way to inject

different amounts of faults into their application and view ABFT’s response. With this

methodology, JPL is able to simulate a radiative environment by forcing SEUs into their

application. As a test case for their ABFT techniques, they used prediction on a support

vector machine binary classifier. Their proposed approach used checksums before and after

critical matrix-multiplication operations. Testing with 100 different SVMs whose matrix

computations were exposed with varying rates of SEU faults, they found that detection

improved at highter SEU rates [29].

ABFT is also a popular approach in the high-performance computing (HPC) community

for its ability to detect and correct errors without stopping the computation [21]. With

increasingly large runtimes from increasingly more complex applications, the mean time to

failure (MTTF) sharply declines. Therefore, effects from multiple fault tolerant techniques

have been studied. For example, Du et al. employ ABFT methods with checkpointing

methods for dense matrix factorizations to significantly increase fault tolerance while keeping

the overhead low [24].
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Aside from the research into the application side of ABFT, different encoding methods

has also been studied to ensure the most efficient use of data redundancy. Anfinson and Luk

detail a linear algebra model of the checksum method [8]. This model provides a method of

selecting ”proper” weights in a weighted checksum. In other words, using different weights

defined in the checksum vectors gives methods to enable error correction as well as error

detection.

This experiment focuses on evaluating the efficacy of ABFT for matrix multiplication

specifically with machine learning and computer vision applications in spacecraft. Past

research with ABFT has shown that it is an attractive solution to applications that use

matrix operations. In order to use the methodology in the field intelligently, its performance

needs to be measured. Due to the algorithm-specific nature of ABFT, the methodology

needs to be applied to the application at hand. Therefore, it is much more efficient to test

ABFT on kernels upon which many useful applications rely as opposed to testing specific

applications in order to view its effects on a broad range of cases.

2.1.5 Machine Learning and Computer Vision in Spacecraft

To enable spacecraft autonomy, researchers have been examining the use of machine-

learning algorithms that employ neural networks for sensing experiments. Benediktsson et

al. show that neural networks are significantly more accurate at pattern recognition and

classification in remote sensing data than traditional statistical methods [13]. However, they

also cite that the neural network algorithm used is more computationally intensive than

statistical methods, resulting in longer execution times. These long execution times leads to

a greater higher susceptibility to radiation effects.

Similarly, computer-vision applications are essential in autonomous mission operations.

Ho and McClamroch detail a formulation of automatic spacecraft docking using computer

vision [31]. Any application built around image or video data will make heavy use of matrix

operations. Therefore, the methodologies detailed are very complex, leading to a long run-

time on embedded platforms. Therefore, data reliability is essential to avoid catastrophic

failures.
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In the realm of space applications, neural-network training would occur on the ground

using previously acquired data as the training set. Once trained, the weights would be trans-

mitted to the onboard processor, and only inference would occur onboard for classification

purposes. The desire to classify objects in real-time necessitates the need for fast neural-

network inference, which relies on both hardware and software that can perform matrix

multiplications quickly and resiliently due to the radiative conditions in space.

2.1.6 Computational Complexity

To increase the reliability of matrix-multiplication-based applications in software, mul-

tiple methods can be considered. Either the data must have redundancy, or the application

must be made faster to avoid vulnerability. Similarly, the probability of a radiation-induced

error increases with the size of the data (n) and the amount of time that the data is under

computation (t). Execution time of matrix multiplication is dependent on n and expressed

with Big O notation, describing the worst-case execution time for a given algorithm, O(f(n))

for some function f as n becomes sufficiently large.

Stothers’ thesis covers the details of the computational complexity behind matrix mul-

tiplication. The serial matrix multiplication algorithm is known to have a complexity of

O(n3). Using the recursion methodology shown in Stothers’ paper, he was able to reduce

the complexity to approximately O(n2.807) [83]. However, this improvement is insufficient

to significantly reduce the risk involved in matrix multiplication in a radiative environment.

This research shows that the complexity of matrix multiplication is bounded from below

asymptotically. Therefore, the only viable way to reduce execution time of matrix multipli-

cation is to implement parallelization techniques. However, adding parallel processing also

increases the application’s vulnerability to radiation due to propagation from potential race

conditions over multiple cores. Thus, for large datasets and repeated computations, data

redundancies such as ABFT present an attractive solution to the reliability problem.
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2.2 Platform Selection

This experiment was tested on the processing system (PS) side of the Digilent PYNQ-Z1

with a Xilinx Zynq 7020 system-on-chip (SoC) to emulate the CSP. The CSP features the

same commercial ZC7020 SoC along with radiation-hardened watchdog and power circuitry

to ensure the reliability of critical components [93]. While COTS electronics offer more com-

putational power to perform intensive algorithms, they are very susceptible to the radiation

environment. Therefore, if any of these algorithms are used on a space processor such as the

CSP, fault mitigation techniques are necessary to ensure the accuracy of the application.

2.3 Experimentation

This chapter describes the methodology and results of the experiment. The methodology

of this experiment consists of fault-injection and irradiation to test the efficacy of ABFT.

2.4 Methodology

This section explains the methodology of each step of the experiment performed. The

experiment can be separated into fault injection and irradiation. Fault injection was per-

formed separately from irradiation as an original test for the capabilities of ABFT and

expected results.

2.4.1 Fault Injection

Fault injection was performed at a high-level and a low-level with respect to the appli-

cation. The high-level injector injected different amounts of errors into the matrix operands

of a simple neural network by choosing a random element and changing its value. This high-

level injection was used to compare ABFT to another popular reliability method, duplex
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redundancy. Duplex redundancy involves running the same application on two cores of the

CPU and restarting if they have differing results. The number of faults injected varied to

observe the response of the underlying method.

As a way to generalize neuromorphic classification, a handful of possible networks were

chosen to act as examples to what would be used for HOTS classification. A neural-network

classifier run on the MNIST dataset was used to measure the effects of the SEUs on accuracy

and runtime for ABFT, duplex, and without any reliability techniques. 5,500 MNIST images

were used for a training set over 15 epochs and 5,000 were used for a validation set. Inference

was performed without any injections to obtain a golden, expected output that was used

to compare to all injections. The results of these fault injections gave a direct comparison

between the responses of ABFT and other reliability techniques to data errors.

Low-level fault injection involved performing bitflips on random registers within the

processor. This method gives a response that is more realistic to radiation effects as it is

hardware-dependent. Register fault injection was performed prior to radiation testing to

simulate possible outcomes of the radiation experiment. These injections were performed

on a 500 × 500 matrix multiplication kernel using the Dynamic robust Single Event Upset

simulator (DrSEUs) [20] on the Digilent PYNQ-Z1 to ensure a consistent platform.

Low-level injections were performed at random times during executions on random regis-

ters on the ARM Cortex-A9 processor. General-purpose registers were targeted specifically

to cause more data errors since other types of faults were not included in the scope of this

experiment. Since ABFT is data-specific, it would be ineffective at detecting any kernel-

related faults. The results of this fault injection show an idealistic view of the expected

results of the radiation experiment.

2.4.2 Irradiation

Three Digilent PYNQ-Z1 boards were used as the device-under-test (DUT) for this exper-

iment. Irradiation was done at the Los Alamos Neutron Science Center (LANSCE) Weapons

Neutron Research (WNR) facility using the 4FP30R/ICE-II instrument for neutron irradi-

ation. Despite the space environment being dominantly composed of proton and heavy-ion
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radiation, neutron irradiation provides valuable insight on the response of the mitigation

strategy to induced errors without causing significant permanent damage to the device. The

three boards were irradiated in a line and labeled as one, two, and three. Boards one and

three use ABFT-fault mitigation in matrix multiplication, while board two does not use

any mitigation techniques. Neutron dosimetry was tracked using a dosimeter to observe the

relative neutron flux passing in 10-second intervals. The boards were placed with the Zynq

SoC chips aligned to the 1-inch collimated beam, and irradiated simultaneously to ensure a

similar neutron fluence on each one, as shown in Figure 1.

Figure 1: The experimental setup consisting of three PYNQ-Z1 boards irradiated in a line.
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Each PYNQ board employed a matrix-multiplication kernel using the serial matrix-

multiplication algorithm. Two 500×500 matrices of 16-bit integers were multiplied together

to represent a large multiplication that would take place in a machine-learning or computer-

vision algorithm, such as a neural network. These added checksum vectors give 2×500 = 1000

bytes memory overhead for each input matrix and 2 × 2 × 500 = 2000 bytes of memory

overhead for the output, totaling at 4000 bytes. This added memory is less than one percent

of the memory needed to hold the matrices, so ABFT can be considered to have a negligible

memory overhead. Boards one and three used ABFT mitigation techniques, while board

two did not have any form of fault mitigation. This ordering was chosen to prevent any

significant bias from specific boards being closer to the beam.

2.4.3 Employed ABFT Configuration

ABFT was chosen to enable single-error correction (SEC) for each of the three separate

experiments, as recommended by Al-Yamani et. al since it shows an efficient correction-to-

overhead ratio for matrix multiplication [5]. One checksum was generated for each input

matrix: a row checksum representing the sum of the columns of the first and a column

checksum representing the sum of the rows of the second. Multiplication of these two matrices

and checksums results in an output matrix containing two checksums enabling single-error

correction and double-error detection (SEC/DED). Similarly, this methodology allows for

single-error detection (SED) between reading the data and the calculation in the initial

matrices that are being multiplied. In order to keep the checksums separate from the data,

each checksum was kept in a separate array data structure.

Before multiplying, the input matrices are compared with their checksums, and are

read in again if there were any discrepancies. The focus of this experiment was on errors

encountered during processing. External input/output errors were not considered due to

the fact that external errors are sensor-specific and cannot be addressed with ABFT. After

any multiplication, the checksum vectors are also multiplied by the matrix they are not

associated with to calculate the two checksums for the output. The output matrix is then

checked with these checksums and corrected if needed by cross referencing the location index
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of the error by which elements of the checksums disagree with the output. The element is

then restored by subtracting the sum of the rest of the row or column from the checksum

element. More than one error cannot be corrected due to SEC being the assumed scope of

the redundancy technique. The generalized matrix configurations for A×B = C with ABFT

supporting SEC/DED in the output is used with A,B, and C defined as in Equation 2–1.

A =



A1,1 · · · A1,n

...
. . .

...

Am,1 · · · Am,n

∑m
i=1Ai,1 · · ·

∑m
i=1Ai,k



B =


B1,1 · · · B1,k

∑k
i=1B1,i

...
. . .

...
...

Bn,1 · · · Bn,k

∑k
i=1Bn,i



=⇒ C =



C1,1 · · · C1,k

∑k
i=1 C1,i

...
. . .

...
...

Cm,1 · · · Cm,k

∑k
i=1Cm,i

∑m
i=1Ci,1 · · ·

∑m
i=1 Ci,k



(2–1)

2.4.4 Statistical Analysis

To evaluate statistical significance, various tests were performed on the final results. In

order to ensure a good distribution of observed errors, a sample size of about 16,000 events

was taken. The cross-section, calculated as the number of data errors divided by the neutron

fluence, was used to calculate the reliability of ABFT as an error mitigation strategy. To

evaluate the efficacy of adding ABFT to the operation, the mean-work-to-failure (MWTF)

was calculated. Finally, to ensure that the results were statistically significant, a z-test

was calculated between the distribution using ABFT and the distribution without error

mitigation.
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2.5 Experimental Results

The results of this experiment have been split into two separate events: fault injection

and irradiation. Fault injection was performed to give an idealistic view of the results prior

to irradiation. In this way, the two scenarios can be examined separately and then compared

after analysis.
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2.5.1 High-Level Fault Injection

High-level fault injection was performed to compare ABFT to duplex redundancy in

regard to the accuracy and runtime of a neural network. The number of mispredictions was

directly compared to the number of data faults that were injected.

Figure 2: Neural network number of different elements in the output matrix differences and

number of mispredictions vs. number of fault injections.

Figure 2 shows the mean number of mispredictions and the mean number of differences

compared with the golden matrix containing classification probabilities with respect to the

number of injections. In the figure, x symbols represent the average misprediction with a

scale on the right side of the plot, while dots represent discrepancies with the golden output
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matrix classification probabilities with a scale on the left side of the plot. Under normal

operations with no injected faults, the neural network exhibited 51 mispredictions, or a

94.9% test accuracy. When faults were injected into the network, the classification accuracy

degraded rapidly. For one, two, and three injections, the classification accuracy falls to

92.0%, 85.0%, and 79.8%, respectively. Adding ABFT and duplex redundancy brings the

classification accuracy back to 94.9% as in golden operations. Duplex shows more injections

overall since faults may be injected each time it restarts execution. Duplex did not show any

difference with the golden output matrix. Conversely, ABFT showed slight discrepancies

with the golden output matrix with more than one injection, as expected by the chosen

design of ABFT. However, these discrepancies did not manifest as increased mispredictions.

Figure 3: Neural network mean execution time vs. the number of injections.
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Figure 3 shows the mean execution time for the neural network using all three methods.

The runtime of the application with no redundancy technique stayed consistent around 3.04

seconds with a standard deviation on the order of 10−3 for any number of injections. Simi-

larly, ABFT showed little variation in the runtime with an average around 6.62 seconds and

a standard deviation on the order of 10−3 for any number of injections. The consistency in

runtime is due to the ability to recover from errors without restarting executions. Mean-

while, duplex runtime showed a linear relationship with the number of injections performed.

Therefore, while duplex showed the best reliability, it performed the worst in execution time

since it needed to restart with every error.
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2.5.2 Low-Level Fault Injection

Before irradiation, the reliability was examined with fault injection to compare the ex-

pected effects of data-error mitigation with ABFT. Errors seen in fault injection were cate-

gorized into “Injector Error” where the failure was internal to the fault injector, “Execution

Error” where the fault manifested as a segmentation fault or system crash, and “Data Er-

ror” where the output did not match the expected golden output. This experiment focuses

specifically on data errors.

Figure 4: Fault-injection outputs from DrSEUs without any form of error mitigation.

Both forms were run and injected 1000 times. Without any mitigation, 4.8% of executions

had outputs that differed from the expected matrix value giving a data error, as seen in

Figure 4. The number of data errors are increased compared to what would be seen in

a radiation experiment due to injecting specifically into the GPR. However, 6.2% of runs

presented execution errors of the form of hangs or segmentation faults.
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Figure 5: Fault-injection outputs from DrSEUs with ABFT.

Comparatively, only 0.1% of executions show data-output errors for the same number

of injections, shown in Figure 5. Therefore, a 48× improvement in reliability was observed

using ABFT for data-error mitigation in fault injections. However, since these injections were

targeted towards the general-purpose registers to force data errors instead of control errors,

the improvement is inflated from what would be expected in irradiation. Any reduction in

execution errors is an effect of having a lower sample size since ABFT has no bearing on

control errors. As the number of runs for each injection experiment grows, the number of

execution errors would approach roughly the same value.
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Table 1: Summary of Fault-Injection Reliability and Runtime Results for 1000 Executions.

Design Data Errors [%] Runtime [s]

No Mitigation 4.8 15.19± 1.92

With ABFT 0.1 15.58± 1.39

A summary of the fault-injection results described above can be seen in Table 1. The two

designs show no significant difference in runtime at about 15 seconds showing the minimal

impact ABFT has on time overhead.
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2.5.3 Irradiation

Figure 6: Neutron beam dosimetry over time over the days of irradiation: September 14,

2018 - September 17, 2018.

The measured dosimetry over the four days of experimentation provided by the dosimeter

can be seen in Figure 6. Neutron beam dosimetry over the days of irradiation, September 14

to September 17, 2018, were represented by the number of clicks processed by the dosimeter.

The number of clicks is multiplied by a constant for each day to represent an estimate of

the number of neutrons of energies greater than 1 MeV and 10 MeV passing through the

dosimeter.
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This dosimetry gives a measurement of the number of neutrons passing through the

dosimeter within a time interval of 10 seconds giving an estimate of the cross-section of

neutrons passing through the device. The dosimetry was only considered when the devices

under test were powered to calculate the cross-section

Figure 7: Results from four days of irradiation running a 500 × 500 matrix multiplication

kernel without error mitigation.

The overall reliability in the output data was compared between the matrix multiplica-

tions employing SEU mitigation with ABFT and without under the wide-spectrum neutron

radiation. Segmentation faults, system crashes, memory dumps etc. were classified as exe-

cution errors, and faults resulting in an out different from the expected was classified as a

data error. Without any form of error mitigation, the matrix multiplication kernel show 1%

of data errors over four days of irradiation. The ratio of unmitigated results can be seen in

Figure 7.

25



Figure 8: Results from four days of irradiation running a 500 × 500 matrix multiplication

kernel while using ABFT for data-error mitigation.

Meanwhile, using ABFT for error mitigation shows only 0.1% data errors. Dividing this

percentage by the number of data errors seen without mitigation gives a 10× improvement

in reliability. It can be seen that in both cases the number of execution errors remains the

same at around 2.2% as expected. The beam test results with ABFT mitigation can be seen

in Figure 8.
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Figure 9: Number of errors corrected in the output matrix (SEC) and errors detected in the

input matrices (SED).

To ensure that the reliability technique was, in fact, correcting errors, the number of

errors caught and corrected in the output (SEC) were measured. Additionally, the number

of errors detected in the input matrices (SED), restarting the calculation, was also measured.

These values can be seen in Figure 9, showing a significant number of errors observed and

corrected.
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Figure 10: Average runtime of 500× 500 matrix multiplication on the processor side of the

Xilinx Zynq 7020 for both tested configurations.

In order to show overhead, the runtime of each execution was measured. Adding ABFT to

the kernel did not result in a significant time increase. The average execution time increased

from 16.89 seconds without mitigation to 17.43 seconds as seen in Figure 10, leading to a

3% increase in execution time.
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Figure 11: Execution times relative to the average runtime without any fault mitigation.

This increase in execution time is mostly due to the input matrices need to be reread if

an error is detected in the inputs, and the calculation time for the checksum vectors. The

relative increase in time can be seen in Figure 11.
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Table 2: Summary of Beam-Test Reliability and Runtime Results Over Four Days of Irradi-

ation.

Design Data Errors [%] Runtime [s]

No Mitigation 1.0 16.89± 0.11

With ABFT 0.1 17.43± 0.89

A summary of the beam test results can be seen in Table 2. These results agree with

the results of fault injection and show a 10× reduction in data errors with minimal time-

overhead.

2.5.4 Statistical Significance

The cross-section was calculated by dividing the number of observed data errors by the

calculated neutron fluence seen in Figure 6. To account for when the boards were powered off,

only the effective fluence was calculated. Quantitative comparisons show a 5.33× reduction

in cross-section when ABFT is applied for fault-mitigation. In other words, there are about 5

times fewer errors per neutron that passes through the device-under-test. Therefore, adding

ABFT as a fault-mitigation strategy will increase reliability in the data of a system by more

than 5 times with a confidence level greater than 99% (p < 10−5).

Similarly, the mean work to failure (MWTF) with fault mitigation was about 15.05 times

that without any mitigation. This improvement shows that about 15 times more work can

be done before a failure occurs than a system without any mitigation. Calculating a z-test

between the two populations shows a confidence level of 99% with a p-value < 10−5.
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Table 3: Summary of Primary Comparisons Between Matrix Multiplication With ABFT for

Fault Mitigation and Without Error Mitigation

Design Eff.
Fluence

[n0]

#
Events

Exec.
Errors

Data
Errors

Cross-
Section
[cm2]

Mean
Work to
Failure

95%
Conf.

Interval

No Miti-
gation

1.25×
1011

16649 389 163 1.308×
10−9

1668 0.01±
1.17×
10−5

With
ABFT

4.49×
1010

16209 353 11 2.452×
10−10

25107 0.001±
3.82×
10−6

Improve 5.33× 15.05×

The 95% confidence interval is calculated to be 0.01±1.17×10−5 without mitigation and

0.001± 3.82× 10−6 with ABFT. Since the true means do not overlap within the confidence

interval, a statistically significant improvement in reliability is observed with high confidence.

A summary of the comparison results can be seen in Table 3.

There was no significant difference in the number of execution errors between the two

designs since execution errors were not addressed under the scope of this experiment. ABFT

does not protect against segmentation faults, nor is it capable of detecting kernel errors.

Therefore, the methodology presented in this chapter has no bearing on problems with the

execution of the application under test or control of the system.

2.6 Conclusions and Future Work

The purpose of this experiment was to evaluate the use of algorithm-based fault toler-

ance to mitigate data errors in the matrix-multiplication kernels of machine-learning and

computer-vision applications. The results show that ABFT is a viable solution to increase

reliability on applications using a matrix-multiplication kernel.

The complexity of matrix multiplication has been studied exhaustively and show no
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improvement in runtime. Therefore, the only way of improving reliability of matrix multi-

plication applications is by adding data redundancy. Using ABFT to correct errors in the

output matrix and detect errors in the input matrices show a reduction of data errors by

10× under radiation. There were still a small amount of data errors in the mitigated design

most likely due to upsets consisting of two or more bit-flips or damage to the board.

High-level fault injection was performed to compare ABFT’s performance to duplex

redundancy for matrix multiplication in a neural network. Both ABFT and duplex showed

no increase in mispredictions as compared to the control with no redundancy, although ABFT

did begin to exhibit matrix errors in the presence of multiple fault injections. The runtime for

the ABFT enabled network was almost twice that of the base algorithm, but did not increase

with an increasing number of faults. This increase in time overhead is inversely proportional

to the size of the matrix multiplication kernel, as shown by the radiation experiment. On

the other hand, duplex showed a linear increase in runtime with an increasing number

of injections, culminating in a runtime that can be orders of magnitude larger than that

of the control and the ABFT multiplications. As a result, ABFT demonstrates the best

performance in terms of speed and accuracy in a radiation environment for a neural network

application.

Fault-injection results show a more idealized effect of fault mitigation on the number

of data-errors due the general-purpose registers being the target of injection. The fault-

injection results agree with the beam-test results demonstrating consistency in the ability of

ABFT to improve a system’s reliability. Significant discrepancies in the fault-injection and

radiation results are due to the randomized nature of SEUs in a radiation-beam experiment

and the ideal nature of fault injection into general-purpose registers. This lack of controlled

variables in radiation testing causes control errors that were not considered in the scope of

this experiment, reducing the overall percentage of observed data errors.

Irradiation results show a statistically significant improvement in reliability in terms of

the cross-section and the MWTF with a negligible increase in runtime. Therefore, ABFT

has been shown to improve the resilience of data in a radiative environment. Similarly,

significantly more work can be done before an error is occurred, effectively increasing the

number of applications that can be run before encountering a failure. This increase can thus
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help improve the autonomy of missions.

In both fault injection and irradiation, the time overhead of ABFT is shown to be

minimal, averaging at about a 3% increase in execution time. This overhead is mostly due

to calculation of the checksum vectors and when a problem was found in the input matrices

with single-error detection. With the increase in reliability, ABFT is seen to have a significant

improvement in dependability with minimal overhead.

Execution errors were shown to be more prevailant than data errors even without mit-

igation. However, due to the methodology ABFT is built on, execution errors were not

addressed in the scope of this experiment. Data errors were specifically targetted for detec-

tion and correction in this experiment.

In general, data errors were not shown to be commonly occurring, accounting for less than

1% of all executions without mitigation. However, due to the number of decisions spacecraft

can make using machine-learning or computer-vision applications, this small percentage can

become non-negligible with time, especially if a single error can cause catastrophic failure.

Therefore, employing ABFT as data redundancy has been shown to be a viable solution

to significantly increase the amount of time and work done before failure while introducing

minimal overhead.

Moving forward with error mitigation in complex applications requires two main steps.

First, a new method of reducing errors in the execution of the application must be devel-

oped and addressed. ABFT is data specific, and does nothing to prevent control failures.

With kernel protection, it is more likely that the application will complete. Then, combin-

ing that protection with ABFT, the system can guarantee with reasonable certainty that

the application-under-test will produce not only a result, but an accurate one free from

corruption.

The second step in future uses of ABFT is to test the reliability of commonly-used

applications in spacecraft and with data from novel sensors. Many computer-vision and

machine-learning applications make use of the matrix multiplication kernel as their main

computation. An example of one such application is the support-vector machine (SVM)

used for image classification. Testing how ABFT affects the correctness of an SVM, or other

classification algorithms would show ABFT’s efficacy in ensuring accurate predictions and
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classifications in autonomous missions. If accurate predictions and classifications can be

made, then proper and intelligent decisions can be assured in future spacecraft. Similarly,

the benefit of using ABFT can be assessed when running applications parallelized with

multiple cores. With the ability to run parallel processing reliably in radiation environment,

the complexity of applications that missions are capable of increases even more.
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3.0 Radiation Effects on Neuromorphic, Event-Based Vision Sensors

Neuromorphic, event-based cameras are remarkably efficient, robust, and capable of op-

erating over a large range of light intensities. These sensors mimic the design of biolog-

ical retinas to make full use of their high power efficiency, sparse output, large dynamic

range, real-time computation, and low data rate. Neuromorphic sensors are built by copy-

ing aspects of their biological counterparts, and are therefore massively parallel and highly

non-redundant [65]. Each pixel of the sensor works independently, sensing changes in light

and providing output in the form of discrete events, signifying increasing or decreasing light

intensity.

Event-based cameras are a perfectly suited solution to space missions where the resource

budget is limited due to the reduced average bandwidth between the sensor and host needed

to collect data. These sensors have the potential to improve numerous space applications,

including those involved in space domain awareness, target tracking, Earth observation,

and astronomical data collection [58]. Due to the harsh conditions entailed, however, the

performance of such sensors in space is yet to be explored. The scope of this work is to test

the resilience of neuromorphic sensors to neutrons impacting the sensor in a highly radiative

environment. The goal is to determine the failure modes of the neuromorphic camera as

seen under the same spectrum as that produced by cosmic rays and to measure the possible

impact of neutrons on the temporal precision of output events, noise levels, and computation.

Although studies have been carried out into the behavior of various optoelectronic devices

under neutron radiation [6, 25, 33, 40, 89, 90], no work to date has addressed the radiation-

tolerance aspects of event-based visual sensors to analyze if this technology is capable of

retaining its efficacy under radiative conditions. To observe and evaluate SEEs, we irradiated

a neuromorphic event-based sensor at Los Alamos National Lab’s (LANL) ICE-II neutron

facility.

The measured neutron energy distribution at LANL-ICE-II is significantly more intense

than the flux of cosmic-ray-induced neutrons, and this allows for testing at greatly accelerated

rates. An ICE-II radiation test is about 5 × 107 more intense than neutrons from cosmic
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radiation [85]. Neutrons are known to interact with the materials in the semiconductor and

produce daughter particles, which may deposit or remove charge in sensitive volumes of the

chip. If the deposited charge is significant enough, it can change the state of a bit in the

system. In a digital system, this change of state is known as a bit-flip. Sensors include

analog circuitry, and therefore produce more complex behavior than simple bit-flips. Beam

testing is popular in sensor processing to classify SEEs in new computing systems and test

the robustness of systems to SEUs. Different systems may respond in different ways to

the radiation that brings about SEEs, producing faults and errors of varying degrees. The

effect of SEEs can range from negligible, where an unused area of memory is affected, to

single-event latch-ups that could damage the system permanently.

Knowing how a system may respond to radiation is vital to the success of a space mission

in that it provides an overview of the kind of upsets that may arise. This information allows

designers to plan for any problems that may be encountered in flight. SEUs are transient

in that they do not permanently damage the device, but they may cause some silent data

or control errors which, if uncaught, may lead to a loss of performance or accuracy. To

reduce risk, it is therefore vital to know how a new system will respond to radiation before

deployment.

In this chapter, we measured the effect of radiation and categorized the SEEs observed in

the sensor. We also tested how radiation affects pure event-based computation in the context

of optical-flow estimation, which is known to be sensitive to noise and temporal imprecision,

under both radiation and non-radiation conditions. Finally, we also used this preliminary

data to develop a simulator that makes it possible to inject events with radiation-noise effects

into any data stream. We call this simulator the “Event-based Radiation-Induced Noise

Simulation Environment (Event-RINSE).” Event-RINSE allows realistic neutron-beaming

effects to be added to any event-based data sequence. These simulated radiation effects

enable designers to test developed algorithms prior to mission deployment.

36



3.1 Background

This section gives an overview of the neuromorphic event-driven visual sensor, its data

acquisition principles, and its data types. The use of event-driven sensors for space applica-

tions is also discussed.

Figure 12: Event-based sensor operating principles: (A) The event-based sensor used in

this experiment. (B) When a given pixel’s luminosity change reaches a given threshold, it

produces a visual event with an x and y address, a timestamp, and a polarity which is either

ON or OFF depending on the change in relative luminosity. (C,D) The stream of events

generated by three rotating shapes, shown here in a color version of the sensor’s absolute

light measurement output that comes with every event.

3.1.1 Neuromorphic Event-Driven Visual Sensors

Biomimetic, event-based cameras [47] are a novel type of vision sensors that, like their

biological counterparts, are made of independent cells/pixels which are driven by events

taking place in their field of view, generating an asynchronous stream of spikes/events. This

method of data collection is in contrast to conventional vision sensors which are driven

by artificially created timing and control signals (frame clock) to create full images that

have no relation to either the content or the temporal dynamics of the visual scene. Over

the past few years, several types of these event-based cameras have been designed. These
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include temporal contrast vision sensors sensitive to change in relative luminance, gradient-

based sensors sensitive to static edges, devices sensitive to edge-orientation, and optical-flow

sensors.

Most of these vision sensors output visual information about the scene in the form of

discrete events using Address-Event Representation (AER) [16, 45, 53]. The data encodes

the visual information by sending out tuples [x; y; t; p] — of space (the pixel where change

occurred), time (when the change occurred), and polarity (whether luminance increased or

decreased) — as ON or OFF events, respectively. The event-based camera used in this work

is a time-domain encoding event-based sensor with VGA resolution. The sensor contains a

640×480 array of fully autonomous pixels, each relying on an illuminance-change detector

circuit. In this study, we will only consider the luminance change circuit that is common to

all existing event-based sensors [22].

The operating principle of an event-based pixel is shown in Figure 12. The change

detector of each pixel individually detects a change in brightness in the field-of-view. Since

event-based cameras are not clocked like conventional cameras, the timing of events can be

conveyed with a very accurate temporal resolution on the order of microseconds and below1.

These sensors capture information predominantly in the time domain as opposed to

conventional frame-based cameras, which currently provide greater amount of spatial infor-

mation. Since the pixels only detect temporal changes, redundant information like static

background is not captured or communicated, resulting in a sparse representation of the

scene. Consequently, event-based cameras can have a high temporal-resolution with a very

low data-rate [14] compared to conventional cameras, thus conforming to low-resource re-

quirements. Since the pixels are independent of one another and do not need a clock, an

error in a few of them will not lead to a catastrophic failure of the device and the sensor will

be able to remain operational.

1The highest reported neuromorphic sensor event output rate to date is 1.3× 109 events per second [84].
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3.1.2 Conventional Space Situational Awareness

Space situational awareness (SSA) has been an important topic in military applications

for many years [58] [37] [27] [62]. SSA is the ability to detect and keep track of surrounding

objects and debris to avoid collisions. For SSA, vision systems with high temporal-resolution

and low latency are required to accurately detect objects. Event-based cameras are therefore

the perfect candidate to replace limited conventional sensing methods in satellite awareness.

Ender et al. [34] details the use of radar in SSA for collision detection, orbit estimation,

and propagation. The benefit of radar is that it has a very large coverage, meaning it can

consistently observe a wide area in an arc of almost 5000 km. However, since radio uses

long wavelengths, this methodology would only work for larger objects [34]. Smaller objects

would be impossible to detect via radio waves.

One difficulty in object detection to avoid collisions in space is the modeling of non-

linear orbits in real-time. Several methods have been proposed to predict non-linear orbits

for SSA. One is to use Gaussian mixture modeling to exploit properties of linear systems

to extrapolate information about a non-linear system, and then to use Gaussian splitting to

reduce the errors induced by that extrapolation [35]. The mixture model enables complex,

non-linear orbits to be mapped more accurately, providing a better judgment of potential

collisions. The issue arises when this kind of surveillance for object avoidance needs to be

done autonomously. The calculations presented are too complex to be performed efficiently

by a satellite’s embedded platform. Also, since the analysis carried out by such platforms is

based on statistical manipulation, it needs to be verified by human intervention in order to

avoid any statistical anomalies that may cause potential collisions.

Abbot and Wallace [71] tackle the SSA problem of decision support for tracking large

amounts of orbiting space debris. They claim that the limited number of sensors leads to in-

consistent surveillance of the objects under observation, and therefore propose a cooperative

monitoring algorithm for geosynchronous earth orbit satellites to address collision preven-

tion and provide automated alerts. However, this methodology relies on Bayesian modeling,

which can be computationally intensive for embedded platforms and requires publicly avail-

able data to create the models. With satellites of unknown orbits, unexpected collisions

39



could therefore become an issue.

These techniques also require fast positional capture of the observed objects which is dif-

ficult with the video cameras currently available for space exploration. Event-based cameras

could fill this space by providing low-latency and low-resources sensing for SSA.

3.1.3 Event-based Sensors for Space Situational Awareness

The high dynamic range of event-based sensors with both low-light and bright-light

sources allows visual information to be inferred even in the darkness of space or when a

bright sun is in the sensor’s field-of-view (FoV). It also means that the area around the sun

can be observed, even when the sun is coming up over the horizon of a satellite’s orbit.

The use of event-based cameras in space-related applications is not well developed. Most

of the work has been carried out in the context of terrestrial telescope observation of low

brightness objects in Low-Earth Orbit (LEO) and Geostationary-Earth Orbit (GEO) [67] [1].

Event-based cameras can offer a promising solution to collision avoidance in space pro-

vided their high temporal precision and sparsity of data are properly taken into account when

designing algorithms. The current trend of generating frames of events, and gray levels to

recycle decades of conventional computer vision and machine learning techniques has led to

their being used as simple high dynamic range conventional cameras. In this work we focus

only on the temporal properties of these sensors, considering cases of per-event computation

that preserve the temporal properties of event-based cameras that have been shown to be

the key to developing new applications [4].

There has been extensive research into event-based cameras for real-time tracking and

low-power computer systems within the last decade. Many algorithms have been developed

that allow for objects to be tracked within the visual space of an event-driven sensor. Reverter

et al. developed one such method that makes it possible to track many different shapes, as

long as the pattern of the shapes is known a-priori [87]. Similarly, Lagorce et al. provide

a multi-kernel Gaussian mixture model tracker for the detection and tracking of different

shaped objects [43]. Other methods use spatial matching to allow object tracking even in

occluded conditions [57] [18] and provide haptic stability by tracking gripper positions in
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microrobotics applications [56]. The low computational requirements of event-based sensors

even allow tracking systems to be implemented on embedded platforms [49] and on FPGAs

[48]. Newer improved spatio-temporal feature detection could improve these methods further

[42]. Novel methods can even detect and track objects in conditions where both the camera

and the objects are moving independently [56,69] [55].

3.1.4 Neutron-Beam Testing

Srour and McGarrity [81] detail the effects of space radiation on microelectronic circuits,

discussing damage, ionization, and SEEs on optoelectronic devices. Modern models describe

the most of the radiation experienced in the space environment as consisting of protons and

heavy ions [10]. However, this experiment primarily uses wide-spectrum neutrons to test

the sensor of interest. In general, neutron beam testing is useful for classifying single-event

effects in electronics. Since interest is focused on the response of the device, the source of the

upsets become irrelevant. Neutron testing is also useful to test the robustness of systems to

SEUs. As an example, NASA Langley Research Center and Honeywell performed neutron

beam tests to study the robustness of their flight control computer architecture [36]. Their

primary goal was to show that they were able to recover from neutron-induced SEUs. The

recovery demonstrated system’s capabilities in a hazardous environment, even though the

radiation source was not neutrons.

When radiation impacts a device, energy is deposited into the target material, causing

various faults in the hardware. These faults can have different effects such as memory

corruption or glitches in analog and digital hardware [11]. In an imaging sensor, these errors

would manifest as corrupted pixels or improper output. One type of effect, single-event

effects (SEEs), occurs when a high-energy particle strikes a microelectronic component and

changes a single state of the internals in the device [81]. These effects can then manifest as

transient-data errors, corrupting the data output.
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3.2 Methodology

This section gives an overview of how the radiation experiment was performed, explaining

the Los Alamos Neutron Science Center’s neutron beam and detailing how data was collected

during irradiation.

3.2.1 Event-Camera

The sensor used for the experiments in this chapter was an event-based sensor based

on [22] with VGA resolution (640× 480 pixels) fabricated in 180nm CMOS-CIS technology.

The chip has a total die size of 9.6×7.2mm2, with a pixel size of 15×15µm2, and a fill factor

(ratio of photo-diode area over total pixel area) of 25%. The maximum event-rate for this

camera is specified as 66Meps (mega-events per second). During recordings, output events

were time-stamped with micro-second resolution by the camera interface and communicated

via USB to a host computer for storage. In our recordings we observed a maximum of about

30 events captured with the same micro-second timestamp, meaning that the maximum

sensor throughput was not reached.

3.2.2 Irradiation

The event-camera under test was irradiated at ICE-II, Los Alamos Neutron Science

Center’s wide-spectrum neutron-beam facility. The Los Alamos Neutron Science Center

(LANSCE) provides the scientific community with intense sources of neutrons, which can

be used to perform experiments supporting civilian and national security research. The ICE

facility was built to perform accelerated neutron testing of semiconductor devices. Flight

Path 30L and 30R, known as ICE House and ICE-II, allow users to efficiently set up and

conduct measurements [85]. The sensor was irradiated for two days, from November 23,

2019 to November 24, 2019 under wide-spectrum neutrons of energies ranging from 0.1MeV

to > 600MeV . The general setup is shown in Figure 13.

An event-based camera was placed at a fixed distance in the beam to act as a control on

the effective neutron flux. The sensor was placed at different angles of incidence from the
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Figure 13: (A) The event-driven sensor under test sitting on a stand that is non-reactive to

neutron radiation. To ensure that the neutrons passed through the sensor, the green laser

was used to aim the beam. (B) Schematics showing the sensor placed at a fixed distance

from the beam source in two conditions - facing the beam directly and at a 90 ◦ angle of

incidence.
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beam as shown in Figure 13(B) to detect any potential differences in the effects observed.

The placement of the sensor relative to the neutron beam is achieved by manually lining up

a laser guide that is centered on the 1-inch collimator. Minor misalignment leads to variable

density of radiation across the sensor, but was found to not affect the final outcome of the

overall measurement at individual pixels. Data is collected at an angle of 90
◦
from the beam

and directly facing the beam source.

In this experiment, the event-camera was irradiated with the lens cap on to avoid any

light or environmental noise on the sensor. Thus, the noise recorded from the sensor in this

experiment primarily come from the effects of the radiation rather than those induced by

the light sources in the environment.

Figure 14: Average number of noise events per second induced due to radiation compared

to noise without irradiation over 2 days of irradiation across all tested angles-of-incidence.

The recordings were taken with the lens cap on the camera so the induced events were due

either to the inherent thermal noise or to noise induced through the neutrons. Radiation

induced more ON events than OFF events (3:1 ratio).
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3.2.3 Data Collection and Analysis

The sensor was connected to a computer running software which interfaced with the

sensor to record events. Events were later processed offline. Data was taken with the beam

on and off in order to observe the increase in noise caused by irradiation. Radiation-induced

noise can be seen in the form of clustered noise-like patterns and line streaks of moving

particles in the focal plane, as will be detailed in the following sections. The recorded data

was parsed to get an event rate to measure the number of events generated by the sensor

per second. The counted events were then separated into ON and OFF events. The average

events per second were calculated for each experiment with standard deviation as error.

Data was collected with the sensor facing the beam source and at 90◦, to observe how the

angle of incidence affected the incoming radiation noise. The number of events was measured

for both ON and OFF events in each orientation and compared. A Mann-Whitney U test

was used to determine statistical significance in the differences between the two orientation

distributions [54].

This experiment measured patterns influenced by the effective neutron flux and the

number of ON events and OFF events. The patterns were analyzed using an understanding

of the sensor’s internal circuitry to determine the physical effect of radiation on the sensor.

This methodology presents a categorization of SEEs in the form of radiation-induced noise.

To ensure the radiation-induced noise would not overwhelm signal integrity, a pendulum

was placed in the visual field to measure the signal-to-noise ratio. Since the signal could

be observed with and without radiation-induced noise, the signal-to-noise ratio could be

calculated by simply dividing the number of signal events by the noise events produced by

radiation. This ratio could then be used to determine the robustness of the sensor to radiation

in terms of loss of signal integrity. To validate the signal-to-noise ratio, a correlation test

was performed between the radiated data and the non-radiated data.
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(A)

(B)

Figure 15: Probability density of events by location on the sensor for (A) 0◦ angle of incidence

and (B) 90◦ angle of incidence. At 0◦, more events were produced at high x and low y values

than for the opposite corner. This inconsistency is the result of an inability to precisely align

the sensor relative to the center of the beam path. However, it does not affect local response

at individual pixels that showed similar noise measurement.
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3.3 Results

This section gives an overview of the results of the radiation experiment, discussing noise

rates, patterns, and analyses.

3.3.1 Induced-Event Rate

Data was collected with the lens cap on the sensor to minimize environmental influence

from external lighting. First, the mean number of radiation-induced ON and OFF events

per second was measured. The average number of events can be seen in Figure 14. A

significant bias towards ON events was observed although the sensor was biased to generate a

similar number of ON and OFF events under normal conditions. When there is an imbalance

between the number of ON and OFF events in a DVS, it may mean that there are sudden very

fast transients. This behavior is because a DVS pixel is designed with a built-in refractory

time that causes the pixel to be inactive (not sensing any further light change) immediately

after producing an event [47]. This behavior prevents very active pixels from taking over

most of the camera’s I/O bandwidth. This refractory time is typically in the range of 1-2ms.

Therefore, if a DVS pixel is exposed to very fast ON-OFF (or OFF-ON) transients, most

likely only the first ON (or OFF) event will be produced, while the majority of the rest

will be filtered out. In Figure 14, the imbalance is towards ON events, meaning there could

be very fast ms-range ON-OFF transients. This effect will become more apparent later in

Section 3.4.

The induced-event probability density was plotted against the pixel coordinates of the

sensor to observe any location preferences for upsets. To measure this location preference,

the pixel location of each induced event was divided by the total number of events measured

for both angles of incidence. These measurements can be seen in Figures 15(A) and 15(B).

In both cases, the induced events are quite uniform across the sensor, with the 0◦ angle

of incidence tending to bias towards the location of the neutron beam’s 1 inch diameter. We

can see that about twice as many events were produced for high x and low y values than for

the opposite corner. However, this inconsistency is due to human error in placing the sensor
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in the beam path. In other words, there is no particular area of the sensor that is more

vulnerable to neutron radiation effects than other areas. This result is further demonstrated

in the 90◦ angle of incidence result. Every pixel across the sensor showed a similar response.

Figure 16: Events observed at different angles of incidence. Data was collected at 90
◦
from

the beam and facing directly towards the beam. No significant difference was found between

the number of noise events generated for the two conditions even though the sensor would be

expected to interact with more neutrons when facing the beam. This outcome is due to more

long event streaks being induced in the 90◦ case. Noise streaks amount to a significantly

higher event-rate per neutron than induced clusters.

3.3.2 Angle of Incidence Comparison

Data was collected at two orientations: facing the beam with an angle of incidence of 0
◦

and at an angle of incidence of 90
◦
from the beam source. These two distributions were then

analyzed separately to observe any significant differences.

Figure 16 shows that there was a slight difference between the number of OFF events

48



per second induced between the two orientations. A Mann-Whitney U test was performed

on the two distributions to test for statistical significance [54], but no statistically significant

difference was found. We found that for 0
◦
the radiation induced noise primarily generated

cluster noise representing a random burst of events in a small area, whereas 90
◦
angle of

incidence generates more streaks of noise [refer Section 3.3.5 for details]. This result means

that while the 0
◦
of incidence has higher probability of inducing noise events, these only

generate events in small areas. Whereas the 90
◦
of angle of incidence may have lower prob-

ability of inducing noise, but the generated noise affects multiple pixels leading to higher

noise event rate. Thus, the noise event rate over the long duration of recordings come out

to be statistically similar.

Figure 17: Number of events induced in a 50×50 pixel bounded box for a light room vs a dark

room. Given the contrast sensitive nature of the sensor, and as expected, we observed that

more ON noise events were generated in the case of dark room since the neutron interactions

allowed for the event generation threshold to be crossed more often. The OFF noise events

did not increase significantly.
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Figure 18: Number of signal events observed vs radiation-induced noise events. Signal events

were calculated as the rate of events while recording a cyclic pendulum where as the noise

rate was computed from isolated radiation induced events. The signal-to-noise ratio for the

sensor even under strong neutron radiation was found to be 3.355.
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3.3.3 Effects of Room Brightness

When deployed in space, these vision sensors may be subject to varying levels of back-

ground light intensity. To understand how neutron radiation would affect the sensor under

such varying conditions, we recorded background noise events during radiation while placing

the sensor in an artificially lit room with illuminance levels of around 500lux and with a lens

cap covering the sensor to simulate a low-light intensity condition with a light level close

to 0 lux. The intrinsic characteristics of the sensor pixels allow them to be invariant to the

background lighting conditions thanks to the relative change operation mode and the log

scale. Figure 17 shows the number of ON and OFF events induced by neutron radiation in

the artificial lit “light room” and in the low-intensity “dark room” case. We find that the

number of ON events induced in the dark room was nearly 1.5 times higher than in the light

room. Conversely, no significant difference were observed in the OFF events induced in the

two conditions. Details of this process are explained in Section 3.4.

3.3.4 Signal-to-Noise

In order to measure the signal-to-noise ratio, events were compared with the beam ON

and OFF while the sensor observed a dynamic scene composed of a cyclic-pendulum, as shown

in Figure 19(A). To calculate the ratio between the two values, the number of signal events

measured with the cyclic-pendulum were compared directly with the number of isolated

radiation-induced noise events. This comparison can be seen in Figure 18. Comparing these

values gives a signal-to-noise ratio of 3.355.

To ensure the signal can be seen even when radiation is introduced, events in a 50× 50-

pixels bounding box, shown in blue and red in Figure 19(A), were measured and plotted to

compare signal data with and without radiation. Since the pendulum’s movement is cyclic,

we calculated the event rates data over time using a moving window of 1 ms. The frequency

of this rate data calculated using Fourier transform should ideally give us the frequency of

oscillation of the pendulum. The Fourier transform of the signal with and without radiation

is shown in Figure 19(B). With the addition of radiation noise, the signal’s major frequency

can still be estimated with some slight noise at low frequencies.
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Figure 19: (A) An orbital pendulum recorded using the sensor and the event rate calculated

as the number of events within a 1 ms moving window with (red) and without (blue) ra-

diation turned on within a bounded box, as shown in the image panels. The images show

the event frames obtained within the time window at different time points in the record-

ing. Qualitatively, the sensor produced similar images for both conditions. (B) Calculated

frequency of the pendulum using the event rates. The frequency of the pendulum’s motion

could be obtained using the FFT in each case.

52



0.70 0.72 0.74 0.760.680.660.64
0

5

10

15

20

V
a
lu

e
 D

e
n
si

ty

R-Value

Figure 20: A Pearson correlation test was performed for the events obtained from the pen-

dulum’s movement with and without radiation. The high correlation and small standard

deviation show that the signals obtained from the two conditions were quantitatively simi-

lar.
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Figure 21: The movement directions of different parts of the pendulum system computed

from the recorded event streams with and without radiation. (A) The colors represent the

movement directions of the events as indicated by the color wheel. (B) Graphs showing the

computed average movement directions for events occurring in a 5ms moving window within

the black bounding box shown in the images. The Pearson correlation coefficient between

two signals was 0.7189 indicating that the direction computation was not affected by the

radiation.
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To validate the signal-noise ratio of the radiated sensor, a Pearson-correlation test was

performed between the radiation data and the non-radiation data. With a high correlation,

it can be shown that the two distributions follow each other closely with minor linear trans-

formations. Due to the varying size of samples, sub-samples were taken and analyzed to

estimate the correlation R-value. The distribution of R-values can be seen in Figure 20. The

measured R-value was 0.70 ± 0.02 with a negligible p-value. It can therefore be deduced

with high confidence that the radiation-induced noise is not enough to significantly change

the data output from the original, non-radiated data.

The ultimate goal of deploying sensors on missions is to obtain useful information from

them while in space. One of the most fundamental, low-level features that can be extracted

from the event stream is motion flow. The optical flow provides the speed and direction of

an object’s movement in the camera plane, where its precision is related to the temporal

properties of events. We computed optical flow on events captured from the sensor recording

the moving pendulum system using the aperture-robust event-per-event optical flow tech-

nique introduced in [3]. The average direction of movement of one arm of the pendulum

inside a bounding box (shown in Figure 21(A)) is plotted in Figure 21(B). The average angle

values follow the expected wave as the arm of the pendulum moves up and down vertically.

The Pearson correlation between the two conditions was found to be 0.7189, showing that

movement computation is not affected by radiation.
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Figure 22: Clustered patterns of noise obtained by searching for clusters with minimum

sizes of 10 pixels in 30-second recordings. Time slices of 5 ms were processed consecutively,

searching for 10-pixel clusters. All clusters detected during 30 seconds are grouped in the

plots. Events were recorded for a 0◦ angle of incidence and a 90◦ angle of incidence. Signifi-

cantly more line segments can be seen at 90◦. At 0◦, fewer, smaller (average 30 pixels) and

more clustered noise patterns were observed than at 90◦, where longer (up to 300 pixels) and

more frequent (up to 7 times) line segments were observed.
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Figure 23: Details of 20ms event capture when exposed to neutron beam without visual

stimulus. The blue dots represent positive events and the red dots represent negative events.

Positive events are mostly concentrated in 600-800µs time intervals separated by about 8ms

intervals in which mostly negative events are recorded. (A) 3D plot (x,y,time) of events

captured during the 20ms interval. Small scattered dots/clusters can be observed plus a

line segment in the lower right part. (B) Time vs x-coordinate projection of the recorded

events. (C) Events corresponding to the line segment in (A) which have been isolated for

better visibility.
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Figure 24: Noise rates for different conditions with and without neutron radiation. (A) The

overall noise without radiation is very low. (B, C) Radiation noise when the sensor was

placed at 0◦ (facing) (B) and at 90◦ (C) to the beam source. In each case, we recorded the

bursts of noise most likely due to neutron pulses from beam generation. (D) Similar noise was

found in the recording when a circular pendulum was recorded with the camera. The burst

noise was superimposed on the low frequency events generated by the pendulum motion.

(E) Details of the neutron’s macro-pulse sequence can be observed from a zoomed-in plot

of the event bursts in (B). Each neutron macro-pulse produced positive event bursts with

duration of about 1.6ms, and with peaks separated on average by 8.3ms. Five macro-pulse

responses appear, with a duration between the first and the fifth of 33.25ms, while the time

between two 5-macro-pulse trains is 16.75ms.
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3.3.5 Noise Patterns

Radiation-induced noise, as shown in Figure 22 for both orientations, can be categorized

into two main groups: clusters and line segments. Line segments represent a line of events

that appear across the frame due to a neutron impacting the sensor at a non-zero angle

of incidence. Clusters represent a random burst of events in a small area. The angle of

incidence between the sensor and the radiation source affects the number of line segments.

About 5-7 times more line segments appear with a 90◦ angle of incidence than with a 0◦ angle

of incidence. Conversely, about twice as many clusters appear with a 0◦ angle of incidence

than with a 90◦ angle of incidence. Significantly longer lengths of line segments occurred at

90◦, where streaks of up to 300-pixel lengths were observed, whereas smaller streaks, with

maximum lengths of 30-50 pixels, were seen at 0◦. An example of differences in noise cluster

patterns can be seen in Figure 22. These figures were obtained by analyzing recordings of

107 events, with a duration about a 30-second, while searching for unconnected clusters not

exceeding 10-pixel in size. Note that in Figure 22(A) more event density can be seen in the

corner of high x and low y values than in the opposite corner. This result is similar to what

was observed in Figure 15 due to human error in placing the sensor in the beam path.

Analysis of noise line segments showed a burst of ON events over a fast time frame,

followed by a long relaxation-period of OFF events after a short wait time, as shown in

Figure 23. This pattern is due to an influx of positive current in the sensor’s photo-diodes

creating a burst of ON events, followed by a relaxation period for the current to return to

normal, creating OFF events. The ON events burst over about 600-800µs and the negative

event tail is about 10ms long.

Viewing the event rate of the bursts, we see peaks of ON events followed by a long tail

of OFF events. This effect is seen within all noise-types and is shown in Figures 24 (B)

and (C). Figure 24(E) shows a zoomed view with finer details. Bursts of 5 peaks separated

by a time of 16.75ms can be seen. Each peak has a duration of about 1.6ms of positive

events. Consecutive bursts are separated by 8.25ms within the 5 peaks. Consequently, on

average, the five peaks occur every 33.25ms+16.75ms = 50ms, which is equivalent to 100Hz

peaks. This frequency coincides with the LANSCE neutron source description [92], where
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the neutron source emits a pulse of neutrons at a rate of about 100Hz. Each such neutron

peak is referred to as a neutron “macro-pulse”.

(A) (B) (C)

n0 n0

e-

n0

p + e-p +n0
γ

Figure 25: Three possible free neutron decays. (A) The neutron passes through the sensor

casing without decaying. (B) The neutron decays into a proton and electron. (C) The

neutron decays into a proton and an electron which emits gamma radiation.
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3.4 Circuit-Level Interaction Interpretation

High-energy neutron beams are thought of as ionizing radiation, which can instanta-

neously change the charge of an electric circuit node within the camera sensor chip. Since

an event-camera can capture internal changes with microsecond resolution, these sensors

provide a new way of “seeing” fine interactions taking place between fast radiation particles

and the electronic chip while it is operating.

For the free neutrons passing through the sensor, there are three main possibilities: the

neutron can pass through as a neutron without decaying, the neutron can decay into a proton

and an electron, or the neutron can decay into a proton and an electron which emits a gamma

photon due to internal brehmsstrahlung [30]. A diagram of these three possibilities can be

seen in Figure 25. Due to quantum uncertainties and the inability to distinguish between

particles, it is impossible to distinguish the cases’ impact on the sensor in this experiment.

Further research must therefore be performed to detail the exact cause of the induced noise

patterns.

In digital circuits, high-energy charged particles and radiation beams tend to mainly

impact memory circuits, where charge is stored on tiny parasitic capacitors, producing bit-

flips and consequently altering system states and data. In our sensor, however, we observed

consistent sudden positive events over many pixels followed by negative event tails, syn-

chronously with the macro-pulse neutron emission patterns of LANSCE [92]. The fact that

most responsive pixels produce a burst of positive events during each 625µs LANSCE neutron

macro-pulse, rules out the possibility that the sensor is suffering bit-flip effects at tempo-

rary memory-storing nodes. If this were the case, we would expect to observe a random

mix of positive and negative events within each neutron macro-pulse. However, most of the

affected pixels respond by providing a synchronized burst of positive events. It can thus be

inferred that it is the pixels’ photo-diodes that are responding to the neutron macro-pulses.

Photo-diodes drive a photo-current proportional to incident light intensity. If a high-energy

proton, neutron, or electron crosses the depletion region of a photo-diode, it will interact

with the electrons flowing through it at that moment, thus producing a sudden decrease

in photo-current and, consequently, negative events. However, since we observed a sud-
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Figure 26: Examples of X-projections of noise line segments for events recorded from (A)

real data and (B) simulated noise data. All cases show a burst of ON (blue) events with a

long OFF (red) tail. As each example line segment was detected, the events were separated

from the recording and then projected on the X-axis.

den, very significant increase in photo-current (resulting in positive events), we hypothesize

that the scattered pixels are sensing sudden radiation at their locations. This reasoning

would also explain the observation of segments sensed simultaneously by consecutive pix-

els. Figure 23 shows one such segment in a 20ms time slice of events, corresponding to

three consecutive 625µs neutron macro-pulses separated from each other by 8.25ms. Most

of the pixel responses show small clusters of less than 10-pixels, the exception being the

190-pixel long segment. Our hypothesis is that the sensor is crossed by radiation bursts,

most of them perpendicular to the chip plane, but occasionally interacting with deflected

radiations at other angles and producing line segments. However, all radiation interactions

occur precisely during the beam’s macro-pulse times.

The electronic pixel circuitry of an event-camera chip has a limited response time in the

range of 0.1ms to 10ms depending on ambient light and bias conditions [22] [79]. The LAN-

SCE neutron source macro-pulses have a time duration of 625µs, which is lower than the

temporal resolution of the event sensor. The macro-pulse radiation impinging on the desti-

nation pixels produces a sudden over-stimulation of photo-current, resulting in the sudden

generation of a handful of positive events per pixel during the neutron macro-pulse. Af-
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ter such strong over-stimulation, the pixel circuit relaxes to its steady ambient-light-driven

state with a time constant in the range of 10ms, producing events of negative polarity over

time. This behavior of sudden positive stimulation of 600-800µs, where positive events are

produced, followed by about 8-10ms of negative-event relaxation is systematically observed

in the recordings. Figure 23(A) shows the 20ms event capture with scattered noise-like

dots/clusters of fast positive events (shown in blue), followed by negative event tails (shown

in red). We hypothesize that each such dot/cluster corresponds to a neutron crossing the

chip. Figure 23(B) shows the events in Figure 23(A), but displayed in their corresponding

time vs x-coordinate projection. We can clearly see the synchronized sequence of neutron

macro-pulse-induced positive events (shown in blue), of 600-800µs duration, separated by

about 8ms of inter-neutron macro-pulse time where mainly negative relaxation events are

produced. The figure also shows a 190-pixel long segment with the same time profile. The

events for this segment are isolated in Figure 23(C). In this plot there are 2, 031 positive

events collected over about 800µs, followed by 1, 090 negative events collected during over

about 20ms.

While the conditions in space are more random, modelling radiation in a pulse-like nature

still holds valid. Radiation events happen in space typically due to localized cosmic events,

such as supernova or solar flares and winds. Time-series analysis of the low-earth orbit

radiation environment seen on the ISS is measured to be in pulses, shown in [95], where the

cumulative dose increases similarly to a step function.

The suddenly induced photo-current hypothesis also explains the observations in Fig-

ure 17, where more positive events are produced under dark-room conditions than under

light-room conditions. When under light room conditions, the photo-diodes are already

driving some current and consequently reach their maximum saturation current earlier when

suddenly impinged by high energy particles, resulting in fewer induced positive events. Un-

der dark conditions, the photo-current can undergo a larger variation, resulting in more

positive events.
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3.5 Event-RINSE Simulator

This section describes the Event-RINSE simulator. The purpose of the simulator is to

model the noise seen in radiation testing as close as possible to be used in testing future

applications without the need for radiation testing.
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Figure 27: Average single pixel radiation-induced event rate model for observed and simu-

lated data. From real data we observed that neutron interactions induced ON event bursts

of about 1.6ms within the first 1ms. These were followed by long tails of OFF events lasting

up to 10ms. The simulator was used to induce noise events into the stream of recorded

non-noisy data, and the noise characteristics for single-event noise were then averaged to

create the dashed curves. The simulator was able to match the real noise model within a

margin of acceptable error.
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3.5.1 Simulated Noise Generation

Given a stream of event-camera data as input, the simulator updates the induced noise

at time-steps of 1µs each over the entire duration of the input data. The noise profile is

created independent of the input stream. For every time-step, the noise signal determines

the probability of occurrence of a noise event, its location in pixel, and the angle of incidence

of the neutron. The probability of injection was determined using a Poisson distribution of

observing k = 1 event with a variable event rate. Namely,

P (λ) = λe−λ (3–1)

where λ is the frequency of an event happening per microsecond. A starting pixel is randomly

chosen uniformly across the resolution of the sensor. The simulator decides whether injected

noise is in the form of a cluster or a line segment based on the angle of incidence parameter.

Specifically, the chance of injecting a cluster is based on the cosine of the angle of incidence

with some jitter-error. Thus, the probability of the injected noise pattern is given by

P (Cluster) = |cos(θ + ε)|

P (Line Segment) = 1− P (Cluster)
(3–2)

where θ is the angle of incidence in radians and ε is a small amount of error. A cluster’s

shape is modelled by randomly chosen pixels around the neighborhood of the starting point.

A line segment is modelled by a straight line with a randomly chosen angle between 1◦ and

360◦. The setup at LANSCE only allows us to perform measurements at a single angle of

incidence. However, in space, there is no preferred angle of approach of incoming radiation,

nor is there a pre-defined orientation of a satellite. We found that while the angle of incidence

does not affect the noise profile of individual pixels, it does affect the probability of inducing

a noise-line. Thus, we used the two orientations to derive a cosine model and induce a

noise-line generation based on a randomly sampled angle of incidence.

For each pixel in the shape of the generated event, the noise pattern is modelled by

sampling a time window for ON events from N (2000µs, 200µs) which represents the length
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of time for the burst of ON events. OFF events are sampled from N (8000µs, 1000µs). More

precisely,

P (ON Noise Event; t) = e
− 1

2
(
t−tON
σON

)2

t ∈ [0, tON ]

tON ∼ N (2000, 200)

(3–3)

where the burst of ON events is simulated as a Gaussian model with the mean as the sampled

ON-event time window (tON) and standard deviation σON = 340µs is used to determine the

probability of generating an event over time t. The wait time between the burst of ON

events and the OFF-event relaxation period is sampled from N (100, 50). After the wait

time (tWait), the current relaxation of OFF events is modelled using an exponential with

decay parameter, β = 5200 up to a total OFF time (tOFF ) as per Eq.(3–4).

P (OFF Noise Event; t) =
1

β
e−

1
β
t

t ∈ [tON + tWait, tOFF ]

tWait ∼ N (100, 50)

tOFF ∼ N (8000, 1000)

(3–4)

The generated events are then added to the data file and sorted by timestamp in ascend-

ing order. Finally, the file is saved to be used in testing or evaluation. The algorithm to

generate radiation-induced noise events is detailed in Algorithm 1.
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3.5.2 Pattern Validation

To validate the simulation environment, noise events were generated following the pattern

described in Algorithm 1 and compared with noise events from real data. The noise events

were plotted against time to compare them with noise from observations. Figure 26 shows a

sample of visual real noise events (Figure 26(A)) vs simulated noise events (Figure 26(B)).

The model used to generate noise was compared to the average observed single-event noise.

The model shown in Figure 27 fits the observed pattern with a 5% error rate for ON noise

profiles and 12.3% error rate for OFF noise profile.

3.5.3 Simulation Environment Usage

The Event-RINSE simulation environment is written in Python with many supporting

parameter flags that can be used to modify the simulation model. Normal Python data

analysis modules are needed for the simulator, namely SciPy [61] and NumPy [86], while

OpenCV [17] is used to display videos of the event data. The simulator is run using Python3

environment with runtime flags for campaign customization. Currently available flags and

descriptions can be seen in Table 4. The input data file is the only input that is necessary

to run the simulator. Input files are assumed to be plain text files in < x > < y >

< timestamp (µs) > < polarity > format. The Event-RINSE open-source code will be

available to the scientific community after a security-clearance process.
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Algorithm 1 Radiation Induced Noise Simulation Environment (Event-RINSE)

1: for Each time step t do

2: Compute chance of radiation-induced noise using Eq.(3–1)

3: if Generate Noise Event then

4: Decide if noise is cluster or line using Eq.(3–2)

5: Choose a random pixel [x0, y0]

6: if CLUSTER NOISE then

7: Randomly sample a set of pixels [X, Y ] in the neighborhood of [x0, y0]

8: for Each pixel ∈ [X, Y ] in the cluster do

9: Generate ON Events Using Eq.(3–3)

10: Generate OFF Events Using Eq.(3–4)

11: end for

12: end if

13: if LINE NOISE then

14: Randomly sample angle of line: θ ∈ [0, 2π)

15: Select a set of pixels [X, Y ] forming a line L starting at [x0, y0] with angle θ

16: for Each pixel [X, Y ] of the line do

17: Generate ON Events Using Eq.(3–3)

18: Generate OFF Events Using Eq.(3–4)

19: end for

20: end if

21: end if

22: Append noise events to stream

23: end for

24: Sort events by ascending timestamps
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Table 4: Summary of Event-RINSE runtime options.

Command Flag Description Datatype

-h/–help Display help message and

exit

N/A

-f/–input-file The input data file path to

read from

String

-o/–output-file Custom output data file

path to write to

String

-aoi/–angle of incidence Angle of incidence between

the sensor and simulated

beam. Affects prevalence of

lines vs. clusters

Integer

-s/–imgSize The size of the images from

the sensor data

List of 2 integers

-vi/–view-input View the input data file as

a video

N/A

-vo/–view-output View the output data file

as a video

N/A

-i/–inject Perform injections on input

file and write to output file

N/A

-d/–delta Time-step to hold in one

frame when viewing video

Float

-n/–noise The event rate of noise

with standard deviation

List of 2 integers
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3.6 Conclusion

The purpose of this experiment was to irradiate an event-based camera under wide-

spectrum neutrons to view and classify any SEEs that may be observed. The results show

that the main SEU that affects the event-based camera is radiation-induced noise in the

form of uniformly-distributed events across the sensor’s field of view. We found that noise

induced on single pixels resulted in both ON and OFF events with a ratio of 3:1. An

average noise event rate was found to generate peaks with lags in the range of 8-10ms which

corresponded directly with the macro-pulse patterns of the neutron source at LANSCE [92].

This pattern shows that the sensor acted like a naive particle detector, and was only affected

by the radiation over short timescales. OFF events were also seen to follow the ON-event

peaks with exponentially-decaying event-rate profile. These profiles seem to suggest that the

neutrons interact with the photo-diode in individual pixels causing energy dumps leading

to large photo-current, inducing the ON events in a short time period of about 1.6ms. The

residual relaxation current after the radiation passes gives rise to the OFF events at much

lower rates, but with a longer duration of up to 10 ms. The radiation did not cause any

permanent, long-term damage to the sensor’s photo-diodes or the hardware circuitry. This

hypothesis was further confirmed when looking at the noise events in brighter and darker

background-illumination conditions, where ON events were significantly higher in the dark

environment due to sensor’s higher contrast sensitivity but OFF events were not found to

change significantly across the two conditions.

Focusing on induced noise, experiments were performed to observe correlations with the

angle of incidence and the event rate through the sensor. Surprisingly, the null hypothesis

that there is no correlation between the number of events and the angle of incidence, was

supported. With a larger angle of incidence, the cross-sectional area of the sensor is smaller

to the beam’s point-of-view, making it less likely to be hit. When a neutron does impact

the sensor, however, it travels across the field leaving a long streak of events following its

trajectory. When there is a smaller angle of incidence, the sensor looks larger from the

perspective of the beam. This apparent surface area implies that the sensor will be more

likely to be hit, but events are shown only in the form of dots as short lines of neutrons
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penetrate the sensor. These two effects thus cancel each other out, showing no difference in

the induced event rate.

Comparing the number of events from a pendulum signal with radiation-induced noise

shows a signal-to-noise ratio of 3.355. This ratio demonstrates the robustness of the event-

based sensor to radiation in that the noise introduced does not significantly impact its

ability to extract features of the desired signal. This result is further illustrated by the

sensor’s ability to clearly observe the sinusoidal signal against the noisy background, and by

the results of the optical flow algorithm implemented on the recorded events, which show

no significant deterioration between the flow directions computed from the events when the

radiation is introduced.

The results seen in this study, with random noise induced from radiation, is similar to

other research performed on different optical electronic devices. Yates et al. [97] show that

silicon-based video sensors have neutron sensitivity. Specifically, they show that spatially-

random pixels show excitations, similar to the random “luminosity excitations” seen in the

event sensor.

It has been found that transient effects of neutrons on optical electronics are directly

correlated with the fluence of radiation [12]. This correlation agrees with the results shown

in Figure 22 where the trajectory paths of the neutrons can be seen by excitations in the

sensor. However, a direct correlation measurement between the fluence and the induced

event rate would need to be performed in future research, as there was no control over the

fluence in this experiment.

The results of this experiment also coincide with the measured radiation effects of tradi-

tional CMOS sensors. Sipos et al. [80] show that protons are detected in CMOS devices as

bright white spots. This behavior is similar to the ON event burst seen in the event sensor.

We hypothesize that a similar effect would be seen on the event sensor with proton radiation,

however that would need to be verified with further research.

The Event-RINSE simulation environment created using the recorded noise data can be

used to simulate the effects of radiation on pre-recorded data files. Event-RINSE was used to

inject noise into the event streams recorded without radiation and was found to correspond

well with the observed profile. The noise examples generated from the simulator matched
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both the average single-event noise model and the average noise across the sensor. This fault

injector makes it possible to test different neuromorphic-sensor algorithms, such as object

tracking, under a noisy radiation environment without the need for expensive radiation

testing, and thereby to assess an algorithm’s viability in space or any noise suppression

techniques. Future work could look at improving the parameters and probability models for

more accurate noise generation.

Further development of event-cameras for space should include research into their effi-

cacy under proton and heavy-ion radiation. These experiments will show if the sensor, as

it currently stands, is capable of survival under the harsh conditions of space. Future work

could also include testing the sensor’s capability to perform basic object tracking under neu-

tron irradiation. The noise shown in this experiment could pose a small problem for SSA

by interfering with signal events in object tracking. However, since the noise was seen to

be fairly constant under various cases, it could be modeled for background analysis. Also,

the induced noise did not appear to deteriorate signal analysis enough to cause detrimen-

tal effects. With minor background suppression, the signal-to-noise ratio could therefore

be improved enough to perform the necessary algorithms and analysis for SSA on future

spacecraft. While the aim in this chapter is to understand the noise characteristics of the

sensor in light of its application towards SSA, these neuromorphic sensors could potentially

be used in many more applications beyond SSA. We plan to soon deploy one of these sensors

on the International Space Station, where we will be better able to understand their noise

resistance and sensing abilities in relation to space. Apart from being able to track space

debris, they could also be used to provide low-latency feedback during docking procedures,

extra-terrestrial landing scenarios, and unmanned automated flights in situation where the

power budget is a limited constraint.
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4.0 Reliability of Temporal Classification on Neuromorphic Processing

Given the results from the initial irradiation of the neuromorphic sensor, it is natural to

extend this research into a neuromorphic classification application. By understanding how

radiation effects impact the sensor and numerical computation, a reliable machine-learning

algorithm can be designed for use on neuromorphic data. Therefore, there is one final piece

of the data flow that needs to be analyzed: computations performed within common neuro-

morphic algorithms and architectures. Prior to performing matrix multiplications studied in

Chapter 2, but after data is acquired from the sensor studied in Chapter 3, a neuromorphic

architecture typically has many complex computations that also need to be protected from

silent data errors.

Feature extraction is a fundamental part of object recognition in visual processing. A

problem associated with this step is to understand how features should be characterized in

an image. Moreover, as these complex algorithms move to hazardous environments such as

space, their reliability to perform accurately needs to be considered and evaluated.

One feature extraction algorithm for neuromorphic, event-driven image classification is

the Hierarchy of Event-Based Time Surfaces algorithm [44]. Neuromorphic event-driven sen-

sors are a novel form of imaging device that offer a new paradigm of artificial vision, compared

to traditional frame-based cameras. Recently, people have started to investigate using these

event-driven sensors in space applications, whether it be on the ground in telescopes [23]

or for use in space satellites [64, 75]. However, space environments are prone to far more

radiative noise than most ground environments and typically involve additional thermal

challenges [9]. Meanwhile, satellite designers need to use commercial-off-the-shelf proces-

sors, as opposed to traditional radiation-hardened processors in order to take advantage of

their better performance and energy efficiency to make these complex machine-learning and

computer-vision applications feasible to run onboard. Therefore, satellite designers typically

perform additional tests on their hardware and software to ensure their system can survive

in a radiative environment.

Before event-based sensors can be safely used in conjunction with computer-vision appli-
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cations for onboard processing, the applications need to be tested under fault injection and

radiation to ensure that the algorithm will perform accurately. Radiation can cause SEUs

that can cause data errors, execution errors, or complete system failures, depending on what

area of memory is upset [82]. Silent data errors could lead to incorrect decisions made by

an autonomous system without any indication to the users of a failure [72,82]. Thus, under-

standing the possible failure modes of each application before deployment becomes vital to

mission success.

This chapter evaluates the HOTS algorithm on classification of N-MNIST dataset [60]

under a radiative environment and under simulation-based fault injections. Our experiments

provide the initial evaluation of the reliability of HOTS as a case study to understand how

different computations within a neuromorphic network are affected by these upsets. The

results of this research provide designers the information needed to add protection to their

mission, whether it be additional hardware protections or use of dependable computing

techniques within software. This research also presents methods to create a more reliable

neuromorphic architecture for use in hazardous environment given the observations of the

fault injection and irradiation.

4.1 Background

This section provides the background needed to understand this research. This informa-

tion includes event-driven sensors, the HOTS algorithm, and the use of radiation testing.

4.1.1 Neuromorphic Event-Based Sensors

Biomimetic, event-based sensors are a novel type of vision sensor that are modelled after

the mammalian retina. They are made up of independent pixels that are driven by changes in

light intensity in their field of view. This method provides an asynchronous stream of events

that, in contrast to the traditional frame-based method of conventional cameras, also provide

temporal context about the scene. The events can either have the polarity of ON, where
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the light intensity of the pixel is increasing, or OFF, where the light intensity is decreasing.

This local, asynchronous event method also provides the benefit of not containing a global

shutter, providing neuromorphic sensors with a very high dynamic range. This large dynamic

range means that bright sources will not over-saturate the entire field of view, allowing the

sensor to still provide useful information. Similarly, since changes in light intensity are being

measured, any static, redundant background information is not passed through the sensor,

producing a very high temporal resolution with a low data rate [15].

Most neuromorphic sensors output visual information about a scene in the form of dis-

crete, distinct events using Address-Event Representation (AER) [16, 45, 53]. AER encodes

the visual information from the sensor in the form of 4-tuples containing the x- and y-pixel

coordinates where the event occurred, the timestamp in microseconds, and the polarity of

light intensity (x, y, t, p).

4.1.2 HOTS algorithm

Since neuromorphic vision sensing is an entirely new paradigm of imaging, the corre-

sponding computer vision applications need to be adapted to this new paradigm. Instead of

working with frames, as traditional algorithms use, new methods needed to be developed to

account for event streams. For image classification, the HOTS algorithm was developed [44].

HOTS uses the temporal context of a scene around an event to learn information about the

object in the scene. Specifically, HOTS tries to answer the question of how features can

be extracted from an event stream. To answer this question, Lagorce et al. introduced the

concept of Time Surfaces [44].

Time Surfaces are the features that are extracted from an event stream. For each event

in the stream, e = [x, y, p, t], a square neighborhood of size R-pixels around the event pixel is

chosen to create a Time Surface using the time of old events in the neighborhood. For each

pixel in the neighborhood, past events are searched until an event of the same polarity as

e is found. The difference between the time in neighborhood pixel and the current event is

mapped using an exponential kernel to create a surface of temporal structures giving context

to each event, which can then be used to extract features from a scene.
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This process is repeated over larger spatial and temporal scales creating a hierarchical

layered network. This network architecture thus consists of a “hierarchy” of Time Surfaces

which builds and extracts features from a stream of events. Training this network architecture

creates a model which can then be used as a pattern classifier on neuromorphic sensor data.

4.1.3 Fault Injection

Fault injection is the process of introducing controlled errors and noise in a system to

study their impact on the resilience and performance of the system. For environments which

are hard to experiment in, such as space, fault injection can be performed through modeling

and simulations. For our experiments, we used two categories of fault injections, hardware

and software. Hardware-based fault injection happens at a physical level, where faults are

induced by disturbing the hardware from the environment, such as a radiation testing. This

disturbance can manifest as faults in the low-level hardware components such state changes

in transistors forming the memory structure of a processor that could lead to silent data

errors [82].

Srour and McGarrity [82] detail the effects of radiation on microelectronic circuits, such as

damage, ionization, and single-event effects (SEUs) through radiation beam testing. There-

fore, beam testing is popular in the field of space computing to classify SEUs of new systems

and mitigation strategies. Knowledge of how an application will behave under radiation is

critical to the design process for space missions, by giving an overview of the upsets or faults

a system might encounter.

Software-based fault injection can be performed by injecting errors at a variety of levels

of abstraction to study their effects from low-level assembly instructions to high-level meta

instructions. In this study, we focus on the high-level abstraction. Namely, the injection

used consists of directly changing elements of data in software to observe the response of the

technique-under-test. The effect of radiation on event-driven sensors have been measured and

modelled in previous studies [73]. Our high level fault injection model on HOTS can be used

to complement the previous study allowing for analysis of the neuromorphic architecture

starting from the input event data streams up to the final classifier layer of the HOTS
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algorithm. Further details of the fault injections and their results are provided in section

4.4.2.

4.2 Related Work

This section discusses the related work on the topic of neuromorphic vision sensing. This

include the use of neuromorphic sensing for space domain awareness (SDA), and previous

works done in testing the reliability of neuromorphic sensors to radiation.

4.2.1 Traditional Feature Selection

Feature selection for object recognition is a fundamental problem in visual processing.

Traditionally, features are defined as a function of the static information around a neigh-

borhood in an image [46, 50]. The choice of the function determines the extracted features.

Since conventional frame-based cameras primarily provide spatial information, the temporal

dynamics of an image have no bearing on the received information. The drawback of this

loss of dynamic information is that frames are captured at artificially timed intervals (also

known as the frame-rate). These frames thus contain large amounts of redundant data if the

background of an image does not change between frames.

Conventional feature extraction algorithms also typically assume that pixel illumination

is the primary source of information. However, pixel luminance is not invariant to a scene [50].

Therefore, if any changes to the environment take place, the feature information will change,

according to conventional methods. Similarly, the low dynamic range of conventional cameras

means that accurately measuring the luminance becomes difficult [70].

In machine learning, the primary method of image recognition involves the use of con-

volutional neural networks (CNNs) ever since the Krihevsky et al. ImageNet Challenge win

in 2012 [41]. What sets CNNs apart from other network types is that their layers make use

of image convolution filters. Convolutional layers are composed by sliding different convo-

lutional kernels across an image, projecting the information in the field onto a feature map.
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This feature map then provides local perception. In other words, areas that are close to a

pixel are considered more relevant than those far away [96]. Different convolutional kernels

can provide different pieces of information, such as an edge detection kernel. The prob-

lem with CNNs on embedded systems are that they are are computationally complex, and

convolving a filter over a large image, which may have redundant background information,

becomes infeasible [66].

4.2.2 Conventional SDA

Space domain awareness, previously known as space situational awareness, has been an

important topic in military applications for many years [28,38,59,63]. SDA is the ability to

keep track of the surroundings of a satellite, such as objects or debris. Understanding the

movement of the surrounding area enables mission operators to avoid collision and perform

evasive maneuvers as needed. Vision systems with high-temporal resolution and low latency

are required to accurately detect objects to be able to process in real time.

Traditionally, the main method used for SDA involves radio signals. For example, Ender

et al. present the use of radar in SDA for collision detection, orbit estimation, and propaga-

tion [26]. The benefit of radar is that it has a very large coverage, meaning it can observe

a wide area while having constant surveillance. However, since radar is bound by its long

wavelength, this method only works for larger objects, while smaller objects remain invisible.

4.2.3 Neuromorphic Sensors for SDA

Since the technology is so new, the use of event-based sensors in space-related appli-

cations is not very well developed. Most of the work has been carried out in the context

of terrestrial telescope observation of low-brightness objects in Low-Earth Orbit (LEO) and

Geostationary-Earth Orbit (GEO). [68] covers a series of experiments on using neuromorphic

sensors through a fish-eye lens for all-sky observation. They show that the neuromorphic

sensors are robust to difficult observing conditions and fast-moving objects. [2] performed

SDA of space imagery from a neuromorphic telescope using various tracking algorithms.

With their collected neuromorphic data, they were able to track high-speed objects moving
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across the field of view.

There has been extensive research into event-based cameras for real-time tracking and

low-power computer systems. Many algorithms have been developed and evaluated for ob-

jects to be tracked within the visual space of an event-driven sensor. For example, Barranco

et al. were able to use neuromorphic sensors for real-time clustering and multi-target track-

ing, receiving an F-accuracy of 95% while reducing the computational cost by 88% compared

to the conventional frame-based method [19]. Reverter et al. developed a method for ob-

ject tracking that can track many different shapes, so long as the pattern of the shapes is

known a-priori [88]. Similarly, Lagorce et al. provide a multi-kernel Gaussian mixture model

tracker for the detection and tracking of different shaped objects [43]. Another method that

uses spatial matching to allow objects to be tracked even in occluded conditions [48]. The

low computational requirements of neuromorphic sensor data analysis even allows track-

ing systems to be implemented on embedded platforms [49] and FPGAs [48], making them

perfect for space applications. Novel methods can even detect and track objects in condi-

tions where both the camera and the objects are moving independently, as is the case for

satellites [55, 56,69].

4.2.4 Neuromorphic Sensors Under Radiation

To perform valid fault injection on HOTS, a fault model is needed. The fault model

developed in [73] was used to perform software fault injection into the data. Specifically, the

introduced Event-based Radiation-Induced Noise Simulation Environment (Event-RINSE)

was useful in adding radiation-induced noise to pre-recorded data streams. This added

noise was then used as a fault-injector, allowing HOTS to be tested in a more controlled

environment. In this experiment, HOTS was tested for its sensitivity to noise.
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4.3 Scope and Methodology

This section will discuss the scope and methods to be used in the experiment. The

methodology will cover software fault injection as well as the radiation experiment.

4.3.1 Scope

The operating system was a lightweight version of Linux, but the complications of Linux’s

monolithic kernel will be irrelevant to the reliability of HOTS or the Time Surfaces. More-

over, the operating system hosting the HOTS algorithm is arbitrary, so this experiment

does not focus on execution errors. That is, any errors involving segmentation faults, kernel

panics, or similar errors are not studied as these depend on the underlying operating system.

This experiment primarily focuses on silent data errors. Silent data errors are defined

here as any error causing a difference in the output of each layer. Each layer was individually

analyzed and compared with the final predictions of the network. Observing the outputs

of each layer enables observation on how sensitive the Time Surfaces are to noise. This

observation also shows how robust the output predictions are to changes in the noise.

4.3.2 Methodology

This experiment took place in two distinct phases: the radiation experiment and the

high-level fault injection. These two halves provide two separate measurements of reliability.

Namely, the radiation experiment shows how robust the network architecture is to data

errors, and the software fault injection shows how sensitive the HOTS algorithm is to noise

in the input data and corruptions in the algorithm.

4.3.2.1 Radiation Experiment

The radiation experiment were performed at Los Alamos Neutron Science Center (LAN-

SCE) Weapons Neutron Research (WNR) facility. LANSCE provides a wide-spectrum neu-

tron beam of energies ranging from ∼ 1 MeV to > 10 MeV. Two Digilent PYNQ-Z2 boards,
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labelled in this research as PYNQ 0 and PYNQ 1 (Fig. 29), were used as the device-under-

test (DUT) and were radiated for approximately four days. The effective fluence on the

DUTs was calculated by summing up the number of estimated neutrons passing through

the DUT while it was powered, and dividing by a constant that drops off with the square

of the distance from the dosimeter to account for any decay or absorption of the beam be-

fore reaching the target. This constant is defined in [91] as (13.87m)2

(13.87m+d)2
, where 13.87m is the

distance from the beam source to the dosimeter and d is the distance from the dosimeter to

the DUT. In this experiment, d was 0.911m for PYNQ 0, and 0.937m for PYNQ 1.

The Neuromorphic Modified National Institute of Standards and Technology (N-MNIST)

dataset, which consists of neuromorphic event streams of hand-written numerical digits (0-

9), was used to test image classification with HOTS. Only one digit class was tested at a

time to separate how data errors affect different classes, as opposed to using an average

classification accuracy among all digits. The outputs of each layer as well as their respective

Time Surfaces were logged for each execution. Three layers of Time Surfaces were used with

a neighborhood size of 7 × 7px, 13 × 13px, and 25 × 25px around each event pixel. This

output helps determine which layers are most sensitive to radiation effects. Similarly, the

results show how robust the prediction outputs are to data errors. If there is an error in

Layer 1, but the prediction accuracy does not change, this shows that the layer network has

intrinsic reliability associated with it. Any errors in the execution of the application, such

as segmentation faults or kernel panics, were not included in this analysis. Results of the

radiation experiment are discussed in Section 4.4.1.

4.3.2.2 Fault Injection Experiment

Noise was added to the N-MNIST input data using the Event-based Radiation-Induced-

Noise Simulation Environment (Event-RINSE) described in [73]. This noise model was

created using actual radiation of an ATIS and is used here to insert noise into the N-MNIST

event data. The noise was injected into the input data using a variable noise-event rate.

Changing the event rate can be used to find how much noise needs to be added to affect the

prediction accuracy. Fault injecting in software provides a much more controlled environment
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to test the reliability of HOTS and the Time Surface’s sensitivity to noise. The fault injection

results are discussed in Section 4.4.2

The details of the fault injection can be seen in Figure 28. Each aspect of the algorithm

was tested under fault injection using a simple Bernoulli test with a varying probability

from a 10% to 90% chance of injection. The targets include the time surface exponential

values, the input time context, and the time decay constant all highlighted in Figure 28. All

targets were injected into in separate events to ensure a controlled response that simulates

a single-event upset in memory.

4.3.3 Platform Selection

We used two separate platforms for our experiments. The radiation experiment was

performed on the Digilient PYNQ-Z2 board, employing a Xilinx ZYNQ-7020 System-on-

Chip (SoC) which has a dual-core ARM Cortex-A9 processor and an Artix-7 FPGA fabric.

This SoC acts analogously to the CSP space computer developed at the NSF Center for

Space, High-Performance and Resilient Computing (SHREC), which has been employed on

multiple platforms aboard the international space station [76, 78, 94]. SHREC also uses the

CSP alongside a neuromorphic sensor on their mission, Configurable & Autonomous Sensor

Processing Research, which is the primary reason the PYNQ is used as a device-under-

test [64, 75].

Since high-level fault injection was performed in software, the platform becomes irrel-

evant. Therefore, for software fault injection, a desktop computer, employing an AMD

Ryzen 5 3600X 6-core processor, was used. This platform is arbitrary and will not affect the

experimental results.

4.4 Results

This section covers the results of the radiation experiment and insights from fault injec-

tion. HOTS vulnerabilities are discussed herein.
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4.4.1 LANSCE Experiment

The primary purpose of the LANSCE radiation experiment is to measure the cross-

section of the HOTS algorithm on the Xilinx Zynq-7020 SoC. The cross-section is defined as

the vulnerable area on the chip, where if impacted by radiation, an error event is expected.

However, the error events need to be defined in such a way that provides insight into the

vulnerability of the algorithm. Error events were defined as differences from the calculated

and expected Time Surface for every event in each of the three layers. The cross-section,

along with the 95% confidence interval, was calculated for each layer where an error event

first arose, shown in Figure 29(A). Similarly, the total cross-section and 95% confidence

interval for all combined layers can be seen in Figure 29(B).

The 95% confidence interval seems to increase with each layer, as expected, since the

Time Surface is larger in higher layers, leading to a higher chance of vulnerability. It is

important to note, however, that despite these data error events, there were no events that

cause a loss in prediction accuracy. Therefore, it is seen that HOTS shows an intrinsic

reliability as an application. Between the several feature points in a Time Surface, as well

as the intrinsic reliability within the classifier, a small number of elements being affected in

the Time Surface will most likely not cause any loss of accuracy. This result is consistent

with [72], which showed intrinsic reliability within neural-network classifiers.

Furthermore, we classify the types of errors observed in the radiation experiment. There

are three types of data errors that were observed:

1. Silent data errors where the Time Surface amplitude falls within [0, 1], implying the error

occurs before the exponential calculation

2. Silent data errors where the Time Surface amplitude does not fall within [0, 1], implying

the error occurs after the exponential calculation

3. Data errors where values are missing from the output Time Surface, implying the error

occurs within the parameters of the architecture

Figure 30(A) demonstrates an example of error type 1, where silent data errors occurred

before the exponential decay calculation in the Time Surface generation. The residuals show

two points in the observed, flattened Time Surface that differ from the expected result. Both
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cases are constrained within the range [0, 1], which implies that the error caused an erroneous

t value to be used in the calculation of the exponential decay, e
(t−t0)

τ .

Figure 30(B) shows an example of a much more extreme data error. This figure shows

cases of both error type 2 and 3. At around index 50, the amplitude of the Time Surface

jumps to about 5000, well out of the normal range of [0, 1] constrained by the exponential

calculation. Therefore, it can be assumed that the error occurs in the value of the Time

Surface after the exponential decay, and not any of the data or parameters beforehand.

Similarly, some values of the expected Time Surface were missing from the observed one,

causing a constant offset from the expected pattern after index 100. Surprisingly, neither of

these error events caused a drop in prediction accuracy, probably due to the fact that this

Time Surface only represents one of many features in an event stream.

Figure 30 (C) shows a histogram of the observed time offsets from the data errors. The

majority of time offsets were small, falling within ±2 seconds. This small offset implies

that the majority of data errors occurred before the exponential calculation, keeping the

erroneous output bound within [0, 1], most likely due to the amount of computation time

spent on the Time Surface exponential calculations. The majority of the runtime is spent

calculating the Time Surface exponential values, leaving the data used in the calculation

vulnerable to radiation. However, this bound from the calculation means that the majority

of output errors will not be significant enough to cause a change in the clustering output.

4.4.2 Fault Injection

The results from the Event-RINSE fault injection can be seen in Figure 31. The noise

model for Event-RINSE consists of a burst of ON events followed by a long relaxation period

of OFF events, meaning that there are several hundred induced event spikes in each noise

event occurrence [73]. Induced noise rates were tested from 0 to 100 noise occurrences per

second. The cumulative average among all 10 classes of N-MNIST was shown to drop to

random chance at around 80 noise occurrences per second, seen in Figure 31(A). However,

even small amounts of radiation noise, such as 5 effects per second causes a drop in accuracy,

implying that the system is sensitive to variance in the input data. This sensitivity follows
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due to the creation of many random noise features created that will interfere with the clas-

sification, especially on a memory-constrained embedded system where not all events in an

input file can necessarily be used for feature extraction.

Figure 31(B) separates the classes for digit “1” and digit “5” and compares them to the

cumulative average. Classes with a diverse set of features, such as digit “5” show a higher

resilience to the average, typically scoring around one standard deviation above the average.

Conversely, classes without many features to extract, such as digit “1”, consistently had an

accuracy lower than one standard deviation below the average. This is most likely due to

the random noise having a larger impact on the classification when there are fewer features

to extract from a stream.

To control the response of high-level fault injections, four separate variables were indi-

vidually targeted using software bit-flips with varying probabilities of injection. The results

of the software fault injection effects on the accuracy of HOTS classification compared to

its accuracy without injection can be seen in Figure 32. Injection into all four variables,

the exponential, polarity, decay constant, and event time caused the accuracy to drop to

random chance (10% accuracy) by 50% injected events. The exponential and the decay con-

stant cause the sharpest decline in accuracy where the accuracy drops to below 25% even

for 10% affected events. This is expected due to the fact that they drastically change the

shape of the Time Surface feature. Surprisingly, injecting into the polarities shows the slow-

est drop in accuracy despite directly affecting the k-means center clustering. However, this

phenomenon could be due to the fact that the polarity injections only lead to re-assignment

from the original polarity to another polarity bounded within the number of clusters in each

layer as used during training, leading to a lower probability of a data error occurring.

4.5 Conclusion

The results of our experiments demonstrate the reliability and vulnerabilities of feature

extraction in neuromorphic data. The response of the Hierarchy of Time Surface architecture

to radiation and the response of Time Surface features to targeted fault injection were
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measured. Within the radiation experiment, we saw no change in accuracy due to any data

errors observed within the Time Surface layers. The classifier used the output of the hierarchy

of Time Surfaces, which means that only errors propagating to the output of the hierarchy

could have any possible effect on the accuracy. However, as observed in [72], multi-layered

perceptrons have intrinsic resilience to data errors within the nodes, providing an overall

boost to the reliability of the HOTS architecture. It is also likely that the large amount

of features provided by creating a Time Surface for every event in a data file compared to

the low chance for a malicious error in memory to occur during computation gives a higher

resilience to a layer being affected.

Within the data errors, the time offsets were then calculated, shown in Figure 30(C).

This figure shows a histogram of how radiation tended to shift the temporal spikes calculated

through inversion of the exponential function. The majority of the calculated offsets are

positive after the natural logarithm of the exponential multiplied by the negative of the

decay constant. This provides evidence that the majority of the errors encountered in the

radiation test occurred before or during the calculation of the exponential. This is most

likely due to the fact that the creation of the time surfaces is the most computationally

complex part of the algorithm. Once the Time Surfaces, and thus the exponential values,

are calculated, the rest of the inference is quick, leaving little chance for a radiation strike

to corrupt the data. The most time consuming parts of an algorithm will generally be the

most vulnerable to radiation since the time where an error may occur is larger.

To combat the randomness of a radiation experiment, controlled fault injection in soft-

ware was also performed to find the most vulnerable parts of the HOTS architecture. Event-

RINSE allows observations on how the classification accuracy decreases when there is cor-

ruption in the sensor data. Data errors within the algorithm can be detected or corrected via

redundancy, but it becomes difficult to detect problems if the sensor providing the input it-

self is affected. Figure 31(A) shows that the accuracy of HOTS does decrease with increased

radiation noise within the input event stream. However, Figure 31(B) shows that the drop

in accuracy is dependent on the feature map of the data and is, therefore, data dependent.

It is likely that the radiation response would be different under a different dataset. It should

also be noted that due to the memory and computational constraints of embedded systems,
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all events in an input file were unable to be used to create Time Surfaces. Increasing the

number of events used in each sample would most likely provide more resilience to input

noise by increasing the signal-to-noise ratio. known fault injection models, simply know-

ing the radiation noise model opens up opportunities for filtering or noise reduction before

processing.

High-level fault injection shows how faults within onboard memory or cache can prop-

agate to data errors. The primary targets for data errors within the architecture would be

the exponential amplitude, decay constant τ , the event time spike t, and the polarity used

in clustering. To understand the slope of accuracy decay, the accuracy with fault injection

was compared relative to the accuracy without fault injection. All four variables were shown

to drop the inference accuracy very quickly. The exponential value and the decay constant

were shown to have the sharpest decline in accuracy with the probability of injection. This

sharp decline is most likely due to those variables drastically changing the overall feature

shape of the Time Surface which would lead to significant changes in clustering. The decay

constant significantly impacts the shape of the feature as it affects all points in the output

as opposed to one pixel in the Time Surface. Meanwhile, injections in the exponential were

post-calculation of the exponential amplitude, meaning the erroneous value was not bounded

by [0, 1] causing severe changes in the feature shape, such as is the case in Figure 30(B).

However, the radiation experiment showed that this case is unlikely. Interestingly, the polar-

ity which defines the features used for classification had the least sharp decline in accuracy.

To prevent crashes, the polarity bit-flips had to be bound to the number of features in each

layer, which means there is a lower probability of the injected polarity being different from

the expected one. With an actual radiation experiment, it is much more likely that a bit-flip

in the polarity variable would cause a segmentation fault which were not accounted for in

this experiment as they are platform dependent. The event time shows the second shallowest

decline of the accuracy next to the polarity. The event time, as it is used in the exponential

values, would not lead to as strong as a response as the others due to the fact that the

exponential calculation masks the error by keeping it bound within [0, 1] and thus does not

cause as severe changes in the output, similar to Figure 30(A).

In all variable cases, however, the accuracy still drops to random chance before a 50%
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probability of injection, demonstrating a severe vulnerability to SEUs in these components.

To combat this, traditional reliable computing techniques can be used. In the case of the

exponential, a solution to prevent vulnerability at the cost of memory or runtime can be

to calculate the value three or more times and take a majority vote on the output, similar

to triple modular redundancy [52]. Another option for error detection is to have a quick

boundary check along the time surface. Due to the nature of the exponential, any values

that are larger than 1 or less than 0 would be impossible and thus would be a data error.

Similarly, the polarity calculation can also be performed multiple times and put to a vote.

Multiple copies of the decay constant can be stored and voted on before any computation,

allowing for redundancy with minimal time and memory overhead. Unfortunately, there

is no ground truth to the event time spike during computation, so any redundancy would

have to occur in the input data files. However, the probability of any of these values being

impacted by radiation to cause a decline in accuracy is small. Though, adding additional

redundancies and checks in these variables is a possible way to improve reliability for mission-

critical software with little overhead.

The overall results of these experiments can be used to infer the response to radiation

of other neuromorphic applications, such as any method using an exponential kernel. With

the radiation experiment, it is shown that there is intrinsic reliability within the HOTS

application, where no decline in inference accuracy is seen, even with errors in the layers.

Fault injections show how propagating computational errors can lead to failures in inference.

Both of these experiments together can give mission designers a starting point to creating

the architectures for reliable, neuromorphic applications.
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Figure 28: Fault injection into HOTS classification architecture. Noise was injected into

different modules of the HOTS algorithm independently to test their resilience. An input

digit, (a), is passed through the event-based sensor, (b), which produces an asynchronous

event stream for each pixel. Radiation based noise injected into input events, (c), modelled

using Event-RINSE fault injector, (d), described in [73], leads to erroneous spikes (in red)

added to the event stream. This also leads to errors in time surface computation as shown

in top three rows in (e). The bottom row of (e) further shows errors due to additional noise

injected into exponential kernel computation, (f), such as the decay constant, τ (green) and

time of event, t (in magenta) both of which lead to error in the decayed synaptic output.

The Time Surfaces themselves are also prone to noise (blue) which lead to erroneous time

surfaces values for certain pixels shown in (g). The polarities used in k-means clustering were

also injected with bit-flips, shown in (h) to see how random changes in cluster assignments

affect the classification. The layer outputs, i.e. the labeled events, were then passed through

a multi-layered perceptron as features for classification demonstrated in (k).
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Figure 29: Two PYNQ Boards radiated at LANSCE labelled as PYNQ 0 (blue) and PYNQ

1 (orange). (A) The cross-sections when errors are separated by which layer the first error

occurs. (B) The total cross section containing the total number of errors in all layers.
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Figure 30: Examples of data errors seen in Time Surfaces during irradiation. Time Surfaces

were flattened from 2 dimensions to 1 dimensions for easier visibility. (A) Corrupted and

golden flattened Time Surfaces with residuals to depict an example of a data error occurring

before the exponential calculation at around index 13 and 54. (B) Corrupted and golden

flattened Time Surfaces with residuals to depict a data error occurring after the exponential

calculation at around index 50, breaking out of the exponential bound of [0, 1]. A missing

value occurs before index 100, causing an offset for the rest of the Time Surface. (C)

Histogram of time offset errors observed in radiation test showing how the temporal spike

was changed. Most results fell within small time differences, implying the errors occurred

before the exponential calculation.
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Figure 31: (A) Average accuracy of HOTS with noise introduced by the Event-RINSE fault

injector at varying levels of radiation-induced-noise event rates. A single noise event is

defined by the Event-RINSE model described in [73], or seen in Figure 28(d). The accuracy

drops to random chance at a noise rate of around 80 noise evts
s

. (B) Accuracy of class 1 and

class 5 for different noise rates. Class 1 (red), with very few distinct features typically falls

below the one standard deviation of the average (in green) and reaching random chance by

30 noise evts
s

. This steeper curve implies that the noise effect has a larger effect for classes

with fewer distinctive features. However, class 5 (blue), with more distinct features typically

performed better at higher noise rates than the average.
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Figure 32: Average relative accuracy across classes given different probabilities of bit-flips

in different variables: the value of the exponential (blue) the polarities used in k-means

clustering (orange), the decay constant τ (green), and the times of input events (red). All

variables show show strong reactions to bit-flips, causing the accuracy to drop to random

chance with the exponential value and the decay constant showing the sharpest slope.
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5.0 Conclusions and Future Work

Neuromorphic systems aim to change the paradigm of computing from the spatial do-

main to a temporal domain. Taking advantage of the energy efficiency of asynchronous

processing and sensing provides opportunity for performing complex applications, such as

ML, on embedded space platforms. However, before any neuromorphic systems are flown,

their failure modes must be understood to ensure mission success. Moreover, even after they

are flown, dependable-computing techniques are required to ensure the data being processed

is accurate to avoid any silent data errors. In this dissertation, we provided the first mea-

surements of the reliability of neuromorphic sensors and common computations to design a

neuromorphic fault model. Similarly, we presented ABFT as a valuable method to improve

data reliability in any applications that use matrix multiplication, such as ML. These three

pieces together created an end-to-end reliable neuromorphic classification system.

Chapter 2 presents the use of ABFT as a method of improving data reliability in ML

experiments. Many ML applications, such as HOTS, uses matrix multiplication as their

primary kernel. Therefore, since the reliability of matrix multiplication can be improved

with ABFT, the entire application will become more dependable regardless of the underlying

architecture or sensing technology used.

Chapter 3 addresses the reliability of neuromorphic vision sensors by radiating the sensor

for the first time. The sensor saw radiation as induced noise events when neutrons transferred

energy to the photodiodes of a circuit. A very specific model of ON events and OFF events

was measured for each noise instance. Using this model, a fault injector named Event-RINSE

was created that can demonstrate the same failure modes on pre-recorded data. This injector

allows designers to test their applications on radiation noise before deployment without the

need of expensive radiation testing.

Finally, Chapter 4 pulls the previous two together by evaluating a neuromorphic classi-

fication algorithm via radiation and fault injection. These injections demonstrated how the

use of temporal-context encoding will perform in a radiative environment, along with other

computations commonly needed in neuromorphic architectures. The HOTS algorithm was
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evaluated under radiation and fault injection as a way to encode temporal information to

perform image classification. HOTS was used as a case study to understand how different

computations within a neuromorphic architecture are affected by these upsets. These exper-

iments provide designers the information needed to add protection to their mission, whether

it be additional hardware safeguards or dependable-computing techniques within software.

These experiments also present methods to create more reliable neuromorphic architectures

for use in hazardous environments given the observations from fault injection and irradiation

campaigns.

This work is just the first step into space with neuromorphic systems. However, there

are still many facets yet to be explored. For example, performing a test on a neuromorphic

vision sensor with proton or heavy-ion radiation is a natural progression from the wide-

spectrum neutron experiment in this work. This experiment would show how much energy

can be introduced into the sensor before it fails entirely. Based on the beam measurement

results found in this neutron experiment, the opportunities for using neuromorphic sensors

as particle detectors can be explored, either as a trajectory mapper or giving a measurement

of the surrounding radiation environment. Similarly, new neuromorphic algorithms could be

created for use in various space applications.

An interesting extension of the neuromorphic algorithm research could be to perform fault

injection on various architectures of processors. This extension would move from software-

based fault-injection abstraction to hardware, providing a more realistic representation of

the failure modes, albeit while being dependent on specific hardware. Various neuromorphic

processors could also be brought to a beam for radiation testing to understand how they

behave under hardware fault injection. A radiation test would evaluate how accurate and

realistic the fault model assumed in software fault injection is. The ultimate test for how a

neuromorphic processor would behave in space would be to simply fly one on a spacecraft

and observe its performance.

Finally, ABFT could be applied to any ML application, whether neuromorphic or not,

to observe how it directly improves reliability and affects the performance. An interesting

extension to this research would be to tackle execution errors, such as segmentation faults or

kernel panics within a system, since ABFT only handles data errors. This kind of extension
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could involve observing how different operating-system kernels respond to radiation effects

or identifying the primary cause of execution errors. Regardless of the direction, there are

certainly many opportunities for expanding neuromorphic systems to the space environment.
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